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The data assimilation (DA) process has gained some spotlight in recent years as
computers have become more powerful, and models more complex. Even so, most
natural phenomena have many correlations among variables that are very challeng-
ing to capture. In this proposal, we discuss the impact of an intermediate step in the
leaping strategy used as a numerical integrator for Atmospheric General Circula-
tion Models during the assimilation process, and its explicit update, particularly, for
the Simplified Parameterizations, privitivE-Equation DYnamics model, nicknamed
as SPEEDY. Using literature validated formulations of the Ensemble Kalman Fil-
ters the Local Ensemble Kalman Filter (LEnKF), Local Ensemble Transform Kalman
Filter (LETKF), and the Ensemble Kalman Filter based on a Modified Cholesky De-
composition (EnKF-MC) experimental test are performed using the leaping step in
the update process, and using only the forecast step, and letting the model prop-
agate the updates. For the EnKF-MC formulation, we propose a formulation onto
the observations space. As well, we present an intuitive Python package to per-
form sequential data assimilation on atmospheric general circulation models. We
denote our package by Applied Math and Computer Science Lab - Data Assimila-
tion AMLCS-DA. This package contains the efficient implementations of the previ-
ously mentioned formulations. The results reveal that our proposed framework can
properly estimate model variables within reasonable accuracies in terms of Root-
Mean-Square-Error when we update only the forecast state, even when using sparse
operational observators (25%, 11%, 6%, 4%).
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Chapter 1

Introduction

Climate forecast is of high relevance nowadays as it allows us to model the global
and local climate dynamics and evolution in a given time window, which is funda-
mental in the prevention of natural disasters, as well as agronomic planning, among
other areas of interest. As computers grow in computational power, model evalua-
tion through multiple parametrization and time windows has proven useful to esti-
mate and planning the utilization of natural resources, as wind parks. (Jones, Hamil-
ton, and Wilson, 1997). To perform such forecasts, we can use Atmospheric Global
Circulation Models (AT-GCM) which are a discretization of a system of dynamic
equations that describes the atmospheric physics and dynamics (Hurrell, Deser, and
Phillips, 2019; Teixeira et al., 2014; Bauer, Thorpe, and Brunet, 2015; Lorenc, 1986).
These models are useful not only in forecasting but to understand the climate evo-
lution at different resolutions and to identify patterns or cyclic phenomena through
their evaluation. But even the best models have uncertainty associate with their
estimations (noise in the source of the observation, incorrect initial conditions, com-
putational representation, incomplete knowledge about the laws governing the dy-
namics of the system, and such) as is impossible to capture all the variability of
real-life phenomena, this is, some level of error is associated to the model and the
complex dynamics of the phenomena (Liu et al., 2019; Verstraete, Aghezzaf, and
Desmet, 2020). To improve the quality of such forecasts, we can employ Data As-
similation techniques that allow us to manage that uncertainty and produce better
estimations of the future state, given the dynamics of the system (Ott et al., 2004a;
Saetrom and Omre, 2013; Kwiatkowski and Mandel, 2015; Wikle and Berliner, 2007)
and observations. Since most of these models are computationally expensive, we
require the use of High-performance computing to produce those analyses, in a rea-
sonable amount of time (computationally speaking, as the model’s parameters are in
the range of O(108)) (Kotsuki, Sato, and Miyoshi, 2020; Ruiz, Pulido, and Miyoshi,
2013) and efficient computational formulation that allows us to take advantage of
the computational potential. Likewise, multiple AT-GCM models are available in
the literature, and they use numerical integrators to compute the next state of the
numerical system, so a right-hand side (rhs) of the equation is required to solve
them. In a traditional differential equation, we can use directly the initial condition
and a numerical integration to solve it, but in most of these atmospheric models,
the rhs is coupled with the numerical integrator for the dynamic, so it can not be
obtained directly. In these sorts of models, a leaping integrator is commonly used,
which requires intermediate steps to solve the system. In operative schemes, we
only have access to one step, which is commonly known as the model state step.
In operative schemes, we only have access to one step, the model state step. In this
proposal, we analyze and evaluate the use of the intermediate step in the data assim-
ilation process for three formulations of the Ensemble Kalman Filter, using the AT-
GCM model SPEEDY (Simplified Parameterizations, privitivE-Equation DYnamics),
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which, in particular, uses a two steps time integrator and measure the accuracy of
the updates.

The structure of this proposal is as follows, in section 2 discusses topics related
to Data Assimilation in ensemble-based methods and their formulation, as well as a
brief description of the leaping integrators and the extended ensemble members to
use in this proposal, in Section 3 the expected outcomes of this research and states
the objective of this research are detailed, Section 4 presents our proposed method
and the package developed to compare our proposal to literature validated formula-
tions and to offer a straightforward method to use implementations with an instance
of the AT-GCM model, finally Section 5 presents numerical experiments using the
Atmospheric General Circulation Model SPEEDY; the results of the proposed imple-
mentation are compared against those obtained by literature formulations, as well
as comparing the results using the leaping state and those that do not use it. Finally,
conclusions are presented in section 6.
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Chapter 2

Preliminaries

In this section, we introduce a formulation to the Data Assimilation problem, in a
Bayesian framework.

2.1 The Data Assimilation Problem

(A) Model components (B) Observations

(C) Assimilation

FIGURE 2.1: Data Assimilation Scheme

Given a model (mathematical or physical) M(xk) such as xk+1 = M(xk)tk→tk+1 ,
whereM is a nonlinear discretization of the real phenomena (2.1a) which can evolve
dynamically in time, we can forecast the future state of the system (xk+1, also known
as model realizations).

Such forecasts are affected by their chaotic and stochastic nature, so even with
perfect initial conditions, the system can diverge from reality in a few steps of free
run for numerous reasons, as previously mentioned.

Besides, we have some noise observations of the system state, referred to as yk,
usually from satellites or sensors. Taking into account, not all components are ob-
served either match with model components (as in 2.1b).
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With such a model and the observations, we can obtain a better estimation of
the future state by "mixing" those two sources into a new one. This process is also
known as inference. Formally, we have:

xk+1 =M(xk)tk→tk+1 + δ , (2.1)

where δ is the error of the computational model and is assumed to be unbiased
(〈δ〉 = 0). We call this model realization as background, which will be used as a Prior
to estimating the future state of the system. The observations can be represented by
y = H(x) + εo where εo is a stochastic term (observational error) and the observa-
tion operatorH(x) : Rn×1 → Rm×1 which maps from states space to the observation
space. The observations are assimilated into the model forecast (background) by
inference, using the Bayes theorem (Chen, 2003; Vetra-Carvalho et al., 2018):

P(x|y) = P(x) · P(y|x)P(y) , (2.2)

Where:

• P(x) previous knowledge about the state of the system (Prior).

• P(y|x) = L (x|y) quantifies the distribution of errors of observations.

• P(y) =
∫
P(y|x) · P(x)dx is a normalizing constant .

• P(x|y) gives the updated estimate of the true state, also called Posterior

Assuming that both are normally distributed. This gives us the best estimation
(optimal state) x∗, based on the observations yk and the model realization xb

k

FIGURE 2.2: Bayesian inference

This is known as Data Assimilation: the process by which an imperfect numeri-
cal forecast xb

k is adjusted according to real noisy observations yk (Nino-Ruiz, 2018;
Nino-Ruiz, Cheng, and Beltran, 2018), where xb

k ∈ Rn×1 and yk ∈ Rm×1 are the back-
ground state and the observations at step k, for 0 ≤ k ≤ M, where, n is the model
size (also known as model resolution), m denotes the number of observations per
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assimilation step and M is the size of the assimilation window (the number of times
wherein observations are available).

20 40 60 80 100 120
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(A) x∗ (B) xb

(C) H(x)
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(D) y = H(x) + ε

FIGURE 2.3: Model forecast based on observations

By this technique, and the Gaussianity assumption, a close formula for minimiz-
ing P(x|y) i.e, minimize the difference between observations and forecasts, is al-
ready known. We call this estimation Analysis. In this context, we solve the inverse
problem, in which we use the observations to estimate the better initial condition,
which minimizes the error. We can notice this combination of observations and the
model as a Hidden Markov Model (HMM) as the future state only depends on the
previous one.

FIGURE 2.4: HMM

Recall that equation 2.2 is used to quantify the uncertainty in our model (Berger
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and Smith, 2019) via model updates. When doing these updates, we expect to per-
form small updates into the model forecasts. If updates are too far different from the
forecast, we can suspect the model is not performing as expected. We can perform
those updates using two approaches:

2.1.1 Sequential Data Assimilation

Recall equation 2.2, we can also say:

P(x|y) ∝ P(x) · P(y|x) (2.3)

This means that updates of the model state are performed as observations be-
come available, and then, propagates the estimate. Recall the Gaussian assumption
we did, the Analysis xa

k is computed by solving the following optimization problem

xa = arg max
x
P (x|y) , (2.4)

with:

x ∼ N
(

xb , B
)

, (2.5)

y ∼ N (H(x) , R) (2.6)

and errors

δ ∼ N (0 , B) , (2.7)
ε ∼ N (0, R) (2.8)

Where B ∈ Rn×n is the background error covariance matrix, and R ∈ Rm×m is
the observations error covariance matrix. Putting all this together:

P(x) = 1
(2π)n/2 · |B|(1/2)

· exp
(
−1

2
· ||x− xb||2B−1

)
∼ exp

(
(x− xb)T · B−1 · (x− xb)

) (2.9)

P(y|x) = 1
(2π)m/2 · |R|(1/2)

· exp
(
−1

2
· ||y−H(x)||2R−1

)
∼ exp

(
(y−H(x))T · R−1 · (y−H(x))

) (2.10)

Using equation 2.9 and equation 2.10 we can rewrite equation 2.3 as P(x|y) ∼
exp(−J (x)) where J (x) is:

J (x) =
1
2
· ||x− xb||2B−1 +

1
2
· ||y−H(x)||2R−1 (2.11)

So, the optimization problem in 2.4 becomes:

xa = argmax
x
P(x|y) = argmax

x
J (x) (2.12)

Once is solved, the posterior mode of the error distribution can be computed as
follows:

xa = xb + A ·HT · R−1 ·
[
y−H · xb

]
∈ Rn×1 (2.13)
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FIGURE 2.5: Sequential DA

In whichH′(x) ≈ HT ∈ Rn×m is a linearized observation operator (withH(x) ≈
H(xb) + H ·

[
x− xb

]
). The analysis covariance matrix A reads,

A =
[
B−1 + HT · R−1 ·H

]−1
∈ Rn×n (2.14)

Solving the optimization problem given in the quadratic equation described in
2.11 is equivalent to solving the Optimal Interpolation problem in 1D (Barker et al.,
2004).

This method can be seen as a Two-Step algorithm in which:

1. Propagate the system through the model to obtain a forecast

2. Once an observation is available, we update the forecast

2.1.2 Variational Data Assimilation

Given multiple observations, we can assimilate them in one assimilation step. The
posterior is given by

P
(

x0| {yk}M
k=0

)
∝ P (x0) ·

M

∏
k=0
L (xk|yk) (2.15)

And the optimization process is performed in a single shot.

xa
0 = arg max

x0
P
(

x0| {yk}M
k=0

)
(2.16)
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(A) Observations (B) Forecasts

(C) Analysis

We can write J (x) as (Lorenc, 2003b; Lorenc, 2003a):

J (x0) =
∥∥∥x0 − xb

0

∥∥∥2

B−1
0

+
M

∑
k=0
‖yk −Hk (xk)‖2

R−1
k

, (2.17)

To solve this optimization problem, we require the use of Adjoints which are
computationally expensive to compute and complex to calculate, even more, to val-
idate.

2.2 The Ensemble Kalman Filter

The previous section defined what is called 3DVAR and 4DVAR, but there is an issue
remaining to fully compute the updates of the forecast. Given a modelMwhich has
106 components, if we want to compute B that would give us a complexity, in the
worst case, of O(n3) and memory space of 8Tb. We can see, as the model grows in
size, is more infeasible the explicit computation of this matrix (Pourahmadi, 2011;
Fan, Liao, and Liu, 2016). Even more, to solve equation 2.16 we require the use
of Adjoints and the calculation of the Tangent model, which are labor-intense and
computational expensive as can be seen in (Gustafsson and Bojarova, 2014; Stengel
et al., 2009). So, to deal with this, let’s consider N model realizations of an initial
state with a small perturbation, which will be called ensemble members, and we
estimate the Covariance matrix and its inverse (also called the Precision matrix) using
them. Using such an ensemble the is no requirement to solve the Tangent model
or using Adjoints (Kalnay, 2002). In this proposal, we will be using the so-called
Ensemble Kalman Filter (EnKF from now on). In the EnKF context, an ensemble
of model realizations is utilized, (Houtekamer and Mitchell, 1998; Stroud, Katzfuss,
and Wikle, 2018).
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The Kalman filter, first proposed in (Kalman, 1960; Kalman and Bucy, 1961) as a
result of the control theory, provides a mathematical description of the assimilation
problem but suffers from drawbacks the Ensemble Kalman Filter (EnKF) tries to
solve (Evensen, 1994; Ito et al., 2016). As before, the Gaussianity assumption must
hold, to be significant the DA process, and the prediction is the mean of the posterior
and the moments of the Gaussian PDF are estimated from ensembles of small size
respect the state space dimensions (Nino Ruiz, Sandu, and Anderson, 2014; Godinez
and Moulton, 2012)

The EnKF is a sequential Monte Carlo method for parameter and state estimation
of highly non-linear models (Evensen, 2006). The main idea behind these approaches
is to build ensemble sub-spaces (by propagating the ensembles) where analysis in-
crements can be estimated (Wang et al., 2007). The popularity of the EnKF comes
from its simple formulation and relatively easy implementation (Lorenc, 2003b; Gilli-
jns et al., 2006). In the EnKF, an ensemble of N model realizations,

Xb =
[
xb[1], xb[2], . . . , xb[N]

]
∈ Rn×N , (2.18)

where xb[i]
k ∈ Rn×1 refers for the i-th ensemble member, for 1 ≤ i ≤ N, at time k,

for 0 ≤ k ≤ M. We use this ensemble to estimate the prior error distribution,

x ∼ N
(

xb, B
)

via the via the empirical moments of the ensemble, in which the ensemble mean
is:

xb ≈ xb =
1
N
·

N

∑
e=1

xb[e] ∈ Rn×1 , (2.19)

and

B ≈ Pb =
1

N − 1
· ∆X · ∆XT ∈ Rn×n , (2.20)

where ∆X ∈ Rn×N is the matrix of member deviations and is given by,

∆X = Xb − xb · 1T
N . (2.21)

The assimilation step is performed onto the space spanned by the ensemble
members (since this is all info we have from the numerical model). Any element
in the ensemble space can be written as follows:

x = xb + ∆X · α , (2.22)

This formulation is equivalent to

x− xb ∈ range {∆X} ≈ range
{

B1/2
}

The assimilation process can be performed, as follows:

Xa = Xb + K ·D ∈ Rn×N , (2.23)

Where K is known as the Kalman Gain and reads

K = Pb ·HT · C−1 ,
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C is known as the Innovation Matrix,

C =
[
R + H · Pb ·HT

]
,

and D ∈ Rm×N is the matrix of innovations on the synthetic observations:

D = y · 1T
N −H · Xb + E , (2.24)

where the columns of E ∈ Rm×N are samples from a zero-mean Normal distri-
bution with data-error covariance matrix R ∈ Rm×m (Dovera and Della Rossa, 2011;
Abaza et al., 2017).

Alternative formulations are:

Xa = Xb +
[
B−1 + HT · R−1 ·H

]−1
·HT · R−1 ·D

Xa =
[
B−1 + HT · R−1 ·H

]−1
·
[
B−1 · Xb + HT · R−1 · Y

]
The analysis covariance matrix A reads,

A =
[
B−1 + HT · R−1 ·H

]−1
∈ Rn×n ,

The observations Y ∈ Rm×N are in the form of

Y = [y1, y2, y3, ..., yN ]

yi = yo + υi, υi ∼ N (0, R) ,

which means they are a random variable (Dovera and Della Rossa, 2011; Abaza
et al., 2017) in which yo ∈ Rm×1 is the real observation and every other are perturbed
observations.

An efficient way to compute those updates is as follows,

Xa = Xb + Z ∈ Rn×N , (2.25)

where Z ∈ Rn×N can be obtained by the solution of the linear system of equa-
tions, [

[B]−1 + HT · R−1 ·H
]
· Z = HT · R−1 · ∆Y (2.26)

2.2.1 Filter Drawbacks

As we previously mentioned, in a naive approach, the computation of B will re-
quire O(n3) while the EnKF requires O(n2 · N) operations where N << n, as for
the computation of the gain requires O(n2 ·m), and the EnKF requires O(n ·m · N)
operations (Roth et al., 2017). A more detailed explanation can be found in (Mandel,
2006). Since the hundreds bound ensemble sizes while model resolutions are by the
millions, sampling errors impact the quality of analysis innovations, and as a direct
consequence, we can poorly estimate posterior errors (Houtekamer and Mitchell,
1998; Anderson, 2001; Buehner, 2011; Kondo and Miyoshi, 2016)

To avoid this issue, we will address two main strategies.

• Localization

• Inflation
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(D) N = 105 (E) N = 500

(F) N = 60 (G) N = 6

FIGURE 2.6: Covariance Matrix estimations

Localization

To reduce the effects of the sampling noise, localization techniques are proposed, such
methods deal with the spurious correlations that might develop in the assimilation
process. (Houtekamer and Mitchell, 1998; Anderson, 2001; Buehner, 2011; Kondo
and Miyoshi, 2016). These techniques rely on localization functions that define the
localization length. In these methods, for each model component 1 ≤ i ≤ n, a
neighborhood P(i , δ) is defined based on some labeling of model components and a
radius of influence r ∈ R+ (Nino-Ruiz, Sandu, and Deng, 2018), therefore,

j ∈ P(i, r)⇔ d
(
xi, xj

)2 ≤ r2, and j < i , (2.27)

where d(•, •) denotes a distance function. In practice, this labeling can be done
in many different ways, the most common being row-major and column-major. This
definition is applied to discard long distanced components that are not related, by
the model assumptions. This enforces a sparse matrix structure of the estimated
covariance matrix. This technique relies on some prior knowledge of the structure of
covariance. For example, the geographical distance could lead us to believe distant
components are uncorrelated.
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FIGURE 2.7: Labelling

One traditional way to achieve this is by using the Schur product denoted by ◦.
Given the matrix Λ̂, which is defined by

{
Λ̂
}

i,j
= exp

(
−1

2
· d (i, j)2

r2

)
, for 1 ≤ i, j ≤ n , (2.28)

we can localize Pb by applying

P̃b = Λ̂ ◦ Pb ∈ Rn×n , (2.29)

The distance function usually is the Euclidean distance. This approach filters
long-range spurious correlations.

(A) Pb (B) L

(C) P̃b

FIGURE 2.8: Localization

The correct selection of the radius of influence is the core in this technique, as
a wide range influence would mean we maintain those spurious correlations, but
if it’s too short, then dynamic correlations might be lost. In practice, localization
methods are commonly used to artificially increase the rank of Pb and to mitigate
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the impact of spurious correlations during the analysis steps (Hamill, Whitaker, and
Snyder, 2001). These localization methods can be: covariance matrix localization (B-
localization) (Lei, Whitaker, and Bishop, 2018), domain localization, and observation
localization (R-localization) (Anderson, 2001; Han, Zhang, and Sun, 2018; Anderson,
2019).

We can also think in a spatial localization in which each component is surrounded
by a local box, and for each local box, we perform local assimilation with all the in-
formation contained in there, then mapped back to the global domain where the
analysis is performed. A 2D example can be seen in 2.9 where the red dot is the
model component and the red square are the Neighbors’ components.

(A) r = 1 (B) r = 2

(C) r = 3

FIGURE 2.9: Local domains for different radii of influence r.

The local ensemble Kalman filter (LEnKF) (Ott et al., 2004b; Tong, 2018) exploits
local information via a radius length δ to mitigate the impact of spurious correla-
tions. It is equivalent to apply the EnKF equations (2.23) to each model component
within its corresponding local box.

Other deterministic methods such as the local ensemble transform Kalman filter
(LETKF). The Local Ensemble Transform Kalman Filter, a deterministic formulation
of the EnKF works using this localization technique and has been widely used in
operational data assimilation centers (Hunt, Kostelich, and Szunyogh, 2007; Tippett
et al., 2003). The mean of the analysis distribution is estimated in the ensemble space
as follows, avoid the use of synthetic data (2.24) to avoid inducing more sampling
error during assimilation steps. In the global formulation of the LETKF, the posterior
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mode is computed as follows:

xa = xb + ∆Xb ·
[
(N − 1) · I + QT · R−1 ·Q

]−1
·QT · R−1 ·

[
y−H · xb

]
∈ Rn×1 ,

(2.30a)
where Q = H · ∆X ∈ Rm×N . The posterior ensemble is then built about (2.30a) as
follows:

Xa = xa · 1T + ∆X ·
[
(N − 1) · I + QT · R−1 ·Q

]−1/2
. (2.30b)

Similar to the LEnKF, the set of equations (2.30) is applied to each model component
within its local box.

The assimilation step is applied to each model component for a given radius of
influence r, with which the global analysis state will be obtained. Since the most
expensive computation is the inversion of P̃a, the computational effort of the LETKF
reads,

O
(

ϕ · n · N3) ,

where ϕ denotes the local box sizes.
Another efficient implementation is an Ensemble Kalman Filter based on a Mod-

ified Cholesky decomposition (EnKF-MC). This implementation uses the concept of
spatial predecessors to obtain sparse estimators of precision matrices (Levina, Roth-
man, Zhu, et al., 2008). The predecessors of model component i, from now on Π(i, r),
for 1 ≤ i ≤ n and a radius of influence r ∈ Z+, are given by the set of components
whose labels are lesser than that of the i-th one. As example, if we define r = 1 and
i = 6, using column-major.

(A) Local box
r = 1, i = 6.

(B) Pre-
decessors

r = 1, i = 6

This idea is exploited in the EnKF formulation proposed in (Nino-Ruiz, Sandu,
and Deng, 2017; Nino-Ruiz, Sandu, and Deng, 2018) wherein the following estimator
is employed to approximate the precision matrix (Bickel, Levina, et al., 2008)

B̂−1 = LT ·D−1 · L ∈ Rn×n , (2.31)

where L ∈ Rn×n is a unitary lower-triangular matrix, and D ∈ Rn×n is a diagonal
matrix.

where the Cholesky factor Lk ∈ Rn×n is a lower triangular matrix,
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{Lk}i,v =


−βi,v,k , v ∈ P(i, r)
1 , i = v
0 , othercase

, (2.32)

whose strict lower triangular elements βi,v,k are obtained by fitting the parame-
ters of different models given by,

xT
[i]k

= ∑
v∈P(i, δ)

βi,v,k · xT
[v]k

+ γik ∈ RN×1 , 1 ≤ i ≤ n , (2.33)

where xT
[i]k
∈ RN×1 denotes the i-th row (model component) of the ensemble,

components of vector γik ∈ RN×1 are samples from a Normal distribution with
zero mean and unknown variance σ2

k , and Dk ∈ Rn×n is a diagonal matrix whose
diagonal elements are as follows,

{Dk}i,i = v̂ar

(
xT
[i]k
− ∑

v∈P(i, δ)

βi,v,k · xT
[j]k

)−1

≈ var (γik)
−1 =

1
σ2

k
> 0 ,

with {Dk}1,1 = v̂ar
(

xT
[1]k

)−1
,

where var(•) and v̂ar(•) denote the actual and the empirical variances, respectively.
In Dk are stored the residuals of the regression model we used. The structure of L
can be sparse, which implies huge savings in terms of memory usage under current
operational data assimilation settings wherein n can be very large. Besides, B̂−1 can
be represented in terms of his Cholesky factors, and therefore, efficient manners to
compute the ensemble can be derived Nino Ruiz, Sandu, and Anderson, 2014.
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(C) r = 1 (D) r = 3

(E) r = 5

FIGURE 2.10: Structure of B̂−1 by the Cholesky factors

In this context, the posterior ensemble is computed as follows:

Xa = Xb + Â · ∆Y ∈ Rn×N , (2.34)

where the analysis error covariance matrix reads,

Â =
[
B̂−1 + HT · R−1 ·H

]−1
∈ Rn×n , (2.35)

Using algebraic identities, we can obtain,

B̂ = L−1 ·D · L−T ∈ Rn×n ,

The structure of both B̂ and B̂−1 is strictly related to the sparse structure of L, so
we can take advantage to obtain both without their explicit computation, which is
prohibitive in a higher-dimensional context.

Inflation

While localization methods reduce the impact of spurious correlations, covariance
inflation mitigates the impact of underestimation sample variances (Westgate, 2016;
Lei and Whitaker, 2017; Lee, Majda, and Qi, 2016; Putnam et al., 2017). Firstly intro-
duced in (Anderson and Anderson, 1999), typically, ensemble members are inflated
before to the forecast step to enrich the background error information for the next
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assimilation cycle and to reduce the odds of ensemble collapsing. For instance, after
the assimilation step of EnKF, the ensemble members (2.25) are inflated by a factor
of ρ > 1 about the analysis mean,

Xa,ρ = xa · 1T + ρ · ∆Xa ,

where ∆Xa = Xa − xa · 1T ∈ Rn×N are the innovations about the analysis mean.
Thus, the (co) variances in Pa are inflated by a factor of ρ2. The inflation factor r is
normally chosen to be slightly greater than 1. The inflation can vary depending on
the size of the ensemble and tends to improve the accuracy of the filter by increasing
the variance of the samples artificially.

In both techniques, localization and inflation are assumed to be maintained through-
out the assimilation process, but there have been approaches for an adaptive value
for both of them. Even more, the task of choosing an optimal radio or inflation value
is complex, so in operative cases is obtained heuristically.





19

Chapter 3

Methods and Objectives

3.1 Problem Statement

With the mentioned researches, we can mention the following issues:

3.1.1 Limitations

• Ensemble-based methods are highly sensitive to sampling noise.

• Meteorological Simulations demand high computational efforts.

• Real datasets can be found in specific resolutions.

• Models’ configurations can be too complex to vary their settings to perform
experiments.

3.1.2 Operational

• No real-time is accessible in Colombia. Data is commonly obtained by requests
to governmental agencies (INVEMAR e IDEAM), and then it is available weeks
later.

• There are no numerical models to estimate wind components in Colombia (and
to exploit our knowledge about our ecosystems).

3.2 Expected Main Contributions

In summary, the main contribution we hope to achieve with our proposal is:

• to develop a data assimilation library that could help to test new methods and
already tested ones.

• to develop an implementation of the EnKF-MC based on the observations.

• to implement a straightforward way to modify our numerical model.

• to develop an interpolation tool that could resample observations obtained
from the NOAA to specific grid resolutions.

3.3 Objectives

3.3.1 Main Objective

To design and implement efficient formulations of ensemble-based methods for se-
quential data assimilation.
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3.3.2 Specific Objectives

1. To design and implement efficient formulations of ensemble-based methods.

2. To design and implement a data assimilation toolbox for AT-GCM models.

3. To validate the formulations via metrics from the specialized literature.

3.4 Methodology

In this section, we briefly describe the steps to accomplish the objectives in Section
3.3.

1. Design and Implement a package that allow us to create instances of the SPEEDY
model at ease, with high versatility in configuration and settings.

2. Build ensembles of model realizations via an the SPEEDY model for different
configurations.

3. Design and Implement efficient formulations of literature-known Data Assim-
ilation method as are the LETKF, LEnKF.

4. Implement a version of the EnKF-MC onto the observations space.

5. Deploy the designed solution into a High Performance Computing environ-
ment to run experiments.

All the implementations are made using the scientific computational language
Python, and modifiying the Fortran configuration of the model.
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Chapter 4

Proposed Method

4.1 An Modified Cholesky implementation of the EnKF: An
observation space version

Before we start, we assume that, the observational operator is nearly linear and/or it
can be easily applied (Sakov, Evensen, and Bertino, 2010), the data error covariance
matrix possesses a simple structure and/or it can be easily decomposed (Evensen,
2009), and that observational networks are sparse (Anderson, 2001).

We know it is possible to obtain an approximation of the precision analysis co-
variance matrix in terms of sparse Cholesky factors (Nino-Ruiz, Sandu, and Deng,
2016) which can be exploited during the assimilation step (2.34) to avoid the explicit
solution of the linear system.

The assimilation process, for instance, can be stochastically performed,

Xa = Xb + Bb ·HT ·
[
R + H · Bb ·HT

]−1
·D ∈ Rn×N

We can use a Cholesky Decomposition to estimate B̂−1 by

B̂−1 = L̃T
k · D̃−1

k · L̃k = X̃T
k · X̃k , (4.1)

so, the analysis is given by

X̃a
k = Xb

k + [B̂k]
−1 · H̃T

k ·
[
Rk + H̃k · [B̂k]

−1 · H̃T
k

]−1
·D ∈ Rn×N , (4.2)

replacing equation 4.1 into equation 4.2

X̃a
k = Xb

k + [X̃T
k · X̃k]

−1 · H̃T
k ·
[
Rk + H̃k · [X̃T

k · X̃k]
−1 · H̃T

k

]−1
·D ∈ Rn×N

X̃a
k = Xb

k + X̃−1
k · X̃

−T
k · H̃

T
k︸ ︷︷ ︸

Zk

·

Rk + H̃k · X̃−1
k · X̃

−T
k · H̃

T
k︸ ︷︷ ︸

Zk


−1

·D ∈ Rn×N

Let H̃k = Zk · X̂T
k , then

X̃a
k = Xb

k + X̃−1
k · Z

T
k ·
[
Rk + Zk · ZT

k
]−1 ·D︸ ︷︷ ︸

Qk

∈ Rn×N , (4.3)

where Qk in equation 4.3 can be efficiently computed by
[
Rk + Zk · ZT

k

]
·Qk = D,
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X̃a
k = Xb

k + X̃−1
k · Z

T
k ·Qk︸ ︷︷ ︸

∆̃X

∈ Rn×N ,

similarly, solving X̃k · ∆̃Xk = ZT
k ·Qk we obtain,

X̃a
k = Xb + ∆̃Xk

where H̃k = [Hk, 0] ∈ R.
In this method, the update is performed for all the grids instead of local updates

for each segment.
In our proposal, we begin by choosing a numerical model which mimics the dy-

namics of weather. For this purpose, numerical models such as the Atmospheric
General Circulation Model (ATGCM SPEEDY) (Amezcua, Kalnay, and Williams,
2011) can be employed. Once the numerical model is chosen, snapshots of an en-
semble of model realizations (2.18) are taken at M + 1 observation times. At step k,
for 0 ≤ k ≤ M, the background ensemble Xb

k (2.18) is employed to estimate a full-
rank square-root approximation of the precision matrix of background errors B−1

k
via a modified Cholesky decomposition (2.31):

B̂−1/2
k = L̂T

k · D̂
−1/2
k ∈ Rn×n . (4.4)

At this step, we choose a radius of influence (localization radius) r to compute the
factor L̂T

k . Beyond the scope of this radius (and the predecessors of model compo-
nents), all components of L̂T

k are assumed zero. As previously mentioned in section
2.2.1 we exploit the fact that, when the error correlations of two model components
are conditionally independent (for a given r), their corresponding entry in the preci-
sion matrix of background errors is zero. This results in a sparse Cholesky factor L̂T

k
and even more, a localized square-root precision matrix. In this manner, the impact
of sampling errors can be mitigated in the square-root approximations (4.4).

After the assimilation step, the ensemble members are inflated by a factor of
ρ > 1 about the analysis mean,

Xa,ρ = xa · 1T + ρ · ∆Xa ,

where ∆Xa = Xa − xa · 1T ∈ Rn×N are the innovations about the analysis mean.
Thus, the covariances in B̂a are inflated by a factor of ρ2.

Note that, β in equation 2.33 is the solution of the optimization problem

βi = argmin
β

‖x− Zi · β‖2
2 (4.5)

where each column of Z is the i-th model component. Since the ensemble can be
smaller than the number of model components, Z can be rank deficient, so regular-
ization techniques can be used to overcome this situation. In this proposal, we will
be decomposing Z using singular value decomposition (SVD), so we obtain:

Zi = UZi · ΣZi ·VZi
T

where UZi ∈ Rpi×pi and VZi
T ∈ Rpi×pi are the right and left singular vectors of

Zi and pi are the predecessors of the i-th component. Likewise, ΣZi ∈ RN×N is a
diagonal matrix whose diagonal entries are the singular values of Zi in descending
order. The solution of 4.5 can be computed as follows
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βi =

ki

∑
j=i

1
τj
· uZi

j · v
Zi
j

T · xi with
τj

τmax
> σr

where τj is the j-th singular value, with their corresponding left and right sin-
gular vectors, and σ is a defined threshold, which neglects smaller singular values
which are more sensitive to the noise in xi

Regarding the localization process, is worth mentioning the SPEEDY model con-
tains 8 layers of pressure for each variable. Taking this into consideration, we use
three "localization boxes":

• A traditional Local Box for a variable and each variable is assimilated individ-
ually. We perform localization on each component on each layer a perform the
assimilation as traditional sense.

FIGURE 4.1: Traditional

• A coupled box, in which we correlate the localized components on different
variables, and assimilated at the same time. This means we take into con-
sideration the behavior and relation among variables in the localization and
assimilation process.

FIGURE 4.2: Coupled localization

• A level localization in which we relate model components in different levels,
so in the assimilation process we assimilate them at time.
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FIGURE 4.3: Localization by levels for a given variable

This offers versatility in the assimilation process which can be beneficial for the
model under consideration, and many other physical models, as allows to model
coupled behaviors in the phenomena. Once the assimilation process is completed,
each block is computed back to the complete scheme and propagated.

4.2 Leaping Propagation

The set of differential equations that model the dynamical systems are commonly
solved by numerical means, using a numerical integrator like Runge-Kutta or finite
differences and solving:

du
dx

= F(u, x)

But in these models, we commonly have a mixture on the right-hand side, so we
cannot compute it explicitly in our numerical integrator. In this context, is commonly
used a leaping strategy which will allow us to compute the evolution of our system,
by using an intermediate step as shown in figure 4.4

FIGURE 4.4: Leapfrog
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The appealing of this method is its simplicity, as it is almost identical to the tra-
ditional Euler method, but is second order. Besides, it conserves the energy as well
as the angular momentum of the dynamical process and is time-reversal invariant.

Having these initial conditions (the initial condition itself and the intermediate
step), the evolution of the system is as figure 4.5

FIGURE 4.5: Numerical model evolution

A similar procedure can be applied to higher-order integrators like the Yoshida
integrator. In a general sense, models which uses a leaping strategies take an initial
state xi and generate the leaping stepxi+ 1

2
, and use them to propagate the model. The

data assimilation process is performed at time i + 1 when observations are obtained,
forecast and leaping step updates are computed, and propagate into those creating
the new state. This process is repeated in a given time window. In our proposal, we
are going to update only the forecast state using the observations and let the model
propagate the update to the intermediate step.

Given the two steps of the leapfrog integration

Xb
0 =

[
xb[1]

0 , xb[2]
0 , . . . , xb[N]

0

]
∈ Rn×N

and

Xb
1 =

[
xb[1]

1 , xb[2]
1 , . . . , xb[N]

1

]
∈ Rn×N ,

where Xb
0 is the forecasted state and Xb

1 is the leaping step. The extended ensemble
X̂b is given by

X̂b =

[
Xb

0
Xb

1

]
=

[
xb[1]

0 , xb[2]
0 , . . . , xb[N]

0

xb[1]
1 , xb[2]

1 , . . . , xb[N]
1

]
∈ R2n×N (4.6)

and the covariance matrix of X̃, cov(X̃) is in the form of:[
Pb

0 ∆X0 · ∆XT
1

∆X1 · ∆XT
0 Pb

1

]
But in real-life scenarios, we only have access to one observation {yk

0}M
k=0 ∼

N (H(xk), Rk), so the evolution of the system is depicted in figure 4.6
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FIGURE 4.6: Time evolution of the extended ensemble

Our goal is to propagate the update over the intermediate step in the assimilation
process, instead of updating both of them.

4.3 A data assimilation tool

The design, testing, and validation of data assimilation schemes are, most of the
time, a time-consuming task with repetitive steps involved, which are replicated by
each investigator in a science laboratory. Not only in the research field but in the
academic field, we believe there is an opportunity in offering a package that will
help to test and validate our models with a physical model already implemented
and literature methods to compare.

4.3.1 AML-CS Package

The Python Package Applied Math and Computer Science Lab - Data Assimilation
(AMLCS-DA) is a toolbox that allows you to develop, test, and use sequential data
assimilation methods easily. The package is released with three well-known sequen-
tial data assimilation methods: the LETKF, the LEnKF, and the EnKF-MC, all of them
detailed in section 2. Of course, you can add your methods as needed; this is detailed
further. The general structure of our package can be seen in figure 4.7. The amlcs
folder contains the necessary files (classes) to run (or use) our toolbox. The mod-
els folder defines the numerical model to be employed during forecast steps. The
AMLCS-DA package is released with the SPEEDY model with five model resolu-
tions. However, other resolutions (and models) can be coupled into the AMLCS-
DA package as well. To run the SPEEDY model with another resolution, we need
to provide a folder with the necessary files (i.e., boundary conditions, sea surface
temperature, etc.); the reader can consult (Molteni, 2003a) to know more about this
numerical model and how to set up additional model resolutions. Moreover, we
have highly modified the SPEEDY model to support NetCDF files (Rew and Davis,
1990) as inputs and outputs (solutions).
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AMLCS-DA Package

amlcs

models

speedy

t21

t30

t47

t63

t106

FIGURE 4.7: Folder structure of the AMLCS-DA package.

To start, the AMLCS-DA package can be employed in two different manners: as
a final user to test (and to compare) sequential data assimilation methods (test suit)
or as a developer to implement data assimilation methods

Such tool contains 3 main modules:

1. amlcs_pre.py: This file contains all the logic and routines related to model
initialization and instancing, here are created:

• Model’s initial condition

• Model’s free run (with no DA)

• Reference solution for each assimilation step

• Ensemble members

• Model files with their respective settings.

This module receives a configuration file (a CSV) which contains:

• Nens, defines the number of ensemble members to use in the assimilation
process.

• M, defines the time window in which the model will run.

• res_name, chooses the model resolution (or specification) which the model
can be used.

• per, sets the perturbation value for the observations.

• obs_steps, set how much times the observations will be taken. Can be
hours, days, or any other model unit.

• ini_steps, this referrers the number of days to use in the initial conditions
construction.

• ini_times, this referrers the number of times which the initial condition
will be propagated.

• syn_tests, set if synthetic observations will be used or not (a boolean).
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• f older_prep, the path in which the initialization will be placed. Can be
absolute or relative.

• par defines if the ensembles can be propagated in parallel during their
construction.

This step is crucial, as the initial conditions and model setting will be used in
the assimilation step. This module also creates a configuration file to be used
in the assimilation process, containing the information regarding the noise of
the observations and propagation settings.

Each different initialization requires a new file containing its settings. Required
files can be seen in Figure 4.8

amlcs

amlcs_pre.py

grid_resolution.py

numerical_model.py

reference_solution.py

FIGURE 4.8: Tree of the amlcs folder. The necessary files to run (or
use) our pre-processing toolbox.

AMLCS-DA Package

amlcs

models

NLD_Paper

t21_80_0.05_30

ensemble_0

free_run

initial_condition

model_local

snapshots

source_local

FIGURE 4.9: An example of our package tree once the pre-processing
step has been performed.

2. amlcs_da.py: This module contains the Data assimilation process logic. The
configuration file requires:

• r, the influence radius used in the localization process

• s, the sparsity of observations.
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• res_name, the model resolution it has been compiled and setted previ-
ously.

• method, the name of the method, depending the available.

• exp_settings, the path in which the pre processing has been performed.
Can be relative or absolute.

• in f la, the inflation used in the method (if required)

• err_obs, the error in the observations for each variable. Used to build R.

• The list obs_plc denote which variables are observed in:

[u0, v0, T0, q0, ρ0, u1, v1, T1, q1, ρ1] ,

for instance, a list of the form: [1 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 0] means all vari-
ables for the first step (in the leapfrog sense) are observed

• list_snapshots, a chosen list of moments in the assimilation process to be
stored, saving the Analysis and the background for each.

• option_mask, which of the localization setting will be used, regarding the
mentioned in the previous section.

This modules produces the assimilation results for a given configuration, cre-
ating:

• Model’s free run (with no DA).

• Initial condition used.

• The errors for each variable and each level, in their respective CSV file.

• Reference solution used.

• The snapshots for each time in list_snapshots.

Once the experimental settings are built, we are ready to test data assimilation
methods. As we mentioned before, three sequential methods are released in
this package: LEnKF, LETKF, and EnKF-MC. The assimilation step relies on
the Python classes defined in figure 4.10.

amlcs

amlcs_da.py

commons_utils.py

error_metric.py

grid_resolution.py

numerical_model.py

observation.py

sequential_methods.py

time_metric.py

FIGURE 4.10: Tree of the amlcs folder. The necessary files to run (or
use) our assimilation toolbox.
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3. Once the assimilation process is completed, we can obtain some valuable visu-
alizations of our method’s performance by using the post-processing modules
of AMLCS-DA. In figure 4.11, we show the Python files of our package to vi-
sualize (and analyze) the experimental results.

amlcs

postpro_tools.py

error_plots.py

six_plots.py

error_comparison_plots.py

earth_plot.py

FIGURE 4.11: Tree of the amlcs folder. The necessary files to run (or
use) our visualization toolbox.

The visualization module requires, as the previous ones, a configuration file
that can contain multiple paths and plots specifications. This process will cre-
ate the desired plots in a folder called “plots”. This module consists of three
sub-modules:

• a sub-module to compare results from multiple sequential data assimila-
tion methods: we consider plots of the error evolution (analysis) and the
error across numerical layers (analysis mean), respectively, we required a
configuration (csv) file with the following parameters (headers):

– mc_path: configuration file (path) of the EnKF-MC-Obs results,
– letkf_path: configuration file (path) of the LETKF results,
– lenkf_path: configuration file (path) of the LEnKF results,
– resolution: the model resolution of experiments,
– type: type of the plot,
– variable: variables to be used (by default, it sets all model variables),
– levels: numerical layers utilized in the error evolution plot (by de-

fault, it sets all model pressure levels)

• a sub-module to plot the error evolution of background and analysis for
a single sequential data assimilation method; similar to the previous one,
this requires only the path of a single experiment.

• a sub-module to plot heat maps comparing different configurations for
a specific method (i.e., by varying inflation factors, localization radius
lengths, and sparsity of observational networks); the configuration pa-
rameters are as follows:

– setting: The configuration employed during the pre-processing step,
consider as an example "t21_80_0.05_30":

– method: The name of assimilation method, "EnKF_MC_obs"
– infla: The inflation factor times 100.
– mask: The employed mask.
– variable: Variables to be used. If not provided, sets all model vari-

ables by default.
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– levels: Levels utilized in the error evolution plot. If not provided, sets
all model pressure levels by default.

• The spatial propagation of errors can be studied via the earth plot, which
compares different methods across numerical layers. Plots can be done
for background and analysis errors, and even more, no data-assimilation
errors can be plotted. The parameters of this configuration file read:

– experiment_name
– resolution
– type
– times
– level
– variable

Similar to previous modules, this module comes with default values, and
therefore, all parameters are optional but, times.

These modules, uses the classes and methods contained in:

• numerical_model.py: this class contains all methods related to the numeri-
cal model used, its settings and configurations. Here is where the ensemble
members are propagated, initial conditions are built here as well, besides all
variables behaves and specifications. If model requires an intermediate step,
as transforming data or storing mid data, they are performed here. All the
process of loading and saving the final data are done here as well. All data is
saved using NetCDF4 format.

• grid_resolution.py: contains all methods related to spatial information and lo-
calization of the model.

• observations.py: is the one who created the observational operator H and syn-
thetic observations.

• sequential_methods.py: this file contains a class which defines a factory for
data assimilation methods. Defines shared aspects as the mapping from state
vectors to ensembles, load background, inflation and so on. But each data
assimilation technique has to define its own class and methods. We provide in
the package with

– EnKF-MC onto observations space (Our proposal)

– LETKF

– LEnKF

User can add new methods by following the structure given by the factory and
those three.

Even more, additional models can be added using the numerical_model and ob-
servations class structure. The simplicity on our package relies as it requires to fill a
simple CSV format to run, with no further modification on code, and can be modi-
fied following a defined class structure.

Each experimental setting can be run independently, as they create a local model
copy so they made the changes they require to produce forecasts. Once the process
is completed, it will delete the ensembles and the model copies.
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A further description related on model configuration will be provided on Chap-
ter 5

In order to use the AMLCS-DA package, the following requirements must be
satisfied:

• Python 3.X

• gfortran compiler

• netCDF4 and netCDF4-fortran (Can be a custom build or installed via libnetcdff-
dev)

and we require the following Python packages:

• netCDF4

• scikit-learn

• numpy

• pandas

• scipy

• matplotlib

• basemap

It is worth mentioning that the SPEEDY model requires a Linux system to run, but
it can be employed on Windows, for instance, by using its Windows Subsystem for
Linux (WSL).

4.3.2 Spatial Interpoler

As model configurations and observations can have different resolutions, we em-
ploy an spatial interpolator which takes into account their spatial resolution. As
shown in 4.12, we can use the data provided by entities to produce datasets in the
resolution of our model.
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(A) NOAA (144× 73× 17)

(B) SPEEDY 96× 48× 7

FIGURE 4.12: Interpolation from NOAA dataset to SPEEDY grid res-
olution

In particular, this interpolator converts units and transform variables for the
NOAA dataset to SPEEDY specifications, as Relative Humidity and Specific Hu-
midity. This transformation was made by using the procedure provided by National
Center for Atmospheric Research (NCAR) using their language NCL (NCAR Com-
mand Language) which is an implementation of the formula provided by (Wallace
and Hobbs, 2006).
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(A) Real (B) Interpolation

(C) Model Forecast
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Chapter 5

Numerical Experiments

5.1 Numerical Model SPEEDY

The experiments are performed using the Simplified Parameterizations, privitivE-
Equation DYnamics model (SPEEDY) (Molteni, 2003a; Bracco et al., 2004). The
SPEEDY model is an Atmospheric General Circulation Model (AT-GCM) that mim-
ics the behavior of the atmosphere across eight pressure levels (Miyoshi, 2011): 30mb,
100mb, 200mb, 300mb, 500mb, 700mb, 850mb, and 925mb. By default, this model em-
ploys a T-30 spectral resolution (96 zonal components and 48 meridional ones, across
eight numerical layers) for the space discretization of numerical layers Molteni, 2003b;
Kucharski, Molteni, and Bracco, 2006 but, this resolution can be modified, for exam-
ple, to use: T-21 (32 × 64 grid components), T-47 (72 × 144), T-63 (96 × 192) and
T-103 (160× 320), each with 8 numerical layers. This model implements a two-steps
leapfrog integration and the spatial grid components are shown in figure 5.1 for a
single layer and different numerical resolutions. For all model resolutions, the phys-
ical variables are detailed in Table 5.1 with their corresponding units and the number
of numerical layers.

Name Notation Units Number of Layers
Temperature T K 8

Zonal Wind Component u m/s 8
Meridional Wind Component v m/s 8

Specific Humidity Q g/kg 8
Pressure P hPa 1

TABLE 5.1: Physical variables of the AT-GCM Speedy model.

(A) T-21 (B) T-30 (C) T-47

FIGURE 5.1: Model components for some spectral resolutions

The T-21 model resolution (32× 64 grid components) is the one used for the hor-
izontal space discretization in these experiments. Five model variables are part of
the assimilation process: the temperature (K), the zonal and the meridional wind
components (m/s), specific humidity (g/kg), and Surface Pressure (hPa). The total
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number of model components is n = 67, 584. The number of ensemble members is
N = 80 for all the scenarios. The model state space is approximately 844 times larger
than the number of ensemble members (n � N), which is very common in opera-
tional DA scenarios. Additional details of the experimental settings are described
below, some of them are similar to those detailed in (Miyoshi, Kondo, and Imamura,
2014):

• Starting with a system in equilibrium, the model is integrated over a long time
period to obtain an initial condition whose dynamics are consistent with those
of the SPEEDY model.

• The initial condition is perturbed N times and propagated over a long-time
period from which the initial background ensemble is obtained.

• We employ the trajectory of the initial condition as the reference one. This
reference trajectory serves to build synthetic observations.

• We let the standard deviations of errors in the observations as follows:

– Temperature 1 K.

– Zonal Wind Component 1 m/s.

– Meridional Wind Component 1 m/s.

– Specific Humidity 10−3 g/kg.

– Pressure 100 hPa.

• The experiments are performed under perfect model assumptions.

• The number of assimilation steps reads M = 30.

Starting with the state of the system xref
−3 at time t−3, the model solution xref

−3 is
propagated in time over one year:

xref
−2 =Mt−3→t−2

(
xref
−3

)
.

The reference solution xref
−2 is used to build a perturbed background solution:

x̂b
−2 = xref

−2 + εb
−2, εb

−2 ∼ N
(

0n, diag
i

{
(0.05 {xref

−2}i)
2
})

. (5.1)

The perturbed background solution is propagated over another year to obtain the
background solution at time t−1:

xb
−1 =Mt−2→t−1

(
x̂b
−2

)
. (5.2)

This model propagation attenuates the random noise introduced in (5.1) and makes
the background state (5.2) consistent with the physics of the SPEEDY model. Then,
the background state (5.2) is utilized in order to build an ensemble of perturbed
background states:

x̂b[i]
−1 = xb

−1 + εb
−1, εb

−1 ∼ N
(

0n, diag
i

{
(0.05 {xb

−1}i)
2
})

, 1 ≤ i ≤ N, (5.3)
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from which, after three months of model propagation, the initial ensemble is ob-
tained at time t0:

xb[i]
0 =Mt−1→t0

(
x̂b[i]
−1

)
.

Again, the model propagation of the perturbed ensemble ensures that the ensemble
members are consistent with the physics of the numerical model.

The experiments are performed over a period of 24 days, where observations are
taken every 2 days (M = 12). At time k synthetic observations are built as follows:

yk = Hk · xref
k + εk, εk ∼ N (0m, Rk) , Rk = diagi

{
(0.01 {Hk xref

k }i)
2
}

.

The observation operators Hk are fixed throughout the time interval. We perform
experiments with several operators characterized by different proportions p of ob-
served components from the model state xref

k (m ≈ p · n). We consider four different
values for p: 0.25, 0.11, 0.06 and 0.04 which represent 25%, 11 %, 6 % and 4 % of
the total number of model components, respectively. Some of the observational net-
works used during the experiments are shown in Figure 5.2 with their corresponding
percentage of observed components from the model state.

(A) 25% Observed (B) 11% Observed

FIGURE 5.2: Operational Observators

The analysis accuracy is measured by the root mean square error (RMSE)

RMSE =

√√√√ 1
M
·

M

∑
k=1

[
xref

k − xa
k

]T ·
[
xref

k − xa
k

]
(5.4)

where xref ∈ Rn×1 and xa
k ∈ Rn×1 are the reference and the analysis solutions at time

k, respectively, and M is the number of assimilation times.
The different EnKF formulations were implemented using Python and special-

ized libraries such as scipy, numpy, and NetCDF.
The parameters used are as shown in Table 5.2

Parameters Values
δ 3,5,7
p 25%,11%,6%,4%
α 1.02,1.04,1.06,1.08

TABLE 5.2: Parameters used for experiments

We consider sparse observational networks and vary the influence radius and in-
flation for previously mentioned formulations (EnKF-MC, LETKF, LEnKF), and for
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each one, we performed assimilation taking into account the Leapfrog step (Leap)
and assimilated using only the observed state (NoLeap). As we can observe in Table
5.3, which shows the log RMSE for the zonal wind components, the error representa-
tiveness is degraded as we increase δ as there are no sufficient degrees of freedom to
account for background error distribution. Additionally, we can notice that updates
using the leaping step are statistically similar to the ones using only the observed
model state, and updating. Data assimilation formulation produces better estimates
than using only the model.

Tables 5.4, 5.5, 5.6, 5.7 show the RMSE for meridional wind component, specific
humidity, temperature, and pressure, respectively.

EnKF-MC LETKF LEnK
NODA

δ p α NoLeap Leap NoLeap Leap NoLeap Leap

1

100%

1.02 2.70 2.47 2.59 2.54 2.60 2.55

5.95
1.04 2.72 2.51 2.59 2.54 2.60 2.55
1.06 2.74 2.54 2.59 2.54 2.60 2.55
1.08 2.77 2.58 2.59 2.54 2.60 2.55

25%

1.02 3.45 3.50 3.22 3.19 3.24 3.20

5.95
1.04 3.52 3.62 3.22 3.19 3.24 3.20
1.06 3.71 3.83 3.22 3.19 3.24 3.20
1.08 3.80 4.07 3.22 3.19 3.24 3.20

11%

1.02 4.02 3.97 3.94 3.92 4.00 3.97

5.95
1.04 4.09 4.05 3.94 3.92 4.00 3.97
1.06 4.21 4.37 3.94 3.92 4.00 3.97
1.08 4.42 4.62 3.94 3.92 4.00 3.97

6%

1.02 4.56 4.53 4.71 4.70 4.73 4.72

5.95
1.04 4.62 4.61 4.71 4.70 4.73 4.72
1.06 4.74 4.79 4.71 4.70 4.73 4.72
1.08 4.62 5.04 4.71 4.70 4.73 4.72

4%

1.02 5.16 5.18 5.06 5.07 5.09 5.10

5.95
1.04 5.24 5.19 5.06 5.07 5.09 5.10
1.06 5.34 5.29 5.06 5.07 5.09 5.10
1.08 5.38 5.36 5.06 5.07 5.09 5.10
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EnKF-MC LETKF LEnK
NODA

δ p α NoLeap Leap NoLeap Leap NoLeap Leap

3

100%

1.02 2.62 2.34 2.37 2.30 2.45 2.37

5.95
1.04 2.63 2.36 2.37 2.30 2.45 2.37
1.06 2.64 2.39 2.37 2.30 2.45 2.37
1.08 2.67 2.44 2.37 2.30 2.45 2.37

25%

1.02 3.12 3.03 2.98 2.93 3.01 2.96

5.95
1.04 3.14 3.05 2.98 2.93 3.01 2.96
1.06 3.17 3.09 2.98 2.93 3.01 2.96
1.08 3.24 3.17 2.98 2.93 3.01 2.96

11%

1.02 3.66 3.61 3.59 3.55 3.66 3.62

5.95
1.04 3.68 3.63 3.59 3.55 3.66 3.62
1.06 3.72 3.66 3.59 3.55 3.66 3.62
1.08 3.78 3.72 3.59 3.55 3.66 3.62

6%

1.02 4.23 4.19 4.19 4.16 4.24 4.21

5.95
1.04 4.25 4.21 4.19 4.16 4.24 4.21
1.06 4.29 4.25 4.19 4.16 4.24 4.21
1.08 4.35 4.32 4.19 4.16 4.24 4.21

4%

1.02 4.48 4.46 4.44 4.42 4.47 4.46

5.95
1.04 4.53 4.50 4.44 4.42 4.47 4.46
1.06 4.59 4.56 4.44 4.42 4.47 4.46
1.08 4.70 4.66 4.44 4.42 4.47 4.46

5

100%

1.02 2.76 2.40 2.32 2.13 2.44 2.34

5.95
1.04 2.75 2.40 2.32 2.13 2.44 2.34
1.06 2.75 2.41 2.32 2.13 2.44 2.34
1.08 2.76 2.44 2.32 2.13 2.44 2.34

25%

1.02 3.21 3.12 2.90 2.84 2.97 2.91

5.95
1.04 3.21 3.12 2.90 2.84 2.97 2.91
1.06 3.22 3.13 2.90 2.84 2.97 2.91
1.08 3.25 3.17 2.90 2.84 2.97 2.91

11%

1.02 3.75 3.66 3.49 3.45 3.57 3.52

5.95
1.04 3.74 3.65 3.49 3.45 3.57 3.52
1.06 3.74 3.67 3.49 3.45 3.57 3.52
1.08 3.77 3.70 3.49 3.45 3.57 3.52

6%

1.02 4.24 4.20 4.10 4.06 4.16 4.13

5.95
1.04 4.23 4.20 4.10 4.06 4.16 4.13
1.06 4.24 4.21 4.10 4.06 4.16 4.13
1.08 4.27 4.24 4.10 4.06 4.16 4.13

4%

1.02 4.45 4.20 4.30 4.28 4.36 4.34

5.95
1.04 4.45 4.42 4.30 4.28 4.36 4.34
1.06 4.47 4.44 4.30 4.28 4.36 4.34
1.08 4.50 4.47 4.30 4.28 4.36 4.34
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EnKF-MC LETKF LEnK
NODA

δ p α NoLeap Leap NoLeap Leap NoLeap Leap

7

100%

1.02 2.92 2.52 2.34 2.25 2.51 2.42

5.95
1.04 2.90 2.49 2.34 2.25 2.51 2.42
1.06 2.89 2.49 2.34 2.25 2.51 2.42
1.08 2.89 2.50 2.34 2.25 2.51 2.42

25%

1.02 3.34 3.23 2.90 2.83 3.02 2.95

5.95
1.04 3.19 3.21 2.90 2.83 3.02 2.95
1.06 3.24 3.21 2.90 2.83 3.02 2.95
1.08 3.21 3.23 2.90 2.83 3.02 2.95

11%

1.02 3.81 3.73 3.50 3.46 3.60 3.54

5.95
1.04 3.78 3.71 3.50 3.46 3.60 3.54
1.06 3.79 3.71 3.50 3.46 3.60 3.54
1.08 3.80 3.73 3.50 3.46 3.60 3.54

6%

1.02 4.28 4.28 4.07 4.03 4.15 4.14

5.95
1.04 4.28 4.25 4.07 4.03 4.15 4.14
1.06 4.26 4.24 4.07 4.03 4.15 4.14
1.08 4.28 4.25 4.07 4.03 4.15 4.14

4%

1.02 4.52 4.53 4.27 4.25 4.34 4.31

5.95
1.04 4.48 4.46 4.27 4.25 4.34 4.31
1.06 4.48 4.46 4.27 4.25 4.34 4.31
1.08 4.49 4.47 4.27 4.25 4.34 4.31

TABLE 5.3: log(RMSE) for zonal wind components, using a sparse
network

EnKF-MC LETKF LEnK
NODA

δ p α NoLeap Leap NoLeap Leap NoLeap Leap

1

100%

1.02 2.65 2.47 2.57 2.51 2.59 2.53

5.90
1.04 2.68 2.51 2.57 2.51 2.59 2.53
1.06 2.69 2.55 2.57 2.51 2.59 2.53
1.08 2.72 2.60 2.57 2.51 2.59 2.53

25%

1.02 3.32 3.22 3.19 3.15 3.20 3.16

5.90
1.04 3.35 3.27 3.19 3.15 3.20 3.16
1.06 3.41 3.38 3.19 3.15 3.20 3.16
1.08 3.47 3.52 3.19 3.15 3.20 3.16

11%

1.02 3.85 3.74 3.88 3.85 3.94 3.90

5.90
1.04 3.89 3.79 3.88 3.85 3.94 3.90
1.06 3.98 3.93 3.88 3.85 3.94 3.90
1.08 4.07 4.05 3.88 3.85 3.94 3.90

6%

1.02 4.42 4.39 4.69 4.68 4.71 4.70

5.90
1.04 4.48 4.47 4.69 4.68 4.71 4.70
1.06 4.56 4.58 4.69 4.68 4.71 4.70
1.08 4.45 4.74 4.69 4.68 4.71 4.70

4%

1.02 5.03 5.01 5.08 5.08 5.10 5.09

5.90
1.04 5.08 5.06 5.08 5.08 5.10 5.09
1.06 5.16 5.13 5.08 5.08 5.10 5.09
1.08 5.17 5.17 5.08 5.08 5.10 5.09
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EnKF-MC LETKF LEnK
NODA

δ p α NoLeap Leap NoLeap Leap NoLeap Leap

3

100%

1.02 2.52 2.33 2.36 2.29 2.45 2.37

5.90
1.04 2.53 2.35 2.36 2.29 2.45 2.37
1.06 2.54 2.38 2.36 2.29 2.45 2.37
1.08 2.57 2.43 2.36 2.29 2.45 2.37

25%

1.02 3.05 2.97 2.96 2.90 2.99 2.93

5.90
1.04 3.07 2.99 2.96 2.90 2.99 2.93
1.06 3.09 3.01 2.96 2.90 2.99 2.93
1.08 3.12 3.05 2.96 2.90 2.99 2.93

11%

1.02 3.50 3.45 3.50 3.45 3.54 3.50

5.90
1.04 3.52 3.46 3.50 3.45 3.54 3.50
1.06 3.53 3.48 3.50 3.45 3.54 3.50
1.08 3.56 3.51 3.50 3.45 3.54 3.50

6%

1.02 4.14 4.09 4.09 4.05 4.15 4.11

5.90
1.04 4.16 4.11 4.09 4.05 4.15 4.11
1.06 4.19 4.15 4.09 4.05 4.15 4.11
1.08 4.25 4.20 4.09 4.05 4.15 4.11

4%

1.02 4.53 4.49 4.47 4.46 4.50 4.48

5.90
1.04 4.57 4.53 4.47 4.46 4.50 4.48
1.06 4.63 4.59 4.47 4.46 4.50 4.48
1.08 4.71 4.68 4.47 4.46 4.50 4.48

5

100%

1.02 2.74 2.40 2.31 2.12 2.43 2.33

5.90
1.04 2.73 2.40 2.31 2.12 2.43 2.33
1.06 2.73 2.41 2.31 2.12 2.43 2.33
1.08 2.73 2.44 2.31 2.12 2.43 2.33

25%

1.02 3.19 3.09 2.87 2.79 2.93 2.87

5.90
1.04 3.18 3.08 2.87 2.79 2.93 2.87
1.06 3.18 3.08 2.87 2.79 2.93 2.87
1.08 3.20 3.10 2.87 2.79 2.93 2.87

11%

1.02 3.62 3.53 3.35 3.30 3.42 3.37

5.90
1.04 3.60 3.52 3.35 3.30 3.42 3.37
1.06 3.59 3.51 3.35 3.30 3.42 3.37
1.08 3.60 3.52 3.35 3.30 3.42 3.37

6%

1.02 4.16 4.11 4.00 3.96 4.06 4.03

5.90
1.04 4.13 4.10 4.00 3.96 4.06 4.03
1.06 4.14 4.10 4.00 3.96 4.06 4.03
1.08 4.16 4.13 4.00 3.96 4.06 4.03

4%

1.02 4.48 4.21 4.35 4.33 4.40 4.39

5.90
1.04 4.48 4.44 4.35 4.33 4.40 4.39
1.06 4.49 4.46 4.35 4.33 4.40 4.39
1.08 4.52 4.49 4.35 4.33 4.40 4.39
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EnKF-MC LETKF LEnK
NODA

δ p α NoLeap Leap NoLeap Leap NoLeap Leap

7

100%

1.02 2.89 2.52 2.33 2.23 2.49 2.41

5.90
1.04 2.87 2.49 2.33 2.23 2.49 2.41
1.06 2.86 2.49 2.33 2.23 2.49 2.41
1.08 2.85 2.49 2.33 2.23 2.49 2.41

25%

1.02 3.31 3.20 2.85 2.77 2.98 2.91

5.90
1.04 3.14 3.18 2.85 2.77 2.98 2.91
1.06 3.19 3.16 2.85 2.77 2.98 2.91
1.08 3.17 3.17 2.85 2.77 2.98 2.91

11%

1.02 3.69 3.62 3.33 3.28 3.43 3.37

5.90
1.04 3.65 3.59 3.33 3.28 3.43 3.37
1.06 3.64 3.57 3.33 3.28 3.43 3.37
1.08 3.64 3.57 3.33 3.28 3.43 3.37

6%

1.02 4.20 4.20 3.96 3.91 4.05 4.02

5.90
1.04 4.19 4.16 3.96 3.91 4.05 4.02
1.06 4.17 4.15 3.96 3.91 4.05 4.02
1.08 4.18 4.15 3.96 3.91 4.05 4.02

4%

1.02 4.55 4.56 4.31 4.30 4.38 4.36

5.90
1.04 4.50 4.48 4.31 4.30 4.38 4.36
1.06 4.50 4.47 4.31 4.30 4.38 4.36
1.08 4.50 4.48 4.31 4.30 4.38 4.36

TABLE 5.4: log(RMSE) for meridional wind components, using a
sparse network

EnKF-MC LETKF LEnK
NODA

δ p α NoLeap Leap NoLeap Leap NoLeap Leap

1

100%

1.02 2.26 2.16 2.27 2.23 2.28 2.23

5.25
1.04 2.29 2.20 2.27 2.23 2.28 2.23
1.06 2.33 2.25 2.27 2.23 2.28 2.23
1.08 2.38 2.30 2.27 2.23 2.28 2.23

25%

1.02 2.98 2.93 2.84 2.81 2.84 2.80

5.25
1.04 3.03 3.01 2.84 2.81 2.84 2.80
1.06 3.12 3.12 2.84 2.81 2.84 2.80
1.08 3.21 3.26 2.84 2.81 2.84 2.80

11%

1.02 3.46 3.40 3.40 3.38 3.43 3.40

5.25
1.04 3.53 3.49 3.40 3.38 3.43 3.40
1.06 3.62 3.64 3.40 3.38 3.43 3.40
1.08 3.75 3.79 3.40 3.38 3.43 3.40

6%

1.02 3.96 3.95 4.17 4.15 4.18 4.16

5.25
1.04 4.04 4.05 4.17 4.15 4.18 4.16
1.06 4.21 4.22 4.17 4.15 4.18 4.16
1.08 4.11 4.48 4.17 4.15 4.18 4.16

4%

1.02 4.37 4.38 4.43 4.44 4.45 4.46

5.25
1.04 4.47 4.46 4.43 4.44 4.45 4.46
1.06 4.68 4.66 4.43 4.44 4.45 4.46
1.08 4.87 4.91 4.43 4.44 4.45 4.46
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EnKF-MC LETKF LEnK
NODA

δ p α NoLeap Leap NoLeap Leap NoLeap Leap

3

100%

1.02 2.22 2.07 2.10 2.05 2.19 2.12

5.25
1.04 2.23 2.09 2.10 2.05 2.19 2.12
1.06 2.25 2.12 2.10 2.05 2.19 2.12
1.08 2.29 2.16 2.10 2.05 2.19 2.12

25%

1.02 2.78 2.71 2.70 2.66 2.73 2.68

5.25
1.04 2.80 2.73 2.70 2.66 2.73 2.68
1.06 2.84 2.76 2.70 2.66 2.73 2.68
1.08 2.88 2.81 2.70 2.66 2.73 2.68

11%

1.02 3.24 3.19 3.13 3.09 3.17 3.13

5.25
1.04 3.27 3.21 3.13 3.09 3.17 3.13
1.06 3.31 3.25 3.13 3.09 3.17 3.13
1.08 3.36 3.30 3.13 3.09 3.17 3.13

6%

1.02 3.72 3.67 3.62 3.59 3.67 3.64

5.25
1.04 3.77 3.71 3.62 3.59 3.67 3.64
1.06 3.82 3.77 3.62 3.59 3.67 3.64
1.08 3.90 3.85 3.62 3.59 3.67 3.64

4%

1.02 3.96 3.92 3.87 3.87 3.88 3.87

5.25
1.04 4.02 3.98 3.87 3.87 3.88 3.87
1.06 4.12 4.08 3.87 3.87 3.88 3.87
1.08 4.28 4.23 3.87 3.87 3.88 3.87

5

100%

1.02 2.36 2.13 2.06 1.93 2.23 2.13

5.25
1.04 2.35 2.13 2.06 1.93 2.23 2.13
1.06 2.36 2.14 2.06 1.93 2.23 2.13
1.08 2.36 2.16 2.06 1.93 2.23 2.13

25%

1.02 2.84 2.76 2.67 2.62 2.75 2.69

5.25
1.04 2.84 2.76 2.67 2.62 2.75 2.69
1.06 2.85 2.77 2.67 2.62 2.75 2.69
1.08 2.86 2.78 2.67 2.62 2.75 2.69

11%

1.02 3.26 3.19 3.07 3.03 3.13 3.09

5.25
1.04 3.25 3.19 3.07 3.03 3.13 3.09
1.06 3.25 3.20 3.07 3.03 3.13 3.09
1.08 3.27 3.21 3.07 3.03 3.13 3.09

6%

1.02 3.68 3.66 3.56 3.53 3.61 3.58

5.25
1.04 3.68 3.67 3.56 3.53 3.61 3.58
1.06 3.70 3.68 3.56 3.53 3.61 3.58
1.08 3.73 3.72 3.56 3.53 3.61 3.58

4%

1.02 3.92 3.62 3.77 3.76 3.81 3.80

5.25
1.04 3.93 3.90 3.77 3.76 3.81 3.80
1.06 3.96 3.93 3.77 3.76 3.81 3.80
1.08 4.00 3.97 3.77 3.76 3.81 3.80
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EnKF-MC LETKF LEnK
NODA

δ p α NoLeap Leap NoLeap Leap NoLeap Leap

7

100%

1.02 2.50 2.22 2.08 2.01 2.31 2.23

5.25
1.04 2.48 2.21 2.08 2.01 2.31 2.23
1.06 2.47 2.20 2.08 2.01 2.31 2.23
1.08 2.46 2.21 2.08 2.01 2.31 2.23

25%

1.02 2.94 2.85 2.68 2.63 2.81 2.76

5.25
1.04 2.79 2.82 2.68 2.63 2.81 2.76
1.06 2.84 2.82 2.68 2.63 2.81 2.76
1.08 2.82 2.82 2.68 2.63 2.81 2.76

11%

1.02 3.32 3.25 3.08 3.04 3.17 3.12

5.25
1.04 3.30 3.23 3.08 3.04 3.17 3.12
1.06 3.29 3.23 3.08 3.04 3.17 3.12
1.08 3.30 3.23 3.08 3.04 3.17 3.12

6%

1.02 3.75 3.75 3.54 3.50 3.62 3.60

5.25
1.04 3.75 3.73 3.54 3.50 3.62 3.60
1.06 3.74 3.73 3.54 3.50 3.62 3.60
1.08 3.75 3.74 3.54 3.50 3.62 3.60

4%

1.02 3.99 4.00 3.75 3.74 3.80 3.78

5.25
1.04 3.96 3.94 3.75 3.74 3.80 3.78
1.06 3.97 3.94 3.75 3.74 3.80 3.78
1.08 3.99 3.96 3.75 3.74 3.80 3.78

TABLE 5.5: log(RMSE) for temperature, using a sparse network

EnKF-MC LETKF LEnK
NODA

δ p α NoLeap Leap NoLeap Leap NoLeap Leap

1

100%

1.02 0.49 -3.32 0.23 -3.41 1.89 1.88

3.65
1.04 0.49 -3.32 0.23 -3.41 1.89 1.88
1.06 0.51 -3.31 0.23 -3.41 1.89 1.88
1.08 0.52 -3.31 0.23 -3.41 1.89 1.88

25%

1.02 1.01 0.90 0.78 0.59 2.04 2.03

3.65
1.04 1.04 0.93 0.78 0.59 2.04 2.03
1.06 1.08 0.99 0.78 0.59 2.04 2.03
1.08 1.12 1.05 0.78 0.59 2.04 2.03

11%

1.02 1.77 1.74 1.85 1.82 2.36 2.33

3.65
1.04 1.82 1.80 1.85 1.82 2.36 2.33
1.06 1.90 1.90 1.85 1.82 2.36 2.33
1.08 1.99 2.00 1.85 1.82 2.36 2.33

6%

1.02 2.43 2.40 2.61 2.59 2.80 2.79

3.65
1.04 2.53 2.50 2.61 2.59 2.80 2.79
1.06 2.65 2.63 2.61 2.59 2.80 2.79
1.08 2.53 2.77 2.61 2.59 2.80 2.79

4%

1.02 3.02 2.97 2.96 2.95 3.09 3.08

3.65
1.04 3.09 3.05 2.96 2.95 3.09 3.08
1.06 3.18 3.14 2.96 2.95 3.09 3.08
1.08 3.21 3.20 2.96 2.95 3.09 3.08
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EnKF-MC LETKF LEnK
NODA

δ p α NoLeap Leap NoLeap Leap NoLeap Leap

3

100%

1.02 0.46 -3.31 0.39 -3.64 1.89 1.88

3.65
1.04 0.46 -3.31 0.39 -3.64 1.89 1.88
1.06 0.46 -3.30 0.39 -3.64 1.89 1.88
1.08 0.47 -3.30 0.39 -3.64 1.89 1.88

25%

1.02 0.76 0.55 0.54 0.18 1.98 1.97

3.65
1.04 0.76 0.56 0.54 0.18 1.98 1.97
1.06 0.77 0.57 0.54 0.18 1.98 1.97
1.08 0.79 0.59 0.54 0.18 1.98 1.97

11%

1.02 1.47 1.41 1.45 1.39 2.20 2.18

3.65
1.04 1.48 1.43 1.45 1.39 2.20 2.18
1.06 1.51 1.45 1.45 1.39 2.20 2.18
1.08 1.54 1.48 1.45 1.39 2.20 2.18

6%

1.02 2.17 2.12 2.13 2.10 2.52 2.49

3.65
1.04 2.20 2.15 2.13 2.10 2.52 2.49
1.06 2.24 2.19 2.13 2.10 2.52 2.49
1.08 2.30 2.26 2.13 2.10 2.52 2.49

4%

1.02 2.52 2.48 2.51 2.51 2.71 2.70

3.65
1.04 2.59 2.56 2.51 2.51 2.71 2.70
1.06 2.69 2.66 2.51 2.51 2.71 2.70
1.08 2.83 2.79 2.51 2.51 2.71 2.70

5

100%

1.02 0.63 -3.30 1.11 -3.31 1.89 1.88

3.65
1.04 0.63 -3.30 1.11 -3.31 1.89 1.88
1.06 0.61 -3.29 1.11 -3.31 1.89 1.88
1.08 0.60 -3.29 1.11 -3.31 1.89 1.88

25%

1.02 0.88 0.68 0.59 0.19 1.97 1.96

3.65
1.04 0.88 0.68 0.59 0.19 1.97 1.96
1.06 0.88 0.68 0.59 0.19 1.97 1.96
1.08 0.87 0.69 0.59 0.19 1.97 1.96

11%

1.02 1.53 1.44 1.38 1.32 2.14 2.11

3.65
1.04 1.52 1.44 1.38 1.32 2.14 2.11
1.06 1.52 1.45 1.38 1.32 2.14 2.11
1.08 1.53 1.46 1.38 1.32 2.14 2.11

6%

1.02 2.08 2.05 2.02 1.99 2.45 2.43

3.65
1.04 2.07 2.05 2.02 1.99 2.45 2.43
1.06 2.08 2.06 2.02 1.99 2.45 2.43
1.08 2.11 2.09 2.02 1.99 2.45 2.43

4%

1.02 2.47 2.21 2.36 2.34 2.62 2.62

3.65
1.04 2.47 2.43 2.36 2.34 2.62 2.62
1.06 2.50 2.47 2.36 2.34 2.62 2.62
1.08 2.54 2.52 2.36 2.34 2.62 2.62
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EnKF-MC LETKF LEnK
NODA

δ p α NoLeap Leap NoLeap Leap NoLeap Leap

7

100%

1.02 0.83 -3.28 1.10 -0.94 1.90 1.90

3.65
1.04 0.80 -3.28 1.10 -0.94 1.90 1.90
1.06 0.78 -3.28 1.10 -0.94 1.90 1.90
1.08 0.77 -3.28 1.10 -0.94 1.90 1.90

25%

1.02 1.06 0.85 1.00 0.62 1.99 1.98

3.65
1.04 0.92 0.85 1.00 0.62 1.99 1.98
1.06 0.97 0.85 1.00 0.62 1.99 1.98
1.08 0.96 0.85 1.00 0.62 1.99 1.98

11%

1.02 1.61 1.52 1.42 1.35 2.15 2.12

3.65
1.04 1.59 1.51 1.42 1.35 2.15 2.12
1.06 1.58 1.51 1.42 1.35 2.15 2.12
1.08 1.59 1.51 1.42 1.35 2.15 2.12

6%

1.02 2.15 2.13 1.97 1.93 2.45 2.44

3.65
1.04 2.15 2.11 1.97 1.93 2.45 2.44
1.06 2.14 2.10 1.97 1.93 2.45 2.44
1.08 2.15 2.11 1.97 1.93 2.45 2.44

4%

1.02 2.50 2.50 2.32 2.30 2.60 2.59

3.65
1.04 2.47 2.46 2.32 2.30 2.60 2.59
1.06 2.49 2.46 2.32 2.30 2.60 2.59
1.08 2.51 2.48 2.32 2.30 2.60 2.59

TABLE 5.6: log(RMSE) for specific humidity, using a sparse network

EnKF-MC LETKF LEnK
NODA

δ p α NoLeap Leap NoLeap Leap NoLeap Leap

1

100%

1.02 5.60 5.60 5.60 5.60 5.60 5.60

5.62
1.04 5.60 5.60 5.60 5.60 5.60 5.60
1.06 5.60 5.60 5.60 5.60 5.60 5.60
1.08 5.60 5.61 5.60 5.60 5.60 5.60

25%

1.02 5.61 5.61 5.60 5.60 5.60 5.60

5.62
1.04 5.61 5.61 5.60 5.60 5.60 5.60
1.06 5.61 5.61 5.60 5.60 5.60 5.60
1.08 5.61 5.61 5.60 5.60 5.60 5.60

11%

1.02 5.61 5.61 5.61 5.61 5.61 5.61

5.62
1.04 5.61 5.61 5.61 5.61 5.61 5.61
1.06 5.61 5.61 5.61 5.61 5.61 5.61
1.08 5.61 5.61 5.61 5.61 5.61 5.61

6%

1.02 5.61 5.61 5.61 5.61 5.61 5.61

5.62
1.04 5.61 5.61 5.61 5.61 5.61 5.61
1.06 5.61 5.61 5.61 5.61 5.61 5.61
1.08 5.43 5.61 5.61 5.61 5.61 5.61

4%

1.02 5.60 5.61 5.61 5.61 5.61 5.61

5.62
1.04 5.61 5.61 5.61 5.61 5.61 5.61
1.06 5.61 5.61 5.61 5.61 5.61 5.61
1.08 5.56 5.58 5.61 5.61 5.61 5.61

3

100%

1.02 5.60 5.60 5.60 5.60 5.60 5.60

5.62
1.04 5.60 5.60 5.60 5.60 5.60 5.60
1.06 5.60 5.60 5.60 5.60 5.60 5.60

Continued on next page
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EnKF-MC LETKF LEnK
NODA

δ p α NoLeap Leap NoLeap Leap NoLeap Leap
1.08 5.60 5.60 5.60 5.60 5.60 5.60

25%

1.02 5.60 5.60 5.60 5.60 5.60 5.61

5.62
1.04 5.60 5.61 5.60 5.60 5.60 5.61
1.06 5.61 5.61 5.60 5.60 5.60 5.61
1.08 5.61 5.61 5.60 5.60 5.60 5.61

11%

1.02 5.61 5.61 5.61 5.61 5.61 5.61

5.62
1.04 5.61 5.61 5.61 5.61 5.61 5.61
1.06 5.61 5.61 5.61 5.61 5.61 5.61
1.08 5.61 5.61 5.61 5.61 5.61 5.61

6%

1.02 5.61 5.61 5.61 5.61 5.61 5.61

5.62
1.04 5.61 5.61 5.61 5.61 5.61 5.61
1.06 5.61 5.61 5.61 5.61 5.61 5.61
1.08 5.61 5.61 5.61 5.61 5.61 5.61

4%

1.02 5.61 5.60 5.61 5.61 5.61 5.61

5.62
1.04 5.61 5.61 5.61 5.61 5.61 5.61
1.06 5.61 5.61 5.61 5.61 5.61 5.61
1.08 5.61 5.61 5.61 5.61 5.61 5.61

5

100%

1.02 5.60 5.60 5.60 5.45 5.60 5.60

5.62
1.04 5.60 5.60 5.60 5.45 5.60 5.60
1.06 5.60 5.60 5.60 5.45 5.60 5.60
1.08 5.60 5.60 5.60 5.45 5.60 5.60

25%

1.02 5.61 5.57 5.60 5.60 5.60 5.60

5.62
1.04 5.61 5.61 5.60 5.60 5.60 5.60
1.06 5.61 5.61 5.60 5.60 5.60 5.60
1.08 5.61 5.61 5.60 5.60 5.60 5.60

11%

1.02 5.61 5.61 5.61 5.61 5.61 5.61

5.62
1.04 5.61 5.61 5.61 5.61 5.61 5.61
1.06 5.61 5.61 5.61 5.61 5.61 5.61
1.08 5.61 5.61 5.61 5.61 5.61 5.61

6%

1.02 5.61 5.61 5.61 5.61 5.61 5.61

5.62
1.04 5.61 5.61 5.61 5.61 5.61 5.61
1.06 5.61 5.61 5.61 5.61 5.61 5.61
1.08 5.61 5.61 5.61 5.61 5.61 5.61

4%

1.02 5.61 4.96 5.61 5.61 5.61 5.61

5.62
1.04 5.61 5.61 5.61 5.61 5.61 5.61
1.06 5.61 5.61 5.61 5.61 5.61 5.61
1.08 5.61 5.61 5.61 5.61 5.61 5.61

Continued on next page
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EnKF-MC LETKF LEnK
NODA

δ p α NoLeap Leap NoLeap Leap NoLeap Leap

7

100%

1.02 5.60 5.60 5.60 5.60 5.60 5.60

5.62
1.04 5.60 5.60 5.60 5.60 5.60 5.60
1.06 5.60 5.60 5.60 5.60 5.60 5.60
1.08 5.60 5.60 5.60 5.60 5.60 5.60

25%

1.02 5.60 5.60 5.60 5.60 5.60 5.60

5.62
1.04 5.15 5.60 5.60 5.60 5.60 5.60
1.06 5.38 5.61 5.60 5.60 5.60 5.60
1.08 5.33 5.61 5.60 5.60 5.60 5.60

11%

1.02 5.61 5.61 5.61 5.61 5.61 5.61

5.62
1.04 5.61 5.61 5.61 5.61 5.61 5.61
1.06 5.61 5.61 5.61 5.61 5.61 5.61
1.08 5.61 5.61 5.61 5.61 5.61 5.61

6%

1.02 5.61 5.61 5.61 5.61 5.61 5.61

5.62
1.04 5.61 5.61 5.61 5.61 5.61 5.61
1.06 5.61 5.61 5.61 5.61 5.61 5.61
1.08 5.61 5.61 5.61 5.61 5.61 5.61

4%

1.02 5.61 5.61 5.61 5.61 5.61 5.61

5.62
1.04 5.61 5.61 5.61 5.61 5.61 5.61
1.06 5.61 5.61 5.61 5.61 5.61 5.61
1.08 5.61 5.61 5.61 5.61 5.61 5.61

TABLE 5.7: log(RMSE) for surface pressure, using a sparse network

The Figures 5.3 to 5.102 shows the evolution thought the assimilation time win-
dow for all the variables, comparing them using the leaping step and without using
it. Clearly, when the radius of influence is increased the analysis corrections are im-
pacted by spurious correlations. Yet, we can observe the assimilation is not greatly
impacted if we do not have access to the leaping step, and instead update it using
only the model state. When data errors components are uncorrelated δ can be seen
as a free parameter and the choice can be based on the “optimal performance of the
filter”.
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FIGURE 5.3: Time evolution of Zonal Wind Components for δ = 1
and p = 100% varying α
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FIGURE 5.4: Time evolution of Zonal Wind Components for δ = 1
and p = 25% varying α
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FIGURE 5.5: Time evolution of Zonal Wind Components for δ = 1
and p = 11% varying α
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FIGURE 5.6: Time evolution of Zonal Wind Components for δ = 1
and p = 6% varying α
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FIGURE 5.7: Time evolution of Zonal Wind Components for δ = 1
and p = 4% varying α
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FIGURE 5.8: Time evolution of Zonal Wind Components for δ = 3
and p = 100% varying α
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FIGURE 5.9: Time evolution of Zonal Wind Components for δ = 3
and p = 25% varying α
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FIGURE 5.10: Time evolution of Zonal Wind Components for δ = 3
and p = 11% varying α
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FIGURE 5.11: Time evolution of Zonal Wind Components for δ = 3
and p = 6% varying α
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FIGURE 5.12: Time evolution of Zonal Wind Components for δ = 3
and p = 4% varying α
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FIGURE 5.13: Time evolution of Zonal Wind Components for δ = 5
and p = 100% varying α
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FIGURE 5.14: Time evolution of Zonal Wind Components for δ = 5
and p = 25% varying α
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FIGURE 5.15: Time evolution of Zonal Wind Components for δ = 5
and p = 11% varying α
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FIGURE 5.16: Time evolution of Zonal Wind Components for δ = 5
and p = 6% varying α
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FIGURE 5.17: Time evolution of Zonal Wind Components for δ = 5
and p = 4% varying α
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FIGURE 5.18: Time evolution of Zonal Wind Components for δ = 7
and p = 100% varying α
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FIGURE 5.19: Time evolution of Zonal Wind Components for δ = 7
and p = 25% varying α
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FIGURE 5.20: Time evolution of Zonal Wind Components for δ = 7
and p = 11% varying α
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FIGURE 5.21: Time evolution of Zonal Wind Components for δ = 7
and p = 6% varying α
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FIGURE 5.22: Time evolution of Zonal Wind Components for δ = 7
and p = 4% varying α
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FIGURE 5.23: Time evolution of Meridional Wind Components for
δ = 1 and p = 100% varying α
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FIGURE 5.24: Time evolution of Meridional Wind Components for
δ = 1 and p = 25% varying α
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FIGURE 5.25: Time evolution of Meridional Wind Components for
δ = 1 and p = 11% varying α
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FIGURE 5.26: Time evolution of Meridional Wind Components for
δ = 1 and p = 6% varying α
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FIGURE 5.27: Time evolution of Meridional Wind Components for
δ = 1 and p = 4% varying α
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FIGURE 5.28: Time evolution of Meridional Wind Components for
δ = 3 and p = 100% varying α
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FIGURE 5.29: Time evolution of Meridional Wind Components for
δ = 3 and p = 25% varying α
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FIGURE 5.30: Time evolution of Meridional Wind Components for
δ = 3 and p = 11% varying α
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FIGURE 5.31: Time evolution of Meridional Wind Components for
δ = 3 and p = 6% varying α
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FIGURE 5.32: Time evolution of Meridional Wind Components for
δ = 3 and p = 4% varying α
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FIGURE 5.33: Time evolution of Meridional Wind Components for
δ = 5 and p = 100% varying α
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FIGURE 5.34: Time evolution of Meridional Wind Components for
δ = 5 and p = 25% varying α
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FIGURE 5.35: Time evolution of Meridional Wind Components for
δ = 5 and p = 11% varying α
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FIGURE 5.36: Time evolution of Meridional Wind Components for
δ = 5 and p = 6% varying α
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FIGURE 5.37: Time evolution of Meridional Wind Components for
δ = 5 and p = 4% varying α
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FIGURE 5.38: Time evolution of Meridional Wind Components for
δ = 7 and p = 100% varying α
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FIGURE 5.39: Time evolution of Meridional Wind Components for
δ = 7 and p = 25% varying α
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FIGURE 5.40: Time evolution of Meridional Wind Components for
δ = 7 and p = 11% varying α
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FIGURE 5.41: Time evolution of Meridional Wind Components for
δ = 7 and p = 6% varying α
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FIGURE 5.42: Time evolution of Meridional Wind Components for
δ = 7 and p = 4% varying α
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FIGURE 5.43: Time evolution of Temperature for δ = 1 and p = 100%
varying α
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FIGURE 5.44: Time evolution of Temperature for δ = 1 and p = 25%
varying α
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FIGURE 5.45: Time evolution of Temperature for δ = 1 and p = 11%
varying α
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FIGURE 5.46: Time evolution of Temperature for δ = 1 and p = 6%
varying α
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FIGURE 5.47: Time evolution of Temperature for δ = 1 and p = 4%
varying α
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FIGURE 5.48: Time evolution of Temperature for δ = 3 and p = 100%
varying α
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FIGURE 5.49: Time evolution of Temperature for δ = 3 and p = 25%
varying α
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FIGURE 5.50: Time evolution of Temperature for δ = 3 and p = 11%
varying α
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FIGURE 5.51: Time evolution of Temperature for δ = 3 and p = 6%
varying α
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FIGURE 5.52: Time evolution of Temperature for δ = 3 and p = 4%
varying α
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FIGURE 5.53: Time evolution of Temperature for δ = 5 and p = 100%
varying α
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FIGURE 5.54: Time evolution of Temperature for δ = 5 and p = 25%
varying α
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FIGURE 5.55: Time evolution of Temperature for δ = 5 and p = 11%
varying α
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FIGURE 5.56: Time evolution of Temperature for δ = 5 and p = 6%
varying α
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FIGURE 5.57: Time evolution of Temperature for δ = 5 and p = 4%
varying α
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FIGURE 5.58: Time evolution of Temperature for δ = 7 and p = 100%
varying α
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FIGURE 5.59: Time evolution of Temperature for δ = 7 and p = 25%
varying α
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FIGURE 5.60: Time evolution of Temperature for δ = 7 and p = 11%
varying α
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FIGURE 5.61: Time evolution of Temperature for δ = 7 and p = 6%
varying α
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FIGURE 5.62: Time evolution of Temperature for δ = 7 and p = 4%
varying α
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FIGURE 5.63: Time evolution of Specific Humidity for δ = 1 and
p = 100% varying α
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FIGURE 5.64: Time evolution of Specific Humidity for δ = 1 and
p = 25% varying α
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FIGURE 5.65: Time evolution of Specific Humidity for δ = 1 and
p = 11% varying α
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FIGURE 5.66: Time evolution of Specific Humidity for δ = 1 and
p = 6% varying α
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FIGURE 5.67: Time evolution of Specific Humidity for δ = 1 and
p = 4% varying α
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FIGURE 5.68: Time evolution of Specific Humidity for δ = 3 and
p = 100% varying α
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FIGURE 5.69: Time evolution of Specific Humidity for δ = 3 and
p = 25% varying α
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FIGURE 5.70: Time evolution of Specific Humidity for δ = 3 and
p = 11% varying α
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FIGURE 5.71: Time evolution of Specific Humidity for δ = 3 and
p = 6% varying α
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FIGURE 5.72: Time evolution of Specific Humidity for δ = 3 and
p = 4% varying α
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FIGURE 5.73: Time evolution of Specific Humidity for δ = 5 and
p = 100% varying α
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FIGURE 5.74: Time evolution of Specific Humidity for δ = 5 and
p = 25% varying α
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FIGURE 5.75: Time evolution of Specific Humidity for δ = 5 and
p = 11% varying α
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FIGURE 5.76: Time evolution of Specific Humidity for δ = 5 and
p = 6% varying α
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FIGURE 5.77: Time evolution of Specific Humidity for δ = 5 and
p = 4% varying α
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FIGURE 5.78: Time evolution of Specific Humidity for δ = 7 and
p = 100% varying α
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FIGURE 5.79: Time evolution of Specific Humidity for δ = 7 and
p = 25% varying α
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FIGURE 5.80: Time evolution of Specific Humidity for δ = 7 and
p = 11% varying α
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FIGURE 5.81: Time evolution of Specific Humidity for δ = 7 and
p = 6% varying α
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FIGURE 5.82: Time evolution of Specific Humidity for δ = 7 and
p = 4% varying α
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FIGURE 5.83: Time evolution of Surface Pressure for δ = 1 and p =
100% varying α
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FIGURE 5.84: Time evolution of Surface Pressure for δ = 1 and p =
25% varying α
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FIGURE 5.85: Time evolution of Surface Pressure for δ = 1 and p =
11% varying α
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FIGURE 5.86: Time evolution of Surface Pressure for δ = 1 and p =
6% varying α
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FIGURE 5.87: Time evolution of Surface Pressure for δ = 1 and p =
4% varying α
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FIGURE 5.88: Time evolution of Surface Pressure for δ = 3 and p =
100% varying α
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FIGURE 5.89: Time evolution of Surface Pressure for δ = 3 and p =
25% varying α
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FIGURE 5.90: Time evolution of Surface Pressure for δ = 3 and p =
11% varying α
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FIGURE 5.91: Time evolution of Surface Pressure for δ = 3 and p =
6% varying α
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FIGURE 5.92: Time evolution of Surface Pressure for δ = 3 and p =
4% varying α
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FIGURE 5.93: Time evolution of Surface Pressure for δ = 5 and p =
100% varying α
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FIGURE 5.94: Time evolution of Surface Pressure for δ = 5 and p =
25% varying α
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FIGURE 5.95: Time evolution of Surface Pressure for δ = 5 and p =
11% varying α
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FIGURE 5.96: Time evolution of Surface Pressure for δ = 5 and p =
6% varying α
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FIGURE 5.97: Time evolution of Surface Pressure for δ = 5 and p =
4% varying α
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FIGURE 5.98: Time evolution of Surface Pressure for δ = 7 and p =
100% varying α
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FIGURE 5.99: Time evolution of Surface Pressure for δ = 7 and p =
25% varying α
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FIGURE 5.100: Time evolution of Surface Pressure for δ = 7 and p =
11% varying α
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FIGURE 5.101: Time evolution of Surface Pressure for δ = 7 and p =
6% varying α
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FIGURE 5.102: Time evolution of Surface Pressure for δ = 7 and p =
4% varying α

In Figure 5.103 snapshots of the specific humidity for different formulation at
δ = 3, p = 11% and α = 1.02 are shown, at the third layer and first assimilation
time.
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(A) Refer-
ence

(B) Back-
ground

(C) EnKF-
MC NoLeap

(D) EnKF-
MC Leap

(E) LETKF
NoLeap

(F) LETKF
Leap

(G) LEnKF
NoLeap

(H) LEnKF
Leap

FIGURE 5.103: Snapshots for Specific Humidity with δ = 3 and p =
11%

In terms of RMSE, assimilation methods achieve accurate results for specific hu-
midity, with no statistical difference in our proposal, using the sparse network we
choose. Yet, surface pressure shows no difference regarding which method, and be-
have as well as the model itself, this can be by the normality assumption made in
the formulation, as well as it has only one layer of data. Only the EnKF-MC method
uses inflation in its formulation.
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Chapter 6

Conclusions

This paper develops a comparison of three efficient formulation of the Ensemble
Kalman Filter such as the LETKF, LEnKF and the EnKF-MC, using an Atmospheric
General Circulation Model as SPEEDY, and showed how much the leaping step af-
fects the assimilation process for each of them. We proposed an scheme which does
not explicitly updates the leaping step and let the model itself to update it using
the model dynamics, achieving similar results as using the leaping step in the up-
date computation. This is of high relevance, as in operative scenarios, we can not
afford to find a analytical method to solve the model’s right hand side as, most of
the time, no explicit formula is obtained. Even more, to obtain a real observation at
such time can be expensive or even prohibitive, so methods to reduce the impact of
such uncertainty are of high value.

We, as well, developed a test-suit to build sequential data assimilation methods
and to test (and compare) multiple sequential data assimilation methods. By default,
this package is released with five spectral resolutions of the SPEEDY model. The
model implements the three sequential data assimilation formulations used in this
proposal: the local ensemble Kalman filter, the local ensemble transform Kalman
filter, and the ensemble Kalman filter based on a modified Cholesky decomposition
onto the observation space. The package brings the flexibility to implement other
methods as needed.

We compare the results using the RMSE for each of them and observed how sim-
ilar their performance was, using localization schemes. The results reveal that, the
accuracy in terms of root-mean-square-error of the proposed method is similar to
that of one of using the leaping step, for different model configurations as observa-
tion percentage, localization radii and inflation.

There is also an opportunity to extend this package and to incorporate variational
data assimilation methods. In future releases of our package, we expect to have
ensemble-based variational data assimilation methods to have another manner to
digest observations in assimilation stages.
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