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Abstract: 

A closed flowing thick film filtered water immersion technique ensures a controlled geometry 

for both the optical interfaces of the flowing liquid film and allows repeatable control of 

flow-rate during machining. This has the action of preventing splashing, ensures repeatable 

machining conditions and allows control of liquid flow velocity. To investigate the impact of 

this technique on ablation threshold, bisphenol A polycarbonate samples have been machined 

using KrF excimer laser radiation passing through a medium of filtered water flowing at a 

number of  flow velocities, that are controllable by modifying the liquid flow rates. An 

average decrease in ablation threshold of 7.5% when using turbulent flow velocity regime 

closed thick film filtered water immersed ablation, compared to ablation using a similar beam 

in ambient air; however, the use of laminar flow velocities resulted in negligible differences 

between closed flowing thick film filtered water immersion and ambient air. Plotting the 

recorded threshold fluence achieved with varying flow velocity showed that an optimum flow 

velocity of 3.00 m/s existed which yeilded a minimum ablation threshold of 112 mJ/cm
2
. This 

is attributed to the distortion of the ablation plume effected by the flowing immersion fluid 

changing the ablation mechanism: at laminar flow velocities Bremsstrahlung attenuation 

decreases etch rate, at excessive flow velocities the plume is completely destroyed, removing 

the effect of plume etching. Laminar flow velocity regime ablation is limited by slow 

removal of debris causing a non-linear etch rate over „n‟ pulses which is a result of debris 

produced by one pulse remaining suspended over the feature for the next pulse. The impact of 

closed thick film filtered water immersed ablation is dependant upon beam fluence: high 

fluence beams achieved greater etch efficiency at high flow velocities as the effect of 

Bremsstrahlung attenuation is removed by the action of the fluid on the plume; low fluences 

loose efficiency as the beam makes proportionally large fluence losses at it passes through the 

chamber window and immersion medium.  



Introduction 

Laser ablation is at the vanguard of the micro and nano manufacturing industries [1-3]. This 

technology has been continuously refined and improved upon in terms of laser fluence, 

optical resolution and production speed since the emergence of the technique in the late 

1970s [3]. However, one area has continued to plague the laser ablation pattern machining 

sector: laser ablation generated debris [4]. Debris can contribute to beam attenuation after 

ejection but before deposition [5]. Debris can be generated in a mode that coats unimportant 

areas, areas still to be machined or worse still, features that have already been machined [6]. 

Thus, debris poses a direct threat of lowering manufacturing yield by these means. To 

compound matters, debris can coat machinery, requiring costly downtime for cleaning and 

servicing [7], or the debris can become airborne in the working environment of tool users, 

posing potential respiratory health issues [8]. The use a technique involving closed flowing 

thick film filtered water immersion of the sample during laser ablation has shown promise as 

a plausible solution for such problems [9, 10]; however, the impact of such techniques on the 

basic laser machining characteristics are not extensively documented; only the effect of thin 

film open immersion on ablation rate and threshold having been previously detailed [11, 12]. 

This work will explore the impact of closed flowing thick film filtered water immersion laser 

ablation machining using KrF excimer laser radiation on the ablation threshold of bisphenol 

A polycarbonate in comparison to the machining properties of the same material in ambient 

air and, furthermore, the importance of liquid flow velocity, V, to the ablation threshold will 

also be explored in detail in this work. 

The threshold fluence of laser ablation is useful in assessing the efficiency of a laser 

machining system at material removal. Losses in equipment or media surrounding the 

substrate will be most evidently be evidenced by use of this measureand, as it describes the 

minimum energy required from the laser for material ablation to commence []. The threshold 



is measured as a Beers law relationship, and thus a predicted threshold value (where surface 

modification ends and ablation commences) can be interpolated []. 

In gaseous or vacuum media, various mechanisms such as phase explosion and surface 

evaporation [15, 16], photothermal effects [17, 18] or photomechanical and acoustic 

interactions [19] act individually or in a combination thereof, as discussed in the review of 

Georgiou and Koubenakis [20]; moreover, Prasad et al. have conducted extensive effort into 

modelling such interactions [21]. The introduction of a liquid to this system poses a 

significant modification to the interaction typical in gaseous or vacuum environments 

normally used for machining [22, 23, 24-27]. A technique for delivering a long wavelength 

laser wavelength by use of a fine jet of water proves that use of such mediums do not pose 

unacceptable attenuation of the beam [28]. When using liquid as a media for laser ablation, 

Zhu et al. [23] demonstrated that a threshold film thickness for immersing liquids exists, 

lying at 1.1 mm. using a closed flowing thick film filtered water immersion depth below this 

value significantly reduces the ablation rate compared to that of ablation in ambient air. Use 

of an immersing liquid depth greater than the 1.1 mm value and the opposite is true. The 

cause of this is identified and explained by Dowding and Lawrence [11], where splashing is 

witnessed when using thin film regime flowing open immersion – thus signifying the 

explosive rupture of the immersing thin film of liquid by the ablation plume, which negated 

all action of ablation plume etching. Simultaneously, the immersing liquid film contained the 

plume long enough to significantly reduce laser etching by Bremstrahlung attenuation. This 

theory relies on the principle of acoustic type surface etching as described by Dyer et al. [29], 

where violent excitation of the substrate surface layers results in shear cracking and then 

ejection of solid species from the surface; application of a confined ablation plume, as can be 

produced by closed flowing thick film filtered water immersion will amplify such acoustic 

effects. Also, the ejection of surface melt and advent of surface evaporation, generated by 



ablation plume heating, a probable phenomenon in gaseous media [14], will be amplified by 

the action of thermodynamic compression of the ablation plume by the confining liquid 

media. The existence and efficacy of ablation plume etching can be proven by the example of 

laser induced backside wet etching (LIBWE), pioneered by Wang et al. [30] LIBWE has been 

shown to reduce laser ablation threshold fluence for wavelength transparent materials, such 

as Quartz for excimer laser applications, by more than an order of magnitude [31, 32]. Work 

has been conducted to investigate the effect of open immersion on the ablation rate of 

excimer laser ablation of bisphenol a polycarbonate [27, 11, 12,]. A number of limitations 

were observed and causes diagnosed. Splashing was a common occurrence during machining. 

This was attributed to irregular but broadly increased plume pressure, which significantly 

attenuates the laser beam en-route to the sample surface [12]. In a thick film regime, the 

volume of liquid above the ablation plume confines the plume expansion and prevents it from 

free expansion in the manner allowed by the less viscous medium of ambient air, thus the 

compressed, high pressure ablation plume attacks the surface of the sample to be machined 

causing a high etch rate due to the plume which more than compensates for the loss of laser 

etching due to inverse Bremstrahlung attenuation [23, 24, 25, 12]. When using open thin film 

immersion, the same volume of liquid is not available to confine the ablation plume pressure, 

causing a threshold pressure exists in this condition; once exceeded, rupture occurs and 

plume gas escapes violently from the covering liquid film into the ambient air above, 

producing liquid splashing as a by-product [12]. The action of turbulence, instigated by the 

non-symmetrical drag profile, combined with the strong contribution of meniscus instability 

such as inertial, capillary and viscous effects, described schematically in Figure 1(a), of a 

flow running across a flat plate in the open flow immersion technique allowed surface ripple 

to occur and thence the depth of liquid above the plume varied with respect to time and 

position above the sample, this results in an irregular and non-repeatable plume etch-rate. 



This is witnessed by the fluctuation between ablation depths with increasing numbers of laser 

pulses that should have produced a linear relationship in a regular, repeatable surrounding 

medium. 

The use of a closed ablation chamber has removed the variance of the flow geometry both 

with respect to time and position above the sample to be machined by ensuring the drag on 

the boundaries of the flow symmetrical about the centre of the flow, as described 

schematically in Figure 1(b), and removes the meniscus that dominates flow characteristics in 

open flows. These two factors combined result in reduced eddy generation. A drawback of 

having a sealed flow is that thin film regimes (less than 1.1mm in thickness [23]) could allow 

the compressed ablation plume to extend through the flowing liquid from the sample surface 

to the bottom surface of the chamber window, potentially plume etching the window and 

permanently damaging a critical component in the optical path of the beam. Hence, the 

experiments conducted in this work are of the thick film regime to prolong the life of the 

chamber window. Nevertheless, the use of a closed flow chamber guarantees optical 

geometry of the final medium before the sample and maintains a repeatable and regular 

containment of the ablation plume during and after laser pulses. Because of this, the closed 

flow geometry equipment allows the authors to directly investigate the importance and action 

of liquid flow velocity, a parameter that is controllable by modifying the flow rate, Q, on the 

fundamental ablation characteristics of closed flowing thick film filtered water immersion. 

Experimental Procedures 

Material Details 

Bisphenol A polycarbonate (Holbourne Plastics, Ltd), was as received in 1200 x 1000 mm
2
 

sheets of 0.5 mm thickness. Prior to excimer laser processing, the bisphenol A polycarbonate 

sheet was cut into rectangular sections of 8 x 12 mm
2
 using scissors - a shear cutting 



technique which avoids production of debris. Protective cover sheets were then peeled off 

each sample. 

Laser Details and Experimental Set-Up. 

For both closed flowing thick film filtered water immersion and ambient air processing, an 

excimer laser (LPX200; Lambda Physique, GmbH) using KrF as the excitation medium was 

used to produce a beam with a wavelength of 248 nm. Thereafter, the beam was supplied to a 

laser micromachining centre (M8000; Exitech, Ltd), where it was passed through a stainless 

steel mask to produce a 201 x 203 µm
2
 rectangular image. The masked beam was then 

demagnified through a 4x optic (Francis Goodhall, Ltd) to produce an ablation spot with a 

depth of focus (DoF) of 6 μm. A profile of the masked beam was obtained using a beam 

profiler (SP620U; Spiricon, Ltd), which showed that the beam shape had an even distribution, 

with only a slight positive skew across the y-axis; demonstrating good positioning of the 

mask in the raw beam. 

A sample included six machined sites, each produced using 50 pulses in the same machine 

run with uninterrupted filtered water flow over the sample during machining. The system 

attenuator was used to change pulse energy by a repeatable amount between sites. Attenuator 

positions used were: 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0; Figure 2 shows the corresponding fluence 

values measured using this mask, for ablation in ambient air and under filtered water 

immersion respectively, that produced features of 203 x 205 µm
2
. This fluence data was 

calculated from pulse energy data taken using a pulse energy head (J50LP-2, Molectron 

Detector, Inc.) positioned above the focal point of the laser, and enumerated by a laser energy 

meter (EM400, Molectron Detector, Inc.). The fluence was calculated using the mean beam 

energy measured (averaging techniques were employed for experimental rigour: beam pulse 

energy was recorded five times before and after machining each sample, every value recorded 

was the mean value measured over 100 pulses - between readings the attenuator was reset to 



account for attenuator position errors) so that any changes in laser output over time were 

accounted for. 

Ambient Air Laser Processing 

Samples machined in ambient air were produced, using the same laser and micromachining 

equipment as the closed flowing thick film filtered water immersion ablation samples. The 

bisphenol A polycarbonate samples were mounted directly to the vacuum chuck inside the 

micromachining station (M8000, Exitech, Ltd). After lasing ended the sample was removed 

and placed into the cell of a sealed sample tray to protect them from atmospheric dust. 

Closed Thick Film Filtered Water Immersion Laser Processing Procedure 

Figure 3(a) describes the critical experimental layout of the sample once clamped inside the 

flow rig, which was mounted to the side of the sample vacuum chuck of the laser micro-

processing centre (M8000; Exitech, Ltd.). The sample was positioned in the centre of the flat 

aluminium table between the water supply and exit holes. The sample was retained by a 

recess in a spacer plate (to provide a 1.5 mm thick water film) that lay in contact with the 

aluminium sample table. An O-ring cord, located by a rectangular groove in the sample table, 

provided a seal between the sample table and the spacer plate. On the top of the spacer plate a 

second oval O-ring groove was machined to located another O-ring cord. This acted as a 

gasket between the spacer plate and the beam window – a 25 x 25 x 5 mm
3
 ultra-violet grade 

fused silica sheet (Comar Instruments, Ltd). The beam window was retained by a diamond 

shaped recess in a third aluminium plate, 8 mm in thickness to provide stiffness to the whole 

sandwich.  

Figure 3(b) shows the water filtering and supply system. Water originated from normal mains 

supply by wall tap. The water was poured into a domestic water filter (Britta, Inc.) situated at 

the top the water supply assembly to remove typical corrosive elements present in mains 



water. The water was then retained in a header tank located above the pump and, under the 

action of gravity, was forced into the 700 W pump chamber (CPE100P, Clarke Power 

Products, Ltd.). The pump forced the water through a water flow rate meter (FR4500, Key 

Instruments, Inc.) and then along a 3 m distance through a 6 mm outer diameter nylon tube to 

the inlet push-in elbow fitting on the bottom of the sample table. Last, the water was returned 

along a further 3 m through a 6 mm outer diameter nylon tube to a collection bucket. The 

pump was capable of producing 4.2 bar at the outlet, equating to a maximum flow velocity 

through the ablation chamber of 3.89 m/s, given losses along the supply and return tubing. 

Precise control of the flow velocity was provided by a variable valve of the flow-meter. Flow 

velocities of 0.03, 0.11, 1,39, 1.85, 2.31, 2.78, 3.24 and 3.70 m/s were used for this work; the 

flow rates used to achieve these flow velocity values are given in Table 1.  

Sample Analysis Techniques 

The ablation depths were measured using a dragged needle profiler (CM300 Talysurf; 

Taylor-Hobson, Ltd). Five passes were made across the surface of the sample and into each 

feature at 50µm intervals. To minimize the possibility of profile error, the mean average 

depth of each sample feature was then calculated from a selection of three profiles for each 

sample feature. To guard against outlier samples being produced and effect the ablation 

threshold measurements taken, all data plotted for interpretation in these results are mean 

average values taken from the data produced by three sample features machined using each 

flow velocity.  

Impact of closed thick film filtered water immersion on ablation threshold. 

Ablation threshold is a useful tool for measuring the effectiveness of a technique at etching a 

material: low threshold fluence indicates that minimal laser energy is required to remove 

material from a substrate. Figure 4 shows two plots describing the feature depth machined 



against the natural log of the laser fluence required. In the standard way, each plot has been 

fitted with a linear trend line that has been extended to predict the natural log of the minimum 

laser fluence required to etch the material. The solid trend line in Figure 4 is the etching trend 

for 248 nm laser radiation in ambient air of bisphenol A polycarbonate; The dashed linear 

trend line in Figure 4 is an average of the ablation etching trend of 248 nm laser radiation of 

bisphenol A polycarbonate that has been immersed in a closed filtered water layer (1.5 mm 

thick) flowing at a number of velocities from 1.39 m/s to 3.70 m/s. This demonstrates that 

turbulent flow velocity closed thick film filtered water immersion ablation has an average 

threshold fluence taken from all turbulent flow velocity samples) of 116.6 mJ/cm
2
, compared 

the higher value required in ambient air of 126.1 mJ/cm
2
. Turbulent flow velocity thick film 

closed filtered water immersion is 7.5% more efficient at etching bisphenol A polycarbonate 

than laser ablation in ambient air. This is a result that agrees with the previous work of others 

[22-27], who collectively determined that the increased etching efficiency with respect to 

laser fluence is due to the action of plume etching. Plume etching occurs when the ablation 

plume is prevented from expanding by a viscous surrounding medium [22]. Under 

compression, the gaseous species, initially generated by photonic interaction with the sample, 

have increased temperature when compared to similar gases inside an ablation plume, it is 

therefore able to expand with ease. These gasses aggressively attack the surface of the 

sample, so, restricted plume expansion by use of a viscous surrounding media gives rise to 

plume etching. This is in contrast to the effects of laser ablation machining under open thin 

film immersion [11], where the loss in ablation efficiency was accredited to the action a 

plume motivated rupture. Here, the high pressures initially generated inside the plume, that 

was initially restricted in growth by the surrounding thin film of de ionized water, rapidly 

become too high for the thin film of water to contain; resulting in explosive escape of gases 

from the immersing film. This scenario results in loss of plume etching action, but the 



existence of the plume during the laser pulse decreased the magnitude of laser energy arriving 

at the substrate by the action of Bremsstrahlung attenuation; thus both etch mechanisms 

available are limited by use of an open immersion technique [12]. 

Impact of turbulent flow thick film filtered water immersion on ablation threshold 

In Figure 5(a) the etch depth achieved using 248 nm excimer laser ablation on bisphenol A 

polycarbonate under closed thick film filtered water at six flow velocities ranging from 1.39 

m/s to 3.7 m/s in increments of 0.46 m/s, is plotted with respect to the natural logarithm of 

laser fluence. This allows for the ablation threshold fluence at each flow velocity to be 

calculated. Table 1 lists the calculated ablation threshold fluences which are plotted in Figure 

5(b). All of these samples were produced in a turbulent flow velocity regime (Q > 0.88 m/s), 

where the filter water flowing over the bisphenol A polycarbonate sample was travelling at 

sufficient velocity to have a Reynolds number above 4000; thus having a turbulent flow. As 

can be seen in the plots shown in Figure 5(a), the gradient and x-intercept of all the samples 

are similar, as confirmed numerically by the trend line gradients offered in the top left of 

Figure 5(a). This repetition of etch efficiency confirms that the experimental procedure is 

robust and the closed flowing thick film filtered water immersion technique provided a 

repeatable and stable medium that ablation can occur within. Despite the apparent similarity 

of all these plots, the resulting threshold fluence values demonstrate a flow velocity 

dependent trend that may be explained by interaction between the flowing filtered water and 

the ablation plume. The plot given in Figure 5(b) shows the threshold fluence of the six 

samples plotted with respect to the flow in which they were machined. This indicates that 

achieving minimum threshold fluence requires an optimum flow velocity. Turbulent flows 

beneath this do not significantly distort the ablation plume, as given in Figure 6(b), causing 

maximum compression of the plume and maximum traverse distance for the beam through 

the plume resulting in increased Bremsstrahlung attenuation. The optimum flow velocity for 



bisphenol A polycarbonate according to the results plotted in Figure 5(b) lies at 3.00 M/s, 

where the situation drawn in Figure 6(c) occurs, where the flow causes distortion of the 

plume to reduce traverse distance for the beam through the plume and therefore minimized 

Bremsstrahlung attenuation whilst allowing the existence and action of plume etching by the 

still compressed ablation plume. Above the optimum flow velocity, the plume is blown away 

before it can become fully developed, as is the case in figure 6(d), reducing or negating the 

plume etching effect, leaving only the laser beam, that now has minimal obstacles for 

possible attenuation to pass through, to etch the material. The small changes to threshold 

fluence made across this broad range of flow velocities (which corresponds to an increase in 

flow velocity of 166% from the lowest value plotted in the turbulent flow velocity regime) 

means that the laser ablation threshold is not critically sensitive to the use of a non-optimum 

flow velocity.  

Impact of laminar flow closed thick film filtered water immersion on ablation 

threshold. 

Figure 7 plots the etch depth of the mean average of all the turbulent flow velocity regime 

samples with respect to the natural logarithm of the fluence along with plots for two samples 

machined using laminar flow velocity regime closed filter water immersed ablation that both 

had flow velocities low enough to ensure laminar flow are also given. Threshold fluence 

values for the laminar flow velocity regime samples are given in Table 1. As has been stated 

above, the ablation threshold value of the average turbulent flow velocity regime samples has 

been calculated to be 116.6 mJ/cm
2
. The sample produced at the highest laminar flow 

velocity had a threshold fluence of 125.7 mJ/cm
2
, a value similar to that of the lowest 

velocity turbulent closed thick film filtered water immersion flow velocity sample, which had 

an ablation threshold measured at 126.52 mJ/cm
2
. This result supports the proposal that 

laminar flow velocities allow the ablation plume to become fully developed inside the liquid 



volume, as shown in Figure 6(b), producing maximum Bremsstrahlung attenuation of the 

laser beam. Losses in laser etching due to Bremsstrahlung attenuation are then partially 

compensated for by the action of plume etching being unaffected by the action of the 

turbulent flow velocity. The samples produced using the slowest flow velocity of all those 

listed in this work show a very poor correlation. This poor correlation appears to support the 

idea described schematically in Figure 6(a), where the flow velocity did not have a magnitude 

sufficient to remove debris produced by one pulse from above the feature before the arrival of 

the next pulse, resulting in an unreliable laser fluence at the feature. 

Flow – plume interaction states. 

A more detailed explanation of the impact of increasing flow velocity on the ablation 

threshold under closed thick film flowing filtered water immersion is made clear by Figure 6. 

The premise of the closed flowing thick film filtered water immersion technique is to entirely 

clear the image area of debris produced by a laser pulse before the following pulse arrives, 

thus the velocity of the flow with respect to the pulse frequency is critical. Whereas very low 

flow velocities do not remove debris reliably between pulses, resulting in unreliable laser 

fluence at the sample surface (see Figure 6(a)); using a flow velocity that is sufficiently high 

to fully and reliably clear debris from above the feature, but lower than the optimum flow 

velocity, causes total etch rate loss due to the Bremsstrahlung attenuation of the fully 

developed compressed ablation plume, (see Figure 6(b)). But, this loss is compensated for by 

the etching action of the plume (see Figure 6(b)). The optimum flow velocity is achieved 

when the immersing liquid washes a proportion of the ablation plume away during the laser 

pulse, not allowing excessive Bremsstrahlung attenuation, but simultaneously not completely 

destroying the ablation plume, thereby preserving the action of plume etching, a state 

illustrated by Figure 6(c). When greater than optimum flow velocities are used they allow 

maximum laser etching, the high viscosity of a liquid medium will deform the ablation plume 



during the laser pulse, reducing the plume etching mechanism described in the literature [24-

27] by removing the ablation plume before it has fully developed (see Figure 6(d)). These 

four states are described in terms of etching contribution by laser and plume by the 

hypothetical plot in Figure 8. The data generated in this work shows that direct laser ablation 

etching is still the dominant factor in this interaction, as the curve in Figure 5(b) describes. 

When the plume becomes fully developed, Bremsstrahlung attenuation has a far greater 

limiting effect on the ablation threshold than high flow velocities washing away the 

compressed ablation plume. The optimal flow velocity for achieving minimal threshold 

fluence is achieved by a compromise, indicated by the dashed vertical line in Figure 8, where 

the combination of laser etching and compressed plume etching result in an increased etch 

rate greater than the maximum etch rate achievable by either of the component etch 

mechanisms alone. This plot shows the dependence of plume etching on the existence of 

significant laser etching, as laser etching is required to develop an ablation plume that can 

then go on to become compressed and begin etching itself. The plume etch rate declines as 

the immersing liquid flow velocity begins to wash the ablation plume away at higher 

velocities, leaving just the action of laser etching, at mechanism that relies on mechanical and 

chemical interactions [19, 20]. 

The average ablation threshold fluence can be plotted with respect to the closed thick film 

filtered water immersion fluid flow velocity (see Figure 9). Initial inspection of Figure 8 

supports the states described in detail above. Sub optimum turbulent flow produced a 

maximum threshold, measured to be 126.52 mJ/cm
2
,  denoting poor etching efficiency, where 

high Bremsstrahlung attenuation limited laser etching, the size of the plume and therefore the 

aggressive etching action of the compressed hot gasses inside a water immersed plume, as 

described to the left of Figure 8. As the flow velocity is increased towards the optimum 

threshold value of 111.76 mJ/cm
2
, the ablation threshold fluence drops. This is what one 



would expect to happen as the magnitude of laser etching and plume etching increased 

together. As the flow velocity rises beyond 3.24 m/s to the maximum magnitude tested, the 

threshold fluence begins to rise slightly again to 115.71 mJ/cm
2
, where the ablation plume 

was beginning to be washed away before it was able to become fully developed, leaving only 

the action of laser etching to remove material. 

Importance of fluence on ablation threshold under closed thick film filtered water 

immersion.  

The previous discussions only take into account the average ablation threshold measured 

across all laser fluences. If the data is split to high fluence data and low fluence data, two 

plots can be generated; these show a clear contrast to each other. In Figure 10(a) high laser 

pulse fluence data is plotted. This data shows the turbulent flow velocity regime samples had 

significantly lower threshold fluences than high fluence ambient air samples. The threshold 

fluence increased drastically to a value of 399.16 mJ/cm
2
 for the lowest flow velocity. In 

contrast, the low laser pulse fluence data, plotted in Figure 10(b), had significantly reduced 

threshold fluence for the very low flow velocity and greatly increased threshold fluences for 

the turbulent flow velocity regime data. The two filter water plots appear to be mirror images 

of each other about the threshold fluence of bisphenol A polycarbonate in ambient air. This 

can be explained by returning to the theory of confined ablation plumes [22] and the drag 

imparted onto it by the liquid flowing over it. At laminar flow velocities the plume generated 

was not removed, it was able to become fully developed and etch the sample as it lay under 

compression. High fluence resulted in significant Bremsstrahlung attenuation, hence a high 

threshold fluence. Low fluence laser pulses always perform well for etch efficacy in ambient 

air because they do not produce large plumes and waste energy with heating via multi photon 

interactions [14] a fact demonstrated by the magnitude of the threshold fluence in ambient air 

in Figure 10(b). Any etching provided by the plume to supplement this efficient removal by 



low fluence pulses significantly increased the etch rate with respect to the laser energy 

supplied, causing the low threshold fluence recorded for the lowest flow velocity. As the flow 

velocity increased to the turbulent flow velocity regime, the ablation plume was removed, 

allowing maximum laser etching without any Bremsstrahlung attenuation that limits high 

fluence pulse efficiency in air. This was of no aide to power pulses, that lost the 

supplementary action of plume etching with the deletion of the ablation plume, removing any 

advantage over ablation in ambient air. Losses due to attenuation of the equipment, such as 

the flow chamber window, which was 5 mm thick and the immersing filtered water itself, 

resulted in the increased recorded threshold fluence for turbulent flow velocity closed filtered 

water immersion ablation evident in Figure 10(b). 

Conclusions 

The use of  turbulent flow velocity regime closed thick film filtered water immersion ablation 

results in an average decrease in ablation threshold of 7.5%, compared to ablation using a 

similar beam in ambient air. This is the result of the combined action of laser etching and 

ablation plume etching, which is a symptom of the plume pressure being increased as the 

expansion of the plume is restricted by viscous surrounding liquid medium. 

Conversely, laminar flow velocity regime closed thick film filtered water immersion ablation 

results in a decrease in ablation threshold of just 0.3% compared to ablation using a similar 

beam in ambient air; thus, it can be likened to a negligible gain. This is interesting as it 

suggests a shift in ablation mechanism. 

To investigate this theory, the effect of flow velocity on the ablation threshold has been 

recorded. All plots of the feature depth machined into bisphenol A polycarbonate using 50 

pulses of KrF excimer laser radiation under turbulent flow velocity closed thick film filtered 

water immersed ablation with respect to the natural log of the laser fluence display similar 

gradients. Plotting the threshold fluence values projected from this data against the flow 



velocity they were produced with results in a plot trend of subtle but interesting significance: 

to achieve minimum threshold fluence, an optimum flow velocity exists: measured in this 

work to be 3.00 m/s. This effect is credited to a flow velocity dependent shift in ablation 

mechanism relating to the distortion of the ablation plume by the flowing volume of 

immersion liquid. At lower flow velocities the ablation plume remained directly above the 

feature during the entirety of the pulse, thus generating maximum Bremsstrahlung attenuation 

and limiting laser etching (and as a result plume etching). As the flow velocity climbed, an 

optimum condition was found where the ablation plume geometry was distorted by the 

flowing immersion fluid in a manner that simultaneously allowed lower Bremsstrahlung 

attenuation and maximum plume etching, that combine to produce increased etch efficiency 

than the laser beam alone. With further increase of the flow velocity the ablation plume was 

completely destroyed by the flowing immersion fluid, negating Bremsstrahlung attenuation 

and allowing unimpeded laser etching coupled with negligible plume etching. 

Laminar flow velocity immersion was limited by another factor: suspended debris beam 

attenuation. The flow was slow enough to cause debris produced by one pulse to remain 

suspended over the site of the feature as the following pulse arrived; therefore, intercepting 

the beam en route to the feature. This gave rise to the scenario of non linear etch rate over „n‟ 

pulses. 

The effect of closed thick film filtered water immersion on ablation threshold has been shown 

to vary with respect to beam fluence. For high fluence beams, the ablation threshold was 

significantly reduced when compared to ablation in ambient air at turbulent flow velocities. 

Conversely, for low fluence beams all but the lowest flow velocity tested showed significant 

increase in ablation threshold over a similar beam in ambient air. This is attributed to the 

action of plume etching being flow velocity dependant. For high fluence beams, the removal 

of the plume allows maximum laser etching, but when using low fluence beams, the 



significant relative attenuation posed by the closed flowing thick film filtered water 

immersion equipment became a serious disadvantage when compared to ablation in ambient 

air. 
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Table 1 

Flow Rate 

(l/min) 

Flow Rate 

(l/s) 

Flow Velocity 

(m/s) 

Threshold Fluence 

(mJ/cm
2
) 

2.00 0.033 3.70 115.7 

1.75 0.029 3.24 111.8 

1.50 0.025 2.78 114.1 

1.25 0.021 2.31 113.0 

1.00 0.017 1.85 118.6 

0.75 0.013 1.39 126.5 

0.06 0.001 0.11 125.7 

0.015 0.00025 0.03 See text 
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