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Abstract 
Fermentation-derived butanol is a possible alternative to ethanol as a fungible biomass-based 

liquid transportation fuel.  We compare the fermentation-based production of n-butanol vs. 

ethanol from corn or switchgrass through the liquid fuel yield in terms of the lower heating value 

(LHV).  Industrial scale data on fermentation to n-butanol (ABE fermentation) or ethanol (yeast) 

establishes a baseline at this time, and puts recent advances in fermentation to butanol in 

perspective.  A dynamic simulation demonstrates the technical, economic and policy 

implications.  

The energy yield of n-butanol is about half that of ethanol from corn or switchgrass using 

current ABE technology.  This is a serious disadvantage for n-butanol since feedstock costs are a 

significant portion of the fuel price.  Low yield increases n-butanol’s life-cycle greenhouse gas 

emission for the same amount of LHV compared to ethanol.  A given fermenter volume can 

produce only about one quarter of the LHV as n-butanol per unit time compared to ethanol.  This 

increases capital costs.  The sometimes touted advantage of n-butanol being more compatible 

with existing pipelines is, according to our techno-economic simulations insufficient to alter the 

conclusion because of the capital costs to connect plants via pipeline.  
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Introduction 
The issues and merits of biomass-based liquid transportation fuels such as ethanol are under 

intense discussion in the public [1

Fermentation-derived butanol has attracted renewed interest as a fuel and recent reviews are 

available [7,8] in addition to classical papers [9,10].  Announcements by a consortium of 

companies to produce fuel n-butanol by fermentation on the industrial scale have increased the 

interest [11].  Efforts by other private companies (for example Gevo Inc., CO, or Cobalt 

Biofuels, CA) to produce butanol have given us a reason to investigate the fundamentals of this 

biofuel. 

,2], and in the engineering and scientific communities [3,4].  

Nevertheless, the U.S. capacity for fermentation based ethanol mostly from corn stood recently 

at over 45.4 hm3 y-1 [5] (current and under construction) exceeding the projections of the United 

States Department of Agriculture [6].  The U.S. Energy Independence and Security Act (EISA) 

of 2007 mandates 136.3 hm3 biofuels y-1 for the U.S. market by 2022 of which corn-based 

ethanol is capped at 56.8 hm3 y-1. 

Fermentation of biomass to ethanol using the yeast Saccharomyces cerevisiae is an ancient 

technology.  Biomass fermentation producing n-butanol using microorganisms of the genus 

Clostridium (termed Acetone Butanol Ethanol or ABE fermentation) based on the seminal work 

by Weizmann [12] has been performed on the industrial scale (multi-tonne per day per facility) 

in the U.S. early in the 20th century, in Russia [13] until the late 1980’s, in South Africa until the 

early 1980’s, and is currently performed industrially in China with production goals up to 

1 million tonnes of ABE solvents per year [14].   

It appears that a comparison of the biofuels ethanol and butanol may be useful to see what 

motivation or de-motivation exists to ferment biomass to butanol (and some ethanol) instead of 

only ethanol for use as a transportation fuel.  A quantitative techno-economic comparison is 

executed, starting with a classical chemical engineering elemental (carbon) balance for both 

processes, and using the lower heating value (LHV) of the liquid fuel products per unit mass of 

feedstock as the criterion of comparison.  An economic analysis is then shown for corn ethanol 

vs. corn n-butanol, followed by an engineering estimate for industrial ethanol+n-butanol 

production from a cellulosic feedstock compared to ethanol production using an advanced yeast. 
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Background 

The lower heating value as the basis of liquid bio-fuel production comparison 
The lower heating value (LHV) of the ethanol (yeast fermentation) or ethanol + n-butanol 

(ABE fermentation) will be used to compare the conversion of a given mass of feedstock to the 

target bio-fuel.  The LHV is taken as the heat of combustion at 25°C and atmospheric pressure 

reduced by the enthalpy of evaporation of the water formed during combustion since water 

leaves an internal combustion engine as vapor.  Table 1  shows some pertinent and reference 

values [15, 16, 17].  

The LHV is used here as a reasonable yardstick since both bio-butanol and bio-ethanol would 

likely be used in similar internal combustion engines.  Energy content per volume of fuel (higher 

for n-butanol than ethanol), distance driven per volume of fuel etc. are often used in discussing 

biofuels.  The LHV from a given amount of feedstock is a more neutral way of comparinf 

biofuels for similar engines.  As an aside, a comparison of bio-ethanol to bio-diesel would be 

more complex since Diesel engines deliver more mechanical work per unit LHV since they are 

thermodynamically more efficient than Otto-type engines. 

The choice of LHV vs. the sometimes employed HHV (higher heating value) does not change 

the overall conclusions of the considerations below since the difference is relatively small.   

The carbon mass balance as a tool to compare bio-ethanol with bio-butanol 
Figure 1 shows an overview of the fermentation based processing to ethanol or n-

butanol+ethanol.  The requirement for sterility for ABE fermentation will be discussed below. 

Carbon is obviously the element of greatest interest when evaluating liquid biofuel production 

since the ultimate goal is to convert carbon residing in biomass to a liquid hydrocarbon that can 

be used in an internal combustion engine.  The carbon in starch is used as the input mass flow 

for corn since only starch is fermented.  Figure 2 demonstrates that about two thirds of the 

carbon in the incoming starch is converted to ethanol in the state-of-the-art yeast-based process.  

The remaining carbon is found as CO2 gas leaving the fermenters, in biomass produced, and as a 

small amount of unfermented starch. 

A carbon mass balance is a simple and rapid check on the consistency of reported or claimed 

experimental results and serves as a first level tool for comparing processes.  The energy balance 
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is the next step in a meaningful comparison of biofuel production processes since it will reveal 

the amount of energy needed to produce a unit of energy as target fuel LHV and thereby also 

paves the way for a subsequent exergy or "quality of energy" analysis.  We execute only the 

carbon mass balance here since the yield of fuel LHV per mass of feedstock is crucial especially 

when similar processes all based on fermentation and faced with similar downstream issues 

(separation of dilute alcoholic product from aqueous fermentation broth) are compared. 

Yield assumptions 
A central issue for any process comparison is the yield here defined as mass of fuel per mass 

of biomass processed or similarly the LHV of biofuel per mass of biomass processed.   

A recent survey of the U.S. fuel ethanol industry by Argonne National Laboratory for the 

Renewable Fuels Association [18] reported a yield of 0.33 liters denatured ethanol per kg corn 

which is equivalent to about 0.30 kg pure ethanol per kg corn assuming the yield above is taken 

as ethanol at 20°C.  

The yield of n-butanol per mass of corn is of paramount importance since feedstock costs are 

often a crucial fraction of the overall production cost of bio-based liquid fuels.  Early reports for 

industrial ABE fermentation of corn by C. acetobutylicum are available [19] at a scale of 

100 tonnes of solvent produced per day at two plants.  About 3 kg of starch were reportedly 

converted to 1 kg of mixed solvents (33wt% solvents relative to the mass of starch from corn) 

with a weight ratio of n-butanol/acetone/ethanol of 6/3/1 and at a final concentration of 2.5 wt% 

of combined solvents in the fermentation broth.  This corresponds to about 0.11 kg n-butanol per 

kg of corn using the composition in Table 2.  Current full scale industrial ABE yields and solvent 

compositions are available from China [14].  A 6.2/3.0/0.8 mass ratio of n-butanol to acetone to 

ethanol is reported to yield 2.8 kg of solvents per kg of starch.  The early data above was used in 

the analysis shown here. 

Thirty four (34) wt% combined solvents yield on glucose is reported by others [20].  Another 

review [9] reports a 6/3/1 mass ratio of n-butanol/acetone/ethanol from ABE fermentation.  

Recent work using modified Clostridium spp. [21] reports a yield of up to 45 wt% of solvents at 

the laboratory scale.  This work has been used to evaluate n-butanol production positively 

compared to yeast-based ethanol [22].  While this yield may seem encouraging compared to the 

above 33 wt% of solvents on starch, it must be said that a yield on a pure and easily metabolized 
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substrate in a carefully constructed and often costly fermentation medium in the laboratory will 

likely be difficult to reproduce in an industrial-scale fermentation on a natural substrate such as 

mash from dry-milled corn.   

A sophisticated two-stage fermentation process for bio-butanol production with an 

extrapolated yield claim of 0.30 kg n-butanol per kg corn has been reported based on laboratory 

experiments [23].  A simple carbon balance may shed light on this claim.  The composition of 

corn (Table 2) results in 543 mol of carbon available in form of starch per 25.4 kg of corn 

compared to 9.5 liters of n-butanol (20°C) containing about 414 mol of carbon.  Therefore, a 

rather surprising 76% conversion of starch carbon to n-butanol carbon is claimed, which far 

exceeds the state-of-the-art performance of yeast-based bio-ethanol.  Substantial CO2 formation, 

however, can very likely not be avoided, as well as some carbon loss to form biomass, and some 

loss of starch that is not completely fermented.  The claim of 0.30 kg n-butanol per kg corn may 

contain additional assumptions.  The proposed novel two-stage fermentation using immobilized 

microorganisms also appears not to have been demonstrated on a large scale. 

We will here use the industrially confirmed yield of 34 wt% of solvents relative to the mass of 

starch in the incoming corn producing a mass ratio of 6/3/1 n-butanol/acetone/ethanol to 

compare ABE fermentation to current state of the art bio-ethanol production from dry-milled 

corn using yeast.  The gases evolved from ABE fermentation are estimated here as 1.5 times the 

mass of solvents produced composed of 60 vol% CO2 and the balance hydrogen [9].  The humid 

hydrogen/CO2 gas mixture issuing from the fermentation could be separated to recover a small 

amount of hydrogen but this is not the focus here and likely will not be cost effective.   

Genetic manipulations and metabolic engineering to improve biomass fermentation to butanol 
In the traditional and historic batch ABE process, C. acetobutylicum produce some hydrogen, 

carbon dioxide, acetate, and butyrate during the initial growth phase, resulting in decreasing pH.  

Clostridium spp. secrete enzymes that facilitate the breakdown of polymeric carbohydrates such 

as starch into monomers that can be transported into the cells using the phosphoenolpyruvate-

dependent phosphotransferase system (PTS) for glucose and non-PTS mechanism for galactose.  

As the batch culture enters the stationary phase, a metabolic shift to solventogenesis occurs with 

the assimilation of the acids and concomitant release of n-butanol, acetone and ethanol.  The 

biochemical pathways followed in Clostridia are fairly well described [24].  However, the 
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multiple metabolic pathways and two stage nature of ABE fermentation still prevent a clear and 

conclusive calculation of maximum theoretical yield.   

The two primary solventogenic Clostridium organisms that have been investigated for the 

production of n-butanol are C. acetobutylicum ATCC 824 and Clostridium beijerinckii NCIMB 

805212.  The hyper-butanogenic C. beijerinckii BA101 strain was generated by chemical 

mutagenesis from C. beijerinckii NCIMB 8052 [25].  C. beijerinckii BA101 has enhanced 

capability to utilize starch and tolerates 0.017 to 0.021 kg n-butanol per liter of fermentation 

broth [26].  Various agricultural residues, such as corn stover, corn fiber and fiber-rich distillers 

dried grains and solubles (DDGS) as substrates have been reported as substrate for this strain 

[27].  Though pentoses and hexoses were used concurrently for n-butanol production, the highest 

concentration of n-butanol was produced when cellobiose was used, whereas the least amount of 

n-butanol was produced using galactose [26].  Fermentation inhibitors such as furfural, 

hydroxymethyl furfural (HMF), acetic, ferulic, glucuronic and phenolic compounds are generally 

formed during pretreatment of fiber-rich cellulosic biomass.  Of these, furfural and HMF are not 

inhibitory to C. beijerinckii BA101; however, even 300 g of ρ-coumaric and ferulic acids per m3 

fermentation broth reduced n-butanol production significantly [27].  

The current bio-butanol production using the existing Clostridium spp. suffers compared to 

yeast-based bio-ethanol from low final n-butanol titer, low yield, and low productivity (longer 

fermentation times).  Recombinant DNA technology along with traditional mutagenesis and 

selection has been employed to modify targeted metabolic pathways in the solventogenic 

Clostridium spp. [25].  For example, Tummala et al. [28] used antisense RNA to downregulate 

the enzymes in the acetone formation pathway.  Even though lower levels of acetone formation 

were achieved there was no redirection of carbon flux towards n-butanol synthesis.  The solvent 

tolerance was similar to ABE fermentation and this is perhaps not surprising due to the physical 

impact of the solvent butanol on organisms.  Butanol will dissolve cell membranes and the low 

saturation concentration of n-butanol in water (about 8wt%)  leads to high and lethal 

thermodynamic activity already at butanol concentrations that are modest compared to 

concentrations in ethanol fermentation. 

Recently, genetically engineered E. coli has been reported for production of butanol and other 

higher alcohols from glucose in a laboratory medium containing antibiotics [29,30].  The 
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reported yield of iso-butanol, however, appears to have been only about 50% of the yield of ABE 

fermentation to n-butanol when the number of carbon atoms transferred from the feedstock to the 

biofuel is compared.  In addition, the ABE yield is proven on the industrial scale using corn 

while the reported engineered E. coli yield is for glucose in a carefully constructed medium at 

the bench scale. 

The draft genome sequence data for C. beijerinckii 8052 was recently made available by the 

Department of Energy (DOE) Joint Genome Institute [31].  Availability of genomic information 

will enable examination of global gene expression during acidogenesis and solventogenesis.  The 

potential for utilization of various carbon sources and complete understanding of the mechanism 

for sugar transport, regulation of butanol production, and butanol tolerance might be determined 

from the genetic information to ultimately produce improved second-generation strains.  

However, these achievements are certainly years in the future, especially considering the need to 

improve the yield of ABE fermentation to n-butanol by on the order of a factor of two compared 

to bio-ethanol via yeast (see below). 

Processing issues 
Figure 1 shows a schematic overview of yeast-based and Clostridium spp.-based biofuel 

production from corn. 

Corn pre-processing and limits on the feedstock concentration in the fermenter 
The mechanical processing of corn will be assumed to be identical for ethanol or n-butanol 

production.  After milling in a hammer mill, water is added to produce a corn mash.  The water 

content of the mash going to the fermenter must match the ability of the fermentation in question 

to convert starch to solvents and byproducts (gases), and to tolerate the solvents produced, in 

addition to conversion of some starch to biomass (microorganisms).  Once the limiting biofuel 

concentration in the fermentation broth is reached valuable starch would otherwise be left unused 

since fermentation ceases. 

Enzymes are used in industrial practice to convert the starch in corn to sugars before 

fermenting to ethanol by yeast.  This is not practiced when ABE fermentation is performed [9] 

and fermentation of solubilized starch from corn without enzymatic pre-processing by ABE 

fermentation is explicitly documented [19].  ABE fermentation proceeds readily on mash with no 

enzyme addition and saccharification appears to be of no additional value [32].  This simplifies 



For Repositories Pfromm Butanol paper 7.2  3/10/2010 4:20:42 PM   Page 8 of 30 

the corn processing for ABE fermentation and reduces the cost.  A partial hydrolysis using 

sulfuric acid (later neutralized) has been proposed for ABE fermentation [20], but this is only 

conceptual and not supported by industrial experience. 

For ABE fermentation, ground corn is suspended in water at 8-10wt%.  In ethanol 

fermentation 25-30wt% corn in water can be used due to the higher final titer for ethanol.  Much 

less corn per fermenter volume can therefore be used in ABE fermentation since the ABE 

products inhibit fermentation already at relatively low concentration (about 2wt% for ABE as 

compared to up to 15wt% for ethanol).  

Practical issues of ABE fermentation compared to fermentation using yeast 
ABE fermentation using C. acetobutylicum was historically the first large scale fermentation 

process that required rather stringent aseptic conditions due to potential contamination by aerobic 

bacteria early in the fermentation, and contamination by acid-producing anaerobic organisms 

later in the fermentation.  Yeast fermentation on the other hand can be performed with the most 

rudimentary equipment and minimal cleanliness.  The requirements for aseptic operation for 

ABE resulted in the historic development of the now familiar steel fermentation vessel that is 

steam sterilized under pressure.  Aseptic inoculation of large steel vessel fermenters was another 

important achievement to enable the early ABE industry.  These developments for aseptic 

operation also paved the way for industrial penicillin production [33].   

Contamination issues are considered serious in ABE fermentation and can lead to extended 

shutdowns and costly cleanup [8].  Occasional "acid crash" is known as a failure of an ABE 

fermentation batch to switch from the initial acidogenic to the solvent-producing stage.  This 

results in complete loss of a fermentation batch. 

Fermentation with yeast does not require stringent sterility due to the vigorous growth of yeast 

which out-competes many other organisms, and the low pH of the operation.  ABE fermentation 

on the other hand has been reported to be subject to infection by bacteriophages [13] which is not 

an issue in yeast fermentation.  Steam sterilization (perhaps at pressures on the order of 202 kPa 

[32]) and the required pressure- and heat resistant vessels, piping, fittings, and armatures are 

employed for ABE fermentation, but not for yeast fermentation.  Yeast can be obtained in a 

convenient form from industrial suppliers, while inoculum for the ABE fermentation would 

likely have to be carefully produced by stepwise scale up from microbial cultures on site.  
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Various strains should be available on-site for ABE fermentation to switch in case of phage 

infection.  An ABE facility would essentially have an on-site microbiology department.  The 

foregoing special needs for ABE fermentation indicate increased capital and operating costs vis-

à-vis yeast-based bio-ethanol.   

Impact of the final ethanol or n-butanol concentration in the fermenter on the productivity and 
capital cost 

Ethanol is completely miscible with water and final ethanol concentrations in industrial 

fermenters may reach 15 wt%.  n-butanol, on the other hand, is not completely miscible with 

water and phase separates into an ethanol-rich and an n-butanol-rich phase above about 8wt% n-

butanol in water (20°C).  The final n-butanol concentrations in batch ABE fermentation are 

perhaps less than one third of the n-butanol solubility in water.  It is unlikely that this can be 

increased significantly since n-butanol is an excellent solvent and will physically dissolve 

biological membranes, even disregarding biological toxicity.  Exposure of an organism to 8 wt% 

n-butanol in water is thermodynamically equivalent to pure butanol exposure.  Ethanol 

fermentation reaches about 15wt% (or ~7% of saturation) while ABE fermentation appears to 

reach generally about 2wt% n-butanol (~25% of n-butanol saturation). 

The low final n-butanol concentration directly translates to a need for increased fermenter 

volumes to produce equivalent amounts of n-butanol per time compared to ethanol.  There have 

been attempts to deal with the low final concentration of n-butanol in batch ABE fermentation by 

removing n-butanol selectively from ABE fermentation broth during fermentation through 

extraction or membrane separation [26] (see also Figure 1).  Extraction methods introduce 

additional chemicals while issues with membrane separations include costly electrical energy to 

maintain a partial pressure driving force and achievement of sufficient selectivity for n-butanol.  

Both approaches have only been tested at small pilot scale, at best.  These techniques, if 

developed to the industrial scale, may address the low final butanol concentrations to some 

extent, but they do not address the low yield of LHV per mass of feedstock that plagues ABE 

fermentation compared to yeast-based fermentation to ethanol.  Longer fermentation times for 

ABE versus yeast-based fermentation (about 55 hours vs. 45 hours [9] ) further exacerbate 

ABE’s capital costs when compared to those of bio-ethanol on an equal LHV production per 

time basis.   
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To illustrate the foregoing, we shall assume that an existing yeast-based bio-ethanol plant is 

converted to ABE fermentation.  Due to the lower volumetric productivity and longer 

fermentation time of ABE fermentation only about 25% of the LHV that could be produced as 

ethanol via yeast would be produced if the fermenter volume of this existing facility was used for 

ABE fermentation.  The need for significant investment to achieve sterile operation and handle 

inoculum preparation is of course also important for this hypothetical process conversion. 

Downstream separation issues 
The relatively low concentration of ABE solvents in fermentation broth from conventional 

batch fermentation (~ 2wt%) compared to ethanol in yeast fermentation broth (~ 15 wt%) and the 

high normal boiling point of n-butanol (117ºC) relative to water (100ºC), and water relative to 

ethanol (78ºC) set ABE fermentation apart from bio-ethanol production by fermentation as far as 

downstream purification is concerned.  The focus for ethanol/water separation is on evaporation 

of the volatile minority component, ethanol.  While liquid water and ethanol are miscible in all 

proportions, the n-butanol/water system shows a hetero-azeotrope which perhaps must be taken 

advantage of to avoid the severe energy penalty of evaporating the majority component low-

boiling (relative to n-butanol) water.  This means that traditionally a first separation step for n-

butanol separation from fermentation broth was a steam stripper where large amounts of water 

and most of the acetone and ethanol were evaporated for later recovery of the acetone and 

ethanol products. The water/n-butanol immiscibility is later exploited by routing the remaining 

n-butanol/water mixture (bottoms of the initial column) to a combination of two distillation 

columns and a decanter to recover fuel-grade n-butanol [34].   

Scope of this work 
First a comparison will be made for corn-based ethanol production in a state-of-the-industry 

process with industrial-scale data for ABE fermentation via the organism C. acetobutylicum.  

This will be followed by dynamic economic modeling. 

A second comparison will then be attempted for the hypothetical fermentation of both C5 and 

C6 sugars from the cellulosic feedstock switchgrass to ethanol (based on an advanced yeast, 

research/pilot level data available only) or n-butanol (ABE fermentation). 

Benchmarks of needed improvements are then estimated. 
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Results 
Generic flowcharts of corn processing to bio-ethanol or bio-butanol are shown in Figure 1.  

The two processes are first compared for corn as feedstock using industrial-scale data, and are 

then compared for the hypothetical use of switchgrass.   

Base case corn based bio-ethanol process 
The base case will be a yeast fermentation-based bio-ethanol facility producing 149 Gg of pure 

ethanol per year with 360 days of operation per year (Figure 2).  This implies 1.37 Gg of corn 

(16wt% water) per day of operation to be processed for the corn base case (compositions and 

flows see Table 2).  Starch is by far the majority component (>70wt%) of corn both by mass and 

by the fraction of carbon atoms in starch compared to the carbon atoms in the whole kernel. 

Comparison of ABE fermentation and yeast based fermentation to produce liquid fuels from 
corn 

Figure 3 shows the carbon balance for ABE fermentation based on the incoming carbon in 

starch.  Compared to ethanol production, an additional distillation column is needed to perform 

the acetone/ethanol split for ABE so that fuel ethanol becomes available as is assumed and 

credited here.  Combined ethanol and n-butanol is considered as fuel produced from ABE 

fermentation to give the most favorable comparison with only ethanol from the traditional 

fermentation using S. cerevisiae (Figure 2).   

The LHV yield per mass of corn is significantly lower for ABE fermentation (Table 3).  

Reasons include that the ABE fermentation converts a substantial amount of carbon to acetone 

which cannot be used as a fuel, that ABE fermentation produces relatively more CO2 than yeast 

fermentation, and that more starch remains unfermented.   

The LHV yield of the ABE process would have to increase by 74% (with the current ABE 

LHV yield taken as 100%) to equal the yeast based bio-ethanol process.  This would mean to 

increase the n-butanol yield from about 0.11 to 0.19 kg n-butanol per kg corn to break even with 

state of the art bio-ethanol facilities assuming a constant 6/3/1 solvent split (see above).  It is 

important that this improvement must be shown on actual corn mash from an industrial corn dry 

mill process, not on an artificial substrate such as pure glucose in a carefully constructed, 

complex, and costly medium in a well-controlled laboratory environment.  No data appears to be 



For Repositories Pfromm Butanol paper 7.2  3/10/2010 4:20:42 PM   Page 12 of 30 

available that would indicate that such an improvement is likely in the near future at the 

industrial scale (see Background). 

Overall economic modeling of corn fermentation to ethanol vs. ABE fermentation of corn 
The software used for the system dynamic modeling of the bio-ethanol production process 

using yeast and the bio-butanol production process using ABE fermentation is iThink (isee 

systems Inc., Lebanon, NH).  The advantage of this tool is its transparency about the 

assumptions being used in the analysis and ease of altering these assumptions to test the model's 

robustness.  The techno-economic model captures the foregoing assumptions about conversion 

rates and LHV yields as well as operation costs and market price conditions for the products 

from the two processes.   

The interest of the U.S. government in the production of bio-ethanol has resulted in the 

implementation of a $0.14 per liter subsidy directed at blenders.  This subsidy is expected to end 

in 2010 and whether it will be renewed or terminated is a policy uncertainty.  Currently, 

however, there is no such policy support for the production of bio-butanol, implying that there 

are inherent economic disadvantages embedded in a switch from ethanol production to n-butanol 

production.  The ensuing analysis considered two scenarios about the subsidy: removed when its 

term expires in 2010; allowed to continue at the same level after 2010. 

The literature indicates that the current yield of n-butanol per kg of starch can perhaps be 

increased over time.  Therefore, we have assumed a linear growth in yield of 0.76% beginning in 

2010, which, while a very aggressive growth rate in yield given the historical performance of 

yield of ABE fermentation over about nine decades, incorporates potential technological 

improvements into the model.  Table 4 shows the cost and price assumptions of the different 

inputs and outputs. 

We assumed that all the outputs from the ABE process are sold at their prevailing market 

prices.  However, having assumed that the by-products such as distillers' grain and carbon 

dioxide from the ABE and yeast ethanol production processes are indistinguishable, they were 

ignored in further comparisons.  Using U.S. Department of Energy historical data and 

assumptions about prices, demand and supply trends, as well as information from industry, we 

projected these prices over 20 years, from 2007 (base year) to 2027 (Figure 4).  In these 

projections, we assumed that n-butanol and acetone prices are consistently higher than that of 
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ethanol given the historical market trends. The average acetone price over the 20 years was about 

$0.92 per kg with a standard deviation of about $0.07 per kg compared to ethanol at $0.59 per kg 

and $0.07 and n-butanol at $0.77 per kg and $0.06 per kg respectively. 

Despite assuming a higher price for n-butanol, including the revenues from acetone and 

ethanol emanating from the ABE process and allowing more significant process improvement, 

Figure 5 shows for example that converting an ethanol plant into an n-butanol production facility 

is not a profitable venture, even over the long run.  The results show that although ethanol 

production becomes profitable again in 2022 after removing the subsidy in 2010, its net present 

value is   

$-26 million over the 20 years at 8.5 percent discount rate.  On the other hand, reinstating the 

subsidy yields a net present value of $116.4 million over the same period and at the same rate.  

The net present value of net revenues for the ABE process is $-306.6 million, making it almost 

12 times more unprofitable than continuing with the production of ethanol without the subsidy.   

Although n-butanol transportation is reputed to be compatible with existing pipeline systems, 

the need to build processing facilities within proximate distances of feedstock implies investing 

about $1 million per km to move the n-butanol by pipeline.  Assuming an average pipeline 

construction cost of $1 million per km with a 20-year depreciation, and pipeline transportation 

cost of $0.005 per kg compared with overland transportation cost of $0.027 per kg, the ABE 

process is still not competitive against the yeast-based ethanol process.  The ABE process’s lack 

of competitive advantage was found to be robust under numerous plausible assumptions about 

prices, operation costs and yield improvements.  Therefore, based on the technical and economic 

simulation assumptions used in this study, the production of n-butanol is likely unattractive when 

compared with traditional yeast-based ethanol production from corn for transportation fuel 

despite the often cited higher LHV per kg fuel for n-butanol when compared to ethanol.   

Switchgrass as feedstock for bio-butanol vs. bio-ethanol 
The EISA mandates include very substantial biofuel production goals from cellulosic 

feedstocks (second-generation biofuels).  Cellulosic feedstocks such as corn stover, wheat straw, 

and switchgrass are considered promising for production of liquid biofuels [35].  ABE 

fermentation may be thought to have an advantage here since it has been reported that not only 



For Repositories Pfromm Butanol paper 7.2  3/10/2010 4:20:42 PM   Page 14 of 30 

C6 sugars (from hydrolyzed cellulose) but also C5 sugars (from hemicellulose) may be 

fermented to mainly n-butanol using Clostridium spp. [30].   

Industrial scale data of fermentation-based ethanol production from switchgrass using both C5 

and C6 sugars is not publicly available.  Yeast strains developed at Purdue University and 

licensed by Iogen Corp. are perhaps promising for industrial scale fermentation of both C5 and 

C6 sugars to ethanol from hydrolyzed cellulosic feedstock [36].  Sedlak and Ho's value of 

0.41 kg ethanol per kg of combined C5 and C6 sugars fed will be used together with a 

switchgrass composition (dry) of 33.45wt% cellulose and 26.51wt% hemicellulose (balance 

lignin and other non-fermentables).  It will be assumed that all of the cellulose and hemicellulose 

is depolymerized to glucose (C6) and xylose (C5) during pre-treatment and all the resulting 

sugars are available for fermentation to either ethanol or ABE solvents without significant 

inhibition of the fermentation. 

Base case switchgrass bio-ethanol process 
As above, the base case will be an advanced yeast fermentation based bio-ethanol facility 

producing 149 Gg of pure ethanol per year with 360 days of operation per year.  With the yield 

and switchgrass composition shown above about 1,689 tonnes of switchgrass (dry) will need to 

be processed per day (> 600,000 tonnes per year). 

Comparison of ABE fermentation and yeast based fermentation to produce liquid fuels from 
switchgrass 

Comparison of Figure 6 and Figure 7 shows that ABE fermentation of switchgrass again is not 

competitive when comparing laboratory data for an advanced yeast with ABE fermentation 

under the assumptions above.  Other organisms to convert C6 and C5 sugars to ethanol have 

been proposed, but this has only been shown at the laboratory scale and with long fermentation 

times [37].  Modified yeast to ferment both C5 and C6 sugars are under development in other 

research groups in addition to Ho and coworkers [36]. 

Overall economic modeling of switchgrass fermentation to ethanol vs. ABE fermentation of 
switchgrass 

Large scale industrial experience of switchgrass production, harvest, transport, storage, and 

conversion to a biofuel via fermentation on a thousand tonne per day per facility scale is lacking 

at this time.  Therefore economic modeling would entail a great deal of uncertainty and the 
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economic outlook is perhaps best represented by the yield figures shown above.  One would 

conclude that ABE fermentation of C5 and C6 sugar from switchgrass is not competitive to 

fermentation of the same sugars by an advanced yeast. 

Discussion 
The analysis executed above based on carbon mass balances, LHV, and dynamic economic 

modeling shows that for available industrial-scale performance data n-butanol as a biofuel is not 

competitive from corn or a cellulosic feedstock.  The low LHV yield of Clostridium spp. based 

fermentation to n-butanol (and ethanol) is crucial as long as feedstock costs are a significant 

portion of the cost to produce the fuel.  The yield gap between state-of-the-art bio-ethanol 

production and bio-butanol is very significant, and bio-butanol would have to not only pull even 

but exceed bio-ethanol's LHV yield significantly to provide motivation for the relatively 

challenging fermentative n-butanol production process. 

One could perhaps argue that ABE fermentation products can be sold as chemicals, which was 

the basis of the n-butanol industry early in the 20th century.  The impact of increased n-butanol 

production on the market price however has to be carefully scrutinized and n-butanol as a 

chemical was not the focus here. 

Conclusions and Outlook 
It is acknowledged that all fundamental arguments (such as feedstock limitations, food vs. 

fuel, etc.) against the production of ethanol from biomass apply equally (or even more so, see 

below) to fermentation derived n-butanol assuming the current state of technology.   

Production of fuel n-butanol via ABE fermentation of biomass does not seem advantageous at 

this time compared to bio-ethanol.  The main reason is the low yield of fuel lower heating value 

per mass of biomass processed from the ABE fermentation, and additionally the low productivity 

per fermenter volume and time, compared to ethanol production via fermentation.  The economic 

disadvantage remains even when the acetone and the ethanol from the ABE process are assumed 

to be sold at market prices in addition to the n-butanol.  The touted advantage of transportation of 

n-butanol using existing pipelines is limited due to the relatively limited production volume and 

location of necessarily often remote biofuel facilities.  Biomass transportation cost and energy 

needs preclude heavily centralized processing.  Although metabolic and genetic engineering may 
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alleviate some or all of these disadvantages, this is perhaps years into the future and success of 

this basic research on the industrial scale is by no means guaranteed.   

Given the prevailing disadvantages of the ABE process, it would seem that investing resources 

in reducing the fossil fuel energy demand (and thereby water demand [38]) and other more easily 

accessible aspects of ethanol production would perhaps yield higher net economic and 

environmental benefits compared to developing bio-butanol.  Low yield, low titer, strict sterility 

requirements, phage infection risks, and downstream separation issues are a fairly formidable 

collection of obstacles for bio-butanol absent great advances in robust and industrial-scale 

microbiology of the process. 

The yield as lower heating value (for fuel) per mass of biomass processed would have to be 

more than doubled to make n-butanol production via Clostridium spp. attractive compared to 

bio-ethanol, considering the significantly more complex fermentation for bacteria-based n-

butanol vs. yeast-based ethanol. 
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Figures 
 

 

Figure 1: Overview flowcharts for bio-ethanol and bio-butanol via corn fermentation 
(detailed carbon balances below).  Carbon flows are schematically indicated (solid 
arrows).  Energy flows (outlined arrows) are shown roughly proportional (arrow width) 
to the energy.  No enzymes are added for pre-processing for ABE fermentation.  Both n-
butanol and ethanol from ABE fermentation via Clostridium spp. are credited as fuels.  
Some research and development approaches are noted for n-butanol fermentation and 
separation where applicable. (360 days of operation per year assumed) 
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Figure 2: Carbon balance based on the starch fraction of 1,373 tonnes of yellow dent corn 
(16wt% water) fermented per day by yeast. Yield is assumed at 0.30 kg pure ethanol per 
kg corn.  100% recovery of ethanol from fermentation broth is assumed.  One mol CO2 
per mol of ethanol is assumed.  Arrow thicknesses are roughly proportional to the carbon 
mass flows. 
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Figure 3: Carbon balance based on the starch fraction of 1,373 tonnes of yellow dent corn 
(16wt% water) fermented per day by ABE fermentation. Yield is assumed at 0.11 kg pure 
n-butanol per kg corn (50% of carbon atoms from starch go to solvents).  100% recovery 
of solvents from fermentation broth is assumed.  One mol CO2 per mol of ethanol is 
assumed.  Arrow thicknesses are roughly proportional to the carbon mass flows. 
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Figure 4: Projected product prices based on expected future market conditions and 
historical trends.  
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Figure 5: Net revenue under alternative production technologies and subsidy scenarios.  
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Figure 6: Carbon balance based on the C5 and C6 fraction of 1,689 tonnes of switchgrass 
(dry) fermented per day by an advanced yeast [36]. One mol CO2 per mol of ethanol is 
assumed.  Arrow thicknesses are roughly proportional to the carbon mass flows. 
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Figure 7: Carbon balance based on the C5 and C6 fraction of 1,689 tonnes of switchgrass 
(dry) fermented per day by ABE fermentation. The same yield as above for fermentation 
of starch from corn is here applied to fermentation of the C5 and C6 sugars (50% of 
carbon atoms from C5 and C6 sugars go to solvents).  100% recovery of solvents from 
fermentation broth is assumed.  One mol CO2 per mol of n-butanol is assumed.  Arrow 
thicknesses are roughly proportional to the carbon mass flows. 
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Table 1: Density and lower heating value (LHV) of fermentation products and gasoline 
for reference. 

 Density [15] 
Mg m-3  
at 20°C 

LHV 
kJ g-1 

n-Butanol 0.81 33.4* 
Ethanol 0.79 27.0* 
Acetone 0.79 28.7* 
Hydrogen  121.5 [16] 
Gasoline 0.72-0.78 [17] 43.4 [16] 

 

*LHV = (Heat of Combustion) – (enthalpy of evaporation of water formed during 

combustion, at 100 kPa); data from [15]. 
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Table 2: Baseline composition and component mass flows of yellow dent corn.  The base 
case assumes that 1.373 Gg of corn (16wt% water, as is) are processed per day of 
operation to reach 149 Gg as pure ethanol produced per year (assuming a yield of 0.30 kg 
pure ethanol per kg corn). 

 
 Mg day-1 wt%  wt% 

(dry 
basis) 

Mg of 
carbon day-1 

mol 
carbon 
day-1 

wt% of 
carbon in 

corn 
Water 219.6 16.0 0 - - - 
Starch 837.3 61.0 73 352.2 2.94 107 67.69 

Oil 52.2 3.8 5 41.2 3.43 106 7.92 
Protein 109.8 8.0 10 58.7 4.89 106 11.28 
Fiber 153.7 11.2 13 68.2 5.68 106 13.11 
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Table 3: Overall comparison of fermentation of corn to ethanol by yeast or to the fuels n-
butanol and ethanol by C. acetobutylicum (ABE fermentation). 

Yeast: ethanol C. acetobutylicum: n-butanol+ethanol 

18.1 Mmol C day-1 10.3 Mmol C day-1 

1,893 hm3 y-1 (20°C) 761 
 

129 

hm3 y-1 
(n-butanol, 20°C) 

hm3 y-1  
(ethanol, 20°C) 

4.0 PJ(LHV) y-1 2.3 PJ(LHV) y-1 
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Table 4: Base production cost assumptions on output basis. 

Item $ kg-1 (Product) 
Ethanol N-butanol 

Feedstock (corn) 0.380 1.853 
Microorganisms & 
chemicals 

0.072 0.085 

Labor 0.011 0.050 
Utilities 0.072 0.338 
Overhead (Admin, etc.) 0.016 0.016 
Total 0.550 2.342 
 


	Abstract
	Introduction
	Background
	The lower heating value as the basis of liquid bio-fuel production comparison
	The carbon mass balance as a tool to compare bio-ethanol with bio-butanol
	Yield assumptions
	Genetic manipulations and metabolic engineering to improve biomass fermentation to butanol
	Processing issues
	Corn pre-processing and limits on the feedstock concentration in the fermenter
	Practical issues of ABE fermentation compared to fermentation using yeast
	Impact of the final ethanol or n-butanol concentration in the fermenter on the productivity and capital cost
	Downstream separation issues

	Scope of this work

	Results
	Base case corn based bio-ethanol process
	Comparison of ABE fermentation and yeast based fermentation to produce liquid fuels from corn
	Overall economic modeling of corn fermentation to ethanol vs. ABE fermentation of corn
	Switchgrass as feedstock for bio-butanol vs. bio-ethanol
	Base case switchgrass bio-ethanol process
	Comparison of ABE fermentation and yeast based fermentation to produce liquid fuels from switchgrass
	Overall economic modeling of switchgrass fermentation to ethanol vs. ABE fermentation of switchgrass

	Discussion
	Conclusions and Outlook
	References
	Figures
	Tables

