

DATA AGGREGATION IN SENSOR NETWORKS

by

SURYA TEJA KALLUMADI

B.Tech, Jawaharlal Nehru Technological University, 2005

A THESIS

submitted in partial fulfillment of the requirements for the degree

 MASTER OF SCIENCE

Department of Computing and Information Sciences

College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2010

Approved by: Approved by:

Co-Major Professor Co-Major Professor
Dr. Gurdip Singh Dr. William H. Hsu

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by K-State Research Exchange

https://core.ac.uk/display/5166328?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract
Severe energy constraints and limited computing abilities of the nodes in a network

present a major challenge in the design and deployment of a wireless sensor network. This thesis

aims to present energy efficient algorithms for data fusion and information aggregation in a

sensor network. The various methodologies of data fusion presented in this thesis intend to

reduce the data traffic within a network by mapping the sensor network application task graph

onto a sensor network topology. Partitioning of an application into sub-tasks that can be mapped

onto the nodes of a sensor network offers opportunities to reduce the overall energy consumption

of a sensor network. The first approach proposes a grid based coordinated incremental data

fusion and routing with heterogeneous nodes of varied computational abilities. In this approach

high performance nodes arranged in a mesh like structure spanning the network topology, are

present amongst the resource constrained nodes. The sensor network protocol performance,

measured in terms of hop-count is analysed for various grid sizes of the high performance nodes.

To reduce network traffic and increase the energy efficiency in a randomly deployed sensor

network, distributed clustering strategies which consider network density and structure similarity

are applied on the network topology. The clustering methods aim to improve the energy

efficiency of the sensor network by dividing the network into logical clusters and mapping the

fusion points onto the clusters. Routing of network information is performed by inter-cluster and

intra-cluster routing.

Index Terms

Sensor Networks, In-Network Processing, Data Fusion, Task Graph Mapping, Data

Aggregation, Energy-Efficient Algorithms, Clustering

iii

Table of Contents
List of Figures ... vii

Acknowledgements .. ix

CHAPTER 1 - Introduction .. 1

1.1. Motivation .. 1

1.2. Introduction to wireless sensor networks ... 1

1.3. Routing strategies in a distributed sensor network environment ... 3

Address-centric routing ... 3

Data-centric routing .. 3

1.4. Problem definition and objective ... 3

Problem definition .. 3

Output format .. 4

Objective ... 4

Solution requirements ... 4

Proposed approaches for solution ... 5

1.5. Contributions ... 5

CHAPTER 2 - The role assignment problem ... 6

2.1. Task graph definition ... 6

2.2. Fusion operators ... 6

2.3. Aggregation operators .. 7

Network Topology .. 7

2.4. The Role assignment problem in sensor networks .. 9

Types of data fusion .. 9

Steiner tree problem .. 10

2.5. Role assignment problem and its resemblance to the Steiner tree problem 12

Assumptions .. 15

Formal problem definition .. 16

CHAPTER 3 - Background and related work... 18

3.1. Sensor hardware and deployment environment ... 18

iv

An example hardware configuration of a sensor network node.. 18

TinyOS .. 18

nesC ... 19

3.2. Modeling and simulation environments .. 19

NS-2 .. 19

OPNET .. 19

Ptolemy-II ... 19

TOSSIM .. 19

TinyViz ... 20

3.3. Literature review and existing approaches .. 20

Directed Diffusion .. 20

SPIN - Sensor Protocols for Information via Negotiation .. 21

PEGASIS - Power-Efficient GAthering in Sensor Information Systems 21

PEDAP - Power Efficient Data Gathering and Aggregation Protocol 22

APTEEN - Adaptive Periodic Threshold-sensitive Energy Efficient sensor Network

Protocol ... 22

3.4. Introduction to Clustering and Clustering in wireless sensor networks 23

Clustering .. 23

Data representation for cluster analysis .. 23

Proximity measures ... 24

Minkowski metric or Distance Measures ... 24

Jaccard's coefficient for binary vectors ... 24

Cosine similarity measure ... 25

3.5. Traditional clustering approaches .. 26

Partition techniques ... 26

Hierarchical techniques ... 26

Density-based techniques .. 26

3.6. Partition techniques .. 27

K-Means .. 27

K-means algorithm for finding K clusters .. 27

Time and space complexity .. 28

v

Formal algorithm for K-means ... 28

K-Medoid or Partition around medoids (PAM) .. 28

Basic K-medoid algorithm for finding K clusters... 29

Formal algorithm for K-medoids .. 29

3.7. Distributed clustering techniques for sensor networks .. 30

LCA - Linked cluster algorithm .. 30

Adaptive clustering ... 30

CLUBS .. 30

Hierarchical control clustering .. 31

LEACH - Low Energy Adaptive Clustering Hierarchy .. 31

HEED - Hybrid Energy-Efficient Distributed Clustering ... 31

CHAPTER 4 - Methodology .. 32

4.1. Approaches for role mapping .. 32

4.2. No fusion without Backbone ... 32

4.3. Backbone or Grid ... 35

4.4. No fusion with Backbone .. 36

4.5. Incremental mapping of fusion nodes .. 38

The role mapping problem .. 38

Phases in mapping a task graph to a topology .. 38

a) Role mapping and incremental reinforcement for optimization, phase 38

b) Maintenance phase ... 39

Algorithm mapping fusion nodes to the nodes ... 39

4.6. Heuristics for routing on Backbone ... 42

Assumption ... 42

4.7. Clustering ... 46

Requirements for a good clustering technique for a sensor network application 48

4.8. Formal definition of the network clustering problem .. 48

4.9. Density-Based Spatial Clustering of Applications with Noise (DBSCAN): 49

Ε-Neighborhood .. 50

Core objects .. 50

Directly density-reachable .. 50

vi

Density-reachable.. 50

Density-connectivity ... 51

Cluster ... 51

Complexity .. 52

4.10. Structured Clustering Algorithm for Networks (SCAN) ... 53

Neighborhood ... 54

Structural similarity .. 54

Ε-Neighborhood .. 55

Core objects .. 55

Directly structure-reachable .. 55

Structure-reachable ... 55

Structure-connectivity ... 55

Maximality .. 55

4.11. Distributed algorithm for DBSCAN and SCAN ... 56

4.12. Grid formation and role assignment in parallel ... 59

Framework .. 59

Assumptions .. 60

CHAPTER 5 - Experimental setup ... 63

5.1. Set up when topology is known ... 64

5.2. Set up when topology is not know ... 65

5.3. Visualisation of clusters ... 66

CHAPTER 6 - Results .. 68

6.1. Test cases for known topology .. 68

6.2. Effect of task graph on performance .. 68

6.3. Effect of grid size on performance .. 70

6.4. Test cases for a randomly generated topology ... 72

CHAPTER 7 - Conclusions and future work .. 74

7.1. Conclusions .. 74

7.2. Future work .. 74

References ……………………………………………………………………………………….76

vii

List of Figures

Figure 1.1 A typical WSN .. 2

Figure 2.1 Illustration of a sample task graph ... 7

Figure 2.2 Sample WSN ... 8

Figure 2.3 Illustration of Linear optimisation ... 10

Figure 2.4 Illustration of Steiner tree mapping ... 11

Figure 2.5 Illustration of a sample network topology ... 13

Figure 2.6 Mapping a task graph for uniform data rates ... 14

Figure 2.7 Mapping a task graph for non-uniform data rates ... 15

Figure 2.8 Mapping a Task Graph onto a Network .. 17

Figure 3.1 Directed Diffusion ... 21

Figure 3.2 Clustering .. 24

Figure 3.3 Hierarchical clustering ... 27

Figure 4.1 Generic routing without Backbone .. 35

Figure 4.2 Grid arrangement .. 35

Figure 4.3 Grid routing when all three are in same row or column .. 42

Figure 4.4 Grid routing when Source nodes lie on the same side of Fusion node 43

Figure 4.5 Grid routing when Source nodes lie on the either side of Fusion node 44

Figure 4.6 Single hop without clustering and Single hop with clustering 46

Figure 4.7 Multi-hop without clustering and Multi-hop with clustering 47

Figure 4.8 DBSCAN Node varieties ... 48

Figure 4.9 Epsilon neighborhood .. 50

Figure 4.10 Density Reachable ... 51

Figure 4.11 Density connectivity .. 51

Figure 4.12 Elements of SCAN .. 54

Figure 4.13 Node Neighborhood .. 54

Figure 5.1 TinyViz .. 63

Figure 5.2 TinyViz Experimental setup for Generic approach ... 64

Figure 5.3 TinyViz Experimental setup with Backbone Grids ... 65

viii

Figure 5.4 TinyViz Experimental setup for Random walk generated Topology 66

Figure 5.5 Cluster formation ... 67

Figure 6.1 Results for Balanced tree ... 69

Figure 6.2 Results for Unbalanced tree ... 69

Figure 6.3 Results for Greedy Fusion with varying Grid size .. 70

Figure 6.4 Results for Incremental Fusion with varying Grid size ... 71

Figure 6.5 Comparing Results of Greedy and Incremental Fusion with varying Grid size 71

Figure 6.6 Results for Distributed DBSCAN protocol ... 72

Figure 6.7 Results for Distributed SCAN protocol ... 73

ix

Acknowledgements

I would like to thank my major professor, Dr. Gurdip Singh for his continued

encouragement, invaluable guidance and ever-lasting patience. I owe my deepest gratitude to

him for funding me during my Master’s program. I am thankful to him for providing sound

advice and lots of ideas during the course of my Master’s.

I would also like to thank my co-major professor Dr. William H. Hsu for his support and

willingness to point me to various Machine Learning concepts that have been utilised in this

thesis. I am grateful to him for guiding me through the writing of this thesis and helping me by

making requisite corrections and revisions to the text that is about to be read.

I have also to thank Dr. Doina Caragea for agreeing to serve on my Master’s committee

and for her willingness to review the thesis and suggesting numerous changes to the text of this

thesis. I thank her for her time and effort.

1

CHAPTER 1 - Introduction

This chapter provides an overview of the thesis, a brief description of the basic concepts,

the problem definition and motivation behind the thesis.

1.1. Motivation

Data transmission in large scale, densely distributed sensor networks presents many

interesting and unique challenges. It is quite well known that data communication and message

passing are one of the most expensive and energy intensive operations in wireless sensor

networks [1]. Data aggregation and in-network processing techniques have been proposed as

important mechanisms for routing in wireless sensor networks [2] [3

1.2. Introduction to wireless sensor networks

]. The motivation behind

data aggregation in sensor networks is to combine incoming data from diverse sources, within

the network. This approach ensures that data redundancy is reduced if not completely eliminated,

thus minimizing the number of messages and conserving scarce resources such as energy.

Therefore, being able to transmit less data (the result of the aggregation over having to forward

all the packets) results in reduced energy consumption at the sensor nodes. The data aggregation

paradigm moves away from address-centric routing approach and focuses on a more efficient

data-centric approach. Using in-network processing the computation work is pushed into the

network, which performs aggregation before sending results to the base station. In this thesis we

study the affect of data aggregation on the number of messages transmitted within the network,

and show how network topology and network heuristics can help with efficient data aggregation

strategies.

Rapid advances in micro sensors, wireless networking and embedded systems have

enabled the development of distributed wireless sensor networks (WSNs). A WSN is a collection

of autonomous computing nodes that systematically gather and transmit data in a distributed

environment. In a sensor network the individual components interact in a distributed

environment to achieve a common objective. A wireless sensor network application consists of a

set of sensor nodes spread over a geographic region and the network collects information through

these nodes. Sensor networks are usually dense networks and nodes in these networks share a

common objective of data acquisition and information dissemination. Nodes are low cost

miniature processing devices and each device or a node of the sensor network has the capability

2

to sense an event and respond appropriately. The nodes acting as sensing devices have the ability

to store data on local memory, process information attained and communicate appropriately with

other nodes in the network. Nodes must cooperate with each other in a concerted manner to

improve network efficiency and enhance the effective life time of the network. Apart from

containing one or more sensors, these computing devices, commonly referred to as motes, are

equipped with a radio transceiver. The radio transceiver inside a mote receives and transmits the

data collected from one mote to another. Sensing motes present in the WSN sense and forward

data packets to a root mote, also known as the sink. Motes in a sensor network can be regarded

as tiny embedded computational devices with various constraints imposed upon them. Nodes in

sensor networks are resource constrained with respect to battery lifetime or energy levels,

processing speed and computational abilities, available memory, communication bandwidth and

range. Because these motes in a WSN neither have a wired means of communication nor any

human intervention involved in operating them, they have to be fully autonomous.

WSNs can be used in situations where data gathering and information processing is

expensive and hazardous. They can be utilized in a wide variety of applications and systems.

Figure 1.1 A typical WSN

3

Sensor networks can be used efficiently in varied fields such as object tracking [4],

intrusion detection, environment monitoring [5] [6

1.3. Routing strategies in a distributed sensor network environment

] etc. In addition, WSNs provide the

technology for a wide range of systems in the military, thus creating new capabilities for

intelligence gathering, reconnaissance and surveillance.

In a single sink, multi-source sensor network environment the sink node initiates the data

gathering processing by disseminating interests within the network. In the interest dissemination

phase the sink node intimates the network nodes about the kind of data it is interested in

gathering. In the next phase the sensor nodes that match the interests respond to the sink by

sending data to the sink. This data dissemination can be performed in multiple ways, and the way

data is routed from the sources to the sink i.e., the routing strategy affects the efficiency and

lifetime of a network. Routing strategies in sensor networks can be broadly classified into

Address-centric routing and Data-centric routing [7

Address-centric routing

].

 In Address-centric routing each of the individual source nodes try to independently

propagate data to the sink node on the shortest possible route. This end-to-end routing strategy

introduces overhead and excessive message transmissions into the network, introducing network

latency and reduced network life time.

Data-centric routing

 In Data-centric routing individual source nodes attempt to transmit data to the source

node by routing data through some common nodes in such a way that the intermediate nodes can

perform data aggregation, thus introducing efficiency and consequently increasing the network

lifetime.

1.4. Problem definition and objective

In this section we define the problem of data aggregation, the requirements and salient

features of an ideal solution and how the output of role mapping should look.

Problem definition

Once a WSN has been deployed, a critical issue that needs to be addressed is efficient

networked data gathering and information processing. This deals with the extraction and

dissemination of sensor data from the network. Sensor nodes are severely handicapped by the

limited amount of on board resources available to them. This includes energy, computing power

4

and memory. The most critical resource in a WSN is the energy or the battery lifetime of a mote,

making power conservation a critical aspect of WSN performance. Since the sensor nodes are

energy-constrained, communication between the base station and the sensors must be energy-

efficient. The key challenge in such an environment is the design of communication protocols

that maximize the network lifetime. Network Lifetime is the time at which the first sensor node

in the network dies i.e. it completely exhausts its battery resources. One of the generic ways of

gathering data from a WSN is to directly send periodically extracted raw data from the sensor

nodes to the sink. This, however, is a highly energy intensive exercise and thus a network life

curtailing approach to information processing in a WSN. On the other hand a task graph based

approach to gathering information from a sensor network can improve the energy efficiency and

the effective life time of the network by reducing the amount of data that is being transferred in

the network. Hence an appropriate way to describe the information which is to be retrieved from

a sensor network is by using task graph. This method allows the sensor network application to be

represented in the form of a task graph and is designed to describe the manner in which data has

to be gathered and how it must be further transformed. Given a task graph and a network

topology our objective is to map the task graph onto the topology in order to optimize a certain

parameter or set of parameters.

Data fusion or aggregation is a useful paradigm in sensor networks. The key idea is to

combine data from different sensors to eliminate redundant transmissions, thereby leading to

efficient use of the energy resources.

Output format

We have a task graph mapped onto the network topology. A node in the network can be

mapped to multiple nodes in the task graph.

Objective

Study how role assignment affects the scalability, reliability, robustness and

responsiveness of the network. We also see how role assignment affects the life time of the

network.

Solution requirements

The solution must be distributed and task mapping must be performed with limited

knowledge of topology. As the conditions in the network change continuously, mapping must

5

also be dynamic i.e., mapping is a continuous process and solution should take these factors into

account.

Proposed approaches for solution

This thesis will present an iterative, distributed role mapping algorithm that incrementally

assigns intermediate computation steps onto fusion nodes within the network .When the topology

of the network is known, network heuristics can be used for data aggregation in the network. We

also look at how the nature of the task graph and construction of a grid or Backbone affects data

aggregation in a structured sensor network topology. When the topology is not known we

construct a logical topology by implementing distributed density-based clustering algorithms for

data aggregation in sensor networks. Our proposed clustering solution simplifies data-centric

routing in a dense network by adopting an intra-cluster and inter-cluster data-centric routing

strategy for efficient data dissemination.

1.5. Contributions

My contributions to through thesis are

• Provided various approaches to role mapping in a sensor network environment.

• Explained the link between topology, task graph and the size of the grid Backbone and

network efficiency

• Implemented density-based clustering in a distributed sensor network environment.

• Showed how density-based clustering can an efficient technique to improve network

efficiency.

6

CHAPTER 2 - The role assignment problem

2.1. Task graph definition

We define a task graph as a directed acyclic graph which logically represents the data

flow in a network. Task graph can be visualised as a tree of logical functions. The leaves of the

tree correspond to the source nodes or sensing nodes that generate data. The internal nodes

correspond to the fusion nodes that accept data from multiple sources and fusion nodes perform

operations over the input data and generate data for consumption of other nodes higher in the

task graph hierarchy. The root of the task graph corresponds to the Sink and gateway node. The

edges represent the relationship that exists between two atomic execution units or tasks. There is

a data dependency between two execution units. The nodes or points in the task graph are the

execution points (that consume data from a previous node) of the application. These logical

nodes have to be mapped onto the sensor network topology. Data fusion nodes in the task graph

can have additional parameters (and, or, aggregation, max, min, fusion principle etc).In a

TinyOS application each logical unit can be considered as a component and flow of data from

one node to another can be considered as variables or messages that are relayed between the

components.

2.2. Fusion operators

Fusion operators are used to represent operations on a set of atomic values. These fusion

operators could be simple arithmetic operations, aggregation operations or even logical

operations.

The various kinds of fusion operations could be:

• SUM produces the sum of the incoming data streams.

• AVG produces the average of the incoming data streams.

• MIN produces the lowest value of the incoming data streams.

• MAX produces the highest value of the incoming data streams.

• COUNT produces the number of items in the incoming data streams.

• OR forwards a value if fusion condition is satisfied in any of the incoming data

streams.

• AND forwards a value if fusion conditions are satisfied in all the incoming data

streams.

7

2.3. Aggregation operators

Apart from various fusion operators nodes in task graph can also be associated with

various aggregation operators. The idea behind aggregation is that in a WSN sensed values in an

area are related and instead of forwarding multiple redundant values into the network, it would

be more efficient to send data that would be representative of the local conditions in a region.

The edges between the nodes have weights associated with them. These weights can be a

single tuple or an "n" tuple. The weights can represent

• Rate at which data flows

• Conditions in which data flows

• Data expansion or contraction ratio etc.

Figure 2.1 Illustration of a sample task graph

In Figure 2.1 Blue circles indicate the Source Nodes. Red circle is the Sink node and the purple

circles are the various kinds of fusion nodes, Arrows indicate the flow of data.

Network Topology
A network topology consists of a set of sensor network nodes .Each node is associated

with a geographical location (coordinates).The network nodes can be broadly classified as:

• Source node

• Sink nodes

8

• Aggregation nodes

• Data fusion nodes

• Bridge nodes/relay nodes

Source nodes are the nodes that generate data initially. Data could be either event

triggered or time triggered. These are mapped to the leaf nodes in the Task graph.

Sink nodes are the end consumers of the data. These nodes are mapped to the Root node

in the task graph. The sink nodes consume data generated by the task graph within the network.

Aggregation nodes are nodes that aggregate spatially related data. These nodes reduce

data redundancy in the network and also generate data that represents a geographical area.

Data Fusion nodes are the nodes that fuse two or more data flow paths into a single path.

Data fusion nodes are usually mapped to the internal computation nodes of the task graph that

has 2 or more inbound edges (It can have multiple outbound edges).For a data fusion node in the

task graph in-degree is greater than or equal to two.

Bridge nodes / relay nodes help transfer data between the above defined nodes.

Network topology can also be represented as a graph where the nodes represent the

network nodes and the edges represent connectivity between the nodes. An edge indicates the

presence of a single hop point to point connectivity between the nodes joined by the edge.

Figure 2.2 Sample WSN

9

The Figure 2.2 is an Illustration of sample a WSN, Green circles indicate the Sensing

Nodes. Red circle is the Sink node and the Blue circles are the Bridge nodes, Dotted lines

indicate the connectivity.

Nodes can have additional parameters such as

• Battery level

• Amount of free memory

• Average Length of task queue

2.4. The Role assignment problem in sensor networks

In this section we introduce the role assignment problem and provide a formal definition

to the role assignment problem. We also show how role assignment problem is similar to the

Steiner tree problem and why it is hard to find a solution to this optimization task.

A typical wireless sensor network topology consists of a large number of low-power

wireless sensors spread across a geographical area that can be used to monitor and control the

physical environment from remote locations and a centralized base station that receives data

from various sensor nodes. The “base station” also known as a “sink node” gathers data from its

source nodes and performs data processing tasks on the received information. As data

communication and transmission cost is much more resource intensive and thus more expensive

than data processing, the objective is to shift the data computation roles to within the wireless

sensor network provided that such a role assignment reduces the amount of data transmitted.

Task or role assignment involves mapping intermediate nodes of the application task graph onto

the WSN topology to decrease the cost of data dissemination in the network. Role assignment

drastically reduces the data traffic within the WSN and thus increases the lifetime of the network.

Network lifetime is application specific and can be defined as duration for first node to fail or

duration for at least one node to be active depending on the kind of application. Optimal

placement of these intermediate fusion nodes constitutes the role assignment problem. Ideal

placement of a fusion node i.e. task mapping would reduce amount of data transmitted within the

network.

Types of data fusion

Placement of fusion node is a function of amount of data transmitted and path length of

the tree.

10

Data fusion leading to data compression - In this case we try to map the fusion point as

close as possible to the previous data source [Fig. 2.3].

Data fusion leading to data expansion- In this case we try to map the fusion point as

close as possible to the consumer of the fused data [Fig. 2.3].

A Fusion application is a directed task graph and role assignment is similar to attaining a

Minimum Steiner Tree [8

Figure 2.3 Illustration of Linear optimisation

] in a directed task graph. Role assignment is an NP-Complete

problem.

Steiner tree problem

Given a weighted graph G with a set of vertices V and weighted edges E and a set of

terminals S such that S is a subset of V, the Steiner tree problem finds the minimum weighted

connected sub graph that includes all the terminals S. The additional vertices apart from the

terminal points S included to obtain the minimum Steiner tree are known as the Steiner points.

The Steiner tree problem comes under the class of NP problems [9].There are two main aspects

to the Steiner tree problem.

11

• Coming up with heuristics to determine what the Steiner points are.

• Choose Steiner points such that they contribute to a minimum cost.

Figure 2.4 Illustration of Steiner tree mapping

The Figure 2.4 illustrates a graphical Steiner tree problem. The green nodes represent the

Steiner points and the blue nodes represent the non-Steiner points. This is a graph theoretic

approach to the Steiner tree problem. In the graph theoretic approach to the Steiner tree problem,

let the terminal points to be connected be S and the additional vertices be set Z, both belonging

to a larger set of vertices V in Graph G. These vertices are connected by edges whose length is

given by the cost function C defined as

C: E→R+

The objective of minimal Steiner tree problem would be to minimize the total cost of the

tree obtained from the graph G.

Formally represented as

min V* ⊂V-S C(T(S ∪ V*)

12

Where the minimum cost is calculated over all the subsets V* ⊂V-S and T(S) and T(V*)

represents the minimum cost spanning tree of G with vertices a S.

2.5. Role assignment problem and its resemblance to the Steiner tree problem

Mapping a task graph onto a sensor network is similar to a Steiner tree problem where the

data sources in the task graph belong to the terminal set S and the nodes in the sensor network

are the set of vertices V.

Task graph can be defined as a tree of functions. Each fusion node is associated with one

or more functions, like aggregation, filtering, correlation etc.

Fusion node placement would be dependent on

• Location of its data generators

• In a direction towards the location of the next data consumer and the sink node

• Rate of data generation by the source nodes

• Distance between the data sources, sink and the next fusion node.

Optimal placement of the fusion node constitutes the task mapping problem.

Fusion node assignment will be closer to the node that has higher data rate in a direction

towards the Sink node. It is also dependent on the data expansion/contraction ratios of the fusion

function. A high data contraction ratio would tend to place the fusion node as close to the source

nodes as possible closer to the source node that has the higher data rate.

The optimal placement of the fusion node depends on

• The rate at which sensor data is generated by the source nodes.

• The rate at which fusion node generates the fused data.

• The data expansion or contraction ratio of the fused and source data.

• Path length between the source nodes, fusion nodes and the Sink node.

Thus role assignment problem in WSN is to find the optimal assignment of fusion roles

to the sensor nodes such that the mapping would minimize the amount of data transferred over

the network. Apart from the above conditions in which role assignment takes place, the selection

of a fusion node must be continuously and incrementally recomputed as the local conditions in

the sensor network might change dynamically. It would be highly inefficient to have a static

assignment of fusion nodes as the optimal placement of fusion node shifts as the data rates

13

among the source nodes can change continuously and the available energy levels with the nodes

might fluctuate. Thus the solution must also be adaptive and dynamic.

Role assignment can be accomplished under various conditions and assumptions. It could

be assumed that the global topology of the WSN is known and this topological information can

be used to map fusion roles onto the sensor network topology. Some amount of global

knowledge of the WSN has to be maintained at every node in the scenario where the topological

information is available to every node in the sensor network.

In other cases where a sensor network is deployed randomly, minimal amount of

topological information could be available. This information would be mostly local with each

individual node maintaining knowledge about nearby nodes. The solution to the role assignment

problem in such conditions would have a purely distributed decentralized approach.

Figure 2.5 Illustration of a sample network topology

The above figure [Fig. 2.6] illustrates a sample wireless sensor network topology with

nodes randomly distributed in a geographical area. The nodes within radio range can

communicate with each other. The Green nodes are the source nodes which generate a

continuous stream of data which might correspond to physical event occurring in the sensor

network. The Red node is the Sink node which acts as a gateway between the sensor network and

the outside world. The objective of the sensor network application is to detect events and

14

aggregate them at the Sink node. The Blue nodes are the bridge nodes which act as the

intermediate nodes used to route data between the Source nodes and the sink nodes.

Figure 2.6 Mapping a task graph for uniform data rates

The above figure [Fig. 2.6] illustrates a case where there data contraction is happening in

the sensor network and the rate at which data is generated by the source nodes is equal. The

orange nodes are the Steiner points which are chosen in such a way that the total path cost is

minimized. The Fusion point lies closer to the source nodes and in a direction toward the sink

node. Because the data rates of the information generated by the source nodes are equal the

fusion point tends to be equidistant from the Source nodes.

15

Figure 2.7 Mapping a task graph for non-uniform data rates

The above figure [Fig. 2.7] illustrates a case where the rate at which data is generated by

the source nodes is unequal and there is data contraction in the sensor network. One of the source

nodes produces information at a much higher rate than the other source nodes. The orange nodes

are the Steiner points which are chosen in such a way that the total path cost is minimized. The

Fusion point lies closer to the source node which produces more information and in a direction

toward the sink node. As the data rates of the information generated by the source nodes are

unequal the fusion point tends to be closer to the node that generates more data and further away

from the node with less data rate.

Assumptions

Sensor nodes for this problem are assumed to be static and communicate with the base

station in a multi-hop fashion. The sensor nodes periodically sense the environment and forward

data in each round of communication. The end user can acquire data from a base station which is

also a sensor node (the base station is usually referred to as a sink node). The intermediate nodes

on the path to the sink, aggregate and fuse the data they receive from the others and forward the

aggregate towards the sink. The problem is to find a routing mechanism that delivers data

16

packets collected from sensor nodes to the base station in such a way, that it maximizes the

lifetime of the sensor network.

Formal problem definition

We can define the task graph as a tree of Fusion operators. The leaves of the tree

correspond to the source nodes that produce a steady stream of information. The internal nodes

of the task graph are the various fusion operators like aggregation, logical, conditional operators

etc. The root of the task graph is a fusion operator at which all the streams culminate. The root

node is usually mapped to the sink/gateway node.

The aim of the task mapping problem is to map the fusion nodes such that it minimizes

the amount of information transferred in the sensor network. A sensor network can be viewed as

an undirected graph with the vertices playing the role of sensor node and the edges represent the

communication links amongst these nodes.

A task graph is defined as

N - A set of nodes in the task graph.

L- The set of links connecting the nodes in the task graph.

WL – Weight associated with link L in the task graph, WL could be an n tuple. It denotes the rate

at which data is transmitted between nodes n1 and n2 connected by link L.

A sensor network topology can be defined as:

S - A set of sensor nodes in the WSN topology.

C - The set of communication links connecting the nodes in S.

WC – Weight associated with the communication link C of the WSN topology S.

P(S1,S2) - The shortest path cost between two nodes S1 and S2 in the WSN S.

The Mapping of a task graph onto a sensor network topology can be defined as a

set M = {(n1,s1),(n2,s2),….} where the nodes n ∈ N,s ∈ S; the set of nodes n*={n1,n2,n3..} are

defined as the Steiner points of the task mapping problem.

The Cost of sending data between node n1 and n2 of the task graph mapped onto nodes S1 and

S2 in the WSN is defined as

D n1,n2 (WL12) = ∑ P(Sa,Sb) where Sa,Sb are the nodes that are part of the path between S1 and S2.

The role mapping problem can be defined as the assignment of fusion nodes or the nodes

of the task graph onto the WSN nodes such that it minimizes the global cost of communication

given by : ∑ D n1,n2 (WL12)

17

This role mapping problem is an instance of the minimal Steiner tree problem. The

Steiner tree problem is known to be NP-complete. Although Steiner tree approximation

algorithms are available, the algorithms are centralized and hence centralized Steiner tree

approximation approaches are not suitable for a distributed sensor network.

Figure 2.8 Mapping a Task Graph onto a Network

The above Figure 2.8 illustrates an instance of role mapping where a minimum Steiner

tree is obtained by mapping the task graph onto the network topology.

18

CHAPTER 3 - Background and related work

3.1. Sensor hardware and deployment environment

In this chapter we will give a brief overview of some popular sensor network deployment

and simulation environments.

An example hardware configuration of a sensor network node

The Berkley Mica Node [10

TinyOS

] is a typical sensor network sensor/actuator mote with a

CPU, power source, radio and several optional sensing elements. The processor is a 8-bit 4 MHz

Atmel ATmega 128L processor with 128KB of program memory, 4KB of RAM for data and

512KB of flash memory. The processor only supports a minimal RISC-line instruction set,

without support for multiplication or variable-length shifts or rotates. The radio is a 916 MHz

low-power radio, delivering up to 40 Kbps bandwidth on a single shared channel and with a

range of up to a few dozen meters. The radio consumes 4.8 mA in receive mode, up to 12 mA in

transmit mode and 5 micro A in sleep mode.

TinyOS is an open source event driven light weight energy efficient sensor board

operating system created by UCB [11]. The operating system handles the mote hardware, the

radio controller for wireless communication and available memory by gather data from on board

sensors, routing and sending messages to target nodes and controlling the energy consumption of

the node. TinyOS uses a component oriented architecture approach to minimize code overhead

and increase reusability. TinyOS' component-based architecture suits the application specific

nature of WSNs. This also gives the system a certain level of flexibility for future designs. To

conserve the available on board resources like battery power TinyOS incorporates an event based

execution model so that the applications are event driven and the resources used for event are

released once the event is handled. To optimize resource utilization the program components

respond to events or hardware interrupts. Networked nodes in a WSN may not be physically

accessible. Generally there is no end-to-end communication between the motes and the sink, and

radio messages being transmitted may not be received. For these reasons WSNs adopt ad hoc

network formation. TinyOS' multi-hop networking architecture takes care of this, as well as

providing support for more heterogeneous networks.

19

nesC

nesC is programming language designed for low power sensor nodes with high resource

constraints [12

3.2. Modeling and simulation environments

]. Because of the resource constraints on the mote hardware, nesC programming

language is used to exploit the modular design and reusable code concepts of TinyOS. nesC has

C like syntax and includes the code efficiency and simplicity of C language. nesC programs are

built by wiring individual components through a set of interfaces that specify the commands it

provides and the events it handle. Interfaces provide for bidirectional interaction between the

component and its user.

NS-2

NS-2 is a well-established open-source network simulator from UCB [13

OPNET

]. It is a discrete

event simulator with substantial support for simulation of TCP, routing and multi-cast protocols

over wired and wireless networks.

OPNET Modeler developed at MIT offers sophisticated modeling and simulation of

communication networks [14

Ptolemy-II

]. An OPNET model is hierarchical where the top level contains the

communication nodes and the topology of the network. It uses a discrete-event simulator to

execute the entire model.

Ptolemy-II integrates diverse models of computation, such as continuous-time, discrete

event, finite state machines, process networks, synchronous data flow, synchronous/reactive.

This capability can be used, for example to model the physical dynamics of sensor nodes, their

digital circuits, energy consumption, signal processing or real-time software behavior.

TOSSIM

TOSSIM is the TinyOS network Simulator. It can support a large number of motes and

accurately model the timing interactions between motes [15]. For these reasons, TOSSIM is a

suitable simulator for testing and evaluating WSNs. TOSSIM allows easy transition between

simulation and real-world WSNs. The event queue supplies events which are essentially

hardware interrupts. The arrival of each event allows TinyOS to continue running its

applications. TOSSIM makes use of a simple, but effective abstraction to model WSNs. It

considers a wireless sensor network to be a directed graph, each vertex representing a sensor

20

node and each edge having a bit error probability associated with it. This enables users to model

packet transmission failures or a perfect network with no transmission errors and failures, by

adjusting the bit rate errors. The event-driven nature of TOSSIM, which goes hand in hand with

that of a WSN, allows users to set breakpoints in what normally is a real-time simulation.

TOSSIM allows other programs to interact with the simulation. TinyViz is one such program.

TinyViz

TinyViz, a visualization tool for TOSSIM, is a Java based Graphical User Interface

(GUI). TinyViz is developed to aid the evaluation and debugging of WSNs by providing useful

visualizations of sensor networks. A number of basic plug-ins are supplied by TinyViz, allowing

users to monitor network traffic, examine debugging statements, set breakpoints which pause the

simulation when certain events take place, and set the radio connectivity range of motes based on

their relative distance on the display. TinyViz not only allows developers to extend the currently

available plug-ins, but also enables the implementation of application-specific visualizations

through the creation of entirely new plug-ins, which are run within the TinyViz engine. The

interaction between TOSSIM and TinyViz, as well as its plug-in based architecture, makes

TinyViz a suitable visualization tool for simulations.

3.3. Literature review and existing approaches

In this section we present some of the commonly used techniques for collecting data in a

sensor network environment.

Directed Diffusion

Directed Diffusion is a data-centric communication paradigm for sensor networks [16].

In directed diffusion, data generated by the sensors is named by attribute-value pairs. A sensing

task (initiated by the sink) is disseminated throughout the sensor network as an interest for the

named data. This interest dissemination sets up gradients within the network that point to the

neighbor from which an interest was received. Sensors matching the interest send their data to

the sinks along multiple gradient paths initially, and then gradually reinforce better paths.

Intermediate nodes aggregate the data and forward the fused data to the next node till it reaches

the sink. Fig. 3.1 gives an illustration of directed diffusion.

21

Figure 3.1 Directed Diffusion

SPIN - Sensor Protocols for Information via Negotiation

SPIN efficiently disseminates information among sensors in an energy-constrained

wireless sensor network [17

PEGASIS - Power-Efficient GAthering in Sensor Information Systems

]. Nodes running SPIN name their data using high-level data

descriptors, called metadata. SPIN nodes base their communication decisions both upon

application-specific knowledge of the data and upon knowledge of the resources that are

available to them. This allows the sensors to efficiently distribute data given a limited energy

supply.

In PEGASIS, the authors propose a new chain-based protocol called PEGASIS that

minimizes the energy consumption at each sensor node [18]. PEGASIS achieves reduction in

energy consumption as compared to LEACH since it requires only one designated node to send

the combined data to the base station. The key idea is that nodes organize to form a chain and

each node takes turns being the leader for communication to the base station. The data is

collected starting from each endpoint of the chain and aggregated along the path to the

designated head-node. Unlike LEACH (that uses hierarchical clustering), PEGASIS uses a flat

topology thereby eliminating the overhead of dynamic cluster formation. PEGASIS achieves a

better performance than LEACH by between 100% and 300% in terms of network lifetime.

22

PEDAP - Power Efficient Data Gathering and Aggregation Protocol

In PEDAP, the authors propose a new minimum spanning tree-based protocol called

PEDAP and its power-aware version (PEDAPPA) [19

APTEEN - Adaptive Periodic Threshold-sensitive Energy Efficient sensor Network

Protocol

]. The data packets are routed to the base

station over the edges of the minimum spanning tree. PEDAP outperforms LEACH and

PEGASIS by constructing minimum energy consuming routing for each round of

communication. The advantage with PEDAP-PA is that it minimizes the total energy of the

system while distributing the load evenly among the nodes. This leads to increased system

lifetime.

APTEEN uses an enhanced TDMA schedule to efficiently incorporate query handling

[20]. APTEEN provides a combination of proactive (by requiring nodes to periodically send

data) and reactive (by making nodes to respond immediately to time-critical situations) policies.

23

3.4. Introduction to Clustering and Clustering in wireless sensor networks

In this section we provide a brief overview of clustering, explain some popular clustering

approaches and methodologies and review the commonly used clustering approaches in sensor

networks.

Clustering

The objective of clustering is to divide data into meaningful groups and through this

process discover useful but not so obvious information present in large collection of data objects

[21

Data representation for cluster analysis

]. Clustering aims at grouping data such that objects within groups are similar while objects

in different groups are dissimilar [Fig. 3.2]. The greater the similarity within the objects of a

cluster, and the greater the difference between clusters, the better is the clustering technique. The

better clustering technique tries to maximize intra-cluster similarity and minimize the inter-

cluster similarity. Because clustering methods do not assume the presence of prior knowledge of

data to be clustered, clustering is called as an unsupervised learning technique.

Based on the need for clustering and the application domain, cluster membership can be

subject to multiple definitions.

A cluster can be defined as a grouping in which every member of the cluster is identical

to every other member of the cluster and less similar to other cluster objects. A threshold is used

as a similarity measure.

A cluster can also be defined as a set of objects in which all the members are similar to

the representative member of the cluster commonly called as a centroid or center of gravity than

with the centers of other clusters. The centroid could be a medoid in which case a cluster object

acts as a cluster center or a centroid i.e. the average of all the members of the cluster.

Clusters can also be defined as regions of high-density separated by low-density regions.

This approach to clustering is mostly used to discover clusters of arbitrary size and shape. This is

popularly known as density based approach to clustering.

Data objects in cluster analysis are usually represented as vectors in an n dimensional

space where each dimension represents an attribute or measurement that partially describes the

data object. Thus the data objects to be clustered are represented as an m-by-n matrix where each

of the m rows represent the individual data objects and the n columns represent the attributes of

the data vector.

24

Figure 3.2 Clustering

Proximity measures

Minkowski metric or Distance Measures

Minkowski metric is the most popular and most commonly used distance measure to

determine the proximity of two data objects [22

Jaccard's coefficient for binary vectors

]. This metric is a generalization of the normal

distance between two points in a Euclidian space. It is defined as

Pij=[∑k=1to d | xik-xkj |r]i/r

Where r is the distance parameter, d is the dimensionality of the data object and xik,xkj are the

respective kth components of the ith and jth objects of xi and xj.

The following is a list of the common Minkowski distances for specific values of r.

r=1 Manhattan distance aka L1 distance

r=2 Euclidian distance aka L2 distance, usually used to calculate the distance between two points

in the Euclidean space.

Jaccard's coefficient is used to calculate the similarity between binary vectors [23].

Jaccard's similarity coefficient has values between 0 and 1. A value of 1 indicates that the two

vectors are completely similar, while a value of 0 indicates that the vectors are not at all similar.

25

The comparison of two binary vectors, p and q, leads to four quantities:

M01 = the number of positions where p was 0 and q was 1

M10 = the number of positions where p was 1 and q was 0

M00 = the number of positions where p was 0 and q was 0

M11 = the number of positions where p was 1 and q was 1

The Jaccard coefficient measure is given by

J = (M11) / (M01 + M10 + M11)

Cosine similarity measure

The cosine measure, defined below, is the most common measure similarity between

non-binary vectors. If d1 and d2 are two document vectors, then

cos(d1, d2) = (d1 • d2) / ||d1|| ||d2|| is the cosine similarity measure

Where • indicates vector dot product and ||d|| is the length of vector d.

26

3.5. Traditional clustering approaches

Clustering methods are typically either based on distances (like partitioning and

hierarchical clustering) or on densities (like density-based methods).

Partition techniques
One of the most common approaches to cluster a data set is clustering by partitioning. As

the name suggests, clustering by partitioning creates a disjoint non-overlapping grouping of the

data set. Partitioning algorithms iteratively improve an initial partition of the data until a cost

function converges. Usually in partition algorithms the number of clusters into which the data

has to be clustered has to be mentioned. If K is the desired number of clusters, then partition

approaches typically find all K clusters at once.

Hierarchical techniques
Usually as the number of clusters are not known hierarchical techniques come up with a

nested sequence of partitions represented in the form of a binary tree structure where a single

universal cluster is at the root and individual data objects are at the leaf level [Fig. 3.3]. The

intermediate levels can be viewed as clusters formed by some proximity metrics. There are two

kinds of hierarchical techniques namely divisive (top-down) and agglomerative (bottom-up)

clustering methods. Divisive methods start with a single cluster that contains all objects and

recursively pick one cluster for splitting from the top. Starting with a single cluster and ending

up with individual data items. Agglomerative methods assign each object to an individual cluster

and then iteratively merge the two closest clusters together using a chosen distance function. By

choosing different levels in the hierarchical tree we can obtain a different clustering of the data

set.

Density-based techniques

Density based clustering techniques define clusters as dense regions separated by

sparsely populated regions. Density of a region can be measured by either a simple count of the

objects or by using complex models for density determination. Density based techniques are

useful for detecting arbitrarily shaped clusters in noisy settings.

27

Figure 3.3 Hierarchical clustering

3.6. Partition techniques
K-Means

The K-Means algorithm is a partition based clustering technique. It is based on the idea

that a center point of a cluster can represent the cluster .K-Means uses the concept of a centroid

which is nothing but the center of gravity of the cluster which is the mean or median of all the

data points associated with that particular cluster. The centroid in K-means may or may not be an

actual data point [24

K-means algorithm for finding K clusters

].

I. Select K points as the initial centroids.

II. Assign each point in the data set to the closest of the K centroids.

III. Recalculate the centroid of each cluster.

IV. Repeat steps 2 and 3 until the centroids don’t change.

Choosing the initial centroids is the critical step of the K-means clustering. In K-means

algorithm the initial choice of the K centroids can determine the final outcome of the clustering.

Depending on the initial choice of the centroids clustering solution can converge to either a

global minimum or a local minimum.

28

Time and space complexity

As only the n dimensional data vectors are stored to represent each of data points, the

space complexity of the K-means algorithm is O(mn),where m is the number of points in the

data set and n is the number of attributes or dimensions of each data point. The complexity of the

K-means algorithm is O(I*K*m*n), where I is the number of iterations required for the K-means

algorithm to converge. I is usually a small value and can be easily bounded as most changes

occur in the first few iterations. Thus, K-means is linear in m, the number of points, and is

efficient, as well as simple, as long as the number of clusters is significantly less than m.

Formal algorithm for K-means

Given the data set X, choose the number of clusters 1 < c < N.

Initialize with random cluster centers chosen from the data set X.

Repeat for l = 1, 2…

Step 1 Compute the distances

D2ik = (xk - vi)T (xk - vi); 1 ≤ i ≤c; 1 ≤k ≤N

Step 2 Select the points for a cluster with the minimal distances, they belong to that cluster.

Step 3 Calculate cluster centers

vi = ∑j=1 to Ni xi / Ni until ∏ k=1 to n max|V(l)-V(l-1)| ≠0

K-Medoid or Partition around medoids (PAM)

The K-medoids algorithm is a partition based clustering technique similar to the K-Means

technique [25]. The objective of K-medoid clustering is to find a non-overlapping set of clusters

such that each cluster has a most representative point, i.e., a point that is most centrally located

with respect to some measure, e.g., distance. In K-medoid we use the concept of a medoid, which

is the most representative (central) point of a group of points belonging to the cluster. By

definition a medoid is required to be an actual Data point. Thus unlike K-Means, in K-Medoid

the center point which represents the cluster must essentially be a data point.

29

Basic K-medoid algorithm for finding K clusters.

I. Select K initial points. These points are the candidate medoids and are intended to be the

most central points of their clusters.

II. Consider the effect of replacing one of the selected objects (medoids) with one of the

non-selected objects. Conceptually, this is done in the following way. The distance of

each non-selected point from the closest candidate medoid is calculated, and this distance

is summed over all points. This distance represents the “cost” of the current

configuration. All possible swaps of a non-selected point for a selected one are

considered, and the cost of each configuration is calculated.

III. Select the configuration with the lowest cost. If this is a new configuration, then repeat

step 2.

IV. Otherwise, associate each non-selected point with its closest selected point (medoid)

and stop.

Formal algorithm for K-medoids

Given the data set X, choose the number of clusters 1 < c < N.

Initialize with random cluster centers chosen from the data set X.

Repeat for l = 1, 2…

Step 1 Compute the distances

D2ik = (xk - vi)T (xk - vi); 1 ≤ i ≤c; 1 ≤k ≤N

Step 2 Select the points for a cluster with the minimal distances, they belong to that cluster.

Step 3 Calculate k-means cluster centers

vi = ∑j=1 to Ni xi / Ni
Step 4 Choose the nearest data point to be the cluster center

D2ik = (xk – v*i)T (xk – v*i)
and

xi* = argmini D2ik* => vi= xi*

Until ∏ k=1 to n max|V(l)-V(l-1)| ≠0

30

3.7. Distributed clustering techniques for sensor networks

Distributed clustering techniques are used in sensor networks to increase scalability of

traditional protocols and reduce network delays. To support scalability the sensor nodes are

grouped into non-overlapping disjoint clusters that interact with each other [26

LCA - Linked cluster algorithm

]. Clustering

simplifies routing by reducing the size of routing table and divides the routing problem into

intra-cluster and inter-cluster routing and in the process create a logical topology for a sensor

network whose nodes are not location aware. The following are some clustering algorithms in a

WSN environment.

The focus of LCA is primarily on forming an efficient network topology that can handle

the mobility of nodes [27

Adaptive clustering

]. In LCA clustering, cluster heads are joined to form a Backbone

network to which cluster members can connect while on the move. The Objective of the

proposed distributed algorithm is to form clusters such that a Cluster head is directly connected

to all nodes in its cluster. LCA is thus geared for maximizing network connectivity. The

algorithm assumes synchronized nodes and time-based medium access.

Adaptive Clustering looks to optimally control the cluster size by balancing the interest in

the spatial reuse of channels, which is increased by having small clusters, and data delivery

delay, which gets reduced by avoiding inter-cluster routing, i.e. large cluster sizes[28

CLUBS

]. In

adaptive clustering every cluster would use a distinct code resulting is simplified implementation

and great potential for meeting the Quality of Service requirements often found in multimedia

applications.

CLUBS is an algorithm that forms clusters through local broadcast and converge in a

time proportional to the local density of nodes [29]. Basically, cluster formation in CLUBS is

based on network connectivity, cluster diameter and intra-cluster connectivity within clusters.

The algorithm forms clusters with a maximum of two hops. Each node in the network takes part

in the cluster formation process by choosing a random number from a fixed integer range. Then

it counts down from that number silently. If the countdown was not interrupted from any other

neighboring node and it reaches zero, it announces itself Cluster Head and broadcasts a

‘‘recruit’’ message. When a neighboring node receives the recruit message that comes within

31

two-hop diameter boundary, it stops the countdown, accepts the invitation and joins the cluster.

A node that has joined a cluster is called ‘‘follower’’ is no longer allowed to compete for being a

Cluster Head.

Hierarchical control clustering

Objective of Hierarchical control clustering is to form a multi-tier hierarchical clustering

network [30

LEACH - Low Energy Adaptive Clustering Hierarchy

]. A number of cluster’s properties such as cluster size and the degree of overlap,

which are useful for the management and scalability of the hierarchy, are also considered while

grouping the nodes. In the Hierarchical control clustering scheme. Node in the WSN can initiate

the cluster formation process. Initiator with least node ID will take precedence, if multiple nodes

started cluster formation process at the same time. The algorithm proceeds in two phases: Tree

discovery and Cluster formation. The tree discovery phase is basically a distributed formation of

a Breadth-First-Search (BFS) tree rooted at the initiator node. Every node updates its sub-tree

size when its children sub-tree size change. The cluster formation phase starts when a sub-tree on

a node crosses the size parameter.

The LEACH protocol is an elegant solution to the data aggregation problem where

clusters are formed in a self-organized manner to fuse data before transmitting to the base station

or sink [31]. In LEACH, a designated node in each cluster, called the cluster head is responsible

for collecting and aggregating the data from sensors in its cluster and eventually transmitting the

result to the base station. An improved version of LEACH, called LEACH-C [32

HEED - Hybrid Energy-Efficient Distributed Clustering

] does cluster

formation at the beginning of each round using a centralized algorithm by the base station.

HEED [33] is a distributed clustering scheme in which cluster head nodes are picked

from the deployed sensors. HEED considers a hybrid of energy and communication cost when

selecting cluster head nodes. Unlike LEACH, it does not select cell-head nodes randomly. Only

sensors that have a high residual energy can become cell-head nodes. In HEED, each node is

mapped to exactly one cluster and can directly communicate with its cluster head.

32

CHAPTER 4 - Methodology

4.1. Approaches for role mapping

We consider two major approaches for role mapping.

I. When the network topology is known

In this scenario we assume that the network topology is available before hand , the

network has a regular structure and nodes are location aware and nodes are associated

with coordinates. We assume that the network nodes are stationary and they have an idea

of what the location of their neighbors is.

II. When the network topology is not known

In this scenario we assume that the network topology is not available before hand and the

network has a random asymmetric structure and nodes are not location aware. We assume

that the network nodes are stationary and they have no idea of what the location of their

neighbors is.

We propose multiple methods for the above stated approaches.

When the network topology is known we can use the following techniques for role mapping

I. No fusion without Backbone.

II. No fusion with Backbone.

III. Incremental mapping of Fusion Nodes in a grid.

When the network topology is not known we propose the following techniques for role mapping

IV. Clustering techniques.

V. Incremental mapping of Fusion Nodes with clusters.

4.2. No fusion without Backbone

In no fusion without Backbone all the sensing nodes send individual data streams to the

sink node independently and no data fusion takes place within the sensor network. No Fusion

without Backbone is a case of many-to one communication. The objective of implementing a

basic sense and send protocol is to set a baseline for other role mapping schemes. Routing

without fusion would involve more data traffic in the network as every source node in the

wireless sensor network would aim to send data to the sink through the shortest possible path

available between the source node and the sink node. No fusion or aggregation of any type

33

would be implemented within the network. The task graph is completely mapped to the sink

node. The sink node would be responsible for fusing and aggregating all the data that it gathers

from its respective source nodes. Thus, in this approach of sending data to base station without

any fusion occurring in the network, one can expect the life time of the network to be

considerably reduced when compared to other methodologies which take advantage of local

heuristics to perform fusion and aggregation of data streams internally in the network.

This approach works by constructing a minimum weight tree rooted at the sink. Flooding

is one of the most widely used data dissemination techniques used for communication in sensor

networks but these methods have some inherent limitations. In flooding related techniques each

sensor node broadcasts data packet to its neighbors and this process continues until the data

packet reaches the destination node. However, the problem with flooding is that it results in

unrestricted creation of duplicate packets throughout the network, thus leading to packet

congestion and energy consumption.

The protocol for routing data messages from any sensor to the base station in a sensor

network is as follows. The basic sense and send protocol for sending source messages to the sink

maintains an incoming minimum weight tree rooted at the base station. The tree is constructed as

follows.

I. Every sensor in the wireless sensor network topology is assigned a unique

identifier or local address that distinguishes a sensor from other nodes in the

network.

II. Each and every sensor node calculates the address identifier of its neighboring

nodes based on its own identifier.

III. The sink node periodically broadcasts a beacon message to all its neighbors. All

the neighbors within the broadcast range can receive a beacon message.

IV. The source identifier of the beacon message as well as the level or hop count from

the Sink node to the node sending the beacon message is embedded within the

message.

V. Whenever a node receives a beacon message with a level less than the current

level of the sensor node, it updates its parent in the tree as the source of the

beacon message, increment the hop count and broadcast the beacon message.

Thus, a logical minimum weight tree is formed over the sensor network, where

34

every node chooses the node that provides shortest path to the sink node as its

parent in the logical tree.

VI. The Source nodes start sending data through directed uni-cast messages to its

parents in the logical tree formed.

VII. Whenever a node receives a uni-cast data message it forwards the data message to

its parent node in the tree.

TreeFormation()

{if Node receives packet for the first time then

Mark Node as received

Parent = Sourceofpacket

Source = Node

Increment Level Field

Rebroadcast packet

end if

else if Node receives packet

if Received Level < Current level

Parent = Sourceofpacket

Source = Node

Increment Level Field

Rebroadcast packet

end if

end if

 }

35

Figure 4.1 Generic routing without Backbone

The above diagram [Fig. 4.1] illustrates routing source data to the sink node without any

fusion taking place within the network. Each and every source node tries to route data along the

shortest path to the source node.

4.3. Backbone or Grid

Backbone or Grid in a sensor network topology can be considered as a set of high energy

nodes that are placed uniformly over the sensor field. The intuition behind grid based routing is

to prolong the network lifetime by routing data over a set of high performance nodes. Fully

charged battery powered sensor nodes are randomly placed in the field with a sink and a set of

sensor nodes. The sensor field is divided into square-shaped grids of user defined grid size. Fig

4.2 illustrates the arrangement of the nodes in the form of a grid.

Figure 4.2 Grid arrangement

36

The objectives of using a grid are to

I. Extend network lifetime by only routing through grid nodes.

II. Maintain network connectivity and prolong network partition time.

Note: The terms Grid Nodes and Backbone Nodes would be used interchangeably to denote the

high energy nodes present in the network.

4.4. No fusion with Backbone

In no fusion with Backbone all the sensing nodes send individual data streams to the sink

node independently over a network of Backbone nodes also termed as grid nodes and no data

fusion takes place within the sensor network. No Fusion with Backbone is a case of many-to one

communication. As detailed earlier routing within a network by flooding would result in more

data traffic as every source node in the wireless sensor network would aim to send data to the

sink through the shortest possible path available between the source node and the sink node. In

this approach no data fusion would be implemented within the network. The Task graph is

completely mapped to the sink node. The sink node would be responsible for computation and

aggregation of data that it gathers from its respective source nodes.

The protocol for routing data messages from any sensor to the base station in a sensor

network over a set of Backbone nodes is as follows. The basic sense and send protocol for

sending source messages to the sink maintains an incoming minimum weight tree rooted at the

base station. The tree construction over the Backbone is detailed below.
Every sensor in the wireless sensor network topology is assigned a unique identifier or

local address that distinguishes a sensor from other nodes in the network. The sensor nodes in the

network form a logical two dimensional grid in the network topology.

I. Each and every sensor node calculates the address identifier of its neighboring

nodes based on its own identifier.

II. The sink node periodically broadcasts a beacon message to all its grid neighbors.

All the neighbors within the broadcast range can receive a beacon message but

only the Backbone nodes can act on the beacon message.

III. The source identifier of the beacon message as well as the level or hop count from

the Sink node to the Grid node sending the beacon message is embedded within

the message.

37

IV. Whenever a Backbone node receives a beacon message with a level less than the

current level of the sensor node, it updates its parent in the tree as the source of

the beacon message, increment the hop count and broadcast the beacon message.

Thus a logical minimum weight tree is formed over the Backbone nodes of the

sensor network where every Grid node chooses the Grid node that provides

shortest path to the Sink node as its parent in the logical tree.

V. The non-grid nodes within the sensor field choose the nearest Backbone nodes. In

case there are multiple Backbone nodes within the vicinity of a a non-grid node it

chooses the Grid node closest to the Sink.

VI. The Source nodes start sending data through directed uni-cast messages to its

Backbone parents in the logical tree formed.

VII. Whenever a Backbone node receives a uni-cast data message it forwards the data

message to its parent node in the tree.

TreeFormationGrid()

{if Node receives packet for the first time then

Mark Node as received

Parent = Sourceofpacket

Source = Node

Increment Level Field

If Node is GridNode

Rebroadcast packet

end if

end if

else if Node receives packet

if Received Level < Current level

Parent = Sourceofpacket

Source = Node

Increment Level Field

If Node is GridNode

Rebroadcast packet

38

end if

end if

end if

}

4.5. Incremental mapping of fusion nodes

The role mapping problem

Given N = (Vn, Em), namely, the network topology, and T = (V't, E't), namely, the task

graph, and an application-specific cost metric M, the goal is to find a mapping f : V't → Vn that

minimizes the overall cost C. Here, Vn represents nodes of the sensor network and Em represents

communication links between them. In the task graph, V't represents fusion functions (filter, data

fusion, etc.) and E't represents flow of data between the fusion points. A mapping f : V't → Vn

generates an overlay network of fusion points to network nodes; implicitly, this generates a

mapping l: E't → {e|e ∈ En} of data flow to communication links. The focus of the role

assignment algorithm is to determine f. Here we assume that the global network topology is not

known and must be discovered.

Phases in mapping a task graph to a topology

a) Role mapping and incremental reinforcement for optimization, phase

In the role mapping phase an approximate assignment of the fusion points is made to the

Sensor network grid nodes. If there is data contraction taking place then the fusion node

placement is made in such a way that the mapped grid node is closer to the source nodes and

away from the Sink node but in a direction towards the sink node. Initial placement can be

obtained by calculating a weighted centroid of the Source and the Sink nodes. The weights are

user defined and can be calculated as a function of the size of the network and the distance

between the nodes. Initial placement of the fusion node plays a role in finding the optimum

placement of the fusion node. The placement of the fusion node is refined iteratively so as to

attain optimal role assignment of the fusion node onto the network nodes. Initially the mapping

of the Source and Sink nodes is known and this is the only role mapping that would remain

constant during role assignment. The optimal placement of the fusion point is not only dependent

on the location of the child nodes but also dependent on the mapping of the parent nodes onto the

39

sensor network topology. Thus, the initial role mapping is performed in a bottom-up manner

from the child node to the parent node and the incremental reinforcement is performed

recursively in top-down manner from the parent node to the child node. Thus, the initial role

mapping and incremental refinement phases are performed in an interleaved manner so as to

achieve optimal placement of fusion points onto the network. In the incremental reinforcement

phase a grid node that has been assigned a fusion role informs its neighbors in a user defined

region of the data fusion cost. Upon receiving this message all the neighbors compute their own

data fusion cost and decide if they are more suitable to play the fusion role than the current

fusion node. If a neighboring node decides that it is more suitable for performing the fusion role,

it intimates the current fusion node of the data fusion cost. A role transfer is performed by the

Fusion node to the neighbor node with the least cost of data fusion. After every role transfer the

state of the network moves towards the optimum role mapping state. The network reaches a

constant state after the role mapping phase is performed. The role mapping phase can be

terminated explicitly after a user defined number of iterations are completed.

b) Maintenance phase

In the maintenance phase the residual energy levels of the nodes are constantly monitored

and a role transfer operation is performed after a threshold is breached. The incremental

reinforcement can be performed after a certain number of role transfers have been performed.

Algorithm mapping fusion nodes to the nodes

If Node is event source & data ready
forward data to Geographical data Aggregator

If Node is data Aggregator
Aggregate data and forward data

If Node receives data From Multiple Sources && data items map task graph && node not
already a fusion node && other fusion nodes present

calculate data fusion cost

{If data fusion cost <threshold
Node.Fusion_region=true
Fuse data and process data till we reach next fusion point in task graph

40

forward this data into network
}

else forward data

If Node receives fused data && is a fusion node for that fused data
Calculate data transfer cost from previous source of fused data
Send data transfer + data fusion cost back to the previous fusion node

If fusion node receives feedback from forward fusion region calculate average cost of fusion and
data transfer
Start Timer
Publish this cost in fusion region
Timer expires Set Node as Fusion Node'

If node receives average Fusioncost && Received Cost < Average Fusion cost
Send Negative Reply

Mapping the intermediate computation stages Onto the intermediate Nodes

Node is in Fusion Channel
while(incremental Computation overhead <data transfer cost+ computation cost at next node)
Assign task to Node
else
propogate Task to next node in fusion channel
If Node.dataReady==true
{
If Node.isSource==true And Node.isAggregator==false
Node.Send(data,Aggregator_id)
else
If Node.isAggregator==true
Node.Aggregate(Data_Set)
}

If Node.isAggregator==true And Node.dataReceived==true
Node.Aggregate(Data_Set)
Node.Send(Data,Metric)

If Node.dataReceived==true And Received_data_Metric > Node.Threshold
{

41

Node.setDataType=True
Node.Send(data,Metric)
else
Node.dropData
}

If Node.dataTaskMap==True
{
If(Node.fusionCost(Data)<threshold)
Node.fusionRegion=true
Node.Send(fusedData,Metric)
Node.sendFeedBack(Cost)
}

If Node.receivesFeedBack==True
Node.publish(ForwardFusionNode)

If Node.fusionNode==false
Node.SendFusionNodeId(FusionNode,Metric)

If Node.fusionRegion==true And Node.ReceiveFusionNodeId==true
Node.setFusionNodeId(FusionNode)
else
If Node.fusionRegion==false And Node.ReceiveFusionNodeId==true
Node.SendFusionNodeId(FusionNode,Metric)

42

4.6. Heuristics for routing on Backbone

In this section we describe the heuristics for routing on a Backbone and come up with

algorithms for efficient routing in the presence of a grid structured Backbone.

Assumption

For routing on a grid we assume that two data nodes and one fusion nodes are identified

.The data nodes know the position of each other and the fusion node. Let the coordinates of the

Data Nodes be (x1,y1) and (x2,y2) and the Fusion node Coordinates be (xf,yf)

Case1

All 3 lie on the same row or column:

Figure 4.3 Grid routing when all three are in same row or column

When all the three nodes lie on the same row or column then we send data directly to the sink

node [Fig. 4.3].

If (x1==x2==xf)

{

y1<yf<y2 fusion node =(xf,yf)

else

if |y1-yf| <|y2-yf|

fusion node = (x1,y1)

else

fusion node =(x2,y2)

}

43

Else

If (y1==y2==yf)

{

x1<xf<x2 fusion node =(xf,yf)

else

if |x1-xf| <|x2-xf|

fusion node = (x1,y1)

else

fusion node =(x2,y2)

}

Case 2

All 3 lie in a straight line and the fusion node is in-between the two data nodes

if |x1-xf| +|x2-xf |+ |y1-yf| +|y2-yf|== |x1-x2| +|y2-yf|

reach fusion node

Case 3

The fusion node lies on the same side of the data nodes.

Figure 4.4 Grid routing when Source nodes lie on the same side of Fusion node

44

There could be two scenarios

a) Data nodes are on either side of the fusion node [Fig. 4.5].

b) Data nodes are on the same side of the fusion nodes [Fig. 4.4].

Figure 4.5 Grid routing when Source nodes lie on the either side of Fusion node

if |x1-xf| +|x2-xf |+ |y1-yf| +|y2-yf|> |x1-x2| +|y2-yf|

 {

 If x1<xf<x2 or y1<yf<y2

 {//data points are on either side of the fusion point

 If |x1-x2| >|y1-y2|

 { Travel along x-axis

 if |y1-yf |< |y2-yf|

 New fusion point =(xf,y1)

 Else

 New fusion point =(xf,y1)

 }

 else

 { Travel along Y-axis

 if |x1-xf |< |x2-xf|

 New fusion point =(x1,yf)

 Else

45

 New fusion point =(x2,yf)

 }

 }

 Else

 {//Data points are on the same side of the fusion point

 If(|x1-x2| >|y1-y2|)

 { if(|y1-yf| >|y2-yf|)

new fusion point = (x1,y2)

 else

new fusion point = (x2,y1)

}

Else

{ if(|x1-xf| >|x2-xf|)

new fusion point = (x2,y1)

 else

new fusion point = (x1,y2)}

}

46

4.7. Clustering

In this section we specify the need for clustering in random topology and describe the

distributed implementation of density based clustering methods.

Clustering the nodes in a sensor network can be an effective technique for optimizing

network lifetime, achieving efficient scalability, and load balancing. In this section we propose

energy-efficient approaches for clustering nodes in ad-hoc sensor networks. Clustering can be

helpful when the topology of a network is not known and when an application has to scale over a

large number of nodes. Some Clustering techniques are inherently distributed and can be adapted

in a sensor network environment. Applications that need efficient data aggregation and fusion in

a scalable environment are natural candidates for using clustering approaches for example the

average temperature of a topological region can be calculated efficiently by calculating the

temperature of the clusters associated with the topological region, this approach not only

eliminates redundant data transmission but also ensures that some amount of computation and

data processing shifts within the network thus making the application more responsive.

Clustering can not only be utilised for data aggregation and data fusion but also for routing in the

network.

The following images[Fig. 4.6] illustrate the need for clustering in a single hop

environment where messages are sent directly to the sink node from the individual sensing

nodes. By clustering the sensor field and aggregating or fusing data in the individual clusters a

lot of messages can be saved this approach not only improves the residual energy levels in the

network thus extending the network life time it also makes the approach more scalable to larger

networks.

Figure 4.6 Single hop without clustering and Single hop with clustering

47

Similarly the following images[Fig 4.8] illustrate the advantage of clustering in a multi-

hop environment where messages are routed to the sink node from the individual sensing nodes.

By clustering the sensor field and aggregating or fusing data of the individual clusters a lot of

messages can be saved. Clustering can simplify routing in a multi-hop environment by dividing

the routing function into intra-cluster routing and inter-cluster routing. This design can help

aggregate data within the clusters and also fuse related data among clusters. Clustering can be an

efficient technique for in-network data processing to extend the overall lifetime of a sensor

network.

Figure 4.7 Multi-hop without clustering and Multi-hop with clustering

The following are the advantages of Clustering as proposed in the above approaches

I. Clustering reduces resource contention thus increasing network life time

II. Cluster states give a partial picture of the Network state and aggregating Cluster states the

overall network can be captured.

III. Clustering provides an efficient way to hierarchically structure a network topology and

provides a clean and elegant way to logically represent a network whose topology is not

known.

IV. Efficient network routing can be achieved by reducing the routing problem as routing

through an overlay of clusters which effectively has a relatively smaller network

diameter.

48

Requirements for a good clustering technique for a sensor network application

I. Clustering must be distributed; it should not be either initiated or terminated by a central

node.

II. It should not make any assumption about the topology, density or distribution of nodes

over the Sensor network.

III. All the nodes are assumed to be of similar capabilities.

IV. The clustering mechanism must terminate within fixed number of iterations and must be

independent of the topology, size or the scale of the network.

V. Clustering should incur limited and negligible overhead and maintenance of clusters

should not impede with the regular working of the sensor network application.

VI. The result of clustering should be a uniformly logically segmented network.

4.8. Formal definition of the network clustering problem

Let the Network topology consist of K nodes with identical capabilities. The objective of

the clustering problem is to segment the topology logically into a set of “K” clusters; each cluster

is associated with a cluster head and a set of core nodes. After clustering each node Ni in the

network is mapped at most to one of the K clusters. The K clusters have disjoint membership and

must cover the entire network topology. Within each cluster every node is either a core node or a

dependent node which is in direct communication range with one of the core nodes. One of the

core nodes is selected as a Cluster head. Thus every node in a connected network is either a core

node or a border node. A node which is not in direct communication range with the core nodes is

classified as an outlier.

Figure 4.8 DBSCAN Node varieties

For a clustering approach to be efficient the following requirements must be met

I. Clustering must be completely distributed and every node takes its decisions

independently and solely based on local information.

49

II. Regardless of the scale and diameter of the network clustering must terminate.

III. After each iteration every node is either a core node, border node or an outlier node.

IV. Clusters must be evenly distributed over the network.

In this section, we describe our two clustering protocols in detail. First, we define the parameters

used in the clustering process. Second, we present the protocol design and pseudo-code. Finally,

we prove that the protocol meets its requirements.

4.9. Density-Based Spatial Clustering of Applications with Noise (DBSCAN):
DBSCAN is a density based clustering algorithm which can detect clusters of arbitrary

shape and size in diverse settings [34

I. Core points. The core points of a cluster lie interior to the cluster. For a data point to be a

core point it has to have a minimum number of points in its E-neighborhood i.e. if the

number of data points exceeds the core object threshold value within a given radius or E-

neighborhood around the point then such a data point is considered to be the Core object.

If two core points are present in each other’s neighborhoods, then the core points belong

to the same cluster and are considered to be directly density reachable.

]. Density of a cluster can be measured in various ways

ranging from simple metrics like the count of data object in the cluster to more complex

functions on the count and location of data items in the cluster region. Basic idea behind

DBSCAN clustering approach is that clusters are defined as dense regions separated by sparsely

populated regions. DBSCAN stands for Density-Based Spatial Clustering of Applications with

Noise. In DBSCAN a data object can either be classified as a cluster member or as noise.

DBSCAN is based on the concepts of “density reachability” [Fig. 4.11] and “density

connectivity” [Fig. 4.12] both measured in terms of local distribution of the nearest neighbors.

Conceptually, the Nodes in a network can be classified into three classes:

II. Density reachable points or a Border point. A density reachable point is a point in a

cluster that is not a core point, i.e. it has at least one core object in its neighborhood but

there are not enough data points in its neighborhood that exceed the threshold value to be

a core object. Thus, for DBSCAN, a cluster is the set of all core points whose

neighborhoods transitively connect them together, along with some border points.

III. Noise points. A noise point is any point that is not a core point or a border point.

50

Any border point that is close enough to a core point is put in the same cluster as the core point

.Noise points are usually discarded.

Ε-Neighborhood

Objects within a radius of ε from an object constitute the epsilon-neighborhood of an object [Fig.

4.10].

Core objects

An object is a core object if ε-Neighborhood of the object contains at least MinPts of objects.
The following example [Fig. 4.11] illustrates how core nodes are identified using E-

Neighborhood.

Figure 4.9 Epsilon neighborhood

Directly density-reachable

An object q is directly density-reachable from object p if q is within the ε-Neighborhood

of p and p is a core object. In the above example q is directly density reachable from p as p is a

core object .But p is not directly density reachable from q even though it is in ε-Neighborhood of

q as q is not a core object.

Density-reachable

An object p is density-reachable from q with respect to ε and MinPts if there is a chain of

objects p1,…,pn, with p1=q, pn=p such that pi+1is directly density-reachable from pi w.r.t ε and

MinPts for all 1 <= i <= n. The following example illustrates the concept of density reachability.

51

Figure 4.10 Density Reachable
In the above example q is density-reachable from p but not vice-versa, i.e. Transitive closure of

direct density-reachability is asymmetric [Fig. 4.12].

Density-connectivity

Object p is density-connected to object q w.r.t ε and MinPts if there is an object r such that both

p and q are density-reachable from r w.r.t ε and MinPts. The following example illustrates the

concept of Density-connectivity.

Figure 4.11 Density connectivity

In the above example Figure 4.13 P and q are density-connected to each other by r, i.e. Density-

connectivity is symmetric.

Cluster

A cluster C in a set of objects D w.r.t ε and MinPts is a non empty subset of D satisfying the

following conditions of maximality and connectivity.

• Maximality: For all p, q if p ∈ C and if q is density-reachable from p w.r.t ε and MinPts,

then also q ∈ C.

52

• Connectivity: for all p, q ∈ C, p is density-connected to q w.r.t ε and MinPts in D.

• Noise : Objects which are not directly density-reachable from at least one core object.

Algorithm for DBSCAN:

DBSCAN(D, eps, MinPts)

 C = 0

 for each unvisited point P in dataset D

 mark P as visited

 N = getNeighbors (P, eps)

 if (sizeof(N) < MinPts)

 mark P as NOISE

 else

 C = next cluster

 expandCluster(P, N, C, eps, MinPts)

expandCluster(P, N, C, eps, MinPts)

 add P to cluster C

 for each point P' in N

 if P' is not visited

 mark P' as visited

 N' = getNeighbors(P', eps)

 if N' >= MinPts

 N = N joined with N'

 if P' is not yet member of any cluster

 add P' to cluster C

Complexity

DBSCAN visits each point of the dataset, possibly multiple times (e.g., as candidates to

different clusters). For practical considerations, however, the time complexity is mostly governed

by the number of getNeighbors queries. DBSCAN executes exactly one of such queries for each

point, and if a sufficiently performant indexing structure is used that executes such a

neighborhood query in O(logn), a overall runtime complexity of is obtained.

53

4.10. Structured Clustering Algorithm for Networks (SCAN)

SCAN is a structural similarity based clustering algorithm which can detect clusters of

arbitrary shape and size in diverse settings [35

• Core points. The core points of a cluster lie interior to the cluster. For a data point to be a

core point it has to have a minimum number of points in its E-neighborhood i.e. if the

number of data points exceeds the core object threshold value within a given radius or E-

neighborhood around the point then such a data point is considered to be the Core object.

If two core points are present in each other’s neighborhoods, then the core points belong

to the same cluster and are considered to be directly density reachable.

]. SCAN performs clustering by trying to identify

the structural similarity of nodes. In SCAN nodes with the same structural similarity will be part

of the same cluster. In SCAN a data object can either be classified as a cluster member, as noise

or Outliers, as Hubs. SCAN is based on the concepts of structural similarity that states that

members of same clique have many similar adjacent members irrespective of the size of the

clique or cluster. Conceptually, the Nodes in a network can be classified into the following

classes

• Hub: Hubs are nodes that have multiple Core nodes in their neighborhood and these core

nodes belong to different structures. Hubs act as bridges to multiple clusters.

• Direct structurally reachable points or a Border point. A density reachable point is a

point in a cluster that is not a core point, i.e. it has at least one core object in its

neighborhood but there are not enough data points in its neighborhood that exceed the

threshold value to be a core object. Thus, for SCAN, a cluster is the set of all core points

whose neighborhoods transitively connect them together, along with some border points.

• Outliers or Noise points. An outlier or noise point is any point that does not belong to

any cluster and is not a hub.

54

Figure 4.12 Elements of SCAN

Neighborhood
The Neighborhood T(v) of a node is defined as the number of neighbors or number of nodes that

are in its communication range .

Figure 4.13 Node Neighborhood

In the above image [Fig. 4.15] the yellow nodes represent the neighborhood of node V.

Structural similarity

Structural similarity is a measure of commonality of two adjacent nodes. Structural similarity of

two adjacent nodes V, W can be given by

Structural similarity is large for members of same cluster or clique and small for hubs and

outliers.

|)(||)(|
|)()(|),(

wv
wvwv

ΓΓ
ΓΓ

=
σ

55

Ε-Neighborhood

It is the number of adjacent nodes of a Node with a structural similarity above the ε- threshold
(read as epsilon-neighborhood).

Core objects

An object is considered to be a Core object if the ε-Neighborhood of an object contains at least

MinPts of objects.

Directly structure-reachable

An object q is directly structure-reachable from object p if q is within the ε- Neighborhood of p

and p is a core object.

Structure-reachable

An object p is structure-reachab le fro m q with resp ect to ε an d Min Pts if th ere is a ch ain o f

objects p1,…,pn, with p1=q, pn=p such that pi+1is directly structure-reachable from pi w.r.t ε

and MinPts for all 1 <= i <= n.

Structure-connectivity

Object p is Structure-connected to object q w.r.t ε and MinPts if there is an object r such that both

p and q are Structure-reachable from r w.r.t ε and MinPts.

A cluster C in a set o f ob jects D w.r. t ε and MinPts is a non empty subset of D satisfying the

following conditions of maximality and connectivity.

Maximality

For all p, q if p∈C and if q is density-reachable from p w.r.t ε and MinPts, then also q ∈C.

Connectivity- For all p, q∈C, p is density-connected to q w.r.t ε and MinPts in D.

Noise objects are objects which are not directly structure-reachable from at least one core object.

}),(|)({)(εσε ≥Γ∈= wvvwvN

µεµε ≥⇔ |)(|)(, vNvCORE

)()(),(,, vNwvCOREwvDirRECH εµεµε ∈∧⇔

),(),(:),(,,, wuRECHvuRECHVuwvCONNECT µεµεµε ∧∈∃⇔

),(:, , wvCONNECTCwv µε∈∀

CwwvREACHCvVwv ∈⇒∧∈∈∀),(:, ,µε

56

4.11. Distributed algorithm for DBSCAN and SCAN

//Initialise the nodes in sensor network

command result_t StdControl.init()
{
 //each node is initialized randomly to replicate real world
operation
 return call Random.init();
}

//Broadcast a beacon packet to neighbors on starting up

command result_t StdControl.start()
{
 //initializing number of adjacent nodes and the nature of
the node
 Min_Nodes=0;
 Core_Node=False;
 //setting the epsilon neighborhood in terms of the radio
transmission power level
 Node.setPower_Level=epsilon_neighborhood;
 beacon_packet.nodeid=TOS_LOCAL_ADDRESS;
 //broadcast an initial beacon message that lets its presence
known to neighboring nodes in its epsilon neighborhood
 call SendBeaconMsg.send(TOS_BCAST_ADDR,
sizeof(uint16_t),beacon_packet);
 startTimer1.time();
 startTimer2.time();

}

//Node receives a beacon message

event ReceiveBeaconMsg.receive(TOS_MsgPtr recv_packet)

{
//each receipt of a beacon node signal indicates the presence of
a node in neighborhood
Min_nodes++;
}

//Neighborhood of a node is determined

event Timer1_fired()
{

57

//If Node is a Core Object and satisfies energy constraints

If(Min_nodes > Core_Min && Batt_Power > threshold)
{
 Core_Node=True;
 Core_Object_packet.nodeid= TOS_LOCAL_ADDRESS;
 //transmit a message indicating that the node is a neighboring node
 call SendCoreObjMsg.send(TOS_BCAST_ADDR, sizeof(uint16_t),
Core_Object_packet);
return;
}
}

//Node receives a message from a core object

event ReceiveCoreObjMsg.receive(TOS_MsgPtr recv_packet)

{
//Add the neighboring node to its core object list,list contains
items that are directly density reachable and density reachable
from the node
coreObjList.add(node_id);
}

//Allocating a Uniform cluster identification number to all the
core objects in the cluster
event Timer2_fired()
{
If(Core_Node)
{
//assigning clustered as the id of the coreObject with least
node id in the cluster
 If(coreObjList.Min()< TOS_LOCAL_ADDRESS)
 {
 ClusterId_packet.clustid= coreObjList.Min();
 Cluster_Id= coreObjList.Min();
 call SendClusterIdMsg.send(TOS_BCAST_ADDR, sizeof(uint16_t),
ClusterId_packet);
}
return;
}
}

event ReceiveCoreObjMsg.receive(TOS_MsgPtr recv_packet)
{
If(ReceivedPacket.clustid< Cluster_Id)

58

{
 ClusterId_packet.clustid= coreObjList.Min();
 Cluster_Id= coreObjList.Min();
 call SendClusterIdMsg.send(TOS_BCAST_ADDR, sizeof(uint16_t),
ClusterId_packet);
}
}

59

4.12. Grid formation and role assignment in parallel

Two objectives to be achieved

• Map task graph onto network

• Coming up with a Backbone grid for network

Above tasks are performed in parallel

Network is divided into cells at each level. At top level we have only one cell. Cells of upper level

are divided uniformly to attain cells of lower level. A cell of the nth level corresponds to “k” cells of

the (n+1)
th

 level. Each cell has a corresponding cell head. Each cell has a set of parameters.

Cell Parameters could be:

• Number of nodes

• Number of data nodes

• Amount of Energy available in the cell

• Type of distribution of the data/fusion nodes the cell has

• Type of tree/sub tree associated with the cell

• The height of the sub-tree etc.

Framework

Data node initially forwards data to its corresponding cell head at the lowest level.

If the cell contains all the corresponding partner node(s) of this data item then

Cell head determines location of fusion node

else

cell head passes relevant information to corresponding cell head of its parent cell

Cell head determines the size of backbone grid based on above params

60

Cell head forwards location of fusion node to the data nodes in its cell

Once fusion node is found repeat the above process from the lowest level.

Assumptions

Network is already divided into cells at each level.

Each cell is assigned a cell head and every member of the cell has knowledge about the cell head.

Cell head has total or partial knowledge about the structure of the task graph.

If Node is event source && data ready

{

 If fusion node not identified

Node.sendData(CellHead,data);

Else

Node.sendBBData(fusionNode,data)

}

If Node is CellHead && dataReceived

{

If PartnerNodes.data present in cell

 {

 Identify fusion node

 For all partner Nodes

 {

 partnerNode.Send(FusionNode)

 }

61

 }

Else

Node.sendData(CellHead,data);

}

If Node is not CellHead && dataReceived

{

Node.sendData(CellHead,data);

}

If Node is CellHead && Source nodes identified

{

Calculate grid size for each child cell

Identify BB Nodes

}

 If(FusionNode==True And DataReceived ==True)

FuseData(ReceivedData)

If Node is Fusion Node And fused data ready

{

 If next fusion node not identified

Node.sendData(CellHead,data);

62

Else

Node.sendBBData(fusionNode,data)

}

If Node is BackBone Node And Receives data

{

Node.sendData(Dest);

}

63

CHAPTER 5 - Experimental setup

In this chapter we discuss the implementation environment and experimental set up for

the various approaches detailed previously. We implemented the data fusion and in-network

aggregation protocols in the nesC language which is an extension of C language designed for

implementation in the TinyOS environment. TinyOS is an operating system that is designed to

manage the operation of a variety of mote devices as well as the sensors attached to them.

TinyOS also provides a networking stack to allow the motes to form an ad-hoc network. The

protocol execution is simulated on the TOSSIM discrete event simulator designed to simulate

sensor networks that use the TinyOS operating system. For visualisation, TinyViz a Java based

GUI front end to TOSSIM is used. Plug-ins for TinyViz which can interact with the TOSSIM

simulator are also utilised. Plug-ins for controlling the power model and monitoring the

messages transmitted between nodes are used primarily. In our experiments we set the

communication range of each sensor to 10 m and assume bi-directional links.

Figure 5.1 TinyViz

64

The Figure 5.1 shows a snapshot of the TinyViz visualisation environment. The directed

arrows represent messages being passed between the nodes. The messages sent are shown in the

right window pane.

We use a uniformly distributed sensor network topology for the set of protocols

implemented for a structured topology and use a random walk generated topology for the set of

approaches when the topology of the sensor network is not known.

5.1. Set up when topology is known

The TOSSIM simulation environment consists of 121 nodes spread evenly in an area of

100 X 100 sq units. The transmission power of each node was restricted to 10 units [Fig. 5.2].

The performance of the data fusion approaches were measured over same topology but by

varying the location of the sink node and the structure of the task graph that has to be mapped

onto the wireless sensor network topology. Thus by spacing the nodes uniformly and maintaining

a power transmission range of 10 units we ensure that a completely connected network is

generated. A Sensor network is considered to be completely connected if in a multi-hop

environment every node can reach any other node in the network topology.

In case of approaches where the concept of Backbone is not used all nodes are considered

to be the sensor nodes and the following figure shows one such topology [Fig. 5.3].

Figure 5.2 TinyViz Experimental setup for Generic approach

65

In the above Figure 5.2 Node 0 is considered to be the sink node and no Backbone is

overlayed over the sensor network topology.

In case of approaches where a Backbone is overlayed over the sensor network topology,

the performance of the approaches is evaluated by varying the size of the grid. The Backbone

nodes are uniformly distributed over the sensor field and are along interleaving rows and

columns of the sensor network.

Figure 5.3 TinyViz Experimental setup with Backbone Grids

The above figure 5.3 shows a grid topology with interleaved rows and columns used as

Backbone for the network. The performance of Backbone oriented approaches are measured for

grid sizes of 2X2, 4X4 and 6X6.

5.2. Set up when topology is not know

To measure the performance of clustering approaches where the topology of the network

is not known we consider a randomly generated sensor network topology consisting of 245 nodes

spread over an area of 100 X 100 square units [Fig. 5.4]. The nodes in the network are provided

with a power transmit radius of 10 units and the communication is bi-directional. To generate a

completely connected network a random walk algorithm was used to generate a topology in

which every node is connected to any other node in the network. Even though the TOSSIM

66

simulator generates a random topology it does not ensure that the wireless sensor network

topology generated is connected. To avoid this, a multi seeded random walk algorithm ensures a

completely connected network. Thus random walk approach to generate a sensor network

topology ensures a large connected network of dense nodes with no global coordinate system.

The number of seeds and the initial location of the seeds are user tunable parameters.

Figure 5.4 TinyViz Experimental setup for Random walk generated Topology

Above figure 5.4 shows a sensor network topology where the nodes are placed randomly

in the network field.

5.3. Visualisation of clusters

MATLAB is used to visualise the results of distributed clustering approaches [Fig. 5.5]. The

following figures show two such results.

67

Figure 5.5 Cluster formation

68

CHAPTER 6 - Results

In this chapter we discuss the testing strategies for various algorithms discussed in the

previous chapters. We use the hop-count distance metric as a measure of performance of the

various algorithms .The lower the aggregate hop-count the better is the performance of an

algorithm for an experimental setup. We present the results for the following experiments we

conducted for the various protocols proposed earlier.

• Effect of structure of task graph on fusion strategy

We measure the performance of various strategies for balanced and unbalanced task

graphs of varying sizes

• Effect of Grid size on fusion strategy

We measure performance characteristics of various strategies by varying the alignment

and the size of the grid.

• Effect of clustering parameters and clustering mechanisms

6.1. Test cases for known topology

When Topology is known the approaches are compared for varying sizes of balanced and

unbalanced trees. In each test case a source will generate a distinct numbered data packet and

data is transmitted according to the fusion strategy. All the task graphs considered are binary

trees and source nodes are selected under the assumption that source nodes that are closer in task

graph are topologically closer in the network. In case of the generic routing with no Backbone all

the data packets from the source nodes are routed in individual routes to the sink node and as

there is not in-network data aggregation and fusion this strategy can result in data packets taking

different routes to the sink. A worst case scenario for this kind of data transfer scheme would be

the case where multiple leaf nodes of the task graph are mapped onto a single source node of the

Sensor network. The performance of the strategies measured in terms of hop-count increases as

we move away from a generic approach towards Fusion with Backbone.

6.2. Effect of task graph on performance

The intuition behind looking at the performance metrics for a balanced and unbalanced

tree is to interpret how choice of a task graph affects the performance and choice of strategy .In

general for any given approach the fusion strategy works better for an unbalanced tree when

69

compared to a balanced tree. Figure 6.1 shows the comparison in number of messages

transmitted for balanced trees of increasing size for various strategies.

Figure 6.1 Results for Balanced tree

Figure 6.2 shows the comparison in number of messages for unbalanced trees of increasing size

for various strategies.

Figure 6.2 Results for Unbalanced tree

It can be seen that incremental fusion strategy performs well irrespective of the nature of

the task graph when compared to generic and greedy approaches. Thus in-network data

70

aggregation can help optimise the number of messages transmitted extending the effective

lifetime of the network.

6.3. Effect of grid size on performance

It is important to measure the influence of the grid size of the interleaved Backbone

network overlayed over the sensor network. For both the Greedy with Backbone and Fusion

strategies as the grid size increases the performance of the strategies measured in terms of hop-

count decreases. Thus we can conclude that better the density of the Backbone network better is

the performance of the in-network aggregation strategy.

Figure 6.3 shows the performance of Greedy fusion approach in number of messages for

various grid sizes over various sizes of trees. We can see that as the grid size increases the hop

count increases for task graphs of different sizes.

Figure 6.3 Results for Greedy Fusion with varying Grid size

Figure 6.4 shows the performance of Incremental fusion approach in number of messages

for various grid sizes over various sizes of trees. We can see that as the grid size increases from 2

to 4 the hop count increases for task graphs of different sizes. But the same is not true for Grid

size of 6 as the location of the Source and fusion nodes with respect to the relative position of the

Backbone node plays a role.

71

Figure 6.4 Results for Incremental Fusion with varying Grid size

Figure 6.5 compares the performance of Greedy fusion and Incremental approaches in

number of messages for various grid sizes over various sizes of trees. We can see that as the grid

size increases the hop count increases for task graphs of different sizes and the performance of

Incremental fusion strategy is better than Greedy fusion for a given grid size and task graph.

Figure 6.5 Comparing Results of Greedy and Incremental Fusion with varying Grid size

72

6.4. Test cases for a randomly generated topology

The results for using distributed implementation of DBSCAN and SCAN clustering

techniques are given below. Fig 6.6 illustrates the effect of DBSCAN on a randomly generated

sensor network topology containing 245 nodes. Fig 6.6 shows the effect of the DBSCAN

clustering parameter e-neighborhood on the number of clusters and the quality of clustering. For

the randomly generated topology as the E-neighborhood parameter value increases the number of

clusters increases but the clustering quality indicated by number of Backbone nodes also known

as the core nodes reverses after certain number of clusters indicating high fragmentation. The

performance of the incremental fusion strategy implemented over network clustering is indicated

by the number of messages which shows a correlation with the number of clusters. Thus

clustering quality plays an important role in the quality of in-network data fusion strategy.

Figure 6.6 Results for Distributed DBSCAN protocol

Similarly following Fig 6.7 illustrates the effect of distributed SCAN on a randomly

generated sensor network topology containing 245 nodes. Fig 6.7 shows the effect of the SCAN

structure similarity score U on the number of clusters and the quality of clustering. For the

randomly generated topology as the structure similarity parameter value increases the number of

clusters increases but the clustering quality indicated by number of Backbone nodes also known

as the core nodes reverses after certain number of clusters indicating high fragmentation. The

performance of the incremental fusion strategy implemented over network clustering is indicated

73

by the number of messages which shows a correlation with the number of clusters. Thus

clustering quality plays an important role in the quality of in-network data fusion strategy.

Figure 6.7 Results for Distributed SCAN protocol

The above Fig 6.7 shows a direct correlation between the number of clusters and the

number of messages and the number of Backbone core nodes as a result of the clustering

process. As structure similarity increases the number of clusters increases till a certain point,

further increase in cluster similarity metric results in sudden increase in fragmentation which is

indicated by the rapid increase number of outliers and the number of messages. Thus quality of

clustering and the performance of the incremental fusion protocol is extremely sensitive to the

structure similarity parameter.

74

CHAPTER 7 - Conclusions and future work

7.1. Conclusions

Various approaches for data fusion and aggregation to increase network life were

presented, and their performance compared and discussed in this thesis .From the analysis of the

results it can be inferred that efficient in-network data fusion and data aggregation can reduce the

amount of communication in the network and optimise the network lifetime. When the topology

of the network is known heuristics can play a significant role in reducing the network traffic by

providing efficient routing protocols. When the topology is not known the network can be

logically divided in the form of clusters and in-network computation can be achieved by utilising

areas of high density and structural similarity called clusters. Clustering can help with routing by

connecting the core nodes as the Backbone nodes and using these nodes as an overlay for intra-

network and inter-network routing.

It can also be concluded that design of a good grid alignment can result in decreasing the

hop-count of the system.

The clustering algorithms are scalable and a distributed implementation of the clustering

algorithm terminates in finite time. Good clustering can lead towards efficient heuristics for

routing protocols. Structural similarity can be an efficient metric to divide a large dense network

into manageable clusters.

By comparing the various results it can be concluded that aggregation and data fusion not

only reduces the network traffic but also provide efficient mechanisms for constructing shared

data paths over a Backbone.

7.2. Future work

Other metrics like the latent energy levels, average response time etc. that reflect the

effective life time of the network must be considered to measure the performance of the

protocols.

Probabilistically selecting cluster heads and Backbone nodes based on network

characteristics to reduce the total communication cost.

The role mapping procedure in the presence of dynamically changing sensor network

topologies must be investigated. In order to work in an environment where node characteristics

75

change constantly the Fusion placement must adapt to the changing network topology. This can

be done by introducing a cost function that takes the network changes into consideration.

76

References

1 I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. “Wireless sensor

networks: a survey.“Computer Networks, 2002.

2 W.R. Heinzelman, J. Kulik, and H. Balakrishnan “Adaptive Protocols for Information

Dissemination in Wireless Sensor Networks,” MobiCom 1999.

3 Bhaskar Krishnamachari, Deborah Estrin, Stephen Wicker, "The Impact of Data

Aggregation in Wireless Sensor Networks," pp.575, 22nd International Conference on

Distributed Computing Systems Workshops (ICDCSW '02), 2002.

4 J. Reich J. Liu and F. Zhao, “Collaborative in-network processing for target

tracking,”EURASIP, 2002.

5N. Xu, S. Rangwala, K. Chintalapudi, D. Ganesan, A. Broad, R. Govindan, and D.

Estrin, “A wireless sensor network for structural monitoring,” SenSys, 2004.

6A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson, “Wireless sensor

networks for habitat monitoring,” WSNA, 2002.

7 Govindan, R. 2004. Data-centric routing and storage in sensor networks. In Wireless

Sensor Networks, C. S. Raghavendra, K. M. Sivalingam, and T. Znati, Eds. Kluwer Academic

Publishers, Norwell, MA, 185-205.

8 F. K. Hwang, D. S. Richaxds, and P. Winter. The Steiner Tree Problem, North-Holland,

1992.

77

9 M.R. Garey, D. S. Johnson. '~The Rectilinear Steiner Problem is NP-Complete', SIAM

J. Appl. Math., 32, 826-834, 1977.

10 Jason L. Hill , David E. Culler, Mica: A Wireless Platform for Deeply Embedded

Networks, IEEE Micro, v.22 n.6, p.12-24, November 2002

11 D. E. Culler, J. Hill, P. Buonadonna, R. Szewczyk, A.Woo, “A Network-Centric

Approach to Embedded Software for Tiny Devices”,Proc. Int. Workshop Embedded Software

(EMSOFT), pp. 114-130, Oct. 2001.

12 David Gay , Philip Levis , Robert von Behren , Matt Welsh , Eric Brewer , David

Culler, The nesClanguage: A holistic approach to networked embedded systems, Proceedings of

the ACM SIGPLAN 2003 conference on Programming language design and implementation,

June 09-11, 2003, San Diego, California, USA

13 NS-2, http://www.isi.edu/nsnam/ns/, 2004.

14 OPNET Technologies, Inc., “OPNET Modeler”,

http://www.opnet.com/products/modeler/home.html, 2004.

15 P. Levis, N. Lee, M. Welsh, D. Culler, “TOSSIM: Accurate and Scalable Simulation

of Entire TinyOS Applications”, Proc. ACM Int. Conf. Embedded Networked Sensor Systems

(ACM SenSys), pp. 126-137, Nov. 2003.

16 C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, F. Silva, “Directed

Diffusion for Wireless Sensor Networking”,IEEE/ACM Trans. Networking, vol. 11, no. 1, pp. 2-

16, Feb. 2003.

http://portal.acm.org/citation.cfm?id=624560&dl=GUIDE&coll=GUIDE&CFID=68706796&CFTOKEN=74368032�
http://portal.acm.org/citation.cfm?id=624560&dl=GUIDE&coll=GUIDE&CFID=68706796&CFTOKEN=74368032�
http://portal.acm.org/citation.cfm?id=781133&dl=GUIDE&coll=GUIDE&CFID=68706569&CFTOKEN=23699289�
http://portal.acm.org/citation.cfm?id=781133&dl=GUIDE&coll=GUIDE&CFID=68706569&CFTOKEN=23699289�
http://portal.acm.org/citation.cfm?id=781133&dl=GUIDE&coll=GUIDE&CFID=68706569&CFTOKEN=23699289�
http://portal.acm.org/citation.cfm?id=781133&dl=GUIDE&coll=GUIDE&CFID=68706569&CFTOKEN=23699289�

78

17 W. Heinzelman, J. Kulik, H. Balakrishnan, “Adaptive Protocols for Information

Dissemination inWireless Sensor Networks”, Proc.ACM Int. Conf. Mobile Computing and

Networking (ACM/IEEE Mobicom), pp. 174-185, Aug. 1999.

18 S. Lindsey, C. Raghavendra, K. M. Sivalingam, “Data Gathering Algorithms in

Sensor Networks using Energy Metrics”, IEEETrans. Parallel and Distributed Systems, vol. 13,

no. 9, pp. 924-935, Sept. 2002.

19 H. O. Tan, I. Korpeoglu, “Power Efficient Data Gatherting and Aggregation in

Wireless Sensor Networks”, Proc. ACM Int. Conf.Management of Data (ACM SIGMOD), vol.

32, no. 4, pp. 66-71, Dec. 2003.

20 A. Manjeshwar, Q-A. Zeng, D. P. Agarwal, “An Analytical Model for Information

Retrieval in Wireless Sensor Networks using Enhanced APTEEN Protocol”, IEEE Trans.

Parallel and Distributed Systems, vol. 13, no. 12, pp. 1290-1302, Dec. 2002.

21 Kaufman, L. and Rousseeuw, P. J. Finding Groups in Data: An Introduction to Cluster

Analysis. New York: Wiley, 1990.

22 ICHINO, M. AND YAGUCHI, H. 1994. Generalized Minkowski metrics for mixed

feature-type data analysis. IEEE Trans. Syst. Man Cybern. 24, 698–708.

23 V. Batagelj andM. Bren, “Comparing resemblance measures,”in Proc. International

Meeting on Distance Analysis (DISTANCIA’92), Rennes, France, June 1992.

24 MacQueen, J. B. (1967). "Some Methods for classification and Analysis of

Multivariate Observations". Proceedings of 5th Berkeley Symposium on Mathematical Statistics

and Probability.1. University of California Press. pp. 281–297.

http://www.amazon.com/exec/obidos/ASIN/0471878766/ref=nosim/weisstein-20�
http://www.amazon.com/exec/obidos/ASIN/0471878766/ref=nosim/weisstein-20�
http://projecteuclid.org/euclid.bsmsp/1200512992�
http://projecteuclid.org/euclid.bsmsp/1200512992�
http://projecteuclid.org/euclid.bsmsp/1200512992�

79

25 Sergios Theodoridis & Konstantinos Koutroumbas (2006). Pattern Recognition 3rd

ed.. pp. 635.

26 Abbasi, A. A.; Younis, M. A survey on clustering algorithms for wireless sensor

networks. Comput.Commun. 2007, 30(14-15), 2826–2841.

27 D.J. Baker, A. Ephremides, The architectural organization of a mobile radio network

via a distributed algorithm, IEEE Transactions on Communications, COM-29 (11) (1981) 1694–

1701.

28 C.R. Lin, M. Gerla, Adaptive clustering for mobile wireless networks,IEEE Journal on

Selected Areas Communications 15 (7) (1997) 1265–1275.

29 R. Nagpal, D. Coore, An algorithm for group formation in an amorphous computer,

in: Proceedings of the 10th International Conference on Parallel and Distributed Systems

(PDCS’98), Las Vegas, NV, October 1998.

30 S. Banerjee, S. Khuller, A clustering scheme for hierarchical control in multi-hop

wireless networks, in: Proceedings of 20th Joint Conference of the IEEE Computer and

Communications Societies (INFOCOM’01), Anchorage, AK, April 2001.

31 W. Heinzelman, A. Chandrakasan, H. Balakrishnan, “Energy-Efficient

Communication Protocol for Wireless Microsensor Networks”,Proc. IEEE Int. Conf. System

Sciences, vol. 8, pp. 8020, Jan. 2000.

32 W. Heinzelman, “Application-Specific Protocol Architectures for Wireless

Networks”, PhD thesis, Massachusetts Inst. of Technology,June 2000.

80

33 O. Younis, S. Fahmy, HEED: A Hybrid, Energy-Efficient, Distributed clustering

approach for Ad Hoc sensor networks, IEEE Transactions on Mobile Computing 3 (4) (2004)

366–379.

34 Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu (1996). "A density-based

algorithm for discovering clusters in large spatial databases with noise". in Evangelos Simoudis,

Jiawei Han, Usama M. Fayyad. Proceedings of the Second International Conference on

Knowledge Discovery and Data Mining (KDD-96). AAAI Press.

35 Xiaowei Xu , Nurcan Yuruk , Zhidan Feng , Thomas A. J. Schweiger, SCAN: a

structural clustering algorithm for networks, Proceedings of the 13th ACM SIGKDD

international conference on Knowledge discovery and data mining, August 12-15, 2007, San

Jose, California, USA

http://en.wikipedia.org/wiki/AAAI_Press�
http://portal.acm.org/citation.cfm?id=1281280&dl=GUIDE&coll=GUIDE&CFID=68718897&CFTOKEN=16428488�
http://portal.acm.org/citation.cfm?id=1281280&dl=GUIDE&coll=GUIDE&CFID=68718897&CFTOKEN=16428488�
http://portal.acm.org/citation.cfm?id=1281280&dl=GUIDE&coll=GUIDE&CFID=68718897&CFTOKEN=16428488�
http://portal.acm.org/citation.cfm?id=1281280&dl=GUIDE&coll=GUIDE&CFID=68718897&CFTOKEN=16428488�
http://portal.acm.org/citation.cfm?id=1281280&dl=GUIDE&coll=GUIDE&CFID=68718897&CFTOKEN=16428488�

	List of Figures
	Acknowledgements
	Introduction
	1.1. Motivation
	1.2. Introduction to wireless sensor networks
	1.3. Routing strategies in a distributed sensor network environment
	Address-centric routing
	Data-centric routing

	1.4. Problem definition and objective
	Problem definition
	Output format
	Objective
	Solution requirements
	Proposed approaches for solution

	1.5. Contributions

	The role assignment problem
	2.1. Task graph definition
	2.2. Fusion operators
	2.3. Aggregation operators
	Network Topology
	2.4. The Role assignment problem in sensor networks
	Types of data fusion
	Steiner tree problem

	2.5. Role assignment problem and its resemblance to the Steiner tree problem
	Assumptions
	Formal problem definition

	Background and related work
	3.1. Sensor hardware and deployment environment
	An example hardware configuration of a sensor network node
	TinyOS
	nesC

	3.2. Modeling and simulation environments
	NS-2
	OPNET
	Ptolemy-II
	TOSSIM
	TinyViz

	3.3. Literature review and existing approaches
	Directed Diffusion
	SPIN - Sensor Protocols for Information via Negotiation
	PEGASIS - Power-Efficient GAthering in Sensor Information Systems
	PEDAP - Power Efficient Data Gathering and Aggregation Protocol
	APTEEN - Adaptive Periodic Threshold-sensitive Energy Efficient sensor Network Protocol

	3.4. Introduction to Clustering and Clustering in wireless sensor networks
	Clustering
	Data representation for cluster analysis
	Proximity measures
	Minkowski metric or Distance Measures
	Jaccard's coefficient for binary vectors
	Cosine similarity measure

	3.5. Traditional clustering approaches
	Partition techniques
	Hierarchical techniques
	Density-based techniques

	3.6. Partition techniques
	K-Means
	K-means algorithm for finding K clusters
	Time and space complexity
	Formal algorithm for K-means

	K-Medoid or Partition around medoids (PAM)
	Basic K-medoid algorithm for finding K clusters.
	Formal algorithm for K-medoids

	3.7. Distributed clustering techniques for sensor networks
	LCA - Linked cluster algorithm
	Adaptive clustering
	CLUBS
	Hierarchical control clustering
	LEACH - Low Energy Adaptive Clustering Hierarchy
	HEED - Hybrid Energy-Efficient Distributed Clustering

	Methodology
	4.1. Approaches for role mapping
	4.2. No fusion without Backbone
	4.3. Backbone or Grid
	4.4. No fusion with Backbone
	4.5. Incremental mapping of fusion nodes
	The role mapping problem
	Phases in mapping a task graph to a topology
	a) Role mapping and incremental reinforcement for optimization, phase
	b) Maintenance phase
	Algorithm mapping fusion nodes to the nodes

	4.6. Heuristics for routing on Backbone
	Assumption

	4.7. Clustering
	Requirements for a good clustering technique for a sensor network application

	4.8. Formal definition of the network clustering problem
	4.9. Density-Based Spatial Clustering of Applications with Noise (DBSCAN):
	Ε-Neighborhood
	Core objects
	Directly density-reachable
	Density-reachable
	Density-connectivity
	Cluster
	Complexity

	4.10. Structured Clustering Algorithm for Networks (SCAN)
	Neighborhood
	Structural similarity
	Ε-Neighborhood
	Core objects
	Directly structure-reachable
	Structure-reachable
	Structure-connectivity
	Maximality

	4.12. Grid formation and role assignment in parallel
	Framework
	Assumptions

	Experimental setup
	5.1. Set up when topology is known
	5.2. Set up when topology is not know
	5.3. Visualisation of clusters

	Results
	6.1. Test cases for known topology
	6.2. Effect of task graph on performance
	6.3. Effect of grid size on performance
	6.4. Test cases for a randomly generated topology

	Conclusions and future work
	7.1. Conclusions
	7.2. Future work

