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Abstract

Grazing patterns, intake structure, and diet selection are dynamic responses to animals’

feeding environment. This study uses video sequences from animal-borne cameras to cap-

ture time- and scale-dependent grazing behaviour variables related to sward explanatory

conditions. We observed grazing ‘through’ the sheep’s eyes using point-of-view (POV) cam-

eras coupled with event logging software. Time-specific sward features were measured by

sampling ‘really’ grazed patches identified by applying a global navigation satellite system

(GNSS) precision-grazing approach. Sward variables on a Mediterranean native sward

were measured for two years during the active spring plant-growth cycle. Overall, the results

demonstrate that POV cameras were able to capture grazing behaviour fine-tuning to

changes in sward characteristics. Sheep compensate for the decrease in sward quantity

and nutritive value by increasing the size and duration at each behavioural scale (i.e., meal,

bout, and station) while increasing the bout rate and decreasing the station rate. Diet compo-

sition also changed as sward matured. The proportion of forbs in the diet remained high in

early and late spring, and forbs and legumes were preferred to grasses in early spring. Graz-

ing selectivity was more pronounced in late spring, with sheep favouring the middle stratum

of the sward’s vertical structure, preferring green vegetative material, while enlarging the

feeding niches’ span and spending more time at each niche, consequently reducing the sta-

tion rate. Although data collected by individual animal-borne POV cameras were represen-

tative of the flock behaviour, they may underestimate the total grazing time outside major

meals. The results indicate that the use of animal-borne video cameras is suitable for

assessing variations in sheep grazing behaviour patterns in complex swards.

Introduction

Feeding is a key behaviour that affects the amount, type, and rhythm of nutrients ingested [1],

thus having a significant impact on production efficiency, which, in turn, is linked to
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economic and environmental consequences. Therefore, improving feed efficiency is a major

husbandry goal.

In general terms, more efficient animals spend less time eating and eat faster, which has

been reported for cattle [2, 3], sheep [4] and pigs [5]. While the development of electronic

identification coupled with automatic feeders has allowed accurate measurements of feeding

behaviour components (e.g., frequency and duration), understanding the feeding behaviour of

grazing livestock remains a challenge. Moreover, characterizing the components of feeding

behaviour is essential to gain an understanding of what differentiates individuals and the feed-

ing circumstances in which they excel. Several methods can be used to study the amount of

feed ingested and the dietary choices (recently reviewed by [6]); however, most methods (e.g.,

oesophageal fistulas, faecal n-alkanes, and faecal near infrared spectroscopy [NIR]) are unable

to determine the temporal and spatial dimensions of the feeding behaviour, which can only be

obtained when studying where animals are, what they are doing, and when they are doing it

[7, 8]. Direct visual observation of animal behaviour during the day is relatively straightfor-

ward but can be time-consuming, uncomfortable, and tedious. Additional drawbacks of direct

observation are darkness and the distance between observer and animal. Both limit the range

of vision, the first hampering observations of nocturnal activities [9] and the second preclud-

ing sight of details, such as occurrences at the oral behaviour scale [10]. When the focus of

observation is the interface between animal and sward, detailed information on the structure

of bites by direct visual observation requires a trained observer-animal pair moving in proxim-

ity (0.5 m–1 m) [11]. In such conditions, a bite-coding grid is used, which is based on plant

features such as the shape and size of the selected parts and how they are harvested [11–14]. In

structurally complex swards (biodiverse plant mixtures with contrasting morphology and

anatomy), a bite-coding grid with more than 40 bite types would be needed, making it imprac-

tical. Additionally, it is difficult to predict how the presence of an observer may alter the behav-

iour of the grazing animal. The use of sensors such as electromyography, accelerometers,

microphones, pressure sensors, and jaw switches (reviewed by [15]) may avoid the observer

effect. However, despite conveying information on grazing patterns, sensors cannot provide

information on forage selection. The use of handheld or automatic video cameras may over-

come some of the drawbacks of direct visual observation and provide a complete record of

behavioural activities that can be analysed later in lab conditions. Automatic video recordings

have previously been used in experiments on feeding preferences at the bite scale both indoors

[16, 17] and outdoors (on pasture) [18].

Within the scope of video recording, a step forward is the use of animal-borne cameras to

assess grazing behaviour. One primary benefit is minimal disruption to the individual and sur-

rounding environment. The methodology has the merit of capturing images from the animal’s

point-of-view, revealing information on activity patterns, foraging strategies, and diet selec-

tion. Animal-borne cameras have been used in ecology studies for more than three decades.

To our knowledge, POV cameras have not been used before on sheep, although they have

been used on feral and domestic cats [19, 20], and on wild species (recently reviewed by [21]).

We hypothesize that POV cameras provide video sequences that can be used as a new

method to capture feeding behavioural data on free range grazing sheep together with the spa-

tiotemporal hierarchy framework of grazing behaviour, which is described briefly in the next

section.

Considering the characteristic seasonal changes in sward height and the botanical composi-

tion of Mediterranean pastures, our aim was to ascertain whether POV cameras could be used

to determine the microstructure of intake (the study of kinetics of food intake during feeding

episodes in varying feed conditions), particularly (i) the variation in frequency and duration of

meals, feeding bouts, and feeding stations and (ii) the variation in diet selection. For
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definitions of microstructure and related terms, see the glossary in the supporting information

(S1 Table).

Components of grazing behaviour and foraging dynamics

Grazing behaviour is organized in a hierarchical, nested manner where activities are behavioural

units displayed as levels of a pyramid (Fig 1; for a comprehensive review, see [7]). The bottom

level of the pyramid is grazing, a series of foraging actions, such as searching (wandering, explor-

ing, selecting) and consuming (grabbing, biting, chewing, swallowing). Grazing is discontinuous

due to other daily activities such as rumination or rest. Within grazing, consumption actions are

thus divided into several meals, the next level of the pyramid. A meal starts when the animal

begins to ingest and ends when the animal makes no further movement to graze for at least an

hour. Within a meal, the length of time that an animal eats without stopping is a bout. Bouts are

foraging sequences, where animals continuously eat with their heads down, although they may

be walking slowly. A bout ends whenever the animal interrupts the sequence by raising its head,

(e.g. walking to another location). Within a bout, whenever an animal is grazing without moving

its front feet, we have a grazing station, which in turn is characterized by a cluster of bites. Each

activity occurs in different spatial and temporal dimensions that are fundamentally interlinked.

For instance, a meal is observed as a peak of eating activity occurring at a specific site (spatial

dimension) and with a specific duration (1–4 h, temporal dimension) (S1 Table).

Each level embodies a behavioural unit of the grazing behaviour with its own spatiotempo-

ral location, structure, dynamic, and pattern. This hierarchical organization can be adapted to

quantitative and qualitative variations in the environment since grazing animals, at each

behaviour scale, may alter the dynamics, modifying both total intake and diet selection [22–

25]. Intake changes are linked to variations in both length of grazing time and number of

events, defining a structure. Intake variations are also connected to the time period of occur-

rence, with time-budgets allocated to behavioural activities defining patterns. For instance, the

grazing pattern results from the distribution of time spent in grazing disconnected by intervals

of other behavioural activities within a time period (e.g. day) and may shift when grazing ani-

mals change the major periods of grazing activity throughout the day [23, 26].

Diet changes result from animal preferences as well as opportunities and are primarily con-

nected to the spatial dimension. The flexibility of grazing behaviour results from tuning the

Fig 1. Components of grazing behaviour. Rows represent scale levels (behaviour units), columns represent

hierarchical perspectives (dimensions, locations, structures, dynamics, and patterns). Patterns, at each scale, are

generated by the distribution of frequencies, durations, rates, and volumes (based on the original conceptual model of

ecological hierarchy of [24] and on contributions of [7, 15, 25]).

https://doi.org/10.1371/journal.pone.0265037.g001
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duration and frequency at the different behaviour scales according to vegetation characteris-

tics, which ultimately depends on animal decisions.

To discriminate the components of a meal in its finer temporal pattern, we adapted the

schematic microstructure of intake proposed by [27] for rodents to ruminants. This approach

has the merit of separating orosensory stimulation from gastrointestinal control [28, 29]. The

oral behaviour links the hedonic and sensory animal response (taste, smell, sight) to chemical

properties (nutrients, secondary metabolites) [16] and functional traits (e.g. flowering/heading

time, leaf/stem ratio, plant height) of the selected plant.

The structure of a meal consists of bite sequences divided by intervals [28, 29]. The number

of bites occurring during a station affects station size and duration (c.f. Fig 2). The sum of sta-

tions and intervals between (steps while moving with the head down) defines a grazing bout.

Ultimately, the size of a meal depends on the number of bouts separated by other behavioural

activities, such as standing or walking. The size and duration of a meal define the meal pattern,

and the meal with the longest duration is the major meal [12, 26]. The same rationale and

organization are used for each behavioural unit of the grazing behaviour.

Analysing meal microstructure is a way of asking animals how they perceive and adapt to

their feed resources. Thus, by quantifying changes in meals, bouts, stations and bites we are

able to reveal relations usually hidden. Such findings will potentially lead to a better under-

standing of the performance of grazing animals and will have implications in the design of

grazing strategies.

Materials and methods

In this study, two experiments were carried out using POV cameras to measure grazing

responses. In the first, we explored the potential ability of video sequences to uncover the rela-

tionship between the grazing behaviour of sheep and feed resources. In the second, we tested

the validity of the method with direct observation of group behaviour. Additionally, we investi-

gated the overnight use of POV cameras to explore nocturnal grazing behaviour.

Experimental site

The field research took place at the University of Évora’s Mitra Experimental Station, Portugal,

(38˚31’52"N, 8˚00’33"W) in 2016 and 2017. The mean elevation of the study site was 280 m,

Fig 2. Components of a meal microstructure and definitions. (Adjusted for grazing ruminants, based on [28, 29]).

https://doi.org/10.1371/journal.pone.0265037.g002
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and the predominant soil was a Cambisol derived from granite. The site has a hot summer

Mediterranean climate, with the regional average temperature ranging from 5.8˚C in January

to 30.2˚C in July and August, and annual rainfall of 600 mm, 72% of which occurs between

October and March.

The experimental site was a 2.3 ha silvopasture paddock, with holm oak trees (Quercus
rotundifolia

[Lam.]) covering 15.7% of the area (tree density of 9.1 ha−1), and a native pasture where the

frequency of occurrence of forbs, grasses, and legumes was 52.1%, 28.5%, and 19.4%, respec-

tively. A mobile custom-made sheep-handling system was available in the paddock.

Animals

Fifteen six-year-old, non-lactating, non-pregnant Black Merino ewes (69.8 kg ± 1.7 kg live

weight), were stocked continuously during the experiment. The ewes were originally part of a

flock of 60 ewes managed in a year-round extensive grazing system. Five ewes (experiment 1)

and three ewes (experiment 2) were selected to carry behavioural sensors (Fig 3) for collecting

data on grazing behaviour and location (c.f. Behavioural Sensors section). The ewes were fitted

with collars, harnesses, and a colourful mesh pouf for ease of individual visual identification.

The same animals were used in each experiment, and POV cameras were not mounted on dif-

ferent animals.

Trial layout and experimental design

Two experiments were designed to evaluate the use of POV cameras to measure grazing

response. Animals were the experimental unit, and we used repeated-measures designs involv-

ing multiple measurements on each experimental unit that functions as an experimental block.

Experiment 1 covered the spring pasture growth, assuming that more pronounced behavioural

adaptations occur in this period. Experiment 2 aimed to determine whether behaviour vari-

ables captured with POV cameras could represent the behaviour of the entire flock.

Behavioural data were collected in both experiments using POV cameras (screenshots

shown in Fig 9) and GNSS receivers (c.f. Behavioural Sensors section). The ethogram of

observed behaviours is presented as supporting information (S2 Table). In experiment 1,

recording periods were set to cover morning and afternoon meals, whereas in experiment 2,

an entire day was targeted. Before each recording period, the flock was gathered to replace

POV camera batteries. The GNSS receivers were replaced weekly.

Fig 3. Behavioural sensors setup. (A) Sensors fitted on a sheep; (B) ewes in sheep–handling system while placing the

global navigation satellite system (GNSS) in the pouch; (C) ewe grazing wearing the sensors, captured by another ewe.

(1) POV camera (GoPro1) attached to collar; (2) ewe identification mark attached to harness; (3) GNSS receiver

pouch attached to harness; (4) GNSS receiver (Mr. Lee CatTrack1).

https://doi.org/10.1371/journal.pone.0265037.g003
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Experiment 1 was carried out from 4 April to 13 June 2016 across 11 consecutive weeks

using a flock of 15 ewes. The whole flock was used for behavioural observations, and 5 of the

flock of 15 animals were used for video recording. Video recording was restricted to daylight

hours. Recordings from the same 5 animals were conducted once a week and used for extract-

ing behavioural data, totalling 110 observations (5 animals × 11 weeks × 2 meals). Because of

the environmental differences occurring between weeks, data were clustered in two seasons

(early and late spring) of 5 weeks each, corresponding to the sward vegetative and reproductive

stage, with a 1-week interval between seasons. Time periods considered cover morning (9am–

12pm) and afternoon (6–9pm) to capture expected peaks of grazing activity, resulting in a

daily total recording time of 6–8 hr of video sequences per ewe. Positions were recorded by

GNSS loggers.

Experiment 2 was carried out from 19 April to 19 May 2017. The aim of the experiment

was to determine whether the grazing behaviour captured by POV cameras could be used to

represent the behaviour of the entire flock. The POV cameras were carried by 3 ewes in the

flock of 15. The POV cameras were used to assess individual ewes’ behaviour through focal

sampling (behaviour of an individual animal is recorded continuously). Video records were

made for a 24 hr cycle (using an infrared POV camera for the nocturnal period) and were

repeated three times (using the same three ewes) with a 2-week interval. Each video sequence

matched a period of the day, totalling five time periods (6–9am, 10am–1pm, 2–5pm, 6–9pm,

and 9pm–6am). Simultaneously, flock behavioural activity (S2 Table) was measured from 6am

to 9pm by direct observation using 10 min intervals with instantaneous scan sampling [30]

(the behaviour of all individuals in a group of animals is recorded, each animal in turn, instan-

taneously). For later comparison of both datasets, data were analysed for each hour and again

clustered in five periods of 170 minutes each. A repeated-measures crossover design was used

to reduce error variance associated with inter-individual differences and to increase the statis-

tical power. Video recording matched the moon quarters (third quarter on 19 April and 19

May; first quarter on 3 May) to have similar nocturnal light conditions.

Pasture measures

The study area was virtually divided into 60 regular patches of 380 m2 each. Sheep are known

to adjust their behaviour to maintain group cohesion whenever the space allowance for each

animal is over 200 m2 [31]. The dimension of the defined patches (380 m2) allows for a maxi-

mum dispersal distance within a group (social distance) to ensure the location of the entire

flock within one patch. Each patch represents a resource unit. Before forage sampling, each

patch was assigned to one of the two sets (visited vs not-visited by ewes) by GNSS-tracked

sheep movements. Data on animals’ georeferenced locations were downloaded each week. The

last 72 hours of each week were analysed using geospatial software (c.f. Behavioural Sensors

section), and visited vs not-visited patches were newly defined. Within the visited patches, dif-

ferent behavioural activities could occur; therefore, we focused on grazing activity on the

assumptions that peaks of grazing events occur at dawn and dusk, and longer time spent graz-

ing on a patch is related to greater dietary preferences. The three most-grazed patches were

chosen for vegetation sampling each week. Forage quantity and nutritive value in relation to

seasonal changes were evaluated weekly.

For each most-grazed patch, sward was randomly sampled using three quadrats (0.5

m × 0.5 m). Herbage within each quadrat was cut 2 cm above ground level using battery grass

shears (Florabest, Lidl Stiftung & Co. KG, Neckarsulm, Germany) and processed to estimate

forage mass (dry matter [DM] kg.ha−1). Nutritive value was assessed by measuring DM (ISO

6496:1999, [32]), crude protein (CP; Dumas method, ISO 16634–1;2008, [33]), and neutral
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detergent fibre (NDF; ISO 16472:2006, [34]). Before cutting the forage, the average sward

height was measured using a wooden folding rule. Herbage bulk density (mg.cm−3) was calcu-

lated by dividing forage mass by the corresponding average sward height.

A nadir georeferenced photo captured 0.8 m above ground with a GoPro1 camera

mounted on a pole and centred on the sampling quadrat was also obtained weekly before col-

lecting the forage sample. To estimate the percentage of ground cover by plant species on the

photoplots, a uniformly spaced 8 × 8 digital grid (i.e., 64 intersections) was superimposed on

the digital image area defined by the sampling quadrat. The number of ‘hits’ on the plant spe-

cies within the intersections of the grid was registered, and quantitative occurrence of species

was then calculated as the percentage of total intersections. Species percentages were later

grouped and converted to functional group percentages [35].

Inside each patch, several feeding niches were available in proportions that changed across

the plant growth cycle. Feeding niches are locations within plant communities of a patch and

distinguished by their functional traits assessed by visual estimation of the vegetation eaten by

the animals (using the video sequence from POV cameras). Functional traits are responsible

for the species’ response to competition, environmental stress, and disturbance, within the

plant community and across environmental gradients. Those core plant attributes are linked

to plant species’ ecophysiology and include, for example, flowering/heading time and leaf area

or plant height [36], affecting plant colour and architecture. The identification of a feeding

niche is possible since when the animals stop to eat (stations; Fig 1), the sward targeted by its

mouth is visible (Fig 9). For each week, we assessed feeding niches used by the ewes. We

defined 12 feeding niches by combining three features: plant functional group (grasses, forbs,

and legumes, inferred from the plant shape recognized in the video image), sward vertical pro-

file (surface vs middle-strata level, inferred from the position of the animal’s chin in relation to

plants’ vertical strata in the video images), and plant maturity (greenish vs yellowish [37],

inferred from the plant colour evidenced in the video images). Although 12 potential feeding

niches were defined, only 9 were observed in the video sequences. Mature legumes in both ver-

tical strata were non-existent or undetected. Mature forbs, in the surface strata of the vegeta-

tion, were also undetected.

As behavioural components adjust to pasture conditions, we used the pasture condition

index (PCi; [Eq 1]) to capture the relation between forage nutritive value and quantity as

sward plants mature. The loss of sward nutritive value is denoted by the relation of fibre and

protein, and we use the pasture quality degradation index (PQDi; [Eq 2] [38]) to reflect it. The

quantitative sward attributes are indicated through the relation of forage mass and sward

height.

PCi ¼ PQDi=BD ð1Þ

PQDi ¼ NDF=CP ð2Þ

where CP is pasture crude protein content (%), NDF is neutral detergent fibre (%), and BD is

bulk density (mg.cm−3).

Behavioural sensors

For records of daylight behaviour, GoPro1Hero2 video cameras (GoPro Inc., San Mateo,

CA, USA) were attached to the ewe’s collar and set at a fixed angle to enable chin visibility (Fig

3). Battery life was extended (4 hr) using an extra battery (GoPro1 battery backpack). The

fully equipped camera weighed 244 g, which represents approximately 0.4% of the animal’s

live weight. Five cameras were used in each experiment. In Experiment 1, the five cameras

PLOS ONE Grazing behavior microstructure using point-of-view cameras

PLOS ONE | https://doi.org/10.1371/journal.pone.0265037 March 18, 2022 7 / 28

https://doi.org/10.1371/journal.pone.0265037


were randomly allocated to each of the five ewes weekly. In experiment 2, the five cameras

were exchanged among the three ewes to cover the diurnal time periods of the experiments.

Additionally, in Experiment 2, we used one infrared night-vision PatrolEyes1 camera

(PatrolEyes, Ada Township, MI, USA) to capture nocturnal behaviour [9]. Extra battery life

was provided using an off-the-shelf power bank, enabling 10 hr of filming. The fully equipped

infrared camera weighed 400 g (0.6% of the average animal’s live weight).

For georeferencing sheep locations, GNSS receivers weighing 22 g (Mr. Lee CatTrack1,

Catnip Technologies Limited, Anderson, SC, USA) were used. Positions were recorded at 5

min intervals, and GNSS receivers were replaced weekly [39]. Geospatial software (‘@trip pc’

(http://www.a-trip.com) was used to analyse, edit, restructure and filter GNSS tracks.

Behavioural analysis

Observed behavioural states are described in the ethogram (S2 Table) and were considered

mutually exclusive. Instantaneous scan data of flock behaviour (a total of 45 hr of direct obser-

vation) were used to calculate time-budgets, that is, the proportion of time spent in each beha-

vioural state. To represent behaviour over an entire hour, 10 min scan data were multiplied by

6. Durations (per hour) of each behaviour were converted to a percentage of the total time.

Focal data of individual behaviour (POV cameras) resulted in a total of 107 (~290 h) video

sequences in Experiment 1 and 45 (~123 h) in Experiment 2. Video sequences were indepen-

dently analysed by three observers. The intra-observer and inter-observer reliability of the

video behavioural analysis was determined using the same three randomly sampled videos per

week (each in a different patch and with a different animal). Relative reliability was assessed

via the intraclass-correlation index and the coefficient of variance (n = 33; 0.67; 0.72).

The full video sequences analysis provided three sets of behavioural data: patterns of graz-

ing, measured as time-budgets of behavioural activities; structure of intake, measured as the

number and frequency of events; and diet selected, measured as feeding niches allocated to

feeding stations.

Behavioural states were extracted from video sequences through continuous focal sampling

using Behavioural Observation Research Interactive Software (BORIS, [40]), a free and open-

source event logging software. The full video sequences were analysed using 10 sec intervals to

reduce the workload. Whenever the animal changed behavioural state, the video was rewound

to pinpoint the exact second to record behaviour continuously. Additionally, whenever the

start of a feeding station was logged, the corresponding feeding niche selected by the animal

was registered. For each video sequence, the software’s output provided the time-budgets,

sequence, total duration, and total frequency of each behaviour.

This data set was further organized hierarchically into grazing, meal, bout, and station pat-

terns, and the structure of each behaviour level was determined, namely the size, duration, and

rate (Fig 1). At each behaviour level, activity was separated by intervals (Fig 2). The majority of

intervals between meals were longer than 60 minutes, while intervals between bouts were usu-

ally longer than 5 minutes but shorter than 60 minutes. We used the hour as the time unit for

analysing bout patterns, similar to [41].

In addition to grazing pattern and structure, the video sequences revealed the diet composi-

tion, which was estimated from the proportion of feeding niches containing grasses, legumes,

and forbs in the total feeding niches used during a meal. Moreover, to estimate diet selection,

we used the time spent on each feeding niche and related these durations to the quantitative

occurrence of plant functional groups on the patch selected for grazing (c.f. Pasture Measures

section). Considering the proportion of feeding time on a feeding niche as equivalent to the

proportion of the respective food type in the herbivore’s diet, we assumed a preference for the
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vegetation type and determined the preference index (Pi; [Eq 3] [42]):

Pi ¼ FNi � Ci=FNiþ Ci ð3Þ

where FNi is the proportion of feeding time spent in vegetation of a given food type, and Ci is

the proportion of area covered by vegetation of the same food type.

Statistical analysis

Repeated measures data were analysed using mixed models, with date and time periods as

fixed effects, and animals as random effects (SPSS 22.0 software, IBM Corp., Armonk, NY,

USA). Variables were tested for normality (Shapiro−Wilk) and homoscedasticity (Levene).

When the assumptions were not validated, non-parametric tests were used (Kruskal−Wallis,

Spearman’s correlation).

To compare behavioural variables among dates (early spring and late spring 2016, and early

spring 2017), weeks were grouped by season (early spring: first 5 weeks; late spring: last 5 weeks).

Although a 1-week gap between seasons was used to create two balanced clusters of 5 weeks (used

in one-way analysis of variance [ANOVA]), all the tables show all data set (11 weeks). Means were

compared using the Bonferroni post-hoc test. Two-way ANOVA was performed each year to

evaluate the effects of date or time period on behaviour variables. Means were compared using

Tukey’s test. Individual grazing behaviour and group grazing behaviour were compared using

Spearman’s rank correlation and t-test (SPSS 22.0 software, IBM Corp., Armonk, NY, USA). The

threshold of statistical significance was set at P< 0.05 for all statistical analyses.

Ethics statement

The experiments were conducted according to the regulations and ethical guidelines of the

Portuguese Animal Nutrition and Welfare Commission (DGAV, Lisbon, Portugal) and fol-

lowing the European Directive on the protection of animals used for scientific purposes (2010/

63/EU). The study was reviewed and approved by the Scientific Committee of the Institute of

Mediterranean Agriculture and Environmental Sciences (ICAAM) under the authorization

ICAAM/RCCI 2016.012. The welfare of the sheep was monitored weekly [43]. Field research

was carried out at the University of Évora experimental farm with the permission of ZEA

(Sociedade Agrı́cola Unipessoal Lda, Évora, Portugal).

Results

Comparison of grazing patterns obtained by POV video recording or direct

observation

The grazing behaviour observed for the entire flock was similar (P = 0.126) to that recorded by

POV cameras, showing the same diurnal major meals (Fig 4). Moreover, the correlation

between grazing activity assessed hourly by individual video recording and direct observation

was highly significant (Spearman correlation coefficient = 0.84, n = 24, P< 0.0001). Conversely,

for grazing activity outside dawn and dusk major meals, the proportion of grazing was underes-

timated by POV cameras as a result of differences between animals (P = 0.04). The largest differ-

ence measured by the two approaches occurred in the 2–3pm time period when over 40% of

ewes were observed grazing, while grazing activity registered by POV cameras was low (3.2%).

Variation in grazing patterns

Total daily grazing time and sward height increased asymptotically over time (P<0.001 for

both trendlines; Fig 5; Table 1). This means that both parameters reached a maximum and
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then decreased over time. Maximum pasture height occurred about 3 weeks before the maxi-

mum daily grazing time.

In addition to the surface height, other variations in sward occurred across seasons

(Table 1). While forage mass (P = 0.09) and bulk density (P = 0.25) did not change signifi-

cantly, a significant reduction in forage nutritive value (a decrease in protein) (P = 0.002) and

an increase in fibre content (P = 0.003) were observed over time. The surface cover of visited

patches also changed significantly across seasons, and an increase in grasses (P = 0.003) and a

decrease in legume cover (P = 0.004) were observed.

Increased grazing activity was evident until the ninth week (Fig 5), with the first 5 weeks

showing the steepest ascent (trendline y = 5.76x + 3.86; r2 = 0.94, P<0.001), pairing the linear

increase in sward standing height (trendline y = 9.8x + 5.6; r2 = 0.98, P<0.001). The time-bud-

get of grazing activity doubled from early spring (21.2%, ± 9.4) to late spring (40.5%, ± 14.2)

(Fig 6). When expressed in min.h−1, the total grazing activity ranged from 7.2 min.h−1 to 33.6

min.h−1 across weeks, with significantly higher meal duration in late spring than in early

spring (Table 2). Furthermore, in addition to weekly differences in the meal duration, the daily

longer meal occurred at dusk (Table 3).

The increase in grazing time was accompanied by a decrease in other behavioural activities.

In early spring, animals spent 47.8% (± 20.0) of their daily activities standing. This time-budget

Fig 4. Comparison of daily grazing pattern obtained with POV cameras (individual) or by direct observation

(group). Group grazing refers to the proportion of animals grazing in the flock (mean ± standard error of mean

[SEM]; n = 15). Individual grazing refers to the proportion of minutes per hour (mean ± SEM; n = 3). n.r. = not

recorded.

https://doi.org/10.1371/journal.pone.0265037.g004

Fig 5. Values and trendlines of sward height (cm) and grazing activity (min.hr−1).

https://doi.org/10.1371/journal.pone.0265037.g005
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was reduced to 16.7% (± 18) in late spring. Conversely, the lying down time-budget was lower

in early spring than in late spring (Fig 6).

Variation in structure of intake

The weekly structure of feed intake was analysed within the weekly major meal and is pre-

sented in Table 2. The relationship between intake structure and plant growth cycle and

Table 1. Weekly variation in sward characteristics (structure, nutritive value and composition) of patches selected for grazing.

Forage mass Sward Height Bulk density CP NDF PCi Grass Cover Legumes Cover Forbs Cover

Date

kg DM.ha-1 cm mg.cm-3 % % % % %

Early Spring 2016

April 4th 1431 15 38.2 15.6 38.8 0.26 9.0 23.0 56.5

April 11th 3520 24 57.9 15.2 47.5 0.22 5.2 77.1 16.7

April 18th 6787 36 75.4 15.8 53.1 0.18 11.6 70.4 15.9

April 26th 3867 48 32.2 12.3 52.8 0.53 20.8 26.0 43.2

May 2nd 4796 52 36.7 11.7 51.6 0.48 15.6 34.4 46.4

May 9th 5262 53 39.6 9.4 58.8 0.63 67.7 8.3 13.0

Mean 4080 35 48.1 14.1 a 48.8 b 0.34 17.4 b 41.6 a 33.7

±SEM 872.2 7.0 8.15 0.88 2.67 0.07 4.79 14.34 8.02

Late Spring 2016

May 16th 4542 51 35.6 9.1 60.1 0.75 72.4 1.0 23.4

May 23rd 7849 51 61.3 10.5 61.3 0.38 39.6 1.6 47.2

May 31st 4796 45 42.4 8.9 58.8 0.62 65.1 2.6 29.7

June 7th 6240 27 91.7 10.8 59.7 0.24 25.0 0.0 67.7

June 13th 7200 16 176.3 10.5 65.7 0.14 77.1 0.0 13.0

Mean 6125 38 81.5 9.9b 61.1 a 0.43 55.8 a 1.0 b 36.2

±SEM 648.6 7.0 25.64 0.39 1.22 0.11 10.07 0.49 9.64

CP − crude protein; NDF − neutral detergent fibre; PCi − pasture condition index. Seasonal means (± SEM) in bold type. Means within the same variable with different

superscripts are significantly different (P < 0.01) among seasons; for the cover variable, differences from 100% correspond to species not identified. Values in rows are

sward averages (n = 9). Means for early spring relate to the first 5 weeks only.

https://doi.org/10.1371/journal.pone.0265037.t001

Fig 6. Weekly grazing pattern. Time–budgets of behavioural activities in 3 hr of video recording during major meals.

(n = 5).

https://doi.org/10.1371/journal.pone.0265037.g006
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nutritive value of sward, expressed as PCi, is presented in Fig 7. As sward senesce (PCi = 0.52)

meal duration (min.h−1) increased (Fig 7A) (r2 = 0.99, P< 0.01). Additionally, meal size (num-

ber of bouts.hr−1) (Fig 7B) increased significantly (r2 = 0.79, P< 0.01), 5 times more when

compared with the vegetative phase (PCi = 0.34).

Bout duration (min.bout−1) and bout rate (bout.min−1) had a different relationship to plant

growth cycle. Bout duration was highest at the reproductive stage (PCi = 0.43; Fig 7C) paired

with a lower bout rate (Fig 7D). Nevertheless, bout rate was highest when PCi was also highest,

showing an increasing trendline. Nocturnal grazing showed a different bout pattern from diur-

nal grazing. Grazing during the night had a higher bout rate and shorter bout durations, as

well as a larger meal size and longer duration (Table 2).

Within a single day, the structure of intake differed between meals (Experiment 2; Table 3)

in both size and time spent grazing (P< 0.01). The longer meal was in the 6–9pm time period,

with significantly more bouts despite grazing and bout duration in that period being similar to

Table 2. Weekly variation in structure of intake (meal and bout patterns).

Meal pattern Bout Pattern

Date Meal Duration Meal Size Inter-bout Interval Bout duration Bout Size Bout rate

(min.h-1) (n˚ bouts.h-1) (min.h-1) (min.bout-1) (n˚ stations.bout-1) (bouts.min-1)

Early Spring 2016

April 4th 7.2 5 41.6 1.4 13 0.7

April 11th 8.0 1 24.2 6.5 9 0.2

April 18th 12.3 5 44.1 2.7 10 0.4

April 26th 14.6 4 24.3 3.7 11 0.3

May 2nd 21.1 2 14.7 10.8 8 0.1

May 9th 17.6 6 23.1 2.8 4 0.4

Mean 12.6 a 3.3 29.8 a 5.0 10.0 0.3

±SEM 2.52 0.74 5.63 1.66 0.86 0.11

Late Spring 2016

May 16th 16.1 4 15.2 4.6 11 0.2

May 23rd 33.6 5 5.7 6.8 9 0.2

May 31st 22.2 7 1.7 3.2 5 0.3

June 7th 29.2 6 28.6 4.9 18 0.2

June 13th 14.3 2 4.4 6.6 4 0.2

Mean 23.1 b 4.7 11.1 b 5.2 9.4 0.2

±SEM 3.71 0.86 4.49 0.68 5.59 0.03

Early Spring 2017 (diurnal)

April 19th 31.3 21 19.3 1.5 11 0.7

May 3rd 41.3 20 9.7 2.1 15 0.5

May 19th

Mean 36.3 20.5 14.5 1.8 13.0 0.6

±SEM 5.02 0.50 4.84 0.29 2.00 0.09

Early Spring 2017 (nocturnal)

April 19th 23.4 17 16.7 1.3 14 0.7

May 3rd 62.2 44 13.1 1.4 10 0.7

May 19th 61.4 61 19.6 1.0 16 1.0

Mean 49.0 40.7 16.5 1.3 13.3 0.8

±SEM 12.80 12.67 2.30 0.13 1.76 0.09

Means within the same variable with different superscripts are significantly different (P < 0.01) among seasons. Intake structure analysis was performed within the

major meal only.

https://doi.org/10.1371/journal.pone.0265037.t002
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those in the 6–9am time period. The bout rate was similar at times of greater grazing activity

(6–9am, 6–9pm, and 9–2pm; Table 3).

Variation in diet composition

Diet composition was only evaluated in Experiment 1 (Table 4; Fig 8); examples of feeding

niches chosen by ewes are shown in Fig 9. Overall, across the entire season, diet was composed

of 42.8% (± 4.7) forbs, 32.6% (± 6.2) grasses and 15.6% (± 6.2) legumes (P< 0.03). The remain-

ing 9% (± 3.7) constituted non-identified species. There was a significant interaction among

plant functional groups and seasons (P < 0.01).

The proportion of grasses in the diet increased (P < 0.01) from 17.2% (± 3.9) to 48.6% (±
8.4) from early to late spring. Although not significantly, legume feeding niches tended to be

selected (P < 0.09) more often in early spring (25.3% ± 11.3) than in late spring (2.9% ± 2.4).

Table 3. Daily variation in structure of intake (meal and bout pattern).

Time period Meal Meal Bout Bout

duration size duration rate

(min.h-1) ±SEM (n˚ bouts) ±SEM (min.bout-1) ±SEM (bouts.min-1) ±SEM

6am-9am 19.5ab 5.37 12 b 3 1.7ab 26.69 0.7a 0.15

10am-1pm 1.6c 1.51 2 c 1 0.5c 24.14 1.4c 1.03

2pm-5pm 0.5c 0.40 1 c 1 0.4c 11.26 1.6c 0.85

6pm-9pm 37.6a 1.54 20 a 4 2.3a 44.90 0.6a 0.13

9pm-6pm 13.1bc 6.14 9 b 5 1.4ab 22.26 0.4a 0.18

Values in rows are averages.hour−1 (n = 3). Means (± SEM) within the same variable with different superscripts differ (P < 0.01).

https://doi.org/10.1371/journal.pone.0265037.t003

Fig 7. Relationship of structure of intake with plant growth cycle. Vegetative phase, PCi = 0.34 (n = 25; early spring

2016); reproductive phase, PCi = 0.43 (n = 25; late spring 2016); senescent phase, PCi = 0.52 (n = 9; early spring 2017).

PCi = pasture condition index. (A) Meal duration; (B) meal size; (C) bout duration; (D) bout rate. The dotted trendline

represents the linear estimate of the relationship (P< 0.01).

https://doi.org/10.1371/journal.pone.0265037.g007
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Variation in the Pi among weeks was very high for legumes (Table 4), evidencing a strong

tendency to ignore legumes at the beginning of the vegetative stage and again at more mature

stages. Forbs were preferred to other vegetation types in most weeks. The Pi for forbs and

legumes was, on average, higher in early spring than in late spring, when preferences for those

groups were close to zero. At this stage, the proportion of feeding time on forbs and legumes

equals the proportion of area covered by the same plant functional groups. The Pi for grasses

in both seasons was similar and close to zero, meaning that this functional group was never

selected or avoided, thus indicating that the intake rate is dependent on the frequency with

which the animal encounters grasses.

Table 4. Weekly variation in diet composition, diet selected and station pattern.

Diet composition Diet selected Station pattern

Date Niche Grass Niche Legumes Niche Forbs Grasses Legumes Forbs Station Duration Station Rate

(%) (%) (%) Pi Pi Pi (s.FS-1) (FS.min-1)

Early Spring 2016

April 4th 6.0 0.0 72.0 -0.69 0 0.12 6.0 10.0

April 11th 28.0 0.0 68.0 0.69 -1.00 0.61 5.4 11.1

April 18th 23.7 27.8 46.4 0.34 -0.43 0.49 6.3 9.5

April 26th 12.9 57.1 20.7 -0.24 0.37 -0.23 5.5 10.9

May 2nd 15.3 41.4 38.2 -0.01 0.09 -0.10 8.9 6.7

May 9th 30.6 30.6 32.7 -0.38 0.57 0.43 7.5 8.0

Mean 17.2 a 25.3 49.1 0.02 -0.19 0.18 6.4 9.6

±SEM 3.91 11.31 9.52 0.18 0.29 0.19 0.65 0.79

Late Spring 2016

May 16th 57.5 12.5 30.0 -0.11 0.85 0.12 6.3 9.5

May 23rd 66.7 0.0 33.3 0.25 -1.00 -0.17 10.6 5.7

May 31st 52.9 0.0 41.2 -0.10 -1.00 0.16 12.0 5.0

June 7th 17.0 2.2 49.6 -0.19 1.00 -0.15 5.5 10.4

June 13th 48.9 0.0 38.5 -0.22 1.00 0.49 9.8 6.1

Mean 48.6 b 2.9 38.5 -0.08 -0.04 0.09 8.9 7.3

±SEM 8.43 2.43 3.39 0.09 0.50 0.12 1.25 1.16

Means within the same variable with different superscripts are significantly different (P < 0.01) among seasons.

https://doi.org/10.1371/journal.pone.0265037.t004

Fig 8. Weekly pattern of diet composition at major meals. Diet estimated from type of feeding niche selected.

(n = 5).

https://doi.org/10.1371/journal.pone.0265037.g008
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Behavioural variables at station level (station number, duration and rate) were not signifi-

cantly affected by season (P> 0.05). As the plant growth cycle progressed, sheep grazed more

niche types (Fig 10) and preferred green vegetation (70%) to senescent plants.

Sward attributes, namely plant functional group, plant height, and plant maturity (Fig 11;

P> 0.05), influenced station duration differently through the growing season.

In May, sheep spent more time grazing at legume feeding niches than on any other plant

functional group (Fig 11A), and they consistently spent less time on grasses. In June, animals

spent more time at forbs feeding niches compared with other functional groups. As plants

matured and the height of the sward canopy increased, sheep were able to graze in different

sward vertical strata and preferred feeding niches at the middle strata (Fig 11B). Moreover, the

sward colour changed progressively from green to yellow, and an overlap between station

duration in green or yellow feeding niches was observed (Fig 11C).

Discussion

The primary advantage of using POV cameras to analyse grazing behaviour is the new source

of information they provide: the kinetics of intake, that is, the quantifying of changes in graz-

ing behaviour determined by the conditions of vegetation selected at a particular time. In addi-

tion to providing a better understanding of the mechanisms through which animal–plant

interactions occur, this information can reveal the effects that a change in feeding environment

may have on the grazing behaviour. Knowledge of grazing behaviour microstructure is of prac-

tical use, as it can provide the basis for predictions that can help in developing strategies for

Fig 10. Type of feeding niches selected across plant growth cycle. Station duration within niches selected monthly

displayed in the centre of the circle (in seconds: mean ± SEM; April n = 20; May n = 25; June n = 10).

https://doi.org/10.1371/journal.pone.0265037.g010

Fig 9. Screenshots of ewes’ dietary choices (feeding niches) in early and late spring. (1) Eating holm oak (Quercus
rotundifolia [Lam.]) dry leaves; (2) eating legumes (Trifolium vesiculosum); (3) eating forbs (Chamaemelum spp.); (4)

eating grass (Poa spp.) (note the differences in sward height and colour).

https://doi.org/10.1371/journal.pone.0265037.g009
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grazing management. For example, studying the animal–plant interactions at the various levels

of the feeding behaviour has allowed us to identify transition points in behavioural

components.

Comparing individual and group behaviour

A question underlying the use of POV cameras is: will individual patterns detected with POV

cameras be representative of the grazing behaviour of the entire flock? We found that the

time-budget of grazing activity showed a significant correlation between the group observa-

tions and the observations captured with POV cameras. This indicates that the flock and the

animals with POV cameras behave in the same manner, and therefore the POV cameras were

suitable for determining grazing behaviour characteristics of the entire group.

Similar results were reported previously [11] after comparing the time devoted to intake by

1 trained ewe or by a group, having found a correlation coefficient of 0.72 when the flock had

214 ewes in a 4.5 ha paddock, and a correlation coefficient of 0.89 with a smaller flock of 25

ewes grazing in a 1.1 ha paddock. Although variation may be found from individual to individ-

ual, each individual’s activities appear to be governed by the same dynamics as the population

[8, 44]. The matching of individual and group behaviour may be explained by the social behav-

iour of domestic ruminants, influencing grazing distribution. Both intrinsic species’ behaviour

and paddock size could have contributed to the observed results. When compared to cattle,

sheep show both more cohesion and behavioural synchronization [45], and grazing animals

are known to move more tightly in 1 ha pasture than in larger pastures [46].

Despite the good agreement, it is important to note that the reasons for the underestimation

of total grazing time outside the major meal by POV cameras may actually be twofold: not

only individuals with POV cameras may have underestimated group behaviour, but also the

behaviour of the flock may have been overestimated when using scan sampling. Instantaneous

scan sampling is a score and does not provide information on true durations. However, the

shorter the scan sample interval gets, the more instantaneous sampling resembles continuous

recording [30]. Although it was proved that an instantaneous scan sampling interval of 10 min

was able to estimate lying, grazing, and standing behaviour on pasture accurately [47], in our

study, average bouts were shorter than 10 min (4.9 min.bout−1). A grazing bout identified by

direct observation within an interval of 10 min may have led to both overestimation and

underestimation of the group behaviour.

Nevertheless, although absolute grazing activities between the individuals and the flock

may differ (underestimated in our data and overestimated in the data in [11]), the same meal

pattern was observed for individuals and group: two major meals with shorter arbitrary meals

Fig 11. Variation in station duration acording to niche features. (A) Sward functional group; (B) sward vertical

strata; (C) plant maturity (mean ± SEM; April n = 20; May n = 25; June n = 10).

https://doi.org/10.1371/journal.pone.0265037.g011
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between. These short meals are more prone to vary among individuals [26] due to interaction

with rumination. A possible explanation is that short meals may start at any moment, regard-

less of whether the sheep is ruminating or not. This may indicate that short meals are opportu-

nistic, depending on the neighbourhood of the individual resting site [8]. Furthermore, it is

worth noting that in addition to the temporal meal distribution, the spatial meal distribution

of grazing behaviour between individuals and group were similar, with all the flock grazing in

the same site. Sheep grazed close to each other, and the distance between animals did not

exceed 1 m (detectable from both the video recordings and direct observation). A similar

observation was reported by [31, 48]. The proximity among ewes suggests that each individual

ewe was grazing within the same plant community, and it is reasonable to assume that both

individuals and group had similar feeding conditions and therefore similar diets. Support for

this assumption is provided by a study conducted by [11], which analysed faecal samples using

NIR spectroscopy. More recently, studies using faecal DNA metabarcoding to estimate caribou

diet composition [49, 50] have shown high correlations with diet estimated by POV cameras.

This information supports the assumption that individual animal-borne cameras coupled with

GNSS sensors could be used to evaluate the meal spatial pattern of grazing groups.

Meal pattern in relation to sward characteristics

Patterns are context-dependent, that is, they rely on a background to stand out and are intrin-

sically linked to the situation in which they are formed. Pattern format provides an analytical

framework to apply solutions to complex problems (e.g. it is frequently used in computer sci-

ence). The principle underlying feeding patterns is the same: by understanding regularities, it

is possible to predict what comes next and estimate whether the same pattern will occur when

variables are altered [51].

The meal pattern emerges from the relationship between inter-meal intervals and meals.

Meals are the main functional unit in which animals organize their feeding behaviour, and

analysis of meals produces the most biologically relevant information [23, 52–54] for under-

standing grazing behaviour. For example, we have found that the time period of major meals

changed depending on seasons. From early to late spring, the increase in the inter-meal inter-

val results in a longer interval between the two longer meals of the day. Similar results were

reported in the literature [8, 55].

In addition to the meal pattern, the structure of the meal itself changed. We found that

meal duration followed changes in sward maturity and increased across seasons (Table 2; Fig

6). The increase in meal duration may result in an increased intake. A linear relationship

between minutes of eating and dry matter intake was observed in previous studies [52, 53].

Our results also showed a linear increase in the first 5 weeks of early spring indicating a type I

functional response (a linear increase in intake rate with bulk density). The functional

response is the consumer’s intake rate as a function of food density [55]. The linear increase

indicates that consuming food does not interfere with searching for food [55].

Nevertheless, intake usually decreases as plant maturity progresses, particularly at senescent

sward stages [56], meaning that animals can increase meal duration up to the point where the

trade-off between quality and quantity starts to prevail. After the first 5 weeks, we also

observed a decrease in grazing activity from the ninth week when the sward was senescent

(decreasing in height from the sixth week), which was an asymptotic functional response. The

type II functional response indicates that processing of food and searching for food are com-

peting and can overlap in time, and are regulating the instantaneous intake rate in response to

changes in the size of bites obtained by the grazer [55, 57]. At this transition point, grazing

behaviour represents a compromise between chewing forage, which increases passage rate,
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and biting forage, which increases intake [58]. Therefore, the intake rate (g DM.min−1) is

related to other rates (i.e. mastication, digestion, passage) that are related to the type of food

ingested. For instance, the plant reproductive stage is associated with an increase in the fibre

content and altered morphological characteristics, which are accountable for reducing the ease

of prehension and the intake rate [26]. To compensate for a reduction in total intake rate, the

only effective strategy is to increase grazing time, as shown previously in cows [23]. The same

trophic strategy was also found in small ruminants. Nielsen et al. [54] reported that when goats

had a 9% reduction in intake rate caused by a high-fibre diet, they reduced their meal fre-

quency by 10% and increased their meal duration by 11%.

In addition to the vegetative and chemical traits of feed resources, other factors can influ-

ence the intake rate and meal duration. Meal duration may result from the interaction of dif-

ferent mechanisms; however, in specific feed contexts, some of these mechanisms may be

more decisive than others. For example, sward height and forage mass changed from early to

late spring (Table 2), and the increase in meal duration can be a consequence of the larger vol-

ume bites [48, 53], with more forage in the mouth consequently increasing handling time. In

late spring, the sward canopy height and the intake duration decrease; nevertheless, the intake

duration remains higher when compared with the beginning of spring (Fig 5). The main

mechanism responsible for meal duration in this case is the need to search for and select feed-

ing niches that favour leaf over stems [59], increasing the number of bites. A different func-

tional response (type IV) was observed in heifers grazing monocultures [60]. The increase in

meal duration in short sward heights resulted from decreased bite mass instead of longer time

needed to encounter and process bites.

Therefore, by using animal-borne POV cameras, we were able to uncover the microstruc-

ture of a major grazing meal, that is, within each major meal, we were able to characterize the

bout and station patterns in relation to their respective spatial location: the patch and the

niche. The bite pattern was explored elsewhere [61] and is outside the scope of the present

study. The characterization of a meal in its hierarchical spatiotemporal components provides

an understanding of the dynamics of the interactions between plants and animals, resulting in

the diet selected and the amount ingested.

Bout pattern in relation to sward characteristics

The POV cameras coupled with GNSS locations enabled the identification of the patch

selected by an animal for grazing. For the bout behaviour that takes place at the patch scale, the

sward horizontal availability (i.e. proportion cover of a plant species) influences the rate at

which the sheep encounters food items while grazing and, therefore, the time required to find

food alternatives [62]. In variable and complex sward, the choice of a feeding patch can be a

consequence of a balance between memory and opportunity [7], frequently reflecting the effort

to reduce walking energy expenditure rather than a true feed preference. The strategy is consis-

tent with a principle of maximization of energy intake, with selectivity constrained by costs of

searching for and discriminating between different forage resources [63, 64].

In fact, sward maturity is frequently confounded with sward height and forage mass, but

together with quantity, maturity further changes the plant architecture, the leaf/stem ratio and

the chemical composition, increasing the sward complexity. Further complexity results from

the different timing of species’ phenological cycle within plant communities, creating addi-

tional vegetation heterogeneity and increasing the differences between patches. Two types of

spatial memory are used by herbivores to locate food: reference memory and working memory

[7]. Reference (long-term) memory is a map-like representation of the foraging environment,

and animals can remember locations and food availability for at least 20 days, thus avoiding
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areas with little or no forage. Working (short-term) memory is used to remember which areas

have been visited recently. Using working memory, grazing animals can remember locations

that have been grazed for at least 8 hours and associate locations with consequences [7].

In our study, the patches chosen for grazing changed from early to late spring (reported

elsewhere, [65]), and this change in animal spatial distribution could be associated with long-

term memory and with exploring new areas. Simultaneously, we also observed an increase in

the number and rate of bouts. Bouts are located in patch communities, and an increase in the

number of bouts may occur as compensation for the loss of forage nutritive value. The conse-

quent longer meals give the animals the opportunity to navigate between patches and graze

areas previously ungrazed. Moreover, the search for dispersed preferred plant communities

within patches could explain the increase in the bout number. We also found that sheep

showed a tendency to reduce bout duration, spending less time in each location (Fig 7). The

simultaneous observed increase in the bout rate may be compensation for the reduced dura-

tion of each bout. Additionally, we found that the inter-bout interval was significantly shorter,

probably due to the reduction in standing time and the increase in walking activity. A similar

pattern of more frequent bouts and bouts with short duration was reported by Iason et al. [66]

after investigating the ability of grazing sheep to compensate for restricted grazing time. More-

over, the effects of patch encounter rate on patch choice were studied in a laboratory environ-

ment using rats [64]. Animals had to choose between available patches that differed in

searching/sorting cost. Animals exploited the low-cost patch in almost 100% of encounters.

When low-cost patches were rare, the rats did not increase their use of high-cost patches but

responded to this increased cost by increasing bouts at both patches, thereby limiting foraging

cost and maintaining total intake.

The evidence indicates that the patch selected by sheep is expected to come at a cost which

is influenced by the sward horizontal structure, affecting grazing behaviour at the bout level. Con-

sequently, as sward complexity increased, sheep adjusted by having more and shorter bouts.

Station pattern in relation to sward characteristics

We used niche selection as a proxy for diet composition. The composition of plant communi-

ties is largely determined by the coexistence of plant species that define ecological niches. Dif-

ferentiation of niches is a consequence of plant species’ functional traits. The 12 feeding niches

that we defined aimed to capture the horizontal and vertical dimensions of plant availability

[62]. The classification also aimed to express features that constitute cues for a grazing animal

(e.g. visual discrimination, flavour, ease of handling).

Despite its importance for patch selection, sward height was not used by ewes as a definer

category for diet selection [67]. Instead, ewes could categorize plants at the species level and

used this mental categorization when selecting their diet in the short term. Sheep relied on rel-

evant criteria to create a hierarchical representation of food categories, namely nested levels of

perceptual information [67], thus reducing the decision demand and increasing their foraging

efficiency when selecting from many different plant items. The species’ plant traits are mostly

linked to the botanical family, which will define plants’ physiological and chemical traits.

Grasses, legumes, and forbs, differ functionally in vegetation communities. Plants from these

functional types differ in their colour and architecture (e.g. stem and leaf form, branching),

which may be linked to potential visual cues. They also differ in their chemical characteristics,

linked to potential olfactory, gustatory, and textural cues, and simultaneously linked to nutri-

tive value and food reward value [68].

Therefore, we used plant functional groups to characterize niches, and their presence within

patches created a mosaic at the sward horizontal dimension. This dimension was combined
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with variations in the sward vertical dimension. The main driver of variations in this dimen-

sion is the plant growth cycle, which generates both distinct vertical forage mass layers (e.g.

different leaf/stem ratio) and distinct vertical gradients of chemical constituents [69].

Our results indicated that the sheep’s diet composition varied greatly according to seasonal

variations in sward vegetation availability. This was also reported in a study on complex natu-

ral grassland [70]. As the sward’s structural complexity increases with seasonal variation, palat-

ability differences between plants and plant fractions within a feeding niche will be more

pronounced [48]. Differences in palatability will lead to selective grazing. In other words, the

animal will graze the species and parts of plants that it prefers up to the point where the search-

ing cost prevails. In our study, the major change in diet composition was related to the prefer-

ence for legumes, which was higher at intermediate than at short or tall sward heights. As

legumes progressed from vegetative to reproductive stages, a decrease in relative preference

was also observed by [18, 71, 72]. Furthermore, it has been reported that sheep prefer swards

with intermediate levels of clover, avoiding those with low or high clover levels [73]. Low pref-

erence for legumes at the beginning of the early spring season may be linked to low palatability

related to a low water-soluble carbohydrate and/or a high nitrate concentration in plants, the

latter known by its bitter taste [74]. Low preference for legumes in late spring could, in turn,

be a consequence of handling time (in searching and mastication) due to an increase in

legumes’ branching and stem/leaf ratio, which increase the discrimination difficulties, thus

influencing components of the functional response such as bite depth and bite volume [73].

In this study, it was found that forbs seemed to be preferred to legumes and grasses.

Although there are large differences between individual forb species, these non-leguminous

dicotyledons generally provide high-quality herbage in mixed herbaceous pastures during

periods of low forage mass availability [75–77]. This is possible since forb species acquire and

use nutrients at different times and from different resource sites relative to co-occurring

grasses and legumes in complex pasture communities [75]. When actively growing, forbs are

more digestible and are usually higher in crude protein and phosphorus and lower in fibre

than grasses [76]. Because of their low fibre concentrations, forb leaves break down quickly in

the rumen, which enables a higher intake than grasses [76]. This chemical and functional role

of forbs in the diet could justify their relatively high (about 44%) presence in the diet across

spring. As such, while legumes almost disappeared from diets in late spring, forbs remained

present, as confirmed by their preference indices, which were always positive. The wide range

of maturation of different forb species, providing a continuous feed resource, may also explain

our results.

In addition to being influenced by differences in the preferences for functional plant

groups, the diet composition across seasons was related to changes in the sward vertical

dimension. As sward matured, it was noticed that sheep preferred the middle sward layer for

cropping forage, reflecting a preference for greener and prostrated vegetation, such as legumes

and forbs [75, 77]. Eating in the middle stratum can also correspond to an increase in search-

ing for leaf mass rather than reproductive plant parts. As plants mature, the proportion of

stems increases and interferes with the grasping of leaves by animals, mainly reducing bite

mass [59, 73, 78]. Regardless of the reason, the increase in selective grazing was supported by

the observed increase in the number of feeding niches used by sheep as pasture matured. In

these circumstances, sheep increased the station duration and reduced the station rate, which

means that in late spring, ewes spent more time at each feeding niche, probably due to an

increase in handling time. More time is probably needed to search among neighbouring plants

and select plants, as well as to discriminate among plant parts. Another concerning factor is an

increase in plants’ NDF content, which requires more chewing time while in the same feeding

station [79].
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Nevertheless, although handling time may increase in late spring, preferences decrease. The

observed decrease in the Pi of legumes and forbs indicates that animals were more limited in

their choices. Similar to our results, another study [80] reported a decrease in overall plant

selectivity as summer progresses. The reduction in selectivity and feeding preferences could be

explained by the changes in sward surface height occurring in late spring in our annual Medi-

terranean sward conditions. The loss of forage mass is due to leaf and stem senescence, and

they become pale green and finally yellow and fall onto the soil surface, thus increasing the lit-

ter layer. As the sward became shorter and less dense, a reduction in intake rate was expected

due to lower bite mass [78], as sward height is a key factor to define bite mass because of its

direct relation with bite depth and volume [73, 78, 79]. Ultimately, the composition of diet

ingested will result from the balance between preferences and handling cost, with the cost–

benefit ratio influencing food choices [55, 57].

Advantages and future uses of POV cameras

The use of POV cameras has several practical advantages. First, they are easy to install and use

with sheep. The ewes’ behaviour displayed while carrying sensors, observed both directly and

in video sequences, prove that since the first day of their use, ewes did not show any signs of

discomfort or try to get rid of the sensors (e.g. shaking heads or brushing against surfaces).

Second, the possibility of going backwards and forwards in slow motion to review the images

enables a more informed decision about selected feeding niches. Although lip movements

were not visible, when an animal made a head push to rip the herbage, part of the bite mass

could stick out of the mouth, facilitating plant identification, especially when plants are in the

reproductive stage. Even images captured by an infrared camera enable discrimination of feed-

ing niches through plant traits (except for colour).

However, the time required to analyse video sequences is a drawback. In most cases, the

editing time of behavioural states, such as walking, standing, and lying down, is 12 times

shorter than the ‘real’ video sequence length. For example, a 60 min ‘lying down’ sequence can

take about 5 min to analyse. However, video sequences of grazing states require considerably

more time (about three times the ‘real’ video sequence length). Identification of feeding niches

and analysis of grazing structure often require slow motion to review images, which increases

editing time.

Another advantage of POV cameras is their capacity to capture information where an

observer would have difficulty assigning a bite code. For example, swards with high, dense for-

age canopies can be uncovered by POV cameras even when animals graze in the middle verti-

cal vegetation strata. In our experimental site, the native pasture height peaked at 53 cm, with a

bulk density of 176 mg DM cm−3. With an average height of 70 cm–80 cm, sheep are

‘immersed’ in the forage, hampering the direct observation of their mouths required for the

coding grid methodology. Although our feeding niches approach was unable to differentiate

among bite categories, it could discriminate feeding scenarios and recognize the importance of

plant tri-dimensional traits in the diet selection.

The information disclosed by POV cameras coupled with GNSS could have two main

future uses. One is related to the selection of more resilient and efficient grazing animals.

Among the factors influencing feed efficiency, feeding behaviour can account for 35% of the

variation in DM intake [81]. Individual differences in intake behaviour are well known. Dado

and Allen [82] reported variations among several intake behaviour components, with coeffi-

cients of variation across cows ranging from 5% to 41%. The individual variations observed

among animals grazing the same feeding niches can be useful to study the plasticity of individ-

uals to feeding conditions. This could prove useful in breeding programmes, as more resilient
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animals can be more efficient in rangeland conditions. Some animals are able to maintain a

high intake rate in a less favourable feeding environment and maintain their live weight, as

noted in residual feed intake studies [83, 84]. In other words, despite changing the intake rate,

animals can maintain the same intake by increasing bout frequency [54].

Another future application of POV cameras is for gathering contextual information, linking

pasture and animals, for the design of new pastures. The sward structure is a central determi-

nant of primary and secondary productivity of grazed ecosystems. As such, approaching the

sward structure within a functional framework, which provides an understanding of the most

important aspects of plant growth and defoliation under grazing, is critical. For example, over-

grazing can occur and will affect the sward structure in the long term, whenever animals graze

their favourite patches repeatedly, having a greater impact on their preferred plants. Under-

standing the dynamics of grazing patterns in specific feeding contexts would be useful to

design pastures based on knowledge of plant ecophysiology and the microstructure of grazing

behaviour. Pastures could be designed with the objective of modifying food intake and the

preference of herbivores, enabling innovative grazing systems and management strategies,

consequently contributing to improving the integrity of natural landscapes and ecosystems

[85, 86].

Conclusion

Simultaneous assessment of vegetation features and the corresponding animal behavioural

response is essential to assess the dynamics of the resource–consumer interaction. A major

strength of this study is that it provides a framework to uncover the meal microstructure of

animals grazing in complex swards. Another strength of the present study is it demonstrates

that POV cameras can capture the link between grazing behaviour components and sward

features.

Overall, the results demonstrate that sheep were able to adapt grazing behaviour to sward

changes. Sheep compensated for the decrease in sward quantity and nutritive value by increas-

ing the size and duration at each behavioural scale (i.e. meal, bout and station) while increasing

the bout rate and reducing the station rate.

The diet composition changed with sward seasonal changes, and ewes showed the strongest

preference for niches that contained forbs, in the middle strata, with green plant material to

those that contained grasses, in the surface strata, with mature plant material. Selectivity

increased with sward height, which is supported by the increase in niches used for grazing

and, simultaneously, the increase in station duration. The latter could indicate a slower intake

rate when feeding in mature complex swards. Therefore, our results support the hypothesis

tested, providing evidence of the validity of the use of POV cameras as a tool to study the

microstructure of intake and the diet composition in free range grazing.

It is reasonable to assume that the microstructure captured by POV cameras in our study

was representative of grazing behaviour in this complex sward. An accurate estimation of diet

composition enables us to better predict grazing impacts upon a given vegetation community,

and POV cameras could be a useful tool for ecosystems sustainability assessment. Further-

more, POV cameras enabled the identification of different transition points in both the fre-

quency and duration of the components of the grazing behaviour. These transition points

occurred at the different behavioural scales (oral, station, bout, and meal) and should be fur-

ther investigated, as they may provide relevant information for future innovations in tailored

pasture design (e.g. managing patches to create a functional mosaic of feed resources to

achieve animal distribution that positively impacts the pasture ecosystem). Individual differ-

ences in grazing behaviour can be better explored using POV cameras and presents another
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opportunity for future research. Exploring how animals are coping with the environment

could contribute to a better understanding of individual feed efficiency, as well as behavioural

plasticity within populations. Therefore, POV cameras could be a useful tool to uncover the

relationships between an animal resilience and its long-term efficiency that could be used in

breeding programmes.

A limitation of this study is that temporal patterns were derived from the grazing relations

in just one wood pasture, and therefore the findings may not be generalizable to other swards

with a different botanical composition and tree cover. Although the diversity of abiotic and

biotic factors can influence the botanical composition of swards, forage mass, plant height, and

stage of maturity, we believe that the framework proposed is useful. Relating the microstruc-

ture of intake to pasture attributes expressed as PCi (used as a benchmark), in any context,

generates relevant information on the dynamics of the plant–animal interaction. Further stud-

ies involving a larger number of eating scenarios are needed.
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17. Abijaoudé JA, Morand-Fehr P, Béchet G, Brun JP, Tessier J, Sauvant D. A method to record the feed-

ing behaviour of goats. Small Ruminant Research. 1999 Aug 1; 33(3):213–21. https://doi.org/10.1016/

S0921-4488(99)00035-8

18. Penning PD, Newman JA, Parsons AJ, Harvey A, Orr RJ. Diet preferences of adult sheep and goats

grazing ryegrass and white clover. Small Ruminant Research. 1997 Apr 1; 24(3):175–84. https://doi.

org/10.1016/S0921-4488(96)00930-3

19. McGregor H, Legge S, Jones ME, Johnson CN. Feral cats are better killers in open habitats, revealed

by animal-borne video. PloS one. 2015 Aug 19; 10(8):e0133915. https://doi.org/10.1371/journal.pone.

0133915 PMID: 26288224

20. Huck M, Watson S. The use of animal-borne cameras to video-track the behaviour of domestic cats.

Applied Animal Behaviour Science. 2019 Aug 1; 217:63–72. https://doi.org/10.1016/j.applanim.2019.

04.016

21. Egan FE. The use of animal-borne video systems to study foraging ecology and diel behaviour: a review

and case study on the Scandinavian brown bear (Ursus arctos). Master’s thesis, Norwegian University

of Life Sciences, Ås. 2019. Available from: https://nmbu.brage.unit.no/nmbu-xmlui/handle/11250/

2597350.

PLOS ONE Grazing behavior microstructure using point-of-view cameras

PLOS ONE | https://doi.org/10.1371/journal.pone.0265037 March 18, 2022 24 / 28

https://doi.org/10.2527/jas.2005-569
http://www.ncbi.nlm.nih.gov/pubmed/17785590
https://doi.org/10.2527/jas.2009-1851
http://www.ncbi.nlm.nih.gov/pubmed/19395511
https://doi.org/10.1111/jbg.12392
http://www.ncbi.nlm.nih.gov/pubmed/30945778
https://doi.org/10.2527/jas.2010-2892
https://doi.org/10.2527/jas.2010-2892
http://www.ncbi.nlm.nih.gov/pubmed/21036935
https://doi.org/10.1093/jas/skab062
https://doi.org/10.1093/jas/skab062
http://www.ncbi.nlm.nih.gov/pubmed/33640988
https://doi.org/10.1007/978-1-4020-6850-8%5F2
https://doi.org/10.1071/AN14641
https://doi.org/10.4081/ijas.2006.19
https://doi.org/10.1016/j.smallrumres.2003.10.013
https://doi.org/10.1071/AN14540
https://doi.org/10.1016/j.rama.2019.10.011
https://doi.org/10.1016/j.rama.2020.02.001
https://doi.org/10.25518/1780-4507.13058
https://doi.org/10.1016/S0921-4488%2899%2900035-8
https://doi.org/10.1016/S0921-4488%2899%2900035-8
https://doi.org/10.1016/S0921-4488%2896%2900930-3
https://doi.org/10.1016/S0921-4488%2896%2900930-3
https://doi.org/10.1371/journal.pone.0133915
https://doi.org/10.1371/journal.pone.0133915
http://www.ncbi.nlm.nih.gov/pubmed/26288224
https://doi.org/10.1016/j.applanim.2019.04.016
https://doi.org/10.1016/j.applanim.2019.04.016
https://nmbu.brage.unit.no/nmbu-xmlui/handle/11250/2597350
https://nmbu.brage.unit.no/nmbu-xmlui/handle/11250/2597350
https://doi.org/10.1371/journal.pone.0265037


22. Parsons AJ, Thornley JH, Newman J, Penning PD. A mechanistic model of some physical determinants

of intake rate and diet selection in a two-species temperate grassland sward. Functional Ecology. 1994

Apr 1:187–204. https://doi.org/10.2307/2389902

23. Gibb MJ, Huckle CA, Nuthall R, Rook AJ. Effect of sward surface height on intake and grazing behav-

iour by lactating Holstein Friesian cows. Grass and Forage Science. 1997 Sep; 52(3):309–21. https://

doi.org/10.1111/j.1365-2494.1997.tb02361.x

24. Senft RL, Coughenour MB, Bailey DW, Rittenhouse LR, Sala OE, Swift DM. Large herbivore foraging

and ecological hierarchies. BioScience. 1987 Dec 1; 37(11):789–99. https://doi.org/10.2307/1310545

25. Carvalho PC. Can grazing behaviour support innovations in grassland management?. In Revitalising

Grasslands to Sustain our Communities: Proceedings, 22nd International Grassland Congress, 15–19

September, 2013, Sydney, Australia 2013 (pp. 1134–1148). New South Wales Department of Primary

Industry.

26. Metz J. H. M. (1975). Time patterns of feeding and rumination in domestic cattle (Doctoral dissertation,

Veenman).

27. Davis JD, Smith GP. Analysis of the microstructure of the rhythmic tongue movements of rats ingesting

maltose and sucrose solutions. Behavioral neuroscience. 1992 Feb; 106(1):217. https://doi.org/10.

1037/0735-7044.106.1.217 PMID: 1554433

28. Smith GP. John Davis and the meanings of licking. Appetite. 2001 Feb 1; 36(1):84–92. https://doi.org/

10.1006/appe.2000.0371 PMID: 11161348

29. Johnson AW. Characterizing ingestive behavior through licking microstructure: Underlying neurobiology

and its use in the study of obesity in animal models. International Journal of Developmental Neurosci-

ence. 2018 Feb 1; 64:38–47. https://doi.org/10.1016/j.ijdevneu.2017.06.012 PMID: 28684308

30. Bateson M, Martin P. Measuring behaviour: an introductory guide. Cambridge University Press; 2021

Apr 30.

31. Sibbald AM, Shellard LJ, Smart TS. Effects of space allowance on the grazing behaviour and spacing of

sheep. Applied Animal Behaviour Science. 2000 Nov 1; 70(1):49–62. https://doi.org/10.1016/s0168-

1591(00)00145-3 PMID: 10986423

32. International Organization for Standardization. (1999). Animal Feeding Stuffs. Determination of mois-

ture and other volatile matter content (ISO 6496:1999).

33. International Organization for Standardization. (2008). Animal Feeding Stuffs. Determination of the total

nitrogen content by combustion according to the Dumas principle and calculation of the crude protein

content—Part 1: Oilseeds and animal feeding stuffs. (ISO 16634–1:2008). PMID: 18942543

34. International Organization for Standardization. (2008). Animal Feeding Stuffs. Determination of amy-

lase-treated neutral detergent fibre content (aNDF). (ISO 16472:2006). PMID: 18942543

35. Elzinga CL, Salzer DW, Willoughby JW. Measuring and Monitoring Plant Populations. Bureau of Land

Management Technical Reference 1730–1. Denver, CO: BLM National Business Center. 1998.

36. Treurnicht M, Pagel J, Tonnabel J, Esler KJ, Slingsby JA, Schurr FM. Functional traits explain the

Hutchinsonian niches of plant species. Global Ecology and Biogeography. 2020 Mar; 29(3):534–45.

https://doi.org/10.1073/pnas.1908684117 PMID: 32029599

37. Inoue T, Nagai S, Kobayashi H, Koizumi H. Utilization of ground-based digital photography for the eval-

uation of seasonal changes in the aboveground green biomass and foliage phenology in a grassland

ecosystem. Ecological Informatics. 2015 Jan 1; 25:1–9. https://doi.org/10.1016/j.ecoinf.2014.09.013

38. Serrano J, Sales-Baptista E, Shahidian S, da Silva JM, de Oliveira IF, de Castro JL, et al. Proximal sen-

sors for monitoring seasonal changes of feeding sites selected by grazing ewes. Agroforestry Systems.

2018 Mar 15:1–5. https://doi.org/10.1007/s10457-018-0219-5

39. Sales-Baptista E, Ferraz-de-Oliveira MI, dos Santos MB, de Castro JA, Pereira A, da Silva JR, et al.

Tecnologia GNSS de baixo custo na monitorização de ovinos em pastoreio. Revista de Ciências Agrár-

ias. 2016; 39(2):251–60. https://doi.org/10.19084/RCA15147

40. Friard O, Gamba M. BORIS: a free, versatile open-source event-logging software for video/audio cod-

ing and live observations. Methods in ecology and evolution. 2016 Nov; 7(11):1325–30. https://doi.org/

10.1111/2041-210X.12584

41. Gibb MJ. Animal grazing/intake terminology and definitions. Pasture Ecology and Animal Intake. Tea-

gasc, Grange Research Centre, Dunsany, Ireland. 1998:21–37. https://doi.org/10.13140/2.1.3335.

8726

42. Jacobs J. Quantitative measurement of food selection. Oecologia. 1974 Dec; 14(4):413–7. https://doi.

org/10.1007/BF00384581 PMID: 28308662

43. Silva SR, Almeida JC, Monteiro D, Correia MJ, Palma AG, Ferreira A. [Manual de Boas Práticas—
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