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Abstract 

(+)-myriceric acid A is known as a non-peptide ETA receptor antagonist. It is isolated 

from the natural plant Myrica cerfera with 0.01% yield which is very low. The total synthesis of 

(+)-myriceric acid A is being pursued in Hua’s lab. (+)-myriceric acid A specifically blocks the 

vasoconstriction caused by endothelin-1 (ET-1). Because some derivatives of (+)-myriceric acid 

A were shown to have ET-1 receptor antagonistic effect, the tetracyclic terpenoid intermediates 

toward the total synthesis of (+)-myriceric acid A are postulated to have the similar antagonistic 

activities. The objective of this project is to study the release of vasoconstriction of these 

synthetic intermediates and compare their antagonistic potency.  

 The ET-1 receptor antagonistic bioactivity of six (+)-myriceric acid A intermediates as 

well as (+)-myriceric acid A were evaluated by the in vitro spiral modiolar artery (SMA) 

bioassay. The synthetic intermediates which have not been reported in the literature were 

previously synthesized in Hua’s laboratory by Dr. Angelo Aguilar and Dr. Aibin Shi. Their 

synthesis was described in Dr. Aguilar’s PhD thesis. All the antagonistic effect evaluations were 

based on the SMA’s diameter changes. SMA’s diameter changes were induced by the 

superfusion of different extracellular solutions. The dose-response curves and straight lines were 

plotted to compare the antagonistic potency of these compounds. Based on the EC50 value of (+)-

myriceric acid A intermediates (0.090 µM ~ 0.582 µM for the curves and 0.095 µM ~ 0.385 µM 

for the straight lines), all of the compounds have ET-1 receptor antagonistic activity, therefore 

the synthesis and screening of (+)-myriceric acid A intermediates is probably a promising route 

to develop new non-peptide ETA receptor antagonists.
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CHAPTER 1- Introduction: biological importance of (+)-Myriceric 
acid A and the spiral modiolar artery (SMA) bioassay 

 

1.1 Objective of SMA bioassay 
 
 

Several tetracyclic compounds were obtained on route to the total synthesis of (+)-

myriceric acid A in Hua’s laboratoty. These compounds were synthesized by Dr. Angelo Aguilar 

and Dr. Aibin Shi. The (+)-myriceric acid A intermediates possess a tetracyclic skeleton and 

several functional groups in (+)-myriceric acid A. Synthesizing a four-ring compound is easier 

than producing a five-ring compound. Furthermore, some intermediates possess other functional 

groups which (+)-myriceric acid A does not contain. It would therefore be prudent to test 

whether these compounds have similar or enhanced biological activity as that of (+)-myriceric 

acid A. In order to compare the biological activities of these intermediates with (+)-myriceric 

acid A, its biological function was tested using a spiral modiolar artery (SMA) bioassay. SMA 

can be induced to constrict by an endothelin-1(ET-1) solution. Other SMAs were superfused by 

the combinative solution of ET-1 and (+)-myriceric acid A intermediate. If the intermediate 

compound has ET-1 antagonistic activity, the SMA relative constriction magnitude in the 

combinative solution will be smaller than that in pure ET-1 solution. By altering the 

concentrations of the intermediate, a dose-response curve will be obtained and an EC50 value for 

the compound can be calculated. Finally, the ET-1 antagonistic potencies can be compared based 

on their EC50 values. 

 
 

1.2 Isolation and characterization of (+)-myriceric acid A 
 
 

 In 1992, Fujimoto and his colleagues at the Shionogi Research Laboratory in Japan 

reported that (+)-myriceric acid A was isolated from the methanol extract of Myrica Cerifera 

branches and also showed to be a non-peptide endothelin A (ETA) receptor antagonist.1 (+)-

myriceric acid A can inhibit an increase of cytosolic free Ca2+ concentration in Swiss 3T3 

fibroblasts and the ET-1 induced contraction of rat aortic strips.1  



 2 

In 1996, researchers in Shionogi Research Laboratory used high resolution liquid 

secondary ion mass spectrometry (HR-LSI-MS) to deduce the molecular formula of (+)-

myriceric acid A that is C39H52O7.2 The structure of (+)-myriceric acid A is shown below (Figure 

1) was also deduced  by NMR spectroscopy and the X-ray crystallography analysis on its 

derivatives.2 

 

H

H

H

CO2H

O O

O
OH

OH 
 
                                        Figure 1. Structure of (+)-myriceric acid A (MA) 

 

1.3 Chemical modification of (+)-myriceric acid A and structure activity 
relationships (SAR) 

 
By modifying the functional groups of (+)-myriceric acid A and comparing the binding 

affinity of (+)-myriceric acid A derivatives. Fujimoto suggested that four functional groups are 

important for the endothelin receptor antagonistic activity, namely, the carbonyl group in C-3, 

the carboxylic acid group in C-17, the trans-caffeoyloxy group at C-27, and the dimethyl groups 

in C-20.2 It is noteworthy that the ET-1 antagonistic potency order of the sulfonyl derivatives and  

(+)-myriceric acid A is 7’-sulfonyl >  (+)-myriceric acid A > 6’-sulfonyl > 6’,7’-sulfonyl.2 

 
Figure 2.  (+)-myriceric acid A and its derivatives2,3 
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Six different tetracyclic terpenoids were synthesized by Dr. Angelo Aguilar. For the 

convenience of discussion, these tetracyclic terpenoid (+)-myriceric acid A intermediates are 

named as TM-1, TM-2, TM-3, TM-4, TM-5 and TM-6 respectively, and the structures are 

showed below (Figure 3). All of these (+)-myriceric acid A intermediates have a four-ring 

structure. TM-1, TM-2, TM-3 and TM-6 have the carbonyl group on C-3, which may contribute 

their antagonistic activity.  All six intermediates have different functional groups which (+)-

myriceric acid A does not possess, however they still possess potential antagonistic effects 

because their core scaffold which is similar to (+)-myriceric acid A. 

                    
TM-1                                          TM-2                                               TM-3 

             
        TM-4                                            TM-5                                              TM-6    

 

Figure 3. Structures of tetracyclic terpenoid (+)-myriceric acid A intermediates 

 

 

1.4 Biological activity of (+)-myriceric acid A 

 

There are three endothelin (ET) isoforms (ET-1, ET-2 and ET-3)4 and two endothelin 

receptor isoforms (ETA and ETB receptors).5-7 It has been reported that (+)-myriceric acid A can 

selectively antagonized specific binding of endothelin-1 (ET-1) and not endothelin-3 (ET-3)2. 

Because ETA receptor is highly selective for ET-1, and the ETB receptor is nonselective for ET-1, 

ET-2 and ET-3, (+)-myriceric acid A is suggested to act as a non-peptide of ETA receptor 

antagonist.1 It showed not only the inhibition of ET-1-induced increased in cytosolic Ca2+ 
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concentration (IC50 = 11 ± 2 nM) but also ET-1 binding to cells in rat aortic smooth muscle A7r5 

Cells (Ki = 66 ± 15 nM).2 Next is the brief introduction about endothelins, endothelin recptors, 

endothelin receptor antagonists and their relationships. 

 

 

1.4.1 Endothelins 
 

 In 1988, Yanagisawa et al. first reported that endothelin-1 which is a 21-amino acid 

polypeptide can be purified from porcine aortic endothelial cells.8 This polypeptide is also one of 

the most potent vasoconstrictors known.3 In 1989 Inoue et al. found that endothelins have three 

isoforms: ET-1, ET-2 and ET-3.4 All of the these isoforms are 21 amino-acid polypeptides 

containing two disulfide linkages (Cys1-Cys15 and Cys3-Cys11) and they are encoded by three 

separated genes.9 Compared with ET-1, ET-2 and ET-3 have 2 and 6 different amino acids 

respectively. The structures are showed in Figure 49. 

 
123456

7

8

9
10 11 12 13 14 15 16 17 18 19 20 21

S

S
S
S

NH2

COOH

Endothelin-1: Cys-Ser-Cys-Ser-Ser-Leu-Met-Asp-Lys-Glu-Cys-Val-Tyr-Phe-Cys-His-Leu-Asp-Ile-Ile-Trp

Endothelin-2: Cys-Ser-Cys-Ser-Ser-Trp-Leu-Asp-Lys-Glu-Cys-Val-Tyr-Phe-Cys-His-Leu-Asp-Ile-Ile-Trp

Endothelin-3: Cys-Thr-Cys-Phe-Thr-Tyr-Lys-Asp-Lys-Glu-Cys-Val-Tyr-Tyr-Cys-His-Leu-Asp-Ile-Ile-Trp  
 

Figure 4. Primary structures of endothelins9 

 

 

ET-1 is expressed in numerous vascular and nonvascular cells.10 ET-2 is plentiful in the 

gastrointestinal tract, and ET-3 exist fairly amount in neuronal tissues.11,12 ET-1 is the only 

isoform to be detected in vascular endothelial cells and therefore explains why ET-1 is the 

primary circulating isoform. It therefore attracts the most attention as compared with the other 
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isoforms.11,12 The ET-1 induced contraction of porcine coronary artery strips is long-lasting and 

characteristically difficult to be removed by washing with physiological solution.8 ET-1 is more 

potent and produces longer-acting contractions than angiotensin II and thrombin.13 Infusion of 

ET-1 to animals can result a strong vasoconstrictory response and it will maintain 2 hours after 

infusion of ET-1.9 ET’s chemical structure characteristics are summarized below: firstly, ET’s 

amino acid sequence determines the conformations. Moreover, the molecules contain two pairs 

of disulfide linkages which make the molecule bend and form a bicycle structure in the center. If 

the disulfide bonds are broken, ET’s bioactivities will decrease significantly.  Therefore, the 

disulfide structure is quite important for maintaining ET’s bioactivities.14-16 Finally, the tail of 

the peptide which consisted of hydrophobic amino acids also contributes the bioactivities. If the 

last 5 amino acids are eliminated, the compound completely lose its bioactivities.14-16  

Figure 59 is the main biosynthesizing scheme. Under stress conditions such as hypoxia 

and myocardial ischemia, endothelin genes in human and animals can be activated by hormone, 

TGF-β, vasopressin, etc. then express preproET. PreproET can be cleaved by specific 

endopeptidase to form big endothelin.9,17 Finally, big endothelin is transferred by endothelin 

converting enzyme (ECE). 9,17 In general, release of endothelin can be mediated by many 

elements. Under normal physiological conditions, the amount of ET’s biosynthesis and release is 

quite low. Physical and chemical agents in internal milieu, endogenous and exogenous bioactive 

compounds can influence ET’s expressing and releasing. 9,17   
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Stimulation: hypoxia, myocardial ischemia, hormone etc.

mRNA

Preproendothelin-1 (212 amino acid)

Dibasic-Specific Endopeptidases
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Big-Endothelin-1
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NH2CysSerCysSer

Cys

SerLeu

Met

Asp

Lys
Glu

Val Tyr Phe Cys His Leu Asp Ile Ile Trp COOH

Endothelin Converting Enzymes
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Figure 5. Biosynthetic pathway of ET-19 
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1.4.2 Endothelin Receptors 
 

 

There are two endothelin receptor subtypes that mediate vasoconstriction: ETA and ETB 

receptors.5-7 The endothelin receptors belong to the family of G-protein coupled receptors.9 ETA 

receptors are found in many tissues, but are particularly abundant in vascular smooth muscle 

cells in which they exert a vasoconstrictory activity ( see mechanism in Chapter 1.4.3) upon 

binding of ET-1.9 ETB receptors are widely distributed in endothelial cells and can cause 

vasodilation.2,8  ETB receptors also exist in  vascular smooth muscle cells where they can 

regulate the vasoconstriction activities.18-20 Both ETA and ETB receptors can mediate the 

vasoconstriction and vasodilation. Meanwhile, the rank order of potency for vasoconstriction 

was ET-1 ≥ ET-2 >> ET-3 and for vasodilation was ET-1 = ET-2 = ET-3.21 These facts indicate 

that the vasoconstriction and vasodilation of different endothelins are mediated by different 

endothelin receptor systems.9 The proposed mechanism for vasoconstriction is demonstrated 

below. ETB receptors can induce the release of NO molecule and prostcyclin which are effective 

vasodilators.22 The main pharmacological distinction between ETA and ETB receptors is that ETA 

receptor is highly selective for ET-1 and the ETB receptor is nonselective for ET-1, ET-2 and 

ET-3. Therefore, ET-1 and its major receptor ETA attract most attention than other endothelins 

and ETB.  

 

1.4.3 Proposed mechanism for vasoconstriction caused by ET-1 
 

Smooth muscle contraction is regulated by the cytosolic free Ca2+ concentration.23 For 

example, ETA receptors are widely distributed in vascular smooth muscle cells. When ET-1 

solution is superfused to the SMA section, ETA receptors can specifically identify ET-1 and bind 

together. The nerve impulse is generated and transmitted to axon tip, the contacting membrane is 

depolarized to make calcium channel open.24 Small amount of extracellular Ca2+ which is called 

activator Ca2+ enter the cells. Because the influx of extracellular Ca2+ activates the voltage-

dependent Ca2+ channels which are proteins essentially, the activated Ca2+ channels lead to the 

consecutive electrical signal transductions, so the influx Ca2+ is called activator calcium.27,28 The 

subsequent response of the cell is to increase phospholipase C activity via coupling through a G-
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protein.23,25 Phospholipase C produces two potent messengers from the membrane lipid 

phosphatidylinositol 4,5-bisphosphate: inositol 1,4,5-trisphosphate (IP3) and diacylglycerol 

(DG).23,26 IP3 binds to specific receptors on the sarcoplasmic reticulum and stimulates the release 

of activator calcium (Ca2+). DG can activate protein kinase C (PKC) which phosphorylates 

specific target proteins.23,26 In most smooth muscles, PKC has contraction-promoting effects 

such as phosphorylation of Ca2+ channels or other proteins that regulate cross-bridge cycling 

(Figure 7, mechanism see below).23 Activator Ca2+ binds to calmodulin, leading to activation of 

myosin light chain kinase (MLC kinase).23,29 This kinase phosphorylates the myosin light chain 

(MLC) then MLC combines with actin.23 The cross-bridge cycling occurs to shorten the smooth 

muscle cell.23 it is important to understand the role of cross-bridge cycling in the mechanism of 

smooth muscle contraction. Figure 730 demonstrated the circulation process.  In the first step in 

the graph, the actin-myosin bridge dissociates very quickly because of the binding between ATP 

to myosin.30 Then the free myosin bridge and its hydrolysis products recombine with the actin 

filament.30 When ATP is being hydrolyzed, the free myosin bridge finds the right position to 

attach to actin.30 Finally, the cross-bridge generates force, and actin displaces the reaction 

products (ADP and Pi) from the myosin cross-bridge. This is the rate-limiting step of 

contraction.30 The actin-myosin cross-bridge is now ready for the ATP binding of step 1. It is a 

circulation. 

In 2005, Yoshihiko et al. reported that endothelin-1 induced translocation of RhoA was 

mediated by endothelin ETA receptors in rat bronchial smooth muscle,31 so a Ca2+ sensitizing 

mechanism was proposed: it is initiated at the same time that phospholipase C is activated, and it 

involves the activation of the small GTP-binding protein RhoA.23 How to activate RhoA by the 

G-protein-coupled receptor is not clear presently, but guanine nucleotide exchange factor 

(RhoGEF) is related in the process.23 After activation of RhoA, the amount of Rho kinase 

activity increases.23 The increased Rho kinase will phosphorylate and deplete the active myosin 

phosphatase to inactive myosin phosphatase.23 Because the high-energy phosphate on the 

contracted MLC-actin complex can be removed by active myosin phosphatase to form a relaxed 

MLC state, the increased inactive myosin phosphatase can promote the contractile state.23    
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Figure 6. Vascular signal transduction mechanism for the smooth muscle cell 

contraction23 
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Figure 7. The schematic mechanism for cross bridge circulation29 

 

 
1.4.4 Endothelin receptor antagonists 

 

 Based on the structure properties, endothelin receptor antagonists can be categorized two 

types, peptide based and non peptide based.9 Due to the existence of two types of endothelin 

receptors (ETA and ETB receptors), the endothelins can also be divided into selective and non-

selective antagonist. Nonselective antagonists which target these two receptor subtypes would 

presumably exert a greater anti-hypertensive effect than ETA receptor-selective antagonists 

alone.9 In contrast, the primary mediator of vasoconstriction is the ETA receptor,32 so ETA 

receptors selective antagonist may be preferable to a nonselective agent to manage 

hypertension.9 Although several peptide endothelin receptors like BQ123 antagonist have been 

reported,33 they have obvious limitation on the pharmacological metabolism stability in vivo. 

Discovering or developing selective non-peptide endothilin receptor antagonists is probably 

much more favorable for drug discovery. 
 

 

1.5 Bioassay for determining (+)-myriceric acid A and its intermediates as 
endothelin receptor antagonists 
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Wangemann et al. developed a bioassay to verify that superfusion of ET-1 on spiral 

modiolar artery (SMA) can induce a transient cytosolic Ca2+ concentration increases via ETA 

receptor and a long-lasting vasoconstriction of  SMA without ET-1.34 This project uses this 

bioassay to test (+)-myriceric acid A and the synthetic intermediates’ antagonistic potencies. (+)-

myriceric acid A’s synthetic intermidiates are postulated as potential antagonists. Thus this 

special bioassay is applied to test their potencies.  

 

1.5.1 Vascular anatomy of SMA and its characteristics 
 
The spiral modiolar artery derives from the anterior inferior cerebellar artery from the 

basilar artery and provides the main blood supply to the cochlea.34The scala in cochlea is also 

spiral fashion. The heliciforms from bottom to top are divided three parts, scala tympani, scala 

media and scala vestibule. The spiral modiolar artery hides at the bottom of the scala tympani.  
Endothelins have been demonstrated to be present in the cochlea and can cause a reduction 

cochlear blood flow.36,37 This reduction cochlear blood flow may be partially due to an ETA 

receptor mediated vasoconstriction of capillaries in the spiral ligament of the lateral cochlear 

wall.38 Ghandour et al. inferred the existence of ETB receptors in SMA because ETB receptor 

antagonists BQ-788 can inhibit the vasoconstriction caused by ET-3.39 However, it is reported 

that the elevation of ETB receptor agonist sarafotoxin S6c had no significant vasoconstriction 

effect on SMA.34 Therefore, the facts above indicate the amount of ETB receptor in SMA is very 

tiny. Because the blood flow depends mainly on the vascular diameter which is set by the 

contractile status of the vascular smooth muscle cells,36 and the wall of spiral modiolar artery 

contains single layer of vascular smooth muscle cells and a single layer of endothelin cells.18 The 

spiral modiolar artery is an ideal model to access to the ETA receptor.  

 

1.5.2 The diameter of SMA controls the blood flow 
 

Vasospasm of the spiral modiolar artery probably is the major factor that can cause 

sudden hearing loss which is the major symptom for the inner ear ischemic stroke.35 

Furthermore, the SMA provides the main blood supply to the cochlea and vascular diameter is 

the most effective means of controlling blood flow.35,38,42 Thus it is important to understand basic 

theory that how the vascular diameter changing can influence the blood flow. Mechanisms 
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involved in the control of cochlear blood flow include modulation of the perfusion 

pressure.38,40,42 

F = ΔP/R    (Ohm’s Law)                                            (equation 1) 

R = 8ηl/πr4    (Hagen-Poiseille’s Law)                        (equation 2) 

F represents blood flow, ΔP is the perfusion pressure, R is resistance, η is viscosity, l is the 

length of blood vessel and r is the radius of vessel. 

After combining above two equations, Equation F= ΔP πr4/8ηl is obtained. If the 

diameter decreases, the blood flow will also decrease and vice versa. Therefore, it is important to 

study the relationship between the diameter of blood vessel and the constrictions. 
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Chapter 2 Methods and Materials 

All the experimental procedures followed Figure 10 demonstrated below:  
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Figure 8. the schematic diagram of the SMA bioassay experimental work3 

2.1 Preparation of solution 

 
             To test the compounds (including myriceric acid A and its intermediates), five 

physiological solutions need to be prepared:  

1.  A 2 liter of 1.0 mM Ca2+ physiological salt solution contained 17.532 g of NaCl, 2.383 g of  

HEPE, 7.2 ml of 1 M KCl, 10 ml of 200 mM MgCl2, 14.28 ml of 140 mM CaCl2 and 1.802 g of  

glucose (The abbreviation name of this solution is 1 mM Ca2+ solution in this paper).  

2.  A 2 liter of 10 mM Ca2+ physiological salt solution contained 17.532g of NaCl, 2.383 g of  

HEPE, 7.2 ml of 1 M KCl, 10 ml of 200 mM MgCl2, 142.8 ml of 140 mM CaCl2 and 1.802 g of  

glucose (The abbreviation name of this solution is 10 mM Ca2+ solution in this paper). 

3. An X μM (X value can be variable according to the concentration of drug we need to test) 

drug solution, in which the drug is dissolved in the 1 mM Ca2+ solution   
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4. A 1 nM ET-1 solution is prepared as below: 10 µg of ET-1 is firstly dissolved in 2 ml H2O, 

then 200 µl of this ET-1 water solution is taken out and dissolved again in 400 ml of 1 mM Ca 

solution.  

5.  The combination solution of X μM drug and 1 nM ET-1, in which the drug and ET-1 are 

dissolved in the 1 mM Ca2+ solution. 

All solutions’ PH degree should be adjusted to 7.4 

 

2.2 Isolation and microdissection of SMA 
 

All the SMAs were isolated from Mongolia Gerbils under the protocol approved by the 

institutional Animal Care and Use Committee at Kansas State University (Protocol Number: 

2613). The gerbils were firstly administrated 4% tribromoethanol (TBE) to anesthetize (10 µl/g). 

The weight of a gerbil is approximately 40 - 60 g. The gerbil lost the reaction on the pinching 

stimulation after the TBE administration, and then it was decapitated. Two temporal bones were 

taken out from the back of the ear and carefully removed the excess tissues. Then the cochlea 

was separated from the temporal bones and quickly transferred into a microdissection chamber 

which was already filled about 5 ml of 1 mM Ca2+ solution at 4°C. All the dissection work was 

done under the microscope. The abundant bones surrounding the cochlea were firstly removed. 

Then the top of the cochlea will be cracked by the dissection scissor and gradually removed the 

cochlea shell fragments. The SMA was seen through the tiny bone surrounding the modiolars. 

After removing the bone around the modiolars, the SMA which was loosely attached to the 

nerves was separated. Care was taken so as to not stretch the SMA too much, or it will lose its 

physiological elasticity.  Finally, SMA were cut into small segments. The length of each segment 

was 200 – 600 µm. 

 

2.3 Superfusion of SMA 

 
           Each segment of SMA was transferred into a bath chamber mounted on the stage of an 

inverted microscope. The chamber was filled with 1 ml of 37°C 1 mM Ca2+ solution. Then the 

SMA was held by two blunted glass tips mounted with a micromanipulator that can maneuver 
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the fixation position on SMA. The chamber connected with 5 containers which filled with 

different solutions (5 solutions introduced in this paper Chapter 2.1) respectively. By altering 

the position of the switcher as Figure 8 showed, the solutions in containers will automatically 

flow through the pipes connected with containers and fill into the chamber. Another vacuum 

pipe on the other side of the chamber will suck away the solution flowed in. Eventually the 

mounted vessel segment was superfused at the power balance between solution gravity pressure 

and vacuum suction.  All the containers and the pipes were surrounded by the 37°C water 

jacket, thus all the superfusion experiments were performed at 37°C.  

 

2.4 Measurement of SMA diameter 
 

The spiral modiolar artery was visualized through a microscope at 40X magnification. A 

black and white video camera (WV-1550, Panasonic) was connected to the inverted microscope 

(TE-300, Nikon). The microscope image was mixed with a time signal produced by the time 

code generator (Fast Forward Video). The images showed on the monitor (PVM-137, Sony) and 

recorded by a videotape recorder (AG-1960 Panasonic). The outer diameter of the SMA was 

monitored by a video-edge detector (Crescent Electronics). The video-edge detector affiliated 

with a computer program (AxoScope 10.2) and recorded digitized data about the diameter 

changes of SMA. All the digitized data was stored in ASCII format for later analysis and plotting 

(Origin 6.0). 

After SMA being isolated and cut into segments, one segment was transferred into the 

superfusion chamber and filled with 1 mM Ca2+ solution. It was held in place by two blunted 

glass needles mounted on micromanipulators. After the segment was secure, it was superfused 

with 1 mM Ca2+ solution for 1 minute. To induce a constriction, the 1 mM Ca2+ valve is closed 

and the 10 mM Ca2+ valve is open and the SMA is superfused for 1 minute with 10 mM Ca2+ 

solution, which caused a constriction. This constriction was set to 100 %, and used as a control to 

compare to the constriction caused by ET-1 in the presence of drugs which we needed to test. 

After 1 minute of 10 mM Ca2+ was over, the valve was closed and the 1 mM Ca2+ valve was 

opened and the SMA was superfused for 1 minute with this solution. At 1.0 mM Ca2+ solution 

period, the SMA diameter quickly returned to its normal diameter. This process was repeated 

once again.  
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To determine whether the drug is an antagonist, the 1 mM Ca2+ valve was closed and the 

drug valve was open and the SMA was superfused for 1 minute with the X μM (In Chapter 2.1 

means the desired concentration of compound) solution of the drug. This step was performed to 

determine if the drug alone had any effect on the SMA. After this SMA being superfused for 1 or 

2 minutes with the drug alone, the drug valve was closed and the SMA was superfused for 1 

minute with the combination solution of X μM drug and 1 nM ET-1. If the drug was an 

antagonist, no constriction should be observed or the constriction can be smaller compared with 

the constriction caused by the 10 mM Ca2+. 

 

2.5 The results and statistics 
 

Next is a case as described above: compound TM-1 was tested as an example to illustrate. 
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Figure 9. SMA diameter changes in superfusion (1.0 µM TM-1) 

All the SMA diameter changes were measured by software Origin 6.0. 
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From Figure 9 it is easy to read all superfusing changes: from 0~1 minute, 1 mM Ca2+ 

solution was superfused, the diameterof SMA didn’t change. Because the cytosolic calcium 

concentration was the same as the 1mM Ca2+ solution and the other important canion 

concentrations are the same between the cytosolic solution and the solution around the SMA. 

From the 1st ~ 2nd minute, 10 mM Ca2+ solution was superfused and the SMA constricted 

immediately. In other words, the diameter of SMA decreased. Because the increasing of 

extracellular calcium concentration can cause the increasing of intracellular calcium 

concentration by getting through the calcium ion channels, and then it will result the series of 

physiological changes as described in chapter 1. From 2nd ~ 3rd minute, 1 mM Ca2+ solution was 

superfused again, the SMA diameter went back. From 3rd ~ 5th minute, The previous procedures 

were repeated by changing the 1 mM Ca2+ and 10 mM Ca2+ solution.  SMA constrictions caused 

by the 10 mM Ca2+ were averaged twice and the average value is 15.96 µm. This constriction 

was set to 100 %, and used as a control group to compare to the constriction caused by ET-1 in 

the presence of TM-1. From the 5th ~ 6th minute, the SMA was superfused with 1 µM TM-1 and 

consequently the diameter of SMA has no change. That means 1 µM TM-1 alone has no effect 

on the SMA. From the 6th ~ 7th minute, the SMA was superfused with the combination solution 

of 1 µM TM-1 and 1 nM ET-1. There is still no significant change on SMA diameter. In other 

words, the constriction caused by 1 nM ET-1 in the presence of compound is 0 µm. That means 

the 1 µM TM-1 has antagonistic activity on 1 nM of ET-1. From 7th ~ 9th minute, we used 1 mM 

Ca2+ to wash away the ET-1 and TM-1. From 9th ~ 10th minute, the SMA constricted because of 

the superfusion of 1 nM ET-1. However, from the twelfth to thirteenth minute, the diameter of 

SMA went back a little and the trend is kind of slope shape. Actually, from the observation of 

monitor, the diameter of SMA didn’t change during 10th ~ 13th minute. The slope trend at 10th ~ 

13th minute was resulted from the fluctuation of video edge detector. Because video edge 

detector measure SMA diameter by differentiate the black and white boundary on the monitor. 

When the valves were switched to superfuse different solutions, the minor superfusion power 

difference and the alternation of superfusion direction can change the superfusion vector. Finally 

the position of SMA moved a little and the black spot on SMA may fall over video edge 

detector. Therefore, it is important to record all phenomenon observed on the monitor to avoid 

the error caused by the video edge detection fluctuation. The comprehensive judgment should 

based on the manually observation and the machine-record data.    
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Therefore, in this example, it is obviously to conclude that 1 µM TM-1 can prevent the 

constriction caused by 1 nM ET-1, but it cannot recover the constriction caused by 1 nM ET-1. 

The constriction caused by 1 nM ET-1 in the presence of TM-1 is 0 µm. Compared with the 

constricted averaged diameter value (15.96 µm) of SMA caused by the 10 mM Ca2+ solution, the 

percent of 1 nM ET-1 induced constriction in the presence of 1 µM TM-1 is 0%. 

However, more SMA segments need to be tested with the same method, thus the result 

will be more reliable. 

It is also good to decrease the concentration of TM-1 drug and use the same method to 

record all SMA diameter changes caused by 10 mM Ca2+, X μM (In Chapter 2.1 means the 

desired concentration of compound) TM-1 solution, combination solution of X μM drug and 1 

nM ET-1, and 1 nM ET-1 respetively. 

 Next is another example to test TM-1’s antagonistic ability.  
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Figure 10. SMA diameter changes in superfusion (0.3 µM TM-1) 
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          In this case, the same method described in the last example was applied to test TM-1’s 

antagonistic activity. The only difference is that SMA was superfused by 0.3 µM TM-1 instead 

of 1 µM TM-1 during 5th ~ 6th minute; 0.3 µM drug and 1 nM ET-1 combination solution was 

superfused at 6 ~ 7 minute. As expected, the antagonistic function also decreased accompanied 

with the decrease concentration of TM-1 drug. In this case, the constriction caused by 1 nM ET-

1 in the presence of TM-1 was 4.36 µm while the constricted averaged diameter value of SMA 

caused by 10 mM Ca2+ solution was 9.48. Therefore, the percent of 1 nM ET-1 induced 

constriction in the presence of 0.3 µM TM-1 is 45.99%.  

           The concentrations of TM-1 were decreased continually to test the antagonistic function. 

Next is the example for testing 0.1 µM TM-1’s antagonistic activity in the presence of 1 nM of 

ET-1. 
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 Figure 11. SMA diameter changes in superfusion (0.1 µM TM-1) 
 

In this case, the same method described in the last two examples was applied to test TM-

1’s antagonistic activity. The only difference is that SMA was superfused 0.1 µM TM-1 instead 

of 1 µM TM-1during 5th ~ 6th minute; 0.1 µM drug and 1 nM ET-1 combination solution was 
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superfused at 6 ~ 7 minute. As expected, the antagonistic function also decreased accompanied 

with the decrease concentration of TM-1 drug. The constriction caused by 1 nM ET-1 in the 

presence of TM-1 was 4.28 µm while the constricted averaged diameter value of SMA caused by 

10 mM Ca2+ solution was 7.93. Therefore, the percent of 1 nM ET-1 induced constriction in the 

presence of 0.3 µM TM-1 is 53.97%. 

TM-1’s antagonistic function were tested at three different concentration, 0.1, 0.3 1.0 µM 

respectively.  At each concentration, several SMA segments were used to do the superfusion test. 

Then a table based on the data obtained. 

 

 

Table 1. percentage of antagonistic activity of TM-1  
entry concentration  

of TM-1 
( µM) 

control 
constriction:  
Average of 10mM 
Ca2+  
constriction ( µm) 

constriction caused 
by 1 nM ET-1 in the  
presence of TM-1 (µm) 

percentage of 1 nM ET-1 
induced constriction in the 
presence of TM-1  

1 0.1 6.86 4.11 59.91 

2 0.1 4.29 2.85 66.43 

3 0.1 7.93 4.28 53.97 

4 0.1 4.23 2.36 55.79 

5 0.1 4.22 2.40 56.87 

6 0.1 9.11 4.63 50.82 

7 0.3 9.48 4.36 45.99 

8 0.3 6.99 3.45 49.36 

9 0.3 7.23 4.13 57.12 

10 0.3 11.08 2.38 21.48 

11 0.3 9.72 2.84 29.22 

12 0.3 5.58 1.73 31.00 

13 1.0 18.77 0 0 

14 1.0 15.96 0 0 

15 1.0 7.20 0 0 

16 1.0 4.46 1.19 26.68 

17 1.0 7.00 0.39 5.57 
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             The first column of the table from left is the entry number. The second column is the 

concentration of TM-1. There were six, six and five segments of SMA tested under 0.1, 0.3 and 

1.0 µM of TM-1 respectively. In order to obtain the percent of 1 nM ET-1 induced constriction 

in the presence of different concentrations of TM-1 drug. The constriction values which were 

caused by the 1 nM ET-1 in the presence of the compound were divided by the averaged 

constriction values caused by 10 mM Ca2+ solution.  

            To evaluate whether the other 5 (+)-myriceric acid A intermediates have the ET-1 

antagonistic function, the same method above was adopted to test them. Scheme 10 ~ Scheme 

31 are the SMA diameter changes in superfusion of other compounds (TM-2,TM-3,TM-4,TM-

5,TM-6 and (+)-myriceric acid A) at different concentrations. Each compound should be tested 

at least three different concentrations and at least three SMA segments were tested under each 

certain concentration.  
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 Figure 12. SMA diameter changes in superfusion (0.1 µM TM-2) 
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 Figure 13. SMA diameter changes in superfusion (0.3 µM TM-2) 
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 Figure 14. SMA diameter changes in superfusion (1.0 µM TM-2) 
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 Figure 15. SMA diameter changes in superfusion (0.1 µM TM-3) 
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 Figure 16. SMA diameter changes in superfusion (0.3 µM TM-3) 
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 Figure 17. SMA diameter changes in superfusion (1.0 µM TM-3) 
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 Figure 18. SMA diameter changes in superfusion (0.3 µM TM-4) 
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 Figure 19. SMA diameter changes in superfusion (0.5 µM TM-4) 
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Figure 20. SMA diameter changes in superfusion (1.0 µM TM-4) 
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 Figure 21. SMA diameter changes in superfusion (0.1 µM TM-5) 
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 Figure 22. SMA diameter changes in superfusion (0.5 µM TM-5) 
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 Figure 23. SMA diameter changes in superfusion (1.0 µM TM-5) 
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Figure 24. SMA diameter changes in superfusion (0.1 µM TM-6) 
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 Figure 25. SMA diameter changes in superfusion (0.3 µM TM-6) 
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 Figure 26. SMA diameter changes in superfusion (1.0 µM TM-6) 
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 Figure 27. SMA diameter changes in superfusion (0.1 µM (+)-myriceric acid A) 
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 Figure 28. SMA diameter changes in superfusion (0.5 µM (+)-myriceric acid A) 
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 Figure 29. SMA diameter changes in superfusion (1.0 µM (+)-myriceric acid A) 
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Finally, data in the other 6 tables were obtained. Next table is about TM-2 antagonistic activity: 

 

Table 2. percentage of antagonistic activity of TM-2 
entry concentration  

of TM-2 
( µM) 

control 
constriction:  
Average of 10mM 
Ca2+ 
constriction (µm) 

constriction caused 
by 1 nM ET-1 in the  
presence of TM-2 (µm) 

percentage of 1 nM ET-1 
induced constriction in the 
presence of TM-2 

1 0.1 8.17 5.11 62.55 

2 0.1 12.47 10.86 87.09 

3 0.1 8.45 6.70 79.29 

4 0.1 5.32 5.07 95.30 

5 0.3 5.85 2.80 47.86 

6 0.3 6.70 4.60 68.66 

7 0.3 3.38 1.80 53.25 

8 0.3 4.10 2.10 51.22 

9 0.3 6.98 4.18 59.89 

10 1.0 5.48 1.35 24.64 

11 1.0 5.24 0 0 

12 1.0 11.81 2.54 21.51 

13 1.0 7.22 1.59 22.02 

14 1.0 3.90 0.95 24.36 

 
 

From this table, it shows that TM-2 also has ET-1 antagonistic function. When the 

concentration of TM-2 was 1.0 µM, it had the greatest ET-1 blocking function compared with 

the other 2 concentrations. The percent of 1 nM ET-1 induced constriction in the presence of 1.0 

µM TM-2 is less than thirty percent. As the decreased concentration of TM-2 tested, the blocking 

function was also decreased. It is quite similar with TM-1.  

Next are TM-3, TM-4, TM-5 and TM-6 antagonistic activity tables: 
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Table 3. percentage of antagonistic activity of TM-3 
entry concentration  

of TM-3 
( µM) 

control 
constriction:  
Average of 10mM 
Ca2+ 
constriction (µm) 

constriction caused 
by 1 nM ET-1 in the  
presence of TM-3 (µm) 

percentage of 1 nM ET-1 
induced constriction in the 
presence of TM-3 

1 0.1 9.24 7.24 78.35 

2 0.1 5.49 2.75 50.09 

3 0.1 6.54 2.92 44.65 

4 0.1 7.16 4.84 67.60 

5 0.1 7.56 5.35 70.77 

6 0.3 8.97 4.19 46.71 

7 0.3 9.50 3.36 35.37 

8 0.3 6.42 3.22 50.16 

9 0.3 4.85 2.78 57.32 

10 1.0 12.87 2.96 23.00 

11 1.0 10.45 2.27 21.72 

12 1.0 5.12 1.01 19.73 

13 1.0 5.45 1.08 19.82 

14 1.0 7.95 0.44 5.53 
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Table 4. percentage of antagonistic activity of TM-4 
entry concentration  

of TM-4 
( µM) 

control 
constriction:  
Average of 10mM 
Ca2+ 
constriction (µm) 

constriction caused 
by 1 nM ET-1 in the  
presence of TM-4 (µm) 

percentage of 1 nM ET-1 
induced constriction in the 
presence of TM-4 

1 0.3 8.85 4.36 49.27 

2 0.3 6.00 3.12 52.00 

3 0.3 10.10 6.08 60.20 

4 0.3 7.06 4.25 60.20 

5 0.3 5.46 3.04 55.68 

6 0.5 7.33 3.65 49.80 

7 0.5 6.59 2.50 37.94 

8 0.5 11.05 4.38 39.64 

9 0.5 6.27 3.17 50.56 

10 0.5 6.88 3.83 55.67 

11 1.0 6.61 0.66 9.98 

12 1.0 7.94 2.22 27.96 

13 1.0 9.57 3.34 34.90 

14 1.0 3.88 0.91 23.45 

15 1.0 6.07 1.60 26.36 

16 1.0 8.20 1.92 23.41 

17 1.0 8.17 2.28 27.91 
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Table 5. percentage of antagonistic activity of TM-5 
entry concentration  

of TM-5 
( µM) 

control 
constriction:  
Average of 10mM 
Ca2+ 
constriction (µm) 

constriction caused 
by 1 nM ET-1 in the  
presence of TM-5 (µm) 

percentage of 1 nM ET-1 
induced constriction in the 
presence of TM-5 

1 0.1 11.60 7.49 64.57 

2 0.1 10.24 4.87 47.56 

3 0.1 5.23 2.22 42.45 

4 0.1 6.19 2.56 41.36 

5 0.1 9.45 3.91 41.38 

6 0.3 6.96 1.82 26.15 

7 0.3 6.90 3.10 44.93 

8 0.3 10.75 3.40 31.63 

9 0.3 15.91 4.90 30.80 

10 0.3 6.36 1.75 27.52 

11 0.5 8.07 1.38 17.10 

12 0.5 10.25 1.23 12.00 

13 0.5 4.95 1.14 23.03 

14 1.0 4.05 0.65 16.05 

15 1.0 6.55 0.66 10.08 

16 1.0 11.37 0.98 8.62 

17 1.0 5.96 0 0 

18 1.0 4.43 0 0 
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Table 6. percentage of antagonistic activity of TM-6 
entry concentration  

of TM-6 
( µM) 

control 
constriction:  
Average of 10mM 
Ca2+ 
constriction (µm) 

constriction caused 
by 1 nM ET-1 in the  
presence of TM-6 (µm) 

percentage of 1 nM ET-1 
induced constriction in the 
presence of TM-6 

1 0.1 8.59 6.61 76.95 

2 0.1 5.47 3.62 66.18 

3 0.1 3.84 1.91 49.74 

4 0.1 2.99 1.49 49.83 

5 0.3 8.46 2.93 34.63 

6 0.3 9.96 4.53 45.48 

7 0.3 5.86 2.22 37.88 

8 0.3 11.76 3.86 32.82 

9 0.3 4.67 1.90 40.69 

10 1.0 9.09 2.11 23.21 

11 1.0 12.63 5.61 44.42 

12 1.0 3.95 1.51 38.23 

13 1.0 5.62 0.75 13.35 

14 1.0 2.73 0.88 32.23 
 

It is quite exciting that all the (+)-myriceric acid A intermediates have ET-1 blocking 

function. To evaluate which compound has a stronger blocking function, (+)-myriceric acid A 

was tested and the statistic table was concluded below. 
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Table 7. percentage of antagonistic activity of (+)-myriceric acid A  
entry  concentration  

of (+)-
myriceric 
acid A 
( µM) 

control 
constriction:  
Average of 10mM 
Ca2+ 
constriction (µm) 

constriction caused 
by 1 nM ET-1 in the  
presence of (+)-myriceric 
acid A (µm) 

percentage of 1 nM ET-1 
induced constriction in the 
presence of (+)-myriceric 
acid A  

1 0.1 5.92 2.22 37.50 

2 0.1 6.54 2.09 31.96 

3 0.1 3.78 1.06 28.04 

4 0.1 6.07 2.03 33.44 

5 0.1 6.25 1.83 29.28 

6 0.5 7.97 2.22 27.85 

7 0.5 10.34 1.59 15.38 

8 0.5 8.57 2.22 25.90 

9 0.5 8.29 1.21 14.60 

10 0.5 5.92 1.55 26.18 

11 1.0 21.65 3.56 16.44 

12 1.0 11.94 1.97 16.50 

13 1.0 5.27 0.74 14.04 

14 1.0 6.05 0.94 15.54 

15 1.0 2.50 0.40 16.00 
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2.6 Pharmacological analysis 
In order to compare the antagonistic potency of (+)-myriceric acid A and its 6 different 

intermediate drugs, there were two relationships between concentration of compound and the 

percentage of 1 nM ET-1 induced constriction in the presence of compound proposed, linear and 

curve relationships. In the curve relationship, all the data in the above tables were normalized to 

the maximal increase in intracellular calcium and the maximal vasoconstriction induced by an 

elevation of the extracellular Ca2+ concentration from 1 mM to 10 mM Ca2+. Normalized data 

were fitted with the equation: E = Base + {(Emaximal – Base) × [D]h / EC50
h + [D]h             

(equation 3)34                    

The theory for applying equation 3 is briefly introduced below: If the drug needs to bind 

with receptor, an equilibrium equation is established: [R] + [D] ↔ [R -D] ([R] represents free 

receptor concentration, [D] represents drug concentration and [R-D] represents drug-receptor 

complex concentration). Based on the Law of Mass Action, equation 4 is obtained: [R] × [D] / 

[R-D] = KD (equation 4, KD is the equilibrium dissociation constant). Meanwhile, [R] = [R]total 

– [R-D] (equation 5). 

Substitute equation 5 into equation 4 → [R-D] = ([R]total × [D]) / ([D] + KD)         

(equation 6). 

If the drug effect is proportional to [R-D] and k is the proportional constant, equation 7 

is obtained: E = k × [R-D]   (equation 7, E is the drug effect).  

Therefore, Emaximal = k × [R-D]maximal = k × [R]total   (equation 8) 

Substitute equation 7 and equation 8 into equation 6, equation 9 is obtained: 

E = Emaximal × [D] / ( [D] + KD )                  (equation 9) 

If [D] is equal to EC50 (antagonist concentration that induces a half maximal effect), 

equation 9 = 0.5 × Emaximal → 0.5 = [D] / ( [D] + KD ) → [D] = KD → KD = EC50 

Substitute EC50 = KD into equation 9 → E = Emaximal × [D] / ( [D] + EC50)   (equation 

10) 

If [D] is logarithm value, the relationship between E and [D] is sigmoid. The Hill 

coefficient is introduced in equation 9 to give the largest absolute value of the slope of the 

curve. Moreover, because the potential maximum drug effect threshold may exist, the Base (the 

value of E which is infinitely close the horizontal axial) parameter is introduced in equation 10. 

Finally, the equation 3 is obtained: E = Base + {(Emaximal – Base) × [D]h / EC50
h + [D]h}, this is 
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still sigmoid curve equation. Equation 10 is widely used when people plot the non-linear 

relationship between drug dose and drug effect when it involve receptors. In this bioassay, E is 

the relative constriction (%), EC50 is the antagonist concentration that induced a half maximal 

effect. Emaximal is the maximal constriction, [D] is the concentration of agonist, h defines the slope 

and the Base means the value of E which is infinitely close the horizontal axial. All the data were 

presented as mean ± sem. The parameters and dose-respond curves were obtained by using 

software Origin 6.0. 

 Next is the dose-respond curve of (+)-myriceric acid A: 

  

Graph 1. Percentage of 1 nM ET-1 induced constriction in the presence of (+)-myriceric acid A 

Versus concentration of (+)-myriceric acid A (curve) 

1.00.1 0.5

 

        The horizontal axial is the concentration of (+)-myriceric acid A based on the logarithm 

value. The vertical axial is the constriction value which was caused by the 1 nM ET-1 in the 

presence of (+)-myriceric acid A divided by the averaged constriction value caused by elevated 

10 mM Ca2+ solution. All the data is from the table 7. 

In the linear relationship, the horizontal axial is the concentration of (+)-myriceric acid A 

based on the logarithm value. The vertical axial is also the constriction value which was caused 

by the 1 nM ET-1 in the presence of (+)-myriceric acid A divided by the averaged constriction 

value caused by elevated 10 mM Ca2+ solution. (Graph 2) 
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Graph 2. Percentage of 1 nM ET-1 induced constriction in the presence of (+)-myriceric acid A 

Versus concentration of (+)-myriceric acid A (linear) 

10-4 0.1 0.5 1.0

 
 

        Similar graphs (curve and linear) were plotted based on the previous data showed in the 

Table 1 ~ Table 6 
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Graph 3. Percentage of 1 nM ET-1 induced constriction in the presence of TM-1Versus 

concentration of TM-1 (curve) 

 

0.3 1.00.1

 
Graph 4. Percentage of 1 nM ET-1 induced constriction in the presence of TM-1 Versus 

concentration of TM-1 (linear) 

10-4 0.1 1.00.3
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Graph 5. Percentage of 1 nM ET-1 induced constriction in the presence of TM-2 Versus 

concentration of TM-2 (curve) 

0.1 0.3 1.0

 
Graph 6. Percentage of 1 nM ET-1 induced constriction in the presence of TM-2 Versus 

concentration of TM-2 (linear) 

10-4 0.1 1.00.3
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Graph 7. Percentage of 1 nM ET-1 induced constriction in the presence of TM-3 Versus 

concentration of TM-3 (curve) 

0.30.1 1.0

 
Graph 8. Percentage of 1 nM ET-1 induced constriction in the presence of TM-3 Versus 

concentration of TM-3 (linear) 

10-4 0.1 1.00.3
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Graph 9. Percentage of 1 nM ET-1 induced constriction in the presence of TM-4 Versus 

concentration of TM-4 (curve) 

0.1 1.00.3

 
Graph 10. Percentage of 1 nM ET-1 induced constriction in the presence of TM-4 Versus 

concentration of TM-4 (linear) 

10-4 0.1 1.00.5
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Graph 11. Percentage of 1 nM ET-1 induced constriction in the presence of TM-5 Versus 

concentration of TM-5 (curve) 

1.00.30.1 0.5

 
Graph 12. Percentage of 1 nM ET-1 induced constriction in the presence of TM-5 Versus 

concentration of TM-5 (linear) 

10-4 0.1 1.00.3 0.5
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Graph 13. Percentage of 1 nM ET-1 induced constriction in the presence of TM-6 Versus 

concentration of TM-6 (curve) 

1.00.1 0.3

 
Graph 14. Percentage of 1 nM ET-1 induced constriction in the presence of TM-6 Versus 

concentration of TM-6 (linear) 

10-4 0.1 1.00.3
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         The EC50 of (+)-myriceric acid A for ET-1 inhibition was reported as 11 nM.2 The EC50 of 

the six (+)-myriceric acid A intermediates calculated by the Origin 6.0 are showed in the below 

table: 

 

Table 8. Different compound’s EC50 value 

Compound Name half inhibition effect 
concentration( EC50) based on curve 

relationship 

half inhibition effect 
concentration( EC50) based on linear 

relationship 

TM-1 0.185 µM 0.143  µM 
TM-2 0.582 µM 0.347  µM 
TM-3 0.186 µM 0.220  µM 
TM-4 0.475 µM 0.385  µM 
TM-5 0.103 µM 0.095  µM 
TM-6 0.090 µM 0.129  µM 
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Chapter 3 Discussion 
 

3.1 Comparison of the drug antagonistic potency based on the current 

result 

 
It is easy to compare the antagonistic potency of (+)-myriceric acid A and its 

intermediates if their EC50 (half maximal effective concentration) values are calculated. EC50 is 

the concentration of a compound where 50 percent of its maximal effect is observed. The smaller 

value of EC50, the greater antagonistic effect the drug has. The EC50 value of (+)-myriceric acid 

A is much smaller than its intermediate, so (+)-myriceric acid A has the strongest ET-1 

antagonistic potential. ET-1 only exert its vasoconstriction function after it bind with its 

receptors. The amount of ETB receptor is very tiny that discussed in Chapter 1.5.1, so ET-1 binds 

only with ETA receptor. Since (+)-myriceric acid A effectively block the constriction caused by 

ET-1, hence (+)-myriceric acid A is a potent ETA receptor antagonist. According on the result of 

Table 8 based on curve relationship, the order of the EC50 value for the intermediates is TM-6 < 

TM-5 < TM-1 < TM-3 < TM-4 < TM-2. Therefore, the antagonistic potency order for the 

intermediates should be TM-6 > TM-5 > TM-1 > TM-3 > TM-4 > TM-2. If the EC50 comparison 

based on the linear relationship, the order of the EC50 value is TM-5 < TM-6 < TM-1 < TM-3 < 

TM-2 <TM-4, so the antagonistic potency order for the intermediates should be TM-5 > TM-6 > 

TM-1 > TM-3 > TM-2 > TM-4.  

EC50 normally is graded in dose-response curves, so it is significant to plot dose-response 

curves to get EC50 values. However, in order to obtain a good shape dose-response curve in this 

project, the ET-1 antagonistic effect should be tested under as more as possible concentrations. 

For example, after scrutinizing Graph 1, it is easy to find that only three concentrations of (+)-

myriceric acid A were tested. The dose-response curve was actually elongated in Graph 1. If the 

curve is cut from the 0.1 µM to 1.0 µM, the shortened curve is showed in Graph 15 as below:  
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Graph 15. Percentage of 1 nM ET-1 induced constriction in the presence of (+)-myriceric 

acid A VS Concentration of (+)-myriceric acid A (limited concentration base on curve) 

0.1 0.5 1.0

 

Compared with Graph 1, it is a straight line alike. The scope of the tested concentration 

was limited between 0.1 µM and 1 µM. It only crossed two decades. The points on the left will 

definitely change the shape of the curve and influence the EC50 of (+)-myriceric acid A. So it is 

wise to test the (+)-myriceric acid A antagonistic effect under at least three decades of 

concentrations (test less concentrations of (+)-myriceric acid A). If the points at the 

concentration of 0.01 µM and 0.001 µM (+)-myriceric acid A can be confirmed, a quite good 

shape and accurate dose-response curve will be plotted. Because of the uncertainty of the curve 

shape and the current linear shape looking, the linear relationship straight line was plotted  

 If the curve from 0.3 µM to 1.0 µM of TM-4 is cut, the Graph 16 is showed below: 
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Graph 16. Percentage of 1 nM ET-1 induced constriction in the presence of TM-4 VS 

Concentration of TM-4 (limited concentration) 

0.3 1.00.5

 

The curve in this graph is almost a straight line and the X-Y relationship may be 

supposed linear. To obtain a complete dose–response curve, more concentrations of compound 

need to be tested. Based on the current limited data, the linear relationship between concentration 

of compound and the percent of 1 nM ET-1 induced constriction in the presence of compound is 

more reasonable. Graph 17 combined all the straight relationship lines together for (+)-myriceric 

acid A and its six intermediates.  
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Graph 17. Percentage of 1 nM ET-1 induced constriction in the presence of different 

compounds VS Concentrations of different compounds (linear) 

0.1 0.3 0.5 1.0

TM-3

TM-3

TM-4

TM-5

TM-6

0.05

(+) myriceric acid A
TM-1

TM-3
TM-4

TM-5

TM-6

TM-2

 

 

3.2 Some other analysis on the SMA diameter superfusion figures 
 

In this paper, the antagonistic effect of compounds in the presence of 1nM ET-1 is the 

major concern. It is also important to find out whether these compounds have the ability to 

reverse the constriction caused by the 1 nM ET-1. In each SMA superfusion experiment, the 

SMA sections were superfused at least 1 or 2 minutes of 1 mM Ca2+ solution to wash away the 

ET-1 after the superfusion of ET-1 alone. It is reported that ET-1 can cause a strong and long 

lasting constriction.2,3 Including  (+)-myriceric acid A and its 6 intermediates, all of them cannot 

reverse the constriction induced by ET-1 alone.  
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3.3 The simultaneous measurement of intracellular Ca2+ concentration 

and SMA diameter 
 

In Chapter 1, a proposed mechanism that ET-1 caused vasoconstriction was 

demonstrated. This mechanism is widely accepted. To normalize the constriction caused by the 

agonist or the combination of agonist and antagonist, an elevation of the extracellular Ca2+ 

concentration from 1 mM to 10 mM Ca2+ was introduced to induce the increase of intracellular  

Ca2+ concentrations.40 All the procedures are involved the intracellular Ca2+ concentrations. 

Scherer et al. developed a simultaneous measurement method to obtain the intracellular Ca2+ 

concentrations and SMA diameter. It is quite similar with Figure 8. The only difference is that 

the SMA segments are loaded with a fluorescent compound (fluo-4) before being mounted in the 

superfusion chamber and the fluorescence signal can be tested by the connected device to 

determine the concentration of the intracellular Ca2+ concentration.  

 

 
Figure 30. Normalized intracellular Ca2+ concentration and normalized diameter of SMA in the 

simultaneous measurement experiment.34 

 

 

                  The black bars in Figure 30 show the solution superfused at that period.34 The other 

periods without black bar means the SMA were superfused 1 mM Ca2+ solution.  At the 

beginning of the extracellular Ca2+ concentration elevation from 1 mM to 10 mM, because the 

Ca2+ storage in sarcoplasmic reticulum was released due to the stimulation caused by IP3 
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trigger from the binding ET-1 and ETA receptor, the intracellular Ca2+ concentration had a 

transient increase. Then it went back a little and kept the same level in the presence of 10 mM 

Ca2+ superfusion. When the SMA were superfused with ET-1, the  intracellular Ca2+ 

concentration sharply increased and quickly went back to the level as it superfused with 1mM 

Ca2+ solution. In Chapter 1, it is illustrated that ET-1 will induce the increase of the intracellular 

Ca2+ concentration. Therefore, at that time, the SMA constricted.  The SMA still constricted and 

the diameter kept at the same level although the cytosolic Ca2+ concentration went back very 

quickly. After superfusion of ET-1, the superfusion of 1 mM Ca2+ solution can keep the 

vasoconstriction caused by ET-1 with the unchanged intracellular Ca2+ concentration. The 

mechanism of this activity is still unclear.  

          Scherer et al. also devised a cumulative method to test the constriction effect induced by 

ET-1 on one SMA segment.  

 
Figure 31. The normalized intracellular Ca2+ concentration and diameter of SMA in the 

cumulative simultaneous measurement experiment34. 

 

 

             As Figure 31 showed, the intracellular Ca2+ concentration weren’t significantly 

influenced by the higher concentration of ET-1. However, the diameter of SMA decreased as 

ET-1’s concentration increased.34 

             Looking back at Figure 9, the SMA constricted after being superfused with a 

combination solution of 1 mM Ca2+ solution and drug solution. Though the drug had some 

blocking effect on ET-1, the SMA still constricted. After that period, the diameter of SMA 
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remained at the same level in the presence of 1 mM Ca2+ solution superfution as Figure 30 

demonstrated.  When SMA was superfused with the same concentration of ET-1, the diameter 

of SMA decreased a little. This process further proved that the drug had an antagonistic effect. 

If the drug had no antagonistic effect, the later superfusion of higher concentration of ET-1 

wouldn’t lead SMA to constrict further, because the ET-1 in the 6th~7th minute was partially 

blocked. In other words, during this period, the effective ET-1 concentration was less than the 

later superfusing ET-1 concentration. The whole process is quite similar as Figure 31 

demonstrated. 
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Chapter 4 Conclusion and the prospect of further research 

 

4.1 Conclusion of the current research 

 
           The current experiments demonstrated inspiring information that all six (+)-myriceric acid 

A intermediates have ET-1 receptor antagonistic effect more or less. Although (+)-myriceric 

acid A has been proved as ETA receptor antagonist, the antagonistic mechanisms of its 

intermediates are still unclear. In order to compare the antagonistic effect of (+)-myriceric acid 

A and its intermediates, a dose-response curve was plotted to obtain the EC50 of each 

compound. However, because the tested samples were limited and the range of each 

compound’s concentration is narrow, the curve obtained was not perfect, so the linear 

relationship was proposed. Furthermore, the experimental work further proved that the 

vasoconstriction caused by ET-1 can be maintained under superfusion of 1 mM Ca2+ solution.  

 

4.2 improvement of future work 

 
          Because only limited numbers of SMA segments were tested at each concentration of 

drugs, the sample number needs to be increased to improve the result. Furthermore, it is 

favorable to test more concentrations of compound (at least across 3 decades) to plot better and 

more reliable dose-response curves.  

           Although the ET-1 antagonistic mechanisms of these 6 intermediates are not clear, 

synthesizing these intermediates is easier than the total synthesis of (+)-myriceric acid A. the 

functional group of each intermediate can be modified to verify which part of the compound is 

leading to the antagonistic function.  
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