

AN ALGEBRAIC FRAMEWORK FOR COMPOSITIONAL DESIGN OF

AUTONOMOUS AND ADAPTIVE MULTIAGENT SYSTEMS

by

WALAMITIEN HERVÉ OYENAN

B.S., Université des Sciences et Technologies de Lille, 2001
M.S., Kansas State University, 2003

AN ABSTRACT OF A DISSERTATION

submitted in partial fulfillment of the requirements for the degree

 DOCTOR OF PHILOSOPHY

Department of Computing and Information Sciences
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2010

Abstract

Organization-based Multiagent Systems (OMAS) have been viewed as an effective

paradigm for addressing the design challenges posed by today’s complex systems. In those

systems, the organizational perspective is the main abstraction, which provides a clear separation

between agents and systems, allowing a reduction in the complexity of the overall system. To

ease the development of OMAS, several methodologies have been proposed. Unfortunately,

those methodologies typically require the designer to handle system complexity alone, which

tends to lead to ad-hoc designs that are not scalable and are difficult to maintain. Moreover,

designing organizations for large multiagent systems is a complex and time-consuming task;

design models quickly become unwieldy and thus hard to develop.

To cope with theses issues, a framework for organization-based multiagent system

designs based on separation of concerns and composition principles is proposed. The framework

uses category theory tools to construct a formal composition framework using core models from

the Organization-based Multiagent Software Engineering (O-MASE) framework. I propose a

formalization of these models that are then used to establish a reusable design approach for

OMAS. This approach allows designers to design large multiagent organizations by reusing

smaller composable organizations that are developed separately, thus providing them with a

scalable approach for designing large and complex OMAS.

In this dissertation, the process of formalizing and composing multiagent organizations is

discussed. In addition, I propose a service-oriented approach for building autonomous, adaptive

multiagent systems. Finally, as a proof of concept, I develop two real-world examples from the

domain of cooperative robotics and wireless sensor networks.

AN ALGEBRAIC FRAMEWORK FOR COMPOSITIONAL DESIGN OF

AUTONOMOUS AND ADAPTIVE MULTIAGENT SYSTEMS

by

WALAMITIEN HERVÉ OYENAN

B.S., Université des Sciences et Technologies de Lille, 2001
M.S., Kansas State University, 2003

A DISSERTATION

submitted in partial fulfillment of the requirements for the degree

 DOCTOR OF PHILOSOPHY

Department of Computing and Information Sciences
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2010

Approved by:

Major Professor
Scott A. DeLoach

Abstract

Organization-based Multiagent Systems (OMAS) have been viewed as an effective

paradigm for addressing the design challenges posed by today’s complex systems. In those

systems, the organizational perspective is the main abstraction, which provides a clear separation

between agents and systems, allowing a reduction in the complexity of the overall system. To

ease the development of OMAS, several methodologies have been proposed. Unfortunately,

those methodologies typically require the designer to handle system complexity alone, which

tends to lead to ad-hoc designs that are not scalable and are difficult to maintain. Moreover,

designing organizations for large multiagent systems is a complex and time-consuming task;

design models quickly become unwieldy and thus hard to develop.

To cope with theses issues, a framework for organization-based multiagent system

designs based on separation of concerns and composition principles is proposed. The framework

uses category theory tools to construct a formal composition framework using core models from

the Organization-based Multiagent Software Engineering (O-MASE) framework. I propose a

formalization of these models that are then used to establish a reusable design approach for

OMAS. This approach allows designers to design large multiagent organizations by reusing

smaller composable organizations that are developed separately, thus providing them with a

scalable approach for designing large and complex OMAS.

In this dissertation, the process of formalizing and composing multiagent organizations is

discussed. In addition, I propose a service-oriented approach for building autonomous, adaptive

multiagent systems. Finally, as a proof of concept, I develop two real-world examples from the

domain of cooperative robotics and wireless sensor networks.

v

Table of Contents

List of Figures .. ix

List of Definitions ... xii

Acknowledgements.. xiv

Dedication ... xv

CHAPTER 1 - INTRODUCTION .. 1

1.1 Motivation... 1

1.2 Thesis Statement ... 3

1.3 Goals ... 3

1.4 Research Approach ... 4

1.5 Evaluation ... 5

1.6 Assumptions.. 6

1.7 Summary ... 6

CHAPTER 2 - BACKGROUND .. 7

2.1 Agents and Multiagent Systems.. 7

2.1.1 Agents ... 8

2.1.2 Multiagent Systems... 9

2.2 Organization-based Multiagent Systems (OMAS) ... 10

2.2.1 AGR .. 10

2.2.2 Moise+ .. 11

2.2.3 OperA.. 11

2.2.4 Omni ... 12

2.3 Organization Model for Adaptive Computational System ... 12

2.3.1 The OMACS metamodel .. 13

2.3.2 Goals ... 14

2.3.3 Roles ... 14

2.3.4 Capabilities ... 14

2.3.5 Agents ... 15

vi

2.3.6 Assignment Process .. 15

2.4 Agents-Oriented Software Engineering.. 16

2.4.1 Gaia ... 16

2.4.2 Tropos ... 17

2.4.3 Prometheus.. 17

2.4.4 INGENIA.. 18

2.4.5 PASSI.. 18

2.5 Organization-based Multiagent System Engineering Process Framework................... 19

2.6 Modularity in Software Engineering .. 20

2.7 Summary ... 21

CHAPTER 3 - CATEGORY THEORY PRELIMINARIES .. 22

3.1 Graphs and Graph Homomorphisms .. 22

3.2 Category: definition and examples ... 24

3.3 Categorical Constructions... 28

3.4 Summary ... 32

CHAPTER 4 - COMPOSITION OF MULTIAGENT ORGANIZATIONS 34

4.1 Organizational Models.. 35

4.1.1 Goal Model ... 36

4.1.2 Role Model.. 39

4.1.3 Organization Structure .. 40

4.2 Category of Goal Models.. 42

4.3 Category of Role Models .. 48

4.4 Category of Organization Models... 53

4.5 Related Work .. 61

4.6 Summary ... 62

CHAPTER 5 - A SERVICE-ORIENTED FRAMEWORK FOR DESIGNING MULTIAGENT

ORGANIZATIONS... 63

5.1 Running Example.. 64

5.2 Service Model ... 66

5.2.1 Services ... 67

5.2.2 Operations ... 68

vii

5.2.3 Connection points ... 69

5.2.4 Service Providers .. 73

5.2.5 Service Consumer ... 74

5.3 Composition of services.. 76

5.4 Related Work .. 85

5.5 Summary ... 87

CHAPTER 6 - CASE STUDIES... 88

6.1 Cooperative Robotic for Airport Management (CRAM).. 88

6.1.1 Description.. 88

6.1.2 The Transportation Service... 90

6.1.3 The Cleaning Service.. 92

6.1.4 The Cooperative Robotic for Airport Management organization............................. 95

6.1.5 The Composition Process ... 95

6.1.6 Comparison with an ad-hoc design... 102

6.2 Adaptive Target Tracking ... 106

6.2.1 Time Synchronization Service.. 107

6.2.2 FTSP Organization.. 108

6.2.3 RBS Organization ... 111

6.2.4 Surveillance application.. 111

6.2.5 Compositional Design... 112

6.2.6 System Architecture.. 116

6.2.7 System Implementation .. 119

6.2.8 Experimental Results .. 123

6.3 Summary ... 126

CHAPTER 7 - CONCLUSION AND FUTURE WORK ... 128

7.1 Summary ... 128

7.2 Discussion and Future Work... 130

References... 132

Appendix A - Detailed mappings for the compositions... 142

A.1 Composition details for the Search and Rescue Application...................................... 142

A.2 Composition details for the CRAM application ... 145

viii

A.3 Composition details for the Surveillance application using FTSP 161

A.4 Composition details for the Surveillance application using RBS............................... 165

ix

List of Figures

Figure 2.1. Simplified OMACS metamodel ... 13

Figure 3.1. Example of category with sets.. 25

Figure 3.2. Example of directed graph representing a category ... 26

Figure 3.3. Sum in a category ... 29

Figure 3.4. Product in a category .. 30

Figure 3.5. Pushout in a category.. 31

Figure 3.6. Example of Pushout in category SET... 32

Figure 4.1. Goal Model Example.. 37

Figure 4.2. Example of Induced Tree ... 38

Figure 4.3. Example of Induced Graph... 38

Figure 4.4. Example of Role Model.. 40

Figure 4.5. Example of Organization.. 41

Figure 4.6. Overview of Pushout of Goal Models .. 44

Figure 4.7. Pushout of Goal Models with detailed functions. Only functions mapping goals (fi)

and induced graph edges (hi) are shown. Functions mapping tree edges (gi) are not shown.

... 45

Figure 4.8. Overview of Pushout of Role Models .. 50

Figure 4.9. Pushout of Role Models with detailed functions. Functions mapping roles (ii) and

protocols (ji) are shown... 51

Figure 4.10. Pushout of Organizations. Only achieves edges mappings (ki) are shown. 56

Figure 5.1. Search Organization ... 65

Figure 5.2. Rescue Organization... 65

Figure 5.3. Organizational Service Metamodel .. 66

Figure 5.4. Rescuing Service specification... 67

Figure 5.5. Invalid Entry Connection Points .. 70

Figure 5.6. Valid Entry Connection Points... 71

Figure 5.7. Exit Connection Points ... 72

x

Figure 5.8. Search Organization - Consumer.. 75

Figure 5.9. Rescue Organization - Provider.. 75

Figure 5.10. Interconnection of organization connection points using connectors. 76

Figure 5.11. Composition of Search and Rescue.. 82

Figure 6.1. Transportation Service specification .. 89

Figure 6.2. Transportation Organization... 91

Figure 6.3. Cleaning Service specification ... 92

Figure 6.4. Cleaning Organization.. 93

Figure 6.5. CRAM Organization .. 94

Figure 6.6. Cram_carry1 as the composition of Cram with Transportation over configuration

carry1 for operation carry. ... 98

Figure 6.7. Cram_carry2 as the composition of Cram_carry1 with Transportation over

configuration carry2 for operation carry.. 99

Figure 6.8. Cram_push as the composition of Cram_carry2 with Transportation over

configuration carry2 for operation push .. 100

Figure 6.9. Cram_clean as the composition of Cram_push with Cleaning over configuration

clean for operation clean ... 101

Figure 6.10. Ad-hoc design of the complete CRAM application. Reused goals and roles are in

gray. .. 103

Figure 6.11. Compositional design of the complete CRAM application. Reused goals and roles

are in gray. .. 104

Figure 6.12. Time Synchronization Service specification .. 107

Figure 6.13. FTSP Organization. .. 109

Figure 6.14. RBS Organization... 109

Figure 6.15. Surveillance Organization .. 110

Figure 6.16. Surveillance composed with FTSP... 114

Figure 6.17. Surveillance composed with RBS .. 115

Figure 6.18. Overall System Architecture .. 116

Figure 6.19. Generic Agent Architecture.. 118

Figure 6.20. Runtime Phases .. 119

Figure 6.21. Assignment Algorithm ... 120

xi

Figure 6.22. Plan for the Monitor role .. 121

Figure 6.23. Plan for the Tracker role... 122

Figure 6.24. Coverage obtained by injecting a monitor failure every 50 seconds...................... 124

Figure 6.25. Energy Used discrepancies between the adaptive and non-adaptive system 126

xii

List of Definitions

Definition 3.1: Graph .. 23

Definition 3.2: Rooted Tree .. 23

Definition 3.3: Graph Homomorphism... 23

Definition 3.4: Tree Homomorphism ... 23

Definition 3.5: Category ... 24

Definition 3.6: Isomorphism... 27

Definition 3.7: Initial Object... 28

Definition 3.8: Terminal Object.. 28

Definition 3.9: Sum... 28

Definition 3.10: Product.. 30

Definition 3.11: Pushout ... 30

Definition 4.1: Goal Model... 36

Definition 4.2: Functions on goals... 37

Definition 4.3: Role Model ... 39

Definition 4.4: Organization ... 40

Definition 4.5: Goal Model Homomorphism.. 42

Proposition 4.6: Category of goal models... 42

Definition 4.7: Configurations of Goal Models.. 43

Definition 4.8: Goal model composition .. 43

Definition 4.9: Role models Homomorphism... 48

Proposition 4.10: Category of Role Models ... 48

Definition 4.11: Configurations of Role Models .. 49

Definition 4.12: Role model composition... 49

Definition 4.13: Organizations Homomorphism .. 53

Proposition 4.14: Category of Organizations.. 53

Definition 4.15: Configuration of Organizations.. 54

Definition 4.16: Composition of Organizations.. 54

xiii

Proposition 4.17: Correctness of the Composition of Organizations ... 58

Definition 5.1: Operation .. 68

Definition 5.2: Connector ... 68

Definition 5.3: Connection Point .. 69

Definition 5.4: Entry Connection Points of an Organization.. 69

Definition 5.5: Exit Connection Points of an Organization.. 71

Definition 5.6: Operations provided by a connection point.. 72

Definition 5.7: Operations used by a connection point... 73

Definition 5.8: Services providers .. 73

Definition 5.9: Services consumers .. 74

Definition 5.10: Configuration of connection points.. 76

Proposition 5.11: Composition of organizations over a configuration ... 77

Proposition 5.12: Connection points of a composite organization ... 84

xiv

Acknowledgements

This dissertation would not have been possible without the help, support and guidance of

my advisor Dr. Scott DeLoach. He has given me the encouragements, responsibility and freedom

I needed to complete this work. His comments, critiques and jokes have helped me tremendously

during the process of completing this degree. During the times of frustration, he knew how to

guide me and during the times of confidence, he knew how to challenge me. I really feel

privileged to have worked under his supervision.

I also thank the members of my committee, Dr. Gurdip Singh, Dr. David Gustafson, and

Dr. Steve Warren for the time, insight, and input they provided to me during my proposal. In

particular, many thanks to Dr. Gurdip Singh for giving me many wonderful opportunities to

work in the field of wireless sensor networks and for his precious collaboration that gave me a

lot of great ideas.

Special thanks go to my colleagues at the Multiagent and Cooperative Lab from which I

drew inspiration, ideas and friendships: JC Ojeda, Jorge Valenzuela, Scott Harmon, Chris Zhong,

and Matt Miller. They have also filled my graduate life with the much needed distraction.

A very special thank you goes to my mother, father, brothers and sister. They have been a

great support and I clearly would not be where I am today without their help.

xv

Dedication

To my parents. Their love and encouragement has been a constant support for me.

 1

CHAPTER 1 - INTRODUCTION

“There is no such thing as a long piece of work,

except one that you dare not start.”

⎯Charles Baudelaire

“"Begin at the beginning,", the King said, very

gravely, "and go on till you come to the end: then

stop" ” ⎯Lewis Carroll, Alice in Wonderland

1.1 Motivation

Developing large and complex systems has always been a challenging problem to tackle.

In Object-Oriented, Booch [8] has suggested decomposition to handle this complexity. In

general, decomposition is considered as a key property to tackle the growing complexity of

software. In addition, software systems are expected to be intelligent and autonomous in order to

adapt to unpredictable situations. Multiagent Systems (MAS) have been seen as a new paradigm

to cope with the increasing need for complex applications that adapt to unpredictable situations.

This shift of concept from the object paradigm to the agent paradigm allows system designers to

replace passive objects by autonomous agents that can have their own goals and interact with

each other and their environment [87]. These attributes make agents-based systems a natural

mean for building complex systems [66]. System designers can then decompose their systems

into individual tasks that can be achieved by agents [31]. As a result, large MAS are often

composed of several autonomous agents engaging in complex interactions. Consequently, as

pointed out by Wester-Ebbinghaus et al. [118], providing a correct and effective design for such

systems is a difficult task. To reduce this complexity, Organization-based Multiagent Systems

(OMAS) have been introduced. They use the organization paradigm, which provides better

 2

abstractions for addressing the design challenges of large and complex MAS [39, 125]. In

OMAS, the organizational perspective is the main abstraction, which provides a clear separation

between agents and system, allowing a reduction in the complexity of the system. To support the

development of OMAS, several methodologies have been proposed [36].

Nonetheless, one of the major problems associated with the wide-scale adoption of

OMAS for the development of large-scale industrial and commercial applications is that, so far,

most methodologies proposed work well for small in-house applications but are not well suited

for developing complex applications. In fact, designing agent organizations for large real life

systems can be a very complex and time-consuming task and design models can quickly become

huge and difficult to develop and maintain. For instance, when designing a tracking application

for Wireless Sensor Networks, the designer needs to handle not only the tracking application

requirements, but also additional requirements linked to crucial tasks such as routing,

aggregation, and time synchronization. Most of the time, designers tend to incorporate those

secondary tasks in the main application goals or roles, which does not offer much reusability and

maintainability.

For that reason, it has been long suggested that decomposition in OMAS would help cope

with the complexity of systems [13]. However, most of the current methodologies just suggest

the decomposition of large organizations into smaller ones and fail to provide a rigorous process

to easily recombine them. For instance, Ferber et al. proposes partitioning a multiagent system

into groups [39]. Those groups can interact with each other by having a gatekeeper agent

participating in multiple groups. However, there is no formal description on the way those

groups are aggregated into one consistent system. Similarly, Zambonelli et al. propose a

methodology based on organizational abstraction for multiagent systems [125]. They recognize

the importance of reusability in OMAS and propose dividing the system into loosely-coupled

sub-organizations to reduce design complexity. Nonetheless, reconnection of those sub-

organizations is left to the designer who needs to know the internal behavior of each sub-

organization in order to assemble them appropriately. Hence, in most cases, the designer

informally uses the agent interaction mechanisms to integrate multiagent organization designs.

As a result, system designers are often required to handle all of the complexity alone, which may

lead to an ad-hoc design that is not scalable and is very difficult to maintain. In addition, even if

OMAS were designed with reuse in mind, the process is often not repeatable and the

 3

functionalities of the resulting application are very difficult to verify due to an informal

architectural design.

Therefore, there is a need for extending the current methodologies in order to support the

design of large-scale multiagent systems.

1.2 Thesis Statement

The thesis of this dissertation is:

Agent Oriented methodologies can be devised to provide reusability and flexibility

 in the design of Adaptive Organization-based Multiagent Systems by incorporating

a formal compositional approach to design composable multiagent organizations.

Within the context of this dissertation, I define reusability of a design model as the

number of its design components that have been reused from previous projects [4, 42, 103]. I

also define flexibility of a design model as the number of its design components that need to be

modified in order to add a new requirement to the system [4, 34].

1.3 Goals

In order to address the thesis stated above, I developed a framework that allows a

compositional design of Multiagent Organizations. This framework facilitates the design of

large-scale OMAS by exploiting the interesting features of separation of concerns and

reusability.

Hence, this dissertation has three main goals that represent its main contributions:

• Goal 1: Develop a general algebraic composition framework that formally

characterizes the composition of two or more organization design models.

• Goal 2: Derive a specific service-oriented composition framework based on design

models from the O-MASE process framework.

• Goal 3: Demonstrate the usefulness and validity the proposed framework for

developing adaptive organization-based multiagent systems.

 4

1.4 Research Approach

In this section I give a brief idea on how I achieved the goals. I formulate three research

questions that match the three goals of this dissertation:

Research Question 1: How can we compose organization design models?

I use Category Theory [5] to formalize the composition of organizations. This

mathematical framework allows us to formally represent organization design models and derive

their compositions. I focus on one organizational framework, the Organization Model for

Adaptive Computational Systems (OMACS), but my approach can be adapted and used with

other model-based organization approach proposed in the literature such as Tropos, Gaia or

Prometheus [36]. The design of applications following the OMACS model is supported by a

rigorous methodology tailored from the O-MaSE process framework. This methodology defines

several design models but only the two main design models are considered: the goal model and

the role model. Those models are chosen because they are sufficient to define an organization.

In the composition framework proposed, the goal models and the role models are

composed separately and then the composition for complete organizations is derived. I propose a

formalization of those two design models using categorical concepts and show a construction to

build the composition of two organizations.

I chose a category theory approach because the composition of two organizations is

constructive. Hence, if the organizations used in the composition satisfy some properties, this

construction becomes trivial and can be automatically derived. Moreover, the composition

construction is guaranteed to result in a correct organization. Alternatively, due to the complexity

of the organization models, giving the concrete details of the same construction in set theory is

cumbersome and proving that the construction produces the correct result would be tedious.

However, proofs in category theory are often short and elegant as they follow common

construction patterns.

 5

Research Question 2: What entities are needed to reuse composable organizations

during the design phase?

During the design process, composing any two organizations may result in an arbitrary

organization that may not be meaningful and useful to the designer. This situation is

obviously not desirable. Hence, when composing organizations, designers must be able to

preserve semantic properties that insure that the composed organization behaves as

expected. For this reason, I propose a service-oriented framework to help designing

OMAS. In this framework, multiagent organizations are viewed as reusable components

that use and provide services. I define and formalize all the entities required to develop

reusable organizations. These entities, which are elements from the design models,

represent generic interfaces that are used to compose reusable organizations into a single

composite organization.

Research Question 3: How can the composition framework be used for developing

adaptive intelligent applications?

To demonstrate the usefulness and validity of the compositional framework to design

real-world applications, I develop two applications with several services. For the first

application, I design several cooperative robotic services and show how they can be reused to

build other organizations. I also exemplify how several services can be composed to create a

complex organization design. The second application is a Wireless Sensor Networks application

that uses one service. I provide two different designs of the same service and show how the

service-oriented framework allows the permutation of those two designs without any

modifications to the main design. Furthermore, I implement one design of this application in

order to demonstrate some adaptive properties of the system.

1.5 Evaluation

The formal composition of OMAS design models is validated through formal analysis

and rigorous proofs. In particular, I prove that the composition of two organizations result in a

unique organization that preserve the structure of the initial organizations.

 6

Furthermore, the service-oriented framework, which allows designers to define reusable

organizations, is built based on the general composition framework and is validated through two

examples from different domains. I demonstrate through these examples how the

service-oriented framework can be used and I put forward the benefits of using my proposed

approach.

1.6 Assumptions

The number of available agents is limited and they can enter and leave the organization at

any time. In addition, this work considers open systems in which agents are cooperative and

work together for the achievement of the main organization goal. Hence, agents do not have any

other goals (like their own goals) other than the organization goals.

Only design models are considered during the composition. Hence, the composition

framework exposed in this dissertation is only applicable at design time. The resulting composite

organization design can then be populated with agents in order to have a concrete organization

instance at runtime.

1.7 Summary

This chapter is an introduction to the goals of my research. The rest of this dissertation is

organized as follows:

Chapter 2 establishes the background necessary for this dissertation.

Chapter 3 introduces basic category theory constructions that are used throughout this

dissertation.

Chapter 4 presents a category-theoretic framework for the compositional design of

multiagent organizations.

Chapter 5 discusses a service-oriented approach that helps designers to build valid

composite organizations.

Chapter 6 demonstrates the usefulness and validity of the compositional framework to

design applications.

Chapter 7 concludes this dissertation and provides new directions for future research.

 7

CHAPTER 2 - BACKGROUND

If I have seen further than others, it is by standing

upon the shoulders of giants.” ⎯Isaac Newton

“"The time has come," the walrus said, "to talk of

many things: Of shoes and ships - and sealing wax -

of cabbages and kings”

⎯Lewis Carroll, Alice in Wonderland

In this chapter, I outline of the basic concepts necessary in order to provide a better

understanding of the work presented in this dissertation. I define the concepts of agent and

multiagent systems and review some of the most notable models and methodologies for

Organization-based Multiagent Systems (OMAS). I also present some compositional frameworks

from other domains.

2.1 Agents and Multiagent Systems

Multi-agent systems are a natural fit for handling complexity of modern software

systems, [66]. Research in multiagent system draws its inspiration from other scientific fields

like sociology, linguistics or cognition research.

In the next two subsections, the concept of agent is first introduced and then the notion of

a multiagent system is described.

 8

2.1.1 Agents

In the literature, there is not a common and unique definition of agents. Russell and

Norvig [100] view an agent as:

“anything that can be viewed as perceiving its environment through

 sensors and acting upon that environment through effectors”.

Wooldridge [120] defines an agent as:

“a computer systems that is situated in some environment,

 and that is capable of autonomous action in this environment

 in order to meet its design objectives”.

While an agent could be a simple control program, the type of agent used in this work is

an intelligent agent. According to Wooldridge [117], an intelligent agent is an agent that can

exhibit three types of autonomous actions:

• reactivity: Reactive agents respond directly to change in the environment in order to

achieve their design goals.

• proactivity: Proactive agents have the ability to take goal-orientated initiatives.

• social ability: social agents are able to interact with other agents or humans

(negotiations, cooperation) to accomplish their objectives.

Several architectures have been proposed for intelligent agent systems. Those

architectures mainly aim at helping the agent decide what action to take in order to best

accomplish its design goal. Surveys of general agent architectures can be found in [62]. The

agent research community considers three different types of paradigms for intelligent agent

architectures [122]:

• reactive architectures;

• deliberative architectures;

• hybrid architectures.

The reactive architectures consider reactive agents and are based on the

perception/action capabilities of the agents. These architectures do not include a global model of

the environment and consequently, agents cannot plan nor have a goal to pursue. A typical

 9

architecture is the subsumption architecture of Brooks [14]. On the other hand, deliberative

architectures have a symbolic representation of the environment and the desired behavior, which

helps agents reason and construct plans. A typical architecture is the belief-desire-intention

architecture (BDI) [10, 96] that takes inspiration from how humans make decisions by reasoning

upon beliefs, desires, and intentions. Finally, hybrid architectures integrate reasoning with

reactivity in order to combine the advantages of both architectures. Hybrid architectures are

becoming important for multiagent systems (cf. Section 2.1.2) in which low level tasks can be

done with reactive agents and high-level tasks (like group management) can be with reasoning

agents.

A good way to understand the concept of agent is to compare it to that of objects.

Although agents and objects (from object-oriented programming) have several similarities, they

differ mainly on the notion of autonomy and interaction [87, 117]. An object can be viewed as

passive as it has no control over its behavior. Its methods are always executed whenever another

object invokes it. On the other hand, an agent can be viewed as active. It has the ability to choose

which behavior to execute based on its view of the environment and its goals [87, 117].

However, this difference is not always clear as object can be implemented to be more active and

agents can be implemented without autonomy. Moreover, the objects interact only via method

calls whereas agents are social entities that exhibit more complex interaction mechanism (e.g.

negotiations) [87, 117].

2.1.2 Multiagent Systems

A multiagent system (MAS) is a system composed of a group of agents interacting with

each other to achieve a common or individual goal. [67]. In [111], Sycara identifies four major

characteristics of MAS:

• Each agent has incomplete information and restricted capabilities to solve the

problem

• System control is decentralized,

• Data is decentralized

• Computation is asynchronous

 10

Modern systems are inherently distributed and control is scattered among several entities.

Hence, MAS then become an effective approach to modeling these complex interactions between

entities in the system [66].

The agents in MAS can be homogenous or heterogeneous, they might cooperate or

compete with each other, and they might be in a hierarchical or flat structure [37, 117]. This

dissertation is mainly concerned with heterogeneous agent working cooperatively to achieve a

common goal.

2.2 Organization-based Multiagent Systems (OMAS)

Large Multiagent Systems (MAS) are often composed of several agents engaging in

complex interactions with each other and their environment. Consequently, providing a correct

and effective design for such systems is a difficult task [118]. To reduce this complexity,

Organization-based Multiagent Systems (OMAS) have been introduced and are viewed as an

effective paradigm for addressing the design challenges of large and complex MAS [39, 106,

125]. In OMAS, the organizational perspective is the main abstraction, which provides a clear

separation between agents and system, allowing a reduction in the complexity of the system.

The aim of OMAS is to apply principles from Organization Theory [19, 41] to provide a

more systematic and scalable way to design multiagent systems. In fact, the concept of

organization provides a natural approach for managing groups. It adds a structure to agents and

helps define and enforce norms. Agent organizations have various structures and designs. They

can be defined as hierarchies, matrices, holons, coalitions, teams, or federations (see [55] for a

summary). In order to design OMAS, several organization model/metamodel have been

proposed. In what follows, I briefly introduce some of the most important while the next section

describes in more details the OMACS model that my work is based on.

2.2.1 AGR

AGR (Agent, Group, Role) [39] is one of the first is organizational metamodel proposed

in the literature. It is based on the agent, group and role concepts. An agent is an autonomous

 11

entity playing roles within several groups. AGR does not prescribe any agent architecture, thus

allowing any type of agents in the organization. A group constitutes a context of interaction for

agents and is used for partitioning organizations. Agents may communicate if and only if they

belong to the same group. A role is a functional position of an agent. The role encapsulates the

way an agent should act within a group. Roles are tied to a particular group and are requested by

agents.

AGR is a very simplistic model that only focuses on the structure of the organization and

do not handle dynamic interactions.

2.2.2 Moise+

MOISE+ (Model of Organization for multI-agent SystEms) [56] is an organizational

model that models the structural, functional and deontic aspects of multiagent organizations. The

structural aspect of MOISE+ is similar to the AGR model, defining the organizational structure

via roles, groups, and links. The functional aspect describes how organization goals are achieved,

i.e., how these goals are decomposed and allocated to agents. Finally, the deontic aspect

describes the permissions and obligations of roles.

Moise+ introduces a reorganization process that allows the organization to adapt to

environmental changes [57]. This reorganization is based on the static description of the

organization and the current state of one instance of this organization. Hence Moise+ allows

runtime changes at the structural level (creation of groups, changes in roles) and at the functional

level (changes in group members, changes in permissions).

2.2.3 OperA

In OperA [30], Dignum presents a three-part framework consisting of an organizational

model, a social model and an interaction models. The Organizational Model describes the

desired behavior of the organization, by defining the roles, norms, interactions and

communication frameworks that are available in the domain. The Social Model, instantiated at

run-time, maps organizational roles to specific agents. The necessary conditions that allow an

agent to enact a role are defined in social contracts. The Interaction Model, also created at run-

 12

time, specifies the interaction agreements between role-enacting agents as interaction contracts,

which include the potential reward and penalties.

OperA mainly focuses on open systems and interaction and represents the structure of the

organization independently from the internal design of the agents. By separating the Social

Model and the Interaction Model, OperA allows the design of flexible organizations as they can

have several possible concrete interactions.

2.2.4 Omni

OMNI (Organizational Model for Normative Institutions) [32] is an integrated framework

for norms, structure, interaction and ontologies used to model OMAS. It is one of the most

complete organization models. It combines two other models: OperA [30] and HarmonIA [114].

The OMNI framework consists of a Normative Dimension, an Organizational Dimension, and an

Ontological Dimension, each of which has an Abstract, Concrete, and Implementation Level.

The Abstract Level defines the main objectives of the organization. The Concrete Level refines

the definitions of the Abstract Level further by defining the norms and rules of the organization,

the roles in the organization, landmarks, and concrete ontological concepts. And finally, the

Implementation Level implements the definitions from the Concrete Level.

One of the main strength of OMNI is that it can model both closed and open systems.

Moreover, OMNI proposes a formal semantic which ensures consistency between the different

organizational aspects of a system.

2.3 Organization Model for Adaptive Computational System

While there has been several organization models proposed, none have been specifically

targeted towards providing a general mechanism that allows the system to reorganize in order to

adapt to its environment and changing capabilities.

The Organization Model for Adaptive Computational Systems (OMACS) provides the

foundation for organization-based multiagent metamodel in which the analysis and design

concepts are directly related to run-time concepts.

 13

Essentially, OMACS defines the required organizational structure that allows multiagent

teams to reconfigure autonomously at runtime, thus enabling them to cope with unpredictable

situations in a dynamic environment. Specifically, OMACS specifies the type of knowledge

required for a multiagent system to be able to reason about its own state and configuration.

Hence, multiagent teams are not limited by a predefined set of configurations and can have the

appropriate information about their team, enabling them to reconfigure in order to achieve their

team goals more efficiently and effectively. During the design of an OMACS-based system, the

designer only provides high-level guidance about the organization, which then allows the system

to self-configure based on the current goals and team capabilities. These characteristics make

OMACS ideal for designing adaptive multiagent systems.

2.3.1 The OMACS metamodel

The OMACS metamodel is the metamodel upon which adaptive systems are designed.

Figure 2.1 shows a simplified OMACS metamodel. Only the entities discussed in this

dissertation are shown. OMACS defines an organization as a set of goals that the team is

attempting to accomplish, a set of roles that must be played to achieve those goals, a set of

capabilities required to play those roles, and a set of agents who are assigned to roles in order to

achieve organization goals. In essence, each organization is an instance of the OMACS

requires

Organization

Role Agent

Capbility

Goal

possesses

capableachieves

Figure 2.1. Simplified OMACS metamodel

 14

metamodel presented in Figure 2.1 and is subject to all the constraints defined by OMACS. At

runtime, the assignments of agents to play roles to achieve goals represent the key functionality

that allows the system to be autonomous. There are more entities defined in OMACS that are not

relevant for this dissertation. The reader is referred to [28] for the complete model.

2.3.2 Goals

Goals describe a desired state of the world and thus provide a high-level description of

what the system is supposed to do [100]. Typically, each organization has a top-level goal that is

decomposed into sub-goals. Eventually, this top-level goal is refined into a set of leaf goals that

are pursued by agents in the organization. The set of all organizational goals is denoted as G. The

active goal set, Ga, is the current set of goals that an organization is currently trying to achieve.

Ga changes dynamically as new goals are created or existing goals are achieved.

2.3.3 Roles

Roles are a high-level description of the behavior required to achieve particular goals

[38]. In OMACS, each organization has a set of roles that it can use to achieve its goals. The

achieves function, which associates a score between 0 and 1 to each 〈goal, role〉 pair, tells how

well that particular role can be used to achieve that goal (1 being the maximum score). In

addition, each role requires a set of capabilities and agents must possess all the required

capabilities to be considered as a potential candidate to assume that role.

2.3.4 Capabilities

In OMACS, capabilities are fundamental in determining which agents can be assigned to

what roles in the organization [82]. In fact, agents are capable of playing a role only if they

posses all the required capabilities. However, the decision whether or not a capable agent is

actually going to assume a role is made at runtime. Agents may possess two types of capabilities:

 15

hardware capabilities like actuator or effectors, and software capabilities like computational

algorithms or resources.

2.3.5 Agents

OMACS agents are computational systems that can communicate with each other and

play roles that match their capabilities [28]. Each agent is responsible for managing its own state

and its interactions with the environment and with other agents. Once the system assigns a goal

and role, the agent determines the low-level behavior necessary to fulfill the role and achieve the

goal. This low-level behavior is generally provided either as part of the role definition or by a

unique agent behavior specified by the designer. To capture a given agent’s capabilities,

OMACS defines a possesses function, which maps each 〈agent, capability〉 pair to a value

between 0 and 1, describing the quality of the capability possessed by an agent (1 representing

the maximum quality).

2.3.6 Assignment Process

In OMACS, a tuple 〈a,r,g〉 represents the assignment of agent a to play role r in order to

achieve goal g. The assignment set, denoted by Φ, represents the set of all the current

assignments in the organization.

The set of active goals along with the agents and their capabilities can change over time.

For this reason, the process of assigning agents to play roles in order to achieve specific goals is

not predefined but rather performed dynamically at runtime. This process takes into

consideration the quality of each capability possessed by agents along with how well roles can

achieve goals. For example, if a new goal is instantiated within the organization, a greedy

algorithm could compute a new assignment by first choosing the best role for that goal then the

best agent capable of playing the chosen role. However, OMACS does not prescribe any

particular algorithm for computing assignments and several algorithms been investigated for this

purpose [126].

 16

2.4 Agents-Oriented Software Engineering

As agent systems evolved from agent-centered to organization-based, there was a need

for developing methodologies that would help with the design of such system. Early agent-

oriented methodologies focused primarily on the individual agents. A review of agent oriented

methodologies is provided in [62, 121]. On the other hand, Organization-based Multiagent

Systems (OMAS) have been viewed as an effective paradigm for addressing the design

challenges posed by complex systems [39, 125]. In those systems, the organizational perspective

is the main abstraction, which provides a clear separation between agents and system, allowing a

reduction in the complexity of the overall system. To ease the development of OMAS, several

methodologies have been proposed [36]. While a comprehensive study of each methodology is

out of the scope of this dissertation, I give a brief overview of some of the most established

methodologies in the following subsections.

2.4.1 Gaia

The Gaia methodology was one of the first methodologies proposed for the design and

development of multiagent systems [123, 125]. Gaia encompasses life cycle phases from the

analysis phase to the design phase. It adopts an organizational metaphor where each agent may

play a variety of roles and where the agents may need to cooperate with each other to accomplish

a common organizational goal. The Gaia methodology defines an agent based upon the roles it

can assume. Each role is specified by four attributes: responsibilities, permissions, activities, and

protocols. Responsibilities determine the functionality of a role and are divided into liveness and

safety properties. Liveness properties describe what the agent that has been assigned to the role

must do. Safety properties describe a behavior that the agent must maintain across all states of

execution of the role. In order to realize responsibilities, a role has a set of permissions that

identify the resources that are available to that role. Activities are computations associated with a

role and may be carried out by the agent without interacting with other agents. Finally, protocols

define role interactions. Moreover, organizations in Gaia are characterized by organizational

rules, organizational structures and organizational patterns. Organizational rules are constraints

 17

imposed on roles and protocols. Organizational structures cover the topology and the control of

the organization. Organizational patterns represent predefined reusable structures.

2.4.2 Tropos

The Tropos methodology [12] is based on the notions that agents have goals and plans

(according to the BDI architecture [96]) and covers all phases of software development from

early requirements engineering to actual implementation. The methodology consists of four main

phases: Early Requirements, Late Requirements, Architectural Design and Detailed Design.

Tropos adopts the i* organizational modeling framework [124] for modeling requirements

through the creation of goal model diagrams. The Early Requirements identify the environment

in which the system would function and the Late Requirements analyses the functional and non-

functional requirements of the system. The Architectural Design identifies the various

components of the system based on the functional requirements whereas the Detailed Design

specifies the internals of those components. Tropos is supported by a visual modeling tool called

Tool for Agent Oriented Modeling for Eclipse (TAOM4E) [84] that can be used to create the

various diagrams.

2.4.3 Prometheus

Prometheus is an agent oriented methodology that defines a detailed process for analysis,

design and implementation of multi agent systems [90]. The agent model used within

Prometheus closely resembles the BDI model of agenthood with several additions such as

messages and percepts for improved representation of practical systems. Prometheus consists of

three main phases namely System specification, Architectural design and Detailed Design with

each phase consisting of artifacts that define related aspects of the agent model. The System

specification phase defines the system goals, scenarios, basic system functionalities (called

roles), inputs (referred to as percepts) and actions performed by the system. The outcome of the

System specification is used within the Architectural design phase to determine the types of

agents required and their interactions. The Detailed design phase looks at the internal details of

each agent type with respect to constructs such as events, plans and beliefs. Prometheus is

 18

supported by the Prometheus Design Tool (PDT), a visual tool for generating various

Prometheus models using the graphical notation [112]. PDT facilitates the creation of various

diagrams in all three phases of the methodology and also includes features that assist the user

with the notation.

2.4.4 INGENIA

INGENIAS [93] provides a graphical notation for modeling multi-agent systems and a

methodology based on the Unified Software Development Process (USDP) [63] for guiding the

application development process. INGENIAS takes a model driven approach where the

methodology assists in the creation of models of a MAS from which execution code is

automatically generated using tools. In INGENIAS a multi-agent system (MAS) is defined with

five meta-models, namely Organization, Agent, Goals/tasks, Interactions and Environment,

which provide five different viewpoints of MAS. Each viewpoint is represented using the

INGENIAS graphical notation.

2.4.5 PASSI

PASSI (Process for Agent Societies Specification and Implementation), is a requirement-

to-code methodology for designing and developing multi-agent societies [21]. PASSI

characterizes the system development using five process components (models) that are divided

into phases and described using UML diagrams. Chella et al. [20] develop an agile version

(Agile PASSI) that exploits the features of reusable patterns. In order to facilitate

implementation, a PASSI ToolKit (PTK), was developed as a plug-in for IBM’s commercial tool

Rational Rose [23].

 19

2.5 Organization-based Multiagent System Engineering Process

Framework

In this section, I give a brief overview of the Organization-based Multiagent System

Engineering (O-MaSE) Process Framework [44]. O-MaSE is a framework that allows designers

to create custom agent-oriented development processes. This custom agent-oriented process is

generated following a process metamodel and then instantiated from a set of method fragments

and guidelines by using a method engineering approach [13]. Method engineering is an

approached that has been proposed to allow the development of software methodologies from

several fragments.

Thus, O-MaSE defines a metamodel, a repository of method fragments and a set of

guidelines. The O-MaSE metamodel defines general concepts used in multiagent systems along

with their relationships and is based on an organizational approach. In fact, there is a 1:1

projection of the OMACS metamodel onto the O-MaSE metamodel, which allows systems

developed using appropriate O-MaSE method fragments to produce valid instances of the

OMACS metamodel. Organizations developed using an O-MaSE compliant process produce a

set of models that specify valid instances of the O-MaSE metamodel. Method fragments are a set

of activities, tasks and work products extracted from existing agent methodologies and stored in

a repository. They are later combined to create a methodology instance that is used on a project.

O-MaSE method fragments currently cover the requirements, analysis and design phases of a

multiagent development lifecycle. Finally, O-MaSE Process Construction Guidelines specify a

set of constraints that must be maintained when combining method fragments to create valid

O-MaSE processes.

Therefore, designing a custom O-MaSE compliant process requires process engineers to

select a set of methods that suit their needs from the repository and combine them into a

complete process such that the constraints of each fragment are satisfied. O-MaSE provides some

guidelines to help choose fragments but does not guarantee that all processes created are

necessarily efficient. However, the O-MaSE Process Framework does allow designers to develop

rigorous and repeatable processes suitable for their particular needs.

The O-MaSE Process Framework is supported by the agentTool Process Editor, which is

part of the agentTool III (aT3) development environment. The agentTool Process Editor (APE)

 20

allows process designers to create custom O-MaSE processes, which can then be analyzed and

designed using the (aT3) development environment. Further details on aT3 and APE can be found

in [43].

2.6 Modularity in Software Engineering

Modularity is an important Software Engineering principle. It applies the principle of

separation of concerns by dividing a complex system into simpler and more manageable

modules. Modularization involves a composition phase in which modules need to be put together

to form a larger system. There have been a lot of composition mechanisms proposed at various

stage of the software lifecycle, but mainly at the design and implementation phase. Hence,

composition concerns various concepts (architecture, models, components, code, etc…). The

main challenge of the composition is to determine how to integrate the selected concepts in order

to obtain the desired results [64]. For that, several integration mechanisms have been proposed

based on the concepts.

Software architectures are most commonly composed using architecture description

languages (ADL), which provide a notational foundation for representing architectures.

Architectures are then connected using architectural connectors [83].

Component-based systems can be composed according to several component models that

fall into three categories [75]:

• Models that only use programming languages. For example JavaBeans and EJB are

solely defined in Java [81];

• Models in which an Interface Definition Language (IDL) is used. For example COM

and .NET use Microsoft IDL [98], while Corba Component Model (CCM) uses OMG

IDL [6].

• Models in which components are defined by ADLs like UML2.0 [88] and KobrA [2]

that both use the UML notation.

In Service oriented frameworks [33], web services are similar to components and can be

composed via service composition languages like BPML [94], BPEL4WS [70], WS-CDL [71].

 21

In this dissertation, I propose a composition process that combines design models.

Although this composition approach concerns the domain of organization-based multiagent

systems, it is similar to other composition approaches proposed in the literature in the sense that

they all require a connection mechanism to bind two entities. In fact, as pointed out by

Achermann [1] and Jeanneret [64], composition mechanisms have various semantics but all rely

on the existence of some kind of connector, most of the time expressed as a language or other

simpler mechanisms like function calls.

2.7 Summary

In this chapter, I outlined of the basic concepts necessary in order to provide a better

understanding of the work presented in this dissertation. I defined the concepts of agent and

multiagent systems and reviewed some of the most notable organization based models and

methodologies for OMAS. In particular, I described the OMACS model, on which my work is

based. OMACS propose an organizational model to design adaptive systems. It defines the

required organizational structure that allows multiagent teams to reconfigure autonomously at

runtime. OMACS is supported by the O-MaSE process framework, which provides a rigorous

methodology for developing OMACS-based systems. Finally, I presented some compositional

frameworks from other domains. These frameworks are very diverse but present some high-level

similarities in the way the composition is done.

In the next chapter, I introduce the concepts of category theory that are necessary to

understand the rest of this dissertation.

 22

CHAPTER 3 - CATEGORY THEORY PRELIMINARIES

“Let all laws be clear, uniform and precise: to

interpret laws is almost always to corrupt them. ”

⎯Francois Voltaire, Philosophical Dictionary (1764)

“"When I use a word," Humpty Dumpty said in rather

a scornful tone, "it means just what I choose it to

mean - neither more nor less."”

⎯Lewis Carroll, Alice in Wonderland

Category theory is a mathematical tool designed to describe various structural concepts

from different mathematical fields in a uniform way. In computer science, category theory is

very helpful and can be applied in areas such as algebraic specification, type theory, automata

theory, programming language semantics, and graph rewriting. In this chapter, I define the

category theory notions necessary to understand the work proposed in this dissertation. An

extensive introduction to category theory can be found in [5]. I first introduce the notion of

graphs and graph homomorphisms. Then I give the formal definition of a category. Finally I

present some categorical constructs.

3.1 Graphs and Graph Homomorphisms

Most design models can be viewed as graphs. Hence I start by giving some graph related

definitions. A good introduction to Graph Theory can be found in [47]. The following definitions

are adapted from [51] and [47].

 23

Definition 3.1: Graph

A Graph G = 〈V, E〉 is a mathematical structure consisting of two finite sets V and E. The

elements of V are called vertices (or nodes) and the elements of E are called edges. Each

edge has two vertices associated to it, which are called endpoints. If two vertices u and v

are joined by an edge, this edge is denoted |u,v|.

G is a directed graph if the set of edges contains ordered pairs of vertices. A path

represents a sequence of vertices such that from each vertex there is an edge to the next

vertex in the sequence. A cycle is a path such that the start vertex and end vertex are the

same. A graph is called connected if every pair of distinct vertices in the graph can be

connected through some path.

Definition 3.2: Rooted Tree

A rooted tree T = 〈V, E, r〉 is a connected acyclic graph 〈V, E〉 in which vertex r has been

designated the root.

Definition 3.3: Graph Homomorphism

Given two graphs G1 = 〈V1, E1〉 and G2 = 〈V2, E2〉, a graph homomorphism h from G1 to

G2 consists of two functions f : V1 → V2 and g : E1 → E2, such that:

• if e = |a,b| ∈ E1 then g(e) = |f(a), f(b)| ∈ E2 (preserve edges)

Definition 3.4: Tree Homomorphism

Given two rooted trees T1 = 〈V1, E1, r1〉 and T2 = 〈V2, E2, r2〉, a tree homomorphism f from

T1 to T2 consists of two functions f : V1 → V2 and h: E1 → E2, such that:

• f(r1) = r2 (preserve root)

• if e=|a,b| ∈ E1 then h(e) = |f(a),f(b)| ∈ E2 (preserve edges).

 24

3.2 Category: definition and examples

Category theory is a mathematical tool originally used to establish a uniform framework

in order to study the relations between different mathematical structures appearing in various

areas of mathematics such as algebra, topology and logic [46, 79].

There is a clear difference in approaches between set theory and category theory. Set

theory characterizes a mathematical object by describing its inner structure, its members.

However, category theory takes a different approach. Mathematical objects are black boxes only

defined by their interactions with other objects. For this reason, Fiadeiro [40] talks about “the

social life of objects” as the basis of category theory. Hence, category theory can be viewed as

more “abstract” than set theory. Since in this language there is no way to look at the internal

membership structure of objects, all the concepts must be defined by their relations with other

objects, and these relations are established by the existence and the equality of particular

morphisms. In computer science, category theory is very helpful and can be applied in areas such

as algebraic specification, type theory, automata theory, programming language semantics, and

graph rewriting [5].

In this section, I briefly introduce the key notions of category theory that are used in this

research. Those preliminaries do not constitute a proper introduction to category theory. The

reader is referred to [46, 79] for a more elaborate introduction to category theory concepts. A

computer science introduction to category theory is provided in [3, 5, 40, 101]. The definitions in

this section are adapted from [40].

Definition 3.5: Category

A category C is given by a collection of objects and a collection of morphisms (“arrows”)

that have the following structure:

• Each morphism has a domain and a codomain that are objects; we write f : X → Y if

X = dom(f) and Y = cod(f);

• Given two morphisms f and g such that cod(f) = dom(g), the composition of f and g,

written g ○ f, is defined and has domain dom(f) and codomain cod(g);

• The composition is associative, that is: given f : X → Y , g : Y → Z and h : Z → W,

h ○ (g ○ f) = (h ○ g) ○ f;

 25

• For every object X there is an identity morphism idx : X → X, satisfying idx ○ g = g

for every g : Y → X and f ○ idx for every f : X → Y .

Essentially, a category is a mathematical structure that has objects and morphisms, with

an associative composition operation on the morphisms and an identity morphism for each

object. In other words, categories are graphs (with multiple directed edges) with a composition

and identity structure.

Example 3.1

The basic example of a category is that of sets, SET, whose objects are sets and whose

morphisms are total functions. The composition operation is the composition of functions, which

we know is associative. Identities are simply identity functions that map each set to itself. Figure

3.1 shows an example of a category with three sets.

Figure 3.1. Example of category with sets

 26

Proof:

Let us verify that sets X, Y, Z along with morphisms f, g, h, idx, idy, idz form a category.

Identities

 idx, idy, idz are the identity functions for X, Y and Z respectively.

Composition

We have: g ○ f = h, f o idx = f; g ○ idy = g; h ○ idx = h;

Associativity

We have: idz ○ (g ○ f) = g o f. And (idz ○ g) ○ f = g ○ f. Hence idz ○ (g ○ f) = (idz ○ g) ○ f. �

Example 3.2

Any directed graph can be represented as category. Nodes in the graph represent the

objects, and paths represent the morphisms. Concatenating the paths to bring about longer paths

is equivalent to composition.

Figure 3.2. Example of directed graph representing a category

 27

Proof:

Let us verify that the graph in Figure 3.2 represents a category. A path is denoted by the

concatenation of all the edges’ labels. Hence a path involving edges a, b, c will be abc.

Identities

The empty paths constitute the identity morphisms.

Composition

We have: b ○ a = ab, d ○ a = ad; c ○ b = bc;

Note: I have omitted all the trivial paths involving identity morphisms.

Associativity

We have:

c ○ (b ○ a)=c ○ ab = abc. And (c ○ b) ○ a = bc ○ a = abc. Hence c ○ (b ○ a) = (c ○ b) ○ a. �

Definition 3.6: Isomorphism

A morphism f: X → Y in a category C is said to be an isomorphism if there exits a

morphism g : Y → X of C such that : g ○ f = idx and f ○ g = idy . The morphism g is

unique and denoted f -1.

Two objects X and Y are said to be isomorphic, denoted X ≅ Y, if there exists an

isomorphism between them. In category theory, isomorphic object are considered the “same”,

hence all constructions are defined up to isomorphism.

Example 3.3

In the category SET, isomorphisms are bijective functions and isomorphic objects are

sets with the same cardinal number.

Proof:

In fact, if f: X → Y is a bijective function then f -1 ○ f = idx and f ○ f -1 = idy . Moreover, all the

sets need to have the same cardinal number in order for all morphisms to be bijections. �

 28

3.3 Categorical Constructions

Definition 3.7: Initial Object

An object X of a category C is said to be initial if there is exactly one morphism from X

to every other objects in the category.

Hence, any two initial objects in a given category are isomorphic. Similarly, any object

isomorphic to an initial object is also initial (see proof in [40]).

Example 3.4

In SET, the initial object is the empty set.

Proof:

The empty set can be mapped to any other set only by the empty function. The empty function is

a function whose domain is the empty set and whose codomain is any set. Hence for each set X,

there is one empty function fx such that fx : ∅ → X. �

Definition 3.8: Terminal Object

An object is Y of a category C is said to be terminal if there is exactly one morphism

from every other object in the category to Y.

Hence, any two terminal objects in a given category are isomorphic. (see proof in [40])

Example 3.5

In SET, the terminal objects are the singletons.

Proof:

 There is only one way to map any given set to a singleton; it is by mapping all the

elements of the source to the singleton. Hence, there is a unique morphism from any set to a

singleton. �

Definition 3.9: Sum

Let C be a category and X, Y objects of C. An object Z is a sum (or coproduct) of X and

Y with morphism f : X → Z and g : Y → Z (called injections) iff for any object V and

 29

pair of morphisms f’: X→V and g’ : Y → V there is a unique morphism k : Z → V in C

such that k ○ f = f’ and k ○ g = g’ .

The sum is denoted by x+y and is unique up to isomorphism. This definition is illustrated

in Figure 3.3.

Example 3.6

In the category SET, the disjoint union X⊕Y is the sum of X and Y.

Proof: (adapted from [40]).

Existence: consider an arbitrary object V and pair of morphisms f’ : X → V, g’ : Y → V. Define

k : X⊕Y → V as follows: given A ∈ X⊕Y, let k(A)=f(a) if A = f(a) with a ∈ X and k(A) = g(a)

if A=g(a) with a ∈ Y. This is a proper definition of a total function because, on the one hand,

every element of X⊕Y is either in the image of X through f or the image of Y through g and, on

the other hand, these two images are disjoint (which removes any conflict of choice between

which case to apply). The conditions k ○ f = f’ and k ○ g = g’ are satisfied by construction.

Uniqueness: given any other total function k’: X⊕Y, the conditions k’ ○ f =f’ and k’ ○ g = g’

define k’ completely (and equal to k). �

Figure 3.3. Sum in a category

 30

Definition 3.10: Product

Let C be a category and X, Y objects of C, an object Z is said to be a product of X and Y

with morphisms f : Z → X and g : Z → Y (called projections) iff for any object V and pair of

morphisms f’: V → X, g’ : V → Y of C there is a unique morphism k : V → Z in C such that

f ○ k = f’ and g ○ k = g’.

This definition is illustrated in Figure 3.4.

Example 3.7

In the category SET, the Cartesian product X × Y (with corresponding projections) is the

product of X and Y. This proof is similar to the proof of disjoint union in SET.

Definition 3.11: Pushout

Let f : X → Y and g : X → Z be morphisms of a category C. A pushout of f and g

consists of an object W and a pair of morphisms f’: Y → W and g’: Z → W such that:

• f’ ○ f = g’ ○ g

Figure 3.4. Product in a category

 31

• For any other morphisms f”: Y → V and g”: Z → V such that f” ○ f = g” ○ g, there is

a unique morphism k: W → V in C such that k ○ f’ = f” and k ○ g’ = g” .

This definition is illustrated in Figure 3.5.

Examples 3.8

Figure 3.6 shows a pushout in SET. The proof that this diagram represents a pushout is

outlined as follows. We have f: X → Y and g : X → Z , f’: Y → W and g’: Z → W four

functions such that:

f = {(2,2), (4,4)}, g = {(2,2), (4,4)}, f’ = {(2,2), (4,4), (6,6)}, g’ = {(2,2), (4,4), (3,3)}.

It easy to see that f’ ○ f = g’ ○ g. Moreover, assume that there exists two functions f”: Y → V

and g”: Z → V such that f” ○ f = g” ○ g. If k: W → V is a function such that k ○ f’ = f” and

k ○ g’ = g”, then the fact that f” ○ f = g” ○ g leaves no choice for the choice of k, which ensures

uniqueness.

Remark that the object W computed by pushout of f and g in Figure 3.6 is just the union of Z and

Y.

Figure 3.5. Pushout in a category

 32

In general, the pushout allows us to merge objects based on their relationships without

violating the requirements that are imposed on their structure and adding any unnecessary

duplication of elements. In fact, as pointed out by Goguen [46], pushouts represent a

construction to interconnect systems to form a larger systems.

3.4 Summary

In this chapter, I introduced some of the important concepts of category theory that are be

used in this dissertation. I have introduced the notion of graph and graph homomorphisms. I have

also defined what a category is and what construct can be used on categories. In the next chapter,

Figure 3.6. Example of Pushout in category SET

 33

I represent design models as first as graphs, then as categories. This formal representation of

design model is used in a categorical construction in order to establish a composite design model.

I chose a category theory approach because the composition of two objects in a category

is constructive. Hence, if the construction of the composition satisfies the conditions to be done

as a categorical construction, this construction becomes trivial and can be automatically derived.

Alternatively, due to the complexity of the models, giving the concrete details of the same

construction in set theory is cumbersome and proving that the construction produces the correct

result would be tedious. However, proofs in category theory are often short and elegant as they

follow common construction patterns.

 34

CHAPTER 4 - COMPOSITION OF MULTIAGENT

ORGANIZATIONS

“A theory is the more impressive the greater is the

simplicity of its premises, the more different are the

kinds of things it relates and the more extended the

range of its applicability.” ⎯ Albert Einstein

“I know what you're thinking about, but it isn't so,

nohow. Contrarywise, if it was so, it might be, and if

it were so, it would be. But, as it isn't, it ain't. That's

logic.” ⎯Lewis Carroll, Alice in Wonderland

Design models are often created by different teams and need to be merged into one main

design. Similarly, complex designs can be decomposed into smaller more manageable design

models and then integrated later. Moreover, several projects might require the reuse of some

previous designs. Unfortunately, most of the current Agent-Oriented Software Engineering

(AOSE) methodologies simply suggest the decomposition of organization designs and fail to

provide a rigorous process to recombine them. In most cases, the designer informally uses the

agent interaction mechanisms to integrate organization designs.

In this chapter, I define a general framework for the formal composition of OMAS design

models. The composition is done solely at the design level, resulting in a single composite

organization design that can then be used at runtime. The main organizational models used in

this work are the goal and role models, which are key models that provide OMAS their

adaptability. These models (in various forms) have been used in several OMAS framework. My

work is based on the Organization Model for Computational Adaptive Systems (OMACS) [26].

There are many other organizational models for OMAS [36] and the approach proposed in this

 35

research could well be adapted for any of them. OMACS proposes a formal framework for

describing organizational models for MAS and is supported by a rigorous methodology tailored

from the O-MaSE process framework [44]. OMACS defines an organization as a set of goals (G)

that the organization is attempting to accomplish, a set of roles (R) that must be played to

achieve those goals, a set of capabilities (C) required to play those roles and a set of agents (A)

who are assigned to roles in order to achieve organizational goals. There are more entities

defined in OMACS that are not relevant for this dissertation. The reader is referred to [28] for the

complete model.

The goal models and role models represent the persistent part of a multiagent

organization, the organization structure [39], which can then be populated later with

heterogonous agents to produce a dynamic organization. Hence, this work does not deal with the

actual agents that will participate in the organization.

I propose a framework allowing the composition design models, by treating composition

as an algebraic operator over models and their relationships. Using a category theoretic

approach, I formalize the goal model, the role model, and finally the entire organization. I define

each model as a category and then show that these models can be composed by computing their

pushout in the appropriate category. By using this mathematical framework, I obtain a formal

construction of the composition of organizations that is guaranteed to result in a correct

organizational design.

4.1 Organizational Models

OMACS defines an organization as a set of goals (G) that the organization is attempting

to accomplish, a set of roles (R) that must be played to achieve those goals, a set of capabilities

(C) required to play those roles and a set of agents (A) who are assigned to roles in order to

achieve organizational goals. The complete OMACS model is defined in [28]. In this

dissertation, I use a generalization of the OMACS model and only consider the goals, roles and

the relationship that exists between them. These entities represent the persistent part of the

organization that can be populated with heterogonous agents to produce a dynamic organization.

In the following subsections, I formally define the models that are used throughout this work.

 36

4.1.1 Goal Model

In a typical multiagent organization, organizational goals and roles are organized in a

goal tree [58, 74, 113, 119] and in a role model [69, 119, 125] respectively. For this dissertation,

I chose to organize our goals using a Goal Model for Dynamic Systems (GMoDS) [27]. In a

GMoDS goal model, goals are organized in a goal tree such that subgoals of a goal are either an

OR-decomposition or an AND-decomposition of that goal. A goal represents a desirable state of

a system and is represented by the tuple g = 〈name, type〉 where name is the name of the goal,

and type represents the decomposition of the goal, which can be OR, AND, or LEAF (leaf goals

are of type LEAF and cannot be decomposed). In addition, the GMoDS goal model contains two

time-based relationships between goals: the precedes and triggers relations. We say goal g1

precedes goal g2, if g1 must be satisfied before g2 can be pursued by the organization. Moreover,

during the pursuit of specific goals, events may occur that cause the instantiation of new goals.

Instantiated goals may be parameterized to allow a context sensitive meaning. If an event e can

occur during the pursuit of goal g1 that instantiates goal g2, we say g1 triggers g2 based on e.

I extend GMoDs [27] to incorporate the notion of external goals and internal goals.

Internal goals (Gi) are the actual goals that the organizations try to achieve. They are organized

in a tree. External goals (Gx) are just placeholders for goals from other organizations and they do

not impact the satisfiability of a goal model as they are never be assigned to an agent. External

goals are not part of the decomposition tree. They can only trigger internal goals and be triggered

by internal goals. In addition, without loss of generality, I assume that all goal models have the

same root. This root is represented by an empty AND goal called generic root (g_root).

Formally, the goal model can be represented as mathematical structure composed of a rooted tree

and a graph. The tree correspond to the AND-OR decompositions between goals. Its edges

represent the parent relationship. The graph represents the time-based relationships between

goals.

Definition 4.1: Goal Model

A goal model is a tuple GM = 〈 G, ET, EG, g_root 〉 where:

• G : set of organizational goals such that G = Gx ∪ Gi, where Gx represents the set of

external goals and Gi the set of internal goals. We have Gx ∩ Gi = ∅;

 37

• ET ∈ Gi × Gi: set of parent edges such that 〈Gi, ET, g_root〉 is a rooted tree

• EG ∈ G × G: set of time-based edges such that 〈G, EG〉 is a directed graph

• g_root ∈ Gi : the root of the goal model.

Given a goal model GM, the set GL ⊂ Gi represents the leaf goals. The rooted tree is called

induced tree and the graph is called induced graph.

Moreover, I define three functions over the nodes goal model: parent, precedes and triggers.

Definition 4.2: Functions on goals

Given a goal model GM = 〈G, ET, EG, g_root〉 and a set of events Ev, we have:

• parent: Gi → Gi; defines the parent of a given goal

• precedes: Gi → 2Gi ; indicates all the goals preceded by a given goal

• triggers: Ev → 2G × G ; 〈g1,g2〉 ∈triggers(e) iff g1 triggers g2 based on e.

Following this definition, we can characterize the internal and external goals as follows:

Gi ={g ∈ G | g_root ∈ parent*(g)};

Gx = {g ∈ G −{g_root} | parent(g) = ∅}.

Moreover, we have:

Figure 4.1. Goal Model Example

 38

ET = {〈g1,g2〉 ∈ Gi×Gi | g1 = parent(g2) }.

EG ={〈g1,g2〉∈ G × G | (g2∈ precedes(g1)) ∨ (∃e ∈ Ev | 〈g1,g2〉 ∈ triggers(e))}

Example 4.1

Figure 4.1 represents the goal model GM_example = 〈G, ET, EG, g_root〉, where:

• G = {g_root, g1, g2, g3, g4, g5, g6, g7, eg1} with Gi = {g_root, g1, g2, g3, g4, g5, g6, g7}

and Gx = eg1}

• ET = { 〈g1,g_root〉, 〈g2,g_root〉, 〈g3,g1〉, 〈g4,g1〉, 〈g5,g1〉 , 〈g6,g2〉 , 〈g7,g2〉}

Figure 4.2. Example of Induced Tree

Figure 4.3. Example of Induced Graph

 39

• EG = {〈eg1,g1〉, 〈g3,g4〉, 〈g4,g5〉, 〈g5,g2〉}

• root = {g_root}

Moreover, for each goal g in the goal model in Figure 4.1, the type of the goal (g.type) is

defined based on the decomposition arrow. Hence, g_root.type=g1.type=AND; g2.type=OR;

g3.type = g4.type = g5.type = g6.type = g7.type = LEAF.

Figure 4.2 and Figure 4.3 respectively show the induced tree and the induced graph for

this goal model. Note that an edge 〈g1,g2〉 represents a directed edge from g1 to g2.

4.1.2 Role Model

I also organize the roles using a role model that is essentially a set of roles connected by

protocols. There are two types of roles: internal roles and external roles. Internal roles are roles

that are defined inside the organization. External roles represent placeholder for roles from

external organizations. They represent an interface to the outside world, which allows

organizations to cater for interactions with unknown roles at design time. Eventually, either later

on in the design or at runtime, external roles will be replaced by concrete roles (internal roles)

from other organizations. Formally, a role model can be viewed as a directed graph having roles

as nodes and protocol as edges such that an edge p from role r1 to role r2 would indicate a

protocol p for which r1 is the initiator and r2 the responder. I assume that in a role model,

protocols names are unique. This can be enforced by having a protocol naming scheme that takes

into account the participants of that protocol. In addition, I assume that given two roles, there is

at most one protocol between them. This assumption is valid as if there is more than one protocol

between two roles, those protocols can be combined into one protocol having several alternate

cases [59].

Definition 4.3: Role Model

A role model is a tuple RM = 〈R, P, participant〉 where:

• R: set of roles

• P: set of protocols

• participants: P→R × R ; indicates the pair of roles connected by a given protocol

 40

In addition, we have R = Ri ∪ Rx (Ri ∩ Rx = ∅), where Rx represents the set of external

roles and Ri the set of internal roles.

This role model corresponds to a directed graph having roles as nodes and protocols as edges.

Example 4.2

Figure 4.4 represents the role model RM_example = 〈R, P, participant〉, where:

• R = { r1, r2, r3, r4, r5, er1, er2}

• P = { p1, p2, p3, p4}

• participant = {(p1, 〈r1, er1〉), (p2, 〈r3, r4〉), (p3, 〈r2, r4〉), (p4, 〈r2, er2〉)}

4.1.3 Organization Structure

Finally, I define an organization as a goal model and a role model such that each leaf goal

is achieved by a role.

Definition 4.4: Organization

An organization is a tuple O = 〈GM, RM, achieves〉 where:

Figure 4.4. Example of Role Model

 41

• GM: Goal Model

• RM: Role Model

• achieves ⊆ R × Gl: set of role-goal pairs such that the role achieves the goal.

Essentially, we can view an organization design as a directed graph with multiple node

types and multiple edge types following the structure imposed by the goal and role model. The

type of nodes and edges matches the corresponding organizational notions. Hence, the nodes can

be of type goal or role while the edges can be of type achieve, protocol, parent or time-based.

Example 4.3

Figure 4.5 represents the organization ORG_example = 〈GM, RM, achieves〉, where:

• GM = 〈G, ET, EG, g_root〉 as depicted in the top part of Figure 4.5

Figure 4.5. Example of Organization

 42

• RM = 〈R, P, participant〉 as depicted in the bottom part of Figure 4.5

• achieves = {(r1, g2), (r3, g3), (r4,g4), (r4,g6), (r2,g7)}

4.2 Category of Goal Models

In this section, I define the category of Goal Model. I then introduce the key notions that

allow the composition of goal model via pushout.

Definition 4.5: Goal Model Homomorphism

Given two goal models GM1 = 〈 G1, ET1, EG1, root1 〉 and GM2 = 〈 G2, ET2, EG2, root2 〉, a

goal model homomorphism from GM1 to GM2 is a function Γ = 〈 f, g, h 〉 where:

• f : G1 → G2, such that f(root1) = root2

• g : ET1 → ET2, such that if |a,b| ∈ ET1 then g(|a,b|) = |f(a),f(b)| ∈ ET2

• h : EG1 → EG2, such that if |a,b| ∈ EG1 then h(|a,b|) = |f(a), f(b)| ∈ EG2.

Note that |a,b| denotes an edge. This distinct notation allows edges to be easily

differentiated from any other tuples.

Proposition 4.6: Category of goal models

Goal models along with goal model homomorphisms define the category

GOAL_MODEL.

Proof:

Let us prove that goal models along with goal model homomorphisms form a category.

According to Definition 3.5, we need to identify the objects, morphisms and identity morphisms

and verify that the composition of morphism exists and is associative.

Objects: The objects are goal models.

Morphisms: The morphisms are goal model homomorphisms.

Identity: The identity morphism is a function idGM = 〈 idG, idET, idEG 〉 such that idG is an identity

function that maps each goal to itself, idET is an identity function that maps each induced tree

edge to itself and idEG is an identity function that maps each induced graph edge to itself.

Composition: Let X,Y,Z be three goal models and Γ1 = 〈f1,g1,h1〉, Γ2 = 〈f2,g2,h2〉 be two goal

model homomorphisms such that: Γ1 : X → Y and Γ2: Y → Z .

 43

The composition is defined as follows: Γ2 o Γ1 = 〈f2 o f1, g2 o g1, h2 o h1〉.

Associativity: The goal model homomorphism consists of functions between sets. Hence, the

assiociativity property is derived from the corresponding property of functions between sets [72].

�

Definition 4.7: Configurations of Goal Models

A configuration of goal models specifies all the mappings that are used to merge two goal

models. Given two goal models GM1 and GM2, a configuration of goal models GM1 and

GM2 is a triplet configgoal = 〈GM0, Γ1, Γ2〉 where:

• GM0 is a goal model

• Γ1 is a goal model homomorphism from GM0 to GM1

• Γ2 is a goal model homomorphism from GM0 to GM2

Definition 4.8: Goal model composition

The composition of two goal models GM1, GM2 over a goal model configuration

〈GM0, Γ1, Γ2〉 is the goal model resulting from the pushout of Γ1 and Γ2 in category

GOAL_MODEL.

Example 4.4

The composition of goal models GM1, GM2 over the configuration 〈GM0, Γ1, Γ2〉 is

depicted in Figure 4.6. Goal model GM3 represents the composed model and it is obtained by

pushout. The mappings for the functions comprised in the goal model homomorphisms are

shown in Figure 4.7.

The elements for the pushout of goal models shown in Figure 4.7 are defined as follows:

Goal Model GM0:

GM0 = 〈G0, ET0, EG0, g_root〉,

G0 ={ g_root , g2, g4, g5, g6, g6’, g7, g8},

ET0 = { |g_root,g4|, |g4,g5|, |g4,g6| , |g6,g7| , |g6,g8|}

EG0 = { |g2,g6’|, |g7,g8|}

 44

Figure 4.6. Overview of Pushout of Goal Models

 45

Figure 4.7. Pushout of Goal Models with detailed functions. Only functions mapping goals (fi)
and induced graph edges (hi) are shown. Functions mapping tree edges (gi) are not shown.

 46

Goal Model GM1:

GM1 = 〈G1, ET1, EG1, g_root〉,

G1 ={ g_root , g1, g2, g3, g4, g5, g6, g7, g8, eg1},

ET1 = {|g_root, g1|, |g_root,g4|, |g1,g2|, |g1,g3|, |g4,g5|, |g4,g6| , |g6,g7| , |g6,g8|}

EG1 = { |g2,eg1|, |g3,g6|, |g7,g8|}

Goal Model GM2:

GM2 = 〈G2, ET2, EG2, g_root〉,

G2 ={ g_root , g4, g5, g6, g7, g8, g9, eg2},

ET2 = { |g_root,g4|, |g4,g5|, |g4,g6| , |g4,g9| , |g6,g7|, |g6,g8|}

EG2 = { |eg2, g6|, |g7,g8|}

Goal Model GM3:

GM3 = 〈G3, ET3, EG3, g_root〉,

G3 ={ g_root , g4, g5, g6, g7, g8, g9, eg2},

ET3 = { 〈g_root,g4〉, 〈g4,g5〉, 〈g4,g6〉 , 〈g4,g9〉 , 〈g6,g7〉, 〈g6,g8〉}

EG3 = { 〈eg2, g6〉, 〈g7,g8〉}

Homomorphism Γ1: (mappings f1 and h1 for Γ1 are shown in Figure 4.7)

Γ1 = 〈f1, g1, h1〉 such that: f1: G0 → G1, g1: ET0 → ET1, h1: EG0 → EG1. We have:

• f1 = {〈g_root, g_root〉, 〈g4, g4〉, 〈g5, g5〉, 〈g6, g6〉, 〈g7, g7〉,〈g8, g8〉,〈g2, g2〉,〈g6’, eg1〉};

• g1 = { 〈 |g_root,g4|, |g_root,g4| 〉, 〈 |g4,g5|, |g4,g5| 〉, 〈 |g4,g6|, |g4,g6| 〉, 〈 |g6,g7|, |g6,g7| 〉,

〈|g6,g8|, |g6,g8| 〉 };

• h1 = {〈|g2,g6’|, |g2, eg1|〉, 〈 |g7,g8|, |g7,g8|〉};

Homomorphism Γ2: (mappings f2 and h2 for Γ2 are shown in Figure 4.7)

Γ2 = 〈f2, g2, h2〉 such that f2 : G0 → G2; g2: ET0 → ET2; h2: EG0 → EG2. We have:

• f2 = {〈g_root, g_root〉, 〈g4, g4〉, 〈g5, g5〉, 〈g6, g6〉, 〈g7, g7〉,〈g8, g8〉,〈g2, eg2〉,〈g6’, g6〉};

• g2 ={ 〈 |g_root,g4|, |g_root,g4| 〉, 〈 |g4,g5|, |g4,g5| 〉, 〈 |g4,g6|, |g4,g6| 〉, 〈 |g6,g7|, |g6,g7| 〉,

〈|g6,g8|, |g6,g8| 〉 };

 47

• h2 = {〈|g2,g6’|, |eg2, g6|〉, 〈 |g7,g8|, |g7,g8|〉};

Homomorphism Γ1’: (mappings f1’ and h1’ for Γ1’ are shown in Figure 4.7)

Γ1’= 〈f1’, g1’, h1’〉 such that f1’: G1 → G3, g1’: ET1 → ET3, h1’: EG1 → EG3. We have:

• f1’ = {〈g_root, g_root〉, 〈g1, g1〉, 〈g2, g2〉, 〈g3, g3〉, 〈g4, g4〉, 〈g5, g5〉, 〈g6, g6〉, 〈g7, g7〉, 〈g8, g8〉,

〈 eg1, g6〉};

• g1’ = {〈|g_root, g1|, |g_root, g1|〉, 〈|g1, g2|, |g1, g2|〉, 〈|g1, g3|, |g1, g3|〉, 〈|g_root,g4|,

|g_root,g4| 〉, 〈 |g4,g5|, |g4,g5| 〉, 〈 |g4,g6|, |g4,g6| 〉, 〈 |g6,g7|, |g6,g7| 〉, 〈|g6,g8|, |g6,g8| 〉};

• h1’ = {〈|g2, eg1|, |g2,g6|〉, 〈|g7,g8|, |g7,g8|〉, 〈|g3,g6|, |g3,g6|〉};

Homomorphism Γ2’: (mappings f2’ and h2’ for Γ2’ are shown in Figure 4.7)

Γ2’ = 〈f2’, g2’, h2’〉 such that f2’: G2 → G3, g2’: ET2 → ET3, h2’: EG2 → EG3. We have:

• f2’ = {〈g_root, g_root〉, 〈g4, g4〉, 〈g5, g5〉, 〈g6, g6〉, 〈g7, g7〉, 〈g8, g8〉, 〈g9, g9〉, 〈 eg2, g2〉};

• g2’ = { 〈 |g_root,g4|, |g_root,g4| 〉, 〈 |g4,g5|, |g4,g5| 〉, 〈 |g4,g6|, |g4,g6| 〉, 〈 |g6,g7|, |g6,g7| 〉,

〈|g6,g8|, |g6,g8| 〉 , 〈|g4, g9|, |g4, g9|〉};

• h2’ = {〈|eg2, g6|, |g2,g6|〉, 〈|g7,g8|, |g7,g8|〉};

GM3 along with homomorphism Γ1’ and Γ2’ represent the pushout of GM0 with homomorphism

Γ1 and Γ2 . In fact, we have:

• f1’ ○ f1 = {〈g_root, g_root〉, 〈g4, g4〉, 〈g5, g5〉, 〈g6, g6〉, 〈g7, g7〉,〈g8, g8〉,〈g2, g2〉,〈g6’, g6〉}

• f2’ ○ f2 = {〈g_root, g_root〉, 〈g4, g4〉, 〈g5, g5〉, 〈g6, g6〉, 〈g7, g7〉,〈g8, g8〉,〈g2, g2〉,〈g6’, g6〉}

• g1’ ○ g1 = {〈|g_root,g4|, |g_root,g4| 〉, 〈|g4,g5|, |g4,g5| 〉, 〈|g4,g6|, |g4,g6| 〉, 〈|g6,g7|, |g6,g7| 〉,

〈|g6,g8|, |g6,g8| 〉 };

• g2’ ○ g2 = {〈|g_root,g4|, |g_root,g4| 〉, 〈|g4,g5|, |g4,g5| 〉, 〈|g4,g6|, |g4,g6| 〉, 〈|g6,g7|, |g6,g7| 〉,

〈|g6,g8|, |g6,g8| 〉 };

• h1’ ○ h1 = {〈|g2,g6’|, |g2, g6|〉, 〈 |g7,g8|, |g7,g8|〉};

• h2’ ○ h2 = {〈|g2,g6’|, |g2, g6|〉, 〈 |g7,g8|, |g7,g8|〉};

As Γ1’ ○ Γ1 = 〈 f1’ ○ f1, g1’ ○ g1, h1’ ○ h1〉 and Γ2’ ○ Γ2 = 〈 f2’ ○ f2, g2’ ○ g2, h2’ ○ h2〉, we have

Γ1’ ○ Γ1 = Γ2’ ○ Γ2. �

 48

4.3 Category of Role Models

In this section, I define the category of Role Model. I then introduce the concepts that

will allow the composition of role model via pushout.

Definition 4.9: Role models Homomorphism

Given two role models RM1 = 〈 R1, P1, participant1 〉 and RM2 = 〈R2, P2, participant2〉, a

role model homomorphism from RM1 to RM2 is a function Δ = 〈i, j〉 with i : R1 → R2,

j : P1 → P2 such that:

• ∀p∈ P1| participant1(p)= (r1,r2), j(p)= (i(r1),i(r2)).

Proposition 4.10: Category of Role Models

Role models along with role model homomorphisms define the category

ROLE_MODEL.

Proof:

Let us prove that role models along with role model homomorphisms form a category.

According to Definition 3.5, we need to identify the objects, morphisms and identity morphisms

and verify that the composition of morphism exists and is associative.

Objects: The objects are role models.

Morphisms: The morphisms are role model homomorphisms.

Identity: The identity morphism is a function idRM = 〈idR, idP〉 such that idR is an identity

function that maps each role to itself, idP is an identity function that maps each protocol to itself.

Composition: Let RM1, RM2, RM3 be three role models and Δ1 = 〈i1, j1〉, Δ2 = 〈i2, j2〉 be two role

model homomorphisms such that: Δ1: RM1 → RM2 and Δ2: RM2 → RM3. The composition is

defined as follows: Δ2 o Δ1 = 〈i2 o i1, j2 o j1〉.

Associativity: The role model homomorphism consists of functions between sets. Hence, the

assiociativity property is derived from the corresponding property of functions between sets [72].

�

 49

Definition 4.11: Configurations of Role Models

A configuration of role models specifies all the mappings that are used to merge two role

models. Given two role models RM1 and RM2, a configuration of role models RM1 and

RM2 is a triplet configrole = 〈RM0, Δ1, Δ2〉 where:

• RM0 is a role model

• Δ1 corresponds to a role model homomorphism from RM0 to RM1

• Δ2 corresponds to a role model homomorphism from RM0 to RM2

Definition 4.12: Role model composition

The composition of two role models RM1, RM2 over a role model configuration

〈RM0, Δ1, Δ2〉 is the role model resulting from the pushout of Δ1 and Δ2 in category

ROLE_MODEL.

Example 4.5

The composition of role models RM1, RM2 over the configuration 〈RM0, Δ1, Δ2〉 is

depicted in Figure 4.8. Role model RM3 represents the composed model and it is obtained by

pushout. The mappings for the functions comprised in the role model homomorphisms are shown

in Figure 4.9.

The elements for the pushout of role models shown in Figure 4.9 are defined as follows:

Role Model RM0:

RM0 = 〈 R0, P0, participant0 〉,

R0 = { r1, r2, r4, r6, r6’}

P0 = { p1, p2}

participant0 = {〈p1, 〈r1, r6’}〉, 〈p2, 〈r2, r6}〉}

Role Model RM1:

RM1 = 〈 R1, P1, participant1 〉,

R1 = { r1, r2, r3, r4, r6, er1, er2}

P1 = { p1, p2, p3, p4}

participant1 = {〈p1, 〈r1, er1〉〉, 〈p2, 〈r2, r6〉〉, 〈p3, 〈r3, r4〉〉, 〈p4, 〈r3, er2〉〉}

 50

Figure 4.8. Overview of Pushout of Role Models

 51

Figure 4.9. Pushout of Role Models with detailed functions. Functions mapping roles (ii) and
protocols (ji) are shown.

 52

Role Model RM2:

RM2 = 〈 R2, P2, participant2 〉,

R2 = { r2, r4, r5, r6, er3}

P2 = { p1, p2, p5}

participant1 = {〈p1, 〈er3, r6〉〉, 〈p2, 〈r2, r6〉〉, 〈p5, 〈r2, r5〉〉}

Role Homomorphism Δ1: (mappings i1 and j1 for Δ1 are shown in Figure 4.9)

Δ1 = 〈i1, j1〉 such that i1: R0 → R1, j1: P0 → P1. We have:

• i1 = {〈r1, r1〉, 〈r2, r2〉, 〈r4, r4〉, 〈r6, r6〉, 〈r6’, er1〉};

• j1 = {〈p1, p1〉, 〈p2, p2〉};

Role Homomorphism Δ2: (mappings i2 and j2 for Δ2 are shown in Figure 4.9)

Δ2 = 〈i2, j2 〉 such that i2: R0 → R2, j2: P0 → P2. We have:

• i2 = {〈r1, er3〉, 〈r2, r2〉, 〈r4, r4〉, 〈r6, r6〉, 〈r6’, r6〉};

• j2 = {〈p1, p1〉, 〈p2, p2〉};

Role Homomorphism Δ1’: (mappings i1’ and j1’ for Δ1’ are shown in Figure 4.9)

Δ1’ = 〈i1’, j1’〉 such that i1’: R1 → R3, j1’: P1 → P3. We have:

• i1’ = {〈r1, r1〉, 〈r2, r2〉, 〈r3, r3〉, 〈r4, r4〉, 〈r6, r6〉, 〈er1, r6〉, 〈er2, er2〉};

• j1’ = {〈p1, p1〉, 〈p2, p2〉, 〈p3, p3〉, 〈p4, p4〉};

Role Homomorphism Δ2’: (mappings i2’ and j2’ for Δ2’ are shown in Figure 4.9)

Δ2’ = 〈i2’, j2’ 〉  such that i2’: R2 → R3, j2’: P2 → P3. We have:

• i2’ = {〈r2, r2〉, 〈r4, r4〉, 〈r5, r5〉, 〈r6, r6〉, , 〈er3, r1〉};

• j2’ = {〈p1, p1〉, 〈p2, p2〉, 〈p5, p5〉};

RM3 along with homomorphism Δ1’ and Δ2’ represent the pushout of RM0 with homomorphism

Δ1 and Δ2 . In fact, we have:

• i1’ ○ i1 = {〈r1, r1〉, 〈r2, r2〉, 〈r4, r4〉, 〈r6, r6〉, 〈r6’, r6〉}

• i2’ ○ i2 = {〈r1, r1〉, 〈r2, r2〉, 〈r4, r4〉, 〈r6, r6〉, 〈r6’, r6〉}

 53

• j1’ ○ j1 = {〈p1, p1〉, 〈p2, p2〉}

• j2’ ○ j2 = {〈p1, p1〉, 〈p2, p2〉}

As Δ1’ ○ Δ1 = 〈 i1’ ○ i1, j1’ ○ j1〉 and Δ2’ ○ Δ2 = 〈 i2’ ○ i2, j2’ ○ j2〉, we have Δ1’ ○ Δ1 = Δ2’ ○ Δ2. �

4.4 Category of Organization Models

In this section, I define the category of Organizations. I then introduce the concepts that

allow the composition of organizations via pushout.

Definition 4.13: Organizations Homomorphism

Given two organizations ORG1= 〈GM1, RM1, achieves1〉, ORG2=〈GM2, RM2, achieves2〉,

an organization homomorphism Φ = 〈Γ, Δ, k〉 from ORG1 to ORG2 consists of:

• Γ= 〈f, g, h〉: goal model homomorphism from GM1 to GM2

• Δ = 〈i, j〉: role model homomorphism from RM1 to RM2

• k : achieves1 → achieves2, such that if |r,g| ∈ achieves1, then k(|r,g|)∈ achieves2 and

k(|r,g|) = | i(r), f(g)|

Proposition 4.14: Category of Organizations

Organizations along with organization homomorphisms define the category

ORG_MODEL.

Proof:

Let us prove that organizations along with organization homomorphisms form a category.

According to Definition 3.5, we need to identify the objects, morphisms and identity morphisms

and verify that the composition of morphism exists and is associative.

Objects: The objects are organizations.

Morphisms: The morphisms are organization homomorphisms.

Identity: The identity morphism is a function idORG = 〈idGM, idRM, idk〉 such that idGM is an

identity function that maps each goal model to itself (as defined in Section 4.2), idRM is an

identity function that maps each role model to itself (as defined in Section 4.3) and idk is an

identity function that maps each achieves edge to itself.

 54

Composition: Let ORG1, ORG2, ORG3 be three organizations and Φ1 = 〈Γ1, Δ1, k1〉,

Φ2 = 〈Γ2, Δ2, k2 〉 be two organization homomorphisms such that: Φ1: ORG1 → ORG2 and

Φ2: ORG2 → ORG3. The composition is defined as follows:

Φ2 o Φ1 = 〈Γ2 o Γ1, Δ2 o Δ1, k 2 o k 1〉.

Associativity: An organization homomorphism consists of functions between sets (Goal model

homomorphisms and role model homomorphisms are set functions). Hence, the assiociativity

property is derived from the corresponding property of functions between sets [72]. �

Definition 4.15: Configuration of Organizations

A configuration of organizations specifies all the mappings that are used to merge two

organizations. Given two organizations ORG1 and ORG2, a configuration of

organizations ORG1 and ORG2 is a triplet config= 〈ORG0, Φ1, Φ2〉 where:

• ORG0 is an organization

• Φ1 corresponds to an organization homomorphism from ORG0 to ORG1

• Φ2 corresponds to an organization homomorphism from ORG0 to ORG2

Definition 4.16: Composition of Organizations

The composition of two organizations ORG1, ORG2 over a configuration of organization

config = 〈ORG0, Φ1, Φ2〉 is the organization resulting from the pushout of Φ1 and Φ2 in

category ORG_MODEL.

Notation:

This composition is noted ├─ (ORG1, ORG2, config) = ORG1 ├─config ORG2.

The general intuition behind the pushout construction is that it aggregates the unrelated

organization structures together without adding anything new and merges the shared structure

defined in the configuration. It results in a composite organization that has all elements of both

organizations while eliminating duplicates identified in the shared part. In fact, we are interested

in composing two organizations that have some elements in common. Actually, composing two

completely unrelated organizations is possible but uninteresting.

 55

Example 4.6

Figure 4.10 shows an example of composition of organization ORG1 and ORG2 over the

configuration 〈ORG0, Φ1, Φ2〉. This composition results in the pushout organization ORG3 as

depicted in Figure 4.10. The goal models and role models from the organizations shown here

have been studied in Example 4.4 and Example 4.5. Therefore, we will not go into the details of

the mapping for the goal models and roles models. I will just give the details for the achieves

mappings.

Organization ORG0:

GM0: defined in Example 4.4.

RM0: defined in Example 4.5.

achieves0 = {|r4, g5|, |r6, g7|, |r2, g8|}

Organization ORG1:

GM1: defined in Example 4.4.

RM1: defined in Example 4.5.

achieves1 = {|r1, g2|, |r3, g3|, |r4, g5|, |r6, g7|, |r2, g8|}

Organization ORG2:

GM2: defined in Example 4.4.

RM2: defined in Example 4.5.

achieves2 = {|r4, g5|, |r6, g7|, |r2, g8|, |r5, g9|}

Organization Homomorphism Φ1: (mappings k1 is shown in Figure 4.9)

Φ1 = 〈Γ1, Δ1, k1〉 where Γ1 and Δ1 have been defined in Example 4.4 and Example 4.5 and

k1: achieves0 → achieves1. We have:

• k1 = {〈|r4, g5|, |r4, g5|〉, 〈|r6, g7|, |r6, g7|〉, 〈|r2, g8|, |r2, g8|〉};

 56

Figure 4.10. Pushout of Organizations. Only achieves edges mappings (ki) are shown.

 57

Organization Homomorphism Φ2: (mappings of k2 is shown in Figure 4.9)

Φ2 = 〈Γ2, Δ2, k2〉 where Γ2 and Δ2 have been defined in Example 4.4 and Example 4.5 and

k2: achieves0 → achieves2. We have:

• k2 = {〈|r4, g5|, |r4, g5|〉, 〈|r6, g7|, |r6, g7|〉, 〈|r2, g8|, |r2, g8|〉};

Organization Homomorphism Φ1’: (mappings k1’ is shown in Figure 4.9)

Φ1’ = 〈Γ1’, Δ1’, k1’〉 where Γ1’ and Δ1’ have been defined in Example 4.4 and Example

4.5 and k1’: achieves1 → achieves3. We have:

k1’ = {〈|r1, g2|, |r1, g2|〉, 〈|r3, g3|, |r3, g3|〉, 〈|r4, g5|, |r4, g5|〉, 〈|r6, g7|, |r6, g7|〉, 〈|r2, g8|, |r2, g8|〉};

Organization Homomorphism Φ2’: (mappings k2’ is shown in Figure 4.9)

Φ2’ = 〈Γ2’, Δ2’, k2’〉 where Γ2’ and Δ2’ have been defined in Example 4.4 and Example

4.5 and k2’: achieves2 → achieves3. We have:

k2’ = {〈|r5, g9|, |r5, g9|〉, 〈|r4, g5|, |r4, g5|〉, 〈|r6, g7|, |r6, g7|〉, 〈|r2, g8|, |r2, g8|〉};

ORG3 along with homomorphism Φ1’ and Φ2’ represent the pushout of ORG0 with

homomorphism Φ1 and Φ2 . In fact, we have:

• k1’ ○ k1 = {〈|r4, g5|, |r4, g5|〉, 〈|r6, g7|, |r6, g7|〉, 〈|r2, g8|, |r2, g8|〉};

• k2’ ○ k2 = {〈|r4, g5|, |r4, g5|〉, 〈|r6, g7|, |r6, g7|〉, 〈|r2, g8|, |r2, g8|〉};

Hence, we have k1’ ○ k1 = k2’ ○ k2. Moreover, we have shown that Γ1’ ○ Γ1 = Γ2’ ○ Γ2 (Example

4.4) and Δ1’ ○ Δ1 = Δ2’ ○ Δ2 (Example 4.5). As Φ1’ ○Φ1 = 〈 Γ1’ ○ Γ1, Δ1’ ○ Δ1, k1’ ○ k1〉 and

Φ2’ ○ Φ2 = 〈 Γ2’ ○ Γ2, Δ2’ ○ Δ2, k2’ ○ k2〉, we have Φ1’ ○Φ1 = Φ2’ ○ Φ2. �

 58

The pushout construction always results in a valid organization (as defined in Definition

4.4). This is mainly due to the facts that the pushout is constructed based on organization

homomorphisms, which preserve the organization structure (Definition 4.13). However,

depending on the configuration chosen, the composite organization can have a semantic that does

not necessarily represent the semantic of the initial organizations.

Proposition 4.17: Correctness of the Composition of Organizations

Let ORG1, ORG2, ORG3 be three organizations and config be a configuration of

organizations. If ORG1 and ORG2 are valid organizations and ORG3 = ORG1 ├─config

ORG2 then ORG3 is also a valid organization.

Proof:

An organization is valid if its structure corresponds to the one defined in Definition 4.4. As

ORG1 and ORG2 are valid, proving that ORG3 preserves the structure of both ORG1 and ORG2

will suffice to prove that ORG3 is also valid. Hence, we only need to verify that ORG3 preserves

the parent, time-based, protocol and achieve edges of ORG1 and ORG2. We prove this fact by

contradiction.

The composed organization ORG3 is obtained by pushout, which also results in the

creation of two organization homomorphisms Φ1: ORG1 → ORG3 and Φ2: ORG2 → ORG3. We

define Φ1 = 〈 f1, g1, h1, i1, j1, k1 〉, Φ2 = 〈 f2, g2, h2, i2, j2, k2 〉 where fi, gi, hi, ii, ji, ki (1≤ i ≤2), are

the functions defined in Definition 4.5, Definition 4.9 and Definition 4.13. Basically, fi are

functions mapping goals, gi are functions mapping parent edges, hi are functions mapping time-

based edges, ii are functions mapping roles, ji are functions mapping protocol edges and finally ki

are functions mapping achieves edges.

Case 1: Assume that ORG3 does not preserve the parent edges from ORG1.

Let a1, a2, a3, a4, a5 be goals. Hence, with this assumption, we have:

∀ a1,a2: ORG1 , ∀ a3, a4: ORG3,

(a1=parent(a2) ∧ f1(a1)= a3 ∧ f1(a2)= a4) ⇒ ∃a5:ORG3, a5≠a4 | g1(|a1,a2|) = |a3, a5|

 ⇒ g1(|a1,a2|) ≠ |f1(a1), f1(a2)|

As Φ1 is an organization homomormisphm from ORG1 to ORG3, we have:

 59

g1(|a1,a2|) = |a3, a4| = |f1(a1), f1(a2)| (by Definition 4.5 and Definition 4.13).

However, the assumption led to g1(|a1,a2|) ≠ |f1(a1), f1(a2)|. Therefore, there is a contradiction and

ORG3 preserves the parent edges from ORG1.

Case 2: Assume that ORG3 does not preserve the parent edges from ORG2.

Hence, with this assumption, we have:

∀ a1,a2: ORG2 , ∀ a3, a4: ORG3,

(a1=parent(a2) ∧ f2(a1)= a3 ∧ f2(a2)= a4) ⇒ ∃a5:ORG3, a5≠a4 | g2(|a1,a2|) = |a3, a5|

 ⇒ g2(|a1,a2|) ≠ |f2(a1), f2(a2)|

As Φ2 is an organization homomormisphm from ORG2 to ORG3, we have:

g2(|a1,a2|) = |a3, a4| = |f2(a1), f2(a2)| (by Definition 4.5 and Definition 4.13).

However, the assumption led to g2(|a1,a2|) ≠ |f2(a1), f2(a2)|. Therefore, there is a contradiction and

ORG3 preserves the parent edges from ORG2.

Case 3: Assume that ORG3 does not preserve the time-based edges from ORG1.

Let a1, a2, a3, a4, a5 be goals. Hence, with this assumption, we have:

∀ a1,a2: ORG1 , ∀ a3, a4: ORG3,

(|a1,a2| time-based edge ∧ f1(a1)= a3 ∧ f1(a2)= a4) ⇒ ∃a5:ORG3, a5≠a4 | h1(|a1,a2|) = |a3, a5|

 ⇒ h1(|a1,a2|) ≠ |f1(a1), f1(a2)|

As Φ1 is an organization homomormisphm from ORG1 to ORG3, we have:

h1(|a1,a2|) = |a3, a4| = |f1(a1), f1(a2)| (by Definition 4.5 and Definition 4.13).

However, the assumption led to h1(|a1,a2|) ≠ |f1(a1), f1(a2)|. Therefore, there is a contradiction and

ORG3 preserves the time-based edges from ORG1.

Case 4: Assume that ORG3 does not preserve the time-based edges from ORG2.

Let a1, a2, a3, a4, a5 be goals. Hence, with this assumption, we have:

∀ a1,a2: ORG2 , ∀ a3, a4: ORG3,

(|a1,a2| time-based edge ∧ f2(a1)= a3 ∧ f2(a2)= a4) ⇒ ∃a5:ORG3, a5≠a4 | h2(|a1,a2|) = |a3, a5|

 ⇒ h2(|a1,a2|) ≠ |f2(a1), f2(a2)|

As Φ2 is an organization homomormisphm from ORG2 to ORG3, we have:

 60

h2(|a1,a2|) = |a3, a4| = |f2(a1), f2(a2)| (by Definition 4.5 and Definition 4.13).

However, the assumption led to h2(|a1,a2|) ≠ |f2(a1), f2(a2)|. Therefore, there is a

contradiction and ORG3 preserves the time-based edges from ORG2.

Case 5: Assume that ORG3 does not preserve the protocol edges from ORG1.

Let a1, a2, a3, a4, a5 be roles. Hence, with this assumption, we have:

∀ a1,a2: ORG1 , ∀ a3, a4: ORG3,

(|a1,a2| protocol edge ∧ i1(a1)= a3 ∧ i1(a2)= a4) ⇒ ∃a5:ORG3, a5≠a4 | j1(|a1,a2|) = |a3, a5|

 ⇒ j1(|a1,a2|) ≠ |i1(a1), i1(a2)|

As Φ1 is an organization homomormisphm from ORG1 to ORG3, we have:

j1(|a1,a2|) = |a3, a4| = |i1(a1), i1(a2)| (by Definition 4.9 and Definition 4.13).

However, the assumption led to j1(|a1,a2|) ≠ |i1(a1), i1(a2)|. Therefore, there is a contradiction and

ORG3 preserves the protocol edges from ORG1.

Case 6: Assume that ORG3 does not preserve the protocol edges from ORG2.

Let a1, a2, a3, a4, a5 be goals. Hence, with this assumption, we have:

∀ a1,a2: ORG2 , ∀ a3, a4: ORG3,

(|a1,a2| protocol edge ∧ i2(a1)= a3 ∧ i2(a2)= a4) ⇒ ∃a5:ORG3, a5≠a4 | j2(|a1,a2|) = |a3, a5|

 ⇒ j2(|a1,a2|) ≠ |i2(a1), i2(a2)|

As Φ2 is an organization homomormisphm from ORG2 to ORG3, we have:

j2(|a1,a2|) = |a3, a4| = |i2(a1), i2(a2)| (by Definition 4.9 and Definition 4.13).

However, the assumption led to j2(|a1,a2|) ≠ |i2(a1), i2(a2)|. Therefore, there is a

contradiction and ORG3 preserves the protocol edges from ORG2.

Case 7: Assume that ORG3 does not preserve the achieve edges from ORG1.

Let a1, a3, be goals and a2, a4, a5 be roles. Hence, with this assumption, we have:

∀ a1,a2: ORG1 , ∀ a3, a4: ORG3,

(|a1,a2| achieve edge ∧ f1(a1)= a3 ∧ i1(a2)= a4) ⇒ ∃a5:ORG3, a5≠a4 | k1(|a1,a2|) = |a3, a5|

 ⇒ k1(|a1,a2|) ≠ |f1(a1), i1(a2)|

As Φ1 is an organization homomormisphm from ORG1 to ORG3, we have:

 61

k1(|a1,a2|) = |a3, a4| = |f1(a1), i1(a2)| (by Definition 4.13).

However, the assumption led to k1(|a1,a2|) ≠ |f1(a1), i1(a2)|. Therefore, there is a contradiction and

ORG3 preserves the achieve edges from ORG1.

Case 8: Assume that ORG3 does not preserve the achieve edges from ORG2.

Let a1, a3, be goals and a2, a4, a5 be roles. Hence, with this assumption, we have:

∀ a1,a2: ORG2 , ∀ a3, a4: ORG3,

(|a1,a2| achieve edge ∧ f2(a1)= a3 ∧ i2(a2)= a4) ⇒ ∃a5:ORG3, a5≠a4 | k2(|a1,a2|) = |a3, a5|

 ⇒ k2(|a1,a2|) ≠ |f2(a1), i2(a2)|

As Φ2 is an organization homomormisphm from ORG2 to ORG3, we have:

k2(|a1,a2|) = |a3, a4| = |f2(a1), i2(a2)| (by Definition 4.13).

However, the assumption led to k2(|a1,a2|) ≠ |f2(a1), i2(a2)|. Therefore, there is a

contradiction and ORG3 preserves the achieve edges from ORG2.

Therefore, ORG3 preserves the parent, time-based, protocol and achieve edges from

ORG1 and ORG2. Hence, ORG3 is valid.

�

4.5 Related Work

The problem of composing models has been studied in various domains [15] and many

approaches have proposed the use of the notion of colimit in category theory as a formalism to

compose various types of models. For instance, some works have been done to compose UML

models [9, 52], requirement models [97, 102], statechart models [85], database schemas [16, 95],

ontologies [17, 54] and programs [86].

In the multiagent systems community, there are very few works unifying category theory

and multiagent systems. Most of those types of research are done at the implementation level.

For instance, Johnson et al. [68] use category theory to formalize the composition multiagent

dialogue protocols while Soboll [108] proposes to model multiagent cooperation patterns as

 62

categories. However, none of those approaches explicitly considers organizational designs. In

this chapter, I proposed a formal approach to compose a set of interrelated models that compose

a multiagent organization design.

4.6 Summary

The main contribution of this chapter is providing an abstract mechanism for merging

OMAS designs. I have shown that the composition of multiagent organizations can be

formulated using the pushout notion in category theory. I defined three main categories,

GOAL_MODEL, ROLE_MODEL and ORG_MODEL, as the category of goal models, role

models and organization models respectively. Then, I have defined the notion of organization

homomorphisms and specified the composition of organization as the pushout object of

organization homomorphisms. Nevertheless, finding suitable organization homomorphisms is

not an easy task. Moreover, arbitrary homomorphisms could potentially lead to semantically

incorrect composite organizations that cannot be implemented into a coherent system. In the next

chapter, I provide a specific approach that guides designers to decide what organizations to

compose. Moreover, this approach guarantees the construction of correct homomorphisms that

can be used in the composition by pushout.

 63

CHAPTER 5 - A SERVICE-ORIENTED FRAMEWORK FOR

DESIGNING MULTIAGENT ORGANIZATIONS

“Out of intense complexities intense simplicities

emerge.” ⎯ Winston Churchill

“"What is the use of a book", thought Alice, "without

pictures or conversations?" ”

⎯Lewis Carroll, Alice in Wonderland

In the previous chapter, I have shown how to compose two arbitrary multiagent

organizations in the context of the OMACS model. This composition is general and allows the

organizations to be composed in several ways, resulting in an organization that might not behave

in a predictable way. In this chapter, I provide a specific approach that will guide designers to

decide when to compose and what organizations to compose. I propose employing reusable

multiagent organizations designed using both component-oriented and service-oriented

principles. These two well-established software engineering approaches allow us to decompose

large multiagent organizations into smaller organizations that can be developed separately and

composed later, thus allowing designers to design large and complex OMAS more easily. This

framework uses the composition process defined in the previous chapter and proposes some

guidelines that allow designers to know what to expect when composing organizations. In my

approach, I view services as basic elements used to develop large multiagent organizations. They

represent independent organizations encapsulating common functionalities and they can be

composed with other organizations to obtain larger systems. Hence, in my approach,

organizations are viewed as reusable components that use and provide services. In general,

services represent cooperative tasks that cannot be achieved by a single agent but rather require

the cooperation of several agents in order to provide the service.

 64

In this chapter, I define and formalize all the entities required to develop those so-called

reusable organizations and compose them into a single composite organization. Each

organization exposes generic interfaces called connection points. Connection points allow

organizations to provide and/or use services. They can then be interconnected in a suitable way

such that the required services match the provided services. This composition is made through

connectors that link connection points together. The composition process ensures the consistency

of all the bindings and results in a valid composite organization.

5.1 Running Example

As the running example for this chapter, I consider two simple organizations that need to

be composed. These organizations are presented in Figure 5.1 and Figure 5.2. In theses figures,

we represent internal goals as ovals, internal roles as rectangles, external goals and roles as

triangles, precedes and triggers relations as open-head arrows, protocols as full-head arrows, and

achieves relations as dash lines. Conjunctive goals are connected to their subgoals by diamond-

shaped links and disjunctive goals by triangle-shaped links. Roles are decorated by the

«requires» stereotype that indicates the agent capabilities that would be required to play that role.

The first is a Search Organization (Figure 5.1), in which a team of heterogeneous robots

searches for victims at a disaster area. The main goal is Search. Note that the top-level goal

named Root is an empty goal added to simplify the composition, as indicated in Section 4.1. The

Search goal has two conjunctive subgoals: Divide Area and Explore, which is parameterized

with the subarea to explore. The Divide Area goal divides the area into smaller subareas that can

be assigned to individual robots. Once the main area has been divided, a number of Explore

goals are triggered. For each leaf goal, there is role designed to achieve it as shown.

The second organization is the Rescue Organization (Figure 5.2), in which a team of

robots coordinate to rescue victims at given locations. The main goal, Rescue, is decomposed

into two conjunctive goals: ID Victim, whose objective is to confirm the presence of a victim,

and Pickup Victim, which aims at bringing the victim to safety.

 65

Figure 5.1. Search Organization

Figure 5.2. Rescue Organization

 66

5.2 Service Model

In my framework, I view services as multiagent organizations encapsulating

functionalities commonly used in MAS. Once services are designed, they can be used by other

organizations in order to build larger systems. In order to include our service-oriented approach

into the design of OMAS, I incorporate some of the core service-oriented concepts into a

generalized OMACS metamodel. Figure 5.3 presents the organizational service metamodel,

comprising of the service and organizational entities and their relationships.

The central concept is that of a Service. Services offer one or more operations. Each

operation possesses a connector that is used to connect connection points exposed by

organizations. Connection points are pairs of goals and roles that can be connected by events and

protocols from connectors. Service providers and service consumers are both autonomous

organizations who respectively provide and use operations from services. These entities are

discussed in detail in the following subsections.

Figure 5.3. Organizational Service Metamodel

 67

5.2.1 Services

A Service is a logical entity that represents a coarse-grained multiagent functionality.

This coarse-grained functionality contains a set of fine-grained functionalities, called operations,

which can be used during the design of multiagent organizations. Each service has an

XML-based specification that contains a specification of each operation provided. We denote by

SVC the set of all services.

Example 5.1

The XML excerpt in Figure 5.4 shows the specification of the rescuing service whose

main operation is to rescue a victim at a given area. It shows the service name and the operation

name along with other parameters. Theses parameters are discussed in the next sections.

To be purposeful, a service must be implemented by at least one provider. Services

facilitate reuse in the sense that they allow consumers to request operations solely based on the

service specification, without knowing anything about the implementation proposed by

providers.

<service name= Rescuing>

 <operation name= rescue>

 <connector>

 <protocol>rescue_protocol</protocol>

 <event>rescue_event(location)</event>

 </connector>

 <conditions>

<pre> The location is accessible </pre>

<post> The victim has been rescued </post>

 </conditions>

 </operation>

</service>

__

Figure 5.4. Rescuing Service specification

 68

5.2.2 Operations

An operation can be viewed as a set of goals that an organization has to achieve in order

to guarantee the postcondition of that operation. Operations can result in some computations

being made (e.g. computing an optimal path for a swarm of UAVs) or some actions being

performed (e.g. neutralizing an enemy). The actual goals that need to be achieved for an

operation depend on specific organizations. Each operation consists of a set of preconditions and

postconditions, and a connector.

Definition 5.1: Operation

An operation is a tuple op = 〈 connector, precondition, postcondition 〉 where:

• connector: interface used to interconnect goals and roles

• precondition: A condition prior the execution of the operation

• postconditions: A condition after the execution of the operation

We denote by OP the set of all operations.

Preconditions represent constraints that have to be respected by any consumers in order

for the operation to be executed properly. Postconditions indicate what to expect upon

completion of that operation. Finally, connectors provide the “glue” allowing consumers and

providers to be connected based on an operation.

Definition 5.2: Connector

A connector is a tuple con = 〈 event, protocol 〉 where:

• event: event used to connect goals

• protocol: protocol used to interconnect roles

Interaction protocols specify how the interaction happens between consumers and

providers. Request events are events that trigger the instantiation of the operations. An

interaction protocol and a request event form a connector. Hence, a connector defines the event

that needs to occur in order for the operation to start and provides a way for providers and

consumers to exchange information regarding the execution of the operation.

 69

Example 5.2

The rescue operation specified in Example 5.1 requires that the victim’s location be

accessible and guarantees that the victim, if any, is rescued upon successful termination. The

operation starts based on the event rescue_event, which provides the location of the victim

found. In addition, information regarding the state of the victim, the urgency of the rescue and

the outcome of the rescue can be exchanged via the protocol rescue_protocol.

5.2.3 Connection points

In my framework, I model provided and required operations of organizations through the

notion of a connection point. A connection point of an organization is a logical construct that is

associated with a particular operation and concretely represented by a goal-role pair from that

organization.

Definition 5.3: Connection Point

A connection point of an organization O is a tuple cp = 〈 goal, role 〉 where:

• goal is a goal from O

• role is a role from O.

We denote by CP the set of all connection points.

However, not all connection points are valid. There are two types of valid connection

points: entry and exit connection points. An entry connection point of an organization guarantees

a proper instantiation of the operations it provides. Its goal and role components are called the

entry goal and entry role respectively.

Definition 5.4: Entry Connection Points of an Organization

The set EntryCP of entry connection points of an organization O is defined as follows:

O.EntryCP = {cp:CP | ∃gL ∈GL, 〈cp.role,gL〉∈ achieves ∧ cp.goal ∈ parent*(gL) (1)

∧∀g”∈parent*(gL),g”.type ≠ OR)} (2)

where parent*: Gi → 2Gi is the reflexive transitive closure of parent relationship in the

induced tree. It returns all the ancestors of a goal, including the goal itself.

 70

Essentially, to be valid, an entry connection point needs to guarantee that once its entry

goal is triggered, its entry role can be assigned to an agent. For that, given a connection point

from an organization, we require that the leaf goal achieved by its entry role (called gL) be a

descendant of its entry goal (1) and that no alternate path should exist from the root to gL (2).

These two conditions guarantee that the entry role can be assigned to an agent (if available) once

the entry goal is triggered.

Example 5.3

Figure 5.5 shows two cases of invalid entry connection points. In these figures, the

connection points are represented by the gray nodes. In fact, in the organization on the left,

〈g0,r1〉 is a connection point. In addition, g6 is achieved by the entry role r1. However, g0, an

ancestor of g6, is an OR-goal, which violates condition (2) of Definition 5.4. In this scenario,

when g0 is triggered, the organization can choose to pursue g3 and r1 will never get assigned to an

agent, preventing the operation from executing properly.

Figure 5.5. Invalid Entry Connection Points

 71

 Similarly, in the organization on the right, 〈g1, r1〉 is the connection point. Goal g6 is

achieved by the entry role r1. However, g6 is not a descendant of g1, which violates condition (1)

of Definition 5.4. In this scenario, r1 can get assigned without g1 being triggered.

Figure 5.6 shows an example of a good connection point. In this organization, 〈 g0, r1 〉 is

a connection point and both conditions of Definition 5.4 are met.

An exit connection point of an organization guarantees a proper request of the operation it

uses. Its goal and role components are called the exit goal and exit role respectively. Given a

connection point from an organization, its exit goal should be a leaf goal that is achieved by its

exit role.

Definition 5.5: Exit Connection Points of an Organization

The set ExitCP of exit connection points of an organization O is defined as follows:

O.ExitCP = {cp:CP | cp.goal∈ GL ∧ 〈cp.role ,cp.goal〉∈ achieves }

Basically, in an exit connection point, the exit role needs to achieve the exit goal.

Figure 5.6. Valid Entry Connection Points

 72

Example 5.4

Figure 5.7 shows a valid exit connection point. Any other goal, role pair can be an exit

connection point as long as the exit role needs to achieve the exit goal.

Connection points are the key interfaces that allow organizations to provide and use operations.

Definition 5.6: Operations provided by a connection point

Given an organization O and a connection point cp, the function

provides: CP × ORG → 2OP defines the set of operations provided by cp. It is defined as:

provides(cp) = { op:OP | ∃ gx2∈ Gx | (gx2, cp.goal) ∈ triggers(op.event) (1)

 ∧ ∃ rx2∈ Rx | (rx2, cp.role)∈ participants(op.protocol) } (2)

The roles and goals mentioned in Definition 5.6 are part of the same organization as the

connection point. We say that an entry connection point provides an operation if its entry goal is

Figure 5.7. Exit Connection Points

 73

instantiated based on the occurrence of the request event of that operation (1) and its entry role

engages with an external role in the interaction protocol defined for that operation (2).

Definition 5.7: Operations used by a connection point

Given an organization O, a connection point cp, the function uses: CP × ORG → 2OP

defines the set of operations used by cp as:

uses(cp) = { op:OP | ∃ gx1∈ Gx | (cp.goal, gx1) ∈ triggers(op.event) (1)

∧ ∃ rx1 ∈ Rx | (cp.role, rx1)∈ participants(op.protocol) } (2)

In Definition 5.7, we say that an exit connection point requires an operation if its exit

goal generates a trigger based on the request event of that operation (1) and if its exit role

engages with an external role in the interaction protocol defined for that operation (2).

5.2.4 Service Providers

A service provider is an autonomous organization that provides all the operations of a

particular service. We say that an organization provides a service if, for all operations of the

service, it exposes a unique entry connection point providing that operation.

Definition 5.8: Services providers

The function provides: ORG→ 2SVC defines the set of services provided by an

organization. Given an organization O, we have:

provides(O) = {s:SVC | (∀op∈ s.operations, ∃ cp∈O.EntryCP | op ∈ provides(cp))}

We say that organization O is a service provider for service s if s ∈ provides(O).

In addition, a service provider needs to be designed such that whenever the preconditions

of an operation are met, it pursues a subset of its goals whose achievement leads to a state

satisfying the postconditions of that operation. In this framework, providers can also require

operations from other services.

 74

5.2.5 Service Consumer

A service consumer is an autonomous organization that uses one or more operations

from various services. To use an operation, an organization needs to expose at least one exit

connection point using that operation.

Definition 5.9: Services consumers

The function uses: ORG → 2SVC defines the set of services used by an organization.

Given an organization O, we have:

uses(O) = { s:SVC | (∃ op ∈ s.operations, ∃ cp∈ O.ExitCP | op ∈ uses(cp))}

We say that organization O is a service consumer for service s if s ∈ uses(O)).

For each operation used, a service consumer can expose multiple connection points.

Designers of service consumers choose the operations they need based on the service

specification, which describes what each operation is supposed to do. Designers are responsible

to ensure that the service consumers respect the preconditions of the operations they use.

Example 5.5

In this example, we modify the organizations presented in Figure 5.1 and Figure 5.2 such

that the Rescue Organization provides the Rescuing service specified in Example 5.1 (see Figure

5.8) and the Search Organization uses the rescue operation of that service (see Figure 5.9). For

both organizations, we need to select valid connections points and connect them to the

rescue_event and rescue_protocol declared in the operation’s connector. The Searcher role from

the Search Organization can use the Rescuing Service to achieve its goal. Thus, the Search

Organization contains the exit connection point 〈Explore, Searcher〉 such that the exit goal

Explore triggers the external goal gx1 based on rescue_event while the exit role Searcher

participates in protocol rescue_protocol with external role rx1. Similarly, the Rescue

Organization provides the rescue operation. Hence, we identify the entry connector point 〈ID

Victim, Identifier〉 with its entry goal and role connected to external entities gx2 and rx2 via the

rescue operation connector. We indicate the services used by an exit role via the «uses» keyword

and the operation provided by an entry role by the «provides» keyword.

 75

Figure 5.8. Search Organization - Consumer

Figure 5.9. Rescue Organization - Provider

 76

5.3 Composition of services

So far, we have introduced the entities essential for the design of organization-based

multiagent services. We now present our composition process, which is a mechanism through

which organizations can be assembled in order to produce larger ones.

Composition is a design-time process that binds a consumer application with a provider

in order to create a single composite organization. The composition process is illustrated in

Figure 5.10. Given an operation, the composition process connects the exit connection point of a

consumer with the entry connection point of a provider using the operation’s connector. This

interconnection ensures that the exit goal from the consumer organization can trigger (via the

request event) the initialization of the entry goal from the provider, thus triggering the execution

of the operation. Once the operation is initialized, exit roles and entry roles can interact via the

interaction protocol. The composition parameters are captured through a configuration.

Definition 5.10: Configuration of connection points

A configuration of connection points is a tuple cfg = 〈 exit, op, entry 〉 where:

• op is an operation

Figure 5.10. Interconnection of organization connection points using connectors.

 77

• exit is an exit connection point using op

• entry is an entry connection point providing op

We denote by CFG the set all configurations.

Finally, I can now formalize the result of the composition of two organizations over a

configuration. This composition is the pushout object of two organization homomorphism that

can be constructed based on the relationships between the two initial organizations.

Proposition 5.11: Composition of organizations over a configuration

Given two organizations O1 and O2 and a configuration of connection points

cfg = 〈 exit, op, entry〉 such that exit ∈ O1.ExitCP and entry ∈ O2.EntryCP, the

composition of O1 and O2 over cfg is their composition over a configuration of

organizations config = 〈O0, Φ1, Φ2〉. This configuration of organizations is constructed

based on the configuration of connection points.

Notation:

The composition of two organizations over a configuration is the function

├─ : ORG × ORG × CFG → ORG. Given two organizations O1 and O2 and a configuration

cfg = 〈 exit, op, entry 〉, this composition is denoted ├─(O1, O2, cfg) = O1├─cfg O2.

Proof:

The configuration of organizations O1 and O2 has been defined in Definition 4.15 as a triplet 〈O0,

Φ1, Φ2〉 where:

• O0 is an organization (the shared organization)

• Φ1 corresponds to an organization homomorphism from O0 to O1

• Φ2 corresponds to an organization homomorphism from O0 to O2

I first describe the construction of O0, Φ1 and Φ2. Then I prove that the functions Φ1 and

Φ2 obtained from this construction are organization homomorphisms.

Construction of organization homomorphism

Given two organizations O1 and O2 , let cfg = 〈exit, op, entry〉 where :

 78

• op is an operation with connector 〈op.event, op.protocol〉,

• exit = 〈exit.goal, exit.role〉,

• entry = 〈 entry.goal, entry.role 〉.

From Definition 5.6 and Definition 5.7, exit.goal is required to trigger an external goal gx1 based

on op.event, and exit.role and rx1 should participate in op.protocol. Similarly, entry.goal should

be triggered by goal gx2 and entry.role and rx2 should participate in op.protocol. To construct

organization O0 and organization homomorphisms Φ1: O0 → O1 and Φ2: O0→ O2, we use the

following steps:

Step 1: Equivalence between external entities

Using the connection points and the external entities, we establish equivalences by

associating connection points from one organization to external entities of the other and vice

versa. Therefore, for any given configuration, we always have:

• exit.goal ≡ gx2, exit.role ≡ rx2 and entry.goal ≡ gx1, entry.role≡ rx1

Step 2: Equivalence between nodes

We include equivalences between all “identical” nodes (goals and roles). Without loss of

generality, we can assume that two roles are identical if they have the same name. Therefore, we

assume a unique namespace for all organization roles. Moreover, we define two goals as

identical if they are both empty or if they have the same name and type and their parents and

children are also identical. Note that as all goal models have the same root, we always to include

the equivalence about the roots. More formally, we have:

• if g1 is a goal in O1 and g2 is a goal in O2 then

(g1 = g2 = g_root)

∨ (g1.name = g2.name ∧ g1.type = g2.type ∧ parent(g1) ≡ parent(g2)) ⇒ g1 ≡ g2

• if r1 is a role in O1 and r2 is a role in O2 then

r1.name = r2.name ⇒ r1 ≡ r2

Step 3: Equivalence between edges

We include equivalences between all “identical” edges. Given an edge |a1,b1| from O1 and

an edge |a2,b2| from O2, if , in step 1 or 2 we had a1 ≡ a2 and b1 ≡ b2, then we set |a1,b1| ≡ |a2,b2| .

More formally, we have:

 79

• if |a1,b1| is an edge in O1 and |a2,b2| is an edge in O2 then

(a1 ≡ b1 ∧ a2 ≡ b2) ⇒ |a1,b1| ≡ |a2,b2|

Step 4: Creation configuration of organizations

For each equivalence of nodes a1 ≡ a2 from step 1 and 2 such that a1 is in O1 and a2 is in

O2, we create a node a0 of the same type in O0 and we establish N1(a0) = a1 and N2(a0) = a2,

where Ni is the appropriate node mapping function of Φi. For instance, if a1 and a2 are goals, then

a0 is also a goal and N1(a0) refers to the goal mapping function of Φ1. Similarly, for each

equivalence of edges |a1,b1| ≡ |a2,b2| from step 3 such that |a1b1| is in O1 and |a2,b2| is in O2, we

create an edge |a0,b0| in O0, such that N1(a0) = a1, N1(b0) = b1, N2(a0) = a2 and N2(b0) = b2. In

addition, we establish E1(|a0,b0|) = |a1,b1| and E2(|a0,b0|) = |a2,b2|, where Ei is the appropriate edge

mapping function of Φi. For instance, if |a1,b1| and |a2,b2| are achieves edges, then |a0,b0| is also an

achieves edge and F1(|a0,b0|) refers to the achieves edge mapping function of Φ1.

Formally, we have:

• For goals a1 and a2, a1 ≡ a2 ⇒ ∃a0 ∈ O0 | f1(a0) = a1 ∧ f2(a0) = a2,

• For roles a1 and a2, a1 ≡ a2 ⇒ ∃a0 ∈ O0 | i1(a0) = a1 ∧ i2(a0) = a2,

• For tree edges |a1,b1| , |a2,b2|, |a1,b1| ≡ |a2,b2| ⇒ ∃ |a0,b0| ∈ O0 , g1(|a0,b0|) = |a1,b1|

∧ g2(|a0,b0|) = |a2,b2| ∧ f1(a0) = a1 ∧ f2(a0) = a2 ∧ f1(b0) = b1 ∧ f2(b0) = b2,

• For graph edges |a1,b1| , |a2,b2|, |a1,b1| ≡ |a2,b2| ⇒ ∃ |a0,b0| ∈ O0 , h1(|a0,b0|) = |a1,b1|

∧ h2(|a0,b0|) = |a2,b2| ∧ f1(a0) = a1 ∧ f2(a0) = a2 ∧ f1(b0) = b1 ∧ f2(b0) = b2,

• For protocols |a1,b1| and |a2,b2|, |a1,b1| ≡ |a2,b2| ⇒ ∃ |a0,b0| ∈ O0 , j1(|a0,b0|) = |a1,b1|

∧ j2(|a0,b0|) = |a2,b2| ∧ i1(a0) = a1 ∧ i2(a0) = a2∧ i1(b0) = b1 ∧ i2(b0) = b2,

• For achieves edges |a1,b1| and |a2,b2|, |a1,b1| ≡ |a2,b2| ⇒ ∃ |a0,b0| ∈ O0 , k1(|a0,b0|) =

= |a1,b1| ∧ k2(|a0,b0|) = |a2,b2| ∧ i1(a0) = a1 ∧ i2(a0) = a2 ∧ f1(b0) = b1 ∧ f2(b0) = b2.

Proof that the construction leads to organization homomorphisms

Let Φ1 = 〈 f1, g1, h1, i1, j1, k1 〉, Φ2 = 〈 f2, g2, h2, i2, j2, k2 〉 where fi, gi, hi, ii, ji, ki (1≤ i ≤2),

are the functions defined in Definition 4.5, Definition 4.9 and Definition 4.13. Basically, fi are

functions mapping goals, gi are functions mapping edges from the induced tree of the goal

models (parent edges), hi are functions mapping edges from the induced graph of the goal

 80

models (time-based edges), ii are functions mapping roles, ji are functions mapping protocol

edges and finally ki are functions mapping achieves edges. First, let us show that fi, gi, hi are

functions preserving the structure of the goal model.

Let root0, root1, root2 be the root of the goal model in O0, O1 and O2 respectively. Let us

show that the root is preserved by the functions f1 and f2. Therefore, we need to show that

f1(root0) = root1 and f2(root0) = root2, where root0, root1, root2 are the roots in O0, O1, and O2

respectively. From step 2, we have :

root1 ≡ root2.

From step 4, we create a goal g0 such that:

 f1(g0) = root1 and f2(g0) = root2.

By setting g0 as the root of O0 (i.e. g0 = root0), we have:

 f1(root0) = root1 and f2(root0) = root2.

Next, let |a0,b0| be a tree edge in O0. Let us show that tree edges are preserved by the

functions g1 and g2. Hence, we need to show that g1(|a0,b0|) = |f1(a0),f1(b0)| and

g2(|a0,b0|) = |f2(a0),f2(b0)|. We have:

|a0,b0| tree edge in O0 ⇒ ∃ |a1,b1| ∈ O1 and ∃ |a2,b2| ∈ O2 such that |a1,b1| ≡ |a2,b2| (from step 3)

⇒ f1(a0) = a1 ∧ f1(b0) = b1 ∧ f2(a0) = a2 ∧ f2(b0) = b2 ∧ g1(|a0,b0|) = |a1,b1|

∧ g2(|a0,b0|) = |a1,b1| (from step 4)

⇒ g1(|a0,b0|) = |f1(a0),f1(b0)| ∧ g2(|a0,b0|) = |f2(a0),f2(b0)|

Finally, let |a0,b0| be a induced graph edge in O0. Let us show that graph edges are

preserved by the functions g1 and g2. For that, we need to show that h1(|a0,b0|) = |f1(a0),f1(b0)|

and h2(|a0,b0|) = |f2(a0),f2(b0)|. We have:

|a0,b0| graph edge in O0 ⇒ ∃ |a1,b1| ∈ O1 and ∃ |a2,b2| ∈ O2 such that |a1,b1| ≡ |a2,b2| (from step 3)

 ⇒ f1(a0) = a1 ∧ f1(b0) = b1 ∧ f2(a0) = a2 ∧ f2(b0) = b2 ∧ h1(|a0,b0|) = |a1,b1|

∧ h2(|a0,b0|) = |a1,b1| (from step 4)

 ⇒ h1(|a0,b0|) = |f1(a0),f1(b0)| ∧ h2(|a0,b0|) = |f2(a0),f2(b0)|

 81

Next, let us show that ii, ji are functions preserving the structure of the role model. Let

|a0,b0| be a protocol in O0. Let us show that protocols are preserved by the function j1. Hence, we

need to show that j1(|a0,b0|) = |i1(a0),i1(b0)| and j2(|a0,b0|) = |i2(a0),i2(b0)|. We have:

|a0,b0| protocol in O0 ⇒ ∃ |a1,b1| ∈ O1 and ∃ |a2,b2| ∈ O2 such that |a1,b1| ≡ |a2,b2| (from step 3)

⇒ i1(a0) = a1 ∧ i1(b0) = b1 ∧ i2(a0) = a2 ∧ i2(b0) = b2 ∧ j1(|a0,b0|) = |a1,b1|

∧ j2(|a0,b0|) = |a1,b1| (from step 4)

⇒ j1(|a0,b0|) = |i1(a0),i1(b0)| ∧ j2(|a0,b0|) = |i2(a0),i2(b0)|

Finally, let’s show that the function ki preserves the achieves relationship. For that, we

need to show that given an achieves edge |a0,b0|, we have k1(|a0,b0|) = |i1(a0),f1(b0)| and

k2(|a0,b0|) = |i2(a0),f2(b0)|. We have:

|a0,b0| achieves edge in O0 ⇒ ∃ |a1,b1| ∈ O1 and ∃ |a2,b2| ∈ O2 such that |a1,b1| ≡ |a2,b2| (step 3)

 ⇒ i1(a0)= a1 ∧ f1(b0)= b1 ∧ i2(a0) = a2 ∧ f2(b0) = b2 ∧ k1(|a0,b0|) = |a1,b1|

∧ k2(|a0,b0|) = |a1,b1| (from step 4)

 ⇒ k1(|a0,b0|) = |i1(a0),f1(b0)| ∧ k2(|a0,b0|) = |i2(a0),f2(b0)|

�

Example 5.6

To demonstrate how this construction works in practice, I use our Search and Rescue

organizations whose designs are shown in Figure 5.8 and Figure 5.9. We design the organization

called S&R as the composition of Search and Rescue over cfg where cfg= { 〈Explore, Searcher〉,

rescue, 〈ID Victim, Identifier〉}. As described in Example 5.5, 〈Explore, Searcher〉 is an exit

connection point in the Search Organization and 〈ID Victim, Identifier〉 an entry connection point

in the Rescue Organization. The rescue operation is specified in Example 5.2. Hence, we have:

S&R = Search├─cfg Rescue.

Let us follow the construction steps proposed in Proposition 5.11 to build organization

org0 and organization homomorphisms Φ1, Φ2 that are used in the pushout operation leading to

organization S&R. Figure 5.11 shows org0, Φ1, Φ2 derived from this construction. We have:

 82

Figure 5.11. Composition of Search and Rescue

 83

Step 1:

Explore ≡ gx2

gx1 ≡ ID Victim

Searcher ≡ rx2,

rx1 ≡ Identifier.

Step 2:

g_root ≡ g_root,

Step 3:

| Explore, gx1 | ≡ | gx2, ID Victim |

| Explorer, rx1| ≡ | rx2, Identifier |

Step 4:

From the equivalences created in steps 1,2 and 3, we create organization O0 with goals g_root,

g1, g2, roles r1, r2, and edges e1, e2. Moreover, we create organization homomorphisms

Φ1 = 〈 f1, g1, h1, i1, j1, k1 〉 and Φ2 = 〈 f2, g2, h2, i2, j2, k2 〉 such that Φ1: O0 → Search, Φ2:

O0 → Rescue. We have:

Explore ≡ gx2 ⇒ f1(g1) = Explore ∧ f2(g1) = gx2;

gx1 ≡ ID Victim ⇒ f1(g2) = gx1 ∧ f2(g2)= ID Victim;

Searcher ≡ rx2 ⇒ i1(r1) = Searcher ∧ i2(r1) = rx2;

rx1 ≡ Identifier ⇒ i1(r2) = rx1 ∧ i2(r2) = Identifier;

g_root ≡ g_root ⇒ f1(g_root) = g_root and f2(g_root) = g_root ;

|Explore, gx1| ≡ |gx2, ID Victim| ⇒ h1(|g1,g2|) = |Explore, gx1|

∧ h1(|g1,g2|) = |gx2, ID Victim| ∧ f1(g1) = Explore ∧ f2(g1) = gx2

∧ f1(g2) = gx1 ∧ f2(g2)= ID Victim

|Explorer, rx1| ≡ |rx2, Identifier| ⇒ j1(|r1,r2|) = |Explorer, rx1|

∧ j1(|g1,g2|) = |rx2, Identifier| ∧ i1(r1) = Searcher ∧ i2(r1) = rx2

∧ i1(r2) = rx1 ∧ i2(r2) = Identifier

�

 84

Finally, we can compute the composed organization S&R = Search├─cfg Rescue as the

pushout object of Φ1 and Φ2 in the category ORG. This organization is also shown on Figure

5.11. For clarity of the diagram, we do not show the mappings for Φ’1 and Φ’2 leading to S&R.

The details of this composition are discussed in Appendix A.1.

The composition of two compatible organizations results in a single organization in

which, depending on the assignment process, agents can end up playing roles in both the

consumer and provider organizations. When designing an application, we need to iterate the

composition process over adequate providers as long as the resulting composite organization still

requires some operations. This iteration is possible as unused connection points are still available

after composition. Essentially, after the composition, all exit and entry connection points that are

not part of the configuration belong to the composite organization.

Proposition 5.12: Connection points of a composite organization

Let O1, O2, O3 be three organizations and cfg = 〈exit, op, entry〉 be a configuration of

connection points such that exit ∈ O1.ExitCP and entry ∈ O2.EntryCP.

If O3 = O1├─cfg O2, then :

O3.ExitCP = O1.ExitCP ∪ O2.ExitCP – {exit}

O3.EntryCP = O1.EntryCP ∪ O2.EntryCP – {entry}

Proof:

As stated in Section 3.3, the pushout construction operated during computation of the

composition aggregates the unrelated organization components together without adding any new

components and merges the shared components defined in the configuration. As a result, the

composite organization has all components of both organizations while eliminating duplicates

identified in the shared part. Let cp be a connection point from either O1 or O2. From Definition

5.6 and Definition 5.7, cp should be connected to external entities. We have two cases:

Case 1: cp is not part of the configuration i.e. cp ≠ exit and cp ≠ entry

Based on the construction proposed in Proposition 5.11, cp and its external entities are

not part of the shared organization. Therefore, they appear in the pushout organization (the

pushout operation only merges element from the shared organization). We have:

 85

{cp} ∈ O3.EntryCP or {cp} ∈ O3.ExitCP (depending if cp was an entry or exit

connection point).

Case 2: cp is part of the configuration i.e. cp = exit or cp = entry

Based on the construction proposed in Proposition 5.11 (step 1), external entities

connected to connection point cp are mapped to internal entities. Hence, in the pushout object, cp

is connected to internal entities. By Definition 5.6 and Definition 5.7, cp is no longer a valid

connection point. Hence, we have:

{entry} ∉O3.EntryCP if cp = entry

{exit} ∉ O3.ExitCP if cp = exit.

Therefore, from case 1 and 2, we have:

O3.ExitCP = O1.ExitCP ∪ O2.ExitCP – {exit}

O3.EntryCP = O1.EntryCP ∪ O2.EntryCP – {entry} �

5.4 Related Work

Several organizational frameworks for multiagent systems have been proposed to deal

with the complexity of large software systems [39, 44, 48, 74, 90, 125]. Moreover, it has been

long suggested that decomposition in OMAS would help cope with the complexity of systems

[65]. However, most of the current methodologies suggest the decomposition of large

organizations into smaller ones without providing a rigorous process to recombine them. For

instance, Ferber et al. proposes partitioning a multiagent system into groups [39]. Those groups

can interact with each other by having a gatekeeper agent participating in multiple groups.

However, there is no formal description on the way those groups are aggregated into one

consistent system. Similarly, Zambonelli et al. propose a methodology based on organizational

abstraction for multiagent systems [125]. They recognize the importance of reusability in OMAS

and propose dividing the system into loosely-coupled sub-organizations to reduce design

complexity. Nonetheless, reconnection of those sub-organizations is left to the designer who

needs to know the internal behavior of each sub-organization in order to assemble them

appropriately. Hence, in most cases, the designer informally uses the agent interaction

 86

mechanisms to integrate multiagent organization designs. My approach proposes a rigorous

specification of the interfaces necessary to adequately compose various multiagent organizations,

thus allowing a better reusability and maintainability of complex OMAS. Organizations can then

be developed by different designers and later combined via their specified interfaces.

Besides organizational approaches, other frameworks, which have been derived from

component-based software engineering, propose a compositional approach for building

multiagent systems (MAS). In DESIRE [11], Brazier et al. propose a compositional design of

MAS in which agents are represented by components that can be composed of subcomponents.

They claim that a multiagent system can be built incrementally by composition of several

components at different levels of abstraction. However, DESIRE, like other frameworks based

on components, is agent-centric and does not consider OMAS, which provides better abstraction

for complex systems.

Dastani et al. define a coordination model for agents and MAS called Reo [24]. Their

model handles coordination only and does not consider the entities (agents or MAS) that need to

coordinate. The designer chooses the entities participating in the coordination and Reo handles

the coordination. However, Reo does not specify any interfaces that MAS need to provide in

order to be composed. In my work, I not only specify the coordination mechanisms necessary for

organizations to be composed, but I also specify standard interfaces that allow organizations to

be interconnected without knowing the details of their design models.

Few works explicitly consider using service-oriented principles for developing OMAS.

Most of the work unifying services and agents concepts concern agent-based service-oriented

systems, in which agents are used as a mere wrapper of services [60, 61]. Cao et al. propose a

methodology called Organization and Service Oriented Analysis and Design (OSOAD) [18].

OSOAD combines organizational modeling, agent-based design and service-oriented computing

in order to build complex open OMAS. Their approach is similar to mine in the sense that

complex OMAS are built based on service-oriented principles. However, in their approach, the

system is designed using an organizational approach and services are offered at the agent level,

whereas my approach considers entire multiagent organizations as service providers. This

approach allows us to develop cooperative services, which are services that cannot be provided

by an individual agent.

 87

5.5 Summary

I have presented an approach to ease the development of complex OMAS by developing

reusable multiagent organizations. Most current approaches only use decomposition to benefit

separation of concerns during design. They lack of formalization concerning the composition of

the sub-organizations, which makes such sub-organizations challenging to reuse and the resulting

applications very difficult to maintain.

Our approach combines service-oriented principles with organizational concepts in order

to provide MAS designers with predefined reusable multiagent organizations. I have described

how to design such organization-based multiagent services so that they expose the appropriate

interfaces in order for potential consumers to request the operations they provide. Moreover, I

have described our composition process that merges multiagent organizations into a single

composite organization.

A significant advantage of our approach is the ability to compose multiagent

organizations to develop a wide variety of complex applications. Indeed, it is easier to design

complex organizations by using collections of simpler organization modules wrapped up as

services. Moreover, by designing multiagent organizations with a separation of concerns mindset

and by reusing identical goals during the composition, my approach ensures that the composite

organization will have the minimum number of goals, whereas an ad-hoc design that did not plan

for reuse could result in duplicate goals in different subtrees.

Finally, a composite organization can efficiently manage the available resources by

avoiding the overhead that would have resulted from coordinating several organizations. In fact,

having a single organization simplifies reorganization tasks by allowing us to reuse work already

done concerning reorganization of individual organizations [104, 107, 126].

The service-oriented approach proposed in this chapter represents one way of using the

theoretical framework proposed in Chapter 4. It allows the construction of organization

homomorphisms based on specific definitions of what design elements can be considered

identical. However, it is possible to define other approaches that would compose design elements

based on other criteria.

 88

CHAPTER 6 - CASE STUDIES

“That some achieve great success, is proof to all that

others can achieve it as well.” ⎯ Abraham Lincoln

“One day Alice came to a fork in the road and saw a

Cheshire cat in a tree. "Which road do I take? " she

asked. His response was a question: "Where do you

want to go? " "I don't know, " Alice answered.

"Then," said the cat, "it doesn't matter." ”

⎯Lewis Carroll, Alice in Wonderland

In this chapter, I demonstrate the validity and usefulness of my approach by developing

two applications using several services. For the first application, I design several cooperative

robotic services and show they can be composed to create a complex organization design. In

addition, I propose other organization designs developed using conventional design approaches

and compare them with my approach. The second application is a Wireless Sensor Networks

application that uses one service. I provide two different designs of the same service and show

how the service-oriented framework allow the permutation of those two designs without any

modifications to the main design. Furthermore, I implement this application in order to

demonstrate some of its adaptive properties.

6.1 Cooperative Robotic for Airport Management (CRAM)

6.1.1 Description

In order to demonstrate the validity of our service-oriented framework for designing

MAS applications, I design an application called Cooperative Robotic for Airport Management

 89

(CRAM). In this application, a team of heterogeneous robots is in charge of handling some

aspects of the airport management task. Essentially, the team needs to monitor the airport

building for possible threats, perform preliminary cargo inspections and clean the building.

Threats detected need to be safely removed and cargo that failed the preliminary inspection need

to be sent to another location for further inspection.

Services for developing MAS applications can exist in a repository of services and then

reused or they can come from the decomposition of a particular problem into smaller ones. For

this example, I develop two repository services: the transportation service and the cleaning

service and show how they can be used to develop our CRAM application.

<service name= Transportation>

 <operation name= push>

 <connector>

 <protocol> push_protocol </protocol>

 <event> push_event(object) </event>

 </connector>

 <conditions>

<pre> The object exits </pre>

<post> The object is at its final destination </post>

 </conditions>

 </operation>

 <operation name= carry>

 <connector>

 <protocol> carry_protocol </protocol>

 <event> carry_event(object) </event>

 </connector>

 <conditions>

<pre> The object exits </pre>

<post> The object is at its final destination </post>

 </conditions>

 </operation>

</service>

__

Figure 6.1. Transportation Service specification

 90

6.1.2 The Transportation Service

The Transportation Service is a service that allows objects to be transported at a certain

destination. Object transportation is a common problem in cooperative robotics [77, 92, 99, 109,

116] and many applications could definitely benefit from such a service. This service involves

moving an object to a certain destination by either pushing it or carrying it. Thus, the

transportation service proposes two operations: push and carry (Figure 6.1). The push operation

is specified as follows:

• The operation is initiated by the event push_event with the object as a parameter.

• Interaction with the operation is made through the protocol push_protocol.

• The precondition for the operation requires that the object exists.

• The postcondition for the operation requires that the object be at its final destination

The carry operation is specified as follows:

• The operation is initiated by the event carry_event with the object as a parameter.

• Interaction with the operation is made through the protocol carry_protocol.

• The precondition for the operation requires that the object exists.

• The postcondition for the operation requires that the object be at its final destination.

To design the Transportation Service, I propose an organization called Cooperative

Transportation, which uses a two-robots team for pushing and carrying objects to their requested

destination. The goals and roles used to carry out those operations are shown in Figure 6.2. In

this figure, the top-level goal is Transport Object. This goal is further decomposed into two

subgoals: Push and Carry. The Push goal is decomposed into two subgoals: Start Pushing and

Assist Pushing that are the two leaf goals that the two-robots team is pursuing while pushing an

object. In the role model, we design the roles Pusher, Helper, Lifter and Carrier such that they

each can achieve one leaf goal. The Cooperative Transportation organization provides the

Transportation Service specified in Figure 6.1. The entry connection points are 〈Push, Pusher〉

and 〈Deliver, Carrier〉. Entry connection point 〈Push, Pusher〉 provides the operation push while

entry connection point 〈Deliver, Carrier〉 provides the operation carry.

 91

Figure 6.2. Transportation Organization

 92

6.1.3 The Cleaning Service

Cooperative cleaning is a common problem in cooperative robotics and several works

have been published regarding the use of robots for cleaning [78, 91, 110, 115]. Here, we

propose a cleaning service whose main operation is to clean a given area. This design is similar

to the one proposed in [104]. The specification of this service is presented in Figure 6.3.

We design the Cooperative Cleaning Organization, shown in Figure 6.4, which involves

a team of robots coordinating their actions in order to clean a given area. This organization

provides the Cleaning Service. The entry connection point providing the clean operation is made

of the goal Divide Area and the role Leader. The Divide Area goal is in charge of dividing an

area into smaller areas that can be handled by individual robots. Once the area to be cleaned has

been divided, the Clean goal is triggered. The Clean goal is decomposed into two disjunctive

goals. Hence, it offers two ways of cleaning; the organization can decide to either do a deep

clean (Deep Clean goal) or just vacuum (Vacuum goal). The Deep Clean goal is further

decomposed into two conjunctive goals: Sweep and Mop.

<service name= Cleaning>

 <operation name= clean>

 <connector>

 <protocol> clean_protocol </protocol>

 <event> clean_event(area) </event>

 </connector>

 <conditions>

<pre> The area is accessible </pre>

<post> The area has been cleaned </post>

 </conditions>

 </operation>

</service>
__

Figure 6.3. Cleaning Service specification

 93

Figure 6.4. Cleaning Organization

 94

Figure 6.5. CRAM Organization

 95

6.1.4 The Cooperative Robotic for Airport Management organization

We can now design the CRAM organization that uses the services described earlier. The

CRAM organization design is presented in Figure 6.5. The main goal of the system, Manage

Airport, has three conjunctive subgoals that represent the three main tasks of our system:

Monitor Building, Perform Cargo Inspection, Operate Sanitary Maintenance. These goals are in

turn further decomposed into conjunctive leaf goals. In addition, for each leaf goal in the CRAM

organization, we create a role that can achieve it. Moreover, we identify that the Neutralizer,

Transporter and Trash Collector roles can use the Transportation Service for their achievement.

We also decide to use the Cleaning Service during the achievement of the Janitor role. Thereby,

the CRAM organization created contains the following four exit connections points: 〈Alert and

Neutralize, Neutralizer〉, 〈Send for Inspection, Transporter〉, 〈Clean Floors, Janitor〉, and

〈Dispose Trash, Trash Collector〉.

6.1.5 The Composition Process

In this section, I show how to compose the CRAM application with all the required

services in order to create a single composite organization. Once the core application has been

designed, we must complete the design by composing required services. As mentioned before,

the CRAM requires the push and carry operations from the Transportation Service and the clean

operation from the Cleaning Service, which are provided by the Cooperative Transportation

organization and the Cooperative Cleaning organization respectively. Let Cram, Transportation,

and Cleaning be the CRAM, Cooperative Transportation and Cooperative Cleaning

organizations respectively. Moreover, we define the following connection points:

• cp_Neutralize = 〈Alert and Neutralize, Neutralizer〉, cp_Trash = 〈Dispose Trash,

Trash Collector〉, cp_Janitor = 〈Clean Floors, Janitor〉, cp_Transport = 〈Send for

Inspection, Transporter〉 from Cram,

• cp_Push = 〈Push, Pusher〉 , and cp_Carry = 〈Carry, Carrier〉 from Transportation

such that cp_Push and cp_Carry provide operation push and carry respectively,

• cp_Clean = 〈Divide Area, Leader〉 from Cleaning such that cp_Clean provides

operation clean.

 96

We have identified four exit connection points in the CRAM organization. Hence, we need four

composition operations in order to compose these exit connection points with appropriate entry

connection points from provider organizations. As explained in section 5.3, during the

composition, entry and exit goals are connected via a trigger and entry and exit roles are

connected via a protocol. Let us first compose Cram with Transportation providing the carry

operation. As there are two connection points requiring the carry operation (cp_Neutralize and

cp_Trash), we need to have two configurations of connection points carry1 and carry2 such that:

 carry1= 〈cp_Neutralize, carry, cp_Carry〉 and

carry2 = 〈cp_Trash, carry, cp_Carry〉.

Hence, we define organizations cram_carry1 and cram_carry2 as:

Cram_carry1 = Cram ├─carry1 Transportation (C1)

Cram_carry2 = Cram_carry1 ├─carry2 Transportation (C2)

Organizations Cram_carry1 and Cram_carry2 are shown in Figure 6.6 and Figure 6.7

respectively.

As connection point cp_Transport has not been connected yet, it is still available in organization

Cram_carry2. Thereby, as cp_Transport uses the push operation, we define a configuration

linking cp_Transport and cp_Push, which is a connection point from the Transportation

organization providing the push operation. Hence, we define the configuration push as:

 push = 〈cp_Transport, push, cp_Push〉;

We can now compose the Cram_carry2 organization obtained previously with Transportation

over the push configuration. We have:

Cram_push = Cram_carry2 ├─push Transportation (C3)

The organization Cram_push is shown in Figure 6.8.

Finally, we define the configuration clean linking connection point cp_Janitor, which uses the

clean operation, with cp_Clean, which provides the clean operation. We have:

 97

clean = 〈cp_Janitor, clean, cp_clean〉.

Composing the Cram_push with Transportation over clean, we obtain:

Cram_clean = Cram_push ├─clean Cleanning (C4)

The organization Cram_push is shown in Figure 6.9.

Cram_clean represents a complete application, i.e. it does not use any services. For

clarity, only the shared and composite organizations are shown in Figure 6.6, Figure 6.7, Figure

6.8 and Figure 6.9. The details of the organizations and organization homomorphisms used in

composition C1, C2, C3 and C4 above are discussed in Appendix A.2.

 98

Manage
Airport

Operate
Sanitary

Maintenance

Clean
Floors

Clean_
Protocol

Dispose
Trash

Janitor Trash Collector

rx3

gx3

clean_event
(Area)

g_root

Transport
Object

Carry
(Object)

Deliver
(Object)

Carrier

carry_protocol

ready

Load &
Unload
(Object)

Lifter

Cram_carry1

g_root

g1 g2
e1

r1 r2
p1

Shared1

Monitor
Buildings

Neutralizer

Patroller

Alert &
Neutralize
(Threat)

Patrol
(Path)

Compute
Paths

Computer

Assign

(path) Found
(threat)

Perform
Cargo

Inspection

Send for
Inspection

(Cargo)

Screen
All

Cargos

Transporter

Push
_Protocol

Screener

rx2

gx2

push_event
(Object)

Inspect
(cargo)

Assist
Pushing
(Object)

Push
(Object)

Start
Pushing
(Object)

push
_protocol

push_event
(Object)

Pusher Helper

gx1

rx1

sync

Cram Transportation

’
’

Figure 6.6. Cram_carry1 as the composition of Cram with Transportation over
configuration carry1 for operation carry.

 99

Figure 6.7. Cram_carry2 as the composition of Cram_carry1 with Transportation over

configuration carry2 for operation carry

 100

Figure 6.8. Cram_push as the composition of Cram_carry2 with Transportation over
configuration carry2 for operation push

 101

Figure 6.9. Cram_clean as the composition of Cram_push with Cleaning over configuration
clean for operation clean

 102

6.1.6 Comparison with an ad-hoc design

In order to compare my compositional design with another design, I propose an alternate design

of the CRAM application based on the notion of sub-organizations advocated by numerous

methodologies [39, 44, 125]. The Transportation and Cleaning organization requirements are

developed as sub-organizations and then integrated into the main CRAM design. I am interested

in evaluating this ad-hoc design and my proposed compositional design with regards to

reusability, redundancy and flexibility of the organization design models.

Following the definition of reusability suggested by Frakes and Terry [42] and Bansiya

and Davis [4], I define reusability of a design model DM as the number of design components

from DM reused from previous projects. Hence, for the ad-hoc design, I assume that at least one

project was developed previously and resulted in the design of the Transportation and Cleaning

sub-organizations. For the compositional design, I assume the prior existence of the

Transportation and Cleaning services as designed in Section 6.1.5. For a given organization

design, its design components are its goals, roles, triggers and protocols. I compare the number

of design components reused in each approach. For the ad-hoc design, only protocols and

triggers between reused roles and goals can be counted as reused. This is due to the fact that, in

the ad-hoc approach, triggers and protocols involving application goals and roles cannot be taken

into consideration as they are application-specific. In fact, most of the time, integration of

triggers and protocol require some modifications (like some renamings or parameter

modifications) of both the application and the reused sub-organizations in order to have them

work properly together. On the contrary, in the compositional approach, triggers and protocols

linked to application components are counted as reused are they are generic and developed as

part of the service and consequently do not depend on the application. All applications have to

conform to these predefined entities and no modification is necessary. The organization design

model for the ad-hoc approach is shown in Figure 6.10. Reused goals and roles are shown with a

shade of gray. The design model for the composite approach is the one obtained from the

previous section (Cram_clean organization) and is shown in Figure 6.11. For this design, reused

components are all design components originally coming from the services used. The reused

goals and roles in this design are also shown with a shade of gray.

 103

 Figure 6.10. Ad-hoc design of the complete CRAM application. Reused goals and roles are in
gray.

 104

Figure 6.11. Compositional design of the complete CRAM application. Reused goals and
roles are in gray.

 105

From the organizational design produced by the ad-hoc approach, we have a total of 29

goals, 5 triggers, 14 roles and 6 protocols. Among these components, we have 12 reused goals, 1

reused trigger, 8 reused roles and 2 reused protocols. Globally, we have reused 23 components

out of the 54 components used for the ad-hoc organizational design (43% of reuse). Note that I

do not take precedes relations into considerations as they are generic components that do not

depend on any applications. From the organizational design produced by the compositional

approach, we have a total of 28 goals, 5 triggers, 14 roles and 6 protocols. Among these

components, we have 14 reused goals, 5 reused triggers, 8 reused roles and 6 reused protocols.

Globally, we have reused 33 components out of the 53 components used for the compositional

design (62% of reuse). Therefore, in our example, the compositional approach results in a design

with a higher reusability compared to the one obtained from the ad-hoc approach.

In addition, as suggested by Sametinger [103], reusing components often leads to a lot of

redundant components. This is particularly the case in the ad-hoc design for which each sub-

organization is integrated as a new subtree. For instance, the design in Figure 6.10 shows two

subtrees containing the goals for a sub-organization starting with the carry goal. This is

necessary as both the Neutralize and the Dispose Trash goals require the completion of a carry

goal in order to be achieved. However, in my compositional approach, service goals and roles

appear only once as separate subtrees and do not need to be duplicated whenever another

application goal requires the same service. Hence, goals related to the carry operation only

appear once even though two different goals require it for their achievement.

Following the definition of flexibility suggested by Eden and Mens [34] and Bansiya and

Davis [4], I define flexibility of a design model DM as the number of design components from

DM that need to be modified in order to add a new requirement to the system. In order to have a

meaningful comparison of the designs regarding flexibility, I only consider new requirements

related to the secondary tasks as changes to the main requirements are handled similarly in both

approaches. Let us assume that the requirements for the application have changed and these

requirements are not met by the current carry sub-organizations (in the case of the ad-hoc design)

and by the current carry operation from the Transportation service (in the case of the

compositional design). Let us also assume that another sub-organization (or another service)

exists and can be used to meet the new requirements. In the case of the ad-hoc design, a

replacement of the carry sub-organization involves modifying all goals, roles, triggers and

 106

protocols belonging to the old sub-organization. Hence, from Figure 6.10, goals Activate Alert,

Find Trash Bins, roles Alarm, Trash Collector, triggers eliminate(threat), remove(thrash) and

protocol trash_protocol, all need to be modified. Therefore, there are 7 components that would

need to be modified in order to cater for the replacement of the current carry sub-organization.

On the contrary, by providing clear interfaces, organization designs can be changed without any

modifications. Hence, replacing any service provider does not require any modifications.

Therefore, the composition design of the CRAM application is more flexible than the ad-hoc

design of the same application.

6.2 Adaptive Target Tracking

As another proof-of-concept, I propose the design and implementation of a Wireless

Sensor Networks application that uses one service and I demonstrate how the design models used

in this work can lead to an adaptive system. In particular, I propose a surveillance application in

which sensors are used to collaboratively monitor and track all vehicles entering an area. In this

application, sensors are deployed over a large area. As sensors have a limited sensing range, no

one sensor can cover the entire area. Hence, agents, which are controlling sensors, need to

collaborate in order to provide data covering the entire area of interest. In particular, in order to

conserve energy, we would like to provide the maximum coverage with the minimum number of

agents. In the absence of targets, agents not monitoring must be in a sleep state in order to

conserve energy. Once a target is detected, all sensors in the vicinity must be activated in order

to provide the maximum number of measurements that will be used in order to properly locate

and identify the target.

For this particular application, I design a Time Synchronization service that is used by

sensing roles in order to add timestamp information on the sensing data they are gathering. Then,

I design two different providers of the Time Synchronization service. These designs are based on

two well-known time synchronization algorithms, namely FTSP [80] and RBS [35]. My goal is

to demonstrate how my framework allows the permutation of two provider designs without any

modifications to the main design.

In addition, I show how the organizational approach allows the system to autonomously

adapt to overcome sensor failures and loss of performance due to capability degradation.

 107

6.2.1 Time Synchronization Service

The goal of a Time Synchronization service is to allow an agent to synchronize its

internal clock with another agent. For our example, we assume that agents only need to

synchronize their clocks with the base station. The specification of this service is shown in

Figure 6.12.

This service has one operation, synchronize, which initiates a synchronization process

with the base station. This operation periodically returns the current clock offset. The clock

offset is defined as the difference between the time on the current node and the time at the base

station. Note that the operation does not stop after returning one value. It is executed periodically

(the period depends on service providers) until a stop message is received. The offset values and

stop messages are exchanged via the sync protocol. The operation is instantiated via the

synchronize trigger that passes the requester agent’s information. This information is necessary

as any time synchronization provider would need to know which nodes need to synchronize.

<service name= Time Synchronization>

 <operation name= synchronize>

 <connector>

 <protocol> sync </protocol>

 <event> synchronize(requester) </event>

 </connector>

 <conditions>

<pre> A clock is available </pre>

<post> The clock offset is returned </post>

 </conditions>

 </operation>

</service>

__

Figure 6.12. Time Synchronization Service specification

 108

I propose two organization designs implementing the Time Synchronization service: the

FTSP organization and the RBS organization. The FTSP organization is based on the Flooding

Time Synchronization Protocol (FTSP) [80]. In FTSP, the base station periodically floods the

network with a synchronization message containing its current time. Interested nodes can use the

departure and arrival time of these messages to compute the Base Station time and adjust their

clock offset accordingly. The details of the algorithm used to compute the offset can be found in

[80]. The RBS organization is based on the Reference Broadcast Synchronization (RBS) [35]. In

RBS, a beacon node periodically sends a beacon message. A pair of nodes interested in

synchronizing use the arrival time of the beacon message to compute their clock offset. They do

so by assuming simultaneous reception of the beacon message and exchange their reception time,

allowing them to have an estimate of their clock offset. The details of this algorithm can be

found in [35].

6.2.2 FTSP Organization

The design of the FTSP Organization is shown in Figure 6.13. The top-level goal is the

FSTP goal. This goal is decomposed into two conjunctive subgoals: Compute Time, which is

achieved by the role Receiver and Broadcast Time, which is achieved by the role Reference. This

organization provides the Time Synchronization Service. The entry connection point providing

the synchronize operation is made of the goal Compute Time and the role Receiver. Essentially,

the agent representing the Base Station plays the reference role and broadcasts synchronization

messages that include its current time. Any agent who wants to synchronize plays the receiver

role and adjusts its time based on the time received from the reference role (the base station).

 109

Figure 6.13. FTSP Organization.

Exhange Beacon
Time

Compare Time

Compare Time
(requester)

RBS

Broadcast
Beacon

sync

Synchronize
(requester)

Receiver

<<requires>>
Clock

<<provides>>
TimeSync.synchronize

Reference

<<requires>>
Clock

Base Station

Beacon

<<requires>>
Clock

gx4

rx4

g_root

exchange

Figure 6.14. RBS Organization

 110

Figure 6.15. Surveillance Organization

 111

6.2.3 RBS Organization

The design of the RBS Organization is shown in Figure 6.14. The top-level goal is the

RBS goal. This goal is decomposed into two conjunctive subgoals: Compute Time and Broadcast

Beacon. The goal Compare Time is further decomposed into subgoals Compare Time and

Exchange Beacon Time. In our design, the goal Compare Time is achieved by role Receiver, the

goal Exchange Beacon is achieved by the role Reference and finally the goal Broadcast Beacon

is achieved by the role Beacon. This organization provides the Time Synchronization Service.

The entry connection point providing the synchronize operation is made of the goal Compare

Time and the role Receiver. Essentially, the agent playing the broadcast role broadcasts beacon

messages. The agent who wants to synchronize plays the receiver role and exchanges

synchronization messages with the agent (Base Station) playing the reference role.

6.2.4 Surveillance application

The main application we are trying to design is the surveillance application. From the

requirements of our surveillance system, we derived the organization design presented in Figure

6.15. The top-level goal is the Surveillance goal. This goal is decomposed into four subgoals:

Define Area, Monitor, Track, and Generate Reports. The Monitor and Track goals are further

decomposed into Determine Coverage, Monitor Area, Divide Area and Track Area. The leaf

goals are the goals that are actively pursue by the organization by being assigned to agents.

Essentially, once an area is defined via the achievement of the Define Area goal, an event is

generated that triggers the instantiation of the parameterized goal Monitor (initial_area). As the

area parameter might be too large for any single agent, the goal Determine Coverage is in charge

of dividing it into smaller subareas that can potentially be covered by a single agent. Each of

these subareas (monitoring_area) is used as a parameter to a Monitor Area goal. Each Monitor

Area goal can in its turn initiate a Track goal for a given detection area. Once again, the detection

area defined for the track goal might be too vast for a single agent. Hence, the Divide Area goal

breaks up the detection area, which results in the creation of a Track Area goal for each subarea

(tracking_area) identified. Finally, all application data gathered are aggregated in a user-friendly

report by the Generate Reports goal. Next, we define the roles that can achieve the leaf goals

 112

identified in the goal model. For each role, we specify the behavior that is followed by agents

enacting this role. Examples of role behaviors (represented as a state machine) are introduced in

Section 6.2.7. We identified five roles necessary to achieve the goals: User Interface, Coverage

Processor, Divider, Monitor and Tracker. The User Interface role achieves goals Define Area and

Generate Reports. The Coverage Processor role achieves the goal Determine Coverage. The

Monitor role achieves the goal Monitor Area. The Divider role achieves the goal Divide Area.

Finally, the Tracker role achieves the goal Track Area. Moreover, the surveillance application

uses the Time Synchronization service via two connection points: 〈Monitor Area, Monitor〉 and

〈Track Area, Tracker〉

6.2.5 Compositional Design

The Surveillance application uses the Time Synchronization service to timestamp data

messages sent by the agents. It uses the synchronize operations from the Time Synchronization

Service that can be provided by either the FTSP organization or the RBS organization. Hence, to

obtain a complete Surveillance application we can compose it with either the FSTP organization

or the RBS organization. The choice can be made based on the capabilities required by the

service or some quality of service information. This decision is out of the scope of the

framework proposed here. I compose the surveillance application with both providers in order to

demonstrate how my framework allows the permutation of providers without any modifications

to the main surveillance organization design.

The exit connection points of the Surveillance organization are 〈Monitor Area, Monitor〉

and 〈Track Area, Tracker〉, with both using the synchronize operation. Let us first compose the

Surveillance organization with the FTSP organization. The FTSP organization exposes entry

connection point 〈Compute Time, Receiver〉. In order to do the composition, we create a

configuration comprising each of the exit connection points. Hence, we create configuration

config1 and config2 such that:

config1= 〈〈Monitor Area, Monitor〉, synchronize, 〈Compute Time, Receiver〉〉 and

config2 = 〈〈Track Area, Tracker〉, synchronize, 〈Compute Time, Receiver〉〉.

 113

Hence, we define organizations Surveillance_FTSP as:

Surveillance _FTSP = (Surveillance ├─config1 FTSP) ├─config2 FTSP

Figure 6.16 shows the composite Surveillance_FTSP organization. The details of this

composition are in Appendix A.3.

Next, we compose the Surveillance organization with the RBS organization. To do this

composition, the original Surveillance organization does not need to be modified as it already

possesses all the required interface to be composed with any organization providing the Time

Synchronization service. As we have seen, the RBS organization exposes entry connection point

〈Compare Time, Receiver〉. In order to do the composition, we create a configuration comprising

each of the exit connection points. Hence, we create configuration config1 and config2 such that:

config3= 〈〈Monitor Area, Monitor〉, synchronize, 〈Compare Time, Receiver〉〉 and

config4 = 〈〈Track Area, Tracker〉, synchronize, 〈Compare Time, Receiver〉〉.

Finally, we define organizations Surveillance_RBS as:

Surveillance _RBS = (Surveillance ├─config3 RBS) ├─config4 RBS

Figure 6.17 shows the composite Surveillance_RBS organization. The details of this

composition are in Appendix A.4.

Therefore, the initial Surveillance organization can be composed with any Time

Synchronization provider. This composition results in either the Surveillance_FTSP organization

or the Surveillance_RBS organization.

In the next Sections, I give more details about the architecture and low-level design steps

that can be used to implement systems designed with the approach proposed in this dissertation.

The goal is to demonstrate the usefulness of organizational design models to build adaptive and

autonomous multiagent systems. The implementation is based on the Surveillance_FTSP design

proposed in this Section.

 114

Figure 6.16. Surveillance composed with FTSP

 115

Figure 6.17. Surveillance composed with RBS

 116

6.2.6 System Architecture

In what follows, we consider the Surveillance_FTSP design presented in Figure 6.16.

Once the organization design models are defined, we define the agents that will be participating

in the organization. Agents are designed to assume roles in an organization. They are designed

separately and can participate in the organization as long as they have the required capabilities.

In this section, I introduce our agent architecture that exploits the design models to build an

organizational knowledge.

In our application, we have two types of agent: Base Station Agents and Mote Agents.

We use one Base Station Agent that runs on a PC platform. Our application also contains several

Mote Agents running on the Crossbow mote platform, which is a sensor network platform [22].

The overall system architecture is presented in Figure 6.18. The design models are

designed using agentTool III (aT3), a multiagent development environment built on the Eclipse

platform. aT3 supports the development and validation of design models that can be

automatically translated into platform specific runtime models. These runtime models are used

Figure 6.18. Overall System Architecture

 117

by the Base Station agent to make decision about the reconfiguration of the organization. We

chose to have the entire organizational knowledge in the Base Station agent because it has more

computational resources than the motes and it is less prone to failure. Therefore, in our system,

the Base Station agent is the only agent that posses the organizational knowledge and decides the

next configuration of the organization. Moreover, we assume that all agents are within

communication range of the Base Station agent. The Base Station agent runs on a laptop with a

base station mote (mote 0) attached to it. This mote acts as a gateway and allows the Base

Station agent running on a PC to interact with the rest of the agents exclusively running on the

mote platform.

Once assignments have been made by the Base Station agent, they are passed on to the

Mote agents who execute them and return feedback based on possible events that are of interest

to the organization (goal failure, goal completion, or application specific events) regarding their

assignments. Consequently, the Mote agents have some limitations on their autonomy as they

must agree to play their assigned role and pursue the assigned goal. Nonetheless, depending on

how the role was designed, they can have freedom in the choice of the specific actions necessary

to play a role. The organizational roles presented in this example have been designed with

specific steps that all agents must follow.

The Base Station agent and the Mote agents are all agents participating in the same

organization and cooperating in order to achieve the main organizational goal. Both types of

agents follow the same general architecture that consists of two main components: the Control

Component and the Execution Component (see Figure 6.19). The Control Component performs

all organization-level reasoning while the Execution Component provides all the application

specific reasoning. This architecture has been designed to facilitate extensibility and reusability

and to provide a clear separation between organization control and application. With this

architecture, control components can be modified to cater for different organization control

mechanisms without sacrificing compatibility with the rest of the system.

The Control Component possesses an organizational knowledge component that stores all

the knowledge about the structure of the organization and a control manager that makes the

decisions. The organizational knowledge is created based on organization design models and

updated at runtime as organization events arrive. In addition, agents are added to this knowledge

base as they appear and register to participate in the organization. Based on the organizational

 118

knowledge, the control manager can reason about the state of the entire organization and decide

to reconfigure the organization by including or canceling goals, or by modifying current

assignments. As each Control Component has its own view of the organization, a deliberation

process might be needed in order to reach a consensus about the next state of the organization.

However, in the system described in this research, we have opted to store the entire

organizational knowledge at the Base Station agent who can make decision alone. All decisions

taken by the Base Station agent are passed on to the Control Component of all the agents that are

affected, which then forward these assignments to their attached Execution Components.

The Execution Component corresponds to the application specific part of the agent. It is

notified by its Control Component about what role to play in the organization. Once it has been

assigned a role, the Execution Component uses its capabilities to execute the plan that has been

provided for that role at design time. During role execution, an Execution Component may need

Figure 6.19. Generic Agent Architecture

 119

to coordinate with other Execution Components in order to exchange application data. In our

case, the Mote agents report their sensor data to the Base Station agent (acting as a sink) via their

Execution Components.

6.2.7 System Implementation

At runtime, the system cycles through four main phases: update goals, make assignments,

play roles, propagate events (Figure 6.20). The update goals and make assignment phase are

organization-related phases and are only be performed by agents participating in the organization

control, in our case, the Base Station agent. Play roles and propagate events are application-

related phases that concern all agents playing a role in the organization. Once goals are updated

in response to organizational events, the Base Station agent needs to assign agents to play roles

to achieve the newly added goals. Once an agent has been assigned to play a role, it follows the

role’s plan in order to achieve its goal and reports all events to the Base Station agent.

To make assignments, the Base Station uses a first-fit greedy algorithm to find an agent

capable of playing a role to achieve a goal. In addition, we specify reorganization policies that

guide the system when assigning the goals to agents [49]. Those policies typically specify the

kind of assignments the system should preferably make or avoid. For instance, we specified

Figure 6.20. Runtime Phases

 120

policies to requiring that agents pursuing a monitor goal should together provide a coverage of

100% of the area of interest. Policies are expressed as conditional statements related to one or

more assignments. The policies used in our systems are discussed in Section 6.2.8. The

assignment algorithm is shown in Figure 6.21.

For each unassigned goal (line 1), we get the first role that can achieve it (line 5) and the

first agent that has all the required capabilities to achieve that role (line 8). The assignment

thereby produced is checked for policies compliance in line 11. If it fails, the passPolicies

method removes the roles and agents that caused the assignment to fail and a new assignment is

sought. If no assignment exists, the least important policy is deactivated to ensure that the system

can progress. In fact, the policies are guidance policies [49] that aims at guiding the system

towards the desired behavior without constraining it. They can be abandoned if they prevent the

system from progressing .i.e. no assignment meeting the policy can be found. Multiple policies

can be arranged by importance order, allowing the systems to ignore the least important policy

first when unable to find an assignment.

The application consists of sensors arranged in a grid. As mentioned before, each Mote

agent is represented by an actual sensor and has the required capabilities to play the Monitor role

and the Track role. There is also the Base Station agent who possesses all the required

function makeAssignments(activeGoalSet)returns assignmentSet

1. for each goal g in activeGoalSet.unassigned
2. assignment.goal ← g
3. do
4. for each role r in Knowledge.roles
5. if r.achieves(g) then assignment.role ← r; break
6. end loop
7. for each agent a in Knowledge.agents
8. if a.possess(r.requiredCapabilities)
9. then assignment.agent ← a; break
10. end loop
11. until passPolicies(assignment) //may remove policy
12. assignmentSet.add(assignment)
13. end loop
14. return assignmentSet

Figure 6.21. Assignment Algorithm

 121

capabilities to play the User Interface, Coverage Processor, and Divider roles. The Mote agents

have been implemented in nesC [45], a component-based programming language that is

currently used to program the Berkeley motes [22] running on TinyOS [53] operating system.

The Base Station agent is implemented in Java.

The Base Station agent gets the area via a user interface (User Interface role) and divides

it into subareas such that a unique sensor can cover each subareas (Coverage Processor role). In

fact, Sensors can only be given areas that fall entirely within their sensing range. This division is

made while insuring that the minimum number of sensors cover the entire initial area. Mote

agents assigned to the Monitor role execute the role’s plan. This plan, represented as a finite-

state machine, is shown in Figure 6.22.

For the Monitor role, agents sense the magnetic field at the rate of 1Hz as long as no

target is detected (Monitor state). Once a target is detected, the agent generates an event to

initiate a track over an area equal to twice its sensing radius (Detected state). This area has been

chosen as a prediction of where the target could soon be located. This event results in the Base

Station agent activating the Track Area goal (Figure 6.16). The resultant configuration includes

the Base Station agent playing the Divider role in order to select a set of subareas that need to be

tracked. Subsequently, agents capable of sensing the tracking area are assigned to the Tracking

role for a subarea. The plan for the Track role is depicted in Figure 6.23. If the tracking agent

Figure 6.22. Plan for the Monitor role

 122

(i.e. the agent playing the tracking role) is on the target trajectory, it will eventually detect the

target (Found Target state). Based on the speed of the target, a tracking agent may have to wait

for a certain time before detecting the target (No Target state). Taking the target speed into

consideration, we have set the wait time such that the tracking agent always detects a target

moving in its direction. Whenever the target is lost (Lost Target state) or the target has never

been detected (No Target state), the agent sends a message to the Base Station agent indicating

that it has achieved its role.

In addition, the agent playing the monitor role and the tracker role are playing the

receiver role in order to keep their clock synchronized with the Base Station clock. Hence, for

the Receiver roles, agents keep track of the offset between their clock and the clock at the Base

Station. This allows them to send their data along with the Base Station time when the data were

gathered.

Finally, in order to maintain the sensor topology, sensors periodically send a beacon

message indicating that there are still in the network. If a beacon is not received after a certain

Figure 6.23. Plan for the Tracker role

 123

time, the Base Station considers that the agent has failed and reassigns any roles that the agent

had to other agents. Moreover, in order to reduce the number of messages sent in the application,

the beacon messages are also used to report capability status updates (such as power level of the

sensors).

6.2.8 Experimental Results

The actual testbed for our experiments consisted of 25 sensors evenly distributed in a 5×5

grid with integer (x, y) coordinates ranging from (0, 0) to (4, 4). The sensors covered an area of

100ft x 100ft. We chose TOSSIM [76] as a simulation environment since it uses nesC and it can

emulate the execution of the real code on the motes without the need for deployment. In addition,

TOSSIM scripting language Tython [29] allowed us to interact with the simulator environment

by inserting failures and simulating moving targets. We simulated the moving target as a

magnetometer source that can linearly affect the magnetometer readings of the nearby sensors

based on their distance. We set up the detection threshold value such that sensors can detect the

moving target for up to 30 ft. We also set the target to move on straight lines at the constant

speed of 2ft/s. For all our experiments, we assumed that communication is reliable and that all

nodes are within communication range to the Base Station.

Our first set of experiments attempted to see how the systems can recover from sensors

failures. When an agent fails while achieving a goal, the organization triggers a reorganization

that may result in another agent assigned to the failed goal or in another set of alternative goals

that are assigned to the available agents. For these experiments, we were interested in the failure

of the monitor agents. Such failures were recognized by the organization when agents failed to

send beacon messages. When this happened, the organization tried to find another set of

monitoring agents that can insure a total coverage of the surveillance area. Initially, the

organization tried to find an agent that can cover the area previously by the failed agent. If it was

unsuccessful, all the current monitor agents were deassigned and replaced by a new set of

monitor agents capable of covering the area. The adaptation of the system was measured in term

of the amount of the surveillance area covered by monitoring agents after various failure ratios.

The coverage was computed as the average observed over 5 runs of 1000 simulation seconds.

Throughout the simulation, a failure of a random monitor agent was introduced at a constant rate

 124

(every 50 seconds) between 100 and 900 seconds. In addition, we measured the coverage

obtained in a non-adaptive version of the system for which four agents were statically assigned

to the monitor role at design time and were not replaced after a failure.

Figure 6.24 shows the results obtained for our adaptive system and for a non-adaptive

version. These results show that even with 6 sensor failures (350 seconds), our systems can still

provide 100% coverage, whereas the non-adaptive version cannot cover the area once all its four

static sensors have failed (250 seconds). By the end of the simulation, the adaptive system

would have lost 70% of its sensors but can still cover more than 65% of the area. These large

coverage values with few sensors are due to the fact that on average, each sensor can cover 25%

of the area. Nevertheless, the organization was able to reorganized in the face of failures and

reassign the failed monitoring goals to available sensors in order to continue to insure a

maximum coverage of the surveillance area.

0

20

40

60

80

100

120

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950

Simulation Time

C
ov

er
ag

e

Adaptive

Non-Adaptive

Figure 6.24. Coverage obtained by injecting a monitor failure every 50 seconds

 125

Our second set of experiments was intended to show how the system can adapt to

decreasing energy levels. Like most surveillance systems, most of the energy is consumed during

the surveillance phase, monitoring for potential targets [50]. Having a non-adaptive design with

static monitoring agents leads to the complete energy depletion, while other agents have most of

their energy unused. Hence, we were interested in having the system adapt in order to maintain a

uniform level of energy among all the nodes while trying to always insure a maximum coverage.

For that, we introduced several guidance policies aiming at putting a lower bound on the energy

required to play a monitor role. This allowed agents to give up the monitoring role when their

energy dropped below a certain threshold. We defined three energy policies (EP) and one

coverage policies (CP) ordered by least-important:

• all monitor agents should have less than 20% of their energy used (EP20)

• all monitor agents should have less than 50% of their energy used (EP50)

• all monitor agents should cover 100% of the surveillance area (CP100)

As explained earlier, the system can satisfy all the policies as long as satisfying

assignment can be made. If no assignment can be found, the system deactivates the least

important policy among all the active ones in order to proceed. Therefore, with EP20 active,

every time a monitor agent’s energy used rose above 20%, there was a reorganization aiming at

finding another agent to play the monitor role. Whenever there were no agents with less than

20% of their energy used or those with less than 20% of their energy used could not cover 100%

of the area, the system deactivated EP20. This process continued until all the policies were

deactivated, in which case the system assigned monitoring roles without ensuring maximum

coverage.

We compared the energy level of each agent at the end of a simulation with and without

the policies. The system running without energy policies kept the same monitor roles throughout

the entire simulation, whereas the system with policies behaved as indicated above. We used the

number of radio messages sent as a measure of energy consumption, which is reasonable given

that radio communication largely dominates energy on the motes [105]. Note that during the

monitor or track roles, agents are constantly sending sensor readings and beacon messages back

the base station.

 126

Figure 6.25 shows the energy consumed for both systems. The results were observed

over a run of 1000 simulation seconds with 3 targets appearing one at a time along the same

path. Globally, there was a target present 20% of the simulation time. Without policy (non-

adaptive version), agents 6, 9, 21 and 24 have used more energy than any other agents. This is

due to the fact that these agents were playing the monitor role throughout the entire simulation.

On the other hand, we observe that the adaptive version helps keep the energy level uniform

among all agents. In fact, even though both systems used 41% of their global energy, the

standard deviation for the adaptive system was 12% whereas the one for the non-adaptive

version was 28%. These results support the fact that our adaptive system was able to reorganize

in order to maintain a uniform distribution of the energy used as directed by the policies.

6.3 Summary

In this chapter, I proposed two applications that demonstrate the validity and usefulness

of my design approach. The Cooperative Robotic for Airport Management application was

0%

20%

40%

60%

80%

100%

120%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Agent ID

En
er

gy
 U

se
d

Adaptive
Non-Adaptive

Figure 6.25. Energy Used discrepancies between the adaptive and non-adaptive system

 127

designed to exemplify how services can be iteratively composed to design a larger application. In

addition, I proposed an ad-hoc design that uses the notion of sub-organization and compared it

with my approach. Moreover, I proposed a compositional design for a Surveillance application.

This design was then implemented on a simulator to demonstrate the adaptive properties gained

from developing applications based on the models supported by my approach. My

implementation demonstrated the following adaptive properties (defined in more detail in [73]):

• Self-configuration: The system was able to reconfigure itself when new goals appear

in the organization in order to achieve them.

• Self-healing: The system was able to reorganize to overcome the loss of a sensor and

the loss of performance due to capability degradation.

Therefore, the implementation proposed here exemplified some of the important

characteristic of the design models used in this research. It is important to note that the design

used for this application, which was obtained using the compositional approach, is not different

than any other OMACS-based organizational design. The composed design models are translated

into runtime models using the same engine that was previously available for OMACS models. In

fact, all the entities in the final composed design are defined by the OMACS metamodel and this

design benefits from the same adaptive capabilities as any OMACS-based design. Other

implementations using OMACS-based organizational designs can be found in [28] and [89].

 128

CHAPTER 7 - CONCLUSION AND FUTURE WORK

“A whole is that which has beginning, middle and

end.” ⎯ Aristotle

“"Tut, tut, child" said the Duchess. "Everything has

got a moral if you can only find it." ”

⎯Lewis Carroll, Alice in Wonderland

In this chapter, I present a summary of the work presented in this dissertation, along with

its major contributions. Then I proceed with a discussion of the benefits and drawbacks of the

proposed approach along with a brief outline of future directions related to this research.

7.1 Summary

In this dissertation, I presented a formal compositional framework to design composable

multiagent organizations. This framework was then used to develop a service-oriented approach

for designing adaptive organization-based multiagent systems. I used category theory [5] to

formalize the composition of organizations. This mathematical framework allowed us to

formally represent organization design models and derive their compositions. In the composition

framework proposed, the goal models and the role models were composed separately and then

the composition for organization designs was derived.

In Chapter 4, I proposed a formalization of two core design models (the goal model and

the role model) using categorical concepts and showed a construction to derive the composition

of two organizations. This construction guaranteed the correctness of the composed

organizations. However, this composition process relies on the definition of configurations,

which indicate what elements from the models can be merged. As the composition process is

general, there are no constraints on what configurations are allowed and designers can potentially

 129

define composite organization that may not be implementable into a coherent system. For this

reason, in Chapter 5, I proposed a service-oriented framework to help specify configurations

necessary to compose organizations. The main idea is to express configurations in terms of

services required and provided instead of category theory formalisms. In essence, service

mappings are an implicit way of defining configurations. In the service-oriented framework,

multiagent organizations are viewed as reusable components that use and provide services. I

defined and formalized all the entities required to develop these reusable organizations and

proved that the composition of services can be obtained using the category theoretic composition

framework developed in Chapter 4.

Finally, to demonstrate the usefulness and validity of the compositional framework to

design real-world applications, I developed two applications with several services (Chapter 6).

For the first application, I designed several cooperative robotic services and showed how they

can be reused to build other organizations. I gave some examples to show how several services

can be composed to create a complex organization design. The second application was a wireless

sensor networks application that used one service, the time synchronization service. I provided

two different designs of that service and showed how the service-oriented framework allowed

the permutation of those two designs without any modifications to the main design. Furthermore,

I implemented this application in order to demonstrate some adaptive properties of the system.

Through some experiments, I showed how the system can autonomously reconfigure and recover

from failures.

Therefore, as part of this research, three main contributions have been made.

1- I have developed a general algebraic composition framework that formally

characterizes the composition of two or more organization design models.

As discussed in Section 5.4, no other work exists that formally composes organization-

based multiagent systems designs. Moreover, the approach followed in this framework

serves as a blueprint to formally specify organizational design models as categories. As

stated in Section 4.5, there are very few works combining multiagent systems and

category theory. Formalizing multiagent design models is necessary to apply various

types of model transformations and verifications. In fact, formal models are easily

 130

verified and can be efficiently converted into runtime models, as suggested by Blair et al.

[7].

2- I have derived a specific service-oriented composition framework that allows the

compositional design of organizations

In general, decomposition is considered as a key property to tackle the growing

complexity of software [8]. I showed that by providing an approach for the compositional

design of organizations, my framework facilitates the development of complex OMAS.

As opposed to most approaches that only use decomposition to benefit separation of

concerns during design and do not provide a rigorous composition process, my approach

provides a formalization that allows the systematic composition of organizations. I have

combined service-oriented principles with organizational concepts in order to provide

MAS designers with predefined reusable multiagent organizations. As a result, system

designers can easily build complex organizations by using collections of simpler

organization modules wrapped up as services.

3- I have demonstrated the usefulness and validity of the proposed framework for

developing adaptive organization-based multiagent systems.

This evaluation is an important step in showing that the compositional approach

facilitates reuse and increases flexibility of organizational designs. Through two

examples, I showed how my approach helps integrate simpler organizational designs into

more complex designs. Moreover, I also showed that the design models used in this

research help provide adaptive mechanisms at runtime. This adaptive behavior is an

indispensable feature in today’s complex systems.

7.2 Discussion and Future Work

This section discusses some of the benefits and drawbacks of my approach and proposes

how this work can be extended to overcome some of the limitations.

As stated before, the approach proposed in this dissertation allows system designers to

incrementally build multiagent organization designs. However, without a systematic

 131

implementation, any design produced out of this process might loose its properties. In Chapter 6,

I showed the adaptive behavior resulting from using the design approach advocated in this

research. However, even though those properties are available at design time, they can be lost

due to a poor implementation of the organizational concepts. Therefore, it is necessary to have a

model-driven implementation to guarantee the preservation of the important properties existing

in the design models.

Moreover, I believe there is a need for more guidance to help designers develop

organizational services as proposed in Chapter 5. In fact, a service may be called multiple times

and the designer may run into some performance issues if the service is not designed properly.

For instance, consider a cleaning service that creates a map of a room before cleaning it. If the

mapping process is expensive in terms of time and resources (agents), it would be wise to insure

that this mapping process is not repeated every time there is a service request to clean that room.

Hence, if such information is available, we would like to take it into consideration when

designing the service. To take care of that problem, I propose the use of service design patterns

that would guide designers when designing services. These design patterns would reduce design

errors and help increase the performance of the services.

In addition to design patterns, it would also be necessary to provide a Quality of Service

(QoS) feature to help designer decide which service provider to choose and to document what

QoS they could expect. I believe that an approach similar to the integration of QoS into UML

models [25] would be suitable for the framework proposed here.

Finally, the compositional design framework presented in this research needs to be

supported by a rigorous methodology and a tool. O-MaSE is an extensible process framework

that can be extended by adding new process fragments necessary for the compositional design of

multiagent organizations. In addition, agentTool III is a development environment that already

supports O-MaSE processes. Hence, this tool would be a good candidate to support

compositional design.

 132

References

[1] F. Achermann and O. Nierstrasz, A calculus for reasoning about software composition.

Theoretical Computer Science, 2005. 331(2-3): p. 367-396.

[2] C. Atkinson, et al., Component-based product line engineering with UML. 2002:

Addison-Wesley Longman Publishing Co., Inc. 506.

[3] S. Awodey, Category theory. 2006: Oxford University Press, USA.

[4] J. Bansiya and C.G. Davis, A Hierarchical Model for Object-Oriented Design Quality

Assessment. IEEE Transactions on Software Engineering 2002. 28(1): p. 4-17.

[5] M. Barr and C. Wells, Category theory for computing science. Prentice Hall international

series in computer science. 1990, New York: Prentice Hall.

[6] R. Ben-Natan, Corba: a guide to common object request broker architecture, ed. B.-N.

Ron. 1995: McGraw-Hill, Inc. 353.

[7] G. Blair, N. Bencomo, and R.B. France, Models@ run.time. Computer, 2009. 42(10): p.

22-27.

[8] G. Booch, Object-oriented analysis and design with applications (2nd ed.), ed. A.-W.C.

Series. 1994: Benjamin-Cummings Publishing Co., Inc. 608.

[9] A. Boronat, et al., Formal Model Merging Applied to Class Diagram Integration.

Electronic Notes in Theoretical Computer Science, 2007. 166: p. 5-26.

[10] M.E. Bratman and P. Intentions, Practical Reasoning. 1987: Harvard Univ. Press:

Cambridge, MA.

[11] F.M.T. Brazier, et al., DESIRE: Modelling Multi-Agent Systems in a Compositional

Formal Framework. IJCIS, 1997. 6(1): p. 67-94.

[12] P. Bresciani, et al., Tropos: An Agent-Oriented Software Development Methodology.

Autonomous Agents and Multi-Agent Systems, 2004. 8(3): p. 203-236.

[13] S. Brinkkemper, Method engineering: engineering of information systems development

methods and tools. Information and Software Technology, 1996. 38(4): p. 275-280.

[14] R. Brooks, A robust layered control system for a mobile robot. Robotics and Automation,

IEEE Journal of, 1986. 2(1): p. 14-23.

 133

[15] G. Brunet, et al., A manifesto for model merging, in Proceedings of the 2006

international workshop on Global integrated model management. 2006, ACM: Shanghai,

China.

[16] P. Buneman, S. Davidson, and A. Kosky, Theoretical aspects of schema merging, in

Advances in Database Technology — EDBT '92. 1992. p. 152-167.

[17] I. Cafezeiro and E.H. Haeusler, Semantic interoperability via category theory, in 26th

international conference on Conceptual modeling. 2007: Auckland, New Zealand.

[18] L. Cao, C. Zhang, and M. Zhou, Engineering Open Complex Agent Systems: A Case

Study. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE

Transactions on, 2008. 38(4): p. 483-496.

[19] K.M. Carley and M.J. Prietula, Computational Organization Theory. 1994: Lawrence

Erlbaum Associates.

[20] A. Chella, et al., Agile PASSI: An agile process for designing agents. International

Journal of Computer Systems Science & Engineering, 2006. 21(2): p. 133-144.

[21] M. Cossentino, et al., The PASSI and Agile PASSI MAS Meta-models Compared with a

Unifying Proposal, in Multi-Agent Systems and Applications IV. 2005. p. 183-192.

[22] Crossbow. Wireless sensor networks (mica motes). [cited 2009; Available from:

http://www.xbow.com/.

[23] C. Cubillos, S. Gaete, and B. Crawford, Design of an agent-based system for passenger

transportation using PASSI. Lecture Notes in Computer Science, 2007. 4528: p. 531.

[24] M. Dastani, F. Arbab, and F.d. Boer, Coordination and composition in multi-agent

systems, in Proceedings of the fourth international joint conference on Autonomous

agents and multiagent systems. 2005, ACM: The Netherlands.

[25] M.A. de Miguel. General framework for the description of QoS in UML. in Sixth IEEE

International Symposium on Object-Oriented Real-Time Distributed Computing. 2003.

[26] S.A. DeLoach, OMACS: a Framework for Adaptive, Complex Systems, in Handbook of

Research on Multi-Agent Systems: Semantics and Dynamics of Organizational Models,

V. Dignum, Editor. 2009, IGI Global: Hershey, PA.

[27] S.A. DeLoach and M. Miller, A Goal Model for Adaptive Complex Systems. International

Journal of Computational Intelligence: Theory and Practice, 2010. 5(2).

 134

[28] S.A. DeLoach, W.H. Oyenan, and E. Matson, A capabilities-based model for adaptive

organizations. Autonomous Agents and Multi-Agent Systems, 2008. 16(1): p. 13-56.

[29] M. Demmer, et al., Tython: A Dynamic Simulation Environment for Sensor Networks,

U.o.C. Berkeley, Editor. 2005.

[30] V. Dignum, A model for organizational interaction: based on agents, founded in logic.

2004, SIKS Dissertation Series.

[31] V. Dignum and F. Dignum, A landscape of agent systems for the real world. 2006,

Utrecht University.

[32] V. Dignum, J. Vázquez-Salceda, and F. Dignum, OMNI: Introducing Social Structure,

Norms and Ontologies into Agent Organizations, in Programming Multi-Agent Systems.

2005. p. 181-198.

[33] S. Dustdar and W. Schreiner, A survey on web services composition. Int. J. Web Grid

Serv., 2005. 1(1): p. 1-30.

[34] A.H. Eden and T. Mens, Measuring software flexibility. IEEE Proceedings Software,

2006. 153(3): p. 113-125.

[35] J. Elson and Kay Römer, Wireless sensor networks: a new regime for time

synchronization. SIGCOMM Comput. Commun. Rev., 2003. 33(1): p. 149-154.

[36] A. Estefania, J. Vicente, and B. Vicente, Multi-Agent System Development Based on

Organizations. Electronic Notes in Theoretical Comp. Sci., 2006. 150(3): p. 55-71.

[37] J. Ferber, Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence.

1999: {Addison-Wesley Professional}.

[38] J. Ferber, et al. Organization models and behavioural requirements specification for

multi-agent systems. in MultiAgent Systems, 2000. Proceedings. Fourth International

Conference on. 2000.

[39] J. Ferber, O. Gutknecht, and F. Michel, From Agents to Organizations: An

Organizational View of Multi-agent Systems, in Agent-Oriented Software Engineering IV.

2004. p. 443-459.

[40] J.L. Fiadeiro, Categories for software engineering. 2005: Springer.

[41] M.S. Fox, An Organizational View of Distributed Systems. Systems, Man and

Cybernetics, IEEE Transactions on, 1981. 11(1): p. 70-80.

 135

[42] W. Frakes and C. Terry, Software reuse: metrics and models. ACM Computing Surveys

(CSUR), 1996. 28(2): p. 415-435.

[43] J.C. Garcia-Ojeda, S.A. DeLoach, and Robby. agentTool Process Editor: Supporting the

Design of Tailored Agent-based Processes. in Proceedings of the 24th Annual ACM

Symposium on Applied Computing 2009. Honolulu, Hawaii.

[44] J.C. Garcia-Ojeda, et al. O-MaSE: A Customizable Approach to Developing Multiagent

Development Processes. in 8th International Workshop on Agent Oriented Software

Engineering 2007.

[45] D. Gay, et al. The nesC language: A holistic approach to networked embedded systems.

in Programming language design and implementation (PLDI '03). 2003.

[46] J.A. Goguen, A categorical manifesto. Mathematical Structures in Computer Science,

1991.

[47] J.L. Gross and J. Yellen, Graph theory and its applications. 2006: CRC press.

[48] M. Hannoun, et al., MOISE: An Organizational Model for Multi-agent Systems, in

Advances in Artificial Intelligence. 2000. p. 156-165.

[49] S. Harmon, S. DeLoach, and Robby, Trace-Based Specification of Law and Guidance

Policies for Multi-Agent Systems, in ESAW: Engineering Societies in the Agents World

VIII. 2008. p. 333-349.

[50] T. He, et al., VigilNet: An integrated sensor network system for energy-efficient

surveillance. ACM Trans. Sen. Netw., 2006. 2(1): p. 1-38.

[51] P. Hell and J. Nešetril, Graphs and homomorphisms. 2004: Oxford University Press,

USA.

[52] C. Herrmann, et al., An Algebraic View on the Semantics of Model Composition, in

Model Driven Architecture- Foundations and Applications. 2007. p. 99-113.

[53] J. Hill, et al., System architecture directions for networked sensors. SIGPLAN Notice,

2000. 35(11): p. 93-104.

[54] P. Hitzler, et al. What Is Ontology Merging? 2005.

[55] B. Horling and V. Lesser, A survey of multi-agent organizational paradigms. Knowl.

Eng. Rev., 2004. 19(4): p. 281-316.

[56] J. Hübner, J. Sichman, and O. Boissier. MOISE+: Towards a Structural, Functional, and

Deontic model for MAS organization.

 136

[57] J.F. Hübner and J.S. Sichman. Using the MOISE+ model for a cooperative framework of

MAS reorganization. in Proc. 17th Brazilian Symposium on Artificial Intelligence (SBIA

04). 2004. São Luís, Brasil: Advances in Artificial Intelligence.

[58] M.P. Huget, Representing Goals in Multiagent Systems, in Proc. 4th Int’l Symp. Agent

Theory to Agent Implementation. 2004. p. 588–593.

[59] M.P. Huget and J. Odell. Representing agent interaction protocols with agent UML. in

Autonomous Agents and Multiagent Systems, 2004. AAMAS 2004. Proceedings of the

Third International Joint Conference on. 2004.

[60] M.N. Huhns and M.P. Singh, Service-oriented computing: key concepts and principles.

Internet Computing, IEEE, 2005. 9(1): p. 75-81.

[61] M.N. Huhns, et al., Research Directions for Service-Oriented Multiagent Systems. IEEE

Internet Computing, 2005. 9(6): p. 65-70.

[62] C.A. Iglesias, M. Garijo, and J.C. González, A Survey of Agent-Oriented Methodologies,

in Intelligent Agents V. Agent Theories, Architectures, and Languages: 5th International

Workshop, ATAL'98, Paris, France, July 1998. Proceedings. 2000. p. 630-630.

[63] I. Jacobson, G. Booch, and J. Rumbaugh, The unified software development process.

1999: Addison-Wesley.

[64] C. Jeanneret, R. France, and B. Baudry, A reference process for model composition, in

Proceedings of the 2008 AOSD workshop on Aspect-oriented modeling. 2008, ACM:

Brussels, Belgium.

[65] N.R. Jennings, An agent-based approach for building complex software systems.

Commun. ACM, 2001. 44(4): p. 35-41.

[66] N.R. Jennings, On agent-based software engineering. Artificial Intelligence, 2000.

117(2): p. 277-296.

[67] N.R. Jennings, K. Sycara, and M. Wooldridge, A Roadmap of Agent Research and

Development. Autonomous Agents and Multi-Agent Systems, 1998. 1(1): p. 7-38.

[68] M.W. Johnson, P. McBurney, and S. Parsons, A Mathematical Model of Dialog.

Electronic Notes in Theoretical Computer Science, 2005. 141(5): p. 33-48.

[69] T. Juan, A. Pearce, and L. Sterling, ROADMAP: extending the gaia methodology for

complex open systems, in Proceedings of the first international joint conference on

Autonomous agents and multiagent systems. 2002, ACM: Bologna, Italy.

 137

[70] M.B. Juric, Business Process Execution Language for Web Services BPEL and

BPEL4WS 2nd Edition. 2006: Packt Publishing.

[71] N. Kavantzas, et al., Web services choreography description language version 1.0. W3C

Working Draft, 2004. 17: p. 10-20041217.

[72] H.J. Keisler, Elementary calculus. Bull. Amer. Math. Soc. 83 (1977), 205-208. DOI:

10.1090/S0002-9904-1977-14264-X PII: S 0002-9904 (1977) 14264-X, 1977.

[73] J.O. Kephart and D.M. Chess, The vision of autonomic computing. Computer, 2003.

36(1): p. 41-50.

[74] M. Kolp, P. Giorgini, and J. Mylopoulos, Multi-Agent Architectures as Organizational

Structures. Autonomous Agents and Multi-Agent Systems, 2006. 13(1): p. 3-25.

[75] K.-K. Lau and Z. Wang, Software Component Models. IEEE Trans. Softw. Eng., 2007.

33(10): p. 709-724.

[76] P. Levis, et al. TOSSIM: accurate and scalable simulation of entire TinyOS applications.

in SenSys '03: Proceedings of the 1st international conference on Embedded networked

sensor systems. 2003. Los Angeles, California.

[77] Q. Li and S. Payandeh, Manipulation of Convex Objects via Two-agent Point-contact

Push. The International Journal of Robotics Research, 2007. 26(4): p. 377-403.

[78] C. Luo and S.X. Yang. A real-time cooperative sweeping strategy for multiple cleaning

robots. in Intelligent Control, 2002. Proceedings of the 2002 IEEE International

Symposium on. 2002.

[79] S. Mac Lane, Categories for the working mathematician. 1998: Springer verlag.

[80] M. Maróti, et al., The flooding time synchronization protocol, in Proceedings of the 2nd

international conference on Embedded networked sensor systems. 2004, ACM:

Baltimore, MD, USA.

[81] V. Matena, B. Stearns, and L. Demichiel, Applying Enterprise JavaBeans: Component-

Based Development for the J2EE Platform. 2003: Pearson Education. 496.

[82] E. Matson and S. DeLoach. Capability in Organization Based Multi-agent Systems. in

Proceedings of the Intelligent and Computer Systems (IS’03) Conference. 2003.

[83] N. Medvidovic and R.N. Taylor, A Classification and Comparison Framework for

Software Architecture Description Languages. IEEE Trans. Softw. Eng., 2000. 26(1): p.

70-93.

 138

[84] M. Morandini, et al., Tool-Supported Development with Tropos: The Conference

Management System Case Study, in Agent-Oriented Software Engineering VIII. 2008. p.

182-196.

[85] S. Nejati, et al., Matching and Merging of Statecharts Specifications, in Proceedings of

the 29th international conference on Software Engineering. 2007, IEEE Computer

Society.

[86] N. Niu, S. Easterbrook, and M. Sabetzadeh, A Category-theoretic Approach to Syntactic

Software Merging, in Proceedings of the 21st IEEE International Conference on

Software Maintenance. 2005, IEEE Computer Society.

[87] J. Odell, Objects and agents compared. Technology, 2002. 1(1): p. 41-53.

[88] OMG, {UML 2.0 Superstructure Specification}. 2005: Framingham, Massachusetts.

[89] W.H. Oyenan and S.A. DeLoach, Towards a Systematic Approach for Designing

Autonomic Systems. Web Intelligence and Agent Systems (WIAS): An International

Journal, 2010. 8(1).

[90] L. Padgham and M. Winikoff, Prometheus: A Methodology for Developing Intelligent

Agents, in Agent-Oriented Software Engineering III. 2003. p. 174-185.

[91] L.E. Parker, ALLIANCE: an architecture for fault tolerant multirobot cooperation.

Robotics and Automation, IEEE Transactions on, 1998. 14(2): p. 220-240.

[92] L.E. Parker, Current state of the art in distributed autonomous mobile robotics. Tokyo,

Japan ed. Distributed Autonomous Robotic Systems, ed. L.E. Parker, G. Bekey, and J.

Barhen. Vol. 4. 2000: Springer-Verlag.

[93] J. Pavón and J. Gómez-Sanz, Agent Oriented Software Engineering with INGENIAS, in

Multi-Agent Systems and Applications III. 2003. p. 1069-1069.

[94] C. Peltz, Web Services Orchestration and Choreography. Computer, 2003. 36(10): p. 46 -

52.

[95] R.A. Pottinger and P.A. Bernstein, Merging models based on given correspondences, in

Proceedings of the 29th international conference on Very large data bases - Volume 29.

2003, VLDB Endowment: Berlin, Germany.

[96] A. Rao and M. Georgeff. Modeling Rational Agents within a BDI-Architecture. in

Proceedings of the 2nd International Conference on Principles of Knowledge

 139

Representation and Reasoning (KR'91). 1991: Morgan Kaufmann publishers Inc.: San

Mateo, CA, USA.

[97] D. Richards, Merging individual conceptual models of requirements. Requirements

Engineering, 2003. 8(4): p. 195-205.

[98] D. Rogerson, Inside COM. 1997: Microsoft Press. 416.

[99] D. Rus, B. Donald, and J. Jennings. Moving furniture with teams of autonomous robots.

in Intelligent Robots and Systems 95. 'Human Robot Interaction and Cooperative Robots',

Proceedings. 1995 IEEE/RSJ International Conference on. 1995.

[100] S.J. Russel and P. Norvig, Artificial intelligence. 2003: Prentice-Hall.

[101] D.E. Rydeheard and R.M. Burstall, Computational category theory. Prentice Hall

International (UK) Ltd. Hertfordshire, UK, UK. 1988: Prentice Hall, 1988. 257.

[102] M. Sabetzadeh and S. Easterbrook. An algebraic framework for merging incomplete and

inconsistent views. in Requirements Engineering, 2005. Proceedings. 13th IEEE

International Conference on. 2005.

[103] J. Sametinger, Software engineering with reusable components. 1997. Berlin, New York:

Springer. 16: p. 272.

[104] Scott J. Harmon, et al., Leveraging Organizational Guidance Policies with Learning to

Self-Tune Multiagent Systems, in The Second IEEE International Conference on Self-

Adaptive and Self-Organizing Systems. 2008: Venice, Italy.

[105] V. Shnayder, et al. PowerTOSSIM: Efficient Power Simulation for TinyOS Applications.

in ACM Conference on Embedded Networked Sensor Systems (SenSys). 2004.

[106] J.S.o. Sichman, M.V. Dignum, and C. Castelfranchi, Agents Organizations: A Concise

Overview. Journal of the Brazilian Computer Society, 2005. 11 (1): p. 3-8.

[107] M. Sims, D. Corkill, and V. Lesser, Automated organization design for multi-agent

systems. Autonomous Agents and Multi-Agent Systems, 2008. 16(2): p. 151-185.

[108] T. Soboll, On the Construction of Transformation Steps in the Category of Multiagent

Systems, in Intelligent Computer Mathematics. p. 184-190.

[109] D.J. Stilwell and J.S. Bay. Toward the development of a material transport system using

swarms of ant-like robots. in Robotics and Automation, 1993. Proceedings., 1993 IEEE

International Conference on. 1993.

 140

[110] H. Subramanian and C.H. Dagli. Cooperative Cleaning for distributed Autonomous robot

systems using Fuzzy Cognitive Maps. in Fuzzy Information Processing Society, 2003.

NAFIPS 2003. 22nd International Conference of the North American. 2003.

[111] K.P. Sycara, Multiagent systems. AI magazine, 1998. 19(2): p. 79-92.

[112] J. Thangarajah, L. Padgham, and M. Winikoff, Prometheus design tool, in Proceedings of

the fourth international joint conference on Autonomous agents and multiagent systems.

2005, ACM: The Netherlands.

[113] A. van Lamsweerde, et al., The KAOS Project: Knowledge Acquisition in Automated

Specification of Software. Proceedings AAAI Spring Symposium Series, 1991: p. 59-62.

[114] J. Vázquez-Salceda, The role of norms and electronic institutions in multi-agent systems

applied to complex domains. The HARMONIA framework. AI Communications, 2003.

16(3): p. 209-212.

[115] I.A. Wagner, et al., Cooperative Cleaners: A Study in Ant Robotics. Int. J. Rob. Res.,

2008. 27(1): p. 127-151.

[116] Z.-D. Wang, E. Nakano, and T. Matsukawa. Cooperating multiple behavior-based robots

for object manipulation. in Intelligent Robots and Systems '94. 'Advanced Robotic

Systems and the Real World', IROS '94. Proceedings of the IEEE/RSJ/GI International

Conference on. 1994.

[117] G. Weiss, Multiagent systems: a modern approach to distributed artificial intelligence.

2000: The MIT press.

[118] M. Wester-Ebbinghaus, et al. Towards Organization–Oriented Software Engineering. in

Software Engineering. 2007. Hamburg.

[119] M.F. Wood and S.A. DeLoach, An overview of the multiagent systems engineering

methodology, in First international workshop, AOSE 2000 on Agent-oriented software

engineering. 2001, Springer-Verlag New York, Inc.: Limerick, Ireland.

[120] M. Wooldridge, Introduction to Multiagent Systems. 2001: John Wiley & Sons, Inc. 376.

[121] M. Wooldridge and P. Ciancarini, Agent-Oriented Software Engineering: The State of the

Art, in Agent-Oriented Software Engineering. 2001. p. 55-82.

[122] M. Wooldridge and N. Jennings, Intelligent Agents: Theory and Practice. Knowledge

Engineering Review, 1995. 10(2): p. 115-152.

 141

[123] M. Wooldridge, N.R. Jennings, and D. Kinny, The Gaia Methodology for Agent-Oriented

Analysis and Design. Autonomous Agents and Multi-Agent Systems, 2000. 3(3): p. 285-

312.

[124] E.S.K. Yu, Modelling strategic relationships for process reengineering. 1995, PhD

Thesis, University of Toronto: Ontario, Canada.

[125] F. Zambonelli, N.R. Jennings, and M. Wooldridge, Developing multiagent systems: The

Gaia methodology. ACM Trans. Softw. Eng. Methodol., 2003. 12(3): p. 317-370.

[126] C. Zhong and S.A. DeLoach, An Investigation of Reorganization Algorithms, in

International Conference on Artificial Intelligence (IC-AI'2006). 2006, CSREA Press:

Las Vegas, Nevada.

 142

Appendix A - Detailed mappings for the compositions

A.1 Composition details for the Search and Rescue Application
This section presents the composition details for the Search and Rescue application presented in

Example 5.6.

From Figure 5.11, Φ1 is an organization homomorphism. We have:

Φ1: O0 → Search such that Φ1 = 〈 f1, g1, h1, i1, j1, k1 〉, where:

• f1 = {〈g_root, g_root〉, 〈g1, Explore〉, 〈g2, gx1〉};

• g1 = ∅;

• h1 = {〈 |g1, g2|, |Explore, gx1|〉};

• i1={ 〈 r1, Searcher〉, 〈 r2, rx1〉};

• j1 = {〈 |r1, r2|, |Searcher, rx1| 〉};

• k1 = ∅;

From Figure 5.11, Φ2 is an organization homomorphism. We have:

Φ2: O0 → Rescue such that Φ2 = 〈 f2, g2, h2, i2, j2, k2 〉 where:

• f2 = {〈 g_root, g_root 〉, 〈 g1, gx2〉, 〈 g2, ID Victim〉};

• g2 = ∅;

• h2 = {〈 |g1, g2|, |gx2, ID Victim|〉};

• i2={ 〈 r1, rx2〉, 〈 r2, Identifier〉};

• j2 = {〈 |r1, r2|, |rx2, Identifier| 〉};

• k2 = ∅;

From Figure 5.11, Φ1’ is an organization homomorphism. We have:

Φ1’: Search → S&R such that Φ1’ = 〈 f1’, g1’, h1’, i1’, j1’, k1’ 〉 where:

 143

• f1’ = {〈g_root, g_root〉, 〈Search, Search〉, 〈Explore, Explore〉, 〈Divide Area, Divide

Area〉, 〈gx1, ID Victim〉};

• g1’ = {〈|g_root, Search| , |g_root, Search|〉, 〈|Search, Explore|, |Search, Explore|〉,

〈|Search, Divide Area|, |Search, Divide Area|〉}

• h1’ = {〈 |Explore, gx1|, |Explore, ID Victim|〉, 〈newArea, newArea〉};

• i1’= {〈Searcher, Searcher〉, 〈Divider, Divider〉, 〈rx1, Identifier〉};

• j1’ = {〈|searcher, rx1|, |Searcher, Identifier|〉};

• k1’ = {〈|Searcher, Explore|, |Searcher, Explore|〉, 〈|Divider, Divide Area|, |Divider,

Divide Area|〉}

From Figure 5.11, Φ2’ is an organization homomorphism. We have:

Φ2’: Rescue → S&R such that Φ2’ = 〈 f2’, g2’, h2’, i2’, j2’, k2’ 〉 where:

• f2’ = {〈g_root, g_root〉, 〈Rescue, Rescue〉, 〈ID Victim, ID Victim〉, 〈Pickup Victim,

Pickup Victim〉, 〈gx2, Explore〉}

• g2’ = {〈|g_root, Rescue|, |g_root, Rescue|〉, 〈|Rescue, ID Victim|, |Rescue, ID Victim|〉,

〈|Rescue Pickup, Victim|, |Rescue Pickup, Victim|〉}

• h2’ = {〈|gx2, ID Victim|, |Explore, ID Victim|〉, 〈precedes, precedes〉}

• i2’= {〈Identifier, Identifier〉, 〈Rescuer, Rescuer〉, 〈rx2, Searcher〉}

• j2’ = {〈|rx2, Identifier|, |Searcher, Identifier|〉}

• k2’ = {〈|Identifier, ID Victim|, |Identifier, ID Victim|〉, 〈|Rescuer, Pickup Victim|,

|Rescuer, Pickup Victim|〉}

S&R along with homomorphism Φ1’ and Φ2’ (Figure 5.11) represent the pushout of organization

O0 with homomorphism Φ1 and Φ2. In fact, we have:

• f1’ ○ f1 = {〈g_root, g_root〉, 〈g1, Explore〉, 〈g2, ID Victim〉}

• f2’ ○ f2 = {〈g_root, g_root〉, 〈g1, Explore〉, 〈g2, ID Victim〉}

• g1’ ○ g1 = ∅;

• g2’ ○ g2 = ∅;

• h1’ ○ h1 = {〈 |g1, g2|, |Explore, ID Victim|〉};

 144

• h2’ ○ h2 = {〈 |g1, g2|, |Explore, ID Victim|〉};

• i1’ ○ i1 = { 〈 r1, Searcher〉, 〈 r2, Identifier〉};

• i2’ ○ i2 = { 〈 r1, Searcher〉, 〈 r2, Identifier〉};

• j1’ ○ j1 = {〈 |r1, r2|, |Searcher, Identifier|〉};

• j1’ ○ j1 = {〈 |r1, r2|, |Searcher, Identifier|〉};

• k1’ ○ k1 = ∅;

• k2’ ○ k2 = ∅;

Hence, we can see that f1’ ○ f1 = f2’ ○ f2, g1’ ○ g1 = g2’ ○ g2, h1’ ○ h1 = i2’ ○ i2, j1’ ○ j1 = k2’ ○ k2.

As Φ1’ ○ Φ1 = 〈 f1’ ○ f1, g1’ ○ g1, h1’ ○ h1, i1’ ○ i1, j1’ ○ j1, k1’ ○ k1〉 and Φ2’ ○ Φ2 = 〈 f2’ ○ f2, g2’

○ g2, h2’ ○ h2, i2’ ○ i2, j2’ ○ j2, k2’ ○ k2〉, we have Φ1’ ○ Φ1 = Φ2’ ○ Φ2.

�

 145

A.2 Composition details for the CRAM application
This section presents the composition details for the CRAM application presented in Section

6.1.5.

Organization Homomorphisms for constructing Cram_carry1 from composition (C1):

From Figure 6.6, Φ1 is an organization homomorphism. We have:

Φ1: Shared1 → Cram such that Φ1 = 〈 f1, g1, h1, i1, j1, k1 〉, where:

• f1 = {〈g0, g_root〉, 〈g1, Dispose Trash〉, 〈g2, gx4〉};

• g1 = ∅;

• h1 = {〈 |g1, g2|, |Dispose trash, gx4|〉};

• i1={ 〈 r1, Trash Collector〉, 〈 r2, rx4〉};

• j1 = {〈 |r1, r2|, |Trash Collector, rx4| 〉};

• k1 = ∅;

From Figure 6.6, Φ2 is an organization homomorphism. We have:

Φ2: Shared1 → Transportation such that Φ2 = 〈 f2, g2, h2, i2, j2, k2 〉 where:

• f2 = {〈 g0, g_root 〉, 〈 g1, gx6〉, 〈 g2, Carry 〉};

• g2 = ∅;

• h2 = {〈 |g1, g2|, |gx6, Carry|〉};

• i2={ 〈 r1, rx6〉, 〈 r2, Carrier 〉};

• j2 = {〈 |r1, r2|, |rx6, Carrier| 〉};

• k2 = ∅;

From Figure 6.6, Φ1’ is an organization homomorphism. We have:

Φ1’: Cram → Cram_carry1 such that Φ1’ = 〈 f1’, g1’, h1’, i1’, j1’, k1’ 〉 where:

• f1’ = {〈 g_root, g_root 〉, 〈 Manage Airport, Manage Airport 〉, 〈 Operate Sanitary

Maintenance, Operate Sanitary Maintenance 〉, 〈 Clean Floors, Clean Floors 〉, 〈

Dispose Trash, Dispose Trash 〉, 〈gx3, gx3〉, 〈 gx4, Carry 〉, 〈Monitor Buildings,

Monitor Buildings 〉, 〈Compute Paths, Compute Paths 〉, 〈Patrol, Patrol〉, 〈Alert and

 146

Neutralize, Alert and Neutralize 〉, 〈gx1, gx1〉, 〈Perform Cargo Inspection, Perform

Cargo Inspection,〉, 〈Screen All Cargos, Screen All Cargos 〉, 〈Send for Inspection,

Send for Inspection〉, 〈gx2, gx2〉};

• g1’ = {〈|g_root, Manage Airport| , |g_root, Manage Airport|〉, 〈|Manage Airport,

Operate Sanitary Maintenance|, |Manage Airport, Operate Sanitary Maintenance|〉,

〈|Operate Sanitary Maintenance, Clean Floors|, |Operate Sanitary Maintenance, Clean

Floors|〉, 〈|Operate Sanitary Maintenance, Dispose Trash|, |Operate Sanitary

Maintenance, Dispose Trash|〉, 〈|Manage Airport, Monitor Buildings|, |Manage

Airport, Monitor Buildings|〉, 〈|Monitor Buildings, Compute Paths|, |Monitor

Buildings, Compute Paths|〉, 〈|Monitor Buildings, Patrol|, |Monitor Buildings, Patrol|〉,

〈|Monitor Buildings, Alert and Neutralize|, |Monitor Buildings, Alert and Neutralize|〉,

〈|Manage Airport, Perform Cargo Inspection|, | Perform Cargo Inspection, Screen All

Cargos|〉, 〈| Perform Cargo Inspection, Send for Inspection |〉}

• h1’ = {〈 |Clean Floors, gx3|, |Clean Floors, gx3| 〉, 〈 |Dispose trash, gx4|, |Dispose

trash, Carry|〉, 〈|Send for Inspection, gx2|, |Send for Inspection, gx2|〉, 〈|Alert and

Neutralize, gx1|, |Alert and Neutralize, gx1|〉, 〈found, found〉, 〈assign, assign〉};

• i1’= {〈Janitor, Janitor〉, 〈 Trash Collector, Trash Collector 〉, 〈rx3, rx3〉, 〈rx4, Carrier〉,

〈Computer, Computer〉, 〈Patroller, Patroller〉, 〈Neutralizer, Neutralizer〉, 〈rx1, rx1〉,

〈Screener, Screener〉, 〈Transporter, Transporter〉, 〈rx2, rx2〉 };

• j1’ = {〈|Janitor, rx3|, |Janitor, rx3|〉, 〈|Trash Collector, rx4|, |Trash Collector, Carrier|〉,

〈|Neutralizer, rx1|, |Neutralizer, rx1|〉, 〈|transporter, rx2|, |Transporter, rx2|〉};

• k1’ = {〈|Janitor, Clean Floors|, |Janitor, Clean Floors|〉, 〈|Trash Collector, Dispose

Trash|, |Trash Collector, Dispose Trash|〉, 〈|Computer, Compute Paths|, |Computer,

Compute Paths|〉, 〈|Patroller, Patrol|〉, 〈|Patroller, Patrol|〉, 〈|Neutralizer, Alert and

Neutralize|, |Neutralizer, Alert and Neutralize|〉, 〈Screener, Screen All Cargos〉,

〈Transporter, Send for Inspection〉}

From Figure 6.6, Φ2’ is an organization homomorphism. We have:

Φ2’: Transportation → Cram_carry1 such that Φ2’ = 〈 f2’, g2’, h2’, i2’, j2’, k2’ 〉 where:

 147

• f2’ = {〈g_root, g_root〉, 〈Transport Object, Transport Object〉, 〈Carry, Carry〉, 〈Deliver,

Deliver〉, 〈Load and Unload, Load and Unload〉, 〈gx6, Dispose Trash〉, 〈Push, Push〉,

〈Start Pushing, Start Pushing〉, 〈 Assist Pushing, Assist Pushing〉, 〈gx5, gx5〉 }

• g2’ = {〈|g_root, Transport Object|, |g_root, Transport Object|〉, 〈|Transport Object,

Carry|, |Transport Object, Carry|〉, 〈|Carry, Deliver|, |Carry, Deliver|〉, 〈|Carry, Load

and Unload|, |Carry, Load and Unload |〉, 〈|Transport Object, Push|, |Transport Object,

Push|〉, 〈|Push, Start Pushing|, |Push, Start Pushing|〉, 〈|Push, Assist Pushing|〉, 〈|Push,

Assist Pushing|〉}

• h2’ = {〈|gx6, Carry|, |Dispose Trash, Carry|〉, 〈|gx5, Push|, |gx5, Push|〉}

• i2’= {〈Carrier, Carrier 〉, 〈Lifter, Lifter 〉, 〈rx6, Trash Collector〉, 〈Pusher, Pusher〉,

〈Helper, Helper〉, 〈rx5, rx5〉}

• j2’ = {〈ready, ready〉, 〈|rx6, Carrier|, |Trash Collector, Carrier|〉, 〈sync, sync〉, 〈|rx5,

Pusher|, |rx5, Pusher|〉}

• k2’ = {〈|Carrier, Deliver|, |Carrier, Deliver|〉, 〈|Lifter, Load and Unload |, |Lifter, Load

and Unload |〉, 〈|Pusher, Start Pushing|, |Pusher, Start Pushing|〉, 〈|Helper, Assist

Pushing|, |Helper, Assist Pushing|〉}

Cram_carry1 along with homomorphism Φ1’ and Φ2’ (Figure 6.6) represent the pushout of

organization Shared1 with homomorphism Φ1 and Φ2 . In fact, we have:

• f1’ ○ f1 = {〈g0, g_root〉, 〈g1, Dispose Trash〉, 〈g2, Carry〉}

• f2’ ○ f2 = {〈g0, g_root〉, 〈g1, Dispose Trash〉, 〈g2, Carry〉}

• g1’ ○ g1 = ∅;

• g2’ ○ g2 = ∅;

• h1’ ○ h1 = {〈 |g1, g2|, |Dispose trash, Carry|〉};

• h2’ ○ h2 = {〈 |g1, g2|, |Dispose trash, Carry|〉};

• i1’ ○ i1 = { 〈 r1, Trash Collector〉, 〈 r2, Carrier〉};

• i2’ ○ i2 = { 〈 r1, Trash Collector〉, 〈 r2, Carrier〉};

• j1’ ○ j1 = {〈 |r1, r2|, |Trash Collector, Carrier| 〉};

• j2’ ○ j2 = {〈 |r1, r2|, |Trash Collector, Carrier| 〉};

 148

• k1’ ○ k1 = ∅;

• k2’ ○ k2 = ∅;

Hence, we can see that f1’ ○ f1 = f2’ ○ f2, g1’ ○ g1 = g2’ ○ g2, h1’ ○ h1 = i2’ ○ i2, j1’ ○ j1 = k2’ ○ k2.

As Φ1’ ○ Φ1 = 〈 f1’ ○ f1, g1’ ○ g1, h1’ ○ h1, i1’ ○ i1, j1’ ○ j1, k1’ ○ k1〉 and Φ2’ ○ Φ2 = 〈 f2’ ○ f2, g2’

○ g2, h2’ ○ h2, i2’ ○ i2, j2’ ○ j2, k2’ ○ k2〉, we have Φ1’ ○ Φ1 = Φ2’ ○ Φ2.

Organization Homomorphisms for constructing Cram_carry2 from composition (C2):

From Figure 6.7, Φ1 is an organization homomorphism. We have:

Φ1: Shared2 → Cram_carry1 such that Φ1 = 〈 f1, g1, h1, i1, j1, k1 〉, where:

• f1 = {〈g0, g_root〉, 〈g1, Transport Object〉, 〈g2, Carry〉, 〈g3, Deliver〉, 〈g4, Load and

unload〉, 〈g5, Alert and Neutralize〉, 〈g6, gx1〉, 〈g7, Push〉, 〈g8, Start Pushing〉, 〈g9, Assist

Pushing〉, 〈g10, gx5〉};

• g1 = {〈|g0,g1 |, | g_root, Transport Object |〉, 〈|g1,g2 |, |Transport Object, Carry |〉, 〈|

g2,g3|, |Carry, Deliver |〉, 〈|g2,g4 |, |Carry, Load and Unload |〉, 〈|g1,g7 |, |Transport

Object, Push|〉, 〈|g7,g8 |, |Push, Start Pushing |〉, 〈|g7,g9 |, |Push, Assist Pushing|〉};

• h1 = {〈|g5, g6|, |Alert and Neutralize, gx1|〉, 〈|g10, g7|, |gx5, Push|〉};

• i1= {〈r1, Carrier〉, 〈r2, Lifter〉, 〈r3, Neutralizer〉, 〈r4, rx1〉, 〈r5, Pusher〉, 〈r6, Helper〉, 〈r7,

rx5〉};

• j1 = {〈|r1, r2|, |Carrier, Lifter|〉, 〈|r3, r4|, |Neutralizer, rx1|〉, 〈|r5, r6|, |Pusher, Helper|〉,

〈|r7, r5|, |rx5, Pusher|〉};

• k1 = {〈|r1,g3|, |Carrier, Deliver|〉, 〈|r2, g4|, |Lifter, Load and Unload|〉, 〈|r5, g8|, |Pusher,

Start Pushing|〉, 〈|r6, g9|, |helper, Assist Pushing|〉};

From Figure 6.7, Φ2 is an organization homomorphism. We have:

Φ2: Shared2 → Transportation such that Φ2 = 〈 f2, g2, h2, i2, j2, k2 〉 where:

• f2 = {〈g0, g_root〉, 〈g1, Transport Object〉, 〈g2, Carry〉, 〈g3, Deliver〉, 〈g4, Load and

unload〉, 〈g5, gx6〉, 〈g6, Carry〉, 〈g7, Push〉, 〈g8, Start Pushing〉, 〈g9, Assist Pushing〉,

〈g10, gx5〉};

 149

• g2 = {〈|g0,g1|, |g_root, Transport Object|〉, 〈|g1,g2|, |Transport Object, Carry|〉, 〈|g2,g3|,

|Carry, Deliver |〉, 〈|g2,g4 |, |Carry, Load and Unload |〉, 〈|g1,g7 |, |Transport Object,

Push|〉, 〈|g7,g8 |, |Push, Start Pushing |〉, 〈|g7,g9 |, |Push, Assist Pushing|〉};

• h2 = {〈|g5, g6|, | gx6, Carry|〉, 〈|g10, g7|, |gx5, Push|〉};

• i2 = {〈r1, Carrier〉, 〈r2, Lifter〉, 〈r3, rx6〉, 〈r4, Carrier〉, 〈r5, Pusher〉, 〈r6, Helper〉, 〈r7,

rx5〉};

• j2 = {〈|r1, r2|, |Carrier, Lifter|〉, 〈|r3, r4|, | rx6, Carrier|〉, 〈|r5, r6|, |Pusher, Helper|〉, 〈|r7,

r5|, |rx5, Pusher|〉};

• k2 = {〈|r1,g3|, |Carrier, Deliver|〉, 〈|r2, g4|, |Lifter, Load and Unload|〉, 〈|r5, g8|, |Pusher,

Start Pushing|〉, 〈|r6, g9|, |helper, Assist Pushing|〉};

From Figure 6.7, Φ1’ is an organization homomorphism. We have:

Φ1’: Cram_carry1 → Cram_carry2 such that Φ1’ = 〈 f1’, g1’, h1’, i1’, j1’, k1’ 〉 where:

• f1’ = {〈g_root, g_root〉, 〈Transport Object, Transport Object〉, 〈Carry, Carry〉, 〈Deliver,

Deliver〉, 〈Load and Unload, Load and Unload〉, 〈Push, Push〉, 〈Start Pushing, Start

Pushing〉, 〈Assist Pushing, Assist Pushing〉, 〈gx5, gx5〉, 〈Manage Airport, Manage

Airport〉, 〈Operate Sanitary Maintenance, Operate Sanitary Maintenance〉, 〈Clean

Floors, Clean Floors〉, 〈Dispose Trash, Dispose Trash〉, 〈gx3, gx3〉, 〈Monitor

Buildings, Monitor Buildings〉, 〈Compute Paths, Compute Paths〉, 〈Patrol, Patrol〉,

〈Alert and Neutralize, Alert and Neutralize 〉, 〈gx1, carry〉, 〈Perform Cargo

Inspection, Perform Cargo Inspection,〉, 〈Screen All Cargos, Screen All Cargos 〉,

〈Send for Inspection, Send for Inspection〉, 〈gx2, gx2〉}

• g1’ = {〈|g_root, Transport Object|, |g_root, Transport Object |〉, 〈|Transport Object,

Carry|, | Transport Object, Carry|〉, 〈|Carry, Deliver|, | Carry, Deliver|〉, 〈|Carry, Load

and Unload |, | Carry, Load and Unload |〉, 〈|g_root, Manage Airport| , |g_root,

Manage Airport|〉, 〈|Manage Airport, Operate Sanitary Maintenance|, |Manage

Airport, Operate Sanitary Maintenance|〉, 〈|Operate Sanitary Maintenance, Clean

Floors|, |Operate Sanitary Maintenance, Clean Floors|〉, 〈|Operate Sanitary

Maintenance, Dispose Trash|, |Operate Sanitary Maintenance, Dispose Trash|〉,

 150

〈|Manage Airport, Monitor Buildings|, |Manage Airport, Monitor Buildings|〉,

〈|Monitor Buildings, Compute Paths|, |Monitor Buildings, Compute Paths|〉, 〈|Monitor

Buildings, Patrol|, |Monitor Buildings, Patrol|〉, 〈|Monitor Buildings, Alert and

Neutralize|, |Monitor Buildings, Alert and Neutralize|〉, 〈|Manage Airport, Perform

Cargo Inspection|, | Perform Cargo Inspection, Screen All Cargos|〉, 〈| Perform Cargo

Inspection, Send for Inspection |〉}

• h1’ = {〈 |Clean Floors, gx3|, |Clean Floors, gx3|〉, 〈assign, assign〉, 〈found, found〉, 〈

|Dispose Trash, Carry|, |Dispose Trash, Carry| 〉, 〈|Alert and Neutralize, gx1|, |Alert

and Neutralize, Carry|〉, 〈inspect, inspect〉, 〈|Send for Inspection, gx2|, |Send for

Inspection, gx2|〉, 〈|gx5, Push|, |gx5, Push| 〉};

• i1’={〈Carrier, Carrier 〉, 〈Lifter, Lifter 〉, 〈Pusher, Pusher〉, 〈Helper, Helper〉, 〈rx5, rx5〉,

〈Trash Collector, Carrier〉, 〈Janitor, Janitor〉, 〈rx3, rx3〉, 〈Computer, Computer〉,

〈Patroller, Patroller〉, 〈Neutralizer, Neutralizer〉, 〈rx1, Carrier〉, 〈Screener, Screener〉,

〈Transporter, Transporter〉, 〈rx2, rx2〉 };

• j1’ = {〈|Janitor, rx3|, |Janitor, rx3|〉, 〈|Trash Collector, Carrier|, |Trash Collector,

Carrier|〉, 〈|Neutralizer, rx1|, |Neutralizer, Carrier|〉, 〈|Transporter, rx2|, |Transporter,

rx2|〉, 〈ready, ready〉, 〈sync, sync〉, 〈|rx5, Pusher|, |rx5, Pusher|〉};

• k1’ = {〈|Carrier, Deliver|, |Carrier, Deliver|〉, 〈|Lifter, Load and Unload |, |Lifter, Load

and Unload |〉, 〈|Pusher, Start Pushing|, |Pusher, Start Pushing|〉, 〈|Helper, Assist

Pushing|, |Helper, Assist Pushing|〉, 〈|Janitor, Clean Floors|, |Janitor, Clean Floors|〉,

〈|Trash Collector, Dispose Trash|, |Trash Collector, Dispose Trash|〉, 〈|Computer,

Compute Paths|, |Computer, Compute Paths|〉, 〈|Patroller, Patrol|〉, 〈|Patroller, Patrol|〉,

〈|Neutralizer, Alert and Neutralize|, |Neutralizer, Alert and Neutralize|〉, 〈Screener,

Screen All Cargos〉, 〈Transporter, Send for Inspection〉};

From Figure 6.7, Φ2’ is an organization homomorphism. We have:

Φ2’: Transportation → Cram_carry2 such that Φ2’ = 〈 f2’, g2’, h2’, i2’, j2’, k2’ 〉 where:

 151

• f2’ = {〈g_root, g_root〉, 〈Transport Object, Transport Object〉, 〈Carry, Carry〉, 〈Deliver,

Deliver〉, 〈Load and Unload, Load and Unload〉, 〈gx6, Alert and Neutralize〉, 〈Push,

Push〉, 〈Start Pushing, Start Pushing〉, 〈 Assist Pushing, Assist Pushing〉, 〈gx5, gx5〉 }

• g2’ = {〈|g_root, Transport Object|, |g_root, Transport Object|〉, 〈|Transport Object,

Carry|, |Transport Object, Carry|〉, 〈|Carry, Deliver|, |Carry, Deliver|〉, 〈|Carry, Load

and Unload|, |Carry, Load and Unload |〉, 〈|Transport Object, Push|, |Transport Object,

Push|〉, 〈|Push, Start Pushing|, |Push, Start Pushing|〉, 〈|Push, Assist Pushing|〉, 〈|Push,

Assist Pushing|〉}

• h2’ = {〈|gx6, Carry|, |Alert and Neutralize, Carry|〉, 〈|gx5, Push|, |gx5, Push|〉}

• i2’= {〈Carrier, Carrier 〉, 〈Lifter, Lifter 〉, 〈rx6, Neutralizer〉, 〈Pusher, Pusher〉, 〈Helper,

Helper〉, 〈rx5, rx5〉}

• j2’ = {〈ready, ready〉, 〈|rx6, Carrier|, |Neutralizer, Carrier|〉, 〈sync, sync〉, 〈|rx5,

Pusher|, |rx5, Pusher|〉}

• k2’ = {〈|Carrier, Deliver|, |Carrier, Deliver|〉, 〈|Lifter, Load and Unload |, |Lifter, Load

and Unload |〉, 〈|Pusher, Start Pushing|, |Pusher, Start Pushing|〉, 〈|Helper, Assist

Pushing|, |Helper, Assist Pushing|〉}

Cram_carry2 along with homomorphism Φ1’ and Φ2’ (Figure 6.7) represent the pushout of

organization Shared2 with homomorphism Φ1 and Φ2 . In fact, we have:

• f1’ ○ f1 = {〈g0, g_root〉, 〈g1, Transport Object〉, 〈g2, Carry〉, 〈g3, Deliver〉, 〈g4, Load and

unload〉, 〈g5, Alert and Neutralize〉, 〈g6, Carry〉, 〈g7, Push〉, 〈g8, Start Pushing〉, 〈g9,

Assist Pushing〉, 〈g10, gx5〉}

• f2’ ○ f2 = {〈g0, g_root〉, 〈g1, Transport Object〉, 〈g2, Carry〉, 〈g3, Deliver〉, 〈g4, Load and

unload〉, 〈g5, Alert and Neutralize〉, 〈g6, Carry〉, 〈g7, Push〉, 〈g8, Start Pushing〉, 〈g9,

Assist Pushing〉, 〈g10, gx5〉}

• g1’ ○ g1 = {〈|g0,g1 |, | g_root, Transport Object |〉, 〈|g1,g2 |, |Transport Object, Carry |〉,

〈| g2,g3|, |Carry, Deliver |〉, 〈|g2,g4 |, |Carry, Load and Unload |〉, 〈|g1,g7 |, |Transport

Object, Push|〉, 〈|g7,g8 |, |Push, Start Pushing |〉, 〈|g7,g9 |, |Push, Assist Pushing|〉};

 152

• g2’ ○ g2 = {〈|g0,g1 |, | g_root, Transport Object |〉, 〈|g1,g2 |, |Transport Object, Carry |〉,

〈| g2,g3|, |Carry, Deliver |〉, 〈|g2,g4 |, |Carry, Load and Unload |〉, 〈|g1,g7 |, |Transport

Object, Push|〉, 〈|g7,g8 |, |Push, Start Pushing |〉, 〈|g7,g9 |, |Push, Assist Pushing|〉};

• h1’ ○ h1 = {〈|g5, g6|, |Alert and Neutralize, Carry|〉, 〈|g10, g7|, |gx5, Push|〉};

• h2’ ○ h2 = {〈|g5, g6|, |Alert and Neutralize, Carry|〉, 〈|g10, g7|, |gx5, Push|〉};

• i1’ ○ i1 = {〈r1, Carrier〉, 〈r2, Lifter〉, 〈r3, Neutralizer〉, 〈r4, Carrier〉, 〈r5, Pusher〉, 〈r6,

Helper〉, 〈r7, rx5〉};

• i2’ ○ i2 = {〈r1, Carrier〉, 〈r2, Lifter〉, 〈r3, Neutralizer〉, 〈r4, Carrier〉, 〈r5, Pusher〉, 〈r6,

Helper〉, 〈r7, rx5〉};

• j1’ ○ j1 = {〈|r1, r2|, |Carrier, Lifter|〉, 〈|r3, r4|, |Neutralizer, Carrier|〉, 〈|r5, r6|, |Pusher,

Helper|〉, 〈|r7, r5|, |rx5, Pusher|〉};

• j2’ ○ j2 = {〈|r1, r2|, |Carrier, Lifter|〉, 〈|r3, r4|, |Neutralizer, Carrier|〉, 〈|r5, r6|, |Pusher,

Helper|〉, 〈|r7, r5|, |rx5, Pusher|〉};

• k1’ ○ k1 = {〈|r1,g3|, |Carrier, Deliver|〉, 〈|r2, g4|, |Lifter, Load and Unload|〉, 〈|r5, g8|,

|Pusher, Start Pushing|〉, 〈|r6, g9|, |helper, Assist Pushing|〉};

• k2’ ○ k2 = {〈|r1,g3|, |Carrier, Deliver|〉, 〈|r2, g4|, |Lifter, Load and Unload|〉, 〈|r5, g8|,

|Pusher, Start Pushing|〉, 〈|r6, g9|, |helper, Assist Pushing|〉};

Hence, we can see that f1’ ○ f1 = f2’ ○ f2, g1’ ○ g1 = g2’ ○ g2, h1’ ○ h1 = i2’ ○ i2, j1’ ○ j1 = k2’ ○ k2.

As Φ1’ ○ Φ1 = 〈 f1’ ○ f1, g1’ ○ g1, h1’ ○ h1, i1’ ○ i1, j1’ ○ j1, k1’ ○ k1〉 and Φ2’ ○ Φ2 = 〈 f2’ ○ f2, g2’

○ g2, h2’ ○ h2, i2’ ○ i2, j2’ ○ j2, k2’ ○ k2〉, we have Φ1’ ○ Φ1 = Φ2’ ○ Φ2.

Organization Homomorphisms for constructing Cram_push from composition (C3):

From Figure 6.8, Φ1 is an organization homomorphism. We have:

Φ1: Shared3 → Cram_carry2 such that Φ1 = 〈 f1, g1, h1, i1, j1, k1 〉, where:

• f1 = {〈g0, g_root〉, 〈g1, Transport Object〉, 〈g2, Carry〉, 〈g3, Deliver〉, 〈g4, Load and

unload〉, 〈g5, Send for Inspection〉, 〈g6, gx2〉, 〈g7, Push〉, 〈g8, Start Pushing〉, 〈g9, Assist

Pushing〉, 〈g10, gx5〉};

 153

• g1 = {〈|g0,g1 |, | g_root, Transport Object |〉, 〈|g1,g2 |, |Transport Object, Carry |〉, 〈|

g2,g3|, |Carry, Deliver |〉, 〈|g2,g4 |, |Carry, Load and Unload |〉, 〈|g1,g7 |, |Transport

Object, Push|〉, 〈|g7,g8 |, |Push, Start Pushing |〉, 〈|g7,g9 |, |Push, Assist Pushing|〉};

• h1 = {〈|g5, g6|, | Send for Inspection, gx2|〉, 〈|g10, g7|, |gx5, Push|〉};

• i1= {〈r1, Carrier〉, 〈r2, Lifter〉, 〈r3, Transporter〉, 〈r4, rx2〉, 〈r5, Pusher〉, 〈r6, Helper〉, 〈r7,

rx5〉};

• j1 = {〈|r1, r2|, |Carrier, Lifter|〉, 〈|r3, r4|, |Transporter, rx2|〉, 〈|r5, r6|, |Pusher, Helper|〉,

〈|r7, r5|, |rx5, Pusher|〉};

• k1 = {〈|r1,g3|, |Carrier, Deliver|〉, 〈|r2, g4|, |Lifter, Load and Unload|〉, 〈|r5, g8|, |Pusher,

Start Pushing|〉, 〈|r6, g9|, |helper, Assist Pushing|〉};

From Figure 6.8, Φ2 is an organization homomorphism. We have:

Φ2: Shared3 → Transportation such that Φ2 = 〈 f2, g2, h2, i2, j2, k2 〉 where:

• f2 = {〈g0, g_root〉, 〈g1, Transport Object〉, 〈g2, Carry〉, 〈g3, Deliver〉, 〈g4, Load and

unload〉, 〈g5, gx5〉, 〈g6, Push〉, 〈g7, Push〉, 〈g8, Start Pushing〉, 〈g9, Assist Pushing〉,

〈g10, gx5〉};

• g2 = {〈|g0,g1|, |g_root, Transport Object|〉, 〈|g1,g2|, |Transport Object, Carry|〉, 〈|g2,g3|,

|Carry, Deliver |〉, 〈|g2,g4 |, |Carry, Load and Unload |〉, 〈|g1,g7 |, |Transport Object,

Push|〉, 〈|g7,g8 |, |Push, Start Pushing |〉, 〈|g7,g9 |, |Push, Assist Pushing|〉};

• h2 = {〈|g5, g6|, | gx5, Push|〉, 〈|g10, g7|, |gx5, Push|〉};

• i2 = {〈r1, Carrier〉, 〈r2, Lifter〉, 〈r3, rx5〉, 〈r4, Pusher〉, 〈r5, Pusher〉, 〈r6, Helper〉};

• j2 = {〈|r1, r2|, |Carrier, Lifter|〉, 〈|r3, r4|, | rx5, Pusher|〉, 〈|r5, r6|, |Pusher, Helper|〉, 〈r7,

rx5〉};

• k2 = {〈|r1,g3|, |Carrier, Deliver|〉, 〈|r2, g4|, |Lifter, Load and Unload|〉, 〈|r5, g8|, |Pusher,

Start Pushing|〉, 〈|r6, g9|, |helper, Assist Pushing|〉};

From Figure 6.8, Φ1’ is an organization homomorphism. We have:

Φ1’: Cram_carry2 → Cram_push such that Φ1’ = 〈 f1’, g1’, h1’, i1’, j1’, k1’ 〉 where:

 154

• f1’ = {〈g_root, g_root〉, 〈Transport Object, Transport Object〉, 〈Carry, Carry〉, 〈Deliver,

Deliver〉, 〈Load and Unload, Load and Unload〉, 〈Push, Push〉, 〈Start Pushing, Start

Pushing〉, 〈Assist Pushing, Assist Pushing〉, 〈gx5, Send for Inspection〉, 〈Manage

Airport, Manage Airport〉, 〈Operate Sanitary Maintenance, Operate Sanitary

Maintenance〉, 〈Clean Floors, Clean Floors〉, 〈Dispose Trash, Dispose Trash〉, 〈gx3,

gx3〉, 〈Monitor Buildings, Monitor Buildings〉, 〈Compute Paths, Compute Paths〉,

〈Patrol, Patrol〉, 〈Alert and Neutralize, Alert and Neutralize 〉, 〈Perform Cargo

Inspection, Perform Cargo Inspection,〉, 〈Screen All Cargos, Screen All Cargos 〉,

〈Send for Inspection, Send for Inspection〉, 〈gx2, Push〉}

• g1’ = {〈|g_root, Transport Object|, |g_root, Transport Object |〉, 〈|Transport Object,

Carry|, | Transport Object, Carry|〉, 〈|Carry, Deliver|, | Carry, Deliver|〉, 〈|Carry, Load

and Unload |, | Carry, Load and Unload |〉, 〈|g_root, Manage Airport| , |g_root,

Manage Airport|〉, 〈|Manage Airport, Operate Sanitary Maintenance|, |Manage

Airport, Operate Sanitary Maintenance|〉, 〈|Operate Sanitary Maintenance, Clean

Floors|, |Operate Sanitary Maintenance, Clean Floors|〉, 〈|Operate Sanitary

Maintenance, Dispose Trash|, |Operate Sanitary Maintenance, Dispose Trash|〉,

〈|Manage Airport, Monitor Buildings|, |Manage Airport, Monitor Buildings|〉,

〈|Monitor Buildings, Compute Paths|, |Monitor Buildings, Compute Paths|〉, 〈|Monitor

Buildings, Patrol|, |Monitor Buildings, Patrol|〉, 〈|Monitor Buildings, Alert and

Neutralize|, |Monitor Buildings, Alert and Neutralize|〉, 〈|Manage Airport, Perform

Cargo Inspection|, | Perform Cargo Inspection, Screen All Cargos|〉, 〈| Perform Cargo

Inspection, Send for Inspection |〉}

• h1’ = {〈 |Clean Floors, gx3|, |Clean Floors, gx3|〉, 〈assign, assign〉, 〈found, found〉, 〈

|Dispose Trash, Carry|, |Dispose Trash, Carry| 〉, 〈|Alert and Neutralize, Carry|,

|Alert and Neutralize, Carry|〉, 〈inspect, inspect〉, 〈|Send for Inspection, gx2|, |Send

for Inspection, Push|〉, 〈|gx5, Push|, |Send for Inspection, Push|〉};

• i1’={〈Carrier, Carrier 〉, 〈Lifter, Lifter 〉, 〈Pusher, Pusher〉, 〈Helper, Helper〉, 〈rx5,

Transporter〉, 〈Trash Collector, Carrier〉, 〈Janitor, Janitor〉, 〈rx3, rx3〉, 〈Computer,

 155

Computer〉, 〈Patroller, Patroller〉, 〈Neutralizer, Neutralizer〉, 〈Screener, Screener〉,

〈Transporter, Transporter〉, 〈rx2, Pusher〉 };

• j1’ = {〈|Janitor, rx3|, |Janitor, rx3|〉, 〈|Trash Collector, Carrier|, |Trash Collector,

Carrier|〉, 〈|Neutralizer, Carrier|, |Neutralizer, Carrier|〉, 〈|Transporter, rx2|,

|Transporter, Pusher|〉, 〈ready, ready〉, 〈sync, sync〉, 〈|rx5, Pusher|, |Transporter,

Pusher|〉};

• k1’ = {〈|Carrier, Deliver|, |Carrier, Deliver|〉, 〈|Lifter, Load and Unload |, |Lifter, Load

and Unload |〉, 〈|Pusher, Start Pushing|, |Pusher, Start Pushing|〉, 〈|Helper, Assist

Pushing|, |Helper, Assist Pushing|〉, 〈|Janitor, Clean Floors|, |Janitor, Clean Floors|〉,

〈|Trash Collector, Dispose Trash|, |Trash Collector, Dispose Trash|〉, 〈|Computer,

Compute Paths|, |Computer, Compute Paths|〉, 〈|Patroller, Patrol|〉, 〈|Patroller, Patrol|〉,

〈|Neutralizer, Alert and Neutralize|, |Neutralizer, Alert and Neutralize|〉, 〈Screener,

Screen All Cargos〉, 〈Transporter, Send for Inspection〉};

From Figure 6.8, Φ2’ is an organization homomorphism. We have:

Φ2’: Transportation → Cram_push such that Φ2’ = 〈 f2’, g2’, h2’, i2’, j2’, k2’ 〉 where:

• f2’ = {〈g_root, g_root〉, 〈Transport Object, Transport Object〉, 〈Carry, Carry〉, 〈Deliver,

Deliver〉, 〈Load and Unload, Load and Unload〉, 〈Push, Push〉, 〈Start Pushing, Start

Pushing〉, 〈 Assist Pushing, Assist Pushing〉, 〈gx5, Send for Inspection〉 }

• g2’ = {〈|g_root, Transport Object|, |g_root, Transport Object|〉, 〈|Transport Object,

Carry|, |Transport Object, Carry|〉, 〈|Carry, Deliver|, |Carry, Deliver|〉, 〈|Carry, Load

and Unload|, |Carry, Load and Unload |〉, 〈|Transport Object, Push|, |Transport Object,

Push|〉, 〈|Push, Start Pushing|, |Push, Start Pushing|〉, 〈|Push, Assist Pushing|〉, 〈|Push,

Assist Pushing|〉}

• h2’ = {〈|gx5, Push|, |Send for Inspection, Push|〉}

• i2’= {〈Carrier, Carrier 〉, 〈Lifter, Lifter 〉, 〈Pusher, Pusher〉, 〈Helper, Helper〉, 〈rx5,

Transporter〉}

• j2’ = {〈ready, ready〉, 〈sync, sync〉, 〈|rx5, Pusher|, |Transporter, Pusher|〉}

 156

• k2’ = {〈|Carrier, Deliver|, |Carrier, Deliver|〉, 〈|Lifter, Load and Unload |, |Lifter, Load

and Unload |〉, 〈|Pusher, Start Pushing|, |Pusher, Start Pushing|〉, 〈|Helper, Assist

Pushing|, |Helper, Assist Pushing|〉}

Cram_push along with homomorphism Φ1’ and Φ2’ (Figure 6.8) represent the pushout of

organization Shared3 with homomorphism Φ1 and Φ2. In fact, we have:

• f1’ ○ f1 = {〈g0, g_root〉, 〈g1, Transport Object〉, 〈g2, Carry〉, 〈g3, Deliver〉, 〈g4, Load and

unload〉, 〈g5, Send for Inspection〉, 〈g6, Push〉, 〈g7, Push〉, 〈g8, Start Pushing〉, 〈g9,

Assist Pushing〉, 〈g10, Send for Inspection〉};

• f2’ ○ f2 = {〈g0, g_root〉, 〈g1, Transport Object〉, 〈g2, Carry〉, 〈g3, Deliver〉, 〈g4, Load and

unload〉, 〈g5, Send for Inspection〉, 〈g6, Push〉, 〈g7, Push〉, 〈g8, Start Pushing〉, 〈g9,

Assist Pushing〉, 〈g10, Send for Inspection〉};

• g1’ ○ g1 = {〈|g0,g1 |, | g_root, Transport Object |〉, 〈|g1,g2 |, |Transport Object, Carry |〉,

〈| g2,g3|, |Carry, Deliver |〉, 〈|g2,g4 |, |Carry, Load and Unload |〉, 〈|g1,g7 |, |Transport

Object, Push|〉, 〈|g7,g8 |, |Push, Start Pushing |〉, 〈|g7,g9 |, |Push, Assist Pushing|〉};

• g2’ ○ g2 = {〈|g0,g1 |, | g_root, Transport Object |〉, 〈|g1,g2 |, |Transport Object, Carry |〉,

〈| g2,g3|, |Carry, Deliver |〉, 〈|g2,g4 |, |Carry, Load and Unload |〉, 〈|g1,g7 |, |Transport

Object, Push|〉, 〈|g7,g8 |, |Push, Start Pushing |〉, 〈|g7,g9 |, |Push, Assist Pushing|〉};

• h1’ ○ h1 = {〈|g5, g6|, | Send for Inspection, Push|〉, 〈|g10, g7|, |Send for Inspection,

Push|〉};

• h2’ ○ h2 = {〈|g5, g6|, | Send for Inspection, Push|〉, 〈|g10, g7|, |Send for Inspection,

Push|〉};

• i1’ ○ i1 = {〈r1, Carrier〉, 〈r2, Lifter〉, 〈r3, Transporter〉, 〈r4, Pusher〉, 〈r5, Pusher〉, 〈r6,

Helper〉, 〈r7, Transporter〉};

• i2’ ○ i2 = {〈r1, Carrier〉, 〈r2, Lifter〉, 〈r3, Transporter〉, 〈r4, Pusher〉, 〈r5, Pusher〉, 〈r6,

Helper〉, 〈r7, Transporter〉};

• j1’ ○ j1 = {〈|r1, r2|, |Carrier, Lifter|〉, 〈|r3, r4|, |Transporter, Pusher|〉, 〈|r5, r6|, |Pusher,

Helper|〉, 〈|r7, r5|, |Transporter, Pusher|〉}

 157

• j1’ ○ j1 = {〈|r1, r2|, |Carrier, Lifter|〉, 〈|r3, r4|, |Transporter, Pusher|〉, 〈|r5, r6|, |Pusher,

Helper|〉, 〈|r7, r5|, |Transporter, Pusher|〉}

• k1’ ○ k1 = {〈|r1,g3|, |Carrier, Deliver|〉, 〈|r2, g4|, |Lifter, Load and Unload|〉, 〈|r5, g8|,

|Pusher, Start Pushing|〉, 〈|r6, g9|, |helper, Assist Pushing|〉};

• k2’ ○ k2 = {〈|r1,g3|, |Carrier, Deliver|〉, 〈|r2, g4|, |Lifter, Load and Unload|〉, 〈|r5, g8|,

|Pusher, Start Pushing|〉, 〈|r6, g9|, |helper, Assist Pushing|〉}

Hence, we can see that f1’ ○ f1 = f2’ ○ f2, g1’ ○ g1 = g2’ ○ g2, h1’ ○ h1 = i2’ ○ i2, j1’ ○ j1 = k2’ ○ k2.

As Φ1’ ○ Φ1 = 〈 f1’ ○ f1, g1’ ○ g1, h1’ ○ h1, i1’ ○ i1, j1’ ○ j1, k1’ ○ k1〉 and Φ2’ ○ Φ2 = 〈 f2’ ○ f2, g2’

○ g2, h2’ ○ h2, i2’ ○ i2, j2’ ○ j2, k2’ ○ k2〉, we have Φ1’ ○ Φ1 = Φ2’ ○ Φ2.

Organization Homomorphisms for constructing Cram_carry1 from composition (C4):

From Figure 6.9, Φ1 is an organization homomorphism. We have:

Φ1: Shared4 → Cram_push such that Φ1 = 〈 f1, g1, h1, i1, j1, k1 〉, where:

• f1 = {〈g0, g_root〉, 〈g1, Clean Floors〉, 〈g2, gx3〉};

• g1 = ∅;

• h1 = {〈|g1, g2|, |Clean Floors, gx3|〉};

• i1={〈r1, Janitor〉, 〈r2, rx3〉};

• j1 = {〈|r1, r2|, |Janitor, rx3|〉};

• k1 = ∅;

From Figure 6.9, Φ2 is an organization homomorphism. We have:

Φ2: Shared4 → Clean such that Φ2 = 〈 f2, g2, h2, i2, j2, k2 〉 where:

• f2 = {〈 g0, g_root 〉, 〈 g1, gx7〉, 〈 g2, Divide Area〉};

• g2 = ∅;

• h2 = {〈 |g1, g2|, |gx7, Divide Area|〉};

• i2={ 〈 r1, rx7〉, 〈 r2, Leader〉};

• j2 = {〈 |r1, r2|, |rx7, Leader| 〉};

• k2 = ∅;

 158

From Figure 6.9, Φ1’ is an organization homomorphism. We have:

Φ1’: Cram_push → Cram_clean such that Φ1’ = 〈 f1’, g1’, h1’, i1’, j1’, k1’ 〉 where:

• f1’ = {〈g_root, g_root〉, 〈Transport Object, Transport Object〉, 〈Carry, Carry〉, 〈Deliver,

Deliver〉, 〈Load and Unload, Load and Unload〉, 〈Push, Push〉, 〈Start Pushing, Start

Pushing〉, 〈Assist Pushing, Assist Pushing〉, 〈Manage Airport, Manage Airport〉,

〈Operate Sanitary Maintenance, Operate Sanitary Maintenance〉, 〈Clean Floors, Clean

Floors〉, 〈Dispose Trash, Dispose Trash〉, 〈gx3, Divide Area〉, 〈Monitor Buildings,

Monitor Buildings〉, 〈Compute Paths, Compute Paths〉, 〈Patrol, Patrol〉, 〈Alert and

Neutralize, Alert and Neutralize 〉, 〈Perform Cargo Inspection, Perform Cargo

Inspection,〉, 〈Screen All Cargos, Screen All Cargos 〉, 〈Send for Inspection, Send for

Inspection〉}

• g1’ = {〈|g_root, Transport Object|, |g_root, Transport Object |〉, 〈|Transport Object,

Carry|, | Transport Object, Carry|〉, 〈|Carry, Deliver|, | Carry, Deliver|〉, 〈|Carry, Load

and Unload |, | Carry, Load and Unload |〉, 〈|g_root, Manage Airport| , |g_root,

Manage Airport|〉, 〈|Manage Airport, Operate Sanitary Maintenance|, |Manage

Airport, Operate Sanitary Maintenance|〉, 〈|Operate Sanitary Maintenance, Clean

Floors|, |Operate Sanitary Maintenance, Clean Floors|〉, 〈|Operate Sanitary

Maintenance, Dispose Trash|, |Operate Sanitary Maintenance, Dispose Trash|〉,

〈|Manage Airport, Monitor Buildings|, |Manage Airport, Monitor Buildings|〉,

〈|Monitor Buildings, Compute Paths|, |Monitor Buildings, Compute Paths|〉, 〈|Monitor

Buildings, Patrol|, |Monitor Buildings, Patrol|〉, 〈|Monitor Buildings, Alert and

Neutralize|, |Monitor Buildings, Alert and Neutralize|〉, 〈|Manage Airport, Perform

Cargo Inspection|, | Perform Cargo Inspection, Screen All Cargos|〉, 〈| Perform Cargo

Inspection, Send for Inspection |〉}

• h1’ = {〈 |Clean Floors, gx3|, |Clean Floors, Divide Area|〉, 〈assign, assign〉, 〈found,

found〉, 〈 |Dispose Trash, Carry|, |Dispose Trash, Carry| 〉, 〈|Alert and Neutralize,

Carry|, |Alert and Neutralize, Carry|〉, 〈inspect, inspect〉, 〈|Send for Inspection,

Push|, |Send for Inspection, Push|〉};

 159

• i1’={〈Carrier, Carrier 〉, 〈Lifter, Lifter 〉, 〈Pusher, Pusher〉, 〈Helper, Helper〉, 〈Trash

Collector, Carrier〉, 〈Janitor, Janitor〉, 〈rx3, Leader〉, 〈Computer, Computer〉,

〈Patroller, Patroller〉, 〈Neutralizer, Neutralizer〉, 〈Screener, Screener〉, 〈Transporter,

Transporter〉};

• j1’ = {〈|Janitor, rx3|, |Janitor, Leader|〉, 〈|Trash Collector, Carrier|, |Trash Collector,

Carrier|〉, 〈|Neutralizer, Carrier|, |Neutralizer, Carrier|〉, 〈|Transporter, Pusher|,

|Transporter, Pusher|〉, 〈ready, ready〉, 〈sync, sync〉};

• k1’ = {〈|Carrier, Deliver|, |Carrier, Deliver|〉, 〈|Lifter, Load and Unload |, |Lifter, Load

and Unload |〉, 〈|Pusher, Start Pushing|, |Pusher, Start Pushing|〉, 〈|Helper, Assist

Pushing|, |Helper, Assist Pushing|〉, 〈|Janitor, Clean Floors|, |Janitor, Clean Floors|〉,

〈|Trash Collector, Dispose Trash|, |Trash Collector, Dispose Trash|〉, 〈|Computer,

Compute Paths|, |Computer, Compute Paths|〉, 〈|Patroller, Patrol|〉, 〈|Patroller, Patrol|〉,

〈|Neutralizer, Alert and Neutralize|, |Neutralizer, Alert and Neutralize|〉, 〈Screener,

Screen All Cargos〉, 〈Transporter, Send for Inspection〉};

From Figure 6.9, Φ2’ is an organization homomorphism. We have:

Φ2’: Clean → Cram_clean such that Φ2’ = 〈 f2’, g2’, h2’, i2’, j2’, k2’ 〉 where:

• f2’ = {〈g_root, g_root〉, 〈Clean Area, Clean Area〉, 〈Divide Area, Divide Area〉, 〈Clean,

Clean〉, 〈Deep Clean, Deep Clean〉, 〈Vacuum, Vacuum〉, 〈Sweep, Sweep〉, 〈Mop,

Mop〉, 〈gx7, Clean Floors〉 }

• g2’ = {〈|g_root, Clean Area|, |g_root, Clean Area|〉, 〈|Clean Area, Divide Area|, |Clean

Area, Divide Area|〉, 〈|Clean Area, Clean|, |Clean Area, Clean|〉, 〈|Clean, Deep Clean|,

|Clean, Deep Clean|〉, 〈|Clean, Vacuum|, |Clean, Vacuum|〉, 〈|Deep Clean, Sweep|,

|Deep Clean, Sweep|〉, 〈|Deep Clean, Mop|〉, 〈|Deep Clean, Mop|〉}

• h2’ = {〈assignArea, assignArea〉, 〈precedes, precedes〉, 〈|gx7, Divide Area|, |gx7,

Divide Area|〉}

• i2’= {〈Sweeper, Sweeper〉, 〈Mopper, Mopper〉, 〈Vacuumer, Vacuumer〉, 〈Leader,

Leader〉, 〈rx7, Janitor〉}

• j2’ = {〈|rx7, Leader|, |Janitor, Leader|〉}

 160

• k2’ = {〈|Leader, Divide Area|, |Leader, Divide Area|〉, 〈|Sweeper, Sweep|, |Sweeper,

Sweep|〉, 〈|Mopper, Mop|, |Mopper, Mop|〉, 〈|Vacuumer, Vacuum|, |Vacuumer,

Vacuum|〉}

Cram_clean along with homomorphism Φ1’ and Φ2’ (Figure 6.9) represent the pushout of

organization Shared4 with homomorphism Φ1 and Φ2. In fact, we have:

• f1’ ○ f1 = {〈g0, g_root〉, 〈g1, Clean Floors〉, 〈g2, Divide Area〉};

• f2’ ○ f2 = {〈g0, g_root〉, 〈g1, Clean Floors〉, 〈g2, Divide Area〉};

• g1’ ○ g1 = ∅;

• g2’ ○ g2 = ∅;

• h1’ ○ h1 = {〈|g1, g2|, |Clean Floors, Divide Area|〉};

• h2’ ○ h2 = {〈|g1, g2|, |Clean Floors, Divide Area|〉};

• i1’ ○ i1 = {〈r1, Janitor〉, 〈r2, Leader〉};

• i2’ ○ i2 = {〈r1, Janitor〉, 〈r2, Leader〉};

• j1’ ○ j1 = {〈|r1, r2|, |Janitor, Leader|〉};

• j1’ ○ j1 = {〈|r1, r2|, |Janitor, Leader|〉};

• k1’ ○ k1 = ∅;

• k2’ ○ k2 = ∅;

Hence, we can see that f1’ ○ f1 = f2’ ○ f2, g1’ ○ g1 = g2’ ○ g2, h1’ ○ h1 = i2’ ○ i2, j1’ ○ j1 = k2’ ○ k2.

As Φ1’ ○ Φ1 = 〈 f1’ ○ f1, g1’ ○ g1, h1’ ○ h1, i1’ ○ i1, j1’ ○ j1, k1’ ○ k1〉 and Φ2’ ○ Φ2 = 〈 f2’ ○ f2, g2’

○ g2, h2’ ○ h2, i2’ ○ i2, j2’ ○ j2, k2’ ○ k2〉, we have Φ1’ ○ Φ1 = Φ2’ ○ Φ2.

�

 161

A.3 Composition details for the Surveillance application using FTSP
This section presents the composition details for the Surveillance organization composed

with the FTSP organization as presented in Section 6.2.5.

Let Φ1: Shared0 → Surveillance be an organization homomorphism such that Surveillance is

defined as shown in Figure 6.15 and Shared0 = 〈 G0, ET0, EG0, g_root, R0, P0, participant0,

achieves0〉 is an organization such that:

• G0 = {g_root , g1, g2, g3, g4},

• ET0 = ∅,

• EG0 = { |g1,g2|, |g3,g4|}

• R0 = { r1, r2, r3, r4}

• P0 = {p1, p2}

• participant0 = {〈p1, 〈r1, r2}〉, 〈p2, 〈r3, r4}〉}

• achieves0 = ∅

We define Φ1 = 〈 f1, g1, h1, i1, j1, k1 〉 such that:

• f1 = {〈g_root, g_root〉, 〈g1, Monitor Area〉, 〈g2, gx1〉, 〈g3, Track Area〉, 〈g4, gx2〉};

• g1 = ∅;

• h1 = {〈|g1, g2|, |Monitor Area, gx1|〉, 〈|g3, g4|, |Track Area, gx2|〉};

• i1={ 〈r1, Monitor〉, 〈 r2, rx1〉, 〈r3, Tracker〉, 〈 r4, rx2〉};

• j1 = {〈|r1, r2|, |Monitor, rx1| 〉, 〈|r3, r4|, |Tracker, rx2|〉};

• k1 = ∅;

Let Φ2: Shared0 → FTSP be an organization homomorphism such that FTSP is defined as shown

in Figure 6.13. We define Φ2 = 〈 f2, g2, h2, i2, j2, k2 〉 such that:

• f2 = {〈g_root, g_root〉, 〈g1, gx3〉, 〈g2, Compute Time〉};

• g2 = ∅;

• h2 = {〈 |g1, g2|, |gx3, Compute Time|〉};

• i2={ 〈r1, rx3〉, 〈r2, Receiver〉};

• j2 = {〈|r1, r2|, |rx3, Receiver|〉};

 162

• k2 = ∅;

Let Φ1’: Surveillance → Surveillance_FTSP an organization homomorphism such that

Surveillance_FTSP is defined as shown in Figure 6.16. We have Φ1’ = 〈 f1’, g1’, h1’, i1’, j1’, k1’〉

where:

• f1’ = {〈g_root, g_root〉, 〈Surveillance, Surveillance〉, 〈Monitor, Monitor〉, 〈Monitor

Area, Monitor Area〉, 〈Determine Coverage, Determine Coverage〉, 〈gx1, Compute

Time〉, 〈Track, Track〉, 〈Track Area, Track Area〉, 〈Divide Area, Divide Area〉, 〈gx2,

Compute Time〉, 〈Generate Reports, Generate Reports〉, 〈Define Area, Define

Area〉};

• g1’ = {〈|Surveillance, Monitor| , |Surveillance, Monitor|〉, 〈|Monitor, Monitor Area|,

|Monitor, Monitor Area|〉, 〈|Monitor, Determine Coverage|, |Monitor, Determine

Coverage|〉, 〈|Surveillance, Track| , |Surveillance, Track|〉, 〈|Track, Track Area|,

|Track, Track Area|〉, 〈|Track, Divide Area|, |Track, Divide Area|〉, 〈|g_root,

Surveillance| , |g_root, Surveillance|〉, 〈|Surveillance, Generate Reports|, |Surveillance,

Generate Reports|〉, 〈|Surveillance, Define Area|, |Surveillance, Define Area|〉}

• h1’ = {〈 |Monitor Area, gx1|, |Monitor Area, Compute Time|〉, 〈monitor, monitor〉, 〈

|Track Area, gx2|, |Track Area, Compute Time|〉, 〈track, track〉, 〈startMonitor,

startMonitor〉, 〈startTrack, startTrack〉};

• i1’= {〈Monitor, Monitor〉, 〈Coverage Processor, Coverage Processor〉, 〈rx1, Receiver〉,

〈Tracker, Tracker〉, 〈Divider, Divider〉, 〈rx2, Receiver〉, 〈User Interface, User

Interface〉};

• j1’ = {〈|Monitor, rx1|, |Monitor, Receiver|〉, 〈|Tracker, rx2|, |Tracker, Receiver|〉,

〈sendData, sendData〉};

• k1’ = {〈|Monitor, Monitor Area|, |Monitor, Monitor Area|〉, 〈|Coverage Processor,

Determine Coverage|, |Coverage Processor, Determine Coverage|〉, 〈|Tracker, Track

Area|, |Tracker, Track Area|〉, 〈|Divider, Divide Area|, |Divider, Divide Area|〉, 〈|User

Interface, Generate Reports|, |User Interface, Generate Reports|〉, 〈|User Interface,

Define Area|, |User Interface, Define Area|〉}

 163

Let Φ2’: FTSP → Surveillance_FTSP an organization homomorphism such that

Φ2’ = 〈 f2’, g2’, h2’, i2’, j2’, k2’ 〉 where:

• f2’ = {〈g_root, g_root〉, 〈FTSP, FTSP〉, 〈Compute Time, Compute Time〉, 〈Broadcast

Time, Broadcast Time〉, 〈gx3, Monitor Area〉}

• g2’ = {〈|g_root, FTSP|, |g_root, FTSP|〉, 〈|FTSP, Compute Time|, |FTSP, Compute

Time|〉, 〈|FTSP, Broadcast Time|, |FTSP, Broadcast Time|〉}

• h2’ = {〈|gx3, Compute Time|, |Monitor Area, Compute Time|〉}

• i2’= {〈Receiver, Receiver〉, 〈Reference, Reference〉, 〈rx3, Monitor〉}

• j2’ = {〈|rx3, Receiver|, |Monitor, Receiver|〉}

• k2’ = {〈|Receiver, Compute Time|, |Receiver, Compute Time|〉, 〈|Reference, Broadcast

Time|, |Reference, Broadcast Time|〉}

Surveillance_FTSP along with homomorphism Φ1’ and Φ2’ represent the pushout of organization

Shared0 with homomorphism Φ1 and Φ2. In fact, we have:

• f1’ ○ f1 = {〈g_root, g_root〉, 〈g1, Monitor Area〉, 〈g2, Compute Time〉, 〈g3, Track

Area〉, 〈g4, Compute Time〉}

• f2’ ○ f2 = {〈g_root, g_root〉, 〈g1, Monitor Area〉, 〈g2, Compute Time〉, 〈g3, Track

Area〉, 〈g4, Compute Time〉}

• g1’ ○ g1 = ∅;

• g2’ ○ g2 = ∅;

• h1’ ○ h1 = {〈 |g1, g2|, |Monitor Area, Compute Time|〉, 〈 |g3, g4|, |Track Area, Compute

Time|〉};

• h2’ ○ h2 = {〈 |g1, g2|, |Monitor Area, Compute Time|〉, 〈 |g3, g4|, |Track Area, Compute

Time|〉};

• i1’ ○ i1 = { 〈 r1, Monitor〉, 〈 r2, Receiver〉, 〈r3, Tracker〉, 〈 r4, Receiver〉};

• i2’ ○ i2 = { 〈 r1, Monitor〉, 〈 r2, Receiver〉, 〈r3, Tracker〉, 〈 r4, Receiver〉};

• j1’ ○ j1 = {〈|r1, r2|, |Monitor, Receiver|〉, 〈|r3, r4|, |Tracker, Receiver|〉};

• j1’ ○ j1 = {〈|r1, r2|, |Monitor, Receiver|〉, 〈|r3, r4|, |Tracker, Receiver|〉};

 164

• k1’ ○ k1 = ∅;

• k2’ ○ k2 = ∅;

Hence, we can see that f1’ ○ f1 = f2’ ○ f2, g1’ ○ g1 = g2’ ○ g2, h1’ ○ h1 = i2’ ○ i2, j1’ ○ j1 = k2’ ○ k2.

As Φ1’ ○ Φ1 = 〈 f1’ ○ f1, g1’ ○ g1, h1’ ○ h1, i1’ ○ i1, j1’ ○ j1, k1’ ○ k1〉 and Φ2’ ○ Φ2 = 〈 f2’ ○ f2, g2’

○ g2, h2’ ○ h2, i2’ ○ i2, j2’ ○ j2, k2’ ○ k2〉, we have Φ1’ ○ Φ1 = Φ2’ ○ Φ2.

�

 165

A.4 Composition details for the Surveillance application using RBS
This section presents the composition details for the Surveillance organization composed

with the RBS organization as presented in Section 6.2.5.

Let Φ1: Shared0 → Surveillance be an organization homomorphism such that Surveillance is

defined as shown in Figure 6.15 and Shared0 = 〈 G0, ET0, EG0, g_root, R0, P0, participant0,

achieves0〉 is an organization such that:

• G0 = {g_root , g1, g2, g3, g4},

• ET0 = ∅,

• EG0 = { |g1,g2|, |g3,g4|}

• R0 = { r1, r2, r3, r4}

• P0 = {p1, p2}

• participant0 = {〈p1, 〈r1, r2}〉, 〈p2, 〈r3, r4}〉}

• achieves0 = ∅

We define Φ1 = 〈 f1, g1, h1, i1, j1, k1 〉 such that:

• f1 = {〈g_root, g_root〉, 〈g1, Monitor Area〉, 〈g2, gx1〉, 〈g3, Track Area〉, 〈g4, gx2〉};

• g1 = ∅;

• h1 = {〈|g1, g2|, |Monitor Area, gx1|〉, 〈|g3, g4|, |Track Area, gx2|〉};

• i1={ 〈r1, Monitor〉, 〈 r2, rx1〉, 〈r3, Tracker〉, 〈 r4, rx2〉};

• j1 = {〈|r1, r2|, |Monitor, rx1| 〉, 〈|r3, r4|, |Tracker, rx2|〉};

• k1 = ∅;

Let Φ2: Shared0 → RBS be an organization homomorphism such that RBS is defined as shown

in Figure 6.14. We define Φ2 = 〈 f2, g2, h2, i2, j2, k2 〉 such that:

• f2 = {〈g_root, g_root〉, 〈g1, gx4〉, 〈g2, Compare Time〉};

• g2 = ∅;

• h2 = {〈 |g1, g2|, |gx4, Compare Time|〉};

• i2={ 〈r1, rx4〉, 〈r2, Receiver〉};

• j2 = {〈|r1, r2|, |rx4, Receiver|〉};

 166

• k2 = ∅;

Let Φ1’: Surveillance → Surveillance_RBS an organization homomorphism such that

Surveillance_RBS is defined as shown in Figure 6.17. We have Φ1’ = 〈 f1’, g1’, h1’, i1’, j1’, k1’〉

where:

• f1’ = {〈g_root, g_root〉, 〈Surveillance, Surveillance〉, 〈Monitor, Monitor〉, 〈Monitor

Area, Monitor Area〉, 〈Determine Coverage, Determine Coverage〉, 〈gx1, Compare

Time〉, 〈Track, Track〉, 〈Track Area, Track Area〉, 〈Divide Area, Divide Area〉, 〈gx2,

Compare Time〉, 〈Generate Reports, Generate Reports〉, 〈Define Area, Define

Area〉};

• g1’ = {〈|Surveillance, Monitor| , |Surveillance, Monitor|〉, 〈|Monitor, Monitor Area|,

|Monitor, Monitor Area|〉, 〈|Monitor, Determine Coverage|, |Monitor, Determine

Coverage|〉, 〈|Surveillance, Track| , |Surveillance, Track|〉, 〈|Track, Track Area|,

|Track, Track Area|〉, 〈|Track, Divide Area|, |Track, Divide Area|〉, 〈|g_root,

Surveillance| , |g_root, Surveillance|〉, 〈|Surveillance, Generate Reports|, |Surveillance,

Generate Reports|〉, 〈|Surveillance, Define Area|, |Surveillance, Define Area|〉}

• h1’ = {〈 |Monitor Area, gx1|, |Monitor Area, Compare Time|〉, 〈monitor, monitor〉, 〈

|Track Area, gx2|, |Track Area, Compare Time|〉, 〈track, track〉, 〈startMonitor,

startMonitor〉, 〈startTrack, startTrack〉};

• i1’= {〈Monitor, Monitor〉, 〈Coverage Processor, Coverage Processor〉, 〈rx1, Receiver〉,

〈Tracker, Tracker〉, 〈Divider, Divider〉, 〈rx2, Receiver〉, 〈User Interface, User

Interface〉};

• j1’ = {〈|Monitor, rx1|, |Monitor, Receiver|〉, 〈|Tracker, rx2|, |Tracker, Receiver|〉,

〈sendData, sendData〉};

• k1’ = {〈|Monitor, Monitor Area|, |Monitor, Monitor Area|〉, 〈|Coverage Processor,

Determine Coverage|, |Coverage Processor, Determine Coverage|〉, 〈|Tracker, Track

Area|, |Tracker, Track Area|〉, 〈|Divider, Divide Area|, |Divider, Divide Area|〉, 〈|User

Interface, Generate Reports|, |User Interface, Generate Reports|〉, 〈|User Interface,

Define Area|, |User Interface, Define Area|〉}

 167

Let Φ2’: RBS → Surveillance_RBS an organization homomorphism such that

Φ2’ = 〈 f2’, g2’, h2’, i2’, j2’, k2’ 〉 where:

• f2’ = {〈g_root, g_root〉, 〈RBS, RBS〉, 〈Compare Time, Compare Time〉, 〈Compare

Time, Compare Time〉, 〈Exchange Beacon Time, Exchange Beacon Time〉, 〈gx4,

Monitor Area〉, 〈Broadcast Beacon, Broadcast Beacon 〉}

• g2’ = {〈|g_root, RBS|, |g_root, RBS|〉, 〈|RBS, Compare Time|, |RBS, Compare Time|〉,

〈|RBS, Broadcast Beacon|, |RBS, Broadcast Beacon|〉, 〈|Compare Time, Compare

Time|, |Compare Time, Compare Time|〉, 〈|Compare Time, Exchange Beacon Time|,

|Compare Time, Exchange Beacon Time|〉}

• h2’ = {〈|gx4, Compare Time|, |Monitor Area, Compare Time|〉}

• i2’={〈Receiver, Receiver〉, 〈Reference, Reference〉, 〈rx4, Monitor〉, 〈Beacon,Beacon〉}

• j2’ = {〈|rx4, Receiver|, |Monitor, Receiver|〉, , 〈Exchange, Exchange〉}

• k2’ = {〈|Receiver, Compare Time|, |Receiver, Compare Time|〉, 〈|Reference, Exchange

Beacon Time|, |Reference, Exchange Beacon Time|〉, 〈|Beacon, Broadcast Beacon|,

|Beacon, Broadcast Beacon|〉}

Surveillance_RBS along with homomorphism Φ1’ and Φ2’ represent the pushout of organization

Shared0 with homomorphism Φ1 and Φ2. In fact, we have:

• f1’ ○ f1 = {〈g_root, g_root〉, 〈g1, Monitor Area〉, 〈g2, Compare Time〉, 〈g3, Track

Area〉, 〈g4, Compare Time〉}

• f2’ ○ f2 = {〈g_root, g_root〉, 〈g1, Monitor Area〉, 〈g2, Compare Time〉, 〈g3, Track

Area〉, 〈g4, Compare Time〉}

• g1’ ○ g1 = ∅;

• g2’ ○ g2 = ∅;

• h1’ ○ h1 = {〈 |g1, g2|, |Monitor Area, Compare Time|〉, 〈 |g3, g4|, |Track Area, Compare

Time|〉};

• h2’ ○ h2 = {〈 |g1, g2|, |Monitor Area, Compare Time|〉, 〈 |g3, g4|, |Track Area, Compare

Time|〉};

 168

• i1’ ○ i1 = { 〈 r1, Monitor〉, 〈 r2, Receiver〉, 〈r3, Tracker〉, 〈 r4, Receiver〉};

• i2’ ○ i2 = { 〈 r1, Monitor〉, 〈 r2, Receiver〉, 〈r3, Tracker〉, 〈 r4, Receiver〉};

• j1’ ○ j1 = {〈|r1, r2|, |Monitor, Receiver|〉, 〈|r3, r4|, |Tracker, Receiver|〉};

• j1’ ○ j1 = {〈|r1, r2|, |Monitor, Receiver|〉, 〈|r3, r4|, |Tracker, Receiver|〉};

• k1’ ○ k1 = ∅;

• k2’ ○ k2 = ∅;

Hence, we can see that f1’ ○ f1 = f2’ ○ f2, g1’ ○ g1 = g2’ ○ g2, h1’ ○ h1 = i2’ ○ i2, j1’ ○ j1 = k2’ ○ k2.

As Φ1’ ○ Φ1 = 〈 f1’ ○ f1, g1’ ○ g1, h1’ ○ h1, i1’ ○ i1, j1’ ○ j1, k1’ ○ k1〉 and Φ2’ ○ Φ2 = 〈 f2’ ○ f2, g2’

○ g2, h2’ ○ h2, i2’ ○ i2, j2’ ○ j2, k2’ ○ k2〉, we have Φ1’ ○ Φ1 = Φ2’ ○ Φ2.

�

