Swine Day 2000

EFFECTS OF VITAMINS AND MINERAL PROTEINATES ON GROWTH PERFORMANCE AND PORK QUALITY IN FINISHING PIGS

J. S. Park, J. D. Hancock, D. H. Kropf, K. A. Hachmeister, R. H. Hines, C. L. Jones, D. W. Dean, and D. J. Lee

Summary

From 185 to 225 lb BW, no differences in ADG, ADFI, or F/G occurred among pigs fed diets without or with vitamin and trace mineral premixes. Then, from 225 to 266 lb BW, a special premix with megadoses of vitamin E, vitamin C, Mg-proteinate, and Feproteinate was added to the diets of half the pigs given the previous treatments. Growth performance was not different among pigs fed diets without vitamin or with the KSU and special vitamin and mineral premixes. Also, meat quality (color, marbling, and firmness scores; drip, thawing, and cooking losses; shear force; and Hunter L*a*b*) was not affected by inclusion of the KSU and special vitamin and mineral premixes.

(Key Words: Vitamins, Minerals, Pork Quality.)

Introduction

Pork quality is of increasing concern in the swine industry. Increasing incidence of PSE (pale, soft, and exudative) pork has a major impact an pork quality and the ability of U.S. pork to make inroads into the export market. Many researchers have tried to improve pork quality with nutrient modifications, such as megadosing of vitamins and use of mineral chelates and proteinates, with mixed results. Yet, in previous work done at KSU, deleting vitamin and mineral premixes in late finishing had no negative effects on pork quality. Thus, we designed an experiment to determine the effects of manipulating vitamin and mineral concentrations in diets for late finishing pigs on growth performance and pork quality.

Procedures

A total of 80 crossbred pigs (average initial BW of 185 lb) was fed corn-soybean meal-based diets (Table 1) in meal form. All nutrients met or exceed NRC (1998) requirement except for vitamins and minerals.

The pigs were blocked by weight and allotted to treatments based on ancestry. There were two pigs per pen (5 ft \times 5 ft) and 10 pens per treatment in an environmentally controlled building. Each pen had a self-feeder and nipple waterer to allow ad libitum consumption of feed and water.

Treatments from an average BW of 185 lb to 225 lb were a basal diet (without the KSU vitamin and mineral premixes) and the basal diet with the KSU vitamin and mineral premixes. From 225 lb to 266 lb, treatments were: 1) a negative control diet without the KSU vitamin and mineral premixes; 2) trt 1 with a special premix (500 ppm of vitamin E, 500 ppm of vitamin C, 200 ppm of magnesium proteinate, and 150 ppm of iron proteinate); 3) a diet with the KSU vitamin and mineral premixes; and 4) trt 3 with the special premix.

The pigs were slaughtered when the average BW in the heaviest pen of a weight block reached 270 lb. Dressing percentage (hot carcass weight / final live weight \times 100), last rib backfat thickness, and fat-free lean (National Pork Producers Council, 1996) were determined. Also, the front half of each loin was collected for evaluation of pork quality (color, marbling score, and firmness scores; drip, thawing, and cooking losses; shear force; and Hunter L*a*b*). The second half of each loin was vacuum packaged and

stored for 45 d at 37°F before evaluation of pork quality. This was done to "stress" pork quality and to simulate the time from slaughter in a U.S. processing plant until consumption by a consumer in Japan.

The data were analyzed as a split-plot design with whole-plot treatments of no vitamin/trace mineral premixes and standard additions of vitamin and mineral premixes from 185 to 225 lb BW. Subplot treatments (no change in vitamin/trace mineral supplementation vs addition of the special premix) were imposed within the whole-plot treatments beginning at 225 lb BW. The orthogonal contrasts used to separate treatment means were: 1) no KSU vit/min premixes vs KSU vit/min premix; 2) no special premix vs with special premix; and 3) no KSU vit/min premix vs KSU vit/min × no special premix vs special premix. Hot carcass weight was used as a covariate in analysis of data for dressing percentage, backfat thickness, and fat free lean. Pen was the experimental unit for all comparisons.

 Table 1. Basal Diet^a

Ingredient	%
Corn	79.86
Soybean meal (46.5% CP)	17.20
Soybean oil	1.00
Lysine HCl	.10
Monocalcium phosphate	.52
Limestone	.85
Salt	.35
KSU vitamin premix ^b	0 or .15
KSU trace mineral premix ^b	0 or .10
Special premix ^c	0 or .11
Antibiotic ^d	.12

^aAll diets were fed in mash form.

^bSupplied the following per lb of complete diet: 2,999 IU of vitamin A; 449 IU of vitamin $D_{3;}$ 12.0 IU of vitamin E; 1.2 mg of vitamin K (as menadione sodium bisulfite); 44.9 mg of choline; 13.5 mg of niacin; 7.8 mg of pantothenic acid (as d-calcium pantothenate); 2.2 mg of riboflavin; .009 mg of vitamin B_{12} ; 49.8 mg of Zn; 74.8 mg of Fe; 5.0 mg of Cu; 12.0 mg of Mn; .1 mg of I; and .1 mg of Se.

^cSupplied the following per lb of complete diet: 226 mg of vitamin C; 226 mg of vitamin E; 90 mg of Mg; and 68 mg of Fe.

^dSupplied 100g/ton tylosin.

Results and Discussion

Calculated concentrations for the vitamins and minerals altered by our dietary treatments are presented in Table 2. As a percentage of NRC recommendations, the diets without added vitamin and mineral premixes were supposedly deficient in vitamin E and K, niacin, riboflavin, vitamin B₁₂, Fe, I, Se, and Zn. With addition of the KSU vitamin and mineral premixes, all of the vitamin and mineral concentrations were increased well above NRC recommendations (from $1.7 \times NRC$ for I to $19 \times NRC$ for Mn). Finally, the special premix resulted in 500, 46, 4.6, and $5.1 \times NRC$ for vitamin C, vitamin E, Fe, and Mg, respectively.

From 185 to 225 lb, removing vitamin and trace mineral premixes from diets did not affect (P>.80) ADG, ADFI, and F/G of the pigs (Table 3). From 225 to 265 lb (Table 4), ADG, ADFI, and F/G again were not different (P>.15) among pigs fed diets without or with vitamin and mineral premixes. Furthermore, adding the special premix did not affect growth performance (P > .36), and no interaction resulted from combining the KSU and special premixes (P>.32).

Dressing percentage, backfat thickness, percentage carcass lean, and muscle pH at 3 h and 24 h were similar among the treatments (P>.29). Marbling and firmness score (P>.11); drip, thawing, and cooking losses (P>.24); shear force (P>.71); and Hunter L*a*b* on d 0, 2, 4, and 6 of display (P>.11) also were not affected by removing vitamin and trace mineral premixes or by adding the special premix. Indeed, the only measurement of pork quality affected by the dietary treatments was color score, for which an interaction (P>.02) occurred. Addition of the special premix decreased the color score for pigs without the KSU premixes to 225 lb and increased the color score for pigs with the KSU premixes to 225 lb. However, the response is difficult to explain and was not supported by changes (P>.11) in objective determination of color via Hunter L*a*b* (Table 5).

After 45 d of storage to stress meat quality, there still were essentially no effects of vitamin and mineral premix addition to the diets (Table 6). The one exception again was an interaction for color score (P>.02). This interaction resulted from a low mean color score when the KSU premixes were fed without the special premix and a high color score when the KSU and special premixes were fed in combination. However, this response would be difficult to explain and was not supported by change in objective measurement of color (P>.06) via Hunter L*a*b* (Table 7). In conclusion, removing vitamin and mineral premixes had no negative effects on growth performance, carcass characteristics, or meat quality. Also, supplementation with high dosages of vitamin E (500 ppm) and vitamin C (500 ppm), 200 ppm of magnesium proteinate, and 150 ppm of iron proteinate did not improve meat quality. These data demonstrate further the lack of any negative effects in the response criteria measured in this study from deleting the KSU vitamin and mineral premixes in late finishing diets.

			% O	f NRC	
Item	NRC, unit/kg	None	KSU	Special	KSU & Special
Vit A	1,300 IU	13	523	13	523
Vit C	0	0	0	50,000	50,000
Vit D	150 IU	0	661	0	661
Vit E	11 IU	66	311	4,611	4,856
Vit K	.5 mg	29	560	29	560
Niacin	7 mg	0	534	0	534
Panthothenate	7 mg	115	389	115	389
Riboflavin	2 mg	80	372	80	372
B ₁₂	5 µg	0	529	0	529
Cu	3 mg	194	562	194	562
Fe	40 mg	99	412	511	787
Ι	.14 mg	27	169	27	196
Mg	400 mg	400	400	450	450
Mn	2 mg	573	1,896	573	1,896
Se	.15 mg	70	202	70	202
Zn	50 mg	47	268	47	268

Table. 2 Vitamin and Mineral Concentrations in Premixes^a

^aTotal basis.

Table 3.	Growth Performance of Pigs Fed Diets without and with the KSU Vitamin and
	Mineral Premixes from 185 to 225 lb ^a

	Vitamin & Mi	ineral Premixes		
Item	None	KSU	SE	P value
ADG, lb	2.08	2.09	.06	.95
ADFI, lb	6.21	6.26	.12	.80
F/G	2.98	3.00	.07	.96

^aEighty pigs were used (two pigs/pen and 20 pens/trt).

	W/O KSU		W/ KSU	W/ KSU Premixes				
	Premixe	s to 225 lb	to 2	to 225 lb			P-Value	e
	W/O		W/O					
	Special	W/Special	Special	W/Special				$\mathrm{KSU} \times$
Item	Premix	Premix	Premix	Premix	SE	KSU	Special	Special
ADG, lb	2.38	2.46	2.30	2.21	.11	.15	.97	.45
ADFI, lb	7.23	6.93	7.01	6.98	.18	.59	.36	.50
F/G	3.12	2.89	3.09	3.19	.16	.28	.71	.32
Dressing %	72.5	73.2	72.7	72.8	.7	.88	.56	.63
Backfat thickness, in	.83	.89	.87	.87	.05	.85	.62	.57
Lean %	48.5	50.8	51.1	50.5	1.3	.41	.53	.29
pH at 3h	6.68	6.69	6.68	6.67	.04	.73	.97	.83
pH at 24h	5.90	5.89	5.90	5.92	.05	.52	.74	.50
Color score ^b	3.8	3.4	3.6	4.0	.1	.20	.85	.02
Marbling score ^c	3.0	3.1	3.1	3.7	.2	.11	.16	.28
Firmness score ^d	3.2	3.1	3.2	3.2	.2	.80	.93	.80
Drip loss, %	2.1	1.7	1.7	1.9	.4	.87	.88	.48
Thawing loss, %	1.9	2.1	2.2	1.9	.3	.87	.97	.24
Cooking loss, %	27.5	27.8	29.3	27.3	1.2	.66	.48	.37
Shear force, kg	3.70	3.71	3.79	3.57	.30	.91	.73	.71

Table 4.Growth Performance of Pigs Fed Diets without and with KSU and Special Vitamin
and Mineral Premixes from 225 to 265 lb^a

^aA total of 80 pigs was used (two pigs/pen, 10pens/trt).

^bScored on a scale of 1 = pale pinkish gray to 6 = dark purplish red (NPPC, 1999) with 3 to 4 as ideal.

^cScored on a scale of 1 = partially devoid to 6 = abundant (NPPC 1999) with 3 to 4 as ideal.

^dScored on a scale of 1 = vary soft and watery to 5 = very firm and dry (1991) with 3 to 4 as ideal.

	W/O KSU	J Premixes	W/ KSU 2	Premixes to					
	to 2	25 lb	22	25 lb			P Value		
	W/O		W/O						
	Special	W/Special	Special	W/Special				$KSU \times$	
Item	Premix	Premix	Premix	Premix	SE	KSU	Special	Special	
Day of di	splay								
0									
L* ^a	52.7	54.6	54.8	55.1	.8	.17	.17	.34	
a*	18.7	18.6	18.4	19.1	.3	.81	.40	.17	
b*	14.3	14.2	14.5	15.5	.3	.11	.18	.11	
2									
L*	55.4	56.6	56.5	56.9	.8	.29	.33	.59	
a*	18.1	17.9	17.9	17.9	.3	.74	.70	.70	
b*	16.7	16.8	19.9	17.1	.3	.49	.62	.86	
4									
L*	55.5	56.4	56.6	56.8	.7	.27	.49	.67	
a*	16.7	16.4	16.4	16.5	.3	.48	.71	.45	
b*	16.6	16.7	16.9	17.1	.2	.24	.55	.87	
6									
L*	56.1	57.0	57.0	57.4	.8	.39	.45	.70	
a*	15.4	14.8	14.7	15.0	.4	.33	.78	.35	
b*	16.0	16.0	16.0	16.7	.3	.16	.36	.26	

Table 4	5.	Effects	of	KSU	and	Specia	al	Premixes	on	Color	Stability	of	Pork	during	Disr	ola
lable .	э.	LIEUS	UI	NOU	anu	Specia	a	F Tennxes	υn	COLOL	Stability	UI	FULK	uuring	DIS	JIZ

^aHunter 'L' values (lightness) with an acceptable range of 50 to 55, which is considered equal to color score of 2 to 3.

	U Premixes 25 lb	W/ KSU to 2	J Premixes 225 lb					
Item	W/O Special Premix	W/Special Premix	W/O Special Premix	W/Special Premix	SE	KSU	Special	KSU× Special
Color score ^a	3.7	3.7	3.3	3.9	.1	.76	.04	.02
Marbling score ^b	3.1	3.5	3.3	3.6	.2	.18	.10	.84
Firmness score ^c	3.2	3.2	3.1	3.3	.1	.91	.28	.37
Drip loss, %	.6	.6	.6	.7	.1	.42	.26	.12
Thawing loss, %	2.5	2.6	2.99	2.6	.3	.14	.76	.41
Cooking loss, %	25.1	27.2	27.6	25.5	1.2	.77	.98	.12
Shear force, kg	2.73	2.95	2.88	2.73	.15	.41	.78	.12

Table 6.Effects of KSU and Special Premixes on Visual Color and Cooking Characteristics
of Pork after 45 Days of Storage

^aScored on a scale of 1 = pale pinkish gray to 5 = dark purplish red (NPPC, 1991) with 3 to 4 as ideal.

^bScored on a scale of 1 = partially devoid to 6 = abundant (NPPC 1999) with 3 to 4 as ideal.

^cScored on a scale of 1 = vary soft and watery to 5 = very firm and dry (1991) with 3 to 4 as ideal.

	W/O KSI	U Premixes	W/ KSU	W/ KSU Premixes			P-Value			
	W/O	223 10	W/O		ı		I - Value	, 		
Item	Special Premix	W/Special Premix	Special Premix	W/Special Premix	SE	KSU	Special	KSU × Special		
Day of d	isplay									
0										
L*a	57.2	58.1	59.1	58.5	.7	.22	.88	.30		
a*	20.6	21.3	20.7	20.3	.3	.49	.54	.06		
b*	17.2	17.8	17.65	17.4	.4	.84	.54	.17		
2										
L*	56.4	57.6	58.45	57.4	.7	.37	.94	.18		
a*	17.6	17.7	16.33	17.8	.4	.08	.10	.21		
b*	16.5	17.2	17.00	17.0	.3	.72	.39	.33		
4										
L*	55.9	57.1	57.9	56.8	.8	.45	.95	.18		
a*	15.2	15.2	14.1	15.9	.5	.59	.08	.08		
b*	15.2	16.4	16.0	15.8	.6	.87	.37	.28		
6										
L*	55.0	55.6	56.7	55.9	.8	.36	.86	.41		
a*	13.5	14.3	13.6	14.5	.4	.79	.12	.85		
b*	13.8	14.4	14.6	14.3	.6	.70	.82	.54		

Table 7.	Effects of KSU and Special Premixes on Color Stability of Pork during Disp	play
	after 45 Days of Storage	

^aHunter 'L' values (lightness) with an acceptable range of 50 to 55, which is considered equal to color score of 2 to 3.