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Abstract 
Enzymatic catalysis to produce molecules such as perfumes, flavors, and fragrances has the 

advantage of allowing the products to be labeled “natural” for marketing in the U.S., in addition 

to the exquisite selectivity and stereoselectivity of enzymes that can be an advantage over 

chemical catalysis.  Enzymatic catalysis in organic solvents is attractive if solubility issues of 

reactants or products, or thermodynamic issues (water as a product in esterification) complicate 

or prevent aqueous enzymatic catalysis.  Immobilization of the enzyme on a solid support can 

address the generally poor solubility of enzymes in most solvents. 

We have recently reported on a novel immobilization method for Candida antarctica Lipase 

B on fumed silica to improve the enzymatic activity in hexane. This research is extended here to 

study the enantioselective transesterification of (RS)-1-phenylethanol with vinyl acetate.  The 

maximum catalytic activity for this preparation exceeded the activity (on an equal enzyme 

amount basis) of the commercial Novozyme 435® significantly. The steady-state conversion for 

(R)-1-phenylethanol was about 75% as confirmed via forward and reverse reaction.  The 

catalytic activity steeply increases with increasing nominal surface coverage of the support until 

a maximum is reached at a nominal surface coverage of 230%. We hypothesize that the physical 

state of the enzyme molecules at a low surface coverage is dominated in this case by detrimental 

strong enzyme-substrate interactions. Enzyme-enzyme interactions may stabilize the active form 

of the enzyme as surface coverage increases while diffusion limitations reduce the apparent 

catalytic performance again at multi-layer coverage.  The temperature-, solvent-, and long-term 

stability for CALB/fumed silica preparations showed that these preparations can tolerate 

temperatures up to 70°C, continuous exposure to solvents, and long term storage. 
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Introduction 
Non-aqueous enzymology is an attractive option for the synthesis of various molecules in 

non-aqueous media (Hudson et al., 2005; Klibanov, 2001).  Promising experiments for polymer 

synthesis (Gross and Kalra, 2002; Gross et al., 2001), anticancer and antiviral drugs (Gotor, 

2002), aromas and fragrances (Barahona et al., 2006; Bartling et al., 2001), and surfactants 

(Bruno et al., 1995) have been reported. 

The performance of biocatalysis in organic solvents significantly extends the applications of 

biocatalysts.  This is mainly because water is a poor solvent for many organic compounds of 

commercial interest (Ghanem, 2007). Furthermore, undesirable side reactions such as hydrolysis, 

racemization, polymerization and decomposition are largely repressed in solvents when 

compared to aqueous solution (Ghanem, 2007; Klibanov, 2001). 

Nevertheless, the catalytic activity of enzymes in organic solvents tends to be much lower 

than in aqueous environments (Ghanem, 2007; Klibanov, 2001).  

To overcome this issue, different approaches have been developed. Immobilization of 

enzymes on porous and non-porous solid supports has been intensively explored (Long et al., 

2007; Persson et al., 2002). The preferred matrices for immobilization include macroporous 

polypropylene particles (Bosley and Peilow, 1997), hydrophilic silicon wafers (van der Veen et 

al., 2007), microemulsions and organogels (Zoumpanioti et al., 2008).  Additional efforts include 

improving compatibility with the solvents by chemical modification of the enzymes’ surface 

(Sheldon et al., 2005), protein engineering (Hudson et al., 2005), and co-lyophilization of the 

enzyme with various adjuvants, such as cyclodextrin (Ghanem, 2003; Mine et al., 2003), 

inorganic salts (Lindsay et al., 2002, 2004), and crown ethers (Mine et al., 2003; Santos et al., 

2001; Secundo et al., 2007).  
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The immobilization on organic and modified inorganic nano-structured supports is 

considered now as an attractive option for immobilization. A variety of these materials is 

available including epoxy-activated nanobeads, zirconia nanoparticles, and fumed silica.  The 

main advantage is the large specific surface area provided by such materials (Chen et al., 2008a; 

Chen et al., 2008b; Cruz et al., 2009). We have recently reported on a new immobilization 

technique for the activation of two different enzymes on commercial fumed silica (FS): 

Candida antarctica Lipase B (CALB) (Cruz et al., 2009) and subtilisin Carlsberg (Cruz et al., 

2009; Pfromm et al., 2007; Wurges et al., 2005). The enzyme is co-lyophilized from the aqueous 

phase with fumed silica. The significant activation of the enzyme reached or in some cases even 

exceeded the best activities reported for salt activation while the process is somewhat simplified 

(Cruz et al., 2009; Pfromm et al., 2007). The details can be found elsewhere (Cruz et al., 2009; 

Pfromm et al., 2007; Wurges et al., 2005). 

The main driving forces for protein adsorption on solids are thought to be of hydrophobic 

and electrostatic nature. These interactions are essentially driven by the net charge difference 

between the protein and the surface (Cruz et al., 2009; Koops et al., 1999). An important issue 

associated with the adsorptive immobilization of enzymes is that conformational changes are 

sometimes observed (Bosley and Peilow, 1997; Koops et al., 1999; Unsworth et al., 2007; van 

der Veen et al., 2007). These conformational changes may modify the native enzyme structure 

and promote fluctuations in activity at low enzyme loadings (in this work, referred as low 

nominal surface coverage). Thus, a large excess of surface area maximizes the interactions of the 

lipase with the surface, which can result in the above described structural changes and in reduced 

activity (Bosley and Peilow, 1997; Koops et al., 1999). 
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To retain more lipase molecules in the active conformations after adsorption, one may 

consider mechanisms to suppress the tendency of the enzyme to deform when sufficient surface 

area is provided. This might be achieved by increasing the presence of neighboring molecules at 

increased surface coverages (Bosley and Peilow, 1997; Koops et al., 1999; van der Veen et al., 

2007). Mass-transfer limitations may start to be significant at multi-layer coverages thereby, 

potentially leading to reduced apparent activity.  The overall result is low apparent activity at low 

surface coverage, maximum apparent activity at an intermediate coverage, and again low activity 

at high or multi-layer coverages (Bosley and Peilow, 1997; Koops et al., 1999).  

This work reports on the performance of Candida antarctica Lipase B immobilized on 

fumed silica in an enantioselective transesterification reaction in hexane. Our findings reproduce 

the maximum of catalytic activity at an intermediate surface loading, reported previously for a 

non-stereoselective reaction (Cruz et al., 2009). We also investigated the steady-state conversion, 

the thermal stability, the solvent stability, and the long-term stability at 4°C for preparations with 

various surface coverages. 

Material and Methods 

Enzymes 
Crude CALB (E.C. 3.1.1.3; lyophilized; specific activity of 30 U/mg solid) was purchased 

from Biocatalytics, Inc. (Pasadena, CA), stored at 4°C, and used as-received. Commercial 

Novozyme 435® was purchased from Sigma, stored at 4°C, and used as-received. 

Novozyme 435® is a preparation of the lipase B from Candida antarctica adsorbed on 

macroporous acrylic particles (0.3-0.9 mm diameter) reported to have about 7000 PLU/g (Propyl 

Laurate Units per gram preparation). 
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Chemicals and materials 
Monobasic potassium phosphate (>99.9%), potassium hydroxide, hexane (98.5%, Acros 

Organics), isopropanol (99.9%, Fisher, Sigma-Aldrich), vinyl acetate (99%, Alfa Aesar), 

acetaldehyde (99.5%, Acros Organics, stored at 4°C) were purchased from Fisher Scientific 

(Pittsburg, PA). 

The chemicals for calibration, enzymatic reactions, immobilization, and Karl Fischer 

titration, α-methylbenzyl acetate (98+%, SAFC sampling solutions), (S)-1-phenylethanol (97%, 

Sigma-Aldrich), (RS)-1-phenylethanol (98%, Sigma-Aldrich), HYDRANAL®-Coulomat AK 

anolyte (Fluka), HYDRANAL®-Coulomat CG-K catholyte (Fluka), and Fumed Silica (Product 

number 381276, 99.8%, specific surface area 255m2/g, primary particle diameter ≅ 7-50 nm, as 

reported by the manufacturer) were purchased from Sigma-Aldrich (St. Louis, MO). A chiral 

High Performance Liquid Chromatography (HPLC) column (Chiralcel OD-H, 0.46 cm inner 

diameter, 25 cm length; Daicel Chemical Industries, Tokyo, Japan) and a Shimadzu HPLC 

system (Shimadzu, Kyoto, Japan) were used (Pumps LCD-10ATvp liquid chromatography, 

degasser DGU-14A, auto injector SIL-10ADvp, system controller SCL-10Avp, column oven 

CTO-10Avp, diode array detector SPD-M10Avp, Shimadzu Chromatography Laboratory 

Automated Software System Version 7). 

A 20 µL-200 µL and a 100 µL-1000 µL Finnpipette (Fisher Scientific) were used for 

pipetting.  1.5 mL glass vials and caps with pre-assembled septa for HPLC sampling were from 

Sun Sri. For storage the septum caps were replaced with solid caps (Fisherbrand, Fisher 

Scientific). 

To carry out the enzymatic reactions a PsyCro Term Controlled Environment Incubator 

Shaker (New Brunswick Scientific) was used. Reactions were performed in 12 mL glass vials 

6 



with open top caps and septa from National Scientific.  Solvent and temperature stability 

experiments were performed using solid caps (Kimble). 4 oz glass jars with plastic screw caps 

were used for conversion experiments (Wheaton).  A 1 mL gastight syringe with Luer Lock head 

and 3 inch needles (Hamilton, Reno, NV) was used for sampling. Samples were filtered with 0.2 

µm PTFE syringe filters (Whatman Inc.). 

Enzyme surface coverage of the support 
The surface coverage of the solid support (fumed silica) by the immobilized enzyme is 

tracked here by calculating a nominal surface coverage based on the projected surface area of a 

CALB molecule of 28.27nm2 determined via x-ray crystallography resulting in a spherical 

CALB molecule of 6nm diameter (Uppenberg, 1994). The surface coverage is determined 

according to  

S

E

A
nASC 100% =   Equation 1 

where %SC is the nominal surface coverage in %, n is the number of moles of enzyme, AE is the 

projected surface area of an enzyme molecule in m2, and AS is the surface area of the fumed 

silica support in m2 as reported by the manufacturer. Both the spherical shape of the enzyme and 

the surface curvature of the support cause actual 100% monolayer surface coverage to likely 

occur below 100%SC nominal surface coverage. This is exacerbated if the enzyme molecules 

deform to maximize enzyme-support interactions. In summary, actual monolayer coverage is 

expected below a calculated nominal 100%SC. Multi layer coverage will lead to nominal surface 

coverages calculated above 100%SC. 

Enzyme immobilization 
Details for this process can be found elsewhere (Cruz et al., 2009; Wurges et al., 2005). In a 

glass vial crude CALB and aqueous buffer were mixed under vortexing for about 30 s. After 
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adding fumed silica the preparations were homogenized by vortexing followed by sonication for 

10 min. The suspension was then stored at -20°C in a refrigerator until frozen. The frozen 

samples were lyophilized (48 h primary drying, 24 h secondary drying, VirTis model 

10-MR-TR: Gardiner, NY).  

Table 1 shows the amounts of aqueous buffer and fumed silica needed for the various % SC-

preparations. 

Our preparations and Novozyme 435® are compared here on an equal PLU basis. As 

reported elsewhere ((Chen et al., 2008a), active site titration in organic media) the fraction of 

active enzyme in the Novozyme 435® immobilizate is about 50.3%.  The measured initial 

reaction rates for Novozyme 435® were corrected to compare with our preparations using the 

relationship 

r0plotted = r0 measured*0.503  Equation 2 
 

where r0 is the initial reaction rates in μmol/s. 

Mobile phase 
The mobile phase used for HPLC was a hexane/isopropanol mixture (9:1, v/v). The stock 

solution was composed of 3600 mL of hexane and 400 mL of isopropanol and stored in amber 

glass vessels sealed against the open atmosphere.   

Analytical Methods for Reactions in Hexane 
Substrates ((RS)-1-phenylethanol, vinyl acetate) and products ((R)-1-phenylethyl acetate, 

(S)-1-phenylethanol) were tracked in the reaction mixture by HPLC. The retention times were 

6.5, 7.2, 10.3, and 11.1 min for vinyl acetate, (R)-1-phenylethyl acetate, (R)-1-phenylethanol, 

and (S)-1-phenylethanol; respectively.  Kinetic parameters are based on the appearance of (R)-1-
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phenylethyl acetate.  The conversion is defined in terms of a fractional conversion c as (Chen et 

al., 1982):  

00 ][][
][][1

SR
SRc

+
+

−=    Equation 3 

 
where [R] is moles of (R)-1-phenylethanol from analysis, [S] is moles of (S)-1-phenylethanol 

from analysis, [R]0 is the initial amount of  (R)-1-phenylethanol in moles, and [S]0 is the initial 

amount of (S)-1-phenylethanol in moles 

Initial Reaction Rates 
The enzyme preparation was weighed into 12 mL glass vials. Table 1 shows the needed 

weights for the different preparations.  6 mL hexane were then added. As substrates 42.4 mg 

vinyl acetate (82 mM) and 60 mg (RS)-1-phenylethanol (82 mM) were finally added and the 

time of adding the reactants was defined as time zero. 

The vials were then placed in the incubator (30°C, 280 rpm).  400 µL samples are taken 

every 20 min with 1 mL gastight syringes and are afterwards directly filtered with syringe filters 

pre-purged with hexane.  200 µL are pipetted into 1.5 mL HPLC vials with 1100 µL mobile 

phase. These HPLC vials are refrigerated until used. 

Thermal Stability 
Temperature stability experiments were carried out with enzyme preparations of 230 %SC, 

100 %SC, 12 %SC, and 2 %SC nominal surface coverage and for Novozyme 435® by 

measuring the initial reaction rates at 45°C, 60°C, and 70°C. 

Steady-State Conversion  
To determine the steady-state conversion forward reactions with a reaction mixture volume 

of 48 mL were performed.  The amounts of preparations and substrates were properly scaled-up. 
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Preparations with a range of nominal surface coverages between 400 %SC and 4 %SC were 

tested. The reactions were tracked by measuring the (RS)-1-phenylethanol consumption.  The 

reverse reaction with the 230%SC preparation was performed to check the accuracy of the 

steady-state condition and the experimental procedures.  

Hexane Storage Stability 
Preparations were suspended in 6 mL hexane and incubated (280 rpm, 30°C) for up to 4 

days. The substrates were then added and initial reaction rate experiments were carried. 

Long-Term Stability for Storage at 4°C 
Initial reaction rates of enzyme preparations (17, 4, and 2 %SC) that had been stored dry for 

one year at 4°C in glass vials closed with screw caps were determined (see procedure above). 

Water content analysis 
The water content of our reaction mixture was measured by coulometric Karl Fischer 

titration (Denver Model 275 KF titration module, Model 270 controller, Denver Instruments) of 

about 1 mL samples taken with a gas tight syringe (5mL, Hamilton). 

Due to the presence of the keto group (=C=O) in the vinyl acetate, it is likely that 

interference with standard Karl Fischer reagents occurs (Vantol et al., 1995).  Karl Fischer 

reagents HYDRANAL®-Coulomat AK and HYDRANAL®-Coulomat CG-K (both Fluka 

purchased from Sigma-Aldrich) were therefore used.  Titration of a HYDRANAL® Water 

Standard (Riedel-de Haën, 100mg water/g) in six independent titrations in the same titration 

module resulted in an average of 99.6 ppm H2O (standard deviation 4.4 ppm). 

Syringes were carefully cleaned and always stored in a desiccator. The water concentration 

in our reaction mixture (6 mL hexane, 60μL (RS)-1-phenylethanol (82 mM), 45μL vinyl acetate 
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(82 mM), appropriate amount of CALB/FS preparation) was determined after filtering (0.2 μm 

syringe filters) the homogenized mixtures three times. 

Results and Discussion 
We report the enantioselective catalytic activity of CALB in hexane immobilized on a non-

porous inorganic support that consists of nano-scale spherical silica particles fused into necklace-

like arrangements (fumed silica) (Iler, 1979). The simplicity of the procedure to produce the 

preparation, the low cost and availability of the fumed silica (commercially available both native 

and with surface modifications), and the proven ability to operate the preparation in a packed bed 

continuous reactor are attractive (Pfromm et al., 2007; Wurges et al., 2005). 

The good match of the conversion (about 75%, Fig. 1) of the forward and reverse reactions for 

the transesterification of (R)-1-phenylethanol with vinyl acetate as acyl donor catalyzed by 

CALB immobilized on fumed silica in hexane indicates that our experimental and analytical 

procedures appear consistent. Comparison with the literature confirms this in hexane 

(Sriappareddy et al., 2007) and other organic solvents (Han et al., 2006; Kamori et al., 2002). 

The water content in our reaction mixtures was on average 33±5.5 ppm. This corresponds to a 

thermodynamic water activity aw of 0.38±0.06 assuming a saturation level of 89.4ppm of water 

in hexane at the reaction conditions (Kang et al., 2005). 

The initial reaction rates (2 hrs) for different nominal surface coverages show a maximum at 

an intermediate nominal surface coverage of about 230%SC (Fig. 2). This indicates multi-layer 

coverage if the geometry of the enzyme molecule and the available fumed silica surface assumed 

in the calculation of %SC is correct. This is similar to previous observations (Bosley and Peilow, 

1997; Cruz et al., 2009; Wurges et al., 2005) although the maximum occurs at different nominal 

surface coverages (discussion below). The best reaction rate doubles that of commercial 
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Novozyme 435® on an equal PLU basis. The different CALB immobilizates on fumed silica all 

showed the same high enantioselectivity; >99% (data not shown) as reported by others (Han et 

al. 2006). 

Based on the literature and our results (Bosley and Peilow, 1997; Cao, 2005; Cruz et al., 

2009; Janssen et al., 2002; Koops et al., 1999), we postulate here that three phenomena 

contribute to the observed catalytic activity maximum: 1.detrimental conformational changes of 

enzyme molecules upon adsorption on a solid (Bosley and Peilow, 1997; Koops et al., 1999), 

2.beneficial interaction of adsorbed enzymes with neighboring enzyme molecules at increasingly 

"crowded" conditions, and 3. reactant and/or product diffusional limitations due to multi-layer 

deposition of the enzyme (Cao, 2005; Janssen et al., 2002; Koops et al., 1999). A more detailed 

mechanistic explanation of each situation is given below and schematically shown in Fig. 3.  

Fig. 2 can be interpreted in light of the three effects above. The possible detrimental 

structural changes of the enzyme after adsorption on the solid may impact the more sensitive 

stereoselective reaction more severely than the simple esterification of geraniol. More 

stabilization may therefore be needed to reach the maximum reactivity for the more complex 

stereoselective catalytic process.  This corresponds to a higher nominal surface coverage needed 

to reach the maximum reactivity, pointing towards more protein/protein interactions. The decline 

in reactivity then follows when increasing multi layer coverage causes mass transfer limitations. 

This is schematically shown in Fig. 3 where three regimes of surface loading are proposed:  

1. Low nominal surface coverage where most enzyme molecules adsorb isolated from each 

other thereby promoting conformational changes (by deformation upon multipoint attachment to 

the surface). Few active enzyme molecules are responsible for catalysis, which explains the 
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considerable loss of activity per enzyme molecule in this regime. The presence of this 

conformation-controlled regime has been previously suggested by others (Cao, 2005).  

2. High catalytic activity per enzyme molecule at intermediate surface coverage where 

enzymes are likely adsorbed on a previously formed enzyme monolayer and stabilized by 

enzyme-enzyme interactions.   

3. A high nominal surface coverage regime with multiple layers where diffusional mass 

transfer barriers result in a low apparent catalytic activity per enzyme molecule.  The existence 

of this mass transfer-controlled regime was also suggested previously (Cao, 2005). 

Fig. 4 shows the impact of temperature on the catalytic activity of our preparations. All 

enzyme preparations show Arrhenius-type activation from 30°C to 45°C. The 2 %SC preparation 

remains at the same albeit low level of activity for all temperatures. This can be interpreted to 

support the notion that the enzyme molecules in this preparation may have strong interactions 

with the support due to the large surface area provided. This enhanced contact is likely to lead to 

detrimental impact on the structure (resulting in low activity) but on the other hand helps to 

maintain the integrity of the still active molecules at higher temperatures (Koops et al., 1999). 

The 12 %SC preparation shows a similar progression, however, the denaturing effect of 

increased temperature is more pronounced. Thus, after reaching a maximum at 45°C the activity 

decays continuously.  

Higher activity values for the 100 %SC and 230 %SC preparations were observed at all 

temperatures exceeding those of Novozyme 435®. Additionally, the 100 %SC shows a 2.5-fold 

increase in activity from 30°C to 60°C and a precipitous decrease from 60°C to 70°C. The 

activity of the 230 %SC preparation, however, increased 1.5-fold from 30°C to 45°C and 

remained at the same high level above 60°C indicating that the enzyme localization on the 
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surface largely prevents thermal damage and the subsequent break down of the catalytic 

machinery.  

In summary, when superimposed; the three effects of denaturation by enzyme-solid 

interaction, stabilization by enzyme-enzyme interaction, and mass transfer limitation at multi 

layer coverage lead not only to a maximum in the activity as a function of coverage but to very 

stable conformations that can tolerate relatively high temperatures. This represents a tremendous 

advantage from the processing stand point as a number of processes of industrial importance are 

preferentially performed at temperatures above the ambient condition.   

The temperature dependence of R. miehei lipase immobilized in lecithin based 

microemulsion-based organogels is superimposed in Fig. 4 for comparison (Zoumpanioti et al., 

2008). Fig. 4 shows that these lipase preparations are behaving similarly as the temperature is 

raised from 30°C to 70°C. This confirms that our system exhibits a similar temperature 

dependency as those reported elsewhere (Zoumpanioti et al., 2008). This further supports that 

our preparations can activate to a level that is commonly obtained for the same enzyme 

immobilized on supports with different chemical and physical properties.   

Fig. 5 shows the storage stability in hexane in terms of the initial reaction rates for up to 

4 days. The results for Novozyme 435® are superimposed. Lower activities for the fresh 

preparations are explained by the fact that separately prepared batches with batch-to-batch 

fluctuations in catalytic activity were used for the remaining data points. The data clearly shows 

that the solvent appears not to affect the subtle enzymatic catalysis for this stereoselective 

reaction substantially over the time investigated here. Unlike our previous work, where the 

catalytic mechanism does not require specific active site geometries; the active site’s binding 

affinity is likely to remain unaffected during catalysis (Cao, 2005; Cruz et al., 2009). 
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Fig. 6 shows the initial and residual activity of our CALB preparations after one year of 

storage at 4°C (glass vial, Teflon-lined screw cap). The activity of the 12 %SC and 4 %SC 

preparations is about 70% of the initial values (Table 2). The one year-stored 2 %SC preparation 

maintained over 90% of the same albeit low activity level of the fresh preparation (Table 2). As 

reported by (Cruz et al., 2009) this can be interpreted as evidence for stabilization due to 

enzyme-support interactions. The long term stability is encouraging in regard to practical 

application of the preparations. 

Conclusions 
We extended the applicability of CALB biocatalysts immobilized on fumed silica to an 

enantioselective reaction in hexane. The catalytic activity of the biocatalysts is a function of the 

nominal surface coverage %SC by the immobilized enzyme molecules. A maximum in activity 

was found at a nominal surface coverage of approximately 230%SC, which confirms previous 

results for a conventional esterification. We hypothesize three different and to some extent 

overlapping enzyme surface loading regimes: 1. low nominal surface coverage where the 

surface-protein interactions dominate and deactivate many enzyme molecules; 2. intermediate 

nominal surface coverage where protein-protein interactions protect the catalytic activity of the 

enzyme molecules while access to the individual active sites is relatively unfettered; and 3. multi 

layer nominal surface coverage where enzymes are mass transfer limitations prevail. The 

preparation with nominal surface coverages of %SC 100 and %SC 230 showed better thermal 

stability at low specific catalytic activity which is perhaps due to the remaining active enzyme 

molecules’ stabilization by strong surface-enzyme interactions.  The enzyme/fumed silica 

preparation showed very good stability during prolonged exposure to hexane.  Refrigerated 

storage of the preparation for one year caused only a 25% of reduction in the catalytic activity.  
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Tables  
Table 1: 
Summary of the amount of fumed silica and aqueous buffer for the various enzyme preparations. In all cases, the amount of crude 
CALB was 5.83 mg. 
Target preparations 
(% nominal surface 
coverage) 

Aqueous  
buffer [mL] 

Fumed  
silicaa [mg] 

Enzyme  
concentration [mg/mL] 

Amount of preparation  
containing 35 Ub (mg of 
lyophilized preparation) 

2 58.3 651.3 0.1 131.4 
4 58.3 325.7 0.1   66.3 
12 19.4 108.6 0.3   22.9 
17   8.3   76.6 0.7   16.5 
50   2.1   26.1 2.7     6.4 
100   1.7   13.0 3.5     3.8 
150   1.5     8.7 3.9     2.9 
230   1.5     5.7 4.0     2.3 
300   1.2     4.3 4.7     2.0 
400   1.2     3.3 5.0     1.8 
538   1.1     2.4 5.1     1.7 
1250   0.9     1.0 6.3     1.4 
2087   0.9     0.6 6.3     1.3 
Novozyme 435®      -      -      -     5.0 

 
a the required amount of FS was calculated as follows: area FS = 3.32 m2 / % SC   (1)  
        amount FS = area FS x (g / 255m2)  (2) 
where 3.32 m2 is the area of 1.17mg enzyme regarding an area of 3.12 x 10-17 m2/molecule 
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35

==χ         (3) 

b the amount of preparation was calculated as follows:  

 

FSgCALBg
CALBweighedUnitsnpreparatiogUnits

+
=         (4) 

 



Table 2:  
Long-term stability (reaction conditions: 30°C, 6 mL reaction volume, 35U of enzyme per 
preparation) of various CALB/fumed silica preparations (storage at 4°C, closed glass vials). 

Preparation 

[%SC] 

r0 

fresh preparation 

[µmol*min-1] 

r0 

one year-aged 

[µmol*min-1] 

Activity retained 
after one year 

storage 

2 0.41 0.37 90 % 

4 0.50 0.35 70 % 

12 0.88 0.64 73 % 
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List of Figures 
Fig. 1. Time evolution of the fractional conversion of (R)-1-phenylethanol during the 
transesterification with vinyl acetate for CALB/FS preparations with different nominal surface 
coverages %SC (30°C, 48 mL reaction volume, 35U of enzyme per preparation): 4 %SC ( ), 
12 %SC (□), 17 %SC ( ), 100 %SC ( ), 230 %SC (◊), 400 %SC ( ).Novozyme 435® during 
the initial 1.33 hours of reaction (X). Reverse reaction carried out with 230 %SC preparations (-
); Solid lines added to guide the eye; y-error bars show the cumulative standard errors and are 
obtained from the kinetic parameter calculations. 
 
Fig. 2. Catalytic activity of CALB/FS preparations as a function of the nominal surface coverage 
%SC. (◊) Enantioselective transesterification of (RS)-1-phenylethanol in n-hexane. (■) 
Esterification of geraniol with acetic acid in n-hexane. (---) Reaction rate for Novozyme 435® in 
the enantioselective transesterification of (RS)-1-phenylethanol; (…) represents Novozyme 435® 
in geraniol system. y-error-bars and short dashed lines represent the cumulative standard error 
from the calculation of the initial reaction rates. (30°C, 6 mL reaction volume, 35U of enzyme 
per preparation). 
 
Fig. 3. Schematic of the three regimes controlling the catalytic activity per enzyme molecule of 
FS/CALB preparations in hexane: 1. at low surfaces coverages, interactions with the surface are 
maximized leading to detrimental conformational changes. 2. at intermediate surface coverages, 
a transitional regime where enzyme structure is more generally maintained. 3. at high surface 
coverages multi-layer coverage leads to mass-transfer resistance and low apparent catalytic 
activity per enzyme molecule. 
 
Fig. 4. Temperature stability of CALB/FS preparations with various surface coverages (%SC): 
2 %SC (○), 12 %SC (□), 100 %SC (∆), 230 %SC (◊). Temperature stability of Novozyme 435® 
preparations (X). (▲) R. miehei lipase immobilized in agar organogels based on lecithin, 
isooctane as solvent, shown for comparison (Zoumpanioti et al. 2008) Solid lines added to guide 
the eye; y-error bars show the cumulative standard errors from the kinetic parameter calculation. 
(Various temperatures, 6 mL reaction volume, 35U of enzyme per preparation). 
 
Fig. 5. Solvent stability of CALB/FS preparations with various surface coverages %SC. After 4 
days exposure to the solvent, the catalytic activity remains almost unaffected: 400 %SC ( ), 
230 %SC (◊), 100 %SC (∆), 2 %SC (○). Storage stability of Novozyme 435® in n-hexane (X). y-
error bars represent the cumulative standard error and are obtained from the initial reaction rate 
calculation. (30°C, 6 mL reaction volume, 35U of enzyme per preparation). 
 
Fig. 6. Long-term stability of CALB/FS preparations with various surface coverages %SC: (◊) 
fresh preparations, (□) one year-aged preparations (storage at 4°C, closed glass vials). 
Cumulative standard errors are obtained from the kinetic parameter calculation and are shown as 
y-error bars. (30°C, 6 mL reaction volume, 35U of enzyme per preparation). 
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Fig.  5 
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