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Abstract 

Four permittivity probes have been developed and tested to measure contaminants in water and 

in biodiesel fuel.  An impedance meter was also used to measure the same contaminants.  The 

pollutants measured in water were nitrate salts (KNO3, Ca(NO3)2, and NH4NO3) and atrazine. 

The contaminants measured in biodiesel were water, glycerol, and glyceride.  Each sensor 

measured the gain and phase of a sample with a known concentration of one of these pollutants.   

 

The resulting signals were analyzed using stepwise regression, partial least squares regression, 

artificial neural network, and wavelet transformation followed by stepwise regression to predict 

the concentration of the contaminant using changes in the gain and phase data measured by the 

sensor.  The same methods were used to predict the molecular weight of the nitrate salts.  The 

reliability of the probes and the regression methods were compared using the coefficient of 

determination and the root mean square error.  The frequencies selected using stepwise 

regression were studied to determine if any frequencies were more useful than others in detecting 

the contaminants. 

 

The results showed that the probes were able to predict the concentration and the molecular 

weight of nitrates in water very accurately, with R2-values as high as 1.00 for the training data 

and 0.999 for the validation data for both concentration predictions and molecular weight 

predictions.  The atrazine measurements were somewhat promising, the training R2-values were 

as high as 1.00 in some cases, but there were many low validation values, often below 0.400.  

The results for the biodiesel tests were also good; the highest training R2-value was 1.00 and the 

highest validation R2-value was 0.966. 
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CHAPTER 1 - Introduction 

Water pollution is becoming an increasingly large problem in the United States.  As of 2008, 

there were 43,868 watersheds, lakes, and wetlands reported to the Environmental Protection 

Agency (EPA) as impaired; 1,333 of which were in Kansas.  Nitrates were the cause of 474 

impairments, and atrazine was the cause of 147 of the impairments (US Environmental 

Protection Agency, 2009). 

 

Nitrate and atrazine have numerous negative effects on water quality.  The biggest source of 

nitrate pollution is fertilizer that runs off of fields during rain and irrigation.  Excessive nitrates 

in water can lead to algae blooms and decreased oxygen.  High levels of nitrates in drinking 

water can cause methemoglobinemia in infants (Self and Waskom, 2008).  Atrazine, a common 

herbicide, is harmful to sensitive aquatic plants, amphibians, and some species of fish.  It also 

causes a variety of health issues in humans, such as cardiovascular problems, congestion of the 

heart and lungs, and possibly cancer (National Safety Products Incorporated, n.d.). 

 

Impurities are also a concern in biodiesel fuel.  As biodiesel becomes more and more popular, it 

is important to have a method for quickly and accurately measuring the purity of the fuel.  Water 

in biodiesel can cause corrosion of fuel tanks.  Glycerol is the biggest by-product of biodiesel 

production, and it is also one of the most common contaminants.  Glycerol in biodiesel creates 

problems with fuel storage and engine fouling.  Glycerides are unreleased glycerol molecules 

that cause similar problems. 

 

There are many methods used to detect water pollutants and biodiesel impurities.  The most 

common methods involve chromatography, a procedure which is very expensive and must be 

done in a laboratory.  Colorimetric analysis is also used, and it too requires expensive equipment. 

 

Permittivity is a frequency-dependent measure of polarization and conduction in dielectric 

materials.  The permittivity of a material such as water or biodiesel fuel changes when impurities 

are present.  The molecules in the impurities have different polarities and conductive properties 
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than the molecules in the water or fuel.  Therefore, the concentration of an impurity in a sample 

can be determined using a calibration model for variations in permittivity of the sample material.  

Permittivity is commonly used to measure properties of other dielectric materials such as 

moisture content in soils (Scholte et al., 2002). 

 

Calibration can be achieved using regression.  Regression describes how closely one set of 

variables is related to another set.  Two sets of variables are needed to build a regression model: 

response variables and predictor variables.  Once the model is created, it can be used to estimate 

the response variables given a set of predictor variables.  Stepwise and partial least squares are 

linear regression methods.  Artificial neural network is a popular nonlinear regression technique.  

Wavelet transformation is a way of compressing data, and it can be used as a preprocessing tool 

for regression. 

 

The purpose of this study was to calibrate four different permittivity probes and an impedance 

meter to measure the concentration of water pollutants (potassium nitrate, calcium nitrate, 

ammonium nitrate, and atrazine) and biodiesel impurities (water, glycerol, and glyceride).  The 

four probes were developed at the Instrumentation and Control Laboratory in the Biological and 

Agricultural Engineering Department at Kansas State University.  These probes are portable and 

relatively inexpensive.  This study also compared four different regression methods: stepwise 

regression, partial least squares regression, artificial neural network, and stepwise regression of 

wavelet transformed data. 
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CHAPTER 2 -  Research Goals 

The main objective of this study was to test the ability of four different permittivity probes and 

an impedance meter to detect pollutants in water and in biodiesel fuel. The permittivity probes 

were developed in the Instrumentation and Control Laboratory in the Biological and Agricultural 

Engineering Department at Kansas State University.  These probes were designed to be durable, 

portable, and inexpensive.  The probes were composed of parallel stainless steel plates with the 

even numbered plates electrically connected to one another and the odd numbered plates 

electrically connected to one another.  The size of the plates and the number of plates was 

different for each probe. 

 

 The specific goals of the research were: 

 

1.  To convert the permittivity measurement of each water or fuel sample to a measure of 

the concentration of contaminant in the sample using regression methods. 

 

2.  To distinguish between different nitrate salts (KNO3, Ca(NO3)2, and NH4NO3) in 

water by converting the permittivity signals from the sample to a measure of the 

molecular weight of the nitrate salt in the water using regression methods. 

 

3.  To compare stepwise regression, partial least squares regression, artificial neural 

network, and stepwise regression of wavelet transformed data to determine which method 

could produce the most reliable prediction models. 

 

4.  To compare the four different probes and the impedance meter in terms of their ability 

to detect contaminants in water and biodiesel. 

 

5.  To determine if any frequencies are more significant than others in detecting 

contaminants in water and in biodiesel. 
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CHAPTER 3 - Literature Review 

3.1 Water Pollution 

Water quality is a major concern in the U.S.  The agricultural industry is one of the biggest 

contributors to water pollution.  Fertilizers and pesticides are applied to fields in large quantities 

to promote crop growth.  Rainfall and unmanaged irrigation can wash these chemicals off the 

field, and they end up in streams, lakes, and wells where they harm the natural environment and 

contaminate drinking water. 

 

3.1.1 Nitrates 

Nitrates are a common pollutant in water.  They come from a number of sources including 

fertilizers, feedlots, septic tanks, and municipal wastewater.  Potassium nitrate, calcium nitrate, 

and ammonium nitrate are inorganic nitrates that can be found in fertilizers.  Nitrates occur 

naturally in the environment when microorganisms break down plants and other organic 

materials.  Nitrates are safe in small amounts, but human activities increase nitrate 

concentrations to unhealthy levels. 

 

3.1.1.1 Negative Impacts 

Nitrates can cause health issues in humans.  A high intake of nitrates is not likely to cause 

anything more serious than gastric problems in adults.  Infants, on the other hand, are very 

susceptible to nitrate poisoning.  Methemoglobinemia, also called blue baby syndrome, is a 

disease that can occur when infants ingest water with high nitrate levels.  The nitrates cause 

hemoglobin, an oxygen-carrying protein, to be converted to methemoglobin, which is not a good 

oxygen carrier.  As a result, the child’s brain does not receive enough oxygen.  This can cause 

brain damage and, in severe cases, death (Self and Waskom, 2008). 

 

Nitrates are also harmful to the environment, especially aquatic habitats.  Nitrogen is a nutrient 

for plants and algae, and when the nitrate concentration in a body of water is elevated above the 
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normal level, algae grow very rapidly and prevent sunlight from penetrating through the water 

body.  The absence of light increases the activity of some aerobic bacteria and the amount of 

oxygen in the water is greatly reduced by these bacteria, a process called eutrophication. Many 

fish and other aquatic organisms cannot survive with these low levels of oxygen. 

 

3.1.1.2 Water Quality Standards 

The maximum contaminant level goal (MCLG), which is the maximum amount of contaminant 

that is believed to be safe for human consumption, and the maximum contaminant level (MCL), 

which is the maximum amount of contaminant that is legally allowed to be in drinking water, are 

both 10 mg/L for nitrate.  Levels below 10 mg/L are not believed to cause methemoglobinemia 

(Self and Waskom, 2008).  

 

3.1.1.3 Detection Methods 

There are EPA methods for measuring nitrate concentration in water.  The first way, EPA 

Method 300.0, is by ion chromatography.  The lowest concentration this method can detect is 0.4 

mg/L, or 0.4 ppm (California State Water Resource Board, 2008).  The second procedure for 

detecting nitrate is EPA Method 353.2, colorimetric automated cadmium reduction.  This method 

can detect nitrate concentrations of as low as 0.05 mg/L, or 0.05 ppm (O’Dell, 1993).  Both tests 

have two major problems: they are expensive and they require the use of several hazardous 

chemicals. 

 

Ion selective electrodes (ISEs) are an inexpensive tool that can measure the concentration of 

nitrates and other ions in water in only a few minutes.  ISEs function by converting the activity 

of an ion dissolved in solution to an electric potential.  This electric potential can then be 

measured using a voltmeter.  ISEs are usually capable of measuring ion concentration within a 

range of ±3% of the actual concentration value.  There are some disadvantages of using ISEs.  

They contain gel that needs to be replaced periodically, they often need to be recalibrated after 

every test, and they are not very durable (Rundle, 2000). 
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3.1.2 Atrazine 

Atrazine is a popular herbicide that is used on row crops such as corn and grain sorghum to kill 

broadleaf and grassy weeds.  It is an organochlorine compound, and its molecular formula is 

C8H14ClN5.  The use of atrazine is widespread in the Midwestern U.S.  In 2001, between 

3,664,000 and 5,413,000 pounds of atrazine were applied to fields in Kansas (Natural Resources 

Defense Council, 2004). 

 

Over the last twenty years, the use of atrazine has been challenged and even banned in some 

European countries because of problems associated with water contamination.  In 2005, the 

European Union banned the use of atrazine.  Germany and Italy, countries that produce millions 

of tons of corn each year, banned atrazine in 1991.  Corn yield in these countries did not decline 

in comparison to the U.S., where atrazine was used on the crops, suggesting that a good yield is 

still possible without using atrazine.  Some consideration has been given to banning atrazine in 

the U.S., but it has been met with a lot of resistance due to concerns about decrease in crop yield 

and increase in crop price (Ackerman, 2007). 

 

3.1.2.1 Negative Impacts 

Atrazine can be very dangerous to humans.  It has been known to cause cardiovascular problems 

and reproductive problems in humans (Kansas Department of Health and Environment, 2004).  

Studies also suggest that atrazine can cause congestion of the heart, lungs, and kidneys and 

damage adrenal glands (National Safety Products Incorporated, n.d.).  Research has been done 

that links repeated atrazine exposure to breast cancer in laboratory rats; however, there is no 

conclusive evidence that these results apply to humans (Wisconsin Department of Health 

Services, 2008). 

 

Atrazine is harmful to aquatic habitats and starts causing serious problems at concentrations of 

10 to 20 µg/L.  Atrazine is moderately toxic to fish and highly toxic to aquatic invertebrates.  It 

can cause disturbances in the reproductive and endocrine systems of aquatic organisms; this is 

most common in amphibians and largemouth bass.  Atrazine is especially toxic to aquatic plants.  

These plants are an important part of the food chain and they provide cover that allows small fish 
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to hide from predators.  When this vegetation is reduced, the whole community is affected (US 

Environmental Protection Agency, 2006). 

 

3.1.2.2 Water Quality Standards 

In 1992, the EPA set regulations for the amount of atrazine that could be present in drinking 

water.  The maximum contaminant level goal (MCLG) was set at 3 µg/L because it was believed 

that a lifetime of exposure at this level would not cause health problems in humans.  The 

detection limit was set at 0.1 µg/L for drinking water (Kansas Department of Health and 

Environment, 2004).  

 

3.1.2.3 Detection Methods 

Detecting atrazine in water can be challenging.  The conventional method of testing water for the 

presence of atrazine is through gas chromatography and mass spectrometry.  These methods are 

effective, but they are time consuming and expensive.  At-home test kits are also available.  

These kits are based on calorimetric immunoassay methods, and they use antibodies to measure 

atrazine.  These tests are faster and less expensive, but they can only measure to a limit of about 

0.5 µg/L and, therefore, do not meet the standards for drinking water (Mosiello et al., 1998). 

 

3.2 Biodiesel Fuel 

Biodiesel fuel is a renewable energy source composed of long-chain mono alkyl esters, also 

known as fatty acid methyl esters (FAME).  Biodiesel is created from the transestrification of 

plant or animal fats.  Soybean, corn, canola, cottonseed, sunflower, rapeseed, and beef tallow are 

common sources of fat that go into biodiesel production. 

 

Biodiesel is a very promising alternative fuel source because it contains 2.5 to 3.5 units of energy 

for every one unit of fossil fuel energy that goes into producing it.  Biodiesel is also a cleaner 

burning fuel than diesel; it reduces greenhouse gas emissions and tailpipe emissions when used 

in place of diesel, and it does not emit the carcinogenic fumes associated with diesel fuel.  B20, a 
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blend of 20% biodiesel and 80% diesel, is becoming a very popular option because it can be used 

in traditional diesel engines with no modifications (NREL, 2009). 

 

3.2.1 Water in Biodiesel 

Water is used to separate the catalyst in the transestrification reaction from the biodiesel (Kim, et 

al., 2008).  If the biodiesel is not dried correctly after this separation, it may be contaminated 

with water.  Biodiesel can also be contaminated with water if it comes into contact with it during 

transportation and storage.  Excessive amounts of water can cause corrosion of the fuel tank and 

allow for the growth of microorganisms (NREL, 2009). 

 

According to ASTM standard D6751-08, biodiesel can contain at most 0.05% (500 ppm) water 

and sediment, on a volume basis.  The standard for detecting water in biodiesel is ASTM method 

D-2709 (National Biodiesel Board, 2008). 

 

3.2.2 Glycerol in Biodiesel 

Pure glycerol, C3H5(OH)3, is an odorless, colorless, sugar alcohol with many uses.  It is added to 

food as a preservative and a sweetener; it can be found in hygiene products such as toothpaste, 

lotion, soap, and shampoo; and it is often added to medicines such as cough syrup. 

 

Crude glycerol is the main by-product of biodiesel fuel production; for every 3.79 L of biodiesel 

produced about 0.35 kg of crude glycerol is also made (USDA, 2006).  The crude glycerol 

contains a lot of impurities, but it can go through an expensive refining process and become pure 

glycerol.   

 

The glycerol by-product is much denser than the biodiesel, and it can be removed using 

gravitational separation.  According to the ASTM standard D6751-08, biodiesel can only contain 

0.240 % (2,400 mg/L) total glycerol, which is the sum of free glycerol and glycerides, and 

0.020% (200 mg/L) free glycerol (National Biodiesel Board, 2008).  If the fuel contains glycerol 

at levels higher than 0.020%, storage tanks and system fuel filters can become clogged.  Engine 
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fouling, a problem in which a spark plug becomes coated in fuel, causing short circuit, is another 

consequence of high glycerol levels in biodiesel (ADM, n.d.). 

 

The most common method for detecting glycerol in biodiesel is gas chromatography.  The 

industry standard for this process is set by ASTM D-6584.  This procedure can be done by a lab 

for around $275 per test (Hoar, 2008).  There are a number of chromatographers that can perform 

this test manufactured by PerkinElmer, Koehler, Thermo Fisher Scientific, and Agilent 

Technologies. 

3.2.3 Glycerides in Biodiesel 

Glycerides are esters formed from glycerol and fatty acids.  Animal fats and vegetable oil are 

composed of glycerides.  Glycerides are present in biodiesel if the transestrification reaction was 

not complete.  Each glyceride contains a glycerol molecule that was not released in the reaction 

(Kim, et al., 2008).  Glycerides are a problem in biodiesel because they can contaminate the 

engine and clog filters (NREL, 2009). 

 

The amount of glyceride that biodiesel can contain is given by ASTM standard D6751-08, and is 

the difference between total glycerol and free glycerol, or 0.220% (2,200 mg/L) (National 

Biodiesel Board, 2008).  The standard for removing glyceride from biodiesel is ASTM method 

D-6584, gas chromatography (NREL, 2009). 

 

3.3 Permittivity 

Permittivity describes how well a dielectric material can store an electric charge.  It is a 

frequency-dependent measurement composed of two factors- polarization and conduction.  

Polarization is the ability of a material to store an electrical charge, and conduction is the 

movement of electrical charges through the material (Scholte et al., 2002).  When an electric 

field is applied to a material, the polar molecules in that material tend to align themselves so that 

the positive end of the molecule points to the negative side of the electric field and the negative 

end of the molecule points to the positive side of the field (Figure  3.1).  This is called 

polarization, and it decreases the effective electric field.  If the force binding the atoms together 
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is too strong for the atoms to align themselves with the electric field, the energy absorbed from 

the field is dissipated.  This is called dielectric relaxation (Topp et al., 2000).   

 

 

Figure  3.1: Polarization of molecules in an electric field (Becker, 2009) 

 

Permittivity can be expressed as a complex variable.  The definition of relative permittivity is: 

ε*r(ω) = ε’r(ω)  – jε”r (ω)    ( 3.1) 

where ω = angular frequency, 

ε*r(ω) = complex relative permittivity, 

ε’r(ω) = real part of permittivity, 

j = (-1)1/2, and 

ε”r (ω) = imaginary part of permittivity (Scholte et al., 2002). 

 

The real part of permittivity is the amount of energy stored in the dielectric material from the 

alternating current field. It can be expressed as: 

ε’r(ω) = ε’e + ε’d (ω)   ( 3.2) 

where ε’e = apparent permittivity due to polarization of electrodes, and 

ε’d (ω) = frequency dependent permittivity (Scholte et al., 2002). 

 

The imaginary component is the energy loss due to the AC electric field, also known as the 

relative loss factor.  It is made up of two components. 
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κ 
ε” r (ω) = (ε”d (ω) + 

ωεo )  ( 3.3) 
       

where ε”d (ω) = relative dielectric loss, 

κ = static electrical conductivity, and 

εo = permittivity of free space = 8.854x10-12 F/m (Scholte et al., 2002). 

 

Every dielectric material has a different conductivity and a different ability to polarize, and 

therefore a different permittivity.  If a contaminant is added to a material, such as water, the 

contaminated water will have a different permittivity than pure water.  If the concentration of the 

contaminant is increased, the permittivity will change again.  For this reason, it is possible to 

detect changes in the chemical composition of a material by measuring the material’s 

permittivity. 

 

3.4 Regression Methods 

Regression analysis is a technique for modeling a set of dependent variables, y-variables, using a 

set of independent variables, x-variables.  The dependent variables are also referred to as the 

response variables, and the independent variables are called predictor variables.  The y-variables 

can be predicted from the x-variables with a regression model. 

 

It is useful to have two sets of data for the x- and y-variables for regression.  One set of data, 

called the training dataset, is used to fit the model.  Another set, called the validation set, is used 

to test the reliability of the model.  Validating the model is important because the validation 

results show whether or not the model can be applied to other, similar, situations or if it is only 

valid for the dataset that created it.  If the validation does not provide reasonable estimates of the 

response variables, it suggests that there may have been inconsistencies in data collection or that 

the original model is affected by over-fitting. 
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There are many methods that can be used to model the y-variables in terms of the x-variables.  

The methods that will be discussed in this section are: stepwise regression, partial least squares 

regression, artificial neural network, and stepwise regression with wavelet preprocessing. 

 

A parameter is needed to judge the goodness-of-fit of the models.  This makes it possible to 

determine how useful a prediction model is and also to compare one model to another.  In this 

study, two statistical parameters were utilized to evaluate the goodness-of-fit. 

 

The first parameter used was the coefficient of determination, or R2-value.  The coefficient of 

determination measures how well the regression line fits the data.  It can also be thought of as the 

ratio of variation explained by the model to the total variation in the data.  The procedure for 

calculating R2 is shown in Equations 3.4 - 3.7. 

(ΣX i)
2   ( 3.4)

SXX = Σ(X i
2) - 

n  
     

(ΣY i)
2   ( 3.5)

SYY = Σ(Y i
2) - 

n   
     

(ΣX i) (ΣY i)   ( 3.6) 
SXY = Σ(X iY i) - n  
     

SXY
2   ( 3.7)R2 = 

SXXSYY    
     

where, SXX = is the sum of x deviations squared, 

X i = actual value, 

Y i = predicted value, 

n = number of samples, 

SYY = the total sum of squares, and  

SXY = the sum of x deviations times y deviations (Ott and Longnecker, 2004). 

 

The coefficient of determination is always between 0 and 1.  A value of one means that the 

model explains the data perfectly and a value of 0 indicates that there is no fit.  The R2-value can 

also be explained in percentage.  For example, having an R2-value of 0.900 is equivalent to 

saying that the model explains 90% of the variability in the data.  Because the coefficient of 
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determination can only fall within a set range of values, it is easy to decide what an acceptable 

value is, and 0.900 is usually considered a good value. 

 

The second parameter used to compare goodness-of-fit of the models was the root mean square 

error (RMSE), also referred to as the residual standard deviation.  The RMSE can be any positive 

value, it is not limited the way the R2-value is.  A large RMSE means that there is a lot of 

uncertainty in the model.  It also indicates that variability in the x-variables is low.  The formula 

for the root mean square error is shown below.  It is more difficult to determine what an 

acceptable RMSE value is because this will change depending on the size of the data; however, 

RMSE values from models created using the same dataset can be compared. 

 

Σ (Yi-Ŷi)
2 

1/2 

RMSE =  
n - 2 

 

 
  ( 3.8) 

      

where RMSE = root mean square error, 

Yi  = the actual y-variable, 

Ŷi = the predicted y-variable, 

n = the number of y-variables (Ott and Longnecker, 2004). 

 

3.4.1 Stepwise Regression 

Stepwise regression (SWR) is a combination of forward selection and backward elimination that 

is especially useful if multicollinearities exist in the data.  Stepwise regression chooses 

significant x-variables from a large set of x-variables and uses them to predict the y-variables.  

The process begins with a model that has no x-variables in it.  Then the program runs simple 

linear regression between the y-variable and each x-variable.  The x-variable with the highest R2-

value enters the model first, followed by the x-variable which most increases the R2-value.  

Predictors that improve the R2-value continue to be added one-by-one, and the significance of 

the predictors is checked using an F-test.  If a predictor is non-significant, which usually 

indicates that it is involved in a multicollinearity, that predictor is eliminated from the model.  

This process continues until all x-variables in the model are significant at a specified level and 

the model cannot be improved by adding more variables (Ott and Longnecker, 2001). 
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The formula used to determine if a variable j is significant enough to be added to a model with p 

variables is as follows: 

RSSp – RSSp+j 
Fj

+ = maxj [ S2
p+j ] > Fin   ( 3.9)

 

where, S2p+j = the variance of the model with variables p+j, 

RSSp = the residual sum of squares of the model with p variables, 

RSSp+j = the residual sum of square of the model with variables p+j , and 

Fin = a specified comparison value (Marengo et al., 2008). 

 

The model that is created by stepwise regression is composed of x-variables and regression 

coefficients, as shown below.  

Ŷ = β0 + β1X1 + β2X2 + … + βnXn    ( 3.10) 

where, X1 through Xn = x-variables, 

β1 through βn = regression coefficients which are zero for x-variables not included 

in the model, 

β0 = the intercept of the line, and 

Ŷ = the predicted y-value (Ott and Longnecker, 2001). 

 

One of the main benefits of stepwise regression is that it eliminates x-variables that are not 

significant; making it possible to see which x-variables were useful. In future data collection, it 

could be possible for data to only be collected for the significant variables.  This can reduce time 

and cost in data collecting. 

 

3.4.2 Partial Least Squares Regression 

Partial least squares regression (PLS) is a good prediction method when there are a large number 

of correlated x-variables (Numerical Algorithms Group, 2007).  PLS combines principal 

component regression (PCR) with multiple linear regression (MLR).  PCR finds factors that 

maximize the variance of the independent variables, and MLR finds a variable to maximize 

correlation between the independent and dependent variables.  PLS is an improvement over 

MLR and PCR because it uses information from both the x-variables and the y-variables to form 
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a model.  As a result, PLS finds factors that maximize variance and correlation (Wise et al., 

2006). 

 

PLS selects “orthogonal linear combinations of predictors” from the predictor data that explain 

variance in the x-variables as well as the y-variables.  These combinations are called factors, and 

the factors are used to calculate the PLS model.  The model is initially calculated using a large 

number of factors.  The number of factors that are actually needed is then estimated using cross-

validation.  After the number of factors is determined, the model is fit with this number of factors 

using linear regression.  Finally, the model is used to estimate the y-variables with the given x-

variables (Numerical Algorithms Group, 2007).  

 

The models that are generated by PLS are: 

X = TP + E   ( 3.11) 

and  

Y = UQ + F   ( 3.12) 

 where X is a matrix of the predictor variables,  

Y is a matrix of the response variables,  

T and U are the scores of X and Y,  

P and Q = loadings, 

E and F = error terms (Beebe and Kowalski, 1987). 

 

3.4.3 Artificial Neural Network 

An artificial neural network (ANN) is a computational model composed of artificial neurons that 

imitate the workings of the biological nervous system.  The neurons are connected to each other 

by weights.  Neural networks can be used as data modeling tools because they can find patterns 

and relationships in data.  The neural networks discussed and used in this paper are feed-forward, 

back propagation neural networks. 

 

The main advantage of ANNs over various statistical regression methods is that they are 

nonlinear, and so they can be used to model nonlinear patterns.  The functions performed by the 
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artificial neurons are preformed in parallel, as opposed to sequentially, as the other regression 

techniques discussed in this chapter are. 

 

A neural network has three layers: the input layer, the hidden layer, and the output layer (Jiang, 

et al., 2004).  This is illustrated in Figure  3.2.  The number of neurons, which are found in the 

hidden layer of the network, can be specified based on the complexity of the data being analyzed.  

More neurons make the program run slower but also can improve the model-building ability of 

the network. 

 

The inputs are the x-variables.  The network looks for patterns and relationships in inputs and 

uses them to predict the outputs.  Once the outputs are predicted, the predictions are compared to 

the target values, the actual y-variables.  The weights between neurons are adjusted based on the 

error in the predictions.  This process continues until the error becomes very small, the exact 

value varies depending on the situation and what the user believes is allowable (Tokar and 

Johnson, 1999). 

  

 

Figure  3.2: Artificial neural network layers (The Mathworks, 2008b) 

 

3.4.4 Wavelet Transformation 

Similar to Fourier transformation, wavelet transformation is a way to compress data.  The 

difference is that the wavelet transform localizes both the time and frequency domains, whereas 
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the Fourier transform only localizes the frequency domain.  The wavelet compression is a useful 

tool for signal preprocessing and de-noising (Leger and Wentzell, 2004). 

 

The signal is passed through two filters: a high-pass filter and a low-pass filter.  The coefficients 

produced by these filters are referred to as the detail coefficients and the approximation 

coefficients respectively.  The number of coefficients in each group is equal to half the length of 

the original signal.  The approximation coefficients can be put through the filters repeatedly, 

until there is only one coefficient left.  This is illustrated in Figure  3.3.  The number of times the 

signal is passed through the filters is called the level.  Each level is divided into sections called 

wavebands.  Each waveband contains information within a certain frequency range. 

 

 

Figure  3.3:  Wavelet decompression, adapted from (The MathWorks, 2008d) 

 

The equations for the approximation coefficients and the detail coefficients are as follows. 

 N-1   
A(j,k) = < f (n),Φj,k(n) > = ∑ f(n) x Φ*

j,k(n)   ( 3.13)
 n=0   
     N-1   
D(j,k) = < f (n),φj,k(n) > = ∑ f(n) x φ*

j,k(n)   ( 3.14)
 n=0   
    
Φ j , k (n)=s0

j /2Φ(s0
j ·n - k)   ( 3.15)

    
φ j , k(n)=s0

j /2  φ (s0
j ·n - k)   ( 3.16)

  
where, A (j,k) = approximation coefficient, 

D (j,k) = detail coefficient, 
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f (n) = signal of length N, 

Φ j , k(n) = a shifted scaling function, and  

φ j , k(n) = a shifted wavelet function  

j = discretized version of the scaling parameter 

k = discretized version of the shifting parameter (Ge et al, 2007). 

 

The simplest filter is called the Haar transform.  The Haar transform is based on a step function.  

It replaces two steps with one wider step and one wavelet.  The wide step is calculated by taking 

the average of the two original steps and the wavelet measures the difference between the two 

original steps.  The Haar wavelet function is defined below (Nievergelt, 1999). 

Ψ[0,1[ = φ[0,½[ - φ[½,1[   ( 3.17) 

 

This is shown graphically in Figure  3.4.  For every number r, 

 1 if 0 ≤ r < ½,  
Ψ[0,1[ (r) =  -1  if ½ ≤ r < 1,   ( 3.18)
 

{ 
0 otherwise.  

 

 

Figure  3.4: The Haar wavelet, adapted from (Nievergelt, 1999) 

 

Transforming a signal using wavelet decomposition is an effective way of de-correlating data so 

that regression analysis can be done without any multi-collinearity issues (Ge et al, 2007).  

Wavelet compression of a signal followed by stepwise regression is especially helpful because 
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when stepwise selects a waveband to use in the model, the waveband that it selected is associated 

with several frequencies and frequency bands of different widths.  The information collected at 

each of these frequencies and frequency bands can be thought of as significant for prediction. 

 

A tiling diagram is a good way to represent the chosen frequencies.  Figure  3.5 is a tiling 

diagram for a hypothetical dataset with 16 points.  The darkened rectangles correspond to 

wavebands that are selected through the above mentioned procedure to be included in the model.  

The numbers written inside the rectangles indicate the number of data points included in each 

waveband.  At level zero, each waveband only contains one data point, and is equivalent to the 

original data. 

 

 

Figure  3.5: An example tiling diagram 

 

Wavelet analysis has been used to analyze near-infrared reflectance spectroscopy.  In a study 

done to relate the spectroscopic reflectance signals of 270 soil samples to the clay content of 

each sample, the regression of wavelet transformed data was an improvement over tradition 

regression.  The study found that the R2-value for wavelet transformed data was 0.99, whereas it 

was only 0.79 for non-preprocessed data (Ge et al., 2007). 
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CHAPTER 4 - Materials and Methods 

4.1 Control Boxes 

Two different control boxes were used with each of the four probes.  The boxes will be referred 

to as the “old control box” and the “new control box.”  Each control box was composed of a 

signal generator, a microcontroller, and a gain and phase detector.  The signal generator was used 

to generate sinusoidal signals which were sent through a probe.  The gain and phase detector was 

used to measure the difference in gain and phase between the signal that went into the probe and 

the signal that left the probe (Tang, 2009). 

 

4.1.1 The Old Control Box 

The old control box measured the gain and the phase of the samples at 635 different frequencies 

ranging from 50 Hz to 120 MHz.  This control box was programmed to test the gain and phase at 

each frequency three times.  The old control box had to be connected to a computer to store the 

data because it had no internal memory.  It did not have its own power supply, so it was 

connected to a BK Precision Triple Output DC Power Supply 1660 which supplied it with 10 V 

of power. 

 

4.1.2 The New Control Box 

The new control box measured the gain and phase of the samples at 524 frequencies ranging 

from 200 Hz to 400 MHz.  It also had an input for a thermocouple, so the temperature of the 

samples could be monitored.  Like the old control box, the new control box took a measurement 

at each frequency three times.  The new box had its own memory storage, but for these 

experiments it was connected to a computer for data storage.  This box also had its own power 

supply.   
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4.2 Probes 

All of the experiments were conducted with four probes developed by researchers in the 

Instrumentation and Control Laboratory of the Biological and Agricultural Engineering 

Department of Kansas State University and with an impedance meter from Agilent 

Technologies.   

 

The probes made at Kansas State University were constructed from a series of parallel stainless 

steel plates.  The odd numbered plates were electrically connected with each other, and so were 

the even numbered plates.  The probes were immersed in a sample where the gain and phase shift 

were measured at a few hundred different frequencies, determined by the control box.  These 

probes varied by size and by the number of plates. 

 

There were two general designs for the probes.  The smallest probes, the “2 cm probe” and the 

“2.5 cm probe”, both had plastic spacers between the metal plates to hold them in position.  The 

cable that connected the probe to the control box was a 50-52 coaxial cable with shield.  The 

larger probes, the “5 cm” and “7.5 cm probes”, were constructed out of plastic, food storage 

containers.  The plates were screwed into the bottom of the container and the plates were wired 

together inside of the container.  The 50-52 coaxial cable exited from the top of the containers. 

 

4.2.1 The 2 cm Probe 
 

The smallest probe, shown in Figure  4.1, had 6 plates that were 2 cm wide, 3 cm tall, and 1 mm 

thick.  The spacing between the plates was 1 mm.  The area of each plate was 6 cm2.  This probe 

was designed to measure biodiesel fuel, and was built to these dimensions so that it could fit 

inside a fuel tank.  This width also allowed the probe to be inserted directly into the glass bottles 

in which the solutions were kept.  Figure  4.2 shows the gain and phase of 1 L of distilled water 

measured by the 2 cm probe. 
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Figure  4.1:  The 2 cm probe 
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Figure  4.2:  Signal for distilled water from the 2 cm probe and the new control box 
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4.2.2 The 2.5 cm Probe 

The 2.5 cm probe is shown in Figure  4.3.  It was made of 12 plates that were 2.5 cm wide, 3.8 

cm tall, and 1 mm thick.  The distance between the plates was 1.5mm.  The area of each plate 

was 9.5 cm2.  Figure  4.4 shows the gain and phase of 1 L of distilled water measured by the 2.5 

cm probe.  

 

Figure  4.3: The 2.5 cm probe 

 

 

Figure  4.4: Signal for distilled water from the 2.5 cm probe and old control box 
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4.2.3 The 5 and 7.5 cm Probes 

The two larger probes were constructed almost identical to one another.  They each had 6 plates 

that were 5 or 7.5 cm wide, 3.5 cm tall and 5 mm thick.  The spacing between the plates was 5 

mm.  The area of the 5 cm plates was 17.5 cm2 and the area of the 7.5 cm plates was 26.3 cm2. 

These probes fit into a rectangular container to measure the solution.  The 7.5 cm probe is shown 

in Figure  4.5 and Figure  4.6 shows the gain and phase of 1 L of distilled water measured by the 5 

cm probe. 

 

Figure  4.5:  The 7.5 cm probe 
 

 

Figure  4.6: Signal for distilled water from the 5 cm probe and old control box 

 



 25 

4.3 Impedance Meter 

The impedance meter used in this research was an Agilent E4991A RF Impedance/Material 

Analyzer, shown in Figure  4.7.  The impedance meter was set to measure ε’, the real part of 

permittivity, and ε”, the imaginary part of permittivity, at 596 frequencies between 1 MHz and 

120 MHz in increments of 0.2 MHz.  The method that it used to measure permittivity is called 

the capacitance method (Agilent, 2005).  Measurements made in 1 L of distilled water are shown 

in Figure  4.8. 

 

Figure  4.7: Agilent E4991A RF Impedance/Material Analyzer (Agilent, 2009)  

 

 

Figure  4.8: Signal for distilled water with the impedance meter 
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4.4 Water Sample Preparation 

4.4.1 Nitrate Salts 

The salts studied in this experiment were potassium nitrate (KNO3), calcium nitrate (Ca(NO3)2), 

and ammonium nitrate (NH4NO3).  Solutions of water and salt were made at concentrations of 0-

200 µmol/L in 50 µmol /L increments and at concentrations of 300-1,000 µmol /L in increments 

of 100 µmol /L.  Two sets of 0-200 µmol/L solutions were prepared, a training set and a 

validation set, making a total of 54 samples. 

 

These samples were made from stock solutions of 0.01M KNO3, 0.005M Ca(NO3)2, and 0.01M 

NH4NO3.  The stock solutions were prepared by weighing the appropriate amount of dry salt, 

shown in Table  4.1, placing it in a 1 L volumetric flask, and adding distilled water to make the 

total volume 1 L. The salts were all water soluble and dissolved readily at room temperature. 

 

Table  4.1: Molecular weights of salts 

Salt Molecular Weight 
(g/mol) 

Mass added to prepare 
stock solution (g) 

KNO3 101.1 1.01 
Ca(NO3)2 164.00 0.82 
NH4NO3 80.04 0.80 

 

To make the individual samples, the necessary amount of stock solution was measured into a 1 L 

volumetric flask using an Eppendorf Repeater Plus Pipettor.  Distilled water was added to make 

the total volume of the sample 1 L.  Table  4.2 shows the amount of stock solution needed to 

make each concentration.  The contents of the flask were mixed thoroughly, and the samples 

were stored in 1 L glass bottles from Fisher Scientific. The flask was rinsed with distilled water 

three times after each sample was prepared to make sure that none of the samples contaminated 

the others. 
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Table  4.2:  Volume of stock solutions used to make 1 L nitrate samples 

Sample 
Concentration 

(µmol /L) 

Volume of 
Stock Solution 

(mL) 

Concentration 
of KNO 3 (mg/L) 

Concentration 
of Ca(NO 3)2 

(mg/L) 

Concentration 
of NH 4NO3 

(mg/L) 

0 0 0 0 0 
50 5 5.06 8.20 4.00 

100 10 10.11 16.40 8.00 
150 15 15.17 24.60 12.01 
200 20 20.22 32.80 16.01 
300 30 30.33 49.20 24.01 
400 40 40.44 65.60 32.02 
500 50 50.55 82.00 40.02 
600 60 60.66 98.40 48.02 
700 70 70.77 114.80 56.03 
800 80 80.88 131.20 64.03 
900 90 90.99 147.60 72.04 

1,000 100 101.10 164.00 80.04 
 

4.4.2 Atrazine 

Solutions of water and atrazine were prepared at concentrations of 0-12 mg/L in increments of 2 

mg/L.  Two samples were made for each concentration, one for training and one for validation; 

there were a total of 14 atrazine solutions.  The individual atrazine solutions were prepared from 

a 1,000 mg/L stock solution.  The stock solution was composed of 1.187 g (1 mL) atrazine and 

999 mL of distilled water.  The individual samples were prepared from the stock solution using 

the same procedure as the nitrate salts.  The amount of stock solution used to make each sample 

is shown in Table  4.3. 

 

Table  4.3: Volume of stock solution used to make 1 L atrazine samples 

Concentration of 
Sample (mg/L) 

Volume of Stock 
Solution (mL) 

0 0 
2 2 
4 4 
6 6 
8 8 

10 10 
12 12 
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4.5 Testing Procedure 

4.5.1 One Liter Water Samples 

The nitrate salts were tested in three groups: the training set of 0-200 µmol/L concentrations, the 

validation set of 0-200 µmol/L concentrations, and the set 300-1,000 µmol/L concentrations.  

The atrazine samples were the fourth group.  The samples in each group were assigned a number, 

and a list of these numbers in a random order was produced using the RAND function in 

Microsoft Excel.  This list of numbers was the order in which the samples in each group were 

tested.  The purpose of the random order was to ensure that the patterns seen from sample to 

sample were due to the differences in chemical composition in the samples and not to 

uncontrolled changes of other factors, such as room temperature, from one test time to another.  

The room temperature was recorded each day before testing began to be sure that it did not 

greatly fluctuate. 

 

For each test, the control box was connected to the computer.  Microsoft HyperTerminal 5.1 was 

used to collect the data from the control box.  HyperTerminal saved the data for each test as a .txt 

file.  These files were opened in Microsoft Excel so that the frequency could be plotted against 

the gain and phase measurements. 

 

4.5.1.1 The 2 cm Probe 

A stand was built to keep the position of the 2 cm probe, relative to the bottle of solution, 

constant for each test (Figure  4.9).  The stand held the probe in place.  A shelf for the bottle to sit 

on was located 26 cm below the probe.  The shelf could be slid in and out of the stand, allowing 

the bottle to be changed without moving the probe.  The shelf had a circular depression in the 

center of it, exactly the same diameter as the bottom of the bottles, ensuring that every bottle was 

placed in the same position.  
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Figure  4.9: Testing with the 2 cm probe and new control box 

 

Before the samples were tested with the 2 cm probe, the amount of solution in each bottle was 

adjusted to be exactly 900 mL so that the probe would be immersed to exactly the same depth for 

each test.  After each test was done, the probe was dipped in distilled water and dried with 

pressurized air. 

 

When the 2 cm probe was used to measure the 1 L samples, there were significant 

inconsistencies in the signals it measured, especially at higher frequencies.  Experiments were 

done to investigate a number of possible causes, including bumping of the probe when it was 

removed from a sample, movement of the plates due to the pressurized air that was used to clean 

the probe, and the size of the container that held the solution.  It was theorized that the 1 L glass 

bottles were too small, and that the probe needed to be surrounded by more solution to reduce the 

boundary effect.  The boundary effect results from the interference of the electric field by the 

bottles in which the samples was measured.  The glass might react to the electric field, or its 

permittivity may interfere with the measurement of the sample’s permittivity.  The tests were 

duplicated in a 10 gallon (37.9 L) glass aquarium to see if this would improve the results.  The 

procedure for the tests done in the aquarium is described in Section 4.5.2. 
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4.5.1.2 The 2.5 cm Probe 

A stand was also built to hold the 2.5 cm probe in place, as shown in Figure  4.10.  The stand held 

the sample in place below the probe.  Unlike the 2 cm probe, the 2.5 cm probe was removed 

from the stand after each test so that it could be cleaned.  A ring clamp on the probe ensured that 

it always slid back into its holder on the stand at the same height.  

 

 

Figure  4.10: Testing with the 2.5 cm probe and old control box 

 

Each sample was poured into a rectangular plastic container to be tested. A line was drawn on 

the container to which the water was always filled.  The purpose of the line was to make sure that 

the probe was always immersed to the same depth.  After each test the probe and the container 

were washed thoroughly using dish soap and a brush.  They were dried with pressurized air.  

This was done to ensure that one sample did not contaminate another and that the water from 

washing the equipment did not mix with any of the samples. 
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4.5.1.3 The 5 and 7.5 cm Probes 

The testing procedures for the 5 cm probe and the 7.5 cm probe were identical.  For each test, the 

sample was poured into the plastic container used for the tests with the 2.5 cm probe.  Another 

fill line was drawn for these probes.  The container sat on a board with the control box, as shown 

in Figure  4.11.  The board had wooden guides on it to line up the container and the control box 

so that their positions remained the same for every test. The probes fit securely into a rectangular 

hole in the fiber glass lid that covered the container. 

 

 

Figure  4.11: Testing with the 5 cm probe and old control box 

 

The coaxial cable connecting the probe to the control box remained attached to the control box 

between tests, but had to be removed from the probe after each test so that the probe could be 

cleaned.  After each sample was tested with the 5 cm probe and the 7.5 cm probe, the plastic 

container, the lid, and the probes were washed and dried with the same procedure used for the 

2.5 cm probe. 

 

4.5.1.4 Impedance Meter 

A stand was also built so that the probe on the impedance meter remained in a fixed position for 

each sample measured.  This is illustrated in Figure  4.12.  Before tests could be performed, the 

machine had to be calibrated for open, short, and 50Ω load using a 16195B cal kit.  The 

calibration was done to remove error and make the measurements as accurate as possible. 
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Figure  4.12: Testing with the impedance meter 

 

The plastic containers were also used to hold the samples for the impedance meter tests.  Once 

again, the container was always filled to a specific line to keep the probe depth constant 

throughout the tests.  The impedance meter was connected to a computer, and the data was 

collected using 85070E software from Agilent Technologies.  Between tests, the probe was 

dipped into deionized water and dried with a lint-free cloth. 

 

4.5.2 Testing Procedure for 36 L Water Samples 

To reduce the influence of the boundary effect, the water was also tested in a 37.9 L aquarium.  

The 2, 2.5, and 7.5 cm probes were used with the new control box for these tests.  A special top 

was built for the aquarium that held each of the probes in a fixed position, as shown in Figure 

 4.13.  The center of each probe was 12.5 cm from the wall of the aquarium and from the center 

of the adjacent probe. 
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Figure  4.13: Testing the 36 L samples and new control box 

 

Because of the large amount of water needed for these tests, individual samples were not used.  

Instead, for each contaminant, the aquarium was filled with 36 L of clean, distilled water.  The 

water was measured with each of the three probes twice, once for training and once for 

validation, and then a specific amount of contaminant was added from a stock solution.  Each 

stock solution was 1 L, and they were prepared at concentrations of 0.15 M for KNO3 and 

NH4NO3, 0.075 M for Ca(NO3)2, and 4,000 mg/L for atrazine.  The amount of contaminant used 

to make each stock solution is shown in Table  4.4.  Table  4.5 shows the amount of nitrate stock 

solution added for each concentration, and Table  4.6 shows the amount of atrazine stock solution 

added for each test. 

 

Table  4.4:  Amount of contaminant used to make stock solutions for 36 L tests 

Contaminant Stock Solution 
Concentration Mass Added (g) 

KNO3 0.15 M 15.165 
NH4NO3 0.075 M 12.300 
Ca(NO3)2 0.15 M 12.006 
Atrazine 4,000 mg/L 4.748 
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Table  4.5: Dilution of 36 L nitrate solutions 

Concentration 
(µmol/L) 

Total Water 
(L) 

Volume Stock 
Solution Added 

(mL) 
0 36.0 0 

50 36.0 12.0 
100 36.0 12.0 
150 36.0 12.0 
200 36.1 12.0 
300 36.2 24.2 
400 36.2 24.2 
500 36.3 24.5 
600 36.4 24.5 
700 36.6 25.0 
800 36.8 25.2 
900 37.0 25.5 

1000 37.2 26.0 
 

Table  4.6: Dilution of 36 L atrazine solutions 

Concentration 
(mg/L) 

Total Water 
(L) 

Volume Stock 
Solution Added 

(mL) 
0 36.0 0 
2 36.1 18.0 
4 36.1 18.0 
6 36.2 18.0 
8 36.2 18.2 

10 36.3 18.2 
12 36.4 18.2 

 

All three probes remained in the water/contaminant solution during the entire series of tests for a 

particular contaminant.  The contents of the aquarium were stirred carefully after each addition 

of stock solution to make sure that the newly added contaminant was evenly distributed 

throughout the aquarium.  After all the tests were done for one contaminant, the probes were 

cleaned with dish soap and water and dried with pressurized air. 

 

4.5.3 Testing Procedure for Biodiesel Samples 

Biodiesel fuel was tested with water, glycerol, and glyceride as contaminants.  The testing 

procedure for the biodiesel samples was similar to the procedure for the 36 L water samples.  

The aquarium was filled with 36 L of clean soybean biodiesel at the beginning of each series of 
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tests, measured twice with each of the three probes, and then contaminant was added.  Eleven 

concentrations were measured for each of the contaminants from 0 ppm to two times the 

maximum limit allowed by the ASTM standards, in evenly distributed increments, and ten 

concentrations were measured from two times the limit to ten times the limit, also in evenly 

distributed increments.  Thus, a total of twenty-one concentrations were measured for each 

contaminant.  Table  4.7 shows the concentrations of each contaminant that were measured.  The 

row in bold is the ASTM limit for each of the impurities. 

 

Table  4.7: Concentrations of contaminants measured in biodiesel tests 

Test 
Number 

Water (ppm 
volume basis)  

Glycerin 
(mg/L) 

Glyceride 
(mg/L) 

1 0 0 0 
2 100 40 440 
3 200 80 880 
4 300 120 1320 
5 400 160 1760 
6 500 200 2200 
7 600 240 2640 
8 700 280 3080 
9 800 320 3520 

10 900 360 3960 
11 1000 400 4400 
12 1400 560 6160 
13 1800 720 7920 
14 2200 880 9680 
15 2600 1040 11440 
16 3000 1200 13200 
17 3400 1360 14960 
18 3800 1520 16720 
19 4200 1680 18480 
20 4600 1840 20240 
21 5000 2000 22000 

 

To calculate the amount of contaminant that needed to be added to the biodiesel for each test, the 

glycerin and glyceride limits had to be converted to a volume basis using the density of each 

substance.  The volume of contaminant added is shown in Table  4.8.  To make sure that the 

contaminants were evenly distributed throughout the aquarium, approximately 2 L of biodiesel 

was drained from the aquarium to a smaller container, and the contaminant was added to the 
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smaller container.  The container was vigorously shaken, and then the contents of the container 

were stirred back into the aquarium. 

 

Table  4.8: Amount of contaminant added for each biodiesel test 

Test 
No. 

Water 
(mL) 

Glycerin  
(mL) 

Glyceride  
(mL) 

1 0 0 0 
2 3.60 1.00 15.0 
3 3.60 1.00 15.0 
4 3.60 1.00 15.0 
5 3.60 1.00 15.0 
6 3.60 1.00 15.0 
7 3.60 1.00 15.0 
8 3.60 1.00 15.0 
9 3.60 1.00 15.0 

10 3.60 1.00 15.0 
11 3.60 1.00 15.0 
12 14.5 4.00 60.0 
13 14.5 4.00 60.0 
14 14.5 4.00 60.0 
15 14.5 4.00 60.0 
16 14.5 4.00 60.0 
17 14.5 4.00 60.0 
18 14.5 4.00 60.0 
19 14.5 4.00 60.0 
20 14.5 4.00 60.0 
21 14.5 4.00 60.0 

 

Experiments were done to determine if the probes were able to detect more than one impurity at 

a time.  The first contaminant was added, and when all 21 concentrations of that contaminant had 

been measured, the second contaminant was added.  The 21 concentrations of the second 

contaminant, with the first contaminant at its maximum level, were measured, and then the same 

procedure was repeated for the third contaminant.  The order in which the contaminants were 

added for each series of tests is given in Table  4.9.  Only the first series of tests is discussed in 

this thesis. 

 

Table  4.9: Order that contaminants were measured for each biodiesel test series 

Test Series 1 Test Series 2 Test Series 3 
Water Glycerin Glyceride 

Glycerin Glyceride Glycerin 
Glyceride Water Water 
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4.5.4 Temperature Experiments 

The temperature of the room in which the testing was done could not be kept constant.  The 

room temperature fluctuated very little, not more than 3ºC; however, tests still needed to be done 

to determine if these small fluctuations would affect the results.  To study the temperature effect, 

1 L samples of distilled water, 100 µmol/L of each nitrate salts, and 200 µmol/L of each nitrate 

salt were put in the refrigerator overnight.  The samples were removed from the refrigerator in 

the morning, and measurements were taken approximately every 20 minutes with the 5 and 7.5 

cm probes until the sample reached room temperature.   

 

These experiments showed that varying the temperature in the range of 3ºC to 23ºC affected the 

results very little.  Figure  4.14 shows the gain signals from distilled water as its temperature 

increased.  These measurements were taken with the 5 cm probe and the old control box.  Figure 

 4.15 shows the phase signals from these tests. 
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Figure  4.14: Gain signals with increasing temperature from 1 L of distilled water with the 5 
cm probe and the old control box 
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Figure  4.15: Phase signals with increasing temperature from 1 L of distilled water with the 
5 cm probe and the old control box 
 

4.6 Data Analysis 

Four different programs were written using MatLab 7.6.0 (The Mathworks, 2008a) and various 

toolboxes for MatLab.  The regression methods used were stepwise regression, partial least 

squares regression, artificial neural network, and stepwise regression of wavelet transformed 

data.  The gain and/or phase data were the x-variables and the concentration or molecular weight 

values were the y-variables. 

 

The probes developed at K-State measured the gain and phase of every sample three times at 

each frequency.  These three signals were averaged, and the regression programs were run on the 

average values.  Only one reading was taken by the impedance meter.  For each group of 

samples, regression was done using just the gain signal, just the phase signal, and the gain and 

phase signals together.  The same thing was done for the impedance meter with the real and 

imaginary permittivity signals.  Regression was done on the nitrate samples for just the low 

concentrations (0-200 µmol/L), just the high concentrations (300-1,000 µmol/L), and for all of 
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the concentrations together.  This was also done for the fuel tests; the concentrations up to two 

times the ASTM standard were considered the low concentrations, and the concentrations that 

were higher than twice the ASTM standard were considered the high concentrations.  As a result, 

there were nine subsets of data from each sensor for each regression method.  The results from 

these subsets were analyzed both individually and as a group to show the overall trend for a 

particular probe or regression technique. 

 

Each group of samples consisted of a training data set, used to create the regression model, and a 

validation data set that was used to verify the model.  Because only one set of high concentration 

nitrate salts was made for the 1 L samples, the odd numbered concentrations (300, 500, 700, and 

900 µmol/L) were used as the training set, and the even numbered concentrations (400, 600, 800, 

and 1,000 µmol/L) were used as the validation set.  For the 36 L nitrate tests, all of the odd 

numbered concentrations (50, 150, 300, 500, 700, and 900 µmol/L) were used as the training 

data and the even numbered concentrations (0, 100, 200, 400, 600, 800, and 1,000 µmol/L) were 

used as the validation data.  Alternating concentrations were also used for the biodiesel tests.  

The data was analyzed without including 0 µmol/L in the validation data, and it was found that 

excluding 0 µmol/L from regression did not change the results very much. 
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4.6.1 Stepwise Regression 

For this research, stepwise regression was done using MatLab 7.6.0 (The Mathworks, 2008a) and 

the Statistics Toolbox 7.0 (The Mathworks, 2008c).  Figure  4.16 is a flowchart of the program.  

A copy of the complete program can be found in  Appendix B. 

 

The program begins by loading the training and validation data, as well as a list of the 

frequencies that correspond to each x-variable.  Next, a stepwise model is made with the training 

data using the function stepwisefit.  The p-value that is needed to add a variable into the model is 

0.05, a commonly used value, and the p-value needed to remove a variable is 0.10.  A list of the 

frequencies at which the x-variables were significant enough to be included in the model is 

stored.  After this, the model is used to predict the y-variables from the training and validation x-

variables.  The predictions are stored, and the R2-values and RMSE values are calculated and 

stored.  Finally, a plot is made that shows the actual y-values on the x-axis and the predicted y-

values on the y-axis.  A perfect fit line is drawn through the actual values. 
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Figure  4.16: A flowchart of the stepwise regression program 
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4.6.2 Partial Least Squares Regression 

The program that was used for PLS regression was written using PLS Toolbox 4.0 (Eigenvector 

Research Inc., 2006) and MatLab 7.6.0 (The Mathworks, 2008a).  A flowchart of the program is 

shown in Figure  4.17, and a copy of the program is provided in  Appendix C.  The program 

begins by cross-validating the data with leave-one-out cross validation using the crossval 

function.  The predictive residual error sum of squares, or PRESS, statistic is calculated, along 

with the cumulative PRESS (CUMPRESS), which is the sum of columns in the PRESS matrix.  

The formula for calculating the PRESS is: 

 

PRESS = Σ (Ypred - Yact) 
2      ( 4.1)

 where Ypred = the predicted Y-value, and 

Yact = the actual Y-value. 

 

The program then selects the value at which CUMPRESS is smallest; this is the number of 

factors that explain the most variation.  The data is mean-centered with the preprocess function, 

which means that all of the columns are adjusted to have a mean of zero, and then a model is 

created using the training data and the number of factors previously determined with the pls 

function. 

 

The model uses the training x-variables to predict the training y-variables.  The same thing is 

done for the validation data.  Once the predictions have been made, the program computes the 

R2-values and the RMSE values for both training and validation data.  Finally, a plot is made that 

shows the actual y-values on the x-axis and the predicted y-values on the y-axis.  A perfect fit 

line is drawn through the actual values. 
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Figure  4.17: A flowchart of the PLS program 
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4.6.3 Artificial Neural Network 

The neural network program in this research was written using MatLab 7.6.0 (The Mathworks, 

2008a) and the Neural Network Toolbox 6.0.1 (The Mathworks, 2008b).  A flowchart for the 

program is shown in Figure  4.18.  A copy of the program can be found in  Appendix D.   

 

The program begins by removing all rows with constant values, using the removeconstantrows 

function.  If a row has a constant value all the way across, there was no variation in the gain or 

phase measurement from one concentration to another at the frequency corresponding to the 

constant row.  Because there is no variability in the x-variables at frequencies where this occurs, 

this data will not be useful in model building. 

 

Next, the data is rescaled using the mapminmax function, so that the smallest value in a row is -1 

and the largest value is 1.  A feed-forward back propagation network is created with ten hidden 

neurons, a common number to use for a dataset of this size, using the newff function.  Then, 

from the rescaled data, the training dataset is divided into three subsets- a training subset, a 

validation subset, and a test subset.  The dividevec function randomly separates the data so that 

60% of the samples are in the training subset, 20% are in the validation subset, and 20% are in 

the test subset. 

 

In the following step, the train function is used to create a model with the network and the 

training data subset.  The model is tested and adjusted with the validation and test subsets.  This 

is done to avoid over-fitting.  Once the model has been adjusted, the entire training data set and 

the entire validation data set are each fed into the model and the model predicts the outputs.  

After the predictions are made, the program computes the R2-values and the RMSE values for 

both training and validation data.  Finally, a plot is made that shows the actual y-values on the x-

axis and the predicted y-values on the x-axis.  A perfect fit line is drawn through the actual 

values.  
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Figure  4.18: A flowchart for the artificial neural network  program 
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4.6.4 Wavelet Transformation 

The wavelet program was written using MatLab 7.6.0 (The Mathworks, 2008a) and the Wavelet 

Toolbox 4.2 (The Mathworks, 2008d).  A flowchart of the program is shown in Figure  4.19 and 

the complete program is provided in  Appendix E.  

 

The program begins by determining the highest level transform that can be performed given the 

number of x-variables present.  This is calculated by rounding log (length of x data)/log (2) down 

to the nearest whole number.  Data from five different levels will be used to make the model, so 

the lowest level is found by subtracting four from the highest level.  Once the levels have been 

determined, the x-data is transformed with a Haar wavelet and the appropriate levels using the 

wavedec function.  This compresses the data from a certain range of frequencies together into an 

approximation and a detail coefficient. 

 

Stepwise regression is run on the transformed training data using the function stepwisefit.  The 

model made by stepwise is applied to the wave-transformed training and validation x-variables 

to predict the Y-variables.  The R2-values and the RMSE values are calculated and stored.  A 

plot is made that shows the actual y-values on the x-axis and the predicted y-values on the y-axis.  

A perfect fit line is drawn through the actual values. 

 

A list of the data points that were selected by stepwise is made and converted into a table of the 

levels and wavebands corresponding to each point.  This information is used to make a tiling 

diagram.  The tiling diagram is constructed using the annotation function.  The wavebands that 

were selected are colored in, and the transform levels and frequencies are added to the diagram. 
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Figure  4.19: A flowchart of the wavelet program 
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CHAPTER 5 - Results and Discussion 

5.1 Nitrate Salts and Water 

The results for predicting nitrate concentration and molecular weight in water were promising.  

There were many high R2-values from these tests.  These values are given in tables that have the 

validation R2-values above 0.900 bold and in blue.  For tables in which there were no R2-values 

above 0.900, the highest validation value is bolded.  Tables are also given for the RMSE values. 

 

5.1.1 Concentration 

Overall, the probes and regression methods used in this research proved to be reliable for 

measuring nitrate concentration in water.  The highest R2-values obtained for training and 

validation were both 1.00, and the lowest RMSE values for both training and validation were 

0.00 µmol/L.   This means that for some of the tests that were completed, the regression model 

was able to explain 100% of the variation in the data. 

 

5.1.1.1 One Liter Samples 

The R2-values for predicting the concentration of nitrate salt in the 1 L samples are given in 

Table  5.1, and the RMSE values are given in Table  5.2.  The highest training R2-value for the 1 

L samples was 1.00, and the highest validation R2-value was 0.988.  The lowest training RMSE 

value was 0.00 µmol/L, and the lowest validation RMSE value was 22.0 µmol/L. 

 

5.1.1.1.1 Comparison of Probes 

For the 1 L samples, the 5 cm probe and the 7.5 cm probe were the most accurate, based on R2- 

and RMSE values, of measuring the nitrate concentration.  When both the high and low 

concentrations were used to build the models, the lowest validation R2-value for each of these 

probes was around 0.858, meaning that 85% of the variation in the validation data was explained 

by the model made using the training data.  Both the 5 and 7.5 cm probes had training R2-values 

above 0.900 for approximately 90% of the data subsets.  The validation R2-values for the 5 cm 
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probe were above 0.900 for 58% of the data subsets, and the validation R2-values for the 7.5 cm 

probe were above 0.900 for 69% of the data subsets. 

 

The 2 cm probe did not do a good job of predicting concentration with the 1 L samples.  Most of 

the training R2-values for this probe were good, many above 0.90, but the average validation R2-

value for this probe was only 0.171 and there were no validation R2-values above 0.900.  

Therefore, the variations in the data were not consistent from the training set to the validation set 

for this probe. 

 

The 2.5 cm probe and the impedance meter did not perform as well as the larger probes, but they 

predicted nitrate concentration more accurately than the 2 cm probe.  Both of these sensors had 

training R2-values that were mainly above 0.900, but the 2.5 cm probe only had validation R2-

values above 0.900 for 33% of the regression models.  The impedance meter had validation R2-

values above 0.900 for 64% of the regression models. 

 

5.1.1.1.2 Comparison of Regression Techniques 

The partial least squares regression models were able to explain more variation in the 1 L nitrate 

concentration data than the models from the other regression methods.  The models made using 

the real part of permittivity from the impedance meter with only the 0-200 µmol/L 

concentrations were unreliable for all of the regression methods. When these measurements are 

excluded from the data, the lowest training R2-value from PLS was 0.917 and the lowest 

validation R2-value was 0.814.  For the training data, the PLS R2-values were above 0.900 89% 

of the time and the validation R2-values were above 0.900 64% of the time, more often than for 

any other regression method studied. 

 

Neural network proved to be the least effective method in predicting nitrate concentration.  The 

average training R2-value from ANN was only 0.802, even without the poor results from the 2 

cm probe, whereas the average values for the other techniques were all above 0.900.  The 

training R2-values for this method were only above 0.900 49% of the time, and the validation R2-

values were above 0.900 11% of the time. 
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Traditional stepwise regression and wavelet transform followed by stepwise regression were 

comparable in their abilities to detect nitrates in water.  Both had average training R2-values 

around 0.960 and average validation values around 0.840.  The RMSE values were lower, 

overall, for traditional stepwise regression than for stepwise regression on wavelet transformed 

data. 

Table  5.1:  R2-values for predicting concentration of 1 L nitrate samples 

    SWR PLS ANN Wavelet 
    Training Validation Training Validation Training Validation Training Validation 

All Gain 0.938 0.153 0.974 0.323 0.969 0.136 0.918 0.172 
All Phase 0.747 0.350 0.965 0.265 0.610 0.004 0.761 0.255 
All Gain+Phase 0.937 0.114 0.975 0.340 0.216 0.193 0.605 0.550 
Low Gain 0.707 0.106 0.651 0.208 0.013 0.122 0.553 0.144 
Low Phase 0.367 0.094 0.764 0.191 0.001 0.050 0.528 0.170 
Low Gain+Phase 1.000 0.055 1.000 0.155 0.351 0.008 0.330 0.110 
High Gain 1.000 0.446 0.994 0.001 0.662 0.000 0.561 0.585 
High Phase 0.852 0.002 0.513 0.027 0.360 0.003 0.917 0.312 

2 cm
 P

robe 

High Gain+Phase 1.000 0.492 0.507 0.031 0.258 0.002 0.000 0.000 
All Gain 0.997 0.901 1.000 0.966 0.885 0.818 0.982 0.960 
All Phase 0.979 0.945 0.996 0.910 0.907 0.710 0.992 0.893 
All Gain+Phase 1.000 0.923 0.999 0.970 0.934 0.848 0.976 0.941 
Low Gain 0.983 0.831 0.999 0.965 0.336 0.007 0.913 0.867 
Low Phase 0.862 0.979 0.997 0.869 0.262 0.039 0.970 0.610 
Low Gain+Phase 1.000 0.921 0.999 0.906 0.669 0.228 0.901 0.060 
High Gain 1.000 0.855 0.927 0.884 0.772 0.008 0.961 0.893 
High Phase 0.959 0.841 0.980 0.843 0.574 0.391 0.953 0.668 

2.5 cm
 P

robe 

High Gain+Phase 0.959 0.841 0.917 0.852 0.807 0.776 0.936 0.842 
All Gain 0.991 0.970 0.995 0.978 0.879 0.858 0.982 0.980 
All Phase 0.995 0.977 0.981 0.984 0.967 0.894 0.989 0.976 
All Gain+Phase 0.995 0.964 0.985 0.977 0.979 0.886 0.986 0.972 
Low Gain 0.971 0.521 0.937 0.969 0.838 0.385 0.974 0.195 
Low Phase 0.952 0.905 0.924 0.964 0.950 0.852 0.949 0.387 
Low Gain+Phase 1.000 0.034 0.931 0.970 0.891 0.141 0.957 0.762 
High Gain 0.998 0.591 0.940 0.926 0.053 0.056 0.952 0.947 
High Phase 0.987 0.937 0.956 0.944 0.900 0.885 0.978 0.941 

5 cm
 P

robe 

High Gain+Phase 1.000 0.881 0.952 0.940 0.947 0.882 0.955 0.939 
All Gain 0.987 0.964 1.000 0.956 0.973 0.884 0.989 0.968 
All Phase 1.000 0.924 0.994 0.961 0.971 0.877 0.987 0.949 
All Gain+Phase 0.992 0.972 0.994 0.959 0.934 0.859 0.985 0.968 
Low Gain 0.934 0.979 0.929 0.971 0.383 0.163 0.938 0.951 
Low Phase 0.925 0.964 0.917 0.976 0.920 0.713 0.927 0.978 
Low Gain+Phase 0.934 0.979 0.923 0.975 0.619 0.386 0.938 0.951 
High Gain 0.987 0.722 0.999 0.961 0.872 0.660 0.967 0.947 
High Phase 0.979 0.934 0.945 0.926 0.992 0.832 0.962 0.958 

7.5 cm
 P

robe 

High Gain+Phase 0.986 0.879 0.943 0.922 0.932 0.828 0.962 0.960 
All Real 1.000 0.692 0.995 0.827 0.906 0.773 0.975 0.952 
All Imaginary 1.000 0.945 0.991 0.979 0.989 0.985 0.979 0.977 
All Real+Imaginary 1.000 0.969 0.991 0.956 0.976 0.884 0.981 0.985 
Low Real 0.497 0.066 0.487 0.061 0.019 0.335 0.857 0.632 
Low Imaginary 0.951 0.953 0.936 0.988 0.940 0.934 0.965 0.966 
Low Real+Imaginary 1.000 0.961 0.956 0.959 0.971 0.939 0.993 0.823 
High Real 0.970 0.763 0.987 0.814 0.987 0.796 1.000 0.914 
High Imaginary 1.000 0.901 1.000 0.941 0.941 0.934 0.988 0.900 

Im
pedance M

eter 

High Real+Imaginary 0.987 0.885 0.956 0.951 0.989 0.936 0.969 0.953 

 



 51 

Table  5.2: RMSE values for predicting concentration of 1 L nitrate samples (µmol/L) 

    SWR PLS ANN Wavelet 
    Training Validation Training Validation Training Validation Training Validation 

All Gain 76.39 392.53 49.24 353.73 56.13 409.51 87.61 414.12 
All Phase 154.08 289.23 57.55 394.38 195.46 436.27 149.47 311.22 
All Gain+Phase 76.66 494.84 48.60 351.66 338.30 402.24 192.32 240.21 
Low Gain 41.08 208.44 44.89 192.93 95.25 112.03 50.79 192.29 
Low Phase 60.44 136.17 36.92 167.55 102.38 91.69 52.19 166.87 
Low Gain+Phase 0.00 325.00 0.14 271.53 65.34 103.35 62.18 98.66 
High Gain 0.00 230.70 18.65 340.71 159.09 334.32 162.22 180.77 
High Phase 94.29 362.97 170.99 324.29 207.58 314.98 70.52 264.20 

2 cm
 P

robe 

High Gain+Phase 0.00 195.44 172.00 324.67 384.66 318.19 701.43 804.98 
All Gain 15.42 115.07 0.05 79.07 114.74 150.96 40.69 100.93 
All Phase 44.38 103.64 18.64 110.42 101.60 229.59 27.35 107.05 
All Gain+Phase 0.00 111.60 9.55 65.27 82.08 150.78 47.78 91.36 
Low Gain 9.97 70.58 2.62 49.64 63.37 105.84 22.38 58.68 
Low Phase 28.23 57.99 4.43 50.41 72.17 105.29 13.12 57.40 
Low Gain+Phase 0.00 51.75 2.71 49.74 44.21 74.43 23.92 113.28 
High Gain 0.81 136.71 66.33 86.11 128.71 352.89 48.63 85.54 
High Phase 49.43 114.20 34.42 100.59 215.07 235.09 53.38 145.80 

2.5 cm
 P

robe 

High Gain+Phase 49.43 114.20 70.51 102.70 108.98 154.06 62.04 102.68 
All Gain 28.39 70.80 22.36 54.09 131.33 134.42 40.89 68.66 
All Phase 21.85 59.30 42.15 64.55 66.53 129.17 31.92 41.75 
All Gain+Phase 21.21 92.72 36.89 64.36 46.49 134.63 36.02 71.74 
Low Gain 12.87 109.65 19.00 77.22 35.68 69.00 12.28 134.47 
Low Phase 16.60 88.15 20.94 68.58 17.63 30.67 17.11 155.29 
Low Gain+Phase 0.00 234.74 20.01 71.42 28.22 104.51 15.68 124.05 
High Gain 10.94 181.45 60.18 75.97 269.25 308.52 53.93 61.63 
High Phase 28.38 71.56 51.54 60.86 80.27 112.52 35.93 60.07 

5 cm
 P

robe 

High Gain+Phase 0.00 125.29 53.68 64.49 62.16 147.66 51.81 62.42 
All Gain 34.36 76.08 1.26 93.88 51.04 132.27 32.68 85.39 
All Phase 0.54 102.30 23.37 85.28 53.90 140.01 34.47 69.88 
All Gain+Phase 26.98 76.65 24.34 85.70 81.39 133.28 37.42 65.94 
Low Gain 19.57 76.26 20.19 73.50 68.10 99.06 18.98 86.42 
Low Phase 20.81 70.80 21.85 71.36 24.16 61.82 20.55 81.76 
Low Gain+Phase 19.57 76.26 21.03 72.20 49.12 63.67 18.98 86.42 
High Gain 28.31 137.65 7.18 50.49 98.73 204.01 44.36 67.17 
High Phase 35.33 70.66 57.44 72.23 22.61 186.95 48.02 51.09 

7.5 cm
 P

robe 

High Gain+Phase 28.95 93.56 58.63 74.92 67.17 203.79 47.60 51.23 
All Real 0.98 201.81 21.19 158.38 98.35 205.14 48.33 79.03 
All Imaginary 0.00 91.36 28.22 59.92 35.18 57.97 44.37 43.68 
All Real+Imaginary 0.00 84.55 29.29 127.16 49.93 129.07 42.50 48.99 
Low Real 53.86 184.65 54.38 171.68 123.50 140.49 28.75 89.02 
Low Imaginary 16.85 28.32 19.23 57.80 19.65 25.72 14.29 67.27 
Low Real+Imaginary 0.00 24.59 15.84 41.69 13.93 22.00 6.19 36.92 
High Real 42.51 130.53 27.68 112.75 38.05 200.99 0.01 86.28 
High Imaginary 1.49 108.30 2.04 73.72 71.76 83.05 26.81 81.01 

Im
pedance M

eter 

High Real+Imaginary 27.58 90.94 51.41 54.37 27.90 87.49 43.17 57.94 
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5.1.1.2 Thirty-six Liter Samples 

Overall, the predictions were more accurate with the 36 L samples than with the 1 L samples.  

Table  5.3 shows the R2-values for predicting the concentration of the 36 L nitrate salts, and Table 

 5.4 shows the RMSE values.  The highest training R2-value for the 36 L tests were 1.00, and the 

highest validation R2-value was 0.999.  The lowest training and validation RMSE values for 

these tests were 0.00 µmol/L. 

 

5.1.1.2.1 Comparison of Probes 

The 7.5 cm probe performed the best in the 36 L nitrate concentration tests.  All but two of the 

training R2-values for this probe were at or above 0.900, and many of these values were 1.00.  

The average validation R2-value for this probe was 0.899, and the validation R2-values were 

0.900 or above for 70% of the regression models.  

 

 The second best performing probe was the 2.5 cm probe.  The 2.5 cm probe and the 7.5 cm 

probe had similar RMSE values; the training RMSE values tended to be a little bit lower for the 

2.5 cm probe than the 7.5 cm probe.  The training R2-values for the 2.5 cm probe were above 

0.900 for 83% of the regression models, and the validation R2-values were above 0.900 for 58% 

of the regression models. 

 

Once again, the 2 cm probe provided the least reliable results.  The training R2-value for this 

probe was only above 0.900 half of the time, and the validation R2-values were only above 0.900 

for 11% of the regression models.  This probe also had the highest RMSE values of the three 

probes for both training and validation. 

 

5.1.1.2.2 Comparison of Regression Techniques 

PLS was the most effective regression method for predicting the concentration of nitrate salts in 

water for the 36 Lsamples.  This method had the lowest RMSE values, overall, and the highest 

R2-values.  The training R2-values for PLS were above 0.900 for 100% of the data, and the 

validation R2-values were above 0.900 for 78% of the data.  The average training R2-value for 

PLS was 0.993, and the average validation R2-value was 0.909. 
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Stepwise regression was also a promising method for predicting nitrate concentration.  The 

RMSE values for stepwise were only a little bit higher than the values for PLS.  The training R2-

values for stepwise were above 0.900 85% of the time and the validation R2-values were above 

0.900 52% of the time. 

 

Neural network and wavelet were the two least reliable methods.  The RMSE values for these 

methods were, on average, much higher than the RMSE values for PLS and stepwise.  The R2-

values for these methods were not very high.  The average training R2-values for neural network 

and wavelet were 0.813 and 0.744, respectively.  The average validation R2-values for these 

methods were both around 0.600, and neither method had very many R2-values above 0.900. 

 

Table  5.3:  R2-values for predicting concentration of 36 L nitrate samples 

    SWR PLS ANN Wavelet 
    Training Validation Training Validation Training Validation Training Validation 

All Gain 0.997 0.743 1.000 0.825 0.931 0.887 0.969 0.839 
All Phase 0.994 0.880 0.999 0.909 0.854 0.854 0.161 0.185 
All Gain+Phase 0.894 0.686 1.000 0.881 0.971 0.728 0.130 0.165 
Low Gain 0.555 0.055 1.000 0.665 0.813 0.705 0.000 0.000 
Low Phase 0.784 0.412 0.997 0.641 0.407 0.574 0.465 0.236 
Low Gain+Phase 0.963 0.684 0.999 0.626 1.000 0.126 0.397 0.185 
High Gain 0.976 0.574 0.999 0.944 0.745 0.365 0.508 0.483 
High Phase 0.707 0.241 0.999 0.945 0.479 0.426 0.000 0.000 

2 cm
 P

robe 

High Gain+Phase 0.945 0.661 1.000 0.915 0.615 0.829 0.000 0.000 
All Gain 1.000 0.954 0.998 0.958 0.664 0.397 0.997 0.973 
All Phase 1.000 0.967 1.000 0.964 0.929 0.937 0.993 0.941 
All Gain+Phase 1.000 0.987 0.999 0.965 0.957 0.920 0.995 0.955 
Low Gain 0.956 0.689 0.972 0.926 0.522 0.713 0.824 0.889 
Low Phase 0.999 0.656 0.939 0.762 1.000 0.145 0.969 0.871 
Low Gain+Phase 0.992 0.554 0.915 0.914 0.002 0.174 0.901 0.803 
High Gain 1.000 0.973 1.000 0.937 0.898 0.702 0.999 0.934 
High Phase 1.000 0.951 1.000 0.949 0.831 0.740 1.000 0.863 

2.5 cm
 P

robe 

High Gain+Phase 1.000 0.977 1.000 0.950 0.984 0.779 0.997 0.971 
All Gain 1.000 0.992 1.000 0.995 0.985 0.880 0.997 0.993 
All Phase 1.000 0.995 1.000 0.996 0.980 0.960 0.997 0.995 
All Gain+Phase 1.000 0.996 1.000 0.999 0.920 0.920 0.999 0.994 
Low Gain 1.000 0.783 1.000 0.968 0.574 0.206 0.966 0.878 
Low Phase 0.999 0.921 1.000 0.943 1.000 0.702 0.952 0.610 
Low Gain+Phase 1.000 0.923 1.000 0.975 1.000 0.587 0.864 0.785 
High Gain 1.000 0.985 1.000 0.996 0.984 0.815 1.000 0.994 
High Phase 1.000 0.993 1.000 0.997 0.937 0.792 1.000 0.970 

7.5 cm
 P

robe 

High Gain+Phase 1.000 0.994 1.000 0.999 0.964 0.829 1.000 0.999 
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Table  5.4: RMSE values for predicting concentration of 36 L nitrate samples (µmol/L) 

    SWR PLS ANN Wavelet 
    Training Validation Training Validation Training Validation Training Validation 

All Gain 180.38 245.65 177.56 202.45 163.19 228.94 316.86 311.67 
All Phase 150.33 200.16 164.53 219.30 190.45 180.88 250.29 356.11 
All Gain+Phase 149.70 242.70 164.19 188.61 206.54 237.55 305.19 319.92 
Low Gain 59.32 62.47 3.90 44.87 60.21 71.59 131.56 131.56 
Low Phase 59.76 56.21 0.81 37.41 37.04 46.11 61.26 74.03 
Low Gain+Phase 5.37 96.85 3.22 38.39 83.60 97.48 62.86 59.05 
High Gain 269.52 296.73 240.83 241.67 266.00 272.19 289.46 294.71 
High Phase 257.96 277.99 240.29 228.40 404.57 496.57 295.36 266.87 

2 cm
 P

robe 

High Gain+Phase 259.18 262.02 240.88 237.28 299.21 325.62 701.43 804.98 
All Gain 151.03 164.45 151.80 172.08 165.27 185.19 155.54 186.58 
All Phase 151.60 167.06 152.37 171.13 203.17 172.55 163.97 209.73 
All Gain+Phase 152.32 171.58 152.28 180.47 155.55 138.29 155.19 168.19 
Low Gain 11.33 36.96 13.45 22.97 26.48 58.40 24.33 30.92 
Low Phase 9.06 22.00 17.46 27.88 16.60 44.29 12.95 30.20 
Low Gain+Phase 0.01 22.89 13.86 23.37 35.45 80.25 9.29 19.00 
High Gain 240.83 270.45 240.76 287.76 239.94 349.77 242.88 274.55 
High Phase 240.83 351.08 240.33 278.73 269.61 318.28 245.13 293.76 

2.5 cm
 P

robe 

High Gain+Phase 240.83 275.66 239.57 287.26 238.09 284.44 238.19 272.19 
All Gain 152.32 153.32 152.44 161.59 140.40 167.50 149.63 152.13 
All Phase 152.13 168.85 152.30 171.27 556.19 500.55 149.43 200.86 
All Gain+Phase 152.32 172.73 151.54 169.69 149.64 196.07 147.60 165.20 
Low Gain 7.09 32.48 0.29 13.10 26.94 50.70 16.49 18.95 
Low Phase 4.73 20.40 0.26 23.50 36.03 42.93 12.16 33.02 
Low Gain+Phase 1.16 24.58 1.68 17.00 100.38 99.30 15.10 18.57 
High Gain 240.83 245.65 240.50 276.12 240.37 393.87 238.20 265.76 
High Phase 240.83 262.14 240.83 302.11 238.41 205.27 243.00 315.64 

7.5 cm
 P

robe 

High Gain+Phase 240.83 258.64 240.78 280.16 242.75 231.82 241.23 272.96 

 

5.1.1.3 Comparison of Sample Size 

Overall, the concentration estimations were better for the 36 L samples than for the 1 L samples.  

The validation R2-value was higher for the 36 L samples 75% of the time, and the validation 

RMSE value was lower for the 36 L samples 50% of the time.  Table  5.5 shows a comparison of 

the R2-values for each sample size, and Table  5.6 shows a comparison of the RMSE values for 

each sample size.  For these tables, the column with the higher validation R2-value or the lower 

validation RMSE value is highlighted. 

 

The higher R2-values for the 36 L samples might be partially due to the fact that the tests were 

done in order of increasing concentration for each salt, and not randomly as the 1 L tests were 

done.  The differences could also be explained by the different control boxes used.  The 1 L tests 

for the 2 cm probe were done with the new control box; all other 1 L tests were done with the old 

control box.  All of the 36 L tests were done using the new control box, and the wider frequency 
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range that the new control box measured may account for the higher R2-values for the 36 L tests.  

The results for the 2 cm probe, which used the same control box to measure both sample sizes, 

were better for the larger sample size.  This suggests that the control box was not the only factor 

contributing to the higher R2-values for the 36 L samples, but for the tests performed for this 

thesis, it cannot be concluded that the larger sample size was responsible for the better results for 

the 36 L tests. 

  

Table  5.5: Comparison of 36 L and 1 L R2-values for predicting nitrate concentration 
    Stepwise Regression  PLS Neural Network Wavelet 
    36 L 1 L 36 L 1 L 36 L 1 L 36 L 1 L 

   Train Valid. Train Valid. Train Valid. Train Valid. Train Valid. Train Valid. Train Valid. Train Valid. 

Gain 1.00 0.74 0.94 0.15 1.00 0.82 0.97 0.32 0.93 0.89 0.97 0.14 0.97 0.84 0.92 0.17 

Phase 0.99 0.88 0.75 0.35 1.00 0.91 0.96 0.26 0.85 0.85 0.61 0.00 0.16 0.19 0.76 0.26 

A
ll 

G+P 0.89 0.69 0.94 0.11 1.00 0.88 0.97 0.34 0.97 0.73 0.22 0.19 0.13 0.16 0.61 0.55 

Gain 0.56 0.05 0.71 0.11 1.00 0.67 0.65 0.21 0.81 0.71 0.01 0.12 0.00 0.00 0.55 0.14 

Phase 0.78 0.41 0.37 0.09 1.00 0.64 0.76 0.19 0.41 0.57 0.00 0.05 0.47 0.24 0.53 0.17 

Low
 

G+P 0.96 0.68 1.00 0.05 1.00 0.63 1.00 0.15 1.00 0.13 0.35 0.01 0.40 0.19 0.33 0.11 

Gain 0.98 0.57 1.00 0.45 1.00 0.94 0.99 0.00 0.75 0.36 0.66 0.00 0.51 0.48 0.56 0.59 

Phase 0.71 0.24 0.85 0.00 1.00 0.94 0.51 0.03 0.48 0.43 0.36 0.00 0.00 0.00 0.92 0.31 

2 cm
 P

robe 

H
igh 

G+P 0.94 0.66 1.00 0.49 1.00 0.91 0.51 0.03 0.62 0.83 0.26 0.00 0.00 0.00 0.00 0.00 

Gain 1.00 0.95 1.00 0.90 1.00 0.96 1.00 0.97 0.66 0.40 0.88 0.82 1.00 0.97 0.98 0.96 

Phase 1.00 0.97 0.98 0.94 1.00 0.96 1.00 0.91 0.93 0.94 0.91 0.71 0.99 0.94 0.99 0.89 

A
ll 

G+P 1.00 0.99 1.00 0.92 1.00 0.96 1.00 0.97 0.96 0.92 0.93 0.85 1.00 0.96 0.98 0.94 

Gain 0.96 0.69 0.98 0.83 0.97 0.93 1.00 0.96 0.52 0.71 0.34 0.01 0.82 0.89 0.91 0.87 

Phase 1.00 0.66 0.86 0.98 0.94 0.76 1.00 0.87 1.00 0.15 0.26 0.04 0.97 0.87 0.97 0.61 

Low
 

G+P 0.99 0.55 1.00 0.92 0.91 0.91 1.00 0.91 0.00 0.17 0.67 0.23 0.90 0.80 0.90 0.06 

Gain 1.00 0.97 1.00 0.86 1.00 0.94 0.93 0.88 0.90 0.70 0.77 0.01 1.00 0.93 0.96 0.89 

Phase 1.00 0.95 0.96 0.84 1.00 0.95 0.98 0.84 0.83 0.74 0.57 0.39 1.00 0.86 0.95 0.67 

2.5 cm
 P

robe 

H
igh 

G+P 1.00 0.98 0.96 0.84 1.00 0.95 0.92 0.85 0.98 0.78 0.81 0.78 1.00 0.97 0.94 0.84 

Gain 1.00 0.99 0.99 0.96 1.00 0.99 1.00 0.96 0.99 0.88 0.97 0.88 1.00 0.99 0.99 0.97 

Phase 1.00 0.99 1.00 0.92 1.00 1.00 0.99 0.96 0.98 0.96 0.97 0.88 1.00 1.00 0.99 0.95 

A
ll 

G+P 1.00 1.00 0.99 0.97 1.00 1.00 0.99 0.96 0.92 0.92 0.93 0.86 1.00 0.99 0.99 0.97 

Gain 1.00 0.78 0.93 0.98 1.00 0.97 0.93 0.97 0.57 0.21 0.38 0.16 0.97 0.88 0.94 0.95 

Phase 1.00 0.92 0.92 0.96 1.00 0.94 0.92 0.98 1.00 0.70 0.92 0.71 0.95 0.61 0.93 0.98 

Low
 

G+P 1.00 0.92 0.93 0.98 1.00 0.98 0.92 0.98 1.00 0.59 0.62 0.39 0.86 0.78 0.94 0.95 

Gain 1.00 0.98 0.99 0.72 1.00 1.00 1.00 0.96 0.98 0.82 0.87 0.66 1.00 0.99 0.97 0.95 

Phase 1.00 0.99 0.98 0.93 1.00 1.00 0.95 0.93 0.94 0.79 0.99 0.83 1.00 0.97 0.96 0.96 

7.5 cm
 P

robe 

H
igh 

G+P 1.00 0.99 0.99 0.88 1.00 1.00 0.94 0.92 0.96 0.83 0.93 0.83 1.00 1.00 0.96 0.96 
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Table  5.6: Comparison of 36 L and 1 L RMSE values for predicting nitrate concentration 
(µmol/L) 
    Stepwise Regression  PLS Neural Network Wavelet 
    36 L 1 L 36 L 1 L 36 L 1 L 36 L 1 L 

   Train Valid. Train Valid. Train Valid. Train Valid. Train Valid. Train Valid. Train Valid. Train Valid. 

Gain 180 246 76 393 178 202 49 354 163 229 56 410 317 312 88 414 

Phase 150 200 154 289 165 219 58 394 190 181 195 436 250 356 149 311 

A
ll 

G+P 150 243 77 495 164 189 49 352 207 238 338 402 305 320 192 240 

Gain 59 62 41 208 4 45 45 193 60 72 95 112 132 132 51 192 

Phase 60 56 60 136 1 37 37 168 37 46 102 92 61 74 52 167 

Low
 

G+P 5 97 0 325 3 38 0 272 84 97 65 103 63 59 62 99 

Gain 270 297 0 231 241 242 19 341 266 272 159 334 289 295 162 181 

Phase 258 278 94 363 240 228 171 324 405 497 208 315 295 267 71 264 

2 cm
 P

robe 

H
igh 

G+P 259 262 0 195 241 237 172 325 299 326 385 318 701 805 701 805 

Gain 151 164 15 115 152 172 0 79 165 185 115 151 156 187 41 101 

Phase 152 167 44 104 152 171 19 110 203 173 102 230 164 210 27 107 

A
ll 

G+P 152 172 0 112 152 180 10 65 156 138 82 151 155 168 48 91 

Gain 11 37 10 71 13 23 3 50 26 58 63 106 24 31 22 59 

Phase 9 22 28 58 17 28 4 50 17 44 72 105 13 30 13 57 

Low
 

G+P 0 23 0 52 14 23 3 50 35 80 44 74 9 19 24 113 

Gain 241 270 1 137 241 288 66 86 240 350 129 353 243 275 49 86 

Phase 241 351 49 114 240 279 34 101 270 318 215 235 245 294 53 146 

2.5 cm
 P

robe 

H
igh 

G+P 241 276 49 114 240 287 71 103 238 284 109 154 238 272 62 103 

Gain 152 153 34 76 152 162 1 94 140 168 51 132 150 152 33 85 

Phase 152 169 1 102 152 171 23 85 556 501 54 140 149 201 34 70 

A
ll 

G+P 152 173 27 77 152 170 24 86 150 196 81 133 148 165 37 66 

Gain 7 32 20 76 0 13 20 74 27 51 68 99 16 19 19 86 

Phase 5 20 21 71 0 23 22 71 36 43 24 62 12 33 21 82 

Low
 

G+P 1 25 20 76 2 17 21 72 100 99 49 64 15 19 19 86 

Gain 241 246 28 138 241 276 7 50 240 394 99 204 238 266 44 67 

Phase 241 262 35 71 241 302 57 72 238 205 23 187 243 316 48 51 

7.5 cm
 P

robe 

H
igh 

G+P 241 259 29 94 241 280 59 75 243 232 67 204 241 273 48 51 

 

5.1.2 Molecular Weight 

The results of the tests showed that the probes and the impedance meter had little ability to 

distinguish between the molecular weights of the three nitrates for the 1 L tests.  This could have 

been caused by the boundary effect.  Many of the validation R2-values for these tests were below 

0.100.  The results were better for the 36 L tests.  There were many training R2-values of 1.00, 

and the highest validation R2-value was 0.999. 
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5.1.2.1 One Liter Samples 

The tests done to predict the molecular weight of the nitrate salts with the 1 L samples did not 

have good results.  The R2-values were always low for the validation data, and were usually low 

for training data.  There was not a lot of difference in prediction ability between the different 

probes or the different regression methods.   

 

Table  5.7 shows the R2-values for predicting the molecular weight of the 1 L nitrate salts, and 

Table  5.8 shows the RMSE values.  The highest validation R2-value for the 1 L samples was 

0.413, which came from the 2.5 cm probe and neural network.  The lowest validation R2-values 

were around zero for each probe and each regression technique.  The RMSE values were 

relatively high for all of the probes and regression methods, most falling between 70.0 g/mol and 

100.0 g/mol. 

 

Stepwise was unable to create predictions for several of the datasets because there were no 

variables in the data significant enough to enter the model.  This happened for both the 

traditional stepwise regression and the stepwise regression on the wavelet transformed data.  

There were a few situations where stepwise found a small number of significant data points, 

usually around five, and built a model with good training R2-values, but the validation R2-values 

for these models were always very low, usually below 0.2. 
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Table  5.7: R2-values for predicting molecular weight of 1 L nitrate samples 
    SWR PLS ANN Wavelet 
    Training Validation Training Validation Training Validation Training Validation 

All Gain   0.267 0.009 0.008 0.134   
All Phase   0.027 0.000 0.345 0.003   
All Gain+Phase   0.039 0.000 0.000 0.038   
Low Gain   0.163 0.007 0.462 0.089 0.927 0.086 
Low Phase   0.246 0.059 0.001 0.037   
Low Gain+Phase   1.000 0.002 0.000 0.055   
High Gain 1.000 0.082 0.727 0.083 0.962 0.183   
High Phase 0.983 0.360 0.684 0.037 0.333 0.031 0.544 0.169 

2 cm
 P

robe 

High Gain+Phase 1.000 0.016 0.702 0.048 0.653 0.228 0.451 0.116 
All Gain 0.154 0.007 0.014 0.006 0.028 0.005     
All Phase 0.686 0.133 0.015 0.005 0.059 0.000     
All Gain+Phase 0.511 0.191 0.016 0.006 0.307 0.010     
Low Gain     0.038 0.039 0.082 0.041     
Low Phase 0.995 0.018 0.048 0.005 0.033 0.064     
Low Gain+Phase 0.966 0.001 0.056 0.010 0.103 0.008     
High Gain     0.039 0.026 0.000 0.000     
High Phase     0.017 0.032 0.007 0.031     

2.5 cm
 P

robe 

High Gain+Phase     0.028 0.030 0.024 0.413     
All Gain     0.011 0.005 0.298 0.121     
All Phase     0.012 0.010 0.524 0.229     
All Gain+Phase     0.012 0.008 0.058 0.008     
Low Gain 0.748 0.063 0.045 0.000 0.066 0.158 0.417 0.028 
Low Phase 0.764 0.000 0.061 0.007 0.105 0.006 0.450 0.027 
Low Gain+Phase 1.000 0.144 0.056 0.003 0.170 0.089 0.384 0.098 
High Gain 0.940 0.045 0.194 0.206 0.095 0.115     
High Phase 1.000 0.234 0.186 0.253 0.432 0.014     

5 cm
 P

robe 

High Gain+Phase 1.000 0.156 0.189 0.241 0.052 0.168     
All Gain     0.009 0.003 0.015 0.030     
All Phase     0.009 0.004 0.027 0.008     
All Gain+Phase     0.009 0.004 0.000 0.002     
Low Gain     0.023 0.006 0.004 0.019     
Low Phase     0.036 0.005 0.085 0.000 0.492 0.063 
Low Gain+Phase     0.031 0.005 0.124 0.112     
High Gain     0.036 0.039 0.019 0.002     
High Phase     0.032 0.035 0.004 0.002     

7.5 cm
 P

robe 

High Gain+Phase     0.033 0.036 0.018 0.124     
All Real     0.037 0.001 0.269 0.011     
All Imaginary     0.007 0.002 0.005 0.002     
All Real+Imaginary     0.008 0.002 0.270 0.025     
Low Real 1.000 0.089 0.990 0.055 0.080 0.001 0.683 0.010 
Low Imaginary     0.023 0.004 0.000 0.004     
Low Real+Imaginary 1.000 0.173 0.977 0.124 0.614 0.000     
High Real     0.936 0.235 0.201 0.164 0.978 0.020 
High Imaginary     0.997 0.071 0.014 0.003     

Im
pedance M

eter 

High Real+Imaginary     0.364 0.003 0.188 0.136     

*Empty cells indicate that stepwise did not find any data points that met the specified level of 
significance and no model was made. 
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Table  5.8: RMSE values for predicting molecular weight of 1 L nitrate samples (g/mol) 

    SWR PLS ANN Wavelet 
    Training Validation Training Validation Training Validation Training Validation 

All Gain     61.52 95.72 80.42 92.40     
All Phase     70.88 72.99 58.73 80.32     
All Gain+Phase     70.46 73.24 94.88 102.70     
Low Gain     67.95 93.77 55.21 101.86 20.11 355.21 
Low Phase     64.52 93.29 92.72 103.36     
Low Gain+Phase     0.86 274.19 83.73 94.17     
High Gain 0.00 167.32 39.61 86.43 16.80 74.04     
High Phase 9.99 82.69 42.57 91.63 66.19 93.48 51.15 82.70 

2 cm
 P

robe 

High Gain+Phase 0.00 139.92 41.38 88.50 47.56 78.75 56.15 90.28 
All Gain 66.12 75.70 71.39 71.81 73.71 89.10     
All Phase 40.30 96.65 71.34 71.94 57.22 122.53     
All Gain+Phase 50.27 77.75 71.32 71.91 60.57 88.03     
Low Gain     72.88 73.31 84.39 89.80     
Low Phase 5.04 121.78 72.47 76.49 95.54 99.30     
Low Gain+Phase 13.68 122.73 72.17 75.95 85.38 106.07     
High Gain     74.28 75.24 73.81 102.66     
High Phase     75.13 74.97 114.32 112.95     

2.5 cm
 P

robe 

High Gain+Phase     74.70 74.91 102.13 88.38     
All Gain     71.49 71.84 73.04 70.75     
All Phase     71.44 71.56 50.38 69.01     
All Gain+Phase     71.45 71.65 79.70 100.50     
Low Gain 37.32 226.36 72.59 77.43 81.35 77.84 56.73 237.06 
Low Phase 36.07 205.79 71.99 76.24 75.37 104.90 55.10 182.71 
Low Gain+Phase 0.00 420.34 72.18 76.74 86.95 113.20 58.33 113.74 
High Gain 18.61 116.76 68.03 68.57 77.42 75.60     
High Phase 0.00 181.25 68.34 67.40 69.39 107.30     

5 cm
 P

robe 

High Gain+Phase 0.00 154.96 68.24 67.68 96.13 98.35     
All Gain     71.54 71.91 86.37 98.73     
All Phase     71.56 71.84 85.36 79.84     
All Gain+Phase     71.55 71.86 92.03 106.75     
Low Gain     73.43 75.05 89.18 90.20     
Low Phase     72.95 75.69 72.73 81.53 52.94 89.31 
Low Gain+Phase     73.13 75.46 75.05 101.51     
High Gain     74.41 74.57 90.51 99.69     
High Phase     74.56 74.70 92.56 100.23     

7.5 cm
 P

robe 

High Gain+Phase     74.51 74.66 85.96 85.06     
All Real     70.52 75.20 64.06 77.19     
All Imaginary     71.62 71.93 83.79 83.57     
All Real+Imaginary     71.59 71.98 62.13 76.08     
Low Real 0.00 119.64 7.33 210.68 116.39 117.25 41.84 126.23 
Low Imaginary     73.42 74.94 79.52 78.98     
Low Real+Imaginary 0.00 83.71 11.30 463.28 46.74 86.91     
High Real     19.15 80.46 76.71 102.62 11.22 126.51 
High Imaginary     4.09 98.74 95.54 94.04     

Im
pedance M

eter 

High Real+Imaginary     60.43 84.12 88.42 103.25     

*Empty cells indicate that stepwise did not find any data points that met the specified level of 
significance and no model was made. 
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5.1.2.2 Thirty-six Liter Samples 

The molecular weight predictions were much better for the 36 L samples than for the 1 L 

samples.  This might be because there was more sample around between the probe and the sides 

of the container, reducing the effect that the container had on the electric field.  There were 

several instances where the training R2-value was 1.00 and the validation R2-value was 0.90 or 

higher.  Table  5.9 shows the R2-values for the 36 L nitrate molecular weight tests, and Table  5.10 

shows the RMSE values. 

 

5.1.2.2.3 Comparison of Probes 

The 2 cm probe and the 7.5 cm probe did the best job of predicting molecular weight for the 36 L 

samples.  Both probes had average training R2-values above 0.9 and average validation R2-values 

above 0.85.  Overall, the R2-values tended to be a little bit higher for the 7.5 cm probe.  The 7.5 

cm probe had training R2-values above 0.900 for 89% of the regression models, and validation 

R2-values above 0.900 for 75% of the regression models.  The RMSE values were also lower for 

the 7.5 cm probe for both training and validation. 

 

The 2.5 cm probe did not predict molecular weight as well.  The training and validation R2-

values were above 0.900 for less than 30% of the datasets.  The average training R2-value for this 

probe was only 0.500, and the average validation R2-value was 0.454.  Despite the low R2-values 

for this probe, its RMSE values were comparatively good.  This probe had the lowest average 

validation RMSE of any of the probes.  

 

5.1.2.2.4 Comparison of Regression Methods 

The highest R2-values for predicting the molecular weight of nitrate came from PLS and 

stepwise regression.  Both methods had average training R2-values around 0.85, and the average 

validation R2-value for PLS was 0.807, about 0.017 higher than for stepwise.  The training R2-

value was above 0.900 for 78% of the datasets used for each of these methods.  The validation 

R2-values were above 0.900 for 70% and 60% of the datasets for PLS and stepwise, respectively.  

The RMSE values were also very similar for these two methods, averaging around 55 g/mol for 

training and 65 g/mol for validation. 
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Neural network and wavelet did not perform as well for predicting the molecular weight of 

nitrate.  Both methods had training RMSE values that averaged over 60 g/mol, and validation 

RMSE values that averaged over 70 g/mol.  Neural network did the worst overall.  The training 

R2-value for this method was over 0.900 for only 44% of the tests, and the validation R2-value 

was over 0.900 30% of the time. 

 

Table  5.9: R2-values for predicting molecular weight of 36 L nitrate samples 

    SWR PLS ANN Wavelet  
    Training Validation Training Validation Training Validation Training Validation 

All Gain 0.972 0.910 0.979 0.951 0.803 0.874 0.940 0.917 
All Phase 0.999 0.910 1.000 0.962 0.129 0.129 0.932 0.822 
All Gain+Phase 0.990 0.935 0.987 0.964 1.000 1.000 0.917 0.889 
Low Gain 0.932 0.899 0.999 0.944 0.816 0.761 0.827 0.757 
Low Phase 0.998 0.933 0.943 0.795 0.993 0.913 0.708 0.538 
Low Gain+Phase 0.993 0.875 0.973 0.767 0.969 0.849 0.927 0.687 
High Gain 0.997 0.974 0.999 0.984 1.000 0.998 0.991 0.971 
High Phase 0.955 0.863 1.000 0.963 1.000 1.000 0.859 0.784 

2 cm
 P

robe 

High Gain+Phase 0.995 0.980 1.000 0.979 1.000 1.000 0.624 0.705 
All Gain 0.375 0.124 0.329 0.236 0.338 0.233 0.255 0.160 
All Phase 0.298 0.282 0.300 0.245 0.001 0.000 0.325 0.259 
All Gain+Phase 0.375 0.124 0.277 0.280 0.038 0.045 0.000 0.000 
Low Gain 0.995 0.926 1.000 0.940 0.838 0.818 0.910 0.734 
Low Phase 1.000 0.941 1.000 0.979 0.820 0.904 0.955 0.714 
Low Gain+Phase 1.000 0.875 1.000 0.940 0.969 0.853 0.942 0.851 
High Gain 0.356 0.356 0.345 0.348 0.230 0.281 0.359 0.359 
High Phase 0.352 0.350 0.324 0.349 0.076 0.246 0.320 0.313 

2.5 cm
 P

robe 

High Gain+Phase 0.359 0.359 0.351 0.358 0.235 0.235 0.337 0.315 
All Gain 1.000 0.992 1.000 0.992 0.932 0.901 0.999 0.988 
All Phase 1.000 0.994 0.999 0.989 0.145 0.092 0.988 0.902 
All Gain+Phase 1.000 0.989 1.000 0.998 0.993 0.884 0.998 0.995 
Low Gain 0.991 0.878 1.000 0.973 0.914 0.754 0.953 0.950 
Low Phase 0.996 0.937 1.000 0.915 0.827 0.748 0.974 0.820 
Low Gain+Phase 1.000 0.939 1.000 0.961 0.040 0.023 0.960 0.945 
High Gain 1.000 0.992 1.000 0.995 0.997 0.635 0.999 0.998 
High Phase 1.000 0.994 1.000 0.990 0.893 0.689 0.992 0.951 

7.5 cm
 P

robe 
High Gain+Phase 1.000 0.998 1.000 0.999 0.992 0.873 1.000 0.999 
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Table  5.10: RMSE values for predicting molecular weight of 36 L nitrate samples (g/mol) 

    SWR PLS ANN Wavelet  
    Training Validation Training Validation Training Validation Training Validation 

All Gain 84.99 82.27 83.20 80.45 82.99 83.16 82.92 81.42 
All Phase 82.62 90.03 82.58 86.82 94.52 95.61 81.90 77.52 
All Gain+Phase 84.19 83.10 83.85 81.88 83.49 87.64 86.19 86.62 
Low Gain 19.41 25.31 1.67 17.82 0.65 36.42 30.94 39.96 
Low Phase 3.42 19.64 17.70 34.91 29.81 43.61 40.18 52.69 
Low Gain+Phase 6.40 26.43 12.12 38.41 8.14 17.23 20.12 42.77 
High Gain 129.81 128.71 130.22 129.06 129.59 129.34 131.43 126.16 
High Phase 131.23 125.99 130.55 137.27 129.16 127.30 129.89 129.52 

2 cm
 P

robe 

High Gain+Phase 130.16 136.64 130.29 132.26 130.83 129.71 124.42 121.94 
All Gain 56.95 77.79 69.05 78.86 76.77 85.70 70.97 77.36 
All Phase 53.81 67.21 55.61 63.36 81.78 78.13 43.64 58.04 
All Gain+Phase 56.95 77.79 50.95 54.18 73.78 88.35 161.44 161.44 
Low Gain 5.02 23.37 1.13 18.78 31.69 35.03 22.26 40.60 
Low Phase 1.24 19.07 1.52 10.99 37.09 32.06 15.76 42.65 
Low Gain+Phase 0.00 27.22 0.28 18.50 13.24 29.47 17.86 32.31 
High Gain 79.54 78.15 84.64 82.12 96.03 95.15 79.79 79.46 
High Phase 76.30 75.04 75.43 79.93 102.37 96.34 85.18 87.42 

2.5 cm
 P

robe 

High Gain+Phase 81.20 79.35 83.70 86.13 117.42 106.65 76.46 69.67 
All Gain 43.45 47.69 49.94 57.27 57.10 65.49 56.02 50.54 
All Phase 56.50 54.52 51.51 62.74 69.79 68.08 52.12 49.92 
All Gain+Phase 43.45 47.69 49.19 59.82 115.72 117.98 57.59 68.70 
Low Gain 0.30 30.96 0.02 29.06 25.93 78.25 26.48 47.38 
Low Phase 0.00 112.56 0.03 28.88 21.41 36.08 12.52 42.50 
Low Gain+Phase 0.00 49.76 0.66 28.85 6.23 44.30 6.41 31.13 
High Gain 78.39 96.78 80.64 97.22 76.36 105.85 79.11 93.41 
High Phase 86.26 85.09 69.00 84.84 78.93 68.66 81.21 91.21 

7.5 cm
 P

robe 

High Gain+Phase 87.67 84.20 79.57 95.71 106.31 101.35 79.11 93.41 

 

5.1.2.3 Comparison of Sample Sizes 

The molecular weight predictions from the 36 L samples were much better than the predictions 

from the 1 L samples.  The R2-value was higher for the 36 L samples in 98% of the tests, and the 

RMSE was lower for the 36 L samples in 75% of the tests.  Table  5.11 lists the R2-values for 

predicting the molecular weight for each sample size, and Table  5.12 lists the RMSE values.  For 

each table, the sample size that gave the highest validation R2-value or the lowest validation 

RMSE value is highlighted. 

 

As discussed in Section 5.1.1.3, the procedures for testing the 1 L tests and the 36 L tests were 

not identical.  The nitrate salts in the 1 L tests were measured randomly, whereas the nitrate salts 

in the 36 L tests were measured in order of increasing concentration.  The control boxes that 

were used were not the same for the different sample sizes.  Either one of these factors could 
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contribute to the improved results for the 36 L samples.  The reduced boundary effect with the 

larger sample size could also explain the improved results. 

 

Table  5.11: Comparison of 36 L and 1 L R2-values for predicting nitrate molecular weight 
    Stepwise Regression  PLS Neural Network Wavelet 
    36 L 1 L 36 L 1 L 36 L 1 L 36 L 1 L 

   Train Valid. Train Valid. Train Valid. Train Valid. Train Valid. Train Valid. Train Valid. Train Valid. 

Gain 0.97 0.91     0.98 0.95 0.27 0.01 0.80 0.87 0.01 0.13 0.94 0.92     

Phase 1.00 0.91     1.00 0.96 0.03 0.00 0.13 0.13 0.35 0.00 0.93 0.82     

A
ll 

G+P 0.99 0.93     0.99 0.96 0.04 0.00 1.00 1.00 0.00 0.04 0.92 0.89     

Gain 0.93 0.90     1.00 0.94 0.16 0.01 0.82 0.76 0.46 0.09 0.83 0.76 0.93 0.09 

Phase 1.00 0.93     0.94 0.80 0.25 0.06 0.99 0.91 0.00 0.04 0.71 0.54     

Low
 

G+P 0.99 0.87     0.97 0.77 1.00 0.00 0.97 0.85 0.00 0.06 0.93 0.69     

Gain 1.00 0.97 1.00 0.08 1.00 0.98 0.73 0.08 1.00 1.00 0.96 0.18 0.99 0.97     

Phase 0.95 0.86 0.98 0.36 1.00 0.96 0.68 0.04 1.00 1.00 0.33 0.03 0.86 0.78 0.54 0.17 

2 cm
 P

robe 

H
igh 

G+P 0.99 0.98 1.00 0.02 1.00 0.98 0.70 0.05 1.00 1.00 0.65 0.23 0.62 0.71 0.45 0.12 

Gain 0.37 0.12 0.15 0.01 0.33 0.24 0.01 0.01 0.34 0.23 0.03 0.01 0.26 0.16     

Phase 0.30 0.28 0.69 0.13 0.30 0.24 0.01 0.00 0.00 0.00 0.06 0.00 0.32 0.26     

A
ll 

G+P 0.37 0.12 0.51 0.19 0.28 0.28 0.02 0.01 0.04 0.04 0.31 0.01 0.00 0.00     

Gain 1.00 0.93     1.00 0.94 0.04 0.04 0.84 0.82 0.08 0.04 0.91 0.73     

Phase 1.00 0.94 1.00 0.02 1.00 0.98 0.05 0.00 0.82 0.90 0.03 0.06 0.96 0.71     

Low
 

G+P 1.00 0.88 0.97 0.00 1.00 0.94 0.06 0.01 0.97 0.85 0.10 0.01 0.94 0.85     

Gain 0.36 0.36     0.35 0.35 0.04 0.03 0.23 0.28 0.00 0.00 0.36 0.36     

Phase 0.35 0.35     0.32 0.35 0.02 0.03 0.08 0.25 0.01 0.03 0.32 0.31     

2.5 cm
 P

robe 

H
igh 

G+P 0.36 0.36     0.35 0.36 0.03 0.03 0.23 0.24 0.02 0.41 0.34 0.32     

Gain 1.00 0.99     1.00 0.99 0.01 0.00 0.93 0.90 0.02 0.03 1.00 0.99     

Phase 1.00 0.99     1.00 0.99 0.01 0.00 0.14 0.09 0.03 0.01 0.99 0.90     

A
ll 

G+P 1.00 0.99     1.00 1.00 0.01 0.00 0.99 0.88 0.00 0.00 1.00 0.99     

Gain 0.99 0.88     1.00 0.97 0.02 0.01 0.91 0.75 0.00 0.02 0.95 0.95     

Phase 1.00 0.94     1.00 0.91 0.04 0.00 0.83 0.75 0.09 0.00 0.97 0.82 0.49 0.06 

Low
 

G+P 1.00 0.94     1.00 0.96 0.03 0.01 0.04 0.02 0.12 0.11 0.96 0.94     

Gain 1.00 0.99     1.00 1.00 0.04 0.04 1.00 0.64 0.02 0.00 1.00 1.00     

Phase 1.00 0.99     1.00 0.99 0.03 0.04 0.89 0.69 0.00 0.00 0.99 0.95     
7.5 cm

 P
robe 

H
igh 

G+P 1.00 1.00     1.00 1.00 0.03 0.04 0.99 0.87 0.02 0.12 1.00 1.00     

*Empty cells indicate that stepwise did not find any data points that met the specified level of 
significance and no model was made. 
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Table  5.12: Comparison of 36 L and 1 L RMSE values for predicting nitrate molecular 
weight (g/mol) 
    Stepwise Regression  PLS Neural Network Wavelet 
    36 L 1 L 36 L 1 L 36 L 1 L 36 L 1 L 

   Train Valid. Train Valid. Train Valid. Train Valid. Train Valid. Train Valid. Train Valid. Train Valid. 

Gain 85 82     83 80 62 96 83 83 80 92 83 81     

Phase 83 90     83 87 71 73 95 96 59 80 82 78     

A
ll 

G+P 84 83     84 82 70 73 83 88 95 103 86 87     

Gain 19 25     2 18 68 94 1 36 55 102 31 40 20 355 

Phase 3 20     18 35 65 93 30 44 93 103 40 53     

Low
 

G+P 6 26     12 38 1 274 8 17 84 94 20 43     

Gain 130 129 0 167 130 129 40 86 130 129 17 74 131 126     

Phase 131 126 10 83 131 137 43 92 129 127 66 93 130 130 51 83 

2 cm
 P

robe 

H
igh 

G+P 130 137 0 140 130 132 41 89 131 130 48 79 124 122 56 90 

Gain 57 78 66 76 69 79 71 72 77 86 74 89 71 77     

Phase 54 67 40 97 56 63 71 72 82 78 57 123 44 58     

A
ll 

G+P 57 78 50 78 51 54 71 72 74 88 61 88 161 161     

Gain 5 23     1 19 73 73 32 35 84 90 22 41     

Phase 1 19 5 122 2 11 72 76 37 32 96 99 16 43     

Low
 

G+P 0 27 14 123 0 18 72 76 13 29 85 106 18 32     

Gain 80 78     85 82 74 75 96 95 74 103 80 79     

Phase 76 75     75 80 75 75 102 96 114 113 85 87     

2.5 cm
 P

robe 

H
igh 

G+P 81 79     84 86 75 75 117 107 102 88 76 70     

Gain 43 48     50 57 72 72 57 65 86 99 56 51     

Phase 57 55     52 63 72 72 70 68 85 80 52 50     

A
ll 

G+P 43 48     49 60 72 72 116 118 92 107 58 69     

Gain 0 31     0 29 73 75 26 78 89 90 26 47     

Phase 0 113     0 29 73 76 21 36 73 82 13 42 53 89 

Low
 

G+P 0 50     1 29 73 75 6 44 75 102 6 31     

Gain 78 97     81 97 74 75 76 106 91 100 79 93     

Phase 86 85     69 85 75 75 79 69 93 100 81 91     

7.5 cm
 P

robe 

H
igh 

G+P 88 84     80 96 75 75 106 101 86 85 79 93     

*Empty cells indicate that stepwise did not find any data points that met the specified level of 
significance and no model was made. 
 

5.2 Atrazine and Water 

The sensors studied were able to detect concentration changes in atrazine.  The highest training 

R2-value for predicting atrazine concentration was 1.00, and the highest validation R2-value was 

0.979.  The R2-values for detecting atrazine are shown in Table  5.13, in which the highest 

validation R2-value is bolded, and Table  5.15, in which all R2-values above 0.900 are bolded. 

The RMSE values are given in Table  5.14 and Table  5.16. 
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5.2.1 One Liter Samples 

Overall, the probes were not able to predict the concentration of atrazine as accurately as they 

were able to predict the concentration of nitrates.  Only stepwise regression had an average 

training R2-value above 0.900.  There were several high training R2-values, but almost all of 

them corresponded to very low validation R2-values.  These R2-values for predicting atrazine 

concentration are summarized in Table  5.13, and the RMSE values are summarized in Table 

 5.14. 

 

5.2.1.1 Comparison of Probes 

For the 1 L atrazine samples, none of the probes consistently had higher R2-values than the 

others.   The 2.5 cm probe had the highest average training R2-value, but it had one of the lower 

average validation R2-values.  The 2.5 cm probe also had the highest percentage of training R2-

values above 0.900, but the high training R2-values are meaningless because the corresponding 

validation R2-values were so low, usually below 0.100.   

 

All four probes and the impedance meter had at least one model with a training R2-value of 1.00, 

but the highest validation R2-value for the models with a training R2-value of 1.00 was 0.214.  

The highest validation R2-value, 0.477, was obtained from the 5 cm probe.  The lowest 

validation R2-value for most of the probes was 0.000.   

 

The training RMSE values were, for the most part, lowest for the 2.5 cm probe, and the 

validation RMSE values tended to be lowest for the 7.5 cm probe.  The RMSE values, both 

training and validation, were highest for the 2 and 5 cm probes. 

 

5.2.1.2 Comparison of Regression Methods 

None of the regression methods provided accurate atrazine predictions.  Stepwise regression had 

the highest training R2-values, many were 1.00, and the lowest training RMSE values, most were 

close to 0.00 mg/L, but it had terrible validation values.  The average validation R2-value for 

stepwise was only 0.079.   
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The highest validation R2-values came from PLS, but the average value was only 0.169.  Neural 

network was, once again, the least reliable prediction method.  The average training R2-value for 

neural network was 0.067.  Stepwise regression on the wavelet transformed data was not a 

reliable prediction method either.  For some of the datasets, stepwise was not able to build a 

model using the wavelet transformed data.  When it could build a model, the R2-values were very 

low, mostly below 0.100, and the RMSE values were high. 

 

Table  5.13:  R2-values for predicting concentration of 1 L atrazine samples 

    SWR PLS ANN Wavelet 

   Training Validation Training Validation Training Validation Training Validation 

Gain 0.670 0.007 0.109 0.002 0.378 0.039   

Phase 1.000 0.018 0.994 0.001 0.109 0.010 1.000 0.047 2 cm Probe 

Gain+Phase 0.670 0.007 0.995 0.000 0.789 0.008   

Gain 1.000 0.124 1.000 0.058 0.131 0.063 0.965 0.025 

Phase 1.000 0.058 0.829 0.010 0.291 0.063 1.000 0.000 2.5 cm Probe 

Gain+Phase 1.000 0.072 1.000 0.055 0.368 0.006 0.965 0.025 

Gain 0.974 0.160 0.924 0.202 0.077 0.058 0.713 0.016 

Phase 1.000 0.345 0.288 0.204 0.345 0.003 0.587 0.143 5 cm Probe 

Gain+Phase 1.000 0.010 0.492 0.338 0.784 0.477 0.713 0.016 

Gain 1.000 0.080 0.395 0.259 0.912 0.380 0.918 0.247 

Phase 1.000 0.007 0.250 0.284 0.320 0.069     7.5 cm Probe 

Gain+Phase 1.000 0.004 0.267 0.281 0.067 0.053     

Real 0.631 0.040 0.539 0.280 0.618 0.000 0.964 0.068 

Imaginary 1.000 0.214 0.447 0.310 0.138 0.000     Impedance Meter 

Real+Imaginary 0.631 0.040 0.550 0.254 0.786 0.023 1.000 0.000 

*Empty cells indicate that stepwise did not find any data points that met the specified level of 
significance and no model was made. 
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Table  5.14: RMSE values for predicting concentration of 1 L atrazine samples (mg/L) 

    SWR PLS ANN Wavelet 

   Training Validation Training Validation Training Validation Training Validation 

Gain 2.72 5.74 4.47 5.15 7.79 7.10     

Phase 0.00 6.90 0.38 7.02 5.84 7.07 0.03 7.51 2 cm Probe 

Gain+Phase 2.72 5.74 0.34 6.42 2.42 5.46     

Gain 0.00 6.75 0.09 6.92 5.08 7.24 0.88 7.36 

Phase 0.00 7.39 1.96 5.71 7.34 4.95 0.00 6.14 2.5 cm Probe 

Gain+Phase 0.00 5.63 0.05 6.87 4.67 6.30 0.88 7.36 

Gain 0.76 5.95 1.30 8.09 6.44 5.03 2.54 5.20 

Phase 0.00 9.51 4.00 6.81 6.81 6.07 3.04 10.17 5 cm Probe 

Gain+Phase 0.00 5.22 3.37 7.21 2.68 9.88 2.54 5.20 

Gain 0.00 7.72 3.68 5.01 1.79 4.73 1.36 7.84 

Phase 0.00 7.69 4.10 4.69 4.42 5.86     7.5 cm Probe 

Gain+Phase 0.00 7.24 4.05 4.71 5.30 5.11     

Real 2.88 5.19 3.21 4.60 3.24 7.10 0.90 10.60 

Imaginary 0.00 5.38 3.52 5.16 5.33 6.17     Impedance Meter 

Real+Imaginary 2.88 5.19 3.18 4.60 2.66 8.22 0.00 6.71 

*Empty cells indicate that stepwise did not find any data points that met the specified level of 
significance and no model was made. 
 

5.2.2 Thirty-six Liter Samples 

The results for predicting atrazine concentration were not as good as the results for predicting 

nitrate concentration with the 36 L samples, but they were better than the results from the 1 L 

atrazine tests.  Overall, the 2 cm probe was the best probe for atrazine prediction and wavelet 

transformation followed by stepwise regression was the best regression method.  Table  5.15 

shows the R2-values for predicting the concentration of the 36 L atrazine samples, and Table 

 5.16 shows the RMSE values. 

 

5.2.2.1 Comparison of Probes 

The 2 cm probe did the best job of predicting the concentration of atrazine in the 36 L samples.  

The RMSE values for both training and validation were lowest, on average, for this probe.  It 

also had the highest average training R2-value, 0.837, and the highest average validation R2-

value, 0.693.  The training R2-values for this probe were over 0.900 for 66.7% of the datasets, 
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and the validation R2-values were above 0.900 for 41.7% of the tests, both higher than for any 

other probe. 

 

The 7.5 cm probe had a few very high R2-values.  All of the R2-values for PLS and stepwise 

were 1.00 with this probe, but the neural network R2-values for this probe were extremely low.  

The 7.5 cm probe also had very poor values for validation.  The highest validation R2-value for 

the 7.5 cm probe was only 0.829 and the average was 0.558.  The average R2-values were similar 

for the 2.5 cm probe, 0.701 for training and 0.595 for validation.  The 2.5 cm probe did not have 

as many high validation R2-values as the other two probes, but the lowest validation R2-value for 

this probe was 0.187, about ten times higher than the lowest values for the other probes.  

 

5.2.2.2 Comparison of Regression Methods 

PLS and stepwise regression with wavelet preprocessing were the best regression methods for 

the 36 L atrazine tests.  The average training R2-value was higher for wavelet, 0.942 compared to 

0.817.  Wavelet also had two more training R2-values above 0.900 than PLS did.  The average 

validation R2-value was slightly higher for PLS than for wavelet, 0.729 compared to 0.708, but 

wavelet had three validation R2-values above 0.900 whereas PLS only had two.  The training 

RMSE values were slightly lower, overall, for wavelet than for PLS, but the validation RMSE 

values were lower for PLS. 

 

Stepwise regression had the highest R2-values and lowest RMSE values for training, but the 

validation values for stepwise were not as good as they were for PLS and wavelet.  The average 

validation R2-value for stepwise was only 0.611.  The neural network results were the worst, 

overall.  It had the highest RMSE values and the lowest R2-values.  The average training R2-

value for neural network was only 0.298. 
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Table  5.15: R2-values for predicting concentration of 36 L atrazine samples 

    SWR PLS ANN Wavelet 

   Training Validation Training Validation Training Validation Training Validation 

Gain 0.986 0.979 0.985 0.932 0.002 0.094 0.834 0.339 

Phase 1.000 0.676 0.894 0.773 0.965 0.800 0.972 0.729 2 cm Probe 

Gain+Phase 1.000 0.934 0.981 0.914 0.419 0.180 0.999 0.964 

Gain 1.000 0.418 0.490 0.511 0.467 0.892 1.000 0.948 

Phase 1.000 0.187 0.518 0.559 0.701 0.715 0.970 0.618 2.5 cm Probe 

Gain+Phase 1.000 0.446 0.490 0.518 0.033 0.385 0.738 0.942 

Gain 1.000 0.633 1.000 0.750 0.018 0.041 0.998 0.787 

Phase 1.000 0.649 1.000 0.829 0.044 0.100 0.971 0.254 7.5 cm Probe 

Gain+Phase 1.000 0.581 1.000 0.778 0.032 0.504 0.998 0.787 

 

Table  5.16: RMSE values for predicting concentration of 36 L atrazine samples (mg/L) 

    SWR PLS ANN Wavelet 

   Training Validation Training Validation Training Validation Training Validation 

Gain 0.553 0.829 0.587 1.670 6.639 6.195 1.927 5.337 

Phase 0.000 3.378 1.539 2.302 1.027 2.427 0.797 2.630 2 cm Probe 

Gain+Phase 0.000 1.367 0.653 1.997 4.056 5.487 0.123 1.041 

Gain 0.000 3.778 3.381 3.313 4.243 2.375 0.006 1.176 

Phase 0.002 5.952 3.285 3.152 2.809 3.685 0.818 3.784 2.5 cm Probe 

Gain+Phase 0.000 9.790 3.381 3.289 5.117 4.006 2.421 2.600 

Gain 0.000 2.941 0.088 3.167 5.186 5.981 0.226 3.158 

Phase 0.005 4.391 0.037 2.191 6.559 6.400 0.808 4.630 7.5 cm Probe 

Gain+Phase 0.000 3.394 0.072 2.749 6.392 6.550 0.226 3.158 

 

5.3 Biodiesel Samples 

The three probes studied with the biodiesel samples were able to measure the concentration of 

the impurities in the fuel.  Overall, the results for the biodiesel tests were not as good as the 

water and nitrate tests, but there were still some good results achieved for the fuel tests.  For each 

of the contaminants, the highest training R2-value achieved was 1.00.  The highest validation R2-

values were all above 0.960.  Tables are given that show the R2-values and RMSE values for 

predicting the concentration of each contaminant.  For the R2-value tables, the validation R2-

values above 0.800 are bolded and in blue. 
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5.3.1 Water 

The results from the tests done with biodiesel and water showed that the probes had some ability 

to detect the concentration of the water.  The first three tests that were done for the 2 cm probe 

were not accurate, and the signals for these three tests were drastically different from one 

another.  This was the result of a problem with the screws in the probe.  The screws that held the 

plates together had become loose, and the plates were no longer electrically connected as they 

should have been.  Once the screws were tightened, the measurements from this probe were 

much more consistent.  The first three concentrations of water measured were not included in the 

data during regression because of this problem.  The R2-values and RMSE values for predicting 

the concentration of water in biodiesel are given in Table  5.17 and Table  5.18, respectively. 

 

5.3.1.1 Comparison of Probes 

There was not a lot of variability in the ability of the three probes to detect the concentration of 

water in biodiesel for the training data.  All had average training R2-values between 0.800 and 

0.850, and the R2-values for the three probes was above 0.900 50% to 75% of the time.  The 2.5 

cm probe tended to have lower training RMSE values than the other two probes. 

 

In terms of the validation data, the 2.5 cm probe performed the best.  This probe had an average 

validation R2-value of 0.619 and had R2-values above 0.900 for 25 % of the data, higher than the 

other two probes.  The 2.5 cm probe also had lower validation RMSE values than the other 

probes; the average was 805 ppm, compared to 1,270 ppm for the 7.5 cm probe and 1,540 ppm 

for the 2 cm probe. 

 

5.3.1.2 Comparison of Regression Methods 

Stepwise regression was the best regression method for the training data; the average training R2-

value was 0.984 and the training R2-values were above 0.900 for 93% of the tests.  Stepwise 

regression also had the lowest average RMSE value for training.  The validation results for the 

stepwise models were not very good, however.  The average validation R2-value was 0.454 and 

the validation R2-values were only above 0.900 19% of the time. 
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The best validation results, in terms of R2-values, came from stepwise regression of wavelet 

transformed data.  The average validation R2-value for wavelet was 0.550, slightly higher than 

for traditional stepwise regression, and the validation R2-value was above 0.900 19% of the time.  

This method also had good training R2-values, the average was 0.956.  In terms of validation 

RMSE values, partial least squares regression had lower values, on average, than any other 

method.   

 

The validation R2-values were comparable for PLS and neural network, both averaging just over 

0.400.  The RMSE values were higher, overall, for neural network. 

 

Table  5.17: R2-values for predicting concentration of water in biodiesel 

    SWR PLS ANN Wavelet 
    Training Validation Training Validation Training Validation Training Validation 

All Gain 0.986 0.908 0.867 0.225 0.989 0.418 0.992 0.324 
All Phase 0.999 0.347 0.800 0.345 0.996 0.594 0.837 0.424 
All Gain+Phase 0.974 0.454 0.877 0.278 0.805 0.174 0.947 0.540 
Low Gain 1.000 0.545 0.740 0.606 1.000 0.763 1.000 0.992 
Low Phase 1.000 0.195 0.796 0.434 1.000 0.604 1.000 0.238 
Low Gain+Phase 1.000 0.292 0.788 0.495 1.000 0.605 0.916 0.996 
High Gain 0.837 0.195 0.663 0.014 0.486 0.134 1.000 0.142 
High Phase 0.810 0.001 0.157 0.164 0.074 0.023 0.876 0.090 

2 cm
 P

robe 

High Gain+Phase 1.000 0.392 0.321 0.094 0.045 0.105     
All Gain 0.985 0.883 0.996 0.845 0.958 0.836 0.995 0.939 
All Phase 1.000 0.732 0.991 0.846 0.971 0.918 0.970 0.861 
All Gain+Phase 0.985 0.883 0.997 0.898 0.043 0.082 0.984 0.870 
Low Gain 1.000 0.922 0.548 0.127 0.253 0.560 1.000 0.161 
Low Phase 0.999 0.358 0.996 0.922 0.610 0.037 0.910 0.666 
Low Gain+Phase 1.000 0.922 0.533 0.140 0.013 0.007 0.825 0.327 
High Gain 1.000 0.955 0.996 0.684 0.005 0.000 1.000 0.989 
High Phase 1.000 0.913 0.999 0.313 0.010 0.140 0.979 0.800 

2.5 cm
 P

robe 

High Gain+Phase 1.000 0.194 1.000 0.711 0.912 0.890 1.000 0.944 
All Gain 0.982 0.032 0.980 0.910 0.093 0.038 0.953 0.538 
All Phase 1.000 0.273 0.914 0.649 0.333 0.260 0.817 0.708 
All Gain+Phase 1.000 0.103 0.942 0.690 0.867 0.381 0.975 0.616 
Low Gain 1.000 0.191 0.872 0.717 0.991 0.941 0.987 0.549 
Low Phase 1.000 0.697 0.912 0.950 0.976 0.962 1.000 0.526 
Low Gain+Phase 1.000 0.423 0.907 0.827 0.385 0.341 0.896 0.553 
High Gain 1.000 0.059 0.934 0.083 0.593 0.803 1.000 0.013 
High Phase 1.000 0.351 0.811 0.069 0.009 0.365 1.000 0.080 

7.5 cm
 P

robe 

High Gain+Phase 1.000 0.026 0.846 0.070 0.360 0.012 1.000 0.425 
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Table  5.18: RMSE values for predicting concentration of water in biodiesel (ppm) 

    SWR PLS ANN Wavelet 
    Training Validation Training Validation Training Validation Training Validation 

All Gain 213.05 567.34 658.99 1530.18 225.72 1271.30 157.43 1951.16 
All Phase 66.10 2770.56 807.03 1356.08 116.73 1238.37 729.49 1269.17 
All Gain+Phase 289.03 1407.12 632.44 1450.43 1369.93 1899.29 414.03 1184.44 
Low Gain 3.13 279.14 161.11 274.77 0.00 171.55 5.87 85.22 
Low Phase 0.53 390.58 142.94 275.51 0.01 243.14 1.48 359.72 
Low Gain+Phase 0.00 836.66 145.57 271.67 0.04 242.38 91.41 156.10 
High Gain 590.03 2504.02 847.91 1518.54 1660.15 2826.77 0.53 5516.29 
High Phase 637.35 6758.71 1341.36 1462.20 1929.32 1765.32 515.17 4827.47 

2 cm
 P

robe 

High Gain+Phase 1.94 1401.86 1203.66 1462.71 1936.31 2188.98     
All Gain 221.25 631.96 120.75 807.99 421.35 1353.61 124.13 461.00 
All Phase 0.00 907.33 175.03 803.46 368.37 518.98 318.87 718.87 
All Gain+Phase 221.25 631.96 92.09 636.00 2687.47 2464.55 232.23 686.34 
Low Gain 0.00 288.03 281.24 401.52 387.18 275.78 0.06 593.40 
Low Phase 12.41 311.35 25.19 127.79 490.01 549.95 125.18 368.93 
Low Gain+Phase 0.00 288.03 285.96 416.55 472.39 459.88 175.24 479.15 
High Gain 0.00 410.07 86.62 1127.40 1930.52 2022.15 0.12 492.04 
High Phase 0.00 730.19 35.01 1475.34 2035.08 2299.19 214.16 985.41 

2.5 cm
 P

robe 

High Gain+Phase 0.00 1851.90 23.77 1117.54 442.67 893.15 0.11 374.65 
All Gain 243.69 2121.59 255.79 563.90 1797.91 2041.82 394.78 2059.06 
All Phase 1.76 2858.16 537.21 1015.06 1738.75 1728.56 780.49 1454.58 
All Gain+Phase 0.00 1831.69 440.00 956.36 704.86 2009.99 289.12 1444.60 
Low Gain 0.00 508.53 149.58 219.18 42.76 174.42 48.02 306.15 
Low Phase 0.09 307.36 123.83 118.82 82.52 185.78 0.02 314.80 
Low Gain+Phase 0.01 421.57 127.34 177.93 690.79 628.12 134.66 563.55 
High Gain 0.00 1889.83 376.63 1551.38 1045.97 2864.72 1.57 1891.37 
High Phase 0.48 1376.38 634.60 1496.29 2203.94 1266.91 1.21 1722.50 

7.5 cm
 P

robe 

High Gain+Phase 0.00 2498.00 572.72 1506.14 1352.59 2234.30 0.56 1416.00 

 

5.3.2 Glycerol 

The three probes were mostly equal in their ability to detect changes in glycerol concentration.  

Partial least squares was the best regression method for predicting the glycerol concentration.  

Table  5.19 shows the R2-values for predicting the concentration of glycerol in biodiesel, and 

Table  5.20 shows the RMSE values. 

 

5.3.2.1 Comparison of Probes 

The three probes were fairly equivalent in their ability to predict the concentration of glycerol in 

biodiesel and 5,000 ppm water.  The average training R2-values ranged from 0.836 to 0.887.  The 

2 cm probe was the lowest, and the 7.5 cm probe was the highest.  The average validation R2-

values ranged from 0.560 to 0.663; the 2 cm probe was the lowest and the 2.5 cm probe was the 

highest.  These probes also had similar percentages of R2-values above 0.900.  For training they 
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ranged from 58% for the 2 cm probe to 69% for the 2.5 cm probe.  For validation, the percent of 

R2-values above 0.900 ranged from 8% for the 2 cm probe to 17% for the 7.5 cm probe. 

 

The average training RMSE values for the probes were also very similar; the 2.5 cm probe had 

the lowest value of 109.1 mg/L, followed by the 7.5 cm probe at 112.9 mg/L, and the 2 cm probe 

at 129.6 mg/L.  The average validation RMSE values for the 2.5 and 7.5 cm probes were 

comparable, 334.7 mg/L and 326.9 mg/L, respectively, but the 2 cm probe had a much higher 

average validation RMSE, 410.0 mg/L. 

 

5.3.2.2 Comparison of Regression Techniques 

Partial least squares was the most reliable method for predicting the concentration of glycerol in 

biodiesel.  This method had the second highest average training R2-value, 0.934, and the second 

lowest average training RMSE value, 58.47 mg/L.  PLS was the best by far in terms of 

validation.  The average validation R2-value was 0.705, much higher than for any other method, 

and the validation R2-values were above 0.900 33% of the time.  Wavelet transform followed by 

stepwise regression was the method with the second highest percentage of validation R2-values 

above 0.900, only 7.4%.  PLS also had much lower validation RMSE values than the other 

regression methods, the average was 258.2 mg/L. 

 

The other three regression methods had similar results for predicting the glycerol concentration.  

Stepwise regression had the highest training R2-values, 0.995 on average, and the lowest training 

RMSE values, 17.11 mg/L on average, but the validation results for stepwise were no than for 

neural network or stepwise regression of wavelet transformed data. 
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Table  5.19: R2-values for predicting concentration of glycerol in biodiesel 

    SWR PLS ANN Wavelet 
    Training Validation Training Validation Training Validation Training Validation 

All Gain 1.000 0.859 0.968 0.676 0.996 0.759 0.951 0.707 
All Phase 0.896 0.690 0.997 0.464 0.721 0.595 0.991 0.436 
All Gain+Phase 1.000 0.655 0.981 0.617 0.430 0.316 0.837 0.724 
Low Gain 1.000 0.440 0.779 0.149 0.000 0.239 0.804 0.090 
Low Phase 1.000 0.430 0.771 0.341 0.039 0.660 0.950 0.084 
Low Gain+Phase 1.000 0.249 0.788 0.227 0.743 0.221 0.830 0.326 
High Gain 1.000 0.800 0.971 0.918 0.287 0.342 0.820 0.783 
High Phase 0.998 0.840 0.980 0.966 0.981 0.860 1.000 0.722 

2 cm
 P

robe 

High Gain+Phase 1.000 0.350 0.977 0.924 0.617 0.790 1.000 0.893 
All Gain 1.000 0.688 1.000 0.923 0.969 0.800 0.991 0.890 
All Phase 1.000 0.713 1.000 0.925 0.839 0.583 0.984 0.883 
All Gain+Phase 1.000 0.857 0.999 0.954 0.664 0.770 0.794 0.813 
Low Gain 1.000 0.366 0.716 0.539 0.585 0.000 1.000 0.457 
Low Phase 1.000 0.850 0.705 0.509 0.927 0.571 0.808 0.907 
Low Gain+Phase 1.000 0.883 0.720 0.544 0.051 0.018 1.000 0.750 
High Gain 1.000 0.360 0.981 0.776 0.929 0.641 0.945 0.507 
High Phase 1.000 0.403 0.991 0.795 0.748 0.216 1.000 0.858 

2.5 cm
 P

robe 

High Gain+Phase 1.000 0.763 0.967 0.762 0.575 0.805 0.991 0.778 
All Gain 0.988 0.254 0.999 0.906 0.730 0.405 0.819 0.572 
All Phase 0.998 0.790 1.000 0.936 0.779 0.569 1.000 0.910 
All Gain+Phase 0.988 0.254 0.998 0.942 0.798 0.541 0.893 0.731 
Low Gain 1.000 0.719 0.978 0.480 0.103 0.201 1.000 0.500 
Low Phase 1.000 0.601 0.997 0.697 0.421 0.626 0.954 0.029 
Low Gain+Phase 1.000 0.306 0.986 0.522 0.886 0.206 0.840 0.009 
High Gain 1.000 0.915 0.963 0.896 0.752 0.858 0.999 0.596 
High Phase 1.000 0.496 0.998 0.863 0.278 0.938 1.000 0.783 

7.5 cm
 P

robe 

High Gain+Phase 1.000 0.549 0.999 0.781 0.780 0.803 1.000 0.816 
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Table  5.20: RMSE values for predicting concentration of glycerol in biodiesel (mg/L) 

    SWR PLS ANN Wavelet 
    Training Validation Training Validation Training Validation Training Validation 

All Gain 0.00 501.12 129.74 398.83 50.73 364.99 161.49 378.08 
All Phase 236.17 391.12 37.45 554.31 434.93 508.04 67.40 730.00 
All Gain+Phase 8.87 416.76 99.64 446.56 593.79 589.18 295.33 379.38 
Low Gain 0.02 118.61 78.67 143.41 215.24 193.40 74.17 163.29 
Low Phase 0.29 251.09 80.14 121.70 226.60 87.97 37.53 222.90 
Low Gain+Phase 0.01 159.64 77.08 134.32 88.98 179.97 69.02 128.47 
High Gain 0.00 672.51 100.19 577.67 544.21 581.41 247.71 808.32 
High Phase 27.57 722.89 82.08 393.78 92.14 283.49 0.22 467.70 

2 cm
 P

robe 

High Gain+Phase 0.00 1537.44 88.09 380.85 419.80 390.87 0.40 381.73 
All Gain 0.01 511.48 0.59 289.16 140.52 352.95 67.55 266.63 
All Phase 0.00 868.39 4.39 217.44 312.16 520.53 93.50 433.30 
All Gain+Phase 0.00 556.08 22.58 191.29 545.27 394.41 331.97 385.89 
Low Gain 0.00 220.00 89.15 110.39 162.43 188.21 0.36 113.06 
Low Phase 0.00 59.22 90.96 109.17 46.71 134.16 73.36 195.24 
Low Gain+Phase 0.00 53.27 88.47 107.35 231.22 241.30 0.02 130.21 
High Gain 0.30 518.85 81.43 345.42 235.77 397.64 136.96 465.03 
High Phase 0.00 721.48 55.82 327.09 354.47 610.96 0.04 337.76 

2.5 cm
 P

robe 

High Gain+Phase 0.03 301.41 105.90 367.90 597.27 615.48 56.81 392.69 
All Gain 78.91 687.22 22.84 211.79 449.44 602.47 310.47 541.23 
All Phase 31.36 333.70 0.85 202.77 356.84 568.83 5.07 234.17 
All Gain+Phase 78.91 687.22 29.52 168.93 389.89 661.05 239.45 378.84 
Low Gain 0.10 115.28 25.04 110.86 235.10 249.26 0.26 107.01 
Low Phase 0.03 219.78 8.75 81.83 174.96 124.34 35.72 207.93 
Low Gain+Phase 0.01 190.76 19.82 105.30 58.12 174.69 66.94 195.57 
High Gain 0.00 427.82 112.48 270.05 398.18 392.04 15.36 402.82 
High Phase 0.00 489.96 27.95 270.91 512.76 682.11 11.98 289.27 

7.5 cm
 P

robe 

High Gain+Phase 0.00 465.97 19.02 332.50 349.36 276.59 0.21 308.17 

 

5.3.3 Glyceride 

The three probes were roughly equally capable of measuring changes in the glyceride 

concentration in the biodiesel.  Partial least squares was the best regression method, and the only 

method that had good results for validation.  The R2-values for predicting the concentration of 

glyceride in biodiesel are shown in Table  5.21, and the RMSE values are given in Table  5.22. 

 

5.3.3.1 Comparison of Probes 

The range of R2-values for the three probes was very small for predicting the concentration of 

glyceride in biodiesel.  The average training R2-values ranged from 0.756 for the 2.5 cm probe to 

0.799 for the 2 cm probe.  The average validation R2-values ranged from 0.434 for the 2.5 cm 

probe to 0.569.  The 2 cm probe had the highest percentage of R2-values above 0.900, 56% for 

training and 22% for validation.  The 2 cm probe also had the lowest average training RMSE 
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value, 2,073.1 mg/L; however, the 2.5 cm probe had the lowest average validation RMSE, 

4,898.3 mg/L. 

5.3.3.2 Comparison of Regression Techniques 

PLS was the only method with good validation results.  The average validation R2-value for PLS 

was 0.601, higher than for any other method, and the average validation RMSE value for PLS 

was lower than it was for the other methods, 4,108.4 mg/L. 

 

Once again, stepwise had the highest training R2-values and lowest validation RMSE values, but 

had poor validation values.  The average training R2-value for stepwise was 0.987 and the 

training R2-values for stepwise were above 0.900 for 93% of the datasets.  The average 

validation R2-value for stepwise was only 0.425.  Neither stepwise regression of wavelet 

transformed data nor neural network were very successful in predicting the glyceride 

concentration.  Wavelet had a decent average R2-value, 0.867, but wavelet and neural network 

both had validation R2-values that were only just above 0.400. 

 

Table  5.21: R2-values for predicting concentration of glyceride in biodiesel 

    SWR PLS ANN Wavelet 
    Training Validation Training Validation Training Validation Training Validation 

All Gain 0.998 0.304 0.990 0.756 0.948 0.652 0.916 0.486 
All Phase 1.000 0.347 0.990 0.500 0.846 0.554 0.611 0.490 
All Gain+Phase 1.000 0.625 0.995 0.575 0.580 0.071 0.958 0.501 
Low Gain 1.000 0.478 0.998 0.978 0.705 0.252 0.998 0.916 
Low Phase 1.000 0.674 0.966 0.737 0.003 0.202 0.749 0.280 
Low Gain+Phase 1.000 0.775 0.973 0.928 0.004 0.375 0.998 0.916 
High Gain 1.000 0.082 0.615 0.029 0.480 0.370 0.873 0.288 
High Phase 1.000 0.851 0.637 0.992 0.240 0.703 0.772 0.983 

2 cm
 P

robe 

High Gain+Phase 1.000 0.920 0.646 0.956 0.440 0.501 0.821 0.418 
All Gain 0.994 0.929 0.875 0.749 0.686 0.566 0.908 0.703 
All Phase 1.000 0.825 1.000 0.411 0.435 0.704 0.795 0.786 
All Gain+Phase 1.000 0.946 0.993 0.622 0.009 0.056 0.908 0.703 
Low Gain 1.000 0.183 0.841 0.688 0.150 0.471     
Low Phase 1.000 0.429 0.805 0.541 0.154 0.004     
Low Gain+Phase 1.000 0.215 0.851 0.391 0.828 0.555 1.000 0.437 
High Gain 1.000 0.093 0.488 0.298 0.220 0.308     
High Phase 0.944 0.170 0.905 0.251 0.073 0.357 0.830 0.173 

2.5 cm
 P

robe 

High Gain+Phase 1.000 0.233 0.548 0.333 0.704 0.137 1.000 0.040 
All Gain 0.997 0.065 1.000 0.357 0.095 0.114 0.937 0.441 
All Phase 0.842 0.076 0.979 0.644 0.909 0.125 0.552 0.152 
All Gain+Phase 1.000 0.070 1.000 0.491 0.045 0.077 0.455 0.494 
Low Gain 1.000 0.130 0.770 0.673 0.643 0.835 1.000 0.254 
Low Phase 0.884 0.680 0.852 0.691 0.967 0.528 0.847 0.650 
Low Gain+Phase 1.000 0.130 0.843 0.706 0.084 0.523 1.000 0.301 
High Gain 1.000 0.721 0.941 0.493 0.006 0.613 1.000 0.016 
High Phase 1.000 0.092 0.880 0.832 0.246 0.838 1.000 0.893 

7.5 cm
 P

robe 

High Gain+Phase 1.000 0.881 0.922 0.970 0.497 0.000 0.875 0.132 
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Table  5.22: RMSE values for predicting concentration of glyceride in biodiesel (mg/L) 

    SWR PLS ANN Wavelet 
    Training Validation Training Validation Training Validation Training Validation 

All Gain 336.92 6490.40 799.18 3909.95 2600.42 8634.15 2328.63 6225.25 
All Phase 0.32 6441.03 807.44 6303.54 3348.85 8300.25 5010.51 5853.49 
All Gain+Phase 0.01 5574.55 549.56 5539.96 5583.88 8530.70 1642.65 6244.25 
Low Gain 0.00 1260.21 78.03 423.93 1184.58 1684.43 81.18 1644.85 
Low Phase 0.78 1490.05 337.81 1008.26 2637.81 2828.99 922.26 1866.81 
Low Gain+Phase 0.71 1368.20 301.87 655.93 3101.61 2895.65 81.18 1644.85 
High Gain 0.00 10885.47 3989.78 8629.90 10417.79 10840.70 2290.85 7123.10 
High Phase 1.70 7938.58 3874.23 4549.01 6616.65 7218.44 3066.22 2751.80 

2 cm
 P

robe 

High Gain+Phase 0.00 10478.20 3822.96 6019.59 6094.70 9342.64 2719.96 6848.71 
All Gain 618.63 2859.31 2841.50 4224.28 4541.80 7410.23 2439.51 4031.91 
All Phase 129.14 4557.29 22.82 7075.89 6463.95 4136.76 3636.28 3940.35 
All Gain+Phase 0.29 2402.41 669.64 5331.72 9786.36 8167.29 2439.51 4031.91 
Low Gain 0.00 2688.23 733.81 1797.56 1821.77 1612.61     
Low Phase 5.36 1395.07 812.10 1467.33 2056.20 2347.05     
Low Gain+Phase 0.00 1649.57 709.41 1692.03 998.21 1367.15 1.53 3613.20 
High Gain 0.00 10657.33 4598.91 6539.93 5796.09 10508.56     
High Phase 1515.56 6212.81 1979.59 6004.18 7570.30 5222.87 2646.42 6059.05 

2.5 cm
 P

robe 

High Gain+Phase 0.00 5982.85 4319.41 6388.00 9366.08 8303.18 19.10 11966.62 
All Gain 470.36 10189.65 0.01 6337.60 8285.88 10158.88 2011.59 7856.14 
All Phase 3192.24 10908.39 1157.09 4662.13 2484.22 10728.78 5377.21 7236.97 
All Gain+Phase 0.04 11121.32 48.86 5485.68 13774.14 11943.67 5931.38 5287.59 
Low Gain 0.00 6673.84 883.24 1030.89 1178.40 1550.74 1.30 2367.19 
Low Phase 626.14 1159.07 707.50 1101.29 437.31 2255.54 720.50 1252.14 
Low Gain+Phase 0.00 6673.84 728.58 1045.99 2208.32 3134.47 10.36 3384.61 
High Gain 0.00 12732.15 1555.17 5016.29 9844.12 10545.21 11.13 7658.10 
High Phase 5.32 8100.77 2228.59 4236.52 5840.48 4087.69 5.08 10731.67 

7.5 cm
 P

robe 

High Gain+Phase 0.00 3028.75 1799.04 4448.63 4922.12 7255.55 2269.96 6216.08 

 

5.4 Most Significant Frequencies from Stepwise 

5.4.1 Nitrate Salts and Water 

5.4.1.1 Concentration 

Stepwise regression selected a large number of frequencies to build regression models to predict 

the concentration of nitrates in water. The frequency that was selected the most to predict nitrate 

concentration from the old control box was 1,000,000 Hz, and 17,600,000 and 301,600,000 Hz 

were selected most often from the new control box. 

 

5.4.1.1.1 One Liter Samples 

A complete table of the frequencies that stepwise used for each sensor to predict the 

concentration of nitrate in the 1 L water samples is given in  Appendix F.  In Figure  5.1, the total 
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number of frequencies measured by the old control box is divided evenly into twenty groups, 

each containing 31 or 32 frequencies.  The horizontal bars next to these frequency ranges 

indicate the number of frequencies stepwise selected from each of these ranges to build 

regression models for predicting the concentration of nitrate in the 1 L samples.   The selected 

frequencies were distributed fairly evenly from 50 Hz to 120 MHz.  The frequency range that 

had the most frequencies selected from it was the 56,600,000 to 62,800,000 Hz range.  The 

smallest number of frequencies was selected from the 24,800,00 to 31,000,000 Hz range.  The 

individual frequency that occurs most often in nitrate prediction with the old control box and the 

impedance meter was 1,000,000 which was selected 4 times. 

 

The nitrate tests with the 2 cm probe were done using the new control box, so the range of 

frequencies at which measurements were taken was different.  A complete table of the 

frequencies selected with the 2 cm probe and the new control box is given in  Appendix G.  The 

frequency that was selected the most often for the 2 cm probe was 181,600,000 Hz.  It was 

selected five times. 
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Figure  5.1: Frequencies selected by stepwise for predicting the concentration of 1 L nitrate 
samples with the 2.5-7.5 cm probes and the old control box or with the impedance meter 
 

5.4.1.1.2 Thirty-six Liter Samples 

A complete list of the frequencies selected to predict nitrate concentration for the 36 L samples is 

shown in  Appendix H, and Figure  5.2 shows how many frequencies from each range were 

selected by stepwise.  The frequencies that were selected most often with the 36 L samples were 

17,600,000 and 301,600,000 Hz, both of which were used seven times.  The frequency range 

from which the most frequencies were selected was the 2,400,000 to 22,400,000 Hz range.  The 

smallest number of frequencies was selected from the 274,400,000 to 294,400,000 Hz range. 
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Overall, a lot more frequencies were selected from the lower frequencies; 185 were selected 

from the lower half and only 111 were selected from the upper half. 
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Figure  5.2: Frequencies selected by stepwise for predicting the concentration of 36 L 
nitrate samples with the 2, 2.5, and 7.5 cm probes and the new control box 
 

5.4.1.2 Molecular Weight 

The number of frequencies selected by stepwise to predict molecular weight was a lot smaller 

than the number used to predict concentration. The frequency used most often from the old 

control box was 110.2 MHZ, and  2,674.4 MHz was used most often from the new control box. 
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5.4.1.2.1 One Liter Samples 

A complete list of the frequencies selected for the 1 L samples with the impedance meter and the 

old control box can be found in  Appendix I, and a list of the frequencies selected for the 2 cm 

probe and the new control box can be found in  Appendix J.  Eighty-six frequencies were selected 

to create stepwise regression models to predict the molecular weight of the 1 L nitrate samples 

with the old control box.  The frequency that was selected most was 110.2 MHz, and it was 

selected five times.  Higher frequencies were selected to make these predictions.  Almost twice 

as many frequencies were selected above 56.4 MHz, the middle frequency for the old control 

box, than below 56.4 MHz. 

 

Twenty-three frequencies were selected to predict the molecular weight of the 1 L nitrate 

solutions with the 2 cm probe and the new control box.  Only one of these frequencies was used 

more than once, 1,413 Hz.  The frequencies that were selected were distributed fairly evenly 

throughout the entire frequency range. 

 

5.4.1.2.2 Thirty-six Liter Samples 

The 90 frequencies that stepwise used to predict the molecular weight of the 36 L nitrate samples 

can be found in  Appendix K.  The most used frequency, 321,600,00 Hz, was selected six times.  

As with the 1 L samples, a very large proportion of high frequencies was used to make the 

stepwise regression models.  The middle frequency in the range measured by the new control 

box is 189,600,000 Hz.  Approximately 1.5 times more frequencies were selected above this 

value than below it. 

 

5.4.2 Atrazine and Water 

5.4.2.1 One Liter Samples 

The stepwise regression program did not select any frequencies more than twice for the 1 L 

atrazine samples with the old control box and impedance meter.  A table of the frequencies that it 

did select is given in  Appendix L.  Thirty-three different frequencies were used, and seven of 

these were used twice.  There was no particular pattern in the frequencies that were selected. 
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Only four frequencies were selected to predict the 1 L atrazine concentration with the 2 cm probe 

and the new control box, and they are shown in  Appendix M.  One of the frequencies, 

137,600,000 Hz, was used twice.  This was also the largest selected frequency. 

 

5.4.2.2 Thirty-six Liter Samples 

 Appendix N gives a table of the 35 frequencies selected to predict the concentration of atrazine 

for the 36 L samples.  The frequency that was selected most often was 245,600,000 Hz, which 

was selected three times.  None of the frequencies selected were above the middle frequency, 

189,600,000 Hz.  Only three frequencies above 1,464.8 MHz were selected.  There was no 

pattern to the frequencies selected when the old control box was used, but in both experiments 

that used the new control box, which can measure the gain and phase at higher frequencies that 

the old control box, the frequencies selected by stepwise to measure atrazine concentration were 

low. 

 

5.4.3 Impurities in Biodiesel Fuel 

All of the frequencies used by stepwise to predict the concentration of impurities in biodiesel can 

be found in  Appendix O.  One hundred and forty frequencies were used.  The frequency that was 

selected the most often was 69,600,000 Hz, which was used seven times.  There was not much of 

a pattern to the frequencies that were selected.  Frequencies below 189,600,000 Hz, the middle 

frequency, were selected 155 times, and frequencies above 189,600,000 Hz were selected 157 

times. 

 

5.5 Most Significant Wavebands 

5.5.1 Nitrate Salts and Water 

5.5.1.1 Concentration 

For both control boxes and sample sizes, the wavebands used the most to predict the nitrate 

concentration in water contained information from lower frequencies.  The first waveband of the 

fifth level was used many times by stepwise for nitrate concentration prediction. 
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5.5.1.1.1 One Liter Samples 

Stepwise regression used several wavebands to predict the concentration of nitrate salts in the 1 

L water samples.  Figure  5.3 is a tiling diagram that summarizes the wavebands that were 

selected and how many times they were selected.  Data from the new control box and the 

impedance meter are not included in this diagram because they collected data at different 

frequencies and therefore have different numbers of wavebands in each level.  A complete table 

of the levels and wavebands that were selected by stepwise for each sensor and each data subset 

can be found in  Appendix P.   

 

 
Figure  5.3: Wavebands used to predict 1 L nitrate concentration with 2.5, 5, and 7.5 cm 
probes and old control box 
 

Many of the wavebands that were used were selected for more than one probe or for both the 

gain and phase data for the same probe.  The two that were selected most often were the first 

waveband of the fifth level, which contains information about data from frequencies between 50 

and 44,668 Hz, and the first waveband of the sixth level, which contains information about 

frequencies between 50 and 5,600,000 Hz.   

 



 84 

5.5.1.1.2 Thirty-six Liter Samples 

Stepwise regression also used several wavebands to predict the concentration of the 36 L nitrate 

samples.  A detailed list of the wavebands that were selected by stepwise regression for each 

probe and each data subset can be found in  Appendix Q.  Figure  5.4 shows how many times each 

waveband was selected.  The first and seventh wavebands from the fifth level were used the most 

often.  These wavebands represent data from frequencies ranging from 200 to 5,600,000 

Hz and 128,000,000 to 152,800,000 Hz, respectively. 

 

 

Figure  5.4: Wavebands used to predict 36 L nitrate concentration with 2, 2.5, and 7.5 cm 
probes and new control box 
 

5.5.1.2 Molecular Weight 

A fewer number of wavebands were selected to predict molecular weight of nitrates than to 

predict the concentration of nitrates.  Only four wavebands were selected from the data for the 1 

L samples. 
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5.5.1.2.1 One Liter Samples 

Very few wavebands were used to predict the molecular weight of the nitrates in the 1 L samples 

because the stepwise program was often unable to find wavebands that were significant enough 

to build a model with.  Figure  5.5 shows the wavebands that were chosen: the tenth and 15th 

wavebands from the fifth level, the fourth waveband from the seventh level, and the first 

waveband from the ninth level. 

 

 

Figure  5.5: Wavebands used to predict 1 L nitrate molecular weight with 2.5, 5, and 7.5 cm 
probes and old control box 
 

5.5.1.2.2 Thirty-six Liter Samples 

Stepwise regression selected more wavebands to predict the molecular weight of the 36 L 

samples than of the 1 L samples.  A table of the wavebands selected by stepwise for the 36 L 

samples can be found in  Appendix R.  The tiling diagram in Figure  5.6 shows that the 

distribution of wavebands selected for predicting the molecular weight of the 36 L samples is 

different than it was for predicting the concentration and that a lot fewer wavebands were 

selected for molecular weight.  For the concentration predictions, almost all of the wavebands 
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corresponding to lower frequencies were selected for the models.  For the molecular weight 

predictions, the lowest and highest wavebands were ignored, and bands in the middle were 

selected. 

 

The waveband that was selected most frequently was the 14th band of the fifth level.  The 13th 

and 15th bands on either side of it were also selected several times.  The frequency range 

included in these three wavebands is 276,800,000 to 350,400,000 Hz.  The fifth and sixth 

wavebands in the sixth level were selected four times each.  Together these two wavebands range 

from 166,400,000 to 260,000,000 Hz.  Therefore, there is no overlap in frequency in the bands 

used most often in the 5th level and the 6th level. 

 

 

Figure  5.6: Wavebands used to predict 36 L nitrate molecular weight with the 2, 2.5, and 
7.5 cm probes and the new control box 
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5.5.2 Atrazine and Water 

Stepwise also selected very few wavebands to predict the concentration of atrazine in both the 1 

L samples and in the 36 L samples.   Appendix S lists the wavebands that were used for each 

samples size. 

 

5.5.2.1 One Liter Samples 

As illustrated in Figure  5.7, none of the wavebands selected by stepwise for the 1 L atrazine 

samples were used for more than one data subset.  The wavebands all corresponded to lower 

frequencies; the highest waveband chosen was the seventh waveband of the sixth level, which 

contained information from the frequencies ranging from 69.4 to 82.0 MHz.  There were no 

higher frequencies used. 

 

 

Figure  5.7: Wavebands used to predict 1 L atrazine concentration with the 2.5, 5, and 7.5 
cm probes and the old control box 
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5.5.2.2 Thirty-six Liter Samples 

Stepwise also selected wavebands corresponding to lower frequencies for the 36 L samples.  

This is summarized in the tiling diagram in Figure  5.8.  The only waveband that was used for 

more than one subset of data was the first band of the seventh level.  This waveband contains 

information from the frequency range 200 to 64,000,000 Hz.  The seventh level was the highest 

level from which stepwise selected wavebands, no bands were chosen from levels eight or nine. 

 

 

Figure  5.8: Wavebands used to predict 36 L atrazine concentration with the 2, 2.5, and 7.5 
cm probes and the new control box 
 

5.5.3 Biodiesel Impurities 

All but four of the wavebands that were available to stepwise were used to build at least one 

regression model to predict the concentration of contaminants in biodiesel.  The four wavebands 

that were not used were the highest wavebands for levels five through eight, the wavebands that 

correspond to the highest frequency ranges.  This can be seen in Figure  5.9.  A complete list of 

the wavebands used to build prediction models for each contaminant is located in  Appendix T. 
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The waveband that is used most often, nine times, is the sixth waveband of the sixth level.  This 

waveband contains information about the data recorded at frequencies of 213,600,000 to 

260,000,000 Hz.  The second most used waveband, which was selected seven times, is the tenth 

waveband of the fifth level which corresponds to data from the frequency range 202,400,000 to 

227,200,000 Hz. 

 

 

Figure  5.9: Wavebands used to predict the 36 L biodiesel impurities with the 2, 2.5, and 7.5 
cm probes and the new control box 
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CHAPTER 6 - Conclusions 

6.1 Water Tests 

6.1.1 Probes 

All of the probes tested in this study were able to detect changes in nitrate concentration to a 

reasonable degree of accuracy.  The 2 cm probe required a larger sample size in order to detect 

these changes.  Based on the tests done in this study, the 7.5 cm probe was able to detect nitrates 

in water better than the other probes.  This probe almost always had the highest R2-values for 

predicting the concentration of nitrate in both the 1 L water samples and the 36 L water samples.   

 

The probes in this study were not able to accurately predict molecular weight of nitrates in a 

small sample of water.  The results were greatly improved with the 36 L water samples; and the 

7.5 cm probe was also the best at predicting the molecular weight of the nitrates.  The 2 cm 

probe was also capable of measuring differences in molecular weight; however, the 2.5 cm probe 

was not as reliable as the others.  

 

Atrazine was not detected as accurately as nitrates with these probes.  For the 1 L atrazine 

samples, none of the probes especially outperformed the others.  For the 36 L samples, the 2 cm 

probe detected the change in atrazine concentration much better than the other probes.  The R2-

values and the RMSE values were consistently better for this probe than for any other probe. 

 

The results for the three probes tested were much better for the 36 L sample size than for the 1 L 

samples.   

 

6.1.2 Regression Techniques 

Partial least squares was the most reliable regression method used to detect contaminants in 

water samples.  PLS did not always have training R2-values as high as stepwise regression, but it 

almost always had higher validation R2-values than the other methods.  PLS also had lower 
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RMSE values than the other methods did.  Neural network was the least reliable of the methods 

studied.  It usually had low R2-values for both training and validation, and high RMSE values. 

 

6.1.3 Important Frequencies 

There were not any major trends in the frequencies and wavebands that stepwise used to make 

regression models.  The frequencies used to predict nitrate concentration were often in the lower 

half of the frequency range, and the frequencies used to predict nitrate molecular weight were 

often in the upper half of the frequency range.  This may be the reason that the molecular weight 

predictions were so much better for the 36 L samples; they were all tested using the new control 

box which measures the gain and phase at much higher frequencies than the old control box. 

 

6.2 Biodiesel Tests 

6.2.1 Probes 

The three probes that were used to test the biodiesel fuel were all fairly comparable in their 

ability to measure the concentration of the contaminant in the fuel.  The results, in terms of R2- 

and RMSE values, indicate that the probes are not as capable of detecting changes in biodiesel 

impurity levels as they are in detecting water impurity levels.  This could be a result of the 

settling of the impurities to the bottom of the aquarium due to their high densities. 

 

6.2.2 Regression Techniques 

PLS was the best regression method for predicting the concentration of glycerin and glyceride in 

biodiesel, and stepwise regression of wavelet transformed data predicted the concentration of 

water most accurately.  Neural network typically produced the worst results.  

 

6.2.3 Important Frequencies 

Stepwise selected frequencies that were spread fairly evenly throughout the total frequency 

range, suggesting that higher and lower frequencies are equally significant in biodiesel 
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contaminant concentration prediction.  The frequency that was used most often in biodiesel 

contaminant prediction was 69,600,000 Hz, which is one of the lower frequencies measured by 

the new control box measures data. 

 

A large assortment of wavebands was used to generate the stepwise regression models.  Not all 

of the wavebands corresponded to low frequencies; however the wavebands that contained 

information from the highest frequencies for levels five through eight were the only wavebands 

not selected.  This could also indicate that lower frequencies are more useful in predicting 

biodiesel contaminants. 

 



 93 

CHAPTER 7 - Recommendations for Future Research 

The main goal of this experiment was to produce a portable, durable, and inexpensive probe to 

measure water and biodiesel contaminants.  The experiments done for this thesis indicate that the 

probes studied do have some ability to measure contaminant concentration and to distinguish 

between different contaminants.  More research will need to be conducted to determine how well 

these probes will work in real life situations.  The following is a list of suggestions: 

 

1. Tests should be conducted on samples that contain more than one contaminant. 

 

2. A more in-depth study of container size and shape should be done.  A variety of container 

sizes and shapes should be tested to determine which size and shape gives the most 

accurate results.  Containers composed of different materials should also be compared 

because it is possible that the permittivity of the container material could affect the 

permittivity measurement of the sample.  The container might also interfere with the 

electric field. 

 

3. Independent 36 L samples should be prepared and tested in a random order to determine 

if testing the samples in order of increasing concentration falsely improves the results. 

 

4. The tests should be repeated using only the frequencies that stepwise selected as 

significant and these results should be compared to the results obtained using data from 

the entire frequency range. 

 

5. A better method for mixing the contaminants with the biodiesel should be developed and 

tested. 
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Appendix A -  MatLab Regression Program 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Program:      Stepwise Regression & PLS & Neural Network & Wavelet    % 
% Description:  To Predict Concentration of Nitrate  Salts in Water      % 
% Functions:    Uses Graph_Function, Stepwise_Funct ion, PLS_Function,   % 
%               Neural_Function, and Wave_Function                      % 
% Probe:       7.5 cm (Big)                                             % 
% Date:         3/6/09                                                  % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
clear all; 
clc; 
  
load '7_5 cm Probe Data'; 
  
Probe='7.5 cm'; 
Predict='Concentration'; 
Pred='Conc'; 
  
  
%%%%%%%%%%%%%%%% 
%  Graph Data  % 
%%%%%%%%%%%%%%%% 
  
Graph_Function(freq,GAa,'G',Probe,Predict,'T',1); 
Graph_Function(freq,PAa,'P',Probe,Predict,'T',2); 
Graph_Function(freq,GAVa,'G',Probe,Predict,'V',3); 
Graph_Function(freq,PAVa,'P',Probe,Predict,'V',4); 
  
%%%%%%%%%%%%%%%%%%%%%%% 
%  Stepwise Analysis  % 
%%%%%%%%%%%%%%%%%%%%%%% 
  
[FreqGA,R2GA,RMSEGA,PredictedGA]=Stepwise_Function( ConcT,ConcV,GA,GAV,... 
    Probe,'Gain',Predict,'All',freq,5); 
[FreqPA,R2PA,RMSEPA,PredictedPA]=Stepwise_Function( ConcT,ConcV,PA,PAV,... 
    Probe,'Phase',Predict,'All',freq,6); 
[FreqGPA,R2GPA,RMSEGPA,PredictedGPA]=Stepwise_Funct ion(ConcT,ConcV,GPA,... 
    GPAV,Probe,'Gain+Phase',Predict,'All',freq,7); 
[FreqGL,R2GL,RMSEGL,PredictedGL]=Stepwise_Function( ConcL,ConcL,GL,GLV,... 
    Probe,'Gain',Predict,'Low',freq,8); 
[FreqPL,R2PL,RMSEPL,PredictedPL]=Stepwise_Function( ConcL,ConcL,PL,PLV,... 
    Probe,'Phase',Predict,'Low',freq,9); 
[FreqGPL,R2GPL,RMSEGPL,PredictedGPL]=Stepwise_Funct ion(ConcL,ConcL,GPL,... 
    GPLV,Probe,'Gain+Phase',Predict,'Low',freq,10);  
[FreqGH,R2GH,RMSEGH,PredictedGH]=Stepwise_Function( ConcTH,ConcVH,GH,... 
    GHV,Probe,'Gain',Predict,'High',freq,11); 
[FreqPH,R2PH,RMSEPH,PredictedPH]=Stepwise_Function( ConcTH,ConcVH,PH,... 
    PHV,Probe,'Phase',Predict,'High',freq,12); 
[FreqGPH,R2GPH,RMSEGPH,PredictedGPH]=Stepwise_Funct ion(ConcTH,ConcVH,... 
    GPH,GPHV,Probe,'Gain+Phase',Predict,'High',freq ,13); 
  
%Make a Table of all R-Square Values for Stepwise 
RSqrValue=[R2GA; R2PA; R2GPA; R2GL; R2PL; R2GPL; R2 GH; R2PH; R2GPH]; 
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%Make a Table of all RMSEs for Stepwise 
RMSEValue=[RMSEGA; RMSEPA; RMSEGPA; RMSEGL; RMSEPL; RMSEGPL; ... 
    RMSEGH; RMSEPH; RMSEGPH]; 
  
%Make a Table of all Predictions for Stepwise 
PredictedValue=[PredictedGA PredictedPA PredictedGP A PredictedGL ... 
    PredictedPL PredictedGPL PredictedGH PredictedP H PredictedGPH]; 
  
%Make Table of Frequencies Used in Each Test 
L=1:60; 
Freqs=zeros(60,9); 
Freqs(L,1)=[sort(FreqGA);zeros(60-size(FreqGA,1),1) ]; 
Freqs(L,2)=[sort(FreqPA);zeros(60-size(FreqPA,1),1) ]; 
Freqs(L,3)=[sort(FreqGPA);zeros(60-size(FreqGPA,1), 1)]; 
Freqs(L,4)=[sort(FreqGL);zeros(60-size(FreqGL,1),1) ]; 
Freqs(L,5)=[sort(FreqPL);zeros(60-size(FreqPL,1),1) ]; 
Freqs(L,6)=[sort(FreqGPL);zeros(60-size(FreqGPL,1), 1)]; 
Freqs(L,7)=[sort(FreqGH);zeros(60-size(FreqGH,1),1) ]; 
Freqs(L,8)=[sort(FreqPH);zeros(60-size(FreqPH,1),1) ]; 
Freqs(L,9)=[sort(FreqGPH);zeros(60-size(FreqGPH,1), 1)]; 
  
FreqList{1,1}=[Probe ' Probe- Frequencies Used to P redict Salt '... 
    Predict ' by Stepwise']; 
z={'All Gain','All Phase','All Gain+Phase','Low Gai n','Low Phase',... 
    'Low Gain+Phase','High Gain','High Phase','High  Gain+Phase'}; 
for m=1:9 
    FreqList{2,m}=z{1,m}; 
end 
  
for q=1:60 
   for s=1:9; 
FreqList{q+2,s}=Freqs(q,s); 
   end 
end 
  
%Make Table of All Frequencies Used in Stepwise 
FreqAll=[FreqGA;FreqPA;FreqGPA;FreqGL;FreqPL;FreqGP L;FreqGH;FreqPH;FreqGPH]; 
FreqAll=sort(FreqAll,'ascend'); 
  
  
%%%%%%%%%%%%%%%%%% 
%  PLS Analysis  % 
%%%%%%%%%%%%%%%%%% 
  
[R2GA,RMSEGA,PredictedGA]=PLS_Function(ConcT,ConcV, GA,GAV,Probe,... 
    'Gain',Predict,'All',14); 
[R2PA,RMSEPA,PredictedPA]=PLS_Function(ConcT,ConcV, PA,PAV,Probe,... 
    'Phase',Predict,'All',15); 
[R2GPA,RMSEGPA,PredictedGPA]=PLS_Function(ConcT,Con cV,GPA,GPAV,Probe,... 
    'Gain+Phase',Predict,'All',16); 
[R2GL,RMSEGL,PredictedGL]=PLS_Function(ConcL,ConcL, GL,GLV,Probe,... 
    'Gain',Predict,'Low',17); 
[R2PL,RMSEPL,PredictedPL]=PLS_Function(ConcL,ConcL, PL,PLV,Probe,... 
    'Phase',Predict,'Low',18); 
[R2GPL,RMSEGPL,PredictedGPL]=PLS_Function(ConcL,Con cL,GPL,GPLV,Probe,... 
    'Gain+Phase',Predict,'Low',19); 
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[R2GH,RMSEGH,PredictedGH]=PLS_Function(ConcTH,ConcV H,GH,GHV,Probe,... 
    'Gain',Predict,'High',20); 
[R2PH,RMSEPH,PredictedPH]=PLS_Function(ConcTH,ConcV H,PH,PHV,Probe,... 
    'Phase',Predict,'High',21); 
[R2GPH,RMSEGPH,PredictedGPH]=PLS_Function(ConcTH,Co ncVH,GPH,GPHV,... 
    Probe,'Gain+Phase',Predict,'High',22); 
  
%Add PLS R-Sqrs to Table 
RSqrValue(:,3:4)=[R2GA; R2PA; R2GPA; R2GL; R2PL; R2 GPL; R2GH; R2PH; R2GPH]; 
  
%Add PLS RMSEs to Table 
RMSEValue(:,3:4)=[RMSEGA; RMSEPA; RMSEGPA; RMSEGL; RMSEPL;... 
    RMSEGPL; RMSEGH; RMSEPH; RMSEGPH]; 
  
%Add PLS Predictions to Table 
PredictedValue(:,19:36)=[PredictedGA PredictedPA Pr edictedGPA... 
    PredictedGL PredictedPL PredictedGPL PredictedG H PredictedPH... 
    PredictedGPH]; 
  
  
%%%%%%%%%%%%%%%%%%%% 
%  Neural Network  % 
%%%%%%%%%%%%%%%%%%%% 
  
[R2GA,RMSEGA,PredictedGA]=Neural_Function(ConcT,Con cV,GA,GAV,Probe,... 
    'Gain',Predict,'All',23); 
[R2PA,RMSEPA,PredictedPA]=Neural_Function(ConcT,Con cV,PA,PAV,Probe,... 
    'Phase',Predict,'All',24); 
[R2GPA,RMSEGPA,PredictedGPA]=Neural_Function(ConcT, ConcV,GPA,GPAV,... 
    Probe,'Gain+Phase',Predict,'All',25); 
[R2GL,RMSEGL,PredictedGL]=Neural_Function(ConcL,Con cL,GL,GLV,Probe,... 
    'Gain',Predict,'Low',26); 
[R2PL,RMSEPL,PredictedPL]=Neural_Function(ConcL,Con cL,PL,PLV,Probe,... 
    'Phase',Predict,'Low',27); 
[R2GPL,RMSEGPL,PredictedGPL]=Neural_Function(ConcL, ConcL,GPL,GPLV,... 
    Probe,'Gain+Phase',Predict,'Low',28); 
[R2GH,RMSEGH,PredictedGH]=Neural_Function(ConcTH,Co ncVH,GH,GHV,... 
    Probe,'Gain',Predict,'High',29); 
[R2PH,RMSEPH,PredictedPH]=Neural_Function(ConcTH,Co ncVH,PH,PHV,... 
    Probe,'Phase',Predict,'High',30); 
[R2GPH,RMSEGPH,PredictedGPH]=Neural_Function(ConcTH ,ConcVH,GPH,GPHV,... 
    Probe,'Gain+Phase',Predict,'High',31); 
  
%Add ANN R-Sqrs to Table 
RSqrValue(:,5:6)=[R2GA; R2PA; R2GPA; R2GL; R2PL; R2 GPL; R2GH; R2PH; R2GPH]; 
  
%Add ANN RMSEs to Table 
RMSEValue(:,5:6)=[RMSEGA; RMSEPA; RMSEGPA; RMSEGL; RMSEPL; ... 
    RMSEGPL; RMSEGH; RMSEPH; RMSEGPH]; 
  
%Add ANN Predictions to Table 
PredictedValue(:,37:54)=[PredictedGA PredictedPA Pr edictedGPA ... 
    PredictedGL PredictedPL PredictedGPL PredictedG H PredictedPH ... 
    PredictedGPH]; 
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%%%%%%%%%%%%%%%%%%%%% 
% Wavelet Transform % 
%%%%%%%%%%%%%%%%%%%%% 
  
[R2GA,RMSEGA,PredictedGA,SeGA,LGA]=Wave_Function(Co ncT,ConcV,GA,GAV,... 
    Probe,'Gain',Predict,'All',freq,32); 
[R2PA,RMSEPA,PredictedPA,SePA,LPA]=Wave_Function(Co ncT,ConcT,PA,PAV,... 
    Probe,'Phase',Predict,'All',freq,34); 
[R2GPA,RMSEGPA,PredictedGPA,SeGPA,LGPA]=Wave_Functi on(ConcT,ConcV,GPA,... 
    GPAV,Probe,'Gain+Phase',Predict,'All',freq,36);  
[R2GL,RMSEGL,PredictedGL,SeGL,LGL]=Wave_Function(Co ncL,ConcL,GL,GLV,... 
    Probe,'Gain',Predict,'Low',freq,38); 
[R2PL,RMSEPL,PredictedPL,SePL,LPL]=Wave_Function(Co ncL,ConcL,PL,PLV,... 
    Probe,'Phase',Predict,'Low',freq,40); 
[R2GPL,RMSEGPL,PredictedGPL,SeGPL,LGPL]=Wave_Functi on(ConcL,ConcL,GPL,... 
    GPLV,Probe,'Gain+Phase',Predict,'Low',freq,42);  
[R2GH,RMSEGH,PredictedGH,SeGH,LGH]=Wave_Function(Co ncTH,ConcVH,GH,... 
    GHV,Probe,'Gain',Predict,'High',freq,44); 
[R2PH,RMSEPH,PredictedPH,SePH,LPH]=Wave_Function(Co ncTH,ConcVH,PH,... 
    PHV,Probe,'Phase',Predict,'High',freq,46); 
[R2GPH,RMSEGPH,PredictedGPH,SeGPH,LGPH]=Wave_Functi on(ConcTH,ConcVH,... 
    GPH,GPHV,Probe,'Gain+Phase',Predict,'High',freq ,48); 
  
%Add Wavelet R-Sqrs to Table 
RSqrValue(:,7:8)=[R2GA; R2PA; R2GPA; R2GL; R2PL; R2 GPL; R2GH; R2PH; R2GPH]; 
  
%Add Wavelet RMSEs to Table 
RMSEValue(:,7:8)=[RMSEGA; RMSEPA; RMSEGPA; RMSEGL; RMSEPL; ... 
    RMSEGPL; RMSEGH; RMSEPH; RMSEGPH]; 
  
%Add Wavelet Predictions to Table 
PredictedValue(:,55:72)=[PredictedGA PredictedPA Pr edictedGPA ... 
    PredictedGL PredictedPL PredictedGPL PredictedG H PredictedPH ... 
    PredictedGPH]; 
  
%Make Table of Selected Wavebands 
Bands{1,1} = [Probe ' Probe- Predicting ' Predict . .. 
    ' of Salts- Wavebands Selected From Wavelet Tra nsform']; 
Bands{2,2} = 'Level'; 
Bands{2,3} = 'Waveband'; 
Bands{3,1} = 'All Gain'; 
  
Bands1=SeGA; 
Bands{length(Bands1)+3,1} = 'All Phase'; 
Bands1((length(Bands1)+1):(length(Bands1)+LPA),:)=S ePA; 
Bands{length(Bands1)+3,1} = 'All Gain+Phase'; 
Bands1((length(Bands1)+1):(length(Bands1)+LGPA),:)= SeGPA; 
Bands{length(Bands1)+3,1} = 'Low Gain'; 
Bands1((length(Bands1)+1):(length(Bands1)+LGL),:)=S eGL; 
Bands{length(Bands1)+3,1} = 'Low Phase'; 
Bands1((length(Bands1)+1):(length(Bands1)+LPL),:)=S ePL; 
Bands{length(Bands1)+3,1} = 'Low Gain+Phase'; 
Bands1((length(Bands1)+1):(length(Bands1)+LGPL),:)= SeGPL; 
Bands{length(Bands1)+3,1} = 'High Gain'; 
Bands1((length(Bands1)+1):(length(Bands1)+LGH),:)=S eGH; 
Bands{length(Bands1)+3,1} = 'High Phase'; 
Bands1((length(Bands1)+1):(length(Bands1)+LPH),:)=S ePH; 
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Bands{length(Bands1)+3,1} = 'High Gain+Phase'; 
Bands1((length(Bands1)+1):(length(Bands1)+LGPH),:)= SeGPH; 
  
for n=1:length(Bands1) 
    for m=1:2 
    Bands{n+2,m+1}=Bands1(n,m); 
    end 
end 
     
%Make Table of All RMSEs 
RMSE{1,1} = [Probe ' Probe- Predicting ' Predict ' of Salts- RMSE']; 
RMSE{2,2} = 'SWR'; 
RMSE{2,4} = 'PLS'; 
RMSE{2,6} = 'ANN'; 
RMSE{2,8} = 'Wavelet'; 
RMSE{3,2} = 'Training'; 
RMSE{3,3} = 'Validation'; 
RMSE{3,4} = 'Training'; 
RMSE{3,5} = 'Validation'; 
RMSE{3,6} = 'Training'; 
RMSE{3,7} = 'Validation'; 
RMSE{3,8} = 'Training'; 
RMSE{3,9} = 'Validation'; 
RMSE{4,1} = 'All Gain'; 
RMSE{5,1} = 'All Phase'; 
RMSE{6,1} = 'All Gain+Phase'; 
RMSE{7,1} = 'Low Gain'; 
RMSE{8,1} = 'Low Phase'; 
RMSE{9,1} = 'Low Gain+Phase'; 
RMSE{10,1} = 'High Gain'; 
RMSE{11,1} = 'High Phase'; 
RMSE{12,1} = 'High Gain+Phase'; 
for N=1:9 
    for M=1:8 
        RMSE{N+3,M+1}=RMSEValue(N,M); 
    end 
end 
  
%Make Table of all R-Sqr Values 
RSqr=RMSE; 
RSqr{1,1} = [Probe ' Probe- Predicting ' Predict ' of Salts- R^2 Values']; 
     
for N=1:9 
    for M=1:8 
        RSqr{N+3,M+1}=RSqrValue(N,M); 
    end 
end 
  
%Make Table of all Prediction Values 
z={'All Gain',' ','All Phase',' ','All Gain+Phase', ' ','Low Gain',... 
    ' ','Low Phase',' ','Low Gain+Phase',' ','High Gain',' ',... 
    'High Phase',' ','High Gain+Phase',' '}; 
Prediction{1,1} = [Probe ' Probe- Predicting ' Pred ict... 
    ' of Salts- Predictions']; 
Prediction{2,1} = 'Stepwise Regression'; 
Prediction{2,19} = 'PLS'; 
Prediction{2,37} = 'Neural Network'; 
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Prediction{2,55} = 'Wavelet'; 
  
for n=1:18 
    Prediction{3,n}=z{1,n}; 
    Prediction{3,n+18}=z{1,n}; 
    Prediction{3,n+36}=z{1,n}; 
    Prediction{3,n+54}=z{1,n}; 
end 
  
for n=1:36 
    Prediction{4,2*n-1}='Training'; 
    Prediction{4,2*n}='Validation'; 
end 
  
for N=1:72 
    for M=1:27 
        Prediction{M+3,N}=PredictedValue(M,N); 
    end 
end 
  
%Write Tables to Excel 
xlswrite([Probe '-' Pred '- R-Sqr Values.xls'], RSq r); 
xlswrite([Probe '-' Pred '- RMSE Values.xls'], RMSE ); 
xlswrite([Probe '-' Pred '- Predicted Values.xls'], Prediction); 
xlswrite([Probe '-' Pred '- All Frequencies Used.xl s'], FreqAll); 
xlswrite([Probe '-' Pred '- Wavebands.xls'], Bands) ; 
xlswrite([Probe '-' Pred '- Frequencies Used for Ea ch Test.xls'], FreqList); 
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Appendix B - Stepwise Program 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Program:  Stepwise Regression Function                                 % 
% Toolbox:  Mathworks Statistics Toolbox 7.0                             % 
% Purpose:  To predict concentration or molecular w eight of pollutants   % 
%           in water samples                                             % 
% By:       Sarah Shultz                                                 % 
% Date:     3/6/09                                                       % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function [FreqList,R2,RMSE,Predicted]=Stepwise_Func tion(YT,... 
    YV,XT,XV,Probe,Data,Prediction,Concentration,.. . 
    freq,FigNum) 
    %Inputs- 
        %YT = training Y-variables 
        %YV = validation Y-variables 
        %XT = training X-variables 
        %XV = validation X-variables 
        %Probe = probe that data was collected from  
        %Data = gain, phase, or gain and phase toge ther 
        %Prediction = concentration or molecular we ight 
        %Concentration = range of concentrations in cluded 
        %freq = list of frequencies corresponding t o the X-variables 
        %FigNum = number to assign to plot 
         
    %Outputs- 
        %FreqList = list of significant frequencies  
        %R2 = R-squared values 
        %RMSE = RMSE value 
        %Predicted = Y-values predicted using stepw ise model 
         
%List of Frequencies 
if size(XT,2)>size(freq,2); 
    allfreq=[freq;freq]'; 
else allfreq=freq'; 
end 
     
%Remove Frequencies from Data 
R=1:5:length(XT); 
XT=XT(:,R); 
XV=XV(:,R); 
allfreq=allfreq(:,R); 
  
  
%Stepwise Model                 
[b,se,pval,inmodel,stats] = stepwisefit(XT,YT,... 
    'penter',0.05,'premove',0.10);  
  
%Make list of frequencies stepwise selects 
X=allfreq.*inmodel; 
Freq=X(X ~= 0); 
FreqList=Freq'; 
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%Training 
T=XT'; 
n=size(XT,1); 
for N=1:n 
    Q(1:length(b),N)=b.*inmodel'.*T(1:length(b),N);  
end 
T=sum(Q)+stats.intercept; 
T=T'; 
clear 'Q'; 
  
%Validate  
V=XV'; 
n=size(XV,1); 
   for N=1:n 
    Q(1:length(b),N)=b.*inmodel'.*V(1:length(b),N);  
   end 
V=sum(Q)+stats.intercept; 
V=V'; 
Predicted=[[T; zeros(27-size(T,1),1)] [V; zeros(27- size(V,1),1)]]; 
  
%Calculate R-Square Values 
Sxy=sum(T.*YT)-((sum(T)*sum(YT))/length(T)); 
Sxx=sum(T.^2)-(sum(T)^2/length(T)); 
Syy=sum(YT.^2)-(sum(YT)^2/length(YT)); 
R2T=(Sxy/sqrt(Sxx*Syy))^2; 
  
Sxy=sum(V.*YV)-((sum(V)*sum(YV))/length(V)); 
Sxx=sum(V.^2)-(sum(V)^2/length(V)); 
Syy=sum(YV.^2)-(sum(YV)^2/length(YV)); 
R2V=(Sxy/sqrt(Sxx*Syy))^2; 
  
R2=[R2T R2V]; 
  
%Calculate RMSE for Training & Validation 
SSET=sum((YT-T).^2);  
RMSET=sqrt(SSET/(size(YT,1)-2)); 
 
SSEV=sum((YV-V).^2);  
RMSEV=sqrt(SSEV/(size(YV,1)-2));  
 
RMSE=[RMSET RMSEV]; 
  
%Title of Plot 
Title1=[Probe ' Probe- Predicting ' Prediction ' wi th Stepwise Analysis']; 
Title2=[Concentration ' ' Data]; 
Title3=['Training R^2=' mat2str(R2T,3) ', Validatio n R^2=' mat2str(R2V,3)]; 
Title4=['Training RMSE=' mat2str(RMSET,3)... 
    ', Validation RMSE=' mat2str(RMSEV,3)]; 
  
%Plot of actual vs. predicted values 
h=figure(FigNum); 
scatter(YT,T,'bo') 
hold('all'); 
scatter(YV,V,'go') 
plot([YV YT],[YV YT],'r') 
xlabel(['Actual ' Prediction]); 
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ylabel(['Predicted ' Prediction]); 
title({Title1;Title2;Title3;Title4}, 'fontsize', 13 ); 
grid on; 
legend('Training','Validation','Perfect Fit','Locat ion','NorthWest') 
z=[Prediction '- ' mat2str(FigNum) '- ' Probe '-  S tepwise.bmp']; 
  
%Save plot as a bitmap 
saveas(h,z) 
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Appendix C - PLS Program 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Program:  PLS Function                                                 % 
% Toolbox:  Eigenvector PLS Toolbox 4.0                                  % 
% Purpose:  To predict concentration or molecular w eight of pollutants   % 
%           in water samples                                             % 
% By:       Sarah Shultz                                                 % 
% Date:     3/6/09                                                       % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function [R2,RMSE,Predicted]=PLS_Function(YT,YV,XT, ... 
    XV,Probe,Data,Prediction,Concentration,FigNum) 
    %Inputs- 
        %YT = training Y-variables 
        %YV = validation Y-variables 
        %XT = training X-variables 
        %XV = validation X-variables 
        %Probe = probe that data was collected from  
        %Data = gain, phase, or gain and phase toge ther 
        %Prediction = concentration or molecular we ight 
        %Concentration = range of concentrations in cluded 
        %FigNum = number to assign to plot 
         
    %Outputs- 
        %R2 = R-squared values 
        %RMSE = RMSE values 
        %Predicted = Y-values predicted using PLS m odel 
  
%Remove Frequencies from Data 
R=1:5:length(XT); 
XT=XT(:,R); 
XV=XV(:,R); 
  
%Preprocess Data 
max_pc=size(XT,1); %Number of Y-variables 
[press,cumpress]=crossval(XT,YT,'sim',{'loo'},max_p c); 
    %sim = SIMPLS algorithm 
    %loo = leave-one-out cross-validation 
  
min_train_pc=find(cumpress==min(cumpress)); 
    %find minimum CUMPRESS value 
  
%Model options     
options.name='options'; 
options.display='off'; 
options.plots='none'; 
options.outputversion=3; 
options.preprocessing={preprocess('meancenter') pre process('meancenter')}; 
    %center columns to have zero mean 
options.algorithm='sim'; 
    %Use SIMPLS algorithm 
options.blockdetails='standard'; 
  
%Create model with training data 
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model=pls(XT,YT,min_train_pc(1,1),options); %calibr ation model 
     
%Prediction using the training data 
pred=pls(XT,model,options); 
predYT=pred.pred{2}; 
  
%Prediction using validation data 
pred=pls(XV,YV,model,options); 
predYV=pred.pred{2}; 
  
%Put prediction values together into one matrix to save 
Predicted=[[predYT; zeros(27-size(predYT,1),1)] ...  
    [predYV; zeros(27-size(predYV,1),1)]]; 
  
%Calculate R-Square values for training & validatio n 
Sxy=sum(predYT.*YT)-((sum(predYT)*sum(YT))/length(p redYT)); 
Sxx=sum(predYT.^2)-(sum(predYT)^2/length(predYT)); 
Syy=sum(YT.^2)-(sum(YT)^2/length(YT)); 
R2T=(Sxy/sqrt(Sxx*Syy))^2; 
  
Sxy=sum(predYV.*YV)-((sum(predYV)*sum(YV))/length(p redYV)); 
Sxx=sum(predYV.^2)-(sum(predYV)^2/length(predYV)); 
Syy=sum(YV.^2)-(sum(YV)^2/length(YV)); 
R2V=(Sxy/sqrt(Sxx*Syy))^2; 
  
R2=[R2T R2V]; 
         
 
%Calculate RMSE for Training & Validation 
SSET=sum((YT-predYT).^2);  
RMSET=sqrt(SSET/(size(YT,1)-2)); 
 
SSEV=sum((YV-V).^2);  
RMSEV=sqrt(SSEV/(size(predYV,1)-2));  
 
RMSE=[RMSET RMSEV]; 
 
     
%Title of Plot 
Title1=[Probe ' Probe- Predicting ' Prediction ' wi th PLS']; 
Title2=[Concentration ' ' Data ]; 
Title3=['Training R^2=' mat2str(R2T,3) ', Validatio n R^2=' mat2str(R2V,3)]; 
Title4=['Training RMSE=' mat2str(RMSET,3) ... 
    ', Validation RMSE=' mat2str(RMSEV,3)]; 
     
%Plot of actual vs. predicted values 
h=figure(FigNum); 
plot(YT,predYT,'bo'); 
hold on; 
plot(YV,predYV,'go'); 
plot([YV YT],[YV YT],'r'); 
xlabel(['Actual ' Prediction]); 
ylabel(['Predicted ' Prediction]); 
title({Title1;Title2;Title3;Title4}, 'fontsize', 13 ); 
grid on; 
legend('Training','Validation','Perfect Fit','Locat ion','NorthWest') 
hold off; 



 110 

  
%Save plot as a bitmap 
z=[Prediction '- ' mat2str(FigNum) '- ' Probe '-  P LS.bmp']; 
saveas(h,z) 
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Appendix D - ANN Program 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Program:  Neural Network Function                                      % 
% Toolbox:  Mathworks Neural Network Toolbox 6.0.1                       % 
% Purpose:  To predict concentration or molecular w eight of pollutants   % 
%           in water samples                                             % 
% By:       Sarah Shultz                                                 % 
% Date:     3/6/09                                                       % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function [R2,RMSE,Predicted]=Neural_Function(YT,YV, ... 
    XT,XV,Probe,Data,Prediction,Concentration,FigNu m) 
    %Inputs- 
        %YT = training Y-variables 
        %YV = validation Y-variables 
        %XT = training X-variables 
        %XV = validation X-variables 
        %Probe = probe that data was collected from  
        %Data = gain, phase, or gain and phase toge ther 
        %Prediction = concentration or molecular we ight 
        %Concentration = range of concentrations in cluded 
        %FigNum = number to assign to plot 
         
    %Outputs- 
        %R2 = R-squared values 
        %RMSE = RMSE values 
        %Predicted = Y-values predicted using the A NN model 
         
%Remove Frequencies from Data 
R=1:5:length(XT); 
XT=XT(:,R); 
XV=XV(:,R); 
  
%Transpose matrices to be in correct order 
XT = XT'; 
XV = XV'; 
YT = YT'; 
YV = YV'; 
  
%Remove Constant Rows 
[pT1,PS] = removeconstantrows(XT); 
pV1 = XV(PS.keep,:); 
  
%Normalize Inputs and Targets 
[normInputT] = mapminmax(pT1); 
[normInputV] = mapminmax(pV1); 
[normYT,ts] = mapminmax(YT); 
[normYV] = mapminmax(YV); 
  
%Create Network 
numHiddenNeurons = 10;  %Adjust as desired 
numOutputs = size(YT,1); 



 112 

net = newff(minmax(normInputT),[numHiddenNeurons,nu mOutputs]); 
  
%Divide up Samples 
testPercent = .2;   
validatePercent = .2;   
[trainSamples,validateSamples,testSamples] = ... 
    dividevec(normInputT,normYT,testPercent,validat ePercent); 
  
%Train Network 
[net] = train(net,trainSamples.P,trainSamples.T,[], [],... 
    validateSamples,testSamples); 
  
 %Simulate Network 
[normTrainOutput] = sim(net,trainSamples.P,[],[],tr ainSamples.T); 
[normTrainOutputT] = sim(net,normInputT,[],[],normY T); 
[normValidateOutputV] = sim(net,normInputV,[],[],no rmYV); 
  
%Reverse Normalize Outputs 
trainOutput = mapminmax('reverse',normTrainOutput,t s); 
trainOutputT = mapminmax('reverse',normTrainOutputT ,ts); 
validateOutputV = mapminmax('reverse',normValidateO utputV,ts); 
Predicted=[[trainOutputT'; zeros(27-size(trainOutpu tT,2),1)]... 
    [validateOutputV'; zeros(27-size(validateOutput V,2),1)]]; 
  
%Calculate R-Sqr Value for Training & Validation 
Sxy=sum(trainOutputT.*YT)-((sum(trainOutputT)*sum(Y T))... 
    /length(trainOutputT)); 
Sxx=sum(trainOutputT.^2)-(sum(trainOutputT)^2/lengt h(trainOutputT)); 
Syy=sum(YT.^2)-(sum(YT)^2/length(YT)); 
R2T=(Sxy/sqrt(Sxx*Syy))^2; 
  
Sxy=sum(validateOutputV.*YV)-((sum(validateOutputV) *sum(YV))... 
    /length(validateOutputV)); 
Sxx=sum(validateOutputV.^2)-(sum(validateOutputV)^2 /... 
    length(validateOutputV)); 
Syy=sum(YV.^2)-(sum(YV)^2/length(YV)); 
R2V=(Sxy/sqrt(Sxx*Syy))^2; 
  
R2=[R2T R2V]; 
  
%Calculate RMSE for Training & Validation 

SSET=sum((YT-  trainOutputT').^2);  
RMSET=sqrt(SSET/(size(YT,1)-2)); 
 

SSEV=sum((YV-  trainOutputV').^2);  
RMSEV=sqrt(SSEV/(size(YV,1)-2));  
 
RMSE=[RMSET RMSEV]; 
 
%Title of Plot 
Title1=[Probe ' Probe- Predicting ' Prediction ' wi th Neural Network']; 
Title2=[Concentration ' ' Data]; 
Title3=['Training R^2=' mat2str(R2T,3) ', Validatio n R^2=' mat2str(R2V,3)]; 
Title4=['Training RMSE=' mat2str(RMSET,3)... 
    ', Validation RMSE=' mat2str(RMSEV,3)]; 
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%Plot of actual vs. predicted values 
h=figure(FigNum); 
scatter(YT,trainOutputT,'bo') 
hold('all'); 
scatter(YV,validateOutputV,'go') 
plot([YT YV],[YT YV],'r') 
xlabel(['Actual ' Prediction]); 
ylabel(['Predicted ' Prediction]); 
title({Title1;Title2;Title3;Title4}, 'fontsize', 13 ); 
legend('Training','Validation','Perfect Fit','Locat ion','NorthWest') 
grid on; 
  
%Save plot as a bitmap 
z=[Prediction '- ' mat2str(FigNum) '- ' Probe '- Ne ural.bmp']; 
saveas(h,z) 
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Appendix E - Wavelet Program 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Program:  Wavelet Function                                             %  
% Toolbox:  Mathworks Wavelet Toolbox 4.3                                %  
% Purpose:  To predict concentration or molecular w eight of pollutants   %  
%           in water samples                                             %  
% By:       Sarah Shultz                                                 %  
% Date:     3/6/09                                                       %  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function [R2,RMSE,Predicted,Bands,Length]=Wave_Func tion(YT,YV,...  
    XT1,XV1,Probe,Data,Prediction,Concentration,fre q,FigNum)  
      %Inputs-  
        %YT = training Y-variables  
        %YV = validation Y-variables  
        %XT1 = training X-variables  
        %XV1 = validation X-variables  
        %Probe = probe that data was collected from  
        %Data = gain, phase, or gain and phase toge ther  
        %Prediction = concentration or molecular we ight  
        %Concentration = range of concentrations in cluded  
        %freq = list of frequencies  
        %FigNum = number to assign to plot  
         
    %Outputs-  
        %R2 = R-squared values  
        %RMSE = RMSE values  
        %Predicted = Y-values predicted using PLS m odel  
        %Bands = levels & bands selected by stepwis e 
        %Length = number of bands selected  
  
  
 %Label concentration or molecular weight  
 if strcmp(Prediction,'Molecular Weight')==1  
    K='MW';  
 else K='Conc';  
 end  
  
 %Determine the level of transform depending on dat a size  
 Level2=floor(log(length(XT1))/log(2));  
 Level1=Level2-4;  
  
 %Transform training and validation data  
n=size(XT1,1);  
for N=1:n  
    [C(:,N),L(:,N)] = wavedec(XT1(N,:),Level2,'haar ');  
end  
  
n=size(XV1,1);  
for N=1:n  
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    [CV(:,N),LV(:,N)] = wavedec(XV1(N,:),Level2,'ha ar');  
end  
  
XT=C';  
XV=CV';  
L=L';  
L=L(1,:);  
  
%Select Only 5 of the Levels  
J=1:sum(L(1,1:6),2);  
XT=XT(:,J);  
XV=XV(:,J);  
  
%Stepwise Model                 
[b,se,pval,inmodel,stats] = stepwisefit(XT,YT,...  
    'penter',0.05,'premove',0.10);  
  
%XT 
T=XT';  
n=size(XT,1);  
for N=1:n  
    Q(1:length(b),N)=b.*inmodel'.*T(1:length(b),N);  
end  
T=sum(Q)+stats.intercept;  
T=T';  
clear 'Q';  
  
% Validate  
V=XV';  
n=size(XV,1);  
   for N=1:n  
    Q(1:length(b),N)=b.*inmodel'.*V(1:length(b),N);  
   end  
V=sum(Q)+stats.intercept;  
V=V';  
Predicted=[[T; zeros(27-size(T,1),1)] [V; zeros(27- size(V,1),1)]];  
  
%Calculate R-Square Values  
Sxy=sum(T.*YT)-((sum(T)*sum(YT))/length(T));  
Sxx=sum(T.^2)-(sum(T)^2/length(T));  
Syy=sum(YT.^2)-(sum(YT)^2/length(YT));  
R2T=(Sxy/sqrt(Sxx*Syy))^2;  
  
Sxy=sum(V.*YV)-((sum(V)*sum(YV))/length(V));  
Sxx=sum(V.^2)-(sum(V)^2/length(V));  
Syy=sum(YV.^2)-(sum(YV)^2/length(YV));  
R2V=(Sxy/sqrt(Sxx*Syy))^2;  
  
R2=[R2T R2V];  
  
%Calculate RMSE for Training & Validation 
SSET=sum((YT-T).^2);  
RMSET=sqrt(SSET/(size(YT,1)-2)); 
 
SSEV=sum((YV-V).^2);  
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RMSEV=sqrt(SSEV/(size(YV,1)-2));  
 
RMSE=[RMSET RMSEV]; 
 
%Make Sure Correct Labels are on Plot  
if inmodel(1,1:size(inmodel,2))==0  
    R2T=0;  
    R2V=0;  
    RMSET=9999;  
    RMSEV=9999;  
else  
end;  
  
%Title of Plot  
Title1=[Probe ' Probe- Level ' mat2str(Level1) ' to  ' ...  
    mat2str(Level2) ' Haar Wavelet Transform'];  
Title2=['Predicting ' Prediction ' with Wavelet Tra nsform and Stepwise'];  
Title3=[Concentration ' ' Data];  
Title4=['Training R^2=' mat2str(R2T,3) ', Validatio n R^2=' mat2str(R2V,3)];  
Title5=['Training RMSE=' mat2str(RMSET,3)...  
    ', Validation RMSE=' mat2str(RMSEV,3)];  
  
%Plot actual vs. predicted values  
h=figure(FigNum);  
scatter(YT,T,'bo')  
hold('all');  
scatter(YV,V,'go')  
plot([YV YT],[YV YT],'r')  
xlabel(['Actual ' Prediction]);  
ylabel(['Predicted ' Prediction]);  
title({Title1;Title2;Title3;Title4;Title5}, 'fontsi ze', 13);  
grid on;  
legend('Training','Validation','Perfect Fit','Locat ion','NorthWest')  
  
%Save the Plot  
z=[mat2str(FigNum) '- ' K '-  ' Probe ' Probe- Leve l ' mat2str(Level1)...  
    ' to ' mat2str(Level2) ' Predict.bmp'];  
%saveas(h,z)  
  
if inmodel(1,1:size(inmodel,2))==0  
    Bands=[0,0];  
    R2=[0 0];  
    RMSE=[9999 9999];  
    clear 'Predicted';  
    Predicted=[zeros(27,1) zeros(27,1)];  
    Length=1;  
else  
%Selected Frequencies  
Selected=inmodel.*(1:length(inmodel));  
Selected=Selected(Selected ~= 0);  
  
%Make Table of Levels and Wavebands Selected  
for M=1:size(Selected,2)  
        switch logical(true)  
            case Selected(1,M)<=L(1,1)  
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            Bands(M,1:2)=[Level2 Selected(1,M)];  
            case Selected(1,M)>L(1,1) && Selected(1 ,M)<=sum(L(1,1:2))  
                Bands(M,1:2)=[Level2 (Selected(1,M) -L(1,1))];  
            case Selected(1,M)>sum(L(1,1:2)) && Sel ected(1,M)<=sum(L(1,1:3))  
                    Bands(M,1:2)=[(Level2-1) ...  
                        (Selected(1,M)-sum(L(1,1:2) ))];  
            case Selected(1,M)>sum(L(1,1:3)) && Sel ected(1,M)<=sum(L(1,1:4))  
                        Bands(M,1:2)=[(Level2-2) (S elected(1,M)-...  
                            sum(L(1,1:3)))];  
            case Selected(1,M)>sum(L(1,1:4)) && Sel ected(1,M)<=sum(L(1,1:5))  
                            Bands(M,1:2)=[(Level2-3 ) (Selected(1,M)-...  
                                sum(L(1,1:4)))];  
            case Selected(1,M)>sum(L(1,1:5)) && Sel ected(1,M)<=sum(L(1,1:6))  
                                Bands(M,1:2)=[(Leve l2-4) (Selected(1,M)-...  
                                    sum(L(1,1:5)))] ;  
       end  
end  
  
Length=length(Selected);  
  
clear 'h';  
  
%Make Tiling Diagram using Rectangle Annotations  
%figure(FigNum+1)=figure;  
h=figure(FigNum+1);  
  
Z=L(1,6)/mean(L(1,6:7));  
for M=0:.15:.6  
    annotation(figure(FigNum+1),'rectangle',[0.1 0. 15+M Z .15]);  
end  
  
for N=0:(L(1,1)-2)  
        annotation(figure(FigNum+1),'rectangle',[0. 1+N*Z/L(1,1) ...  
            0.15 Z/L(1,1) .15]);  
end  
  
for N=0:(L(1,3)-2)  
        annotation(figure(FigNum+1),'rectangle',[0. 1+N*Z/L(1,3) ...  
            0.3 Z/L(1,3) .15]);  
end  
  
for N=0:(L(1,4)-2)  
        annotation(figure(FigNum+1),'rectangle',[0. 1+N*Z/L(1,4) ...  
            0.45 Z/L(1,4) .15]);  
end  
  
for N=0:(L(1,5)-2)  
        annotation(figure(FigNum+1),'rectangle',[0. 1+N*Z/L(1,5) ...  
            0.6 Z/L(1,5) .15]);  
end  
  
for N=0:(L(1,6)-2)  
        annotation(figure(FigNum+1),'rectangle',[0. 1+N*Z/L(1,6) ...  
            0.75 Z/L(1,6) .15]);  
end  
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%Convert Table of Selected Wavebands to the Vector needed to Color the  
%Correct Bands in the Tiling Diagram  
M=0:.15:.6;  
for N=1:size(Bands,1)  
    Color(N,:)=[(0.1+(Bands(N,2)-1)*Z/L(1,(length(L )-(Bands(N,1)))))...  
        (0.15+M(1,(length(L)-Bands(N,1)-1)))...  
        (Z/L(1,length(L)-(Bands(N,1)))) .15];  
end  
  
%Color the Rectangles  
for N=1:size(Color,1)  
    annotation(figure(FigNum+1),'rectangle','FaceCo lor',[0 1 .6],...  
        'Position',Color(N,:));  
end  
  
%Add Level Numbers Along the Side of the Tiling Dia gram  
Q=Level2:-1:Level1;  
for N=1:length(Q)  
    annotation(figure(FigNum+1),'textbox','String', mat2str(Q(1,N)),...  
        'HorizontalAlignment','right','VerticalAlig nment','middle',...  
        'FitBoxToText','off','Position',[.1 .15+M(1 ,N) 0 .15]);  
end  
  
%Add Chart Title and Label Axes  
annotation(figure(FigNum+1),'textbox','String',{'L' ,'e','v','e','l'},...  
    'HorizontalAlignment','center','VerticalAlignme nt','middle',...  
    'FontWeight','bold','FitBoxToText','on','LineSt yle','none',...  
    'Position',[.03 .15 0 .75]);  
annotation(figure(FigNum+1),'textbox','String',{'Fr equency (Hz)'},...  
    'HorizontalAlignment','center','FitBoxToText',' off','FontWeight',...  
    'bold','LineStyle','none','Position',[.1 .05 Z 0]);  
annotation(figure(FigNum+1),'textbox','String',...  
    {['Tiling Chart- Predicting ' K ' with ' Probe ' Probe '...  
    Concentration ' ' Data]},'HorizontalAlignment', 'center',...  
    'VerticalAlignment','top','fontsize',12,'FitBox ToText','off',...  
    'FontWeight','bold','LineStyle','none','Positio n',[.1 1 Z 0]);  
  
%Add Highest and Lowest Frequencies to Table  
annotation(figure(FigNum+1),'textbox','String',mat2 str(freq(1,1)),...  
    'HorizontalAlignment','center','LineStyle','non e','Position',...  
    [.1 .14 0 0]);  
annotation(figure(FigNum+1),'textbox','String',...  
    mat2str(freq(length(freq),1)),'HorizontalAlignm ent','center',...  
    'LineStyle','none','Position',[.1+Z .14 0 0]);  
  
%Add Additional Frequencies Depending on whether Ga in+Phase data is used or  
%just Gain or Phase  
if strcmp(Data,'Gain+Phase')==1  
    annotation(figure(FigNum+1),'textbox','String', mat2str(freq(1,1)),...  
        'HorizontalAlignment','center','LineStyle', 'none','Position',...  
        [.1+(Z/2) .14 0 0]);  
    annotation(figure(FigNum+1),'textbox','String', {'Gain'},...  
        'HorizontalAlignment','center','LineStyle', 'none','FontWeight',...  
        'demi','Position',[.1 .1 Z/2 0]);  
    annotation(figure(FigNum+1),'textbox','String', {'Phase'},...  
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        'HorizontalAlignment','center','LineStyle', 'none','FontWeight',...  
        'demi','Position',[.1+(Z/2) .1 Z/2 0]);  
else  
    annotation(figure(FigNum+1),'textbox','String', mat2str(freq(floor...  
        (length(freq)/2),1)),'HorizontalAlignment', 'center','LineStyle',...  
        'none','Position',[.1+(Z/2) .14 0 0]);  
end  
  
%Save Tiling Chart  
z=[mat2str(FigNum+1) '- ' K '-  ' Probe ' Probe- Le vel ' ...  
    mat2str(Level1) ' to ' mat2str(Level2) ' Tiling .bmp'];  
%saveas(h,z)  
end; 
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Appendix F - Frequencies Selected by Stepwise to Predict 1 L 
Nitrate Concentration with Old Control Box or Impedance Meter 

 

Frequency 
(Hz) 

# of Times 
Selected 

Frequency 
(Hz) 

# of Times 
Selected 

Frequency 
(Hz) 

# of Times 
Selected 

50 1 19,800,000 2 69,800,000 1 

300 3 21,800,000 1 70,200,000 2 

550 1 22,000,000 1 71,200,000 1 

800 3 22,200,000 1 74,200,000 1 

1,413 3 23,000,000 2 76,000,000 1 

7,943 3 26,200,000 1 76,800,000 1 

44,668 2 27,200,000 1 77,200,000 2 

251,189 3 28,000,000 1 78,200,000 1 

1,000,000 4 28,200,000 2 79,200,000 1 

1,200,000 1 31,200,000 1 80,200,000 1 

2,000,000 2 32,000,000 1 80,800,000 1 

2,200,000 2 35,200,000 1 81,200,000 1 

3,200,000 1 37,200,000 1 83,200,000 2 

3,800,000 1 42,200,000 1 84,000,000 1 

4,000,000 2 43,200,000 1 84,200,000 2 

4,200,000 1 46,000,000 1 84,800,000 1 

5,000,000 1 48,800,000 1 89,000,000 1 

5,800,000 2 50,000,000 1 89,200,000 1 

6,000,000 2 50,800,000 1 92,000,000 2 

6,200,000 1 52,000,000 1 94,200,000 1 

7,000,000 1 52,200,000 1 99,800,000 1 

8,000,000 1 53,200,000 1 103,800,000 1 

8,200,000 1 55,800,000 1 105,000,000 1 

9,200,000 2 56,000,000 2 108,000,000 1 

9,800,000 1 57,000,000 2 108,200,000 1 

10,000,000 1 57,800,000 1 110,000,000 1 

10,200,000 2 58,800,000 1 111,000,000 1 

10,800,000 1 59,200,000 1 111,200,000 2 

11,200,000 3 59,800,000 1 113,200,000 1 

11,800,000 1 60,200,000 2 115,200,000 2 

12,200,000 1 60,800,000 1 116,800,000 1 

13,800,000 1 61,200,000 1 118,200,000 2 

14,000,000 1 62,000,000 1   

16,000,000 1 62,200,000 2   

16,200,000 1 64,800,000 1   

18,000,000 1 65,200,000 1   

18,200,000 1 68,000,000 1   

19,000,000 1 69,000,000 1   

19,200,000 1 69,200,000 1   
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Appendix G - Frequencies Selected by Stepwise to Predict 1 L 
Nitrate Concentration with New Control Box and 2 cm Probe 

Frequency 
(Hz) 

# of Times 
Selected 

5,600,000 1 

9,600,000 1 

9,600,000 1 

13,600,000 1 

18,400,000 1 

26,400,000 1 

37,600,000 1 

61,600,000 2 

65,600,000 2 

109,600,000 2 

117,600,000 1 

129,600,000 1 

133,600,000 1 

134,400,000 1 

158,400,000 1 

162,400,000 1 

174,400,000 1 

181,600,000 5 

186,400,000 1 

189,600,000 1 

201,600,000 1 

202,400,000 1 

205,600,000 1 

229,600,000 1 

241,600,000 2 

245,600,000 1 

246,400,000 2 

257,600,000 1 

261,600,000 1 

273,600,000 1 

309,600,000 1 

313,600,000 1 

322,400,000 1 

326,400,000 1 

330,400,000 1 

345,600,000 1 

357,600,000 1 

365,600,000 1 

366,400,000 1 

377,600,000 2 

381,600,000 1 

398,400,000 1 
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Appendix H – Frequencies Selected by Stepwise to Predict 36 L 
Nitrate Concentration with New Control Box 

Frequency 
(Hz) 

# of Times 
Selected 

Frequency 
(Hz) 

# of Times 
Selected 

Frequency 
(Hz) 

# of Times 
Selected 

200 6 102,400,000 2 241,600,000 1 

400 1 105,600,000 4 246,400,000 1 

1,413 2 109,600,000 2 249,600,000 1 

7,943 1 118,400,000 1 253,600,000 3 

44,668 3 121,600,000 2 254,400,000 1 

63,096 2 122,400,000 1 257,600,000 2 

251,189 1 125,600,000 4 261,600,000 1 

1,600,000 6 129,600,000 2 262,400,000 1 

2,400,000 1 130,400,000 2 265,600,000 3 

5,600,000 1 133,600,000 6 266,400,000 1 

6,400,000 1 134,400,000 1 269,600,000 5 

9,600,000 5 137,600,000 3 273,600,000 1 

10,400,000 2 138,400,000 2 277,600,000 2 

13,600,000 2 141,600,000 2 289,600,000 3 

14,400,000 3 142,400,000 2 293,600,000 1 

17,600,000 7 145,600,000 4 297,600,000 2 

18,400,000 1 153,600,000 1 298,400,000 1 

21,600,000 3 157,600,000 4 301,600,000 7 

25,600,000 4 157,600,000 3 305,600,000 3 

26,400,000 2 158,400,000 1 309,600,000 3 

29,600,000 1 161,600,000 2 313,600,000 4 

33,600,000 2 165,600,000 3 317,600,000 3 

34,400,000 1 165,600,000 2 321,600,000 2 

37,600,000 2 165,600,000 1 325,600,000 1 

38,400,000 1 166,400,000 1 326,400,000 1 

41,600,000 3 169,600,000 4 329,600,000 1 

42,400,000 1 170,400,000 1 333,600,000 2 

45,600,000 3 173,600,000 5 337,600,000 3 

46,400,000 1 177,600,000 1 338,400,000 1 

50,400,000 1 181,600,000 3 341,600,000 1 

53,600,000 4 186,400,000 2 342,400,000 1 

57,600,000 4 189,600,000 4 349,600,000 2 

61,600,000 1 190,400,000 1 357,600,000 2 

65,600,000 2 193,600,000 2 358,400,000 1 

66,400,000 1 194,400,000 1 361,600,000 1 

69,600,000 3 197,600,000 2 366,400,000 3 

70,400,000 1 198,400,000 1 369,600,000 1 

73,600,000 4 205,600,000 1 373,600,000 2 

77,600,000 1 209,600,000 2 377,600,000 1 

78,400,000 1 213,600,000 2 378,400,000 1 

81,600,000 3 217,600,000 1 381,600,000 1 

85,600,000 2 221,600,000 1 385,600,000 2 

86,400,000 1 225,600,000 3 386,400,000 1 

89,600,000 1 230,400,000 1 389,600,000 1 

94,400,000 1 233,600,000 1 393,600,000 3 

97,600,000 5 234,400,000 1 397,600,000 3 

101,600,000 2 237,600,000 2 398,400,000 1 
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Appendix I  – Frequencies Selected by Stepwise to Predict 1 L 
Nitrate Molecular Weight with Old Control Box or Im pedance 

Meter 

Frequency 
(Hz) 

# of Times 
Selected 

Frequency 
(Hz) 

# of Times 
Selected 

50 1 79,200,000 1 

1,000,000 1 80,000,000 2 

1,200,000 1 80,200,000 1 

3,000,000 1 85,200,000 2 

5,200,000 1 86,200,000 1 

10,000,000 2 87,200,000 2 

10,800,000 1 88,200,000 1 

12,200,000 1 89,000,000 1 

12,800,000 1 89,200,000 1 

13,800,000 1 90,200,000 1 

15,200,000 2 90,800,000 1 

20,200,000 1 92,000,000 1 

23,000,000 2 92,200,000 1 

24,000,000 1 95,200,000 3 

29,800,000 1 100,200,000 1 

37,200,000 1 102,200,000 2 

40,800,000 1 103,000,000 1 

43,200,000 1 103,200,000 1 

44,200,000 2 104,200,000 1 

46,200,000 1 105,200,000 1 

47,200,000 2 106,200,000 2 

50,200,000 4 108,200,000 2 

60,200,000 1 109,000,000 1 

61,000,000 1 109,200,000 1 

61,800,000 1 110,200,000 5 

62,800,000 1 113,200,000 1 

63,000,000 1 114,200,000 2 

63,200,000 1 115,200,000 2 

66,200,000 1 118,200,000 1 

68,000,000 1   

69,800,000 1   

75,200,000 3   
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Appendix J – Frequencies Selected by Stepwise to Predict 1 L 
Nitrate Molecular Weight with New Control Box and 2 cm Probe 

Frequency 
(Hz) 

# of Times 
Selected 

1,413 2 

17,600,000 1 

18,400,000 1 

37,600,000 1 

49,600,000 1 

53,600,000 1 

57,600,000 1 

65,600,000 1 

126,400,000 1 

133,600,000 1 

134,400,000 1 

165,600,000 1 

205,600,000 1 

221,600,000 1 

242,400,000 1 

245,600,000 1 

261,600,000 1 

273,600,000 1 

297,600,000 1 

346,400,000 1 

350,400,000 1 

369,600,000 1 

381,600,000 1 
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Appendix K  - Frequencies Selected by Stepwise to Predict 36 L 
Nitrate Molecular Weight with New Control Box 

Frequency 
(Hz) 

# of Times 
Selected 

Frequency 
(Hz) 

# of Times 
Selected 

200 1 189,600,000 2 

44,668 1 190,400,000 1 

251,189 1 193,600,000 1 

1,600,000 1 197,600,000 2 

17,600,000 1 201,600,000 1 

21,600,000 1 205,600,000 1 

29,600,000 1 206,400,000 1 

33,600,000 1 209,600,000 2 

37,600,000 1 217,600,000 1 

41,600,000 1 225,600,000 1 

53,600,000 1 229,600,000 4 

57,600,000 1 233,600,000 3 

58,400,000 2 237,600,000 2 

61,600,000 2 241,600,000 3 

73,600,000 1 245,600,000 1 

77,600,000 2 249,600,000 2 

85,600,000 2 253,600,000 3 

97,600,000 1 254,400,000 1 

98,400,000 1 257,600,000 2 

105,600,000 1 265,600,000 2 

106,400,000 1 277,600,000 5 

109,600,000 1 289,600,000 2 

113,600,000 1 293,600,000 3 

118,400,000 1 305,600,000 3 

121,600,000 1 309,600,000 4 

125,600,000 1 313,600,000 2 

126,400,000 1 317,600,000 4 

129,600,000 3 321,600,000 6 

133,600,000 2 322,400,000 1 

137,600,000 4 325,600,000 3 

141,600,000 1 329,600,000 1 

142,400,000 1 333,600,000 1 

145,600,000 2 334,400,000 1 

149,600,000 1 338,400,000 2 

157,600,000 1 341,600,000 3 

158,400,000 1 349,600,000 1 

161,600,000 2 350,400,000 1 

165,600,000 1 353,600,000 1 

169,600,000 5 357,600,000 1 

173,600,000 1 365,600,000 2 

177,600,000 1 381,600,000 1 

178,400,000 1 385,600,000 3 

181,600,000 1 386,400,000 2 

182,400,000 1 389,600,000 2 

185,600,000 1 394,400,000 1 
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Appendix L  – Frequencies Selected by Stepwise to Predict 1 L 
Atrazine Concentration with Old Control Box or Impedance Meter 

Frequency (Hz) # of Times 
Selected 

1,413 1 

7,943 1 

1,200,000 2 

3,000,000 1 

3,200,000 1 

9,000,000 2 

16,200,000 2 

19,200,000 1 

21,200,000 2 

27,200,000 1 

34,200,000 2 

36,200,000 1 

37,200,000 1 

43,200,000 1 

46,200,000 1 

49,200,000 1 

51,200,000 1 

55,200,000 1 

58,200,000 1 

59,200,000 2 

61,200,000 1 

64,000,000 1 

71,200,000 1 

72,200,000 1 

77,200,000 1 

79,000,000 1 

88,000,000 1 

88,200,000 1 

89,200,000 1 

93,200,000 2 

95,200,000 1 

101,000,000 1 

119,200,000 1 
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Appendix M  - Frequencies Selected by Stepwise to Predict 1 L 
Atrazine Concentration with New Control Box and 2 cm Probe 

Frequency 
(Hz) 

# of Times 
Used 

37,600,000 1 

57,600,000 1 

125,600,000 1 

137,600,000 2 
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Appendix N – Frequencies Selected by Stepwise to Predict 36 L 
Atrazine Concentration with New Control Box 

Frequency 
(Hz) 

# of Times 
Selected 

1,413 1 

7,943 2 

251,189 1 

1,600,000 1 

25,600,000 1 

26,400,000 1 

65,600,000 1 

101,600,000 1 

117,600,000 1 

137,600,000 1 

161,600,000 2 

173,600,000 1 

185,600,000 2 

193,600,000 1 

194,400,000 1 

217,600,000 1 

229,600,000 1 

245,600,000 3 

273,600,000 2 

277,600,000 1 

281,600,000 1 

285,600,000 1 

305,600,000 1 

313,600,000 1 

317,600,000 1 

321,600,000 1 

333,600,000 1 

341,600,000 1 

346,400,000 1 

357,600,000 2 

369,600,000 1 

370,400,000 1 

385,600,000 1 

390,400,000 1 

393,600,000 1 
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Appendix O – Frequencies Selected by Stepwise to Predict the 
Concentration of Impurities in Biodiesel with New Control Box 

Frequency 
(Hz) 

# of Times 
Selected 

Frequency 
(Hz) 

# of Times 
Selected 

Frequency 
(Hz) 

# of Times 
Selected 

200 1 126,400,000 1 273,600,000 5 

400 2 129,600,000 2 277,600,000 3 

1,413 2 134,400,000 1 281,600,000 3 

1,995 2 137,600,000 3 281,600,000 2 

11,220 1 141,600,000 2 281,600,000 1 

44,668 5 145,600,000 3 285,600,000 5 

63,096 1 146,400,000 2 286,400,000 1 

251,189 3 149,600,000 2 289,600,000 1 

1,600,000 2 153,600,000 3 290,400,000 1 

2,400,000 1 154,400,000 2 293,600,000 2 

5,600,000 3 157,600,000 3 297,600,000 2 

9,600,000 5 158,400,000 1 301,600,000 2 

17,600,000 3 161,600,000 5 302,400,000 1 

21,600,000 3 165,600,000 1 305,600,000 2 

25,600,000 1 166,400,000 2 309,600,000 4 

30,400,000 1 169,600,000 2 313,600,000 4 

33,600,000 2 173,600,000 3 317,600,000 2 

37,600,000 1 174,400,000 1 321,600,000 2 

38,400,000 1 177,600,000 2 322,400,000 1 

41,600,000 2 181,600,000 4 325,600,000 2 

45,600,000 2 185,600,000 5 329,600,000 4 

46,400,000 1 189,600,000 4 333,600,000 1 

49,600,000 2 193,600,000 3 337,600,000 1 

53,600,000 1 197,600,000 1 338,400,000 1 

57,600,000 2 201,600,000 4 341,600,000 3 

61,600,000 2 201,600,000 1 342,400,000 1 

65,600,000 3 205,600,000 3 345,600,000 3 

69,600,000 7 209,600,000 5 346,400,000 1 

70,400,000 2 210,400,000 1 349,600,000 4 

73,600,000 3 213,600,000 1 350,400,000 1 

74,400,000 1 214,400,000 2 353,600,000 4 

77,600,000 2 217,600,000 2 354,400,000 1 

81,600,000 1 218,400,000 2 357,600,000 4 

85,600,000 2 221,600,000 3 358,400,000 1 

86,400,000 1 229,600,000 2 361,600,000 1 

89,600,000 4 233,600,000 2 365,600,000 1 

97,600,000 2 237,600,000 3 369,600,000 3 

101,600,000 5 241,600,000 1 370,400,000 2 

105,600,000 2 245,600,000 1 373,600,000 5 

109,600,000 1 249,600,000 4 378,400,000 2 

110,400,000 1 253,600,000 1 381,600,000 1 

113,600,000 2 253,600,000 2 382,400,000 1 

114,400,000 1 257,600,000 4 385,600,000 4 

117,600,000 3 261,600,000 2 394,400,000 1 

121,600,000 2 265,600,000 3 397,600,000 3 

122,400,000 3 269,600,000 2 398,400,000 1 

125,600,000 1 270,400,000 1   
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Appendix P – Wavebands Used to Predict Concentration of 1 L 
Nitrate Samples with Old Control Box 

2.5 cm Probe 5 cm Probe 7.5 cm Probe Impedance Meter 
  

Level Waveband Level Waveband Level Waveband Level Waveband 

6 1 5 1 6 5 9 1 
6 8    5 1 5 6 
5 1    5 4 5 18 

All Gain 

5 10    5 9     

9 2 5 2 7 4 5 4 
9 1 5 7 5 2 5 14 
6 1 5 13         
6 3            
6 10            
5 1            
5 10            

All Phase 

5 16             

10 1 10 1 8 3 8 2 

9 2 6 12 6 8 7 2 

6 8    6 11 6 14 

6 10            

All 
Gain+Phase 

6 11             

6 1 9 1 6 1 8 1 
5 1 5 8     7 5 Low Gain 

5 19 5 14         

6 1 6 1 6 1 5 1 
6 2 6 7     5 15 
5 6            

Low Phase 

5 12             

9 1 6 1 6 1 7 1 

8 4 6 17     6 9 

6 1        6 11 

6 19        6 13 

Low 
Gain+Phase 

            6 16 

5 1 5 1 6 3 8 1 
       6 4 8 2 
           7 4 
           7 5 
           5 1 
           5 10 
           5 11 
           5 13 
           5 18 

High Gain 

           5 19 

6 1 5 2 6 2 6 6 High Phase 
5 8 5 7     5 12 

9 2 6 12 6 12 6 15 High 
Gain+Phase 6 11             
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Appendix Q – Wavebands Used to Predict Concentration of 36 L 
Nitrate Samples with New Control Box 

2 cm Probe 2.5 cm Probe 7.5 cm Probe 
  

Level Waveband Level Waveband Level Waveband 

6 2 6 3 5 1 

5 3 6 4 5 2 

5 6 6 6 5 7 

5 7 5 1 5 9 

5 8 5 5 5 14 

5 9 5 11    

5 13 5 14    

All Gain 

5 14         

5 12 6 5 9 1 

  6 7 7 1 

  5 1 6 1 

  5 2 6 3 

  5 3 5 1 

  5 6 5 5 

  5 8    

All Phase 

    5 12     

8 4 10 1 8 3 

  10 1 7 5 

  8 4 6 1 

  7 8 6 2 

  6 4 6 6 

  6 5 6 16 

  6 12    

All 
Gain+Phase 

    6 14     

0 0 9 1 9 1 

      8 1 Low Gain 

        5 7 

9 1 7 4 8 1 
  6 1 6 1 Low Phase 

  5 1    

7 6 6 9 8 3 Low 
Gain+Phase     6 11     

9 2 6 8 9 1 
5 14 5 1 7 1 

  5 3 7 2 
  5 4 6 1 
  5 11 6 4 
  5 13 6 5 
      5 1 
      5 2 
      5 3 
      5 4 
      5 5 
      5 6 
      5 7 
      5 9 
        5 16 
      

High Gain 
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2 cm Probe 2.5 cm Probe 7.5 cm Probe 
  

Level Waveband Level Waveband Level Waveband 

    9 2 9 2 

  8 1 8 1 

  7 1 6 5 

  7 4 5 2 

  6 1 5 5 

  6 2 5 6 

  6 4 5 7 

  6 7 5 15 

  6 8 5 16 

  5 1    

  5 3    

  5 6    

  5 7    

  5 14    

High Phase 

    5 15     

    10 1 7 1 

  10 1 7 5 

  7 3 6 1 

High 
Gain+Phase 

    6 2 6 9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 133 

Appendix R – Wavebands Used to Predict Molecular Weight of 36 L 
Nitrate Samples with New Control Box 

 2 cm Probe 2.5 cm Probe 7.5 cm Probe 
 Level Waveband Level Waveband Level Waveband 

6 4 5 2 5 14 
6 5 0 0   
5 7     
5 11     
5 13     

All Gain 

5 14     
6 4 5 16 5 13 
6 5   5 15 
5 13     

All Phase 

5 14     
10 2 6 5 6 13 
6 4   6 15 
6 6     
6 8     

All Gain+Phase 

6 13     
6 6 9 1 6 6 
6 8 6 3   
5 10 6 7   

  5 14   

Low Gain 

  5 15   
5 10 6 5 9 2 
5 11 5 4 6 4 Low Phase 

5 15 5 12 6 8 
10 1 10 1 6 6 
8 4 8 2 6 16 
7 7 8 4   
7 8 7 8   

  6 11   
  6 15   

Low Gain+Phase 

  6 16   
6 6 5 3 8 2 
5 8     
5 14     
5 15     

High Gain 

5 16     
9 1 6 6 5 8 
9 2     
6 5     
5 8     

High Phase 

5 13     
8 4 7 3 9 2 High Gain+Phase 
7 6     

 

 

 

 



 134 

Appendix S – Wavebands Used to Predict Concentration of 
Atrazine in Water  

Table  7.1: Wavebands used to predict atrazine concentration in 1 L water samples 

2.5 cm Probe 5 cm Probe 7.5 cm Probe Impedance Meter 
  

Level Waveband Level Waveband Level Waveband Level Waveband 

7 1 7 2 5 11 5 4 
Gain 

           5 7 

9 1 6 1         

6 3             

6 7             

5 7             

Phase 

5 9             

7 1 7 2     10 1 

            7 4 

            6 3 

            6 7 

Gain+Phase 

            6 18 

 

 

Table  7.2: Wavebands used to predict atrazine concentration in 36 L samples 

 2 cm Probe 2.5 cm Probe 7.5 cm Probe 

 Level Waveband Level Waveband Level Waveband 

6 2 7 1 7 2 Gain 
  5 3 0 0 

7 1 7 1 5 5 

6 7   5 9 

5 2     
Phase 

5 4     

6 2 8 3 7 2 

  7 7   Gain+Phase 

  6 4   
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Appendix T – Wavebands Used to Predict Impurities in Biodiesel 

Table  7.3: Wavebands used to predict the concentration of water in 36 L biodiesel samples 
  2 cm Probe 2.5 cm Probe 7.5 cm Probe 

 Level Waveband Level Waveband Level Waveband 

6 7 6 1 6 3 

5 11 6 6 5 3 

5 14 5 2 5 9 
All Gain 

  5 10    

9 1 6 5 7 2 All Phase 
5 13 5 16    

7 2 7 6 7 2 

6 7 6 1 7 6 All Gain+Phase 

    6 11 

7 2 7 3 5 6 

5 12 6 6 5 13 

  5 1    
Low Gain 

  5 10    

8 2 9 2 5 3 

5 15   5 4 

    5 5 
Low Phase 

    5 10 

Low Gain+Phase 7 2 7 3 6 9 

6 7 6 7 7 3 

5 9 5 2 6 6 High Gain 

5 14 5 9 5 14 

5 15 7 1 7 2 

    5 1 High Phase 

    5 4 

  7 2 10 1 

  6 1 8 1 High Gain+Phase 

  6 12 6 16 
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Table  7.4: Wavebands used to predict the concentration of glycerol in 36 L biodiesel 
samples 

 2 cm Probe 2.5 cm Probe 7.5 cm Probe 
 Level Waveband Level Waveband Level Waveband 

8 1 8 1 8 2 

6 8 5 3 5 14 All Gain 

5 10 5 12     

7 2 6 3 7 2 

6 6 6 7 6 1 

6 7 5 4 6 8 

5 13 5 10 5 4 

        5 11 

All Phase 

        5 14 

6 8 8 1 10 2 All Gain+Phase 
        8 3 

6 4 9 2 8 2 

    8 2 5 1 

    5 2 5 5 
Low Gain 

    5 11 5 9 

6 6 7 1 5 7 Low Phase 
5 5     5 10 

10 2 7 6 6 10 

    7 8     

    6 3     

Low 
Gain+Phase 

    6 6     

6 8 6 8 6 4 High Gain 
        5 11 

5 8 7 3 7 3 

5 11 6 4 5 12 High Phase 

5 12 6 6     

8 3 7 7 8 1 

7 3     7 7 
High 

Gain+Phase 

6 12     6 4 
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Table  7.5: Wavebands used to predict the concentration of glyceride in 36 L biodiesel 
samples 

  2 cm Probe 2.5 cm Probe 7.5 cm Probe 

 Level Waveband Level Waveband Level Waveband 

9 1 6 4 8 2 

5 7 6 5 6 4 All Gain 

        5 14 

6 6 6 7 5 11 All Phase 
    5 5     

7 2 6 4 6 5 

6 10 6 5     All Gain+Phase 

6 14         

9 1     9 1 

6 7     5 3 

        5 13 
Low Gain 

        5 15 

Low Phase 5 1     6 6 

9 1 8 3 7 1 

6 7 7 1 6 8 

    7 7 6 10 
Low Gain+Phase 

    7 8     

5 7     7 4 

        5 2 High Gain 

        5 5 

7 4 5 2 6 2 

        5 4 High Phase 

        5 10 

6 5 7 3 7 4 

    6 6     High Gain+Phase 

    6 9     

 


