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Manuel Jiménez-Buendía, PhD a, Honorio Navarro-Hellín, PhD b, Roque Torres-Sánchez, PhD a,* 
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A B S T R A C T   

Crop canopy temperature measurement is necessary for monitoring water stress indicators such as the Crop 
Water Stress Index (CWSI). Water stress indicators are very useful for irrigation strategies management in the 
precision agriculture context. For this purpose, one of the techniques used is thermography, which allows remote 
temperature measurement. However, the applicability of these techniques depends on being affordable, allowing 
continuous monitoring over multiple field measurement. In this article, the development of a sensor capable of 
automatically measuring the crop canopy temperature by means of a low-cost thermal camera and the imple-
mentation of artificial intelligence-based image segmentation models is presented. In addition, we provide results 
on almond trees comparing our system with a commercial thermal camera, in which an R-squared of 0.75 is 
obtained.   

1. Introduction 

The optimization of irrigation water, which is the activity with the 
largest consumption of freshwater worldwide (Berni, 2009), is one of the 
major concerns in agriculture, being a limiting factor for crop yielding 
(Fernández García et al., 2020) in arid and semi-arid regions. In order to 
contribute to the optimization of crop water management, new irriga-
tion strategies, such as Regulated Deficit Irrigation (RDI), have been 
developed to reduce the water consumption during non-critical periods 
(Azorín and García, 2020; Fereres and Soriano, 2006; Kannan and 
Anandhi, 2020; Noguera et al., 2020; Torres-Sanchez et al., 2020). 
Deficit irrigation techniques require the supervision of the plant water 
status through physiological indicators to avoid undesirable effects on 
crop yields (Azorín and García, 2020; Fereres and Soriano, 2006; 
Fernández García et al., 2020; Naor, 2000). The selection of these in-
dicators is crucial since a balance must be found between the sensibility 
of measuring the crop water status and the capability to implement its 
measurement. Midday Stem Water Potential (SWP) is considered to be 
the parameter par excellence for the estimation of the crop water status 
(Naor, 2000). However, it is a destructive, non-automatable and very 

time-consuming method, which implies discontinuous measurements 
and the unfeasibility of scaling up to large plantations. Alternatively, 
other remotely and continuously measurable variables in soil, plant and 
atmosphere show sensitivity to crop water stress, allowing an indirect 
estimation of crop water status (Blonquist et al., 2009; González-Teruel 
et al., 2019; Torres-Sanchez et al., 2020). Plant-based continuous in-
dicators, such as maximum daily branch shrinkage using dendrometers, 
are also used to estimate the crop water status and have been proven to 
be useful in irrigation management. Plant temperature is one of the most 
extended variables used in providing insight into crop water status. The 
stomatal aperture, which is influenced by plant and soil water status as 
well as meteorological conditions, affects the temperature of the leaves 
as it acts as a cooling mechanism by controlling the evapotranspiration 
(Blonquist et al., 2009). The higher the crop water stress, the lower the 
stomatal aperture in order to prevent the plant from water exhaustion, 
thus leading to an increase of leaf temperature. The Crop Water Stress 
Index (CWSI) (Idso et al., 1981; Jackson et al., 1981) is extensively used 
to account for the crop stress (Camino et al., 2018; García-Tejero et al., 
2018; Krishna et al., 2019; Kullberg et al., 2017; Noguera et al., 2020; 
Poblete et al., 2018) by comparing the differences of temperature 
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between the air and canopy, fully transpiring leaf and non-transpiring 
leaf. Different procedures are used for the determination of fully tran-
spiring and non-transpiring temperatures, such as those based on theo-
retical, virtual, meteorological, plant an artificial wet references (King 
and Shellie, 2016; Krishna et al., 2019; Maes et al., 2016). Nevertheless, 
wind speed and solar radiation are factors that influence the difference 
between leaf and air temperatures and that are not taken into account 
(Jones, 2018). There exist other stress indicators that are calculated 
from the canopy temperature, such as, Canopy Temperature Ratio (CTR) 
(Bausch et al., 2011), Degrees Above Non-Stressed (DANS) (Taghvaeian 
et al., 2014) and Degrees Above Canopy Threshold (DACT) (DeJonge 
et al., 2015). These indicators have been considered in recent years as an 
alternative to the CWSI, as they require few data to be calculated, which 
is an advantage for their practical application (Kullberg et al., 2017). 
Furthermore, the comparison of these methods was carried out in an 
experiment under deficit irrigation conditions by using different treat-
ments and it was concluded that the obtained errors were similar to 
those with the CWSI (Kullberg et al., 2017). 

It is crucial, in any case, to obtain the crop canopy temperature in 
order to estimate the crop water stress using the above-mentioned in-
dicators. Several techniques can be found to measure the crop canopy 
temperature. Infrared radiometers are widely used and one of the most 
popular options providing remote measurement and field installation 
robustness. Nonetheless, the main drawback of infrared radiometers is 
that both emitted and reflected radiation from the different sources 
covered by the field of view is integrated in the bulk measurement, thus, 
impeding the determination of canopy temperature exclusively, and 
additional equipment is required in order to find a correct framing on 
the canopy (Blaya-Ros et al., 2019). Alternatively, thermography has 
been extensively used in this application in a variety of ways (Aasen 
et al., 2018; Berni et al., 2009; Camino et al., 2018; Costa et al., 2013; 
Fuentes et al., 2012; García-Tejero et al., 2018; Krishna et al., 2019; 
Kullberg et al., 2017) encompassing from handheld (Blaya-Ros et al., 
2020; García-Tejero et al., 2018; Noguera et al., 2020), stationary on- 
site (Yang et al., 2009) or land vehicle-attached devices (Gutiérrez 
et al., 2018; Osroosh et al., 2018) to airborne vehicles (Berni et al., 2009; 
Blanco et al., 2020; Poblete et al., 2018) and satellites (Zhang et al., 
2020). In the case of the latter, low spatial and temporal resolution is the 
major concern, whereas for drones, radiometric calibration, atmo-
spheric corrections and geometric calibration of the optics and sensors 
for photogrammetry application is needed (Berni, 2009), in addition to 
limitations on flight autonomy. Moreover, expert technicians are 
required to perform the tests in both cases, making them more expensive 
and restrictive. 

Image-based temperature measurement has to consider only the re-
gions of the thermal image corresponding to the crop canopy when 
obtaining the water stress index (Camino et al., 2018; Fuentes et al., 
2012; Poblete et al., 2018). This issue requires an image segmentation to 
carry out the Region Of Interest (ROI) extraction. Thermal image pro-
cessing is limited due to the low resolution offered by thermal cameras, 
especially low-cost ones like the one used in this article. In addition, a 
marked thermal gradient between the elements to be segmented must 
exist. This poses a problem in the deficit irrigation scenario, where 
severely water-stressed crop canopy may be confused with elements that 
do not pertain to the ROI (Zhou et al., 2021). As a consequence, the 
segmentation process is usually performed on the visible image (Cerutti 
et al., 2015) and for that purpose, several image processing methods 
have been described in the literature, such as, Thresholding (Otsu, 
1979), MeanShift (Cheng, 1995; Comaniciu et al., 2002), Pyramidal 
MeanShift (Li et al., 2010), Graphcut (Boykov and Jolly, 2001), 
Watershed (Dougherty et al., 2019), Snakes (Chan and Vese, 2001), B- 
splines Snake (Brigger et al., 2000), Grabcut (Rother et al., 2004), Fel-
zenszwalb (Felzenszwalb and Huttenlocher, 2004), SLIC (Achanta et al., 
2012), Kurtz’s algorithm (Achanta et al., 2012), Weber’s algorithm 
(Weber et al., 2011), Power Watershed (Couprie et al., 2009), GAC 
(Cerutti et al., 2013), RGB-D based segmentation (Xia et al., 2015) and, 

more recently, machine learning and deep learning (Giménez-Gallego 
et al., 2019; Singh and Misra, 2017; Ward et al., 2019; Zhou et al., 2021). 
Subsequently, a visible image camera and image matching strategies 
between the visible and thermal image are used to apply the generated 
mask to the temperature matrix. Furthermore, because the sensor can 
process the visible image, there is great potential for the future imple-
mentation of new agricultural application procedures. In this sense, a 
model can be applied for the segmentation between sunlit and shaded 
leaves, which is of interest in determining the water status of plants 
(Poblete et al., 2018). It would also be possible to implement an image 
classification model to determine the specific phenotype (Azlah et al., 
2019) for which the measurement is to be made, thus allowing to use 
dedicated models to enhance the performance on image segmentation. 
Morphological shape and colourimetrical variations of the fruit (Li et al., 
2016; Lin et al., 2019b, 2019a; Osroosh and Peters, 2019) are also 
possible indicators derived from visible image processing that can be 
used for optimal harvesting predictions or phenological stage estimation 
of the crop (Vicente-Guijalba et al., 2014). 

Currently, several low-cost devices for the determination of the crop 
water status based on the measurement of the canopy temperature have 
been developed (García-Tejero et al., 2018; Noguera et al., 2020). 
However, a manual segmentation for the extraction of the ROI is 
required (García-Tejero et al., 2018) or lack the capacity to discriminate 
it as the sensor is not image-based (Noguera et al., 2020), which makes 
them unsuitable for continuous and autonomous measurement. In this 
paper, a novel thermal and visible image-based sensory platform is 
proposed. Automatic image processing based on previously developed 
machine learning and deep learning segmentation models (Giménez- 
Gallego et al., 2019) is implemented. Thus, an accurate continuous 
monitoring of crop canopy temperature is pursued. The visible image is 
used for segmentation, then the thermal one is matched and the tem-
perature of the ROI is determined. This has previously been handled by 
RGB threshold-based image processing (Osroosh et al., 2018), but it 
lacks flexibility in terms of lighting conditions, image background and 
type of crop. The performance of the device is compared with that of a 
commercial thermal camera whose results have been manually pro-
cessed to determine the ROI. Calibration, adjustment procedures and 
thermal image capture methodology are also discussed, as well as the 
influence of environmental conditions on the correct operation of the 
device. This paper is structured in four sections. Section two deals with 
the development of the sensor and the definition of the experiment 
whose results are presented and discussed in the third section. Finally, 
conclusions are outlined. 

2. Materials and methods 

2.1. Sensor description and operation 

2.1.1. Sensor hardware 
A low-cost hardware platform has been chosen for image-collection 

and data-processing. The Raspberry Pi 4 model B from Raspberry Pi 
Foundation (Station Road, Cambridge, UK) was used. It was operated 
under Linux and programmed under GNU Python language (“Python 
official website”). Regarding the RGB camera, the Raspberry Pi Camera 
Rev. 1.3 (5MP, 1080p) was used, conured with a resolution of 640x480 
pixels. The thermal camera used was the FLIR Radiometric Lepton 3.5 
from FLIR® Systems (Wilsonville, OR, USA), integrated into the Pure-
Thermal 1 - FLIR Lepton Smart I/O Module V1.3 with the GetLab (Reno, 
NV, USA) Y16 firmware. The thermal camera has an automatic shutter, a 
resolution of 160x120 pixels and an effective frame rate of 8.7 Hz. The 
operating temperature range spans from − 10 to 80 ◦C and the mea-
surement range in high gain mode from − 10 to 140 ◦C, which meets the 
needs for measurements in the crop canopy temperature. The radio-
metric accuracy is ±5 ◦C and the thermal sensitivity <0.05 ◦C. Addi-
tionally, a switch to control the power, a LED indicating the sensor 
status, a push-button to perform the measurement process and another 

J. Giménez-Gallego et al.                                                                                                                                                                                                                      



Computers and Electronics in Agriculture 188 (2021) 106319

3

push-button to close the program and put the Raspberry in standby 
mode were added to the system for user-interfacing purposes. 

2.1.2. Case 
The above-described elements were integrated into a custom- 

designed case manufactured by using a CR-10S Fused Deposition 
Modeling (FDM) printer (Shenzhen Creality 3D Technology Co., Ltd., 
JinChengYuan, Tongsheng Community, Dalang, Longhua District, 
Shenzhen, China), as shown in Fig. 1. 

The case consists of two parts: the base, which includes a holder for 
the cameras and enough space for the Raspberry Pi and shields; and a 
casing, which fits over the previous one to protect the system. The 
camera holder was designed so that both thermal and visible images had 
the same orientation and height and were situated at a minimum dis-
tance. This ensures that the centres of the images are also at the same 
height, so that the imaginary lines perpendicular to the planes of the 
images and passing through their centres are cut, not crossed, and at a 
distance of 1 m from the cameras, defined by the relative angle between 
them, as depicted in Fig. 2. 

2.1.3. Cameras calibration 
Once the cameras were mounted on the holder and secured with 

screws, a slight error in the correspondence of the images was observed. 
Therefore, the content of the images was not identical and it was 
necessary to determine the common area between both cameras for 
image-corresponding. So, for real-time image processing, the thermal 
image would have to be analysed, in order to match both images to 
identify shapes or patterns that correspond to those of the visible image. 
Nevertheless, the problem that there is no clear relationship between the 
isothermal and monochrome regions arises. Thus, in a real field situa-
tion, it would be difficult to determine common singular points in the 
image. Moreover, this would mean an increase in the computational cost 
and, therefore, in the response time and consumption of the sensor. 
Consequently, it was decided to perform a calibration under laboratory 
conditions to obtain the intersection region between the thermal and 
visible images. The calibration consisted of identifying a significant 
pixel, namely the centroid of a calibration object easily recognizable by 
both cameras. In this case, a cooled blue rectangular block was used as 
the calibration object. Obtaining an image with each camera, it was 
converted to binary format by means of either a colour or a temperature 
threshold. Then, the calibration object contour and the centroid was 
determined, as shown in Fig. 3. 

To obtain the common area in each frame, it would simply be 
necessary to crop both images according to the differences between the 
horizontal and vertical coordinates of the centroids. The calibration 
would only have to be repeated in case the relative position between the 
cameras was changed. This position is undisturbed if the designed 
holder is used, which also ensures the precise correspondence for the 

lenses at a distance equal to that of the calibration object, chosen of 1 m 
in this study for convenience. 

Regarding the cameras synchronization, a constant time difference 
was observed between the captures of both images, visible and thermal. 
This is critical, because the leaves may be moving in the wind, which 
would result in a mismatch. Hence, it was decided to delay the thermal 
camera to minimize the difference. To verify the synchronization be-
tween the sensor cameras, the time difference between the visible and 
thermal image captures was measured in 1000 frames. An average time 
difference of 11 ms was obtained. This time is considered to be suffi-
ciently short to prevent external factors such as wind from interfering. 

Furthermore, in order to correctly capture the visible image, an 
automatic camera brightness adjustment algorithm was designed, since 
situations of over-or under-lighting in the field may occur. Specifically, 
it was a Fuzzy controller, which, based on the mean intensity of the 
image’s pixels, modified the camera’s brightness. 

2.1.4. Segmentation models implementation 
Image segmentation on the visible image is required in order to 

discriminate the ROI. Once the correspondence with the thermal image 
was made, as defined above, the mask resulting from the segmentation 
was applied on the temperature matrix. Thus, the results were calculated 
considering only the values associated with pixels that had been clas-
sified as leaf by the segmentation model. 

Two segmentation models were applied to generate the mask. The 
first one was a model based on the Support Vector Machine (SVM) su-
pervised learning algorithm, generated from a dataset built with the 
help of a clustering plus manual classification process (Giménez-Gallego 
et al., 2019). The second model used was based on Deep Learning and 
the network architecture was SegNet (Giménez-Gallego et al., 2019). 
Originally, model inference was intended to be performed on the 
Raspberry Pi. To integrate these models developed in MATLAB (The 

Fig. 1. Measuring system assembled in the case without cover (left) and with it (right).  

Fig. 2. Correspondence of the visible and thermal image centres through 
the holder. 
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MathWorks, Inc., Natick, MA, USA) (“MATLAB official website”), it was 
necessary to generate them in Python. In the case of the Deep Learning 
model training, Keras 2.3.1 (“Keras Documentation”) and Tensorflow 
2.0 (“TensorFlow”) were used, employing Mobilenet (Howard et al., 
2017) as a backbone. Mobilenet is an efficient option for the imple-
mentation of artificial intelligence models in devices with limited pro-
cessing capacity or in cases where time is a critical factor (Howard et al., 
2017), since the computational cost to carry out the predictions is lower 
than that of other backbones such as ResNet (Bianco et al., 2018). The 
remote processing structure was chosen over the “in situ” option, as the 
heavy measurement analysis was a limit both in terms of computational 
capacity and power consumption of the sensor, if battery operated. The 
measurements were exported to a computer to perform the corre-
sponding processing. 

2.2. Experimental deployment 

2.2.1. Reference thermal camera 
To verify the performance of the proposed sensor, a comparative 

experiment with the commercial thermal camera FLIR SC305 (FLIR® 
Systems, Inc., Wilsonville, OR, USA), which has a resolution of 320x240 
pixels, an accuracy of ±2 ◦C and a thermal sensitivity <0.05 ◦C, was 
proposed. For the processing of the thermal images, the ThermaCam 
Researcher Professional v2.10 (FLIR® Systems, Inc., Wilsonville, OR, 
USA) software was used. The thermographic parameters of the camera 

were configured by setting an emissivity for the leaves of 0.98 (Chen, 
2015; López et al., 2012; Maes et al., 2016), a distance from the subject 
of 1 m and measuring the ambient temperature and relative humidity by 
means of a weather station. Unfortunately, this camera does not offer the 
same field of view as the developed sensor. Therefore, in order to make a 
correct comparison of the results, images were cropped in order to 
overlap the results with the ones based on the FLIR SC 305 sensor, as 

Fig. 3. Example of the calibration process for the correspondence of the visible and thermal images of the sensor: (a) visible image; (b) thermal image; (c) contour 
and centroid of segmented calibration object in visible image; and (d) contour and centroid of segmented calibration object in thermal image. 

Fig. 4. Example of sensor image cropping to match FLIR SC305 field of view. 
Example of FLIR SC305 thermal image overlay on sensor visible image. 
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illustrated in Fig. 4. 
Three repetitions were made for each measurement with the FLIR 

SC305. A manually segmented ROI mean temperature was obtained per 
repetition. The result of each measurement was defined as the average 
value of the repetitions. 

2.2.2. Experimental setup 
Two-year-old potted almond trees (Prunus dulcis) were used for the 

experimental setup. Trials were performed on four trees located in 
Cartagena, Murcia, Spain (37◦36′00.4′′N 0◦58′46.3′′W). Two drip irri-
gation emitters per tree (4 L/h) were installed for non-limiting water 
conditions. Two measurements a day were made with the sensor and the 
commercial thermal camera at two different time periods, one in the 
morning (9 GMT + 2) and the other at midday (14 GMT + 2), when the 
difference of temperature between the ambient and the crop canopy is 
significant. In the case of this article, the sensor was assembled on a 
stand support, but it could be adapted to use in land vehicles or as a 
handheld sensor. Concretely, both measuring equipment were placed on 
an articulated stainless steel stand support. It allowed the height and 
orientation of the cameras to be adjusted. The different elements of the 
experimental setup are identified in Fig. 5. 

2.2.3. Thermal calibration 
The calibration of the thermal sensor and the commercial thermal 

camera was performed by using a black body (Model 1000 Portable 
Calibration Source for Field Use, Everest Interscience Inc., 2888 English 
Road, Chino Hills, CA 91709, USA) (“1000 Calibration Source”) with an 
accuracy of ±0.3 ◦C. Different temperature measurements of the black 
body were obtained with both sensors at a very short distance (5 cm), as 
specified by the manufacturer, while the temperature of the black body 
itself was recorded as the reference temperature. The temperature 
measured by the sensor corresponded to the mean of the central 10x10 
pixel region of the temperature matrix, whereas that of the FLIR SC305 
camera corresponded to the mean of the manual selected central region 
of the image. 

3. Results and discussion 

3.1. Sensor characterization 

The characterization of the sensor is a critical process whose objec-
tive is to determine the temporal evolution of the temperature mea-
surement between cycles of Flat Field Correction (FFC) of the thermal 
sensor. This internal calibration process is performed to adjust the 
measurement when the temperature of the sensor varies. A measure-
ment process consisting of several series of repetitions corresponding to 

different FFC events of the sensor was carried out. In Fig. 6, the time 
evolution of the sensor temperature measurement is presented. The 
temperature oscillated remarkably around the FFC event, which was 
considered transient in the measurement process. The sensor presented a 
heating curve until its measurement was stabilized. 

Ten FFC cycles of 300 frames each were performed, with an average 
sensor refresh time of 0.54 s. At the moments following the FFC, there 
was a temperature variation of up to 1.5 ◦C, which triples the temper-
ature range measured throughout each cycle, which was approximately 
0.5 ◦C. Therefore, it was decided to define a transient time after the FFC 
event to filter the measurements in each series. This time was measured 
in multiple cycles of several tests and resulted to be approximately 30 s. 
In addition, some initial frames, corresponding to the heating process of 
the sensor, were not taken into account. To specify the number of frames 
to be ignored, a temperature stabilisation test consisting of three 
consecutive measurement processes in which a series of 500 frames were 
measured was carried out. 

According to Fig. 7, it appears that, in the first measurement, the 
temperature did not stabilize, but in the following two measurements it 
did after the transient. Specifically, the temperature in these two latter 
cases was in the range of 24.25 ◦C to 24.75 ◦C. Hence, to avoid the lack 
of stabilization, when making the first measurement of a batch, it was 
decided to perform a complete measurement process as a warm-up 
which is not considered in the analysis. Additionally, the number of 
initial frames was chosen to be 150, corresponding to 81 s for the usual 
refreshing time of the sensor, in order to mitigate the effect that could 
occur between two consecutive measurements. 

The experiments mentioned above were conducted indoors, so in 
search of external sources of error derived from environmental condi-
tions, which could influence the measurement, the effect of the wind on 
the sensor was analysed. Indoor tests were undertaken to study the effect 
of wind in controlled and isolated conditions by using a fan as the wind 
source. The behaviour of the sensor was compared depending on the 
existence or not of the source of error by means of multiple tests of 10 
FFC cycles, filtering the transient, and 300 frames per cycle. 

In Fig. 8a and 8b, it can be seen that the action of the fan significantly 
affected the temperature measured by the sensor. With the fan off, the 
temperature of each cycle oscillated within a range of 0.5 ◦C and for all 
the cycles, without considering the first one due to not having carried 
out the previous warm-up process, in a range inferior to 1 ◦C. Instead, 
when the fan was turned on, the temperature range measured within 
each cycle was increased to 6 ◦C and the total range to 14 ◦C. The 
oscillating behaviour of the temperature measurement was due to the 
rotation cycle of the fan head. The thermal sensor has a very small size, 
which makes it ideal for a large number of applications. However, this is 
also a disadvantage, since such a low mass leads to small thermal inertia, 
which makes it particularly sensitive to thermal drift. As a way to correct 
the problem, a perimeter shield housing as shown in Fig. 9, was designed 
to minimize the wind effect on the thermal sensor without affecting the 
field of view of the sensor cameras. This solution was previously adopted 
in other research (Osroosh et al., 2018) in order to protect the sensor 
from raindrops. 

New tests were made to assess the effectiveness of the improvement. 
In compliance with Fig. 8c and 8d, it was noted that with the housing the 
effect of the fan was significantly reduced. When the fan was oriented so 
that the airflow reached the sensor from the side, as it had been in the 
previous comparative tests, the range of temperature variation was 
similar to that obtained with the fan off, whereas placing the fan fron-
tally the effect was also reduced, although not as effectively. 

The resulting sensor measurement procedure is performed in a 
continuous and controlled mode. When the order is executed, the sensor 
automatically performs 3 series of 80 measurements associated with 
three different FFC calibration events, from which it filters the mea-
surements corresponding to the transient, as seen in Fig. 10. 

As a result, several measures were obtained from each series from 
which the statistical parameters of interest were obtained. Specifically, Fig. 5. Experimental setup.  
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for each measurement of each series, the mean of the seven median 
values of the masked temperature matrix was calculated. As a filter for 
the masked temperature matrix, to mitigate the effect of a possible error 
in the matching of images, extreme values were eliminated: those above 
the mean plus three times the standard deviation. For each series, the 
median, mean and standard deviation were calculated. As representa-
tive values of the measurement of each almond tree at a certain hour, the 
mean and standard deviation of the medians of the three series and the 
mean of the standard deviations of the series were calculated. 

3.2. Evaluation of the sensor performance on the leaf temperature 
determination 

In order to evaluate the performance of the sensor, the measurement 
procedure was undertaken in the almond trees. Before carrying out the 
leaf temperature measurements, a calibration process with the black 
body was executed. Calibration curves were obtained for both cameras 
with 20 points measured outdoors, as depicted in Fig. 11. 

The average temperature difference between the sensor and the 
black body in the calibration measurements was 0.57 ◦C and the 
maximum difference was 1.5 ◦C. For the FLIR SC305, the average dif-
ference was 0.33 ◦C and the maximum was 0.62 ◦C. 

Regarding the leaf temperature measurements, those obtained with 
the SVM segmentation model were not further analysed because of their 
similarity to the Deep Learning model. The mean difference of all 
measurements taken between them was 0.07 ◦C, the median 0.04 ◦C and 
the maximum 0.7 ◦C. In Fig. 12, an example of a measurement 

comparison between segmentation models is illustrated. The original 
visible and thermal images are shown, as well as the segmented images 
with the corresponding temperature value. 

Beginning on the 271 DOY of 2020, nineteen measurements were 
made (ten in the morning and nine at midday) over ten days on the four 
almond trees, making a total of seventy-six comparable temperature 
measurements between the developed sensor and the reference thermal 
camera. These measurements are presented in Fig. 13. 

The temperature obtained from the developed sensor and the com-
mercial thermal camera showed an R-squared correlation of 0.63. In 
absolute terms, the temperature differences obtained in the test were, in 
all cases, within the accuracy range of the manufacturer of the low-cost 
thermal sensor (±5 ◦C). The maximum error found was 4.5 ◦C, the mean 
difference 1.2 ◦C and the median difference 0.9 ◦C. García-Tejero et al. 
(García-Tejero et al., 2018) compared a low-cost thermal camera (FLIR 
One) and a conventional thermal camera (FLIR SC660). The former in-
tegrates a thermal sensor (FLIR Lepton 2.5), which is similar to that of 
the thermal camera of our proposed design, but with lower resolution. 
They obtained a maximum difference between cameras of 4 ◦C, which is 
in agreement with the 4.5 ◦C reported here. Nonetheless, they found a 
better R-squared correlation of 0.9, that could be explained by a notably 
higher temperature range of the measurements, which was of 15 ◦C 
instead of 9.3 ◦C of our case. 

At midday, when the difference of temperature between the ambient 
and the crop canopy is substantial, the time of maximum stomatal ac-
tivity for most crops is found (Jackson et al., 1981). Thus, thermal 
measurements are typically made at midday (García-Tejero et al., 2018). 
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The midday data were disaggregated to examine the behaviour of the 
sensor at that time and are presented in Fig. 14. Considering the results, 
it can be inferred that the midday measurements showed an acceptable 
R-squared correlation (0.75) between the developed sensor and the 
commercial reference thermal camera. 

Furthermore, the standard deviation in all the measurements of the 
developed sensor were examined to investigate whether it is related to 
the temperature difference with the reference thermal camera. In 
Fig. 15, the standard deviation of the developed sensor, both between 
different series of the same measurement (15a) and between repetitions 
within the same series (15b), was compared with the temperature dif-
ferences between sensors. 

The standard deviation between measurements of the same series 
and between different series was significantly high, with respect to the 

temperature values measured, in certain cases. However, it is clear from 
Fig. 15 that this did not directly lead to a greater difference between the 
temperatures of the sensors compared. For this to be the case, the 
temperature difference would have increased with the standard devia-
tion in the measurement. Due to the measurement procedure, it was 
possible to average the result and achieve a reduced error even with 
large standard deviations in the measurement series. For examples, on 
the one hand, a measurement is resorted to in which the temperature 
difference was 0.6 ◦C, while the standard deviation between series was 
6.7 ◦C and the average of the standard deviations of the series was of 
1.8 ◦C. On the other hand, the measure in which the greater difference of 
temperature between both sensors was obtained (4.5 ◦C), presented a 
standard deviation between the series of 0.5 ◦C and the average of the 
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standard deviations of the series of 0.1 ◦C. Therefore, it was not possible 
to establish a criteria that allowed filtering results according to great 
variability in the measurement of the sensor within the same series of 
measurements or between them. Simultaneously, this makes it possible 
to affirm that variability in measurements was not the cause of poor 
results. Hence, as wind is an external factor that introduces variability in 
the measurement, as demonstrated in indoor tests, it can be stated that it 
cannot be responsible for such errors. Consequently, there must be a 
factor that causes a difference in the measurement of both sensors 
without penalising the constancy of the measurement. This factor can be 
environmental and derived from the time between taking measurements 
with both sensors or due to the precision of the low-cost thermal sensor 
used. 

3.3. Considerations on the measurement procedure 

In addition to the errors obtained between the developed sensor and 
FLIR SC305, the measurement procedure had one disadvantage to be 
considered, which is the large volume of measurements required. This 
significantly affects the processing and measurement time and the vol-
ume of information to be saved and communicated. A new test was 
carried out with a lower number of measurements per series in order to 
ascertain the feasibility of reducing this drawback. The number of 
frames per cycle was reduced from 80 to 65, which, by filtering the 
transient, resulted in a reduction from 25 to 10 measurements per series. 
However, the results obtained on two days of measurement were 
inconsistent. 

The sensor’s measurement process was initially defined as an iso-
lated one, which would have led to a scenario with a minimum need for 
measurements. The operator was in charge of ordering the capture by 
pressing the corresponding switch. In this way, three repetitions were 
taken per measurement, separated in time by a few seconds. The capture 
sequence was carried out once the warmup LED indicated that the sys-
tem was ready to measure, but the time was not fixed exactly. This 
meant that there was no control over the timing of the sensor cycle in 
which the measurement was made. Moreover, wind protection housing 
was not implemented. The result of each measurement was defined as 
the average value of the repetitions. Before proceeding with the mea-
surements, the calibration process was accomplished. The measures 
began on the 122 DOY of 2020 and lasted 25 days. The comparative leaf 
temperature results between the two sensors showed a low correlation, 
as illustrated in Fig. 16. 

Hence, even though this protocol offered a smaller volume of 

information to be processed with the consequent time advantage, given 
the results, the behaviour of the sensor made it unfeasible. Some results 
were irrational and, in any case, worse than those presented previously, 
reaching a maximum difference of 17.8 ◦C, an average of 3.4 ◦C and a 
median of 2.4 ◦C. 

4. Conclusions 

Image-based sensors are promising tools for the determination of 
vegetative status indexes. The use of UAVs equipped with hyperspectral 
cameras for the management of large crops is now becoming wide-
spread. However, these systems cannot be used to manage some irri-
gation strategies, such as those which need automated and continuous 
measurements. Besides, the use of commercial thermal cameras for 
monitoring installations with several measurement points can be deci-
sively expensive in terms of equipment. Recently, some radiometric 
modules with reduced cost and limited resolution have become avail-
able. These modules can be used for leaf temperature monitoring con-
trol, which would reduce the limitations described above. To determine 
the suitability of these devices in the field of precision agriculture, this 
paper describes the design of an image-based leaf temperature sensor 
using a low-cost radiometric module. Artificial intelligence-based image 
segmentation models were implemented and the thermal module used 
(FLIR Lepton 3.5) has been characterised. The device presented allows 
an automatic measurement, avoiding the need of specialized personnel 
to operate the thermal camera and the specific software for ROI seg-
mentation and processing. This can be a determining factor for the 
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applicability of these systems in remote crop water status measurement. 
In addition, in order to evaluate the performance of the proposed 
development, the results obtained in almond trees under real conditions 
were compared with those of a high-profile thermal camera (FLIR 
SC305). The R-squared correlation obtained for the automatic mea-
surements taken at midday, which is the most representative daily range 
of canopy activity, was 0.75, indicating a high level of confidence in the 
measurement results with respect to the higher resolution thermal 
cameras. The dynamic characterisation of the measurement process in 
low-cost radiometric modules has been described in this paper as a 
necessary step to use these devices as indicators of vegetative activity in 
precision agriculture applications. However, the measurement proced-
ure described requires of a high number of repetitions to minimize the 
lack of stability of the thermal module measurement, which implies a 
large processing time. Additionally, it was concluded that a physical 
barrier was necessary to stabilise the measurement against the presence 
of wind. Radiometric calibration of the sensor would be necessary under 
fluctuating ambient temperature conditions to correct the effect of the 
high sensitivity of the sensor to external influences. Thus, low-cost 
thermal cameras have limitations that need to be considered when 
making absolute temperature measurements under real field conditions. 
Although this paper has shown that low-resolution thermal modules can 
be used under certain limitations, technological developments in this 
field suggest that radiometric modules with better resolution and per-
formance will be available shortly, which will reduce the shortcomings 
here discussed. 

Funding 

This research was funded by the Agencia Estatal de Investigación 
(AEI) under project numbers: AGL2016-77282-C3-3-R, and PID2019- 
106226-C22 AEI/https://doi.org//10.13039/501100011033. FPU17/ 
05155, FPU19/00020 have been granted by Ministerio de Educación y 
Formación Profesional. 

CRediT authorship contribution statement 
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Buendía, M., Soto-Valles, F., González-Teruel, J.D., Torres-Sánchez, R., Blaya-Ros, P. 
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