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Abstract: Lasing from population inversion is demonstrated from gas contained in a hollow-core 

kagome structured photonic crystal fiber.  Laser pulses in the mid-IR (3.1-3.2 µm) were generated 

by optically pumping at λ ~ 1.5 µm.   
©2010 Optical Society of America 
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1. Introduction 

We demonstrate what we believe is the first optically pumped gas laser (OPGL) based on population inversion in a 

hollow core photonic crystal fiber (HC-PCF).  The laser produces mid-IR (3.1-3.2 µm) lasing by optically pumping 

with 1.5 µm, nanosecond pulses.  The laser has many of the advantages of optically pumped gas lasers (OPGLs), 

including high damage thresholds and the potential for coherent emission from mutually incoherent pump sources.  

Furthermore, OPGLs with molecular gases offer a variety of mid-IR wavelengths [1-2] specifically in the eye-safe 

wavelengths within the atmospheric transmission window.  Creating an OPGL inside hollow fiber has the added 

advantage of confining the pump and laser light over long interaction lengths in a compact configuration.  The 

feasibility of implementing molecular OPGLs inside a waveguide has been previously examined [3].  Many 

nonlinear optical phenomena have been studied in gas-filled hollow optical fibers, including the demonstration of a 

Raman laser [4].  Indeed, the kagome structured fiber employed there offers very broad guiding bandwidths, well 

suited for the present laser in which the pump and lasing wavelengths differ by nearly a factor of two.   

2. Setup for the OPGL Inside HC-PCF 

In this initial demonstration of a fiber OPGL, nanosecond pulses excite acetylene gas inside HC-PCF.  This 

approach is motivated by an OPGL based on acetylene vapor inside a glass cell that demonstrated large optical gain 

near 3 µm [3].  The experiment is shown schematically in Fig. 1a.   
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Fig. 1: a) Fiber OPGL setup.  The acetylene filled HC-PCF is pumped using a nanosecond OPO.  Incident pump energy, pump energy 

through the fiber, mid-IR laser pulse energy, and pump-to-laser pulse delay are monitored simultaneously.  A germanium wafer 

transmits mid-IR laser pulses while attenuating pump pulses to below the noise level of the HgCdTe laser energy detector.  A BK7 

window is used to absorb mid-IR laser energy before the pump energy and timing detectors.  b)  Spectrum of laser output when C2H2 

pressure was ~ 7 torr.  Inset: Simplified energy level diagram of C2H2 showing the pump and two laser transitions.     

An optical parametric oscillator (OPO) is used as the pulsed pump source, and its output pulses were typically 5 

– 6 ns in duration with average pulse energies of ~ 5 mJ.  The OPO was tuned to resonance with the ν1 + ν3 (R7) 

transition in 
12

C2H2, λ = 1521.06 nm.  These pulses were directed into a vacuum chamber containing a single-cell 

kagome structured optical fiber of 1.65 m length, similar to that employed in Ref. [4].  This kagome fiber exhibits 
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strong guiding in the near IR pump region (loss ~ 0.75 dB/m) and weak guiding behavior near 3 µm (~ 20 dB/m), as 

calculations suggest.  The gain of the laser is sufficient that no cavity was required, in spite of the large loss in the 

lasing band.   

3. Characterization of the Laser Output 

Spectral output from the OPGL, shown in Fig. 1b for ~ 7 torr acetylene gas pressure, contains two peaks located 

near 3.12 µm and 3.16 µm respectively, corresponding to (R7) and (P9) rotational transitions between the ν1 + ν3 and 

ν1 vibrational levels.  The OPO pump, tuned to the (R7) rotational transition, moves population from the J = 7 

rotational state of the ground state vibrational manifold to the J = 8 rotational state of the ν1 + ν3 vibrational 

manifold.  This creates an immediate population inversion between the J = 8, ν1 + ν3 state and the essentially empty 

ν1 vibrational state (Ne/N0 ~ exp[-hν1/kT] = 9 × 10
-8

) resulting in the possibility of population transfer via the allowed 

(R7) and (P9) dipole transitions to the J = 7 and J = 9 rotational states. Pulsed laser output was observed for gas 

pressures between 0.5 torr and 20 torr. 

Figure 2a shows the laser pulse energy output versus pump pulse energy for an acetylene pressure of 7 torr.  This 

curve indicates the onset of saturation as the increasing pump pulse energy starts to saturate the absorption 

transition.  At lower pressures, saturation is more pronounced.  In Fig. 2b, the lasing output is plotted as a function 

of acetylene pressure for pump energies of 600 nJ coupled into the fiber (30 µJ incident on the fiber).  The coupling 

efficiency was only ~ 2%, but values exceeding 50% into kagome fiber have been demonstrated.  The temporal 

delay between the pump and laser pulses was also measured, and varied from less than 1 ns to greater than 10 ns.  

Shorter delays are observed when the pump power is further above threshold, when population inversion builds up 

more quickly.  The lasing threshold, defined as the minimum pump pulse energy coupled into the fiber necessary to 

observe mid-IR laser output, is about 200 nJ, and varies with pressure.  The slope efficiency of the laser, defined as 

the change in output energy divided by the change in pump energy coupled into the fiber, is a few percent.   
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Fig. 2: a) Laser pulse output energy vs. pump pulse energy in relative units for 7 torr pressure acetylene gas.  b) Mid-IR laser pulse 

energy vs. acetylene pressure when pumped at 30 µJ incident input pulse energy for several acetylene pressures inside the HC-PCF.   

 

Reduction of the kagome fiber loses at the laser wavelength should substantially increase the slope efficiency 

and decrease the threshold.  Furthermore, the addition of an optical cavity or increased kagome fiber length may also 

improve laser performance.  Modeling efforts are ongoing.  While this first demonstration uses a pulsed pump, the 

gas-filled fiber laser is particularly attractive for pumping with continuous wave laser sources. 
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