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Abstract 
Severe energy constraints and limited computing abilities of the nodes in a network 

present a major challenge in the design and deployment of a wireless sensor network. This thesis 

aims to present energy efficient algorithms for data fusion and information aggregation in a 

sensor network. The various methodologies of data fusion presented in this thesis intend to 

reduce the data traffic within a network by mapping the sensor network application task graph 

onto a sensor network topology. Partitioning of an application into sub-tasks that can be mapped 

onto the nodes of a sensor network offers opportunities to reduce the overall energy consumption 

of a sensor network. The first approach proposes a grid based coordinated incremental data 

fusion and routing with heterogeneous nodes of varied computational abilities. In this approach 

high performance nodes arranged in a mesh like structure spanning the network topology, are 

present amongst the resource constrained nodes. The sensor network protocol performance, 

measured in terms of hop-count is analysed for various grid sizes of the high performance nodes. 

To reduce network traffic and increase the energy efficiency in a randomly deployed sensor 

network, distributed clustering strategies which consider network density and structure similarity 

are applied on the network topology. The clustering methods aim to improve the energy 

efficiency of the sensor network by dividing the network into logical clusters and mapping the 

fusion points onto the clusters. Routing of network information is performed by inter-cluster and 

intra-cluster routing. 

Index Terms 

Sensor Networks, In-Network Processing, Data Fusion, Task Graph Mapping, Data 

Aggregation, Energy-Efficient Algorithms, Clustering 
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CHAPTER 1 - Introduction 

This chapter provides an overview of the thesis, a brief description of the basic concepts, 

the problem definition and motivation behind the thesis. 

1.1. Motivation 

Data transmission in large scale, densely distributed sensor networks presents many 

interesting and unique challenges. It is quite well known that data communication and message 

passing are one of the most expensive and energy intensive operations in wireless sensor 

networks [1]. Data aggregation and in-network processing techniques have been proposed as 

important mechanisms for routing in wireless sensor networks [2] [3

1.2. Introduction to wireless sensor networks 

]. The motivation behind 

data aggregation in sensor networks is to combine incoming data from diverse sources, within 

the network. This approach ensures that data redundancy is reduced if not completely eliminated, 

thus minimizing the number of messages and conserving scarce resources such as energy. 

Therefore, being able to transmit less data (the result of the aggregation over having to forward 

all the packets) results in reduced energy consumption at the sensor nodes. The data aggregation 

paradigm moves away from address-centric routing approach and focuses on a more efficient 

data-centric approach. Using in-network processing the computation work is pushed into the 

network, which performs aggregation before sending results to the base station. In this thesis we 

study the affect of data aggregation on the number of messages transmitted within the network, 

and show how network topology and network heuristics can help with efficient data aggregation 

strategies. 

Rapid advances in micro sensors, wireless networking and embedded systems have 

enabled the development of distributed wireless sensor networks (WSNs). A WSN is a collection 

of autonomous computing nodes that systematically gather and transmit data in a distributed 

environment. In a sensor network the individual components interact in a distributed 

environment to achieve a common objective. A wireless sensor network application consists of a 

set of sensor nodes spread over a geographic region and the network collects information through 

these nodes. Sensor networks are usually dense networks and nodes in these networks share a 

common objective of data acquisition and information dissemination. Nodes are low cost 

miniature processing devices and each device or a node of the sensor network has the capability 
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to sense an event and respond appropriately. The nodes acting as sensing devices have the ability 

to store data on local memory, process information attained and communicate appropriately with 

other nodes in the network. Nodes must cooperate with each other in a concerted manner to 

improve network efficiency and enhance the effective life time of the network. Apart from 

containing one or more sensors, these computing devices, commonly referred to as motes, are 

equipped with a radio transceiver. The radio transceiver inside a mote receives and transmits the 

data collected from one mote to another. Sensing motes present in the WSN sense and forward 

data packets to a root mote, also known as the sink. Motes in a sensor network can be regarded 

as tiny embedded computational devices with various constraints imposed upon them. Nodes in 

sensor networks are resource constrained with respect to battery lifetime or energy levels, 

processing speed and computational abilities, available memory, communication bandwidth and 

range. Because these motes in a WSN neither have a wired means of communication nor any 

human intervention involved in operating them, they have to be fully autonomous. 

WSNs can be used in situations where data gathering and information processing is 

expensive and hazardous. They can be utilized in a wide variety of applications and systems.  

 

Figure 1.1 A typical WSN 
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Sensor networks can be used efficiently in varied fields such as object tracking [4], 

intrusion detection, environment monitoring [5] [6

1.3. Routing strategies in a distributed sensor network environment 

] etc. In addition, WSNs provide the 

technology for a wide range of systems in the military, thus creating new capabilities for 

intelligence gathering, reconnaissance and surveillance. 

In a single sink, multi-source sensor network environment the sink node initiates the data 

gathering processing by disseminating interests within the network. In the interest dissemination 

phase the sink node intimates the network nodes about the kind of data it is interested in 

gathering. In the next phase the sensor nodes that match the interests respond to the sink by 

sending data to the sink. This data dissemination can be performed in multiple ways, and the way 

data is routed from the sources to the sink i.e., the routing strategy affects the efficiency and 

lifetime of a network. Routing strategies in sensor networks can be broadly classified into 

Address-centric routing and Data-centric routing [7

Address-centric routing 

]. 

 In Address-centric routing each of the individual source nodes try to independently 

propagate data to the sink node on the shortest possible route. This end-to-end routing strategy 

introduces overhead and excessive message transmissions into the network, introducing network 

latency and reduced network life time. 

Data-centric routing 

 In Data-centric routing individual source nodes attempt to transmit data to the source 

node by routing data through some common nodes in such a way that the intermediate nodes can 

perform data aggregation, thus introducing efficiency and consequently increasing the network 

lifetime. 

1.4. Problem definition and objective 

In this section we define the problem of data aggregation, the requirements and salient 

features of an ideal solution and how the output of role mapping should look. 

Problem definition 

Once a WSN has been deployed, a critical issue that needs to be addressed is efficient 

networked data gathering and information processing. This deals with the extraction and 

dissemination of sensor data from the network. Sensor nodes are severely handicapped by the 

limited amount of on board resources available to them. This includes energy, computing power 
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and memory. The most critical resource in a WSN is the energy or the battery lifetime of a mote, 

making power conservation a critical aspect of WSN performance. Since the sensor nodes are 

energy-constrained, communication between the base station and the sensors must be energy-

efficient. The key challenge in such an environment is the design of communication protocols 

that maximize the network lifetime. Network Lifetime is the time at which the first sensor node 

in the network dies i.e. it completely exhausts its battery resources. One of the generic ways of 

gathering data from a WSN is to directly send periodically extracted raw data from the sensor 

nodes to the sink. This, however, is a highly energy intensive exercise and thus a network life 

curtailing approach to information processing in a WSN. On the other hand a task graph based 

approach to gathering information from a sensor network can improve the energy efficiency and 

the effective life time of the network by reducing the amount of data that is being transferred in 

the network. Hence an appropriate way to describe the information which is to be retrieved from 

a sensor network is by using task graph. This method allows the sensor network application to be 

represented in the form of a task graph and is designed to describe the manner in which data has 

to be gathered and how it must be further transformed. Given a task graph and a network 

topology our objective is to map the task graph onto the topology in order to optimize a certain 

parameter or set of parameters. 

Data fusion or aggregation is a useful paradigm in sensor networks. The key idea is to 

combine data from different sensors to eliminate redundant transmissions, thereby leading to 

efficient use of the energy resources. 

Output format 

We have a task graph mapped onto the network topology. A node in the network can be 

mapped to multiple nodes in the task graph. 

Objective 

Study how role assignment affects the scalability, reliability, robustness and 

responsiveness of the network. We also see how role assignment affects the life time of the 

network. 

Solution requirements 

The solution must be distributed and task mapping must be performed with limited 

knowledge of topology. As the conditions in the network change continuously, mapping must 
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also be dynamic i.e., mapping is a continuous process and solution should take these factors into 

account. 

Proposed approaches for solution 

This thesis will present an iterative, distributed role mapping algorithm that incrementally 

assigns intermediate computation steps onto fusion nodes within the network .When the topology 

of the network is known, network heuristics can be used for data aggregation in the network. We 

also look at how the nature of the task graph and construction of a grid or Backbone affects data 

aggregation in a structured sensor network topology. When the topology is not known we 

construct a logical topology by implementing distributed density-based clustering algorithms for 

data aggregation in sensor networks. Our proposed clustering solution simplifies data-centric 

routing in a dense network by adopting an intra-cluster and inter-cluster data-centric routing 

strategy for efficient data dissemination. 

 
1.5. Contributions  

My contributions to through thesis are  

• Provided various approaches to role mapping in a sensor network environment. 

• Explained the link between topology, task graph and the size of the grid Backbone and 

network efficiency 

• Implemented density-based clustering in a distributed sensor network environment. 

• Showed how density-based clustering can an efficient technique to improve network 

efficiency. 
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CHAPTER 2 - The role assignment problem 

2.1. Task graph definition 

We define a task graph as a directed acyclic graph which logically represents the data 

flow in a network. Task graph can be visualised as a tree of logical functions. The leaves of the 

tree correspond to the source nodes or sensing nodes that generate data. The internal nodes 

correspond to the fusion nodes that accept data from multiple sources and fusion nodes perform 

operations over the input data and generate data for consumption of other nodes higher in the 

task graph hierarchy. The root of the task graph corresponds to the Sink and gateway node. The 

edges represent the relationship that exists between two atomic execution units or tasks. There is 

a data dependency between two execution units. The nodes or points in the task graph are the 

execution points (that consume data from a previous node) of the application. These logical 

nodes have to be mapped onto the sensor network topology. Data fusion nodes in the task graph 

can have additional parameters (and, or, aggregation, max, min, fusion principle etc).In a 

TinyOS application each logical unit can be considered as a component and flow of data from 

one node to another can be considered as variables or messages that are relayed between the 

components. 

2.2. Fusion operators 

Fusion operators are used to represent operations on a set of atomic values. These fusion 

operators could be simple arithmetic operations, aggregation operations or even logical 

operations. 

The various kinds of fusion operations could be: 

• SUM produces the sum of the incoming data streams. 

• AVG produces the average of the incoming data streams. 

• MIN produces the lowest value of the incoming data streams. 

• MAX produces the highest value of the incoming data streams. 

• COUNT produces the number of items in the incoming data streams. 

• OR forwards a value if fusion condition is satisfied in any of the incoming data 

streams. 

• AND forwards a value if fusion conditions are satisfied in all the incoming data 

streams. 
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2.3. Aggregation operators 

Apart from various fusion operators nodes in task graph can also be associated with 

various aggregation operators. The idea behind aggregation is that in a WSN sensed values in an 

area are related and instead of forwarding multiple redundant values into the network, it would 

be more efficient to send data that would be representative of the local conditions in a region. 

The edges between the nodes have weights associated with them. These weights can be a 

single tuple or an "n" tuple. The weights can represent 

 
• Rate at which data flows 

• Conditions in which data flows 

• Data expansion or contraction ratio etc. 

 
 

Figure 2.1 Illustration of a sample task graph 

In Figure 2.1 Blue circles indicate the Source Nodes. Red circle is the Sink node and the purple 

circles are the various kinds of fusion nodes, Arrows indicate the flow of data.  

Network Topology 
A network topology consists of a set of sensor network nodes .Each node is associated 

with a geographical location (coordinates).The network nodes can be broadly classified as: 

• Source node 

• Sink nodes 
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• Aggregation nodes 

• Data fusion nodes 

• Bridge nodes/relay nodes 

Source nodes are the nodes that generate data initially. Data could be either event 

triggered or time triggered. These are mapped to the leaf nodes in the Task graph. 

Sink nodes are the end consumers of the data. These nodes are mapped to the Root node 

in the task graph. The sink nodes consume data generated by the task graph within the network. 

Aggregation nodes are nodes that aggregate spatially related data. These nodes reduce 

data redundancy in the network and also generate data that represents a geographical area. 

Data Fusion nodes are the nodes that fuse two or more data flow paths into a single path. 

Data fusion nodes are usually mapped to the internal computation nodes of the task graph that 

has 2 or more inbound edges (It can have multiple outbound edges).For a data fusion node in the 

task graph in-degree is greater than or equal to two. 

Bridge nodes / relay nodes help transfer data between the above defined nodes. 

Network topology can also be represented as a graph where the nodes represent the 

network nodes and the edges represent connectivity between the nodes. An edge indicates the 

presence of a single hop point to point connectivity between the nodes joined by the edge. 

 

Figure 2.2 Sample WSN 
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The Figure 2.2 is an Illustration of sample a WSN, Green circles indicate the Sensing 

Nodes. Red circle is the Sink node and the Blue circles are the Bridge nodes, Dotted lines 

indicate the connectivity. 

Nodes can have additional parameters such as 

• Battery level 

• Amount of free memory 

• Average Length of task queue 

 
2.4. The Role assignment problem in sensor networks 

In this section we introduce the role assignment problem and provide a formal definition 

to the role assignment problem. We also show how role assignment problem is similar to the 

Steiner tree problem and why it is hard to find a solution to this optimization task. 

A typical wireless sensor network topology consists of a large number of low-power 

wireless sensors spread across a geographical area that can be used to monitor and control the 

physical environment from remote locations and a centralized base station that receives data 

from various sensor nodes. The “base station” also known as a “sink node” gathers data from its 

source nodes and performs data processing tasks on the received information. As data 

communication and transmission cost is much more resource intensive and thus more expensive 

than data processing, the objective is to shift the data computation roles to within the wireless 

sensor network provided that such a role assignment reduces the amount of data transmitted. 

Task or role assignment involves mapping intermediate nodes of the application task graph onto 

the WSN topology to decrease the cost of data dissemination in the network. Role assignment 

drastically reduces the data traffic within the WSN and thus increases the lifetime of the network. 

Network lifetime is application specific and can be defined as duration for first node to fail or 

duration for at least one node to be active depending on the kind of application. Optimal 

placement of these intermediate fusion nodes constitutes the role assignment problem. Ideal 

placement of a fusion node i.e. task mapping would reduce amount of data transmitted within the 

network.  

Types of data fusion 

Placement of fusion node is a function of amount of data transmitted and path length of 

the tree. 
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Data fusion leading to data compression - In this case we try to map the fusion point as 

close as possible to the previous data source [Fig. 2.3]. 

Data fusion leading to data expansion- In this case we try to map the fusion point as 

close as possible to the consumer of the fused data [Fig. 2.3]. 

A Fusion application is a directed task graph and role assignment is similar to attaining a 

Minimum Steiner Tree [8

Figure 2.3 Illustration of Linear optimisation 

] in a directed task graph. Role assignment is an NP-Complete 

problem. 

 

 

Steiner tree problem 

Given a weighted graph G with a set of vertices V and weighted edges E and a set of  

terminals S such that S is a subset of V, the Steiner tree problem finds the minimum weighted 

connected sub graph that includes all the terminals S. The additional vertices apart from the 

terminal points S included to obtain the minimum Steiner tree are known as the Steiner points. 

The Steiner tree problem comes under the class of NP problems [9].There are two main aspects 

to the Steiner tree problem. 
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• Coming up with heuristics to determine what the Steiner points are. 

• Choose Steiner points such that they contribute to a minimum cost. 

 

 

Figure 2.4 Illustration of Steiner tree mapping 

 

The Figure 2.4 illustrates a graphical Steiner tree problem. The green nodes represent the 

Steiner points and the blue nodes represent the non-Steiner points.  This is a graph theoretic 

approach to the Steiner tree problem. In the graph theoretic approach to the Steiner tree problem, 

let the terminal points to be connected be S and the additional vertices be set Z, both belonging 

to a larger set of vertices V in Graph G. These vertices are connected by edges whose length is 

given by the cost function C defined as 

C: E→R+  

The objective of minimal Steiner tree problem would be to minimize the total cost of the 

tree obtained from the graph G. 

Formally represented as 

min V* ⊂V-S C(T(S ∪ V*) 



12 

 

Where the minimum cost is calculated over all the subsets V* ⊂V-S and T(S) and T(V*) 

represents the minimum cost spanning tree of G with vertices a S. 

2.5. Role assignment problem and its resemblance to the Steiner tree problem 

Mapping a task graph onto a sensor network is similar to a Steiner tree problem where the 

data sources in the task graph belong to the terminal set S and the nodes in the sensor network 

are the set of vertices V. 

Task graph can be defined as a tree of functions. Each fusion node is associated with one 

or more functions, like aggregation, filtering, correlation etc. 

Fusion node placement would be dependent on 

• Location of its data generators 

• In a direction towards the location of the next data consumer and the sink node 

• Rate of data generation by the source nodes 

• Distance between the data sources, sink and the next fusion node. 

Optimal placement of the fusion node constitutes the task mapping problem. 

Fusion node assignment will be closer to the node that has higher data rate in a direction 

towards the Sink node. It is also dependent on the data expansion/contraction ratios of the fusion 

function. A high data contraction ratio would tend to place the fusion node as close to the source 

nodes as possible closer to the source node that has the higher data rate. 

The optimal placement of the fusion node depends on 

• The rate at which sensor data is generated by the source nodes. 

• The rate at which fusion node generates the fused data. 

• The data expansion or contraction ratio of the fused and source data. 

• Path length between the source nodes, fusion nodes and the Sink node. 

Thus role assignment problem in WSN is to find the optimal assignment of fusion roles 

to the sensor nodes such that the mapping would minimize the amount of data transferred over 

the network. Apart from the above conditions in which role assignment takes place, the selection 

of a fusion node must be continuously and incrementally recomputed as the local conditions in 

the sensor network might change dynamically. It would be highly inefficient to have a static 

assignment of fusion nodes as the optimal placement of fusion node shifts as the data rates 
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among the source nodes can change continuously and the available energy levels with the nodes 

might fluctuate. Thus the solution must also be adaptive and dynamic. 

Role assignment can be accomplished under various conditions and assumptions. It could 

be assumed that the global topology of the WSN is known and this topological information can 

be used to map fusion roles onto the sensor network topology. Some amount of global 

knowledge of the WSN has to be maintained at every node in the scenario where the topological 

information is available to every node in the sensor network. 

In other cases where a sensor network is deployed randomly, minimal amount of 

topological information could be available. This information would be mostly local with each 

individual node maintaining knowledge about nearby nodes. The solution to the role assignment 

problem in such conditions would have a purely distributed decentralized approach. 

 

Figure 2.5 Illustration of a sample network topology 

The above figure [Fig. 2.6] illustrates a sample wireless sensor network topology with 

nodes randomly distributed in a geographical area. The nodes within radio range can 

communicate with each other. The Green nodes are the source nodes which generate a 

continuous stream of data which might correspond to physical event occurring in the sensor 

network. The Red node is the Sink node which acts as a gateway between the sensor network and 

the outside world. The objective of the sensor network application is to detect events and 
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aggregate them at the Sink node. The Blue nodes are the bridge nodes which act as the 

intermediate nodes used to route data between the Source nodes and the sink nodes. 

 

 

Figure 2.6 Mapping a task graph for uniform data rates 

 

The above figure [Fig. 2.6] illustrates a case where there data contraction is happening in 

the sensor network and the rate at which data is generated by the source nodes is equal. The 

orange nodes are the Steiner points which are chosen in such a way that the total path cost is 

minimized. The Fusion point lies closer to the source nodes and in a direction toward the sink 

node. Because the data rates of the information generated by the source nodes are equal the 

fusion point tends to be equidistant from the Source nodes. 
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Figure 2.7 Mapping a task graph for non-uniform data rates 

 

The above figure [Fig. 2.7] illustrates a case where the rate at which data is generated by 

the source nodes is unequal and there is data contraction in the sensor network. One of the source 

nodes produces information at a much higher rate than the other source nodes.  The orange nodes 

are the Steiner points which are chosen in such a way that the total path cost is minimized. The 

Fusion point lies closer to the source node which produces more information and in a direction 

toward the sink node. As the data rates of the information generated by the source nodes are 

unequal the fusion point tends to be closer to the node that generates more data and further away 

from the node with less data rate. 

Assumptions 

Sensor nodes for this problem are assumed to be static and communicate with the base 

station in a multi-hop fashion. The sensor nodes periodically sense the environment and forward 

data in each round of communication. The end user can acquire data from a base station which is 

also a sensor node (the base station is usually referred to as a sink node). The intermediate nodes 

on the path to the sink, aggregate and fuse the data they receive from the others and forward the 

aggregate towards the sink. The problem is to find a routing mechanism that delivers data 
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packets collected from sensor nodes to the base station in such a way, that it maximizes the 

lifetime of the sensor network. 

Formal problem definition 

We can define the task graph as a tree of Fusion operators. The leaves of the tree 

correspond to the source nodes that produce a steady stream of information. The internal nodes 

of the task graph are the various fusion operators like aggregation, logical, conditional operators 

etc. The root of the task graph is a fusion operator at which all the streams culminate. The root 

node is usually mapped to the sink/gateway node. 

The aim of the task mapping problem is to map the fusion nodes such that it minimizes 

the amount of information transferred in the sensor network. A sensor network can be viewed as 

an undirected graph with the vertices playing the role of sensor node and the edges represent the 

communication links amongst these nodes. 

A task graph is defined as 

N - A set of nodes in the task graph. 

L- The set of links connecting the nodes in the task graph. 

WL – Weight associated with link L in the task graph, WL could be an n tuple. It denotes the rate 

at which data is transmitted between nodes n1 and n2 connected by link L. 

A sensor network topology can be defined as: 

S -  A set of sensor nodes in the WSN topology. 

C - The set of communication links connecting the nodes in S. 

WC – Weight associated with the communication link C of the WSN topology S. 

P(S1,S2) - The shortest path cost between two nodes S1 and S2 in the WSN S. 

The Mapping of a task graph onto a sensor network topology can be defined as a 

set M = {(n1,s1),(n2,s2),….} where the nodes n ∈ N,s ∈ S; the set of nodes n*={n1,n2,n3..} are 

defined as the Steiner points of the task mapping problem. 

The Cost of sending data between node n1 and n2 of the task graph mapped onto nodes S1 and 

S2 in the WSN is defined as 

D n1,n2 (WL12) = ∑ P(Sa,Sb)  where Sa,Sb are the nodes that are part of the path between S1 and S2. 

The role mapping problem can be defined as the assignment of fusion nodes or the nodes 

of the task graph onto the WSN nodes such that it minimizes the global cost of communication 

given by : ∑ D n1,n2 (WL12) 
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This role mapping problem is an instance of the minimal Steiner tree problem. The 

Steiner tree problem is known to be NP-complete. Although Steiner tree approximation 

algorithms are available, the algorithms are centralized and hence centralized Steiner tree 

approximation approaches are not suitable for a distributed sensor network. 

 

Figure 2.8 Mapping a Task Graph onto a Network 

The above Figure 2.8 illustrates an instance of role mapping where a minimum Steiner 

tree is obtained by mapping the task graph onto the network topology. 
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CHAPTER 3 - Background and related work 

3.1. Sensor hardware and deployment environment 

In this chapter we will give a brief overview of some popular sensor network deployment 

and simulation environments. 

An example hardware configuration of a sensor network node 

The Berkley Mica Node [10

TinyOS  

] is a typical sensor network sensor/actuator mote with a 

CPU, power source, radio and several optional sensing elements. The processor is a 8-bit 4 MHz 

Atmel ATmega 128L processor with 128KB of program memory, 4KB of RAM for data and 

512KB of flash memory. The processor only supports a minimal RISC-line instruction set, 

without support for multiplication or variable-length shifts or rotates. The radio is a 916 MHz 

low-power radio, delivering up to 40 Kbps bandwidth on a single shared channel and with a 

range of up to a few dozen meters. The radio consumes 4.8 mA in receive mode, up to 12 mA in 

transmit mode and 5 micro A in sleep mode. 

TinyOS is an open source event driven light weight energy efficient sensor board 

operating system created by UCB [11]. The operating system handles the mote hardware, the 

radio controller for wireless communication and available memory by gather data from on board 

sensors, routing and sending messages to target nodes and controlling the energy consumption of 

the node. TinyOS uses a component oriented architecture approach to minimize code overhead 

and increase reusability. TinyOS' component-based architecture suits the application specific 

nature of WSNs. This also gives the system a certain level of flexibility for future designs. To 

conserve the available on board resources like battery power TinyOS incorporates an event based 

execution model so that the applications are event driven and the resources used for event are 

released once the event is handled. To optimize resource utilization the program components 

respond to events or hardware interrupts. Networked nodes in a WSN may not be physically 

accessible. Generally there is no end-to-end communication between the motes and the sink, and 

radio messages being transmitted may not be received. For these reasons WSNs adopt ad hoc 

network formation. TinyOS' multi-hop networking architecture takes care of this, as well as 

providing support for more heterogeneous networks. 
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nesC   

nesC is programming language designed for low power sensor nodes with high resource 

constraints [12

3.2. Modeling and simulation environments 

]. Because of the resource constraints on the mote hardware, nesC programming 

language is used to exploit the modular design and reusable code concepts of TinyOS.  nesC has 

C like syntax and includes the code efficiency and simplicity of C language. nesC programs are 

built by wiring individual components through a set of interfaces that specify the commands it 

provides and the events it handle. Interfaces provide for bidirectional interaction between the 

component and its user. 

NS-2  

NS-2 is a well-established open-source network simulator from UCB [13

OPNET  

]. It is a discrete 

event simulator with substantial support for simulation of TCP, routing and multi-cast protocols 

over wired and wireless networks. 

OPNET Modeler developed at MIT offers sophisticated modeling and simulation of 

communication networks [14

Ptolemy-II 

]. An OPNET model is hierarchical where the top level contains the 

communication nodes and the topology of the network. It uses a discrete-event simulator to 

execute the entire model. 

Ptolemy-II integrates diverse models of computation, such as continuous-time, discrete 

event, finite state machines, process networks, synchronous data flow, synchronous/reactive. 

This capability can be used, for example to model the physical dynamics of sensor nodes, their 

digital circuits, energy consumption, signal processing or real-time software behavior. 

TOSSIM  

TOSSIM is the TinyOS network Simulator. It can support a large number of motes and 

accurately model the timing interactions between motes [15]. For these reasons, TOSSIM is a 

suitable simulator for testing and evaluating WSNs. TOSSIM allows easy transition between 

simulation and real-world WSNs. The event queue supplies events which are essentially 

hardware interrupts. The arrival of each event allows TinyOS to continue running its 

applications. TOSSIM makes use of a simple, but effective abstraction to model WSNs. It 

considers a wireless sensor network to be a directed graph, each vertex representing a sensor 
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node and each edge having a bit error probability associated with it. This enables users to model 

packet transmission failures or a perfect network with no transmission errors and failures, by 

adjusting the bit rate errors. The event-driven nature of TOSSIM, which goes hand in hand with 

that of a WSN, allows users to set breakpoints in what normally is a real-time simulation. 

TOSSIM allows other programs to interact with the simulation. TinyViz is one such program. 

TinyViz 

TinyViz, a visualization tool for TOSSIM, is a Java based Graphical User Interface 

(GUI). TinyViz is developed to aid the evaluation and debugging of WSNs by providing useful 

visualizations of sensor networks. A number of basic plug-ins are supplied by TinyViz, allowing 

users to monitor network traffic, examine debugging statements, set breakpoints which pause the 

simulation when certain events take place, and set the radio connectivity range of motes based on 

their relative distance on the display. TinyViz not only allows developers to extend the currently 

available plug-ins, but also enables the implementation of application-specific visualizations 

through the creation of entirely new plug-ins, which are run within the TinyViz engine. The 

interaction between TOSSIM and TinyViz, as well as its plug-in based architecture, makes 

TinyViz a suitable visualization tool for simulations. 

3.3. Literature review and existing approaches 

In this section we present some of the commonly used techniques for collecting data in a 

sensor network environment. 

Directed Diffusion  

Directed Diffusion is a data-centric communication paradigm for sensor networks [16]. 

In directed diffusion, data generated by the sensors is named by attribute-value pairs. A sensing 

task (initiated by the sink) is disseminated throughout the sensor network as an interest for the 

named data. This interest dissemination sets up gradients within the network that point to the 

neighbor from which an interest was received. Sensors matching the interest send their data to 

the sinks along multiple gradient paths initially, and then gradually reinforce better paths. 

Intermediate nodes aggregate the data and forward the fused data to the next node till it reaches 

the sink. Fig. 3.1 gives an illustration of directed diffusion. 
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Figure 3.1 Directed Diffusion 
 
SPIN - Sensor Protocols for Information via Negotiation  

SPIN efficiently disseminates information among sensors in an energy-constrained 

wireless sensor network [17

PEGASIS - Power-Efficient GAthering in Sensor Information Systems  

]. Nodes running SPIN name their data using high-level data 

descriptors, called metadata. SPIN nodes base their communication decisions both upon 

application-specific knowledge of the data and upon knowledge of the resources that are 

available to them. This allows the sensors to efficiently distribute data given a limited energy 

supply. 

In PEGASIS, the authors propose a new chain-based protocol called PEGASIS that 

minimizes the energy consumption at each sensor node [18]. PEGASIS achieves reduction in 

energy consumption as compared to LEACH since it requires only one designated node to send 

the combined data to the base station. The key idea is that nodes organize to form a chain and 

each node takes turns being the leader for communication to the base station. The data is 

collected starting from each endpoint of the chain and aggregated along the path to the 

designated head-node. Unlike LEACH (that uses hierarchical clustering), PEGASIS uses a flat 

topology thereby eliminating the overhead of dynamic cluster formation. PEGASIS achieves a 

better performance than LEACH by between 100% and 300% in terms of network lifetime. 
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PEDAP - Power Efficient Data Gathering and Aggregation Protocol   

In PEDAP, the authors propose a new minimum spanning tree-based protocol called 

PEDAP and its power-aware version (PEDAPPA) [19

APTEEN - Adaptive Periodic Threshold-sensitive Energy Efficient sensor Network 

Protocol  

]. The data packets are routed to the base 

station over the edges of the minimum spanning tree. PEDAP outperforms LEACH and 

PEGASIS by constructing minimum energy consuming routing for each round of 

communication. The advantage with PEDAP-PA is that it minimizes the total energy of the 

system while distributing the load evenly among the nodes. This leads to increased system 

lifetime. 

APTEEN uses an enhanced TDMA schedule to efficiently incorporate query handling 

[20]. APTEEN provides a combination of proactive (by requiring nodes to periodically send 

data) and reactive (by making nodes to respond immediately to time-critical situations) policies. 
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3.4. Introduction to Clustering and Clustering in wireless sensor networks 

In this section we provide a brief overview of clustering, explain some popular clustering 

approaches and methodologies and review the commonly used clustering approaches in sensor 

networks. 

Clustering 

The objective of clustering is to divide data into meaningful groups and through this 

process discover useful but not so obvious information present in large collection of data objects 

[21

Data representation for cluster analysis 

]. Clustering aims at grouping data such that objects within groups are similar while objects 

in different groups are dissimilar [Fig. 3.2]. The greater the similarity within the objects of a 

cluster, and the greater the difference between clusters, the better is the clustering technique. The 

better clustering technique tries to maximize intra-cluster similarity and minimize the inter-

cluster similarity. Because clustering methods do not assume the presence of prior knowledge of 

data to be clustered, clustering is called as an unsupervised learning technique. 

Based on the need for clustering and the application domain, cluster membership can be 

subject to multiple definitions. 

A cluster can be defined as a grouping in which every member of the cluster is identical 

to every other member of the cluster and less similar to other cluster objects. A threshold is used 

as a similarity measure. 

A cluster can also be defined as a set of objects in which all the members are similar to 

the representative member of the cluster commonly called as a centroid or center of gravity than 

with the centers of other clusters. The centroid could be a medoid in which case a cluster object 

acts as a cluster center or a centroid i.e. the average of all the members of the cluster. 

Clusters can also be defined as regions of high-density separated by low-density regions. 

This approach to clustering is mostly used to discover clusters of arbitrary size and shape. This is 

popularly known as density based approach to clustering. 

Data objects in cluster analysis are usually represented as vectors in an n dimensional 

space where each dimension represents an attribute or measurement that partially describes the 

data object. Thus the data objects to be clustered are represented as an m-by-n matrix where each 

of the m rows represent the individual data objects and the n columns represent the attributes of 

the data vector. 
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Figure 3.2 Clustering 

 
 
Proximity measures 

Minkowski metric or Distance Measures 

Minkowski metric is the most popular and most commonly used distance measure to 

determine the proximity of two data objects [22

Jaccard's coefficient for binary vectors 

]. This metric is a generalization of the normal 

distance between two points in a Euclidian space. It is defined as 

Pij=[ ∑k=1to d | xik-xkj |r ]i/r
 

Where r is the distance parameter, d is the dimensionality of the data object and xik,xkj are the 

respective kth components of the ith and jth objects of xi and xj. 

The following is a list of the common Minkowski distances for specific values of r. 

r=1 Manhattan distance aka L1 distance 

r=2 Euclidian distance aka L2 distance, usually used to calculate the distance between two points 

in the Euclidean space. 

Jaccard's coefficient is used to calculate the similarity between binary vectors [23]. 

Jaccard's similarity coefficient has values between 0 and 1. A value of 1 indicates that the two 

vectors are completely similar, while a value of 0 indicates that the vectors are not at all similar. 
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The comparison of two binary vectors, p and q, leads to four quantities: 

M01 = the number of positions where p was 0 and q was 1 

M10 = the number of positions where p was 1 and q was 0 

M00 = the number of positions where p was 0 and q was 0 

M11 = the number of positions where p was 1 and q was 1 

The Jaccard coefficient measure is given by 

J = (M11) / (M01 + M10 + M11) 

Cosine similarity measure 

The cosine measure, defined below, is the most common measure similarity between 

non-binary vectors. If d1 and d2 are two document vectors, then 

cos( d1, d2 ) = (d1 • d2) / ||d1|| ||d2||  is the cosine similarity measure 

Where • indicates vector dot product and ||d|| is the length of vector d. 
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3.5. Traditional clustering approaches 

 
Clustering methods are typically either based on distances (like partitioning and 

hierarchical clustering) or on densities (like density-based methods). 

Partition techniques 
One of the most common approaches to cluster a data set is clustering by partitioning. As 

the name suggests, clustering by partitioning creates a disjoint non-overlapping grouping of the 

data set. Partitioning algorithms iteratively improve an initial partition of the data until a cost 

function converges. Usually in partition algorithms the number of clusters into which the data 

has to be clustered has to be mentioned. If K is the desired number of clusters, then partition 

approaches typically find all K clusters at once. 

Hierarchical techniques 
Usually as the number of clusters are not known hierarchical techniques come up with a 

nested sequence of partitions represented in the form of a binary tree structure where a single 

universal cluster is at the root and individual data objects are at the leaf level [Fig. 3.3]. The 

intermediate levels can be viewed as clusters formed by some proximity metrics. There are two 

kinds of hierarchical techniques namely divisive (top-down) and agglomerative (bottom-up) 

clustering methods. Divisive methods start with a single cluster that contains all objects and 

recursively pick one cluster for splitting from the top. Starting with a single cluster and ending 

up with individual data items. Agglomerative methods assign each object to an individual cluster 

and then iteratively merge the two closest clusters together using a chosen distance function. By 

choosing different levels in the hierarchical tree we can obtain a different clustering of the data 

set. 

Density-based techniques 

Density based clustering techniques define clusters as dense regions separated by 

sparsely populated regions. Density of a region can be measured by either a simple count of the 

objects or by using complex models for density determination. Density based techniques are 

useful for detecting arbitrarily shaped clusters in noisy settings. 
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Figure 3.3 Hierarchical clustering 
 
 

3.6. Partition techniques 
K-Means 

The K-Means algorithm is a partition based clustering technique. It is based on the idea 

that a center point of a cluster can represent the cluster .K-Means uses the concept of a centroid 

which is nothing but the center of gravity of the cluster which is the mean or median of all the 

data points associated with that particular cluster. The centroid in K-means may or may not be an 

actual data point [24

K-means algorithm for finding K clusters 

]. 

I. Select K points as the initial centroids. 

II. Assign each point in the data set to the closest of the K centroids. 

III. Recalculate the centroid of each cluster. 

IV. Repeat steps 2 and 3 until the centroids don’t change. 

Choosing the initial centroids is the critical step of the K-means clustering. In K-means 

algorithm the initial choice of the K centroids can determine the final outcome of the clustering. 

Depending on the initial choice of the centroids clustering solution can converge to either a 

global minimum or a local minimum. 
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Time and space complexity 

As  only the n dimensional data vectors are stored to represent each of data points, the 

space  complexity of the K-means algorithm is O(mn),where m is the number of points in the 

data set and n is the number of attributes or dimensions of each data point. The complexity of the 

K-means algorithm is O(I*K*m*n), where I is the number of iterations required for the K-means 

algorithm to converge. I is usually a small value and can be easily bounded as most changes 

occur in the first few iterations. Thus, K-means is linear in m, the number of points, and is 

efficient, as well as simple, as long as the number of clusters is significantly less than m. 

Formal algorithm for K-means 

Given the data set X, choose the number of clusters 1 < c < N. 

Initialize with random cluster centers chosen from the data set X. 

Repeat for l = 1, 2… 

Step 1 Compute the distances 

D2ik = (xk - vi)T (xk - vi); 1 ≤ i ≤c; 1 ≤k ≤N 

Step 2 Select the points for a cluster with the minimal distances, they belong to that cluster. 

Step 3 Calculate cluster centers 

vi = ∑j=1 to Ni xi / Ni     until ∏ k=1 to n max|V(l)-V(l-1)| ≠0 

 

K-Medoid or Partition around medoids (PAM) 
 

The K-medoids algorithm is a partition based clustering technique similar to the K-Means 

technique [25]. The objective of K-medoid clustering is to find a non-overlapping set of clusters 

such that each cluster has a most representative point, i.e., a point that is most centrally located 

with respect to some measure, e.g., distance. In K-medoid we use the concept of a medoid, which 

is the most representative (central) point of a group of points belonging to the cluster. By 

definition a medoid is required to be an actual Data point. Thus unlike K-Means, in K-Medoid 

the center point which represents the cluster must essentially be a data point. 
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Basic K-medoid algorithm for finding K clusters. 
 

I. Select K initial points. These points are the candidate medoids and are intended to be the 

most central points of their clusters. 

II. Consider the effect of replacing one of the selected objects (medoids) with one of the 

non-selected objects. Conceptually, this is done in the following way. The distance of 

each non-selected point from the closest candidate medoid is calculated, and this distance 

is summed over all points. This distance represents the “cost” of the current 

configuration. All possible swaps of a non-selected point for a selected one are 

considered, and the cost of each configuration is calculated. 

III. Select the configuration with the lowest cost. If this is a new configuration, then repeat 

step 2. 

IV. Otherwise, associate each non-selected point with its closest selected point (medoid) 

and stop. 
 

Formal algorithm for K-medoids 

 
Given the data set X, choose the number of clusters 1 < c < N. 

Initialize with random cluster centers chosen from the data set X. 

Repeat for l = 1, 2… 

Step 1 Compute the distances 

D2ik = (xk - vi)T (xk - vi); 1 ≤ i ≤c; 1 ≤k ≤N 

Step 2 Select the points for a cluster with the minimal distances, they belong to that cluster. 

Step 3 Calculate k-means cluster centers 

vi = ∑j=1 to Ni xi / Ni      
Step 4 Choose the nearest data point to be the cluster center 

D2ik = (xk – v*i)T (xk – v*i) 
and 

xi* = argmini D2ik* => vi= xi* 

Until ∏ k=1 to n max|V(l)-V(l-1)| ≠0 
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3.7. Distributed clustering techniques for sensor networks 

Distributed clustering techniques are used in sensor networks to increase scalability of 

traditional protocols and reduce network delays. To support scalability the sensor nodes are 

grouped into non-overlapping disjoint clusters that interact with each other [26

LCA - Linked cluster algorithm 

]. Clustering 

simplifies routing by reducing the size of routing table and divides the routing problem into 

intra-cluster and inter-cluster routing and in the process create a logical topology for a sensor 

network whose nodes are not location aware. The following are some clustering algorithms in a 

WSN environment. 

The focus of LCA is primarily on forming an efficient network topology that can handle 

the mobility of nodes [27

Adaptive clustering  

]. In LCA clustering, cluster heads are joined to form a Backbone 

network to which cluster members can connect while on the move. The Objective of the 

proposed distributed algorithm is to form clusters such that a Cluster head is directly connected 

to all nodes in its cluster. LCA is thus geared for maximizing network connectivity. The 

algorithm assumes synchronized nodes and time-based medium access.  

Adaptive Clustering looks to optimally control the cluster size by balancing the interest in 

the spatial reuse of channels, which is increased by having small clusters, and data delivery 

delay, which gets reduced by avoiding inter-cluster routing, i.e. large cluster sizes[28

CLUBS 

]. In 

adaptive clustering every cluster would use a distinct code resulting is simplified implementation 

and great potential for meeting the Quality of Service requirements often found in multimedia 

applications.  

CLUBS is an algorithm that forms clusters through local broadcast and converge in a 

time proportional to the local density of nodes [29]. Basically, cluster formation in CLUBS is 

based on network connectivity, cluster diameter and intra-cluster connectivity within clusters. 

The algorithm forms clusters with a maximum of two hops. Each node in the network takes part 

in the cluster formation process by choosing a random number from a fixed integer range. Then 

it counts down from that number silently. If the countdown was not interrupted from any other 

neighboring node and it reaches zero, it announces itself Cluster Head and broadcasts a 

‘‘recruit’’ message. When a neighboring node receives the recruit message that comes within 
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two-hop diameter boundary, it stops the countdown, accepts the invitation and joins the cluster. 

A node that has joined a cluster is called ‘‘follower’’ is no longer allowed to compete for being a 

Cluster Head.  

Hierarchical control clustering  

Objective of Hierarchical control clustering is to form a multi-tier hierarchical clustering 

network [30

LEACH - Low Energy Adaptive Clustering Hierarchy  

]. A number of cluster’s properties such as cluster size and the degree of overlap, 

which are useful for the management and scalability of the hierarchy, are also considered while 

grouping the nodes. In the Hierarchical control clustering scheme. Node in the WSN can initiate 

the cluster formation process. Initiator with least node ID will take precedence, if multiple nodes 

started cluster formation process at the same time. The algorithm proceeds in two phases: Tree 

discovery and Cluster formation. The tree discovery phase is basically a distributed formation of 

a Breadth-First-Search (BFS) tree rooted at the initiator node. Every node updates its sub-tree 

size when its children sub-tree size change. The cluster formation phase starts when a sub-tree on 

a node crosses the size parameter. 

The LEACH protocol is an elegant solution to the data aggregation problem where 

clusters are formed in a self-organized manner to fuse data before transmitting to the base station 

or sink [31]. In LEACH, a designated node in each cluster, called the cluster head is responsible 

for collecting and aggregating the data from sensors in its cluster and eventually transmitting the 

result to the base station. An improved version of LEACH, called LEACH-C [32

HEED - Hybrid Energy-Efficient Distributed Clustering  

] does cluster 

formation at the beginning of each round using a centralized algorithm by the base station.  

HEED [33] is a distributed clustering scheme in which cluster head nodes are picked 

from the deployed sensors. HEED considers a hybrid of energy and communication cost when 

selecting cluster head nodes. Unlike LEACH, it does not select cell-head nodes randomly. Only 

sensors that have a high residual energy can become cell-head nodes. In HEED, each node is 

mapped to exactly one cluster and can directly communicate with its cluster head.  
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CHAPTER 4 - Methodology 

4.1. Approaches for role mapping 

We consider two major approaches for role mapping. 

I. When the network topology is known 

In this scenario we assume that the network topology is available before hand , the 

network has a regular structure  and nodes are location aware and nodes are associated 

with coordinates. We assume that the network nodes are stationary and they have an idea 

of what the location of their neighbors is. 

II. When the network topology is not known 

In this scenario we assume that the network topology is not available before hand and the 

network has a random asymmetric structure and nodes are not location aware. We assume 

that the network nodes are stationary and they have no idea of what the location of their 

neighbors is. 

We propose multiple methods for the above stated approaches. 

When the network topology is known we can use the following techniques for role mapping 

I. No fusion without Backbone. 

II. No fusion with Backbone. 

III. Incremental mapping of Fusion Nodes in a grid. 

When the network topology is not known we propose the following techniques for role mapping 

IV. Clustering techniques. 

V. Incremental mapping of Fusion Nodes with clusters. 

 
4.2. No fusion without Backbone 

In no fusion without Backbone all the sensing nodes send individual data streams to the 

sink node independently and no data fusion takes place within the sensor network. No Fusion 

without Backbone is a case of many-to one communication. The objective of implementing a 

basic sense and send protocol is to set a baseline for other role mapping schemes. Routing 

without fusion would involve more data traffic in the network as every source node in the 

wireless sensor network would aim to send data to the sink through the shortest possible path 

available between the source node and the sink node. No fusion or aggregation of any type 
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would be implemented within the network. The task graph is completely mapped to the sink 

node. The sink node would be responsible for fusing and aggregating all the data that it gathers 

from its respective source nodes. Thus, in this approach of sending data to base station without 

any fusion occurring in the network, one can expect the life time of the network to be 

considerably reduced when compared to other methodologies which take advantage of local 

heuristics to perform fusion and aggregation of data streams internally in the network. 

This approach works by constructing a minimum weight tree rooted at the sink. Flooding 

is one of the most widely used data dissemination techniques used for communication in sensor 

networks but these methods have some inherent limitations. In flooding related techniques each 

sensor node broadcasts data packet to its neighbors and this process continues until the data 

packet reaches the destination node. However, the problem with flooding is that it results in 

unrestricted creation of duplicate packets throughout the network, thus leading to packet 

congestion and energy consumption. 

The protocol for routing data messages from any sensor to the base station in a sensor 

network is as follows. The basic sense and send protocol for sending source messages to the sink 

maintains an incoming minimum weight tree rooted at the base station. The tree is constructed as 

follows. 

I. Every sensor in the wireless sensor network topology is assigned a unique 

identifier or local address that distinguishes a sensor from other nodes in the 

network. 

II. Each and every sensor node calculates the address identifier of its neighboring 

nodes based on its own identifier. 

III. The sink node periodically broadcasts a beacon message to all its neighbors. All 

the neighbors within the broadcast range can receive a beacon message. 

IV. The source identifier of the beacon message as well as the level or hop count from 

the Sink node to the node sending the beacon message is embedded within the 

message. 

V. Whenever a node receives a beacon message with a level less than the current 

level of the sensor node, it updates its parent in the tree as the source of the 

beacon message, increment the hop count and broadcast the beacon message. 

Thus, a logical minimum weight tree is formed over the sensor network, where 
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every node chooses the node that provides shortest path to the sink node as its 

parent in the logical tree. 

VI. The Source nodes start sending data through directed uni-cast messages to its 

parents in the logical tree formed. 

VII. Whenever a node receives a uni-cast data message it forwards the data message to 

its parent node in the tree. 

 
TreeFormation() 

{if Node receives packet for the first time then 

Mark Node as received 

Parent = Sourceofpacket 

Source = Node 

Increment Level Field 

Rebroadcast packet 

end if 

else if Node receives packet 

if Received Level < Current level 

Parent = Sourceofpacket 

Source = Node 

Increment Level Field 

Rebroadcast packet 

end if 

end if 

 } 
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Figure 4.1 Generic routing without Backbone 

 
The above diagram [Fig. 4.1] illustrates routing source data to the sink node without any 

fusion taking place within the network. Each and every source node tries to route data along the 

shortest path to the source node. 

4.3. Backbone or Grid 

Backbone or Grid in a sensor network topology can be considered as a set of high energy 

nodes that are placed uniformly over the sensor field. The intuition behind grid based routing is 

to prolong the network lifetime by routing data over a set of high performance nodes. Fully 

charged battery powered sensor nodes are randomly placed in the field with a sink and a set of 

sensor nodes. The sensor field is divided into square-shaped grids of user defined grid size. Fig 

4.2 illustrates the arrangement of the nodes in the form of a grid. 

Figure 4.2  Grid arrangement 
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The objectives of using a grid are to 

I. Extend network lifetime by only routing through grid nodes. 

II. Maintain network connectivity and prolong network partition time. 

Note: The terms Grid Nodes and Backbone Nodes would be used interchangeably to denote the 

high energy nodes present in the network. 

4.4. No fusion with Backbone 

In no fusion with Backbone all the sensing nodes send individual data streams to the sink 

node independently over a network of Backbone nodes also termed as grid nodes and no data 

fusion takes place within the sensor network. No Fusion with Backbone is a case of many-to one 

communication. As detailed earlier routing within a network by flooding would result in more 

data traffic as every source node in the wireless sensor network would aim to send data to the 

sink through the shortest possible path available between the source node and the sink node. In 

this approach no data fusion would be implemented within the network. The Task graph is 

completely mapped to the sink node. The sink node would be responsible for computation and 

aggregation of data that it gathers from its respective source nodes. 

The protocol for routing data messages from any sensor to the base station in a sensor 

network over a set of Backbone nodes is as follows. The basic sense and send protocol for 

sending source messages to the sink maintains an incoming minimum weight tree rooted at the 

base station. The tree construction over the Backbone is detailed below. 
Every sensor in the wireless sensor network topology is assigned a unique identifier or 

local address that distinguishes a sensor from other nodes in the network. The sensor nodes in the 

network form a logical two dimensional grid in the network topology. 

I. Each and every sensor node calculates the address identifier of its neighboring 

nodes based on its own identifier. 

II. The sink node periodically broadcasts a beacon message to all its grid neighbors. 

All the neighbors within the broadcast range can receive a beacon message but 

only the Backbone nodes can act on the beacon message. 

III. The source identifier of the beacon message as well as the level or hop count from 

the Sink node to the Grid node sending the beacon message is embedded within 

the message. 
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IV. Whenever a Backbone node receives a beacon message with a level less than the 

current level of the sensor node, it updates its parent in the tree as the source of 

the beacon message, increment the hop count and broadcast the beacon message. 

Thus a logical minimum weight tree is formed over the Backbone nodes of the 

sensor network where every Grid node chooses the Grid node that provides 

shortest path to the Sink node as its parent in the logical tree. 

V. The non-grid nodes within the sensor field choose the nearest Backbone nodes. In 

case there are multiple Backbone nodes within the vicinity of a a non-grid node it 

chooses the Grid node closest to the Sink. 

VI. The Source nodes start sending data through directed uni-cast messages to its 

Backbone parents in the logical tree formed. 

VII. Whenever a Backbone node receives a uni-cast data message it forwards the data 

message to its parent node in the tree. 

 
TreeFormationGrid() 

{if Node receives packet for the first time then 

Mark Node as received 

Parent = Sourceofpacket 

Source = Node 

Increment Level Field 

If Node is GridNode 

Rebroadcast packet 

end if 

end if 

else if Node receives packet 

if Received Level < Current level 

Parent = Sourceofpacket 

Source = Node 

Increment Level Field 

If Node is GridNode 

Rebroadcast packet 
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end if 

end if 

end if 

} 

 

4.5. Incremental mapping of fusion nodes 

The role mapping problem  

Given N = (Vn, Em), namely, the network topology, and T = (V't, E't ), namely, the task 

graph, and an application-specific cost metric M, the goal is to find a mapping f : V't → Vn  that 

minimizes the overall cost C. Here, Vn represents nodes of the sensor network and Em represents 

communication links between them. In the task graph, V't represents fusion functions (filter, data 

fusion, etc.) and E't represents flow of data between the fusion points. A mapping f : V't → Vn  

generates an overlay network of fusion points to network nodes; implicitly, this generates a 

mapping l: E't → {e|e ∈ En} of data flow to communication links. The focus of the role 

assignment algorithm is to determine f. Here we assume that the global network topology is not 

known and must be discovered. 

Phases in mapping a task graph to a topology 

a) Role mapping and incremental reinforcement for optimization, phase 

In the role mapping phase an approximate assignment of the fusion points is made to the 

Sensor network grid nodes. If there is data contraction taking place then the fusion node 

placement is made in such a way that the mapped grid node is closer to the source nodes and 

away from the Sink node but in a direction towards the sink node. Initial placement can be 

obtained by calculating a weighted centroid of the Source and the Sink nodes. The weights are 

user defined and can be calculated as a function of the size of the network and the distance 

between the nodes.  Initial placement of the fusion node plays a role in finding the optimum 

placement of the fusion node. The placement of the fusion node is refined iteratively so as to 

attain optimal role assignment of the fusion node onto the network nodes. Initially the mapping 

of the Source and Sink nodes is known and this is the only role mapping that would remain 

constant during role assignment. The optimal placement of the fusion point is not only dependent 

on the location of the child nodes but also dependent on the mapping of the parent nodes onto the 
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sensor network topology. Thus, the initial role mapping is performed in a bottom-up manner 

from the child node to the parent node and the incremental reinforcement is performed 

recursively in top-down manner from the parent node to the child node. Thus, the initial role 

mapping and incremental refinement phases are performed in an interleaved manner so as to 

achieve optimal placement of fusion points onto the network. In the incremental reinforcement 

phase a grid node that has been assigned a fusion role informs its neighbors in a user defined 

region of the data fusion cost. Upon receiving this message all the neighbors compute their own 

data fusion cost and decide if they are more suitable to play the fusion role than the current 

fusion node. If a neighboring node decides that it is more suitable for performing the fusion role, 

it intimates the current fusion node of the data fusion cost.  A role transfer is performed by the 

Fusion node to the neighbor node with the least cost of data fusion. After every role transfer the 

state of the network moves towards the optimum role mapping state. The network reaches a 

constant state after the role mapping phase is performed. The role mapping phase can be 

terminated explicitly after a user defined number of iterations are completed. 

b) Maintenance phase 

In the maintenance phase the residual energy levels of the nodes are constantly monitored 

and a role transfer operation is performed after a threshold is breached. The incremental 

reinforcement can be performed after a certain number of role transfers have been performed. 

Algorithm mapping fusion nodes to the nodes 

If Node is event source & data ready 
forward data to Geographical data Aggregator 
 
If Node is data Aggregator 
Aggregate data and forward data 
 
If Node receives data From Multiple Sources && data items map task graph && node not 
already a fusion node && other fusion nodes present 
 
calculate data fusion cost 
 
{If data fusion cost <threshold 
Node.Fusion_region=true 
Fuse data and process data till we reach next fusion point in task graph 
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forward this data into network 
} 
 
else forward data 
 
If Node receives fused data && is a fusion node for that fused data 
Calculate data transfer cost from previous source of fused data 
Send data transfer + data fusion cost back to the previous fusion node 
 
If fusion node receives feedback from forward fusion region calculate average cost of fusion and 
data transfer 
Start Timer 
Publish this cost in fusion region 
Timer expires Set Node as Fusion Node' 
 
If node receives average Fusioncost && Received Cost < Average Fusion cost 
Send Negative Reply 
 
Mapping the intermediate computation stages Onto the intermediate Nodes 
 
Node is in Fusion Channel 
while(incremental Computation overhead <data transfer cost+ computation cost at next node) 
Assign task to Node 
else 
propogate Task to next node in fusion channel 
If Node.dataReady==true 
{ 
If Node.isSource==true  And Node.isAggregator==false 
Node.Send(data,Aggregator_id) 
else 
If Node.isAggregator==true 
Node.Aggregate(Data_Set) 
} 
 
If Node.isAggregator==true And Node.dataReceived==true 
Node.Aggregate(Data_Set) 
Node.Send(Data,Metric) 
 
If Node.dataReceived==true And Received_data_Metric > Node.Threshold 
{ 
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Node.setDataType=True 
Node.Send(data,Metric) 
else 
Node.dropData 
} 
 
 
If Node.dataTaskMap==True 
{ 
If(Node.fusionCost(Data)<threshold) 
Node.fusionRegion=true 
Node.Send(fusedData,Metric) 
Node.sendFeedBack(Cost) 
} 
 
If Node.receivesFeedBack==True 
Node.publish(ForwardFusionNode) 
 
If Node.fusionNode==false 
Node.SendFusionNodeId(FusionNode,Metric) 
 
If  Node.fusionRegion==true And Node.ReceiveFusionNodeId==true 
Node.setFusionNodeId(FusionNode) 
else 
If  Node.fusionRegion==false And Node.ReceiveFusionNodeId==true 
Node.SendFusionNodeId(FusionNode,Metric) 
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4.6. Heuristics for routing on Backbone 

In this section we describe the heuristics for routing on a Backbone and come up with 

algorithms for efficient routing in the presence of a grid structured Backbone. 

Assumption  

For routing on a grid we assume that two data nodes and one fusion nodes are identified 

.The data nodes know the position of each other and the fusion node. Let the coordinates of the 

Data Nodes be (x1,y1) and (x2,y2) and the Fusion node Coordinates be  (xf,yf) 

Case1 

All 3 lie on the same row or column: 

 

Figure 4.3 Grid routing when all three are in same row or column 

When all the three nodes lie on the same row or column then we send data directly to the sink 

node [Fig. 4.3]. 

If (x1==x2==xf) 

{ 

y1<yf<y2 fusion node =(xf,yf) 

else 

if  |y1-yf| <|y2-yf| 

fusion node = (x1,y1) 

else 

fusion node =(x2,y2) 

} 
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Else 

If (y1==y2==yf) 

{ 

x1<xf<x2 fusion node =(xf,yf) 

else 

if  |x1-xf| <|x2-xf| 

fusion node = (x1,y1) 

else 

fusion node =(x2,y2) 

} 

Case 2  

All 3 lie in a straight line and the fusion node is in-between the two data nodes 

if  |x1-xf| +|x2-xf |+ |y1-yf| +|y2-yf|==  |x1-x2| +|y2-yf| 

reach fusion node 

Case 3  

The fusion node lies on the same side of the data nodes. 

Figure 4.4 Grid routing when Source nodes lie on the same side of Fusion node 
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There could be two scenarios 

a) Data nodes are on either side of the fusion node [Fig. 4.5]. 

b) Data nodes are on the same side of the fusion nodes [Fig. 4.4]. 

 

Figure 4.5 Grid routing when Source nodes lie on the either side of Fusion node 

 

 

if  |x1-xf| +|x2-xf |+ |y1-yf| +|y2-yf|>  |x1-x2| +|y2-yf| 

 { 

 If  x1<xf<x2 or y1<yf<y2 

     {//data points are on either side of the fusion point 

      If |x1-x2| >|y1-y2| 

                                   { Travel along x-axis 

            if |y1-yf |< |y2-yf| 

                                         New fusion point =(xf,y1) 

                                      Else 

              New fusion point =(xf,y1) 

                                  } 

  else 

                         { Travel along Y-axis 

            if |x1-xf |< |x2-xf| 

                                         New fusion point =(x1,yf) 

                                      Else 
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              New fusion point =(x2,yf) 

                                  } 

                    } 

 Else 

                   {//Data points are on the same side of the fusion point 

  If(|x1-x2| >|y1-y2|) 

  {  if(|y1-yf| >|y2-yf|) 

new fusion point = (x1,y2) 

  else 

new fusion point = (x2,y1) 

} 

Else 

{  if(|x1-xf| >|x2-xf|) 

new fusion point = (x2,y1) 

  else 

new fusion point = (x1,y2)} 

} 
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4.7. Clustering 

In this section we specify the need for clustering in random topology and describe the 

distributed implementation of density based clustering methods. 

Clustering the nodes in a sensor network can be an effective technique for optimizing 

network lifetime, achieving   efficient scalability, and load balancing. In this section we propose 

energy-efficient approaches for clustering nodes in ad-hoc sensor networks. Clustering can be 

helpful when the topology of a network is not known and when an application has to scale over a 

large number of nodes. Some Clustering techniques are inherently distributed and can be adapted 

in a sensor network environment. Applications that need efficient data aggregation and fusion in 

a scalable environment are natural candidates for using clustering approaches for example the 

average temperature of a topological region can be calculated efficiently by calculating the 

temperature of the clusters associated with the topological region, this approach not only 

eliminates redundant data transmission but also ensures that some amount of computation and 

data processing shifts within the network thus making the application more responsive. 

Clustering can not only be utilised for data aggregation and data fusion but also for routing in the 

network. 

The following images[Fig. 4.6] illustrate the need for clustering in a single hop 

environment where messages are sent directly to the sink node from the individual sensing 

nodes. By clustering the sensor field and aggregating or fusing data in the individual clusters a 

lot of messages can be saved this approach not only improves the residual energy levels in the 

network thus extending the network life time it also makes the approach more scalable to larger 

networks. 

 

Figure 4.6 Single hop without clustering and Single hop with clustering 
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Similarly the following images[Fig 4.8] illustrate the advantage of clustering in a multi-

hop environment where messages are routed to the sink node from the individual sensing nodes. 

By clustering the sensor field and aggregating or fusing data of the individual clusters a lot of 

messages can be saved. Clustering can simplify routing in a multi-hop environment by dividing 

the routing function into intra-cluster routing and inter-cluster routing. This design can help 

aggregate data within the clusters and also fuse related data among clusters. Clustering can be an 

efficient technique for in-network data processing to extend the overall lifetime of a sensor 

network. 

Figure 4.7 Multi-hop without clustering and Multi-hop with clustering 

 

The following are the advantages of Clustering as proposed in the above approaches 

I. Clustering reduces resource contention thus increasing network life time 

II. Cluster states give a partial picture of the Network state and aggregating Cluster states the 

overall network can be captured. 

III. Clustering provides an efficient way to hierarchically structure a network topology and 

provides a clean and elegant way to logically represent a network whose topology is not 

known. 

IV. Efficient network routing can be achieved by reducing the routing problem as routing 

through an overlay of clusters which effectively has a relatively smaller network 

diameter. 
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Requirements for a good clustering technique for a sensor network application 

I. Clustering must be distributed; it should not be either initiated or terminated by a central 

node. 

II. It should not make any assumption about the topology, density or distribution of nodes 

over the Sensor network. 

III. All the nodes are assumed to be of similar capabilities. 

IV. The clustering mechanism must terminate within fixed number of iterations and must be 

independent of the topology, size or the scale of the network. 

V. Clustering should incur limited and negligible overhead and maintenance of clusters 

should not impede with the regular working of the sensor network application. 

VI. The result of clustering should be a uniformly logically segmented network. 

4.8. Formal definition of the network clustering problem 

Let the Network topology consist of K nodes with identical capabilities. The objective of 

the clustering problem is to segment the topology logically into a set of “K” clusters; each cluster 

is associated with a cluster head and a set of core nodes. After clustering each node Ni in the 

network is mapped at most to one of the K clusters. The K clusters have disjoint membership and 

must cover the entire network topology. Within each cluster every node is either a core node or a 

dependent node which is in direct communication range with one of the core nodes. One of the 

core nodes is selected as a Cluster head. Thus every node in a connected network is either a core 

node or a border node. A node which is not in direct communication range with the core nodes is 

classified as an outlier. 

 
Figure 4.8 DBSCAN Node varieties 

For a clustering approach to be efficient the following requirements must be met  

I. Clustering must be completely distributed and every node takes its decisions 

independently and solely based on local information. 
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II. Regardless of the scale and diameter of the network clustering must terminate. 

III. After each iteration every node is either a core node, border node or an outlier node. 

IV. Clusters must be evenly distributed over the network. 

In this section, we describe our two clustering protocols in detail. First, we define the parameters 

used in the clustering process. Second, we present the protocol design and pseudo-code. Finally, 

we prove that the protocol meets its requirements. 

4.9. Density-Based Spatial Clustering of Applications with Noise (DBSCAN): 
DBSCAN is a density based clustering algorithm which can detect clusters of arbitrary 

shape and size in diverse settings [34

I. Core points. The core points of a cluster lie interior to the cluster. For a data point to be a 

core point it has to have a minimum number of points in its E-neighborhood i.e. if the 

number of data points exceeds the core object threshold value within a given radius or E-

neighborhood around the point then such a data point is considered to be the Core object. 

If two core points are present in each other’s neighborhoods, then the core points belong 

to the same cluster and are considered to be directly density reachable. 

]. Density of a cluster can be measured in various ways 

ranging from simple metrics like the count of data object in the cluster to more complex 

functions on the count and location of data items in the cluster region. Basic idea behind 

DBSCAN clustering approach is that clusters are defined as dense regions separated by sparsely 

populated regions. DBSCAN stands for Density-Based Spatial Clustering of Applications with 

Noise. In DBSCAN a data object can either be classified as a cluster member or as noise. 

DBSCAN is based on the concepts of “density reachability” [Fig. 4.11] and “density 

connectivity” [Fig. 4.12] both measured in terms of local distribution of the nearest neighbors. 

Conceptually, the Nodes in a network can be classified into three classes: 

II. Density reachable points or a Border point. A density reachable point is a point in a 

cluster that is not a core point, i.e. it has at least one core object in its neighborhood but 

there are not enough data points in its neighborhood that exceed the threshold value to be 

a core object. Thus, for DBSCAN, a cluster is the set of all core points whose 

neighborhoods transitively connect them together, along with some border points. 

III. Noise points. A noise point is any point that is not a core point or a border point. 
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Any border point that is close enough to a core point is put in the same cluster as the core point 

.Noise points are usually discarded. 

 
Ε-Neighborhood  

Objects within a radius of ε from an object constitute the epsilon-neighborhood of an object [Fig. 

4.10]. 

 
Core objects 

An object is a core object if ε-Neighborhood of the object contains at least MinPts of objects. 
The following example [Fig. 4.11] illustrates how core nodes are identified using E-

Neighborhood. 

 
Figure 4.9 Epsilon neighborhood 

 
Directly density-reachable 

An object q is directly density-reachable from object p if q is within the ε-Neighborhood 

of p and p is a core object. In the above example q is directly density reachable from p as p is a 

core object .But p is not directly density reachable from q even though it is in ε-Neighborhood of 

q as q is not a core object. 

Density-reachable 

An object p is density-reachable from q with respect to  ε and MinPts if there is a chain of 

objects p1,…,pn, with p1=q, pn=p such that pi+1is directly density-reachable from pi w.r.t ε and 

MinPts for all 1 <= i <= n. The following example illustrates the concept of density reachability. 
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Figure 4.10 Density Reachable 
In the above example q is density-reachable from p but not vice-versa, i.e. Transitive closure of 

direct density-reachability is asymmetric [Fig. 4.12]. 

Density-connectivity 

Object p is density-connected to object q w.r.t ε and MinPts if there is an object r such that both 

p and q are density-reachable from r w.r.t ε and MinPts. The following example illustrates the 

concept of Density-connectivity. 

 
 

 
Figure 4.11 Density connectivity 

In the above example Figure 4.13 P and q are density-connected to each other by r, i.e. Density-

connectivity is symmetric. 

Cluster 

A cluster C in a set of objects D w.r.t ε and MinPts is a non empty subset of D satisfying the 

following conditions of maximality and connectivity. 

• Maximality: For all p, q if p ∈ C and if q is density-reachable from p w.r.t ε and MinPts, 

then also q ∈ C. 
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• Connectivity: for all p, q ∈ C, p is density-connected to q w.r.t ε and MinPts in D. 

• Noise : Objects which are not directly density-reachable from at least one core object. 

 
 

Algorithm for DBSCAN: 

DBSCAN(D, eps, MinPts) 

   C = 0 

   for each unvisited point P in dataset D 

      mark P as visited 

      N = getNeighbors (P, eps) 

      if (sizeof(N) < MinPts) 

         mark P as NOISE 

      else 

         C = next cluster 

         expandCluster(P, N, C, eps, MinPts)          

expandCluster(P, N, C, eps, MinPts) 

   add P to cluster C 

   for each point P' in N 

      if P' is not visited 

         mark P' as visited 

         N' = getNeighbors(P', eps) 

         if N' >= MinPts 

            N = N joined with N' 

      if P' is not yet member of any cluster 

       add P' to cluster C 

Complexity 

DBSCAN visits each point of the dataset, possibly multiple times (e.g., as candidates to 

different clusters). For practical considerations, however, the time complexity is mostly governed 

by the number of getNeighbors queries. DBSCAN executes exactly one of such queries for each 

point, and if a sufficiently performant indexing structure is used that executes such a 

neighborhood query in O(logn), a overall runtime complexity of  is obtained. 
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4.10. Structured Clustering Algorithm for Networks (SCAN) 

SCAN is a structural similarity based clustering algorithm which can detect clusters of 

arbitrary shape and size in diverse settings [35

• Core points. The core points of a cluster lie interior to the cluster. For a data point to be a 

core point it has to have a minimum number of points in its E-neighborhood i.e. if the 

number of data points exceeds the core object threshold value within a given radius or E-

neighborhood around the point then such a data point is considered to be the Core object. 

If two core points are present in each other’s neighborhoods, then the core points belong 

to the same cluster and are considered to be directly density reachable. 

]. SCAN performs clustering by trying to identify 

the structural similarity of nodes. In SCAN nodes with the same structural similarity will be part 

of the same cluster. In SCAN a data object can either be classified as a cluster member, as noise 

or Outliers, as Hubs. SCAN is based on the concepts of structural similarity that states that 

members of same clique have many similar adjacent members irrespective of the size of the 

clique or cluster. Conceptually, the Nodes in a network can be classified into the following 

classes 

 

 

• Hub: Hubs are nodes that have multiple Core nodes in their neighborhood and these core 

nodes belong to different structures. Hubs act as bridges to multiple clusters. 

 

• Direct structurally reachable points or a Border point. A density reachable point is a 

point in a cluster that is not a core point, i.e. it has at least one core object in its 

neighborhood but there are not enough data points in its neighborhood that exceed the 

threshold value to be a core object. Thus, for SCAN, a cluster is the set of all core points 

whose neighborhoods transitively connect them together, along with some border points. 

 

• Outliers or Noise points. An outlier or noise point is any point that does not belong to 

any cluster and is not a hub. 
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Figure 4.12 Elements of SCAN 

Neighborhood 
The Neighborhood T(v)  of a node is defined as the number of neighbors or number of nodes that 

are in its communication range . 

Figure 4.13 Node Neighborhood 

 
In the above image [Fig. 4.15] the yellow nodes represent the neighborhood of node V. 

Structural similarity 

Structural similarity is a measure of commonality of two adjacent nodes. Structural similarity of 

two adjacent nodes V, W can be given by 

 

Structural similarity is large for members of same cluster or clique and small for hubs and 

outliers. 
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Ε-Neighborhood  

It is the number of adjacent nodes of a Node with a structural similarity above the ε- threshold 
(read as epsilon-neighborhood). 
 

Core objects 

An object is considered to be a Core object if the ε-Neighborhood of an object contains at least 

MinPts of objects. 

 
 
Directly structure-reachable 

An object q is directly structure-reachable from object p if q is within the ε- Neighborhood of p 

and p is a core object. 

 

Structure-reachable 

An object p is structure-reachab le fro m q  with  resp ect to   ε an d  Min Pts if th ere is a ch ain  o f 

objects p1,…,pn, with p1=q, pn=p such that pi+1is directly structure-reachable from pi w.r.t ε 

and MinPts for all 1 <= i <= n. 

Structure-connectivity 

Object p is Structure-connected to object q w.r.t ε and MinPts if there is an object r such that both 

p and q are Structure-reachable from r w.r.t ε and MinPts. 

 

A cluster C in  a set o f ob jects D w.r. t ε and  MinPts is a non  empty subset of D satisfying the 

following conditions of maximality and connectivity. 

Maximality   

For all p, q if p∈C and if q is density-reachable from p w.r.t ε and MinPts, then also q ∈C. 

 

Connectivity- For all p, q∈C, p is density-connected to q w.r.t ε and MinPts in D. 

 

Noise objects are objects which are not directly structure-reachable from at least one core object.
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4.11. Distributed algorithm for DBSCAN  and SCAN 
 
//Initialise the nodes in sensor network 
 
command result_t StdControl.init() 
{ 
    //each node is initialized randomly to replicate real world 
operation 
    return call Random.init(); 
} 
 
//Broadcast a beacon packet to neighbors on starting up 
 
command result_t StdControl.start() 
{ 
    //initializing number of adjacent nodes and the nature of 
the node 
    Min_Nodes=0; 
    Core_Node=False; 
    //setting the epsilon neighborhood in terms of the radio 
transmission power level 
    Node.setPower_Level=epsilon_neighborhood; 
    beacon_packet.nodeid=TOS_LOCAL_ADDRESS; 
    //broadcast an initial beacon message that lets its presence 
known to neighboring nodes in its epsilon neighborhood 
    call SendBeaconMsg.send(TOS_BCAST_ADDR, 
sizeof(uint16_t),beacon_packet); 
    startTimer1.time(); 
    startTimer2.time(); 
 
} 
 
//Node receives a beacon message 
 
event ReceiveBeaconMsg.receive(TOS_MsgPtr recv_packet) 
 
{ 
//each receipt of a beacon node signal indicates the presence of 
a node in neighborhood 
Min_nodes++; 
} 
 
//Neighborhood of a node is determined 
 
event Timer1_fired() 
{ 
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//If Node is a Core Object and satisfies energy constraints 
 
If(Min_nodes > Core_Min && Batt_Power > threshold) 
{ 
    Core_Node=True; 
    Core_Object_packet.nodeid= TOS_LOCAL_ADDRESS; 
    //transmit a message indicating that the node is a neighboring node 
    call SendCoreObjMsg.send(TOS_BCAST_ADDR, sizeof(uint16_t), 
Core_Object_packet); 
return; 
} 
} 
 
//Node receives a message from a core object 
 
event ReceiveCoreObjMsg.receive(TOS_MsgPtr recv_packet) 
 
{ 
//Add the neighboring node to its core object list,list contains 
items that are directly density reachable and density reachable 
from the node 
coreObjList.add(node_id); 
} 
 
 
//Allocating a Uniform cluster identification number to all the 
core objects in the cluster 
event Timer2_fired() 
{ 
If(Core_Node) 
{ 
//assigning clustered as the id of the coreObject with least 
node id in the cluster 
    If(coreObjList.Min()< TOS_LOCAL_ADDRESS) 
    { 
    ClusterId_packet.clustid= coreObjList.Min(); 
    Cluster_Id= coreObjList.Min(); 
    call SendClusterIdMsg.send(TOS_BCAST_ADDR, sizeof(uint16_t), 
ClusterId_packet); 
} 
return; 
} 
} 
 
event ReceiveCoreObjMsg.receive(TOS_MsgPtr recv_packet) 
{ 
If(ReceivedPacket.clustid< Cluster_Id) 
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{ 
 ClusterId_packet.clustid= coreObjList.Min(); 
    Cluster_Id= coreObjList.Min(); 
    call SendClusterIdMsg.send(TOS_BCAST_ADDR, sizeof(uint16_t), 
ClusterId_packet); 
} 
} 
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4.12. Grid formation and role assignment in parallel 

Two objectives to be achieved 

• Map task graph onto network 

• Coming up with a Backbone grid for network 

Above tasks are performed in parallel 

Network is divided into cells at each level. At top level we have only one cell. Cells of upper level 

are divided uniformly to attain cells of lower level. A cell of the nth level corresponds to “k” cells of 

the (n+1)
th

 level. Each cell has a corresponding cell head. Each cell has a set of parameters. 

Cell Parameters could be: 

• Number of nodes 

• Number of data nodes 

• Amount of Energy available in the cell 

• Type of distribution of the data/fusion nodes the cell has 

• Type of tree/sub tree associated with the cell 

• The height of the sub-tree etc. 

Framework 

Data node initially forwards data to its corresponding cell head at the lowest level. 

If the cell contains all the corresponding partner node(s) of this data item then 

Cell head determines location of fusion node 

else 

cell head passes relevant information to corresponding cell head of its parent cell 

Cell head determines the size of backbone grid based on above params 
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Cell head forwards location of fusion node to the data nodes in its cell 

Once fusion node is found repeat the above process from the lowest level. 

Assumptions  

Network is already divided into cells at each level. 

Each cell is assigned a cell head and every member of the cell has knowledge about the cell head. 

Cell head has total or partial knowledge about the structure of the task graph. 

If  Node is event source && data ready 

{              

               If fusion node not identified 

Node.sendData(CellHead,data); 

 

Else 

 

Node.sendBBData(fusionNode,data) 

 

} 

 

If  Node is CellHead && dataReceived 

{ 

 

If  PartnerNodes.data present in cell 

 

    { 

    Identify fusion node 

    For all partner Nodes 

       { 

        partnerNode.Send(FusionNode) 

       } 
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     } 

 

Else 

 

Node.sendData(CellHead,data); 

} 

 

 

If  Node is not CellHead && dataReceived 

{ 

Node.sendData(CellHead,data); 

} 

 

 

If Node is CellHead && Source nodes identified 

{ 

 

Calculate grid size for each child cell 

Identify BB Nodes 

} 

 

 If(FusionNode==True And DataReceived ==True) 

FuseData(ReceivedData) 

If Node is Fusion Node And fused data ready 

{ 

 

              If next  fusion node not identified 

Node.sendData(CellHead,data); 
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Else 

 

Node.sendBBData(fusionNode,data) 

 

} 

If Node is BackBone Node And Receives data 

{ 

 

Node.sendData(Dest); 

} 
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CHAPTER 5 - Experimental setup 

In this chapter we discuss the implementation environment and experimental set up for 

the various approaches detailed previously. We implemented the data fusion and in-network 

aggregation protocols in the nesC language which is an extension of C language designed for 

implementation in the TinyOS environment. TinyOS is an operating system that is designed to 

manage the operation of a variety of mote devices as well as the sensors attached to them. 

TinyOS also provides a networking stack to allow the motes to form an ad-hoc network. The 

protocol execution is simulated on the TOSSIM discrete event simulator designed to simulate 

sensor networks that use the TinyOS operating system. For visualisation, TinyViz a Java based 

GUI front end to TOSSIM is used. Plug-ins for TinyViz which can interact with the TOSSIM 

simulator are also utilised. Plug-ins for controlling the power model and monitoring the 

messages transmitted between nodes are used primarily. In our experiments we set the 

communication range of each sensor to 10 m and assume bi-directional links. 

 

Figure 5.1 TinyViz 
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The Figure 5.1 shows a snapshot of the TinyViz visualisation environment. The directed 

arrows represent messages being passed between the nodes. The messages sent are shown in the 

right window pane. 

We use a uniformly distributed sensor network topology for the set of protocols 

implemented for a structured topology and use a random walk generated topology for the set of 

approaches when the topology of the sensor network is not known. 

5.1. Set up when topology is known 

The TOSSIM simulation environment consists of 121 nodes spread evenly in an area of 

100 X 100 sq units. The transmission power of each node was restricted to 10 units [Fig. 5.2]. 

The performance of the data fusion approaches were measured over same topology but by 

varying the location of the sink node and the structure of the task graph that has to be mapped 

onto the wireless sensor network topology. Thus by spacing the nodes uniformly and maintaining 

a power transmission range of 10 units we ensure that a completely connected network is 

generated. A Sensor network is considered to be completely connected if in a multi-hop 

environment every node can reach any other node in the network topology. 

In case of approaches where the concept of Backbone is not used all nodes are considered 

to be the sensor nodes and the following figure shows one such topology [Fig. 5.3]. 

 

Figure 5.2 TinyViz Experimental setup for Generic approach 
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In the above Figure 5.2 Node 0 is considered to be the sink node and no Backbone is 

overlayed over the sensor network topology. 

In case of approaches where a Backbone is overlayed over the sensor network topology, 

the performance of the approaches is evaluated by varying the size of the grid. The Backbone 

nodes are uniformly distributed over the sensor field and are along interleaving rows and 

columns of the sensor network. 

 

Figure 5.3 TinyViz Experimental setup with Backbone Grids 

 
The above figure 5.3 shows a grid topology with interleaved rows and columns used as 

Backbone for the network. The performance of Backbone oriented approaches are measured for 

grid sizes of 2X2, 4X4 and 6X6. 

5.2. Set up when topology is not know 

To measure the performance of clustering approaches where the topology of the network 

is not known we consider a randomly generated sensor network topology consisting of 245 nodes 

spread over an area of 100 X 100 square units [Fig. 5.4]. The nodes in the network are provided 

with a power transmit radius of 10 units and the communication is bi-directional. To generate a 

completely connected network a random walk algorithm was used to generate a topology in 

which every node is connected to any other node in the network. Even though the TOSSIM 
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simulator generates a random topology it does not ensure that the wireless sensor network 

topology generated is connected. To avoid this, a multi seeded random walk algorithm ensures a 

completely connected network. Thus random walk approach to generate a sensor network 

topology ensures a large connected network of dense nodes with no global coordinate system. 

The number of seeds and the initial location of the seeds are user tunable parameters. 

 
Figure 5.4 TinyViz Experimental setup for Random walk generated Topology 

Above figure 5.4 shows a sensor network topology where the nodes are placed randomly 

in the network field. 

5.3. Visualisation of clusters 

MATLAB is used to visualise the results of distributed clustering approaches [Fig. 5.5]. The 

following figures show two such results.  
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Figure 5.5 Cluster formation 
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CHAPTER 6 - Results 

In this chapter we discuss the testing strategies for various algorithms discussed in the 

previous chapters. We use the hop-count distance metric as a measure of performance of the 

various algorithms .The lower the aggregate hop-count the better is the performance of an 

algorithm for an experimental setup. We present the results for the following experiments we 

conducted for the various protocols proposed earlier. 

• Effect of structure of task graph on fusion strategy 

We measure the performance of various strategies for balanced and unbalanced task 

graphs of varying sizes 

• Effect of Grid size on fusion strategy 

We measure performance characteristics of various strategies by varying the alignment 

and the size of the grid. 

• Effect of clustering parameters and clustering mechanisms 

6.1. Test cases for known topology 

When Topology is known the approaches are compared for varying sizes of balanced and 

unbalanced trees. In each test case a source will generate a distinct numbered data packet and 

data is transmitted according to the fusion strategy. All the task graphs considered are binary 

trees and source nodes are selected under the assumption that source nodes that are closer in task 

graph are topologically closer in the network. In case of the generic routing with no Backbone all 

the data packets from the source nodes are routed in individual routes to the sink node and as 

there is not in-network data aggregation and fusion this strategy can result in data packets taking 

different routes to the sink. A worst case scenario for this kind of data transfer scheme would be 

the case where multiple leaf nodes of the task graph are mapped onto a single source node of the 

Sensor network. The performance of the strategies measured in terms of hop-count increases as 

we move away from a generic approach towards Fusion with Backbone. 

6.2. Effect of task graph on performance 

The intuition behind looking at the performance metrics for a balanced and unbalanced 

tree is to interpret how choice of a task graph affects the performance and choice of strategy .In 

general for any given approach the fusion strategy works better for an unbalanced tree when 
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compared to a balanced tree. Figure 6.1 shows the comparison in number of messages 

transmitted for balanced trees of increasing size for various strategies. 

 

 

Figure 6.1 Results for Balanced tree 
 

Figure 6.2 shows the comparison in number of messages for unbalanced trees of increasing size 

for various strategies. 

 

Figure 6.2 Results for Unbalanced tree 

It can be seen that incremental fusion strategy performs well irrespective of the nature of 

the task graph when compared to generic and greedy approaches. Thus in-network data 
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aggregation can help optimise the number of messages transmitted extending the effective 

lifetime of the network. 

6.3. Effect of grid size on performance 

It is important to measure the influence of the grid size of the interleaved Backbone 

network overlayed over the sensor network. For both the Greedy with Backbone and Fusion 

strategies as the grid size increases the performance of the strategies measured in terms of hop-

count decreases. Thus we can conclude that better the density of the Backbone network better is 

the performance of the in-network aggregation strategy. 

Figure 6.3 shows the performance of Greedy fusion approach in number of messages for 

various grid sizes over various sizes of trees. We can see that as the grid size increases the hop 

count increases for task graphs of different sizes. 

 

Figure 6.3 Results for Greedy Fusion with varying Grid size 

 

Figure 6.4 shows the performance of Incremental fusion approach in number of messages 

for various grid sizes over various sizes of trees. We can see that as the grid size increases from 2 

to 4 the hop count increases for task graphs of different sizes. But the same is not true for Grid 

size of 6 as the location of the Source and fusion nodes with respect to the relative position of the 

Backbone node plays a role. 
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Figure 6.4 Results for Incremental Fusion with varying Grid size 

Figure 6.5 compares the performance of Greedy fusion and Incremental approaches in 

number of messages for various grid sizes over various sizes of trees. We can see that as the grid 

size increases the hop count increases for task graphs of different sizes and the performance of 

Incremental fusion strategy is better than Greedy fusion for a given grid size and task graph. 

 

Figure 6.5 Comparing Results of Greedy and Incremental Fusion with varying Grid size 
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6.4. Test cases for a randomly generated topology 

The results for using distributed implementation of DBSCAN and SCAN clustering 

techniques are given below. Fig 6.6 illustrates the effect of DBSCAN on a randomly generated 

sensor network topology containing 245 nodes. Fig 6.6 shows the effect of the DBSCAN 

clustering parameter e-neighborhood on the number of clusters and the quality of clustering.  For 

the randomly generated topology as the E-neighborhood parameter value increases the number of 

clusters increases but the clustering quality indicated by number of Backbone nodes also known 

as the core nodes reverses after certain number of clusters indicating high fragmentation. The 

performance of the incremental fusion strategy implemented over network clustering is indicated 

by the number of messages which shows a correlation with the number of clusters. Thus 

clustering quality plays an important role in the quality of in-network data fusion strategy. 

 

Figure 6.6 Results for Distributed DBSCAN protocol 

Similarly following Fig 6.7 illustrates the effect of distributed SCAN on a randomly 

generated sensor network topology containing 245 nodes. Fig 6.7 shows the effect of the SCAN 

structure similarity score U on the number of clusters and the quality of clustering.  For the 

randomly generated topology as the structure similarity parameter value increases the number of 

clusters increases but the clustering quality indicated by number of Backbone nodes also known 

as the core nodes reverses after certain number of clusters indicating high fragmentation. The 

performance of the incremental fusion strategy implemented over network clustering is indicated 
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by the number of messages which shows a correlation with the number of clusters. Thus 

clustering quality plays an important role in the quality of in-network data fusion strategy. 

 

Figure 6.7 Results for Distributed SCAN protocol 

 

The above Fig 6.7 shows a direct correlation between the number of clusters and the 

number of messages and the number of Backbone core nodes as a result of the clustering 

process. As structure similarity increases the number of clusters increases till a certain point, 

further increase in cluster similarity metric results in sudden increase in fragmentation which is 

indicated by the rapid increase number of outliers and the number of messages. Thus quality of 

clustering and the performance of the incremental fusion protocol is extremely sensitive to the 

structure similarity parameter. 
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CHAPTER 7 - Conclusions and future work 

7.1. Conclusions 

Various approaches for data fusion and aggregation to increase network life were 

presented, and their performance compared and discussed in this thesis .From the analysis of the 

results it can be inferred that efficient in-network data fusion and data aggregation can reduce the 

amount of communication in the network and optimise the network lifetime. When the topology 

of the network is known heuristics can play a significant role in reducing the network traffic by 

providing efficient routing protocols. When the topology is not known the network can be 

logically divided in the form of clusters and in-network computation can be achieved by utilising 

areas of high density and structural similarity called clusters. Clustering can help with routing by 

connecting the core nodes as the Backbone nodes and using these nodes as an overlay for intra-

network and inter-network routing. 

It can also be concluded that design of a good grid alignment can result in decreasing the 

hop-count of the system. 

The clustering algorithms are scalable and a distributed implementation of the clustering 

algorithm terminates in finite time. Good clustering can lead towards efficient heuristics for 

routing protocols. Structural similarity can be an efficient metric to divide a large dense network 

into manageable clusters. 

By comparing the various results it can be concluded that aggregation and data fusion not 

only reduces the network traffic but also provide efficient mechanisms for constructing shared 

data paths over a Backbone. 

7.2. Future work 

Other metrics like the latent energy levels, average response time etc. that reflect the 

effective life time of the network must be considered to measure the performance of the 

protocols. 

Probabilistically selecting cluster heads and Backbone nodes based on network 

characteristics to reduce the total communication cost. 

The role mapping procedure in the presence of dynamically changing sensor network 

topologies must be investigated. In order to work in an environment where node characteristics 
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change constantly the Fusion placement must adapt to the changing network topology. This can 

be done by introducing a cost function that takes the network changes into consideration. 
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