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a b s t r a c t

This technical note discusses the crossing with the stability boundary for the root loci that polynomially
depend on the gain. A simple calculation method based on reflected polynomials is provided. The trend
of the roots is also determined, which allows studying the gain margin as well as the minimum gain
so that all the roots are within the stable region. Finally, these concepts are illustrated with two case
studies.
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1. Introduction

Affine Root Loci (ARLs) are not high-gain stabilizing for a plant
ith a relative degree greater than two. This is quite evident since

n such a case there are asymptotes that cross the imaginary axis.
or certain design specifications, the system is unable to move the
losed-loop poles within the feasible design region. One possibil-
ty to solve this problem is to use lead–lag networks, or similar
ompensators that modify the ARL, (Franklin, Powell, & Emami-
aeini, 2018). Another possibility is to use general controllers of
he form Gc (s) = Nc (s; K ) /Dc (s; K ) where Nc,Dc ∈ R [s, K ]
(ring of bivariate polynomials on the real ones in the unknowns
s and K ), and have a polynomial dependence with respect to K
with degree greater than one (Hoagg & Bernstein, 2004; Hoagg
& Bernstein, 2007; Mareels, 1984; Miller & Davison, 1991). For
example a plant given by a quadruple integrator 1/s4 can be
stabilized by an appropriate controller with Nc (s; K ) = K 3p3 (s)
and Dc (s; K ) = K 2p2 (s) + Kp1 (s) + p0 (s), where pi ∈ R [s] for
i = 0, . . . , 3. In general, in a closed loop with unity feedback
we have a polynomial characteristic equation in K of the type
pm (s) = Km

+ · · · + p1 (s) K + p0 (s) = 0. The locus of the closed-
loop poles in this equation is called the polynomial root locus
(PRL). Throughout this work, only PRLs with positive gains will
be considered, excluding complementary PRLs.

The plotting rules for the quadratic root locus have been ana-
lyzed in Wellman and Hoagg (2014), and for the cubic in Wellman
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(2013). Recently in Mulero-Martínez (2016), the general prob-
lem of determining the angles of the asymptotes for arbitrary
PRLs was addressed. However, none of these studies analyze the
crossover frequencies at the stability boundary. Motivated by this
lack in the literature, this technical note addresses this problem
in a simple way. Thus, the objective of this work is the analysis
of the crossing points of the PRL with the imaginary axis and of
the critical gains at these points. The crossing can occur from the
stable to the unstable region and vice versa, so it is important to
study the trend of the roots at the intersection with the imaginary
axis. From these trends, we study the gain margin as well as the
minimum gain so that all poles are within the stable region.

1.1. Notation

The ring of polynomials on the reals, in the unknowns s ∈ C
and K ∈ R, is represented by R [s, K ]. Similarly, R [s] is the ring of
polynomials over the reals in the unknown s. Given a polynomial
p in a ring of polynomials, the set of its roots will be denoted
by Z (p). The set R+ represents the positive reals. C− and C+

denote the left half-plane and right half-plane of the complex
plane respectively. The branch i of the root locus, ri (s; K ), is a
curve in the complex plane parameterized by the gain K .

2. Imaginary axis crossing in PRLs

Let the bivariate polynomial p ∈ R [s, K ] be given by

p (s; K ) =

m∑
pi (s) K i, (1)
i=0

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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here pi ∈ R [s]. We define the reflected polynomial of p (s; K )

s the polynomial resulting from reversing the order of the poly-
omials in (1).

efinition 1. The reflected polynomial of p (s; K ) is defined as

∗ (s; K ) = Km
m∑
i=0

pm−i (s)K−i.

From these definitions, it is immediate to see that if jω is a root
f p (s; K ), also −jω is a root of p∗

(
−s; 1

K

)
.

emma 2. For a given K , if jω ∈ Z (p (·; K )) then −jω ∈(
p
(
−·; K−1

))
.

roof. This is straightforward from the definition of the reflected
olynomial p∗:

∗
(
−jω; K−1)

= K−m
m∑
i=0

pm−i (−jω)K i.

Since p has its coefficients on the field R, it follows that
pm−i (−jω) = pm−i (jω). Making the change of variable l = m − i
e get that

−m
m∑
i=0

pm−i (jω) K i
= K−m

m∑
l=0

pl (jω) Km−l.

And therefore,

p∗
(
−jω; K−1)

= p (jω; K ) = 0. ■

We will successively multiply p (jω; K ) by 1, 1
K , . . . , 1

Km−1 ,
hich leads to a system of polynomial equations:∑m

i=0 pi (jω) K i
= 0,∑m−1

i=−1 pi+1 (jω) K i
= 0,

...∑1
i=−(m−1) pi+(m−1) (jω) K i

= 0.

(2)

e will now write this system of equations in compact matrix
orm. For this, we define the vector lm (K ) as the vector with
uccessive powers from K to m − 1, i.e.

m (K ) =

⎛⎜⎜⎝
1
K
...

Km−1

⎞⎟⎟⎠ ,

nd the reflection operator ∗ of a vector x ∈ Rn as the one that
everses the order of the elements x:

x1, x2, . . . , xn−1, xn)∗ = (xn, xn−1, . . . , x2, x1) .

Then the system of equations in (2) is rewritten as

Lm (ω) lm
(
K−1)∗

+ KUm (ω) lm (K ) = 0, (3)

where

Um (ω) =

⎛⎜⎜⎜⎜⎜⎜⎝

p1 (jω) p2 (jω) p3 (jω) · · · pm (jω)

p2 (jω) p3 (jω) p4 (jω) · · · 0
...

...
...

...

pm−1 (jω) pm (jω) 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,
pm (jω) 0 0 0 0
2

and

Lm (ω) =

⎛⎜⎜⎜⎜⎜⎝
0 · · · 0 0 p0 (jω)
0 · · · 0 p0 (jω) p1 (jω)
...

0 p0 (jω) p1 (jω) · · · pm−2 (jω)

p0 (jω) p1 (jω) p2 (jω) · · · pm−1 (jω)

⎞⎟⎟⎟⎟⎟⎠ .

In a similar way to what was done above, we will multiply
p∗
(
−jω;

1
K

)
successively by Km, . . . , K 1, which leads to a system

f polynomial equations given by

Lm (ω)lm
(
K−1)∗

+ KUm (ω)lm (K ) = 0. (4)

We will write Eqs. (3) and (4) as a single matrix equation:(
Lm (ω) Um (ω)

Lm (ω) Um (ω)

)(
lm
(
K−1

)∗
Klm (K )

)
=

(
0
0

)
. (5)

Let q (ω) be the polynomial defined by the determinant of the
matrix of the system (5):

q (ω) = det
(

Lm (ω) Um (ω)

Lm (ω) Um (ω)

)
. (6)

For (5) to have a non-trivial solution it is necessary that q (ω) =

0. The crossover frequencies ω are the roots of q (ω). In the
following lemma, we see that q (ω) is an even/odd polynomial
depending on m.

Lemma 3. The polynomial q is even for even m, and odd for odd m.

Proof. The proof is straightforward since pi (−jω) = pi (jω), and
n particular,

(−ω) = det
(

Lm (ω) Um (ω)

Lm (ω) Um (ω)

)
= (−1)m q (ω) .

Note that the exchange of rows in the matrix changes the sign of
the determinant, hence the term (−1)m. ■

The nonzero crossover frequencies are the non-negative real
roots of q

(√
ω
)
for even m, or of q(

√
ω)

√
ω

for odd m. Let W be the
set

{
ω ∈ R+

∪ {0} : q (ω) = 0
}
. The elements of W are candidate

frequencies for crossing points with the imaginary axis. For each
of them, we determine the gain K and check if K ≥ 0. This
can be done by decomposing the polynomial p into its even part
pe
(
s2, K

)
, and odd spo

(
s2, K

)
:

p (s) = pe
(
s2, K

)
+ spo

(
s2, K

)
.

The polynomials pe
(
s2, K

)
and po

(
s2
)
are determined from the

even and odd part, respectively, of the coefficients of p (s):

p (s) =

∑
pei
(
s2
)
K i

+ s
∑

poi
(
s2
)
K i. (7)

Evaluating (7) at s = jω where ω ∈ W , we obtain two equations
in K :

qe (K ; ω) =

∑
pei
(
−ω2) K i

= 0,

and

qo (K ; ω) =

∑
poi
(
−ω2) K i

= 0.

These equations must be satisfied simultaneously. To solve them,
we make the following observations: (i) if qe and qo are propor-
tional, we would have a single equation of degreem to solve, (ii) if
qe and qo are not proportional, we calculate the greatest common
divisor of these polynomials:

r K ; ω = gcd q K ; ω , q K ; ω . (8)
( ) ( e ( ) o ( ))
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he set of candidate gains will then be,

=
{
K ∈ R+

: qe (K ; ω) = qo (K ; ω) = 0, with ω ∈ W
}
.

The PRL allows us to find the gain margin graphically or analyti-
cally. The gain margin is defined as the gain factor by which the
design value can be multiplied to make the system unstable. It
depends on the critical gain Kcrit = minK that is achieved at the
point where the PRL crosses the imaginary axis in the complex
plane. Mathematically the gain margin ρ is given by the formula
ρ =

Kcrit
K , where K is the design gain.

The crossing direction of the root locus at s = jω0 as the gain
0 increases can be determined by an expression for that trend:

ω0,K0 = sgn

(
Re

{
∂s
∂K

⏐⏐⏐⏐
(jω0,K0)

})
, (9)

where sgn (·) denotes the sign function. The following lemma
provides a simple method for calculating the trend of roots:

Lemma 4. Let p (s; K ) be the characteristic polynomial as defined in
(1) and let K0 be the gain for which the system crosses the imaginary
axis at jω0, for some ω0 ∈ W , i.e. p (jω0; K0) = 0. Let us assume that
∂p(s;K )

∂s

⏐⏐⏐
(jω0,K0)

̸= 0. Then, the root tendency of jω0 is given by

ω0,K0 = −sgn

⎛⎜⎝Re

⎧⎪⎨⎪⎩
∑m

i=1 ipi (jω0) K i−1
0∑m

i=0
∂pi(s)

∂s

⏐⏐⏐
s=jω0

K i
0

⎫⎪⎬⎪⎭
⎞⎟⎠ . (10)

roof. According to the implicit function theorem, there exist
δ > 0, a neighborhood U0 ⊂ C of jω0 and a continuous

function s : (K0 − δ, K0 + δ) → U0 such that p (s (K ) ; K ) = 0
for all K ∈ (K0 − δ, K0 + δ). Since p is differentiable and since
∂p(s;K )

∂s

⏐⏐⏐
(jω0,K0)

̸= 0, it follows that

∂s
∂K

⏐⏐⏐⏐
(jω0,K0)

= −

∂p(s;K )

∂K

⏐⏐⏐
(jω0,K0)

∂p(s;K )

∂s

⏐⏐⏐
(jω0,K0)

, (11)

where

∂pc (s; K )

∂s

⏐⏐⏐⏐
(jω0,K0)

=

m∑
i=0

∂pi (s)
∂s

⏐⏐⏐⏐
s=jω0

K i
0, (12)

∂p (s; K )

∂K

⏐⏐⏐⏐
(jω0,K0)

=

m∑
i=1

ipi (jω0) K i−1
0 . ■

A branch ri (s; K ) of the PRL can cross the imaginary axis
everal times, so the trend of the crossing is crucial to determine
he minimum gain Kmin so that all the closed-loop poles are in C−

hen K > Kmin.

3. Illustrative examples

In this section, we will apply the calculation method presented
n the previous section to two case studies.

.1. Example 1

For the plant

p (s) =
s + 10

(s + 30)4
,

let Gc (s) be the quadratic controller at gain K given by

c (s) = K 2 (s + 30)4
4 7 .
(s + 40) K + (s + 20) 0

3

he characteristic polynomial for the closed-loop control system
ith unity feedback is quadratic in K over the ring of polynomials
[s]:

(s; K ) = (s + 10) K 2
+ (s + 40)4 K + (s + 20)7 .

Note that p0 (s) = (s + 20)7, p1 (s) = (s + 40)4, p2 (s) = (s + 10).
For this polynomial, Eq. (5) is written as follows⎛⎜⎜⎜⎝

0 p0 (jω) p1 (jω) p2 (jω)

p0 (jω) p1 (jω) p2 (jω) 0

0 p0 (jω) p1 (jω) p2 (jω)

p0 (jω) p1 (jω) p2 (jω) 0

⎞⎟⎟⎟⎠
⎛⎜⎝ K−1

1
K
K 2

⎞⎟⎠ =

⎛⎜⎝ 0
0
0
0

⎞⎟⎠ .

(13)

e construct the polynomial q (ω),

q (ω) =

et

⎛⎜⎜⎝
0 (jω + 20)7 (jω + 40)4 (jω + 10)

(jω + 20)7 (jω + 40)4 (jω + 10) 0
0 (−jω + 20)7 (−jω + 40)4 (−jω + 10)

(−jω + 20)7 (−jω + 40)4 (−jω + 10) 0

⎞⎟⎟⎠ ,

hose positive real roots are ω = 139.8, ω = 1.2584, ω = 15.502
nd ω = 0. These frequencies are candidates for crossover points.
or each one of them, we determine the gain K and verify if
∈ R+. According to Eq. (7), the polynomial p (s) is divided into

ts odd and even part, which results in the following polynomials:
e
2

(
s2
)

= 10,

e
1

(
s2
)

=

2∑
k=0

(
4
2k

)
s4−2k402k

= s4 + 6 · 402s2 + 404,

e
0

(
s2
)

=

3∑
k=0

(
7

2k + 1

)
s7−(2k+1)202k+1

= 7 · 20s6 + 35 · 203s4 + 21 · 205 s2 + 207,

o
2

(
s2
)

= 1,

o
1

(
s2
)

=

1∑
k=0

(
4

2k + 1

)
s4−(2k+1)−1402k+1

= 4 · 40s2 + 4 · 403,

o
0

(
s2
)

=

3∑
k=0

(
7
2k

)
s7−2k−1202k

= s6 + 21 · 202s4 + 35 · 204s2 + 7 · 206.

And for each candidate frequency, we determine the polyno-
ial r (s; K ) according to (8): r (K ; 139.8) = K − 3.97062 × 106,
(K ; 15.502) = K − 1943.33, r (K ; 1.2584) = K + 254018, and
(K ; 0) = K + 8000×(

16 +
√
254

)
.

From this, it follows that

Kcrit = min
{
3.97062 × 106, 1943.33

}
= 1943.33.

In Fig. 1, the quadratic root locus and the crossing points with
the imaginary axis have been plotted using the derivative with
respect to K of the implicit equation p (s; K ) = 0, that is, solving
numerically the equation ∂p(s;K )

∂s
∂s
∂K +

∂p(s;K )

∂K = 0. Since the char-
acteristic polynomial p (s; K ) is of degree 7, by the fundamental
theorem of algebra the root locus will present seven branches.
These branches begin at the root s = −20 of multiplicity seven
(open-loop pole of the direct function Gc (s; K )Gp (s) for K =

). This point is marked in Fig. 1 with an “x”. If we divide the
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Fig. 1. Quadratic root locus defined by the polynomials p0 (s) = (s + 20)7 ,
p1 (s) = (s + 40)4 , p2 (s) = (s + 10). The crossing points with the imaginary
axis and the value of gain K are indicated.

Table 1
Root tendency for the crossing frequencies of the root locus in the
example 1.

ω0 K0
p1(jω0)+2p2(jω0)K0∑2

i=0
∂pi(s)

∂s

⏐⏐⏐
s=jω0

K i
0

Tω0,K0

15.502 1943.33 (3.4962+j34.327)×105

(−9.8379−j7.8743)×108
+1

139.8 3.97062 × 106 (1.9695−j4.0083)×108

(−3.6559+j4.1798)×1013
+1

characteristic equation by K 2, and we make K tend towards ∞,
one of the roots will tend towards the zero located at s =

10 through the real axis (this zero has been represented in
ig. 1 with an “o”). The remaining six branches follow asymptotes
entered at σ = −21.7 with angles ±

2πk
9 , k = 1, 2, 4. The PRL

ranches following asymptotes with angles ±
2π
9 and ±

4π
9 , cross

the imaginary axis at ±j15.502 and ±j139.8 respectively (with
gains 1943.33 and 3.97062 × 106 respectively).

Now we analyze the tendency for the cross frequencies at
ω0 = 15.502 rad/sec and ω0 = 139.8 rad/sec (with gains
1943.33 and 3.97062 × 106 respectively). The root locus crosses
the imaginary axis at these frequencies from the left half-plane
to the right half-plane (positive tendency) as shown in Fig. 1. The
computation of the tendency are collected in Table 1.

3.2. Osprey Tiltrotor aircraft

In this section, we analyze the crossover gains for a control
system of a Bell-Boeing V-22 Osprey Tiltrotor. This artifact is both
an airplane and a helicopter. We consider the attitude control in
the helicopter mode, (Dorf & Bishop, 2011). The transfer function
from the elevator input to the pitch attitude is given by

Gp (s)
1

(20s + 1) (10s + 1)
( 1
2 s + 1

) .
his plant has a relative degree of 3 so it has three asymptotes
orming angles of 180◦ and ±60◦. The asymptotes of ±60◦ make
he system not high-gain stabilizable since there is a critical gain
alue from which two closed-loop poles are confined in the right
 b

4

Table 2
Root tendency for the crossing frequencies of the root locus in the
control system of the Osprey Tiltrotor aircraft.

ω0 K0
p1(jω0)+2p2(jω0)K0∑2

i=0
∂pi(s)

∂s

⏐⏐⏐
s=jω0

K i
0

Tω0,K0

0.35121 0.0771575 745.1+j60.577
−79.613+j166.98 +1

14.74 24.5159 −3.342+j4.0293
(−12.01 5−j2.3247) −1

half-plane. We will use a controller with a transfer function that
depends quadratically on the gain K ,

Gc (s) =
γ2K 2 (s + z)2

(γ0 (s + p) + γ1K )
.

The characteristic equation for the closed-loop control system
with unity feedback is of the form

p2 (s) K 2
+ p1 (s) K + p0 (s) = 0, (14)

here p1 (s) = γ1
(
s +

1
20

) (
s +

1
10

)
(s + 2), p2 (s) = γ2 (s + z)2

and p0 (s) = γ0γ
−1
1 p1 (s) (s + p). The root locus starts from the

poles in open loop, i.e. from the roots of p0 (s), so it will have
four branches. Dividing (14) by K 2 and making K tend to infinity
we have that two closed-loop poles move towards double zero at
s = −z, while the other two poles follow asymptotes that form
angles

θ = arg
(

−γ1 +

√
γ 2
1 − 4γ2γ0

)
,

and ϕ = 2π − θ . Increasing z attracts the root locus to positions
further to the left in the complex plane. With a sufficiently large
gain, it is possible to increase the response speed of the system
with a high gain selection (the system is highly stabilizable). We
will consider the following parameter values: z = 10, p = 1,
γ2 = 50, γ1 = 100, and γ0 = 100. For these parameters the
asymptotes form angles of θ = 135.0◦ and ϕ = 225◦ (cutting
the real axis at α = 1874.5 and β = 8.4726 respectively). The
system of equations for the characteristic polynomial in K is given
by (13). In particular, the determinant of the matrix of this system
of equations gives us the auxiliary polynomial q (ω) whose non-
negative real roots are ω = 0.33262, ω = 0.35121, ω = 14.749
and ω = 0 (double). Each of these frequencies has an associated
crossover gain that will have to be checked for positivity. For
this we must separate the polynomial p (s; K ) into its odd and
even part, which leads to the following polynomials: pe2

(
s2
)

=

50
(
s2 + 100

)
, pe1

(
s2
)

= 215s2 + 1, pe0
(
s2
)

= 100s4 +
491
2 s2 + 1,

po2
(
s2
)

= 1000, po1
(
s2
)

= 100s2 +
61
2 , and po0

(
s2
)

= 315s2 +
63
2 .

or each candidate crossover frequency ω ∈ W we calculate
the polynomial r (s; K ) according to equation (8): r (K ; 0) = 1,
(K ; 0.33262) = K+0.0684171, r (K ; 0.35121) = K−0.0771575,
nd r (K ; 14.749) = K − 24.5159.
As shown in Fig. 2, the system crosses the imaginary axis at

= ±j0.35121 with a gain K = 0.0771575 and at s = ±j14.749
ith K = 24.5159.
Using the root tendency lemma we can compute the crossing

irection for each crossing frequency as shown in the last column
n Table 2; Tω0,K0 = −1 indicates that the crossing is from C+ to
− and Tω0,K0 = +1 implies a crossing from C− to C+. As a result
f this analysis, the minimum gain for all the closed-loop poles to
e within the stable region is K = 24.5159.

. Conclusions

In this technical note, the crossing of the imaginary axis has
een analyzed in root loci defined by non-affine polynomials
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a

Fig. 2. Quadratic Root Locus for the Control System of an Osprey Tiltrotor
ircraft. The PRL is determined by the polynomials p2 (s) = 50 (s + 10)2 , p1 (s) =

100
(
s +

1
20

) (
s +

1
10

)
(s + 2), and p0 (s) = p1 (s) (s + 1). The crossing frequencies

with the imaginary axis at ω = 0.35121 rad/sec and ω = 14.749 rad/sec are
also marked.

with respect to the gain. This analysis is important to decide the
margin of stability as well as the minimum gain for all the poles
5

to be in the stable region. For this, a simple algebraic method
based on reflected polynomials has been developed and the ten-
dency of the roots at the crossing points with the imaginary axis
has been studied.
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