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Abstract

A bacterial strain designated as RZME10T was isolated from a Zea mays L. root collected in Spain. Results of analysis of the 16S 
rRNA gene sequence showed that this strain belongs to the genus Agrobacterium with Agrobacterium larrymoorei ATCC 51759T 
being the most closely related species with 99.9 % sequence similarity. The similarity values of the rpoB, recA, gyrB, atpD and 
glnII genes between strain RZME10T and A. larrymoorei ATCC 51759T were 93.5, 90.0, 88.7, 87.9 and 90.1 %, respectively. The esti-
mated average nucleotide identity using blast and digital DNA–DNA hybridization values between these two strains were 80.4 
and 30.2 %, respectively. The major fatty acids of strain RZME10T are those from summed feature 8 (C

18 : 1
 ω6c/C

18 : 1
 ω7c) and C

16 : 0
. 

Pathogenicity tests on tomato and carrot roots showed that strain RZME10T was not able to induce plant tumours. Based on 
the results of genomic, chemotaxonomic and phenotypic analyses, we propose that strain RZME10T represents a novel species 
named Agrobacterium cavarae sp. nov. (type strain RZME10T=CECT 9795T=LMG 31257T).

INTRODUCTION
The genus Agrobacterium comprises Gram-stain-negative 
motile aerobic rods that form convex, circular, smooth, 
non-pigmented to light beige colonies. In media containing 
carbohydrates as carbon sources, members of the genus Agro-
bacterium produce acids and copious extracellular polysac-
charide slime [1]. This genus currently contains pathogenic 
species able to induce plant tumours or hairy roots and also 
non-pathogenic species isolated from soil and different plant-
related sources [2, 3]. Although some of these species were 
originally isolated from legume nodules, none of them have 
been isolated from cereals to date [2, 3].

Taking this into account, and considering the importance of 
the genus Agrobacterium in plant diseases, in the present work 
we characterize a strain named RZME10T isolated from the 
root of a maize plant [4], which was closely related to Agro-
bacterium larrymoorei, a species containing tumourigenic 
strains isolated from tumours of Ficus benjamina [5]. Based 
on the genotypic, chemotaxonomic and phenotypic charac-
teristics of strain RZME10T, we propose its classification as 

representing a novel species named Agrobacterium cavarae 
sp. nov.

ISOLATION AND ECOLOGY
Strain RZME10T was isolated from a root of Zea mays L. 
growing in soil from Riego de la Vega (León, NW Spain, 42° 
23′ 21″ N, 5° 58′ 56″ W), where this cereal is widely culti-
vated, in the course of a study on maize root endophytes [4]. 
For isolation, the roots were surface-disinfected with 70 % 
(v/v) ethanol (1 min), 2 % NaClO (w/v) (3 min) and 70 % 
(v/v) ethanol (30 s) and then they were rinsed five times with 
sterile distilled water and crushed in 10 ml sterile PBS, pH 
7. Serial decimal dilutions were preformed and aliquots of 
0.1 ml from each dilution were inoculated on trypticase soy 
agar (TSA; Difco, Becton Dickinson) for incubation at 48 h 
and 28 °C. In parallel, some of the disinfected root samples 
were incubated in the same medium to ensure their complete 
external disinfection and no growth was observed around 
these roots.
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PHYLOGENETIC CHARACTERIZATION
The 16S rRNA gene was amplified and sequenced in previous 
work [6] by the Sequencing DNA Service (nucleus) at 
Salamanca University (Spain). The obtained sequence was 
compared with those from GenBank using the blastn 
programme [7]. MLSA was based on the concatenated 
sequences of five housekeeping genes: rpoB, recA, gyrB, atpD 
and glnII. These sequences as well as that of the telA gene were 
extracted from the genome of strain RZME10T and compared 
with those of the remaining species of the genus Agrobacte-
rium available in GenBank. The sequences were aligned using 
the clustal_w programme [8]. The phylogenetic distances 
were calculated according to Kimura’s two-parameter model 
[9]. The phylogenetic trees were inferred using the neighbour-
joining model [10] and mega 7.09 [11] was used for all phylo-
genetic analyses.

The 16S rRNA gene of strain RZME10T showed 99.9 % simi-
larity with respect to that of the type strain of A. larrymoorei, 
which is its closest-related species. The remaining species of 
the genus Agrobacterium showed values slightly higher or 
lower than 98 % similarity with respect to strain RZME10T. 
High similarity values were also presented by several strains 
isolated from plant-related sources, some of them named 
as Rhizobium species, such as strain LS-099, which is a rice 
endophyte [12], and strain Leaf155, which was isolated from 
a leaf of Arabidopsis thaliana [13]. The results of the 16S 
rRNA gene analysis showed that these two strains belong to 
the genus Agrobacterium and that strain SSR03, endophytic 
of Chinese cabbage [14], is closer to the new species than to 
A. larrymoorei (Fig. 1). However, for most of these strains, 
except for Leaf155, only sequences of 16S rRNA genes are 
available in GenBank and therefore they cannot be assigned to 

the new proposed species taking into account the limitations 
of this gene for Agrobacterium species differentiation, as will 
be shown in this study. Since the genome of strain Leaf155 is 
available in GenBank, it will be compared with those of the 
type strains of the Agrobacterium species.

Strain RZME10T formed an independent cluster within 
the genus Agrobacterium together with A. larrymoorei 
AF3.10T=ATCC 51759T in both 16S rRNA gene analysis 
(Fig. 1) and MLSA based on rpoB, recA, gyrB, atpD and glnII 
genes (Fig. 2). Nevertheless, the sequence similarity values 
of these genes between RZME10T and A. larrymoorei ATCC 
51759T were 93.5, 90.0, 88.7, 87.9 and 90.1 %, respectively, 
which are lower than those found among other species of 
Agrobacterium (Fig. 2). The results of the phylogenetic anal-
ysis of the telA gene, which codifies a protelomerase involved 
in the maintenance of the linear chromid [15], showed 
that strain RZME10T also clustered with its closest relative  
A. larrymoorei AF3.10T with 81.7 % similarity. The remaining 
type strains of Agrobacterium species were phylogenetically 
divergent from strain RZME10T with similarity values lower 
than 80 % (Fig. S1, available in the online version of this 
article).

GENOME FEATURES
The genomic DNA from pure culture of strain RZME10T 
was purified using the DNeasy UltraClean Microbial DNA 
Isolation Kit (Qiagen) following manufacturer’s protocol. 
Sequencing, upon preparation of pair-end libraries, was 
performed on the Illumina MiSeq sequencing platform 
(2×250 bp). Sequencing data was assembled using Velvet 
1.2.10 [16]. The draft genome sequence of strain RZME10T 

Fig. 1. Neighbour-joining phylogenetic rooted tree based on 16S rRNA gene sequences (1380 nt) showing the taxonomic location of 
Agrobacterium cavarae RZME10T within the genus Agrobacterium. Bootstrap values calculated for 1000 replications are indicated. Bar,  
5 nt substitution per 1000 nt. Accession numbers from GenBank are given in parentheses.
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was deposited in DDBJ/EMBL/GenBank under Bioproject 
PRJNA523189 (accession number SISF00000000). The 
genome characteristics are shown in Table S1. Average 
nucleotide identity using blast (ANIb) was calculated with 
the JSpecies server [17, 18] (http://​imedea.​uib-​csic.​es/​jspe-
cies/). Digital DNA–DNA hybridization (dDDH) values were 
calculated using the Genome-to-Genome Distance Calculator 
web service from the DSMZ (GGDC 2.1) [19] (http://​ggdc.​
dsmz.​de/​ggdc.​php/). These values were calculated using the 
formula 2 at the GGDC website [20] because it is the only 
function appropriate to analyse draft genomes [21]. The 
ANIb and dDDH values were calculated for the type strains 
of Agrobacterium species whose genomes are currently 
available and the values found between RZME10T and  
A. larrymoorei ATCC 51759T were 80.4 and 30.0 %, respec-
tively (Table 1). These values are far lower than the threshold 
values recommended for bacterial species differentiation 
[22] and, therefore, strain RZME10T belongs to a new species 
within the genus Agrobacterium. The ANIb and dDDH values 
between the genome sequences of strains RZME10T and 
Leaf155 were 95.79 and 68.30 %, respectively (Table 1). These 
values are also lower than the threshold values recommended 
for species differentiation (95~96 % for ANI and lower than 
70 % for dDDH) [22, 23] and therefore strain Leaf155 would 
represent a sister species to A. cavarae.

The G+C content of strain RZME10T calculated from the 
genome was 58.3 mol% (Table S1), which falls within the 
range reported for the genus Agrobacterium [1].

Phylogenomic analysis was conducted with the Type Strain 
Genome Server [19]. This web-server tool employs the 
genome blast distance phylogeny method (GBDP) [24] 
to compare whole genome sequences at nucleotide level, 
allowing calculation of dDDH values and reconstructing the 
phylogram. The GBDP phylogenomic tree confirmed the 
phylogenetic position of strain RZME10T derived from the 
16S rRNA gene analysis and MLSA showing that this strain 
clustered with the type strain of A. larrymorei ATCC 51759T 
(Fig. 3).

Annotation was done using the seed viewer and the rast 
2.0 server (Rapid Annotation using Subsystem Technology) 
[25, 26] and the NCBI Prokaryotic Genome Annotation Pipe-
line (PGAP; www.​ncbi.​nlm.​nih.​gov/​genome/​annotation_​
prok/) [27, 28]. The differences in gene composition of strain 
RZME10T, A. larrymoorei ATCC 51759T and A. radiobacter 
NCPPB 3001T are shown in Table 2. Some differences have 
been detected in hydrolytic activities of the analysed strains. 
α-Amylase was detected in A. larrymoorei ATCC 51759T and 
A. radiobacter NCPPB 3001T but not in strain RZME10T. 
β-Galactosidase and endo-1,4-β-xylanase (EC 3.2.1.8) were 
found in A. radiobacter NCPPB 3001T, but were absent in the 
other strains. The opine oxidase cluster was found in A. larry-
moorei ATCC 51759T and A. radiobacter NCPPB 3001T but 
not in strain RZME10T. Isochorismate synthase and salicylate 
synthase have been annotated in strain RZME10T, however, 
the former was not detected in A. larrymoorei ATCC 51759T 
and the latter was not detected in A. radiobacter NCPPB 
3001T. Both genes are related to the modulation of plant 
defence response [29–31]. The T-DNA region genes have not 
been found in RZME10T and A. radiobacter NCPPB 3001T, 
but they have been annotated in A. larrymoorei ATCC 51759T.

PHYSIOLOGY AND CHEMOTAXONOMY
Phenotypic characterizations were performed using the API 
ID32GN and API 20NE systems (bioMérieux) under the 
conditions indicated by the manufacturer and the results were 
read after 72 h incubation at 28 °C. Growth temperature range 
was determined by incubating cultures in Yeast Mannitol Agar 
(YMA) medium [32] at 4, 15, 28, 37 and 45 °C. Growth pH 
range was determined in the same medium with final pH 4.0, 
6, 7, 8, 9 and 10. PCA buffer (Na2HPO4 0.4M and citric acid 
0.2M) was used to adjust the pH from pH 4 to 6, phosphate 
buffer (Na2HPO4 0.2M and NaH2PO4 0.2M) was used for pH 
7 and TE buffer 0.2M was used for pH 8 and 9. Salt tolerance 
was tested in the same medium containing 0.5, 1, 1.5, 2, 2.5, 
3, 3.5 and 4 % (w/v) NaCl. Catalase production was assayed 
by using 0.3 % hydrogen peroxide with one colony taken from 

Fig. 2. Neighbour-joining phylogenetic tree based on rpoB, recA, gyrB, atpD and glnII concatenated gene sequences (4110 nt) showing the 
taxonomic location of Agrobacterium cavarae RZME10T within the genus Agrobacterium. Bootstrap values calculated for 1000 replications 
are indicated. Bar, 2 nt substitution per 100 nt. Accession numbers from GenBank are given in parentheses.
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the Tryptone Yeast (TY) plates. Oxidase activity was detected 
by using N,N,N′,N′-tetramethyl-1,4-phenylenediamine 
dihydrochloride. To test the natural antibiotic resistance, 
the disc diffusion method on YMA medium was used. The 
discs contained the following antibiotics: ampicillin (2 µg), 
erythromycin (2 µg), ciprofloxacin (5 µg), penicillin (10 IU), 
polymyxin (300 IU), cloxacillin (1 µg), tetracycline (30 µg), 
gentamycin (10 µg), cefuroxime (30 µg) or neomycin (5 µg) 
(Becton Dickinson, BBL). A. larrymoorei LMG 21410T (ATCC 
51759T) and A. radiobacter ATCC 19358T (=NCPPB 3001T) 
were included in the phenotypic study as references. Patho-
genicity assays on tomato plants and discs of carrot roots were 
performed according to methodologies previously described 
using A. larrymoorei LMG 21410T (ATCC 51759T) and  
A. tumefaciens ATCC 23308T as references [33, 34].

Phenotypic characteristics of the new species are reported 
below in the species description and the differences with 
respect to the closest species are recorded in Table 3. Strain 
RZME10T differed from its closest-related species in growth 
at 5 °C and in presence of 4 % NaCl and in assimilation as 
sole carbon and energy sources of several compounds. 
Strain RZME10T was sensitive to ciprofloxacin, gentamycin, 
neomycin and tetracycline and resistant to ampicillin, cefuro-
xime, cloxacillin and erythromycin. It was weakly sensitive 
to penicillin and polymyxin B. The results of pathogenicity 
assays showed that strain RZME10T does not induce tumours 

in tomato or in carrot roots discs (Fig. S2), in agreement with 
the absence of the genes from T-DNA region in its genome.

The cellular fatty acids were analysed by using the Microbial 
Identification System (midi; Microbial ID) Sherlock 6.1 and 
the library RTSBA6 according to the technical instructions 
provided by this system [35]. Strain RZME10T, A. larrymoorei 
LMG 21410T and A. radiobacter NCPPB 3001T were cultured 
aerobically on TY plates [36] at 28 °C and cells were collected 
during the late-exponential phase of growth. The obtained 
results showed that the major fatty acids of A. cavarae 
RZME10T are those from summed feature 8 (C18 : 1 ω6c/
C18 : 1 ω7c) and C16 : 0, as in the other analysed Agrobacterium 
strains (Table 4). The most relevant difference between strain 
RZME10T and A. larrymoorei LMG 21410T was the amount of 
C19 : 0 cyclo ω8c which was higher in the latter strain.

Collectively, the data obtained in this study showed that 
strain RZME10T belongs to a new species of the genus 
Agrobacterium. Several new species of this genus have 
been originally isolated from root legume nodules, such as  
A. deltaense, A. salinitolerans and A. fabacearum [37–39], but 
A. cavarae is the first one isolated from the roots of Zea mays L. 
Although positive effects of some endophytic Agrobacterium 
strains on the growth of legumes have been reported [40, 41], 
further studies are necessary to analyse the role of the new species  
A. cavarae in the growth and health of Zea mays L. plants.

Fig. 3. Whole genome based phylogenomic tree reconstructed with the GBDP tool and retrieved from the TYGS website. The tree was 
inferred with FastME 2.1.6.1 from GBDP distances calculated from genome sequences. The branch lengths are scaled in terms of GBDP 
distance formula d5. The numbers above branches are GBDP pseudo-bootstrap support values >60 % from 100 replications, with an 
average branch support of 85.7 %.
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DESCRIPTION OF AGROBACTERIUM CAVARAE 
SP. NOV.
Agrobacterium cavarae (​ca.​va’rae N.L. masc. gen. n. cavarae, 
to honour Dr. Fidriano Cavara, who first isolated a bacterium 
causing galls in grapevines).

Cells are Gram-stain-negative, aerobic, motile and rod-
shaped. Colonies on YMA are white, circular and convex 
with diameter of 1 mm within 48 h at 28 °C. Catalase- and 
oxidase-positive. It grows at 5–40°C and optimally at 28 °C 
and from pH 5 to 8 with optimum growth at pH 7. It grows 
with up to 4 % NaCl. Nitrate reduction, arginine dehydrolase 
and gelatinase are negative, and urease and β-galactosidase 
are positive. Aesculin hydrolysis is positive. Assimilation of 
d-glucose, l-arabinose, l-rhamnose, d-ribose, d-mannose, 

mannitol, N-acetyl-glucosamine, inositol, sucrose, maltose, 
gluconate, malate, citrate, salicin, melibiose, l-fucose, 
d-sorbitol, l-alanine, 5 keto-gluconate, l-histidine and 
l-proline is positive. Assimilation of caprate, adipate, 

Table 2. Comparison of the presence and absence of selected genes 
in the genomes of the strain RZME10T (SISF00000000.1), its related 
type strain Agrobacterium larrymoorei ATCC 51759T (JADW00000000.1) 
and the type strain of Agrobacterium radiobacter NCPPB 3001T 
(LMVJ00000000.1), which is the type species of genus Agrobacterium

Strains: 1, RZME10T; 2, A. larrymoorei ATCC 51759T; 3, A. radiobacter 
NCPPB3001T. +, Present; −, absent.

Genes 1 2 3

Genes encoding hydrolytic enzymes

α-Amylase (EC 3.2.1.1) − + +

Endo-1,4-β-xylanase
(EC 3.2.1.8)

− − +

Opine oxidase cluster − + +

Periplasmic nitrate reductase 
(EC 1.7.99.4)

+ + −

α-Galactosidase (EC 3.2.1.22) Two genes One gene Two genes

β-Galactosidase (EC 3.2.1.23) − − +

Arginine deiminase
(EC 3.5.3.6)

− + −

Other genes

Isochorismate synthase + − +

Isochorismatase (EC 3.3.2.1) Two genes Two genes Three 
genes

Circadian clock protein KaiC + − −

Salicylate synthetase
(EC 5.4.4.2)

+ + −

Potassium efflux system kefA − − +

Queuosine biosynthesis ATPase 
QueC

− + −

Beta-ketoacyl-ACP synthase III − − +

Aminopeptidase P Three genes − Three 
genes

Xylose ABC transporter XylF Three genes One gene One gene

T-DNA region genes − + −

Table 3. Phenotypic characteristics of the strain RZME10T, its 
related type strain of Agrobacterium larrymoorei and the type strain 
of Agrobacterium tumefaciens, which is the type species of genus 
Agrobacterium

Strains: 1, RZME10T; 2, A. larrymoorei LMG 21410T; 3, A. radiobacter ATCC 
19358T. Data are from this study. +, Positive; −, negative; w, weak.

Characteristics 1 2 3

Growth at:

 � 5 °C + − +

 � 4 % NaCl + − −

Assimilation of:

 � Salicin + − +

 � Sorbitol + − +

 � Propionate − − +

 � 2-Keto-gluconate − − +

 � 5-Keto-gluconate + − +

 � Citrate + w −

 � 3-Hydroxl-butyrate − − −

 � 4-Hydroxibenzoate − + w

 � Phenyl-acetate − + −

Table 4. Cellular fatty acid composition of the strain RZME10T, its 
related type strain of Agrobacterium larrymoorei and the type strain 
of Agrobacterium tumefaciens, which is the type species of genus 
Agrobacterium

Strains: 1, A. cavarae RZME10T; 2, A. larrymoorei LMG 21410T; 3, A. radiobacter 
ATCC 19358T. Fatty acids present in amounts lower than 1 % in all species 
are not shown. Data are from this study. nd, not detected.

Fatty acid 1 2 3

C16 : 0 9.4 11.0 9.0

C18 : 0 1.1 0.5 0.5

C16 : 0 3OH 2.7 3.0 5.6

C18 : 1 ω7c 11-methyl 1.2 0.7 0.6

C19 : 0 cyclo ω8c 2.0 6.8 10.7

C19 : 0 10-methyl 0.7 0.3 nd

Summed feature 2* 5.6 5.5 6.6

Summed feature 3† 2.7 3.7 1.0

Summed feature 8‡ 74.6 66.1 64.6

*Summed feature 2, C
14 : 0

 3OH/C
16 : 1

 iso I.
†Summed feature 3, C

16 : 1
 ω7c/C

16 : 1
 ω6c.

‡Summed feature 8, C
18 : 1

 ω7c/C
18 : 1

 ω6c).
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phenylacetate, itaconate, suberate, malonate, propionate, 
valerate, glycogen, 3-hydroxi-butyrate, 2-keto-gluconate and 
3- and 4-hydroxi-benzoate is negative. Acetate, d,l-lactate 
and l-serine are weakly assimilated. The major fatty acids are 
those from summed feature 8 (C18 : 1 ω6c/C18 : 1 ω7c) and C16 : 0. 
The G+C content is 58.3 mol%.

The type strain, RZME10T (=CECT 9795T=LMG 31257T), was 
isolated from a root of Zea mays L. The draft genome sequence 
was deposited in DDBJ/EMBL/GenBank under the Bioproject 
PRJNA523189 (accession number SISF00000000) and the 16S 
rRNA gene under the accession number MK940276.
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