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Abstract 
 

In this work we studied the dynamics of deuterium molecules in intense laser fields both 

experimentally and theoretically. For studying the dynamics of the molecule on a time scale that 

is less than the period of the laser field (2.7 fs for 800 nm), an advanced experimental technique:  

COLTRIMS (cold target recoil ion momentum spectroscopy) was used. COLTRIMS allows 

studying the nuclear dynamics without using attosecond laser pulses. 

This thesis consists of two main parts. In the first part we deduced the angular 

dependence of the ionization probability of the molecule without aligning the molecules, by 

measuring the relative angle between a deuteron resulting from field dissociation and an emitted 

electron using electron-ion coincidence measurements with circularly polarized light in 

COLTRIMS. We found out that for 50 fs pulses (1850 nm wavelength and 2 x1014 W/cm2 

intensity), D2 molecules are 1.15 times more likely to be ionized when the laser field is parallel 

to the molecular axis than when the laser field is perpendicular. This result agreed perfectly with 

the result from our ab initio theoretical model and also with predictions of the molecular 

Ammosov-Delone-Krainov (mo-ADK) theory. 

In the second part of this work we calculated the time evolution of an initial nuclear wave 

packet in D2
+ generated by the rapid ionization of D2 by an ultrashort laser pulse. We Fourier 

transformed the nuclear probability density with respect to the delay between the pump and 

probe pulses and obtained two-dimensional internuclear-distance-dependent power spectra which 

serve as a tool for visualizing and analyzing the nuclear dynamics in D2
+ in an external laser 

field. We attempt to model realistic laser pulses, therefore in addition to the main spike of the 

pulse we include the Gaussian pedestal. The optimal laser parameters for observing field-induced 

bond softening and bond hardening in D2
+ can be achieved by varying the intensity, wavelength, 

and duration of the probe-pulse pedestal. Despite the implicit “continuum wave” (infinite pulse 

length) assumption the validity of the “Floquet picture” is tested for the interpretation of short-

pulse laser-molecule interactions. 
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Preface 

 

“The most incomprehensible thing about the world is that it is comprehensible.” 
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CHAPTER 1 - Introduction 

The interaction of intense lasers with atoms and molecules has been a very important 

topic in current research in atomic and molecular physics. The length and time scales of the 

interactions are orders of magnitude less than those in our life. The typical length scales are less 

than 1 nanometer for small molecules, and time scales vary from attosecond for electronic 

dynamics, to femtosecond for molecular vibration, and picosecond for molecular rotation. To 

trace all the processes that take place during these interactions short laser pulses are used. To 

access the sub-femtosecond time scale, pump-probe techniques are being further developed to 

track electrons on their natural attosecond time scale [7, 14, 29, 37, 51, 55]. 

Recent advances in femtosecond (fs) laser technology have made it possible to observe, 

control and study nuclear dynamics in small molecules [19, 32, 40, 49, 53, 76, 97]. The “pump-

probe” experiments, which use short and intense time-delayed laser pulses, are performed in 

many laboratories [7, 10, 14, 29, 37, 51, 55, 64, 67, 84]. In these experiments a short pump pulse 

(with pulse lengths of only a few fs corresponding to the bandwidths that are larger than the 

vibrational level spacing) electronically excites or ionizes the neutral target molecule and also 

coherently excites a superposition of stationary vibrational states of the molecular ion, resulting 

in a moving nuclear wave packet. With the help of a second delayed probe pulse the probability 

density of the wave packet can be imaged. The probe pulse rapidly ionizes the molecular ion 

leading to its fragmentation by Coulomb explosion (CE) [25, 26, 38]. The fragments of the 

reaction are detected and kinetic-energy release (KER) spectra are measured [7, 37, 60, 70, 81]. 

From the KER spectra, the dynamics of the nuclear wave packet can be reconstructed. 

In the presence of a strong laser field, molecules can undergo single or multiple 

ionization. The probability of strong field ionization strongly depends on the angle between the 

molecular axes and the electric field direction [4, 56]. It is important to know the angular 

dependence of molecular ionization in order to interpret the angle-resolved molecular high-

harmonic spectra. Experimentally, the angular anisotropy can be measured by aligning the 

molecules first with a linearly polarized laser field [7, 56, 75]. Measuring the angular anisotropy 

of ionization by aligning the molecules has some limitations, such as limited degree of field-free 

alignment that can be achieved. 
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Recently, Staudte et al. [88] suggested an ingenious method for measuring the angular 

dependence of ionization without having to align the molecules first. They used circularly 

polarized light to ionize and dissociate the molecules (H2), and then measured electrons and 

fragmented ions in coincidence. This method has a much higher resolution, and most importantly 

no alignment of molecules is required. We expanded this method using D2 molecules ionized by 

1850 nm laser pulses – deep in the tunneling ionization regime. 

This thesis is arranged as follows. Chapter 2 covers some of the basic concepts and 

theory related to the behavior of atoms and molecules in “intense” or “strong” laser fields. In 

Chapter 3 we explain the laser parameters and experimental techniques used with an overview of 

the apparatus, experimental setup and procedures. We also cover the working details of the cold 

target recoil ion momentum spectroscopy (COLTRIMS) multi-hit spectrometer which provides 

us with a 4D solid angle collection for ions and low energy electrons, enabling high resolution 

ion and electron momentum measurements. Chapter 4 explains our data recording, data 

processing and how we calibrate our experimental parameters. 

The first main part of this work (Chapter 5) is dedicated to a further investigation of the 

angular anisotropy of strong-field ionization in molecular hydrogen by extending the approach of 

Staudte et al. [88] to laser pulses of a longer wavelength (1850 nm) and using deuterium 

molecules as our target [57]. In this experiment, using electron - ion coincidence momentum 

spectroscopy and circularly polarized light, we measured the relative angle between an emitted 

electron and a deuteron without aligning the molecules first. The final direction of the drift 

momentum of the detached electron will be opposite to the vector potential of the laser field at 

the moment of ionization. Therefore, for circularly polarized light, the vector potential trails the 

rotating electric field vector by a quarter-cycle, so that ejected electrons will ultimately drift 

perpendicularly to the direction of the laser electric field at the moment of ionization. Bond 

softening (BS) is anisotropic with fragment momentum emerging mostly within a 10° angle from 

the plane of circular polarization [21], but for a rapidly rotating electric field vector there is no 

preferred direction within its polarization plane and the molecular axis direction within this plane 

is not affected by a circularly polarized pulse. By measuring the distribution of relative angles 

within the plane of polarization between an electron and a proton coming from the same 

molecule, one can determine the dependence of the ionization yield on the angle between the 

molecule and the rotating electric field vector [57]. 
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The second main part of this work (chapter 6) is dedicated to theoretical studies of the 

dependence of BS and bond hardening (BH) on laser intensity, wavelength, and pulse duration 

using two-dimensional internuclear-distance-dependent power spectra [58]. Variation in the 

intensity, wavelength, and duration of this probe-pulse pedestal allows us to identify the optimal 

laser parameters for the observation of field-induced BS and BH in D2
+. This also suggests a 

scheme for quantitatively testing the validity of the “Floquet picture”, which is commonly used 

for the interpretation of short-pulse laser-molecule interactions, despite its implicit “continuum 

wave” (infinite pulse length) assumption. 

Using CE mapping [26, 39], the experimental KER spectra [7, 37, 40, 55, 60, 81] can be 

compared to theoretical models for the nuclear probability densities [38, 66, 69, 70, 91]. For 

instance, in the case of the simplest diatomic molecules (such as H2
+), the nuclear probability 

densities can be approximately constructed by a direct numerical solution of the time-dependent 

Schrödinger equation using wave-packet propagation techniques [7, 24, 38, 48, 66]. For 

example, in recent experiments [7, 37, 55], the dephasing of nuclear vibrational wave packets in 

D2
+ over a period of a few vibrational cycles and its subsequent revivals after many vibrational 

cycles were observed, which confirmed earlier model calculations [38, 44]. In this example the 

nuclear wave packets evolution shows very interesting purely quantum mechanical phenomena 

even in the absence of external (laser electric) forces. Typically, nuclear wave function evolution 

is analyzed by recording KER spectra as a function of the pump-probe delay τ. Subsequent CE 

mapping gives the nuclear probability density ρ(R,τ) [7, 37]. Graphs of ρ(R,τ) capture the nuclear 

dynamics in space (R) and time (τ) and allow the distinction of several pump-laser-induced 

phenomena, such as molecular fragmentation into different asymptotic dissociation channels and 

the coherent dephasing and revival [79] of bound vibrational wave packets in diatomic molecular 

ions [7, 16, 38, 44, 62, 70, 81].  

An alternative and less explored method for investigating the nuclear dynamics in 

diatomic molecules (and possibly in more complex molecules) is the time-series analysis of KER 

spectra.  This method captures the nuclear dynamics in space and frequency domain and applies 

equally well to nuclear probability densities that are calculated or derived from measured KER 

spectra by CE mapping. This method is the focus of the investigation in chapter 6. In Chapter 7 

the conclusions and final remarks are presented. Note that in chapters 2 through 5 SI units are 

used unless it is specified otherwise and in chapter 6 atomic units are used. 
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CHAPTER 2 - Background and Theory 

In this chapter I will cover some of the basic concepts and theory related to the behavior 

of atoms and molecules in “intense” or “strong” laser fields. Intense laser fields are fields with a 

very high power density. Intense fields are created by concentrating energy in time (short pulses) 

generating high power and on a small area (focusing) generating high density. 

Intense laser pulses are highly suitable for studying atoms and molecules. The labeling of 

a laser field as “intense” depends not just on the strength of the field, but also on the application. 

It is dependent on the properties of the molecular system as well as the frequency of the electric 

field. For example, in terms of the Rabi oscillations (the measure of the strength of laser electric 

field induced coupling of molecular levels), the field is considered intense if the Rabi-period is 

shorter than the interaction time. Quantitatively, a laser field is considered intense if its intensity 

is higher than 1013 W/cm2 [76].  
 

 

2.1. Atoms in Strong Laser Field 
 

Over the last decade the study of atoms and molecules in intense electric fields has been 

growing very rapidly. Advances in the technology has led to the generation of short pulses with 

intensities in the order of the atomic unit (1a.u. = 3.5x1016 W/cm2). The ionization dynamics of 

atoms and molecules have been studied in great detail. In this section the single and double 

ionization of an atom by a laser field will be discussed. 

 

2.1.1 Single Ionization  
 

Single ionization is the most basic ionization process. In this ionization process an atom 

or molecule absorbs one or several photons with a total energy greater than the ionization 

potential of the atom or the molecule, and the electron takes away the excess energy. When the 

ionization potential is greater than photon energy, generally three different processes can happen 

(Fig. 2.1): 
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 Multiphoton Ionization 

 Tunneling Ionization 

 Over the Barrier Ionization 

 

 
Fig.  2.1. Schematics of the ionization mechanisms in atoms. 
a) For multiphoton ionization the laser field is not strong enough to sufficiently disturb the 
atom’s potential. Ionization happens by absorbing several photons, overcoming the ionization 
potential. b) For higher intensity the potential shape changes sufficiently so that the electron 
wave packet can tunnel out. c) For higher intensity the laser field shapes the potential so that the 
electron is no longer bound and can overcome the barrier. 

 

All the above processes can be described using the “Keldysh parameter”. The ratio of the 

laser frequency to the tunneling frequency is known as the adiabaticity or the Keldysh parameter 

and is used to determine which ionization mechanism is dominant, 

    γ = ω laser
ωtun nel

= �
Ip

2Up
      (2.1) 

where Ip is the atom’s ionization potential, Up=I/4ω2 is the ponderomotive energy (I is the laser 

intensity and ω is its angular frequency). For linearly polarized light, the ponderomotive energy 

can be expressed as 

                       Up =e2 E0
2/4meω2 = 9.33 x 10−14 Iλ2 [eV],            (2.2) 

where λ is expressed in μm and intensity in W/cm2. 

In 1965 in his early works Keldish [52] showed that all three mechanisms are just 

different sides of the same universal process: nonlinear ionization. While multiphoton ionization 
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can be treated appropriately using the perturbation theory [54, 76], the tunneling ionization needs 

a classical treatment of the field. To distinguish between these two regimes, Keldish examined 

the time needed for an electron to pass under the potential barrier at the unperturbed initial-state 

energy (assuming that electron velocity is v = �Ip/me, and the barrier width is 𝑙𝑙 = Ip/(eE)). 

                               t = �2me Ip

eE
= ωtunnel

−1      (2.3) 

where Ip is the ionization potential and E the instantaneous electric field strength, me and e are 

the electron mass and charge. Now, one can see that  

i) if the oscillation period is small compared to the tunneling time, then ionization would have to 

be treated perturbatively in the multiphoton picture and correspondingly 

                            γ » 1  corresponds to multiphoton ionization                     (2.4) 

ii) if the oscillation period of the external electric field is large compared to the “tunneling time”, 

then tunneling can occur and 

                                                         γ « 1   corresponds to tunneling .                                       (2.5) 

 

2.1.1.1 Multi-photon process 
 

At low intensities (<1013
 W/cm2), when γ » 1, we are in the multiphoton regime (Fig. 2.1 

a). In this regime the ionization potential is high and the tunneling time is greater than the 

oscillation period of the field.  

During a cycle of the laser field, the electron may gather sufficient energy to leave the 

atomic potential well. The ionization rate is given as 

ωn=σnIn        (2.6) 

where I is the intensity and σn is the generalized n-photon ionization cross section [50]. The 

relation (2.6) is very difficult to test in an experiment because of the physical properties of the 

laser beam (such as focal volume, intensity). The power law (2.6) is not valid when the depletion 

of the initial state is non-negligible. 

If an atom or molecule absorbs more photons than required for ionization, the process is 

called Above Threshold Ionization (ATI). This process was first reported by Agostini et al. [2] 

thirty years ago. A typical ATI electron energy spectrum is given on Fig. 2.2 where the peaks are 

separated by the photon energy. The ionization rate is given as: 
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          ωn+s ~ In+s              (2.7) 

where s is the number of excess photons absorbed. The photoelectron energy can be calculated 

from the extended Einstein photo effect formula  

E = (n + s) ħω − Ip.         (2.8) 

 

 
Fig.  2.2  ATI electron energy spectra of Xe with λ=1064 nm, 130 ps laser pulses  
(adapted from G. Petite et al. [75]) (a) I = 2.2 x 10 12 W/cm2; (b) I = 1.1 x 1013 W/cm2 

 

 
Fig.  2.3 Illustration of the Stark shift of the ionization potential depending on laser intensity. 

A remarkable feature of ATI is the suppression of the low energy peaks (see Fig. 2.2) in 

the photoelectron spectra. By increasing the laser intensity, lower peaks start to get suppressed. 

The reason for this is the AC-Stark shift of the energies of atomic states in the presence of the 
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external field. This shift is characterized by the electron ponderomotive energy Up. The 

ionization barrier is boosted by Up in the laser field (Fig. 2.3) and the final photoelectron energy 

is given by  

                       E = (n + s) ħω  − (Ip + Up).                                    (2.9) 

A typical photoelectron spectrum at high intensities has several features of interest (Fig. 

2.4):  an intensity-independent part at lower energy and a plateau continuing up to a cutoff 

energy. Energies 0-2Up corresponds to “direct electrons”. A semi-classical theory (where the 

electron is treated quantum mechanically when ionizing though tunneling from the parent ion 

and electrons dynamics after tunneling is treated classically) has explained some of the high 

energy features, in particular the plateau and the well defined cut off energy at 10 Up [71]. 

 
Fig.  2.4 Typical ATI spectra for noble-gas atoms.  
The plateau feature results from elastic electron re-scattering [72]. 
 

2.1.1.2 Tunneling ionization 
 

When γ<1 (Fig. 2.1 (b)) we are in the tunneling ionization regime. In this regime, the 

laser period is greater than the tunneling time and so the laser field is treated classically. The 

tunneling regime is dominant at low laser frequencies. Unlike the multi-photon process, which 

involves the transition between states with different energies, tunneling is associated with the 

transition through a barrier, where the initial and final states have the same total energy. If the 
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laser field is strong enough to distort the Coulomb potential (at intensities between 1014 and 1015 

W/cm2) it is possible for the electron to tunnel through the barrier formed by the suppressed 

atomic potential.  

One of the most commonly used theories in the tunneling ionization regime is the 

Amosov, Delane and Krainov (ADK) theory of ionization in intense laser fields. In this theory 

the electric field is treated as quasi-static because it is assumed that substantial ionization occurs 

in a short period (a fraction of an optical cycle). The basic point of the ADK model is that the 

ionization rate depends critically on the ionization potential of an atom [3]. 

 

The tunneling ionization ADK rate in atomic units is given as [20] 

ϖADK = �3e
π
�

3/2 Z2

n∗9/2 �
4eZ3

n∗4F
�

2n∗−3/2
exp �− 2Z3

3n∗3F
�             (2.10) 

where e=2.718, F is amplitude of the laser field, Z is ionic charge and n* is effective quantum 

number which is expressed as:    

n∗ = Z
�2Ip

                         (2.11) 

To find the field strength one can use the formula: 

                           

2/1

16

2

1051.3
/








 ⋅⋅
=

x
cmWinIntensityF .                                         (2.12) 

The ionization rates found from these expressions agree closely with experimental results 

in the case of single ionization [20], but often disagree with them for double ionization [76]. 

 

2.1.1.3 Over the Barrier ionization 
 

If we increase the laser intensity enough, eventually we reach the critical value for OB 

ionization. Beyond this value the Coulomb potential is strongly suppressed so that the ground 

state is no longer bound. In this regime (Fig. 2.1.c) the electron escapes from the potential well. 

Going from the tunneling regime to OB ionization regime, the ionization rate grows smoothly 

and reaches unity for a single pulse cycle. [76].  
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2.1.2 Double Ionization  
 

In double ionization, two electrons are removed from the target atoms by a short laser 

pulse. Double ionization of atoms or molecules is classified as either sequential or nonsequential, 

depending on the intensity of the laser. 

 

In sequential ionization both electrons are released by the field one after another at 

different phases of the laser pulse. The electrons can be released sequentially either by tunneling 

ionization or by OB ionization. The sequential process has been quantitatively explained with 

ADK rates [3]. Several experimental papers [28, 85, 94] showed clearly that the double 

ionization yield (plotted vs. intensity) had a knee part in the lower part of the intensity ( Fig. 2.5).  

 

The increase in double ionization yield was attributed to a new process called “Non-

Sequential Double Ionization (NSDI)”. The theoretical explanation of the knee structure was first 

suggested by Corkum [28] and Kulander with co-workers [85]. The model is known as 

“Rescattering” or “Simple man’s” model and consists of three steps.  

 

In the first step, the electron tunnels through the potential barrier and tunneling is treated 

quantum mechanically. Secondly, the freed electron then propagates in the laser field. The 

motion of the electron in the field is treated classically. Lastly, after a reverse of the field 

direction electron comes back to the ion core and depending on the electron’s energy it can either 

recombine with ion releasing excess energy, excite or knock out another electron. The excited 

second electron may be ionized by the field. The rescattering process depends on the laser 

polarization. There is no rescattering in a circularly polarized field because in this type of 

polarization the electron does not go back to the parent ion. Thus in non-sequential ionization 

one of the electrons tunnels out from the atom and is then driven back to the ion core due to the 

changing field direction, knocking out a second electron if it carries sufficient energy on the 

return [6].  
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Fig. 2.5 Intensity dependence of the single and double ionization yield of He for linearly 
polarized, 100 fs, 780 nm laser pulse. The solid line shows the rate calculated in an independent 
event model (sequential) (From [94]). 

 

2.1.2.1 Simple man’s theory 
 

In this section details of the Simple man’s model proposed by Paul Corkum [30] will be 

discussed. As discussed above, after tunneling, the electron is treated classically (also neglecting 

the electron ion interactions). In an electromagnetic field, the Lorentz force acting on an electron   

 𝐹⃗𝐹 = 𝑒𝑒(𝐸𝐸�⃗ + 𝑣⃗𝑣 × 𝐵𝐵�⃗ )                  (2.13) 

where v is the electron velocity and e is it’s charge. For typical laser intensities of 1013-1016 

W/cm2 and a wavelength of 800 nm, the velocity of the electron is much smaller than the speed 

of light, so we can neglect the magnetic field and write the electric fields as:    

𝐸𝐸�⃗ = 𝑒𝑒𝐸𝐸0����⃗ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐       (2.14) 

where ω is the frequency of the field. Assuming that the field is polarized only in z direction, we 

have  

                   𝑚𝑚𝑣𝑣𝑥̇𝑥=0 ,             𝑚𝑚𝑣𝑣𝑦̇𝑦 = 0,         𝑚𝑚𝑣𝑣𝑧̇𝑧 = eE0(t)cosωt                      (2.15) 

Assuming further that electron starts from position z=0 at time t0, one can integrate (2.15) to get 

𝑣𝑣𝑧𝑧(𝑡𝑡) = 𝑒𝑒
𝑚𝑚𝑚𝑚

𝐸𝐸0(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡0)                                                    (2.16) 
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𝑧𝑧(𝑡𝑡) = 𝑒𝑒
𝑚𝑚𝜔𝜔2 𝐸𝐸0(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡0 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝜔𝜔(𝑡𝑡 − 𝑡𝑡0)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡0).              (2.17) 

The plot of equation (2.17) is given on Fig. 2.6. The electron returns to the ion core at 

time tr > t0 if z(tr) = 0. This equation cannot be solved analytically and has to be solved 

numerically. From equation (2.16) we can write the expression for kinetic energy 

𝐸𝐸𝑘𝑘𝑘𝑘𝑘𝑘 (𝑡𝑡) = 2𝑈𝑈𝑝𝑝(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡0)2                                                     (2.18)  

where Up is defined as in equation (2.2).   

 
Fig.  2.6. Motion of the electron along z direction from equation (2.17) 
For different initial times ωt0= - 0.1, 0.1 and 0.3. (a) in this case electron never comes back to 
ion core, (b) electron will come back multiple times and (c) electron comes back single time 
(Initial phases for each cases). 

 

The numerical solution for z (tr) = 0 is given in Fig. 2.7. One can see that the electron 

born at ωt=0.3 returns to the ion core with maximum kinetic energy, and that value of energy 

gained after first revisit is 3.17Up. We can see that electrons with maximum energy are only born 

at particular phase whereas electrons born at all other phases have two birth phases (short and 

long trajectories). Electrons born at phases corresponding to a value left of the energy peak 

3.17Up (Fig. 2.7) will have longer trajectories and electrons born at phases corresponding to the 
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values right of the energy peak will have shorter trajectories. For observing rescattering, 

electrons with shorter trajectories are more important, because from a quantum mechanical point 

of view the electron wave packet has less spread. 

 

Fig.  2.7  Electric field used, maximum kinetic energy, and return phase all plotted as a function 
of birth phase (wt0) 
The first panel of the figure shows the electric field used (maximum value 0.1 a.u.) as a function 
of the time (more correct as a function of ωt phase). The second panel is showing the maximum 
kinetic energy that an electron can gain in the laser field as a function of the birth phase (ωt0), 
and in the last panel the return phase (ωtr), is plotted as a function of the birth phase (ωt0).  
 
 

2.2 Molecules in strong laser field 
 

Interactions of a laser field with molecules are far more complicated than those involving 

atoms. The complexity of the interaction reveals new phenomena, which include above threshold 

dissociation (ATD), BS, BH and charge resonance enhanced ionization (CREI) which will be 

discussed in the next few sections. 
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2.2.1 Above Threshold Dissociation  
 

Dissociation from low vibrational states results in ATD [45], which corresponds to the 

similar effect in atomic ionization called “above threshold ionization” (ATI) [2]. In the ATD 

process, molecules absorb more photons than required for dissociation, and the kinetic energy 

release (KER) spectrum has peaks separated by photon energy. ATD is marked with an arrow in 

Fig. 2.8. The dissociation would require extensive tunneling through the classically forbidden 

barrier and is very improbable at the given intensity. The more probable path for the 

fragmentation of the low vibrational states is ATD, which can happen through 2pσu-3ω crossing 

(three photon absorption). The balance between ATD and one-photon absorption depends 

strongly on the initial vibrational state, laser frequency and intensity. 

 

 
Fig.  2.8  Schematics of the ATD, BS, and BH processes (indicated with arrows).  
Thin black curves correspond to the field-free diabatic Floquet potentials for D2 +. The field-dressed 
adiabatic molecular potential curves for D2 + are shown as solid red (5x1011 W/cm2) and blue dashed-
dotted lines (1013 W/cm2) for 500 nm cw laser field.   
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2.2.2 Bond Softening  
 

At higher initial vibrational states there will be an intermediate energy value, which is 

above the adiabatic potential barrier, so that the molecule can dissociate over the barrier channel 

(Fig. 2.8.). This process was termed as “Bond Softening” by Bucksbaum et al. (1990) [21]. The 

main physics behind BS is simple. The molecule’s bond “softens” in an intense laser field and 

the molecule dissociates. In Coulomb explosion, dissociation is caused by the sudden removal of 

electrons, whereas in BS the strength of the repulsion is quite gentle and doesn’t involve the 

removal of any electrons. Molecular fragments typically have kinetic energies equivalent to or 

less than a single photon.  

 

 
Fig.  2.9  The process of vibrational trapping of the wave packet (BH) above three-photon gap in the 
H2

+ field –dressed potential curves. 
From Frasinski at al. [42] 



 

16 

 

2.2.3 Bond Hardening  
 

In the BH process, due to their weaker binding, high-lying vibrational states live longer 

than expected. As we go to higher initial vibrational levels, which lie above the crossing of the 

1sσg and 2pσu-ω curves in Fig. 2.8, the probability of photo-dissociation suddenly decreases 

because a portion of the initial vibrational population is “trapped” in the adiabatic well formed 

by the avoided crossing. BH depends on the intensity of the field, which determines the shape of 

the field-dressed adiabatic potential curves. If the intensity is too low, the adiabatic well will not 

be deep enough to trap the population. If the intensity is too high, the adiabatic well will be 

destroyed and the ‘trapped’ population will escape via the 1sσg asymptote and yield photo 

fragments with an unusually low kinetic energy (see Fig. 2.8). 

The process of BH is illustrated in Fig. 2.9 [42]. Starting with the neutral molecule at an 

intensity of about 50 TW/cm2, the wave packet is created in vibrational states just below the 1ω 

dissociation limit (Fig. 2.9(a)). This wave packet crosses the 3ω gap while the gap is still small. 

Most of the wave packet dissociates diabatically [42]. After some time the wave packet turns and 

comes back when the gap is wider and diabatic crossing is less probable and gets trapped in the 

laser-induced adiabatic state (Fig. 2.9(b)). All three processes described above (ATD, BS and 

BH) are often described with adiabatic Floquet potentials, and describe the dissociation of H2 + 

into p+H. CREI, on the other hand, describes breakup into p+p+e_ [86, 98]. 

 

2.2.4 Charge Resonance Enhanced Ionization  
 

The experiments from the past one and a half decades reveal a particular sequential 

double ionization mechanism. In this mechanism the second ionization step always happens at a 

fixed range of internuclear distances [27, 31, 33, 89, 96].  

The results were explained initially using BH [94], but no trapping was needed for 

interpreting the data [98]. The fact that the ionization probability is increased when the 

dissociating molecule passes a range of critical internuclear distances suggested that it was 

something else, which is now termed as CREI. At a critical internuclear distance the external 

field and the downhill ion potential together pull down the internuclear potential barrier 

sufficiently such that an electron localized on the uphill ion can escape.  
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CHAPTER 3 - Experiment 

This section of the dissertation provides an overview of the experimental technique we 

used. Our aim was to study the ionization dynamics of atoms and molecules in an intense laser 

field. A multi-pass Ti:sapphire amplifier from the Kansas Light Source (KLS) (approx 1.5 mJ, 

35 fs 800 nm pulses at a 1 kHz repetition rate) was used as the laser source and an Optical 

Parametric amplifier was used for wavelengths up to 2600 nm. For our electron ionization 

anisotropy experiments, we used 1850 nm laser pulses of 50 fs duration generated by a TOPAS 

optical parametric amplifier. The 1850 nm idler beam had approx 120 µJ of energy per pulse. 

The cold target recoil ion momentum spectroscopy (COLTRIMS) was used to detect the 

fragments of the molecules that we produced in the intense laser field. COLTRIMS allows us to 

detect both ions and electrons in coincidence. 

  

3.1 Laser 
 

The laser used in our experiments was a Ti:sapphire laser from KLS. This laser uses a 

titanium sapphire crystal and consists of two parts, the oscillator and the amplifier. The output 

laser beam is around 30 fs, 2 W and has a 1 kHz repetition rate. The electric field is assumed to 

have a Gaussian envelope: 

𝐸𝐸(𝑡𝑡) = 𝐸𝐸0𝑒𝑒
−�𝑡𝑡𝜏𝜏�

2

cos(𝜔𝜔𝜔𝜔)                   (3.1) 

where ω, τ/2ln2 and E0  represent the laser angular frequency, pulse duration (FWHM), and 

electric field amplitude respectively (see Fig. 3.1). An 800 nm, 3.5x1014 W/cm2 laser pulse has 

about 11 cycles. The time averaged laser intensity is given as: 

I = I0e−2r2/w2
,        (3.2) 

where w is the half width of the beam to the 1/e2 intensity point, r is the radial distance from the 

center of the beam, I0 is the intensity at the center of the field.  
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Fig.  3.1 Example of laser pulse of 10 fs FWHM and 800 nm wavelength.  
The amplitude of the electric field is 0.1a.u, which corresponds to 5.14x108 V/cm.  

 

 
Fig.  3.2  The Gaussian beam width dependence on distance z.  
Θ is total angular spread, w0 is the so-called beam waist radius, ZR is the Rayleigh range, and b 
is the confocal parameter or depth. 

 

The dependence of w on the axial distance z is shown on Fig. 3.2. Analytically it is given as 

�
w(z) = w0�1 + � λ z

π w0
�

2

w(z) = λ z
π w0

    For z ≫ zR

�     (3.3) 
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where zR is the Rayleigh range [90], 

zR=πw0
2 / λ ,     (3.4) 

and the focal radius w0 is related to the focal length f and beam radius w as for z = zR. From (3.3) 

we have  

𝑤𝑤0 = 𝑓𝑓𝑓𝑓
𝜋𝜋𝜋𝜋 (𝑧𝑧)

,   w(±zR) = w0√2    (3.5) 

The distance between the two points corresponding to z= ± zR is called the depth or focus 

of the beam: b=2zR. The power passing through a circle of radius r in a plane perpendicular to 

the z direction can be written as 

P(r, t) = P0[1 − exp(−2r2/w2(z))]        (3.6) 

 

where 𝑃𝑃0 = 1
2
𝜋𝜋𝐼𝐼0𝑤𝑤0

2 is the total transmitted power. The peak intensity (corresponding to r=0) is 

the power passing through a circle of radius r in the limit r0: 

 

I(0, z) =    lim
r→0

P0 �1 − exp �− 2r2

w2(z)��

πr2  

             =    
P0

π
lim
r→0

�1 − exp �− 2r2

w2(z)��
′

[r2]′  

             =  
 𝑃𝑃0

 𝜋𝜋
lim
𝑟𝑟→0

�−(−2)(2𝑟𝑟)exp(− 2r2

w2(z))�

𝑤𝑤2(𝑧𝑧)(2𝑟𝑟)
     =      

2𝑃𝑃0

𝜋𝜋𝑤𝑤2(𝑧𝑧)
. 

 

This defines an effective area Aeff=πw2/2.  

The peak intensity at the focal point can be written as 

I0 = 2P
τRπw0

2      (3.7) 

where P is the measured power (in the units of Watt), τ is pulse duration (sec) (~30 fs for long 

pulse), R is repetition rate (Hz) (1 kHz for our laser), and w0 is beam radius (m). 
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3.2 COLTRIMS 
  

COLTRIMS allows us to completely reconstruct vector momentum information for all 

the reaction fragments of an experiment. COLTRIMS consists of a gas jet, a spectrometer, and 

two time and position sensitive detectors sitting on both sides of the spectrometer. The 

spectrometer field separates and drives the electrons and ions in opposite directions onto the 

detectors. COLTRIMS can measure both ion and electron momentum. In our experimental 

COLTRIMS setup the gas jet and laser beam are perpendicular to each other, the electric and 

magnetic fields are parallel in the spectrometer, and we measured electrons and ions in 

coincidence. 

The COLTRIMS apparatus provides us with [36, 93] 4π solid angle collection for ions 

and for low energy electrons, and allows ion and electron momentum measurement with a high 

resolution. COLTRIMS consists of the following main parts: 

i) Vacuum chamber  

ii) Gas jet 

iii) Spectrometer 

iv) Detectors 

v) Magnetic coils 

vi) Focusing mirror 

These parts will be described next. 

 

3.2.1 Vacuum chamber 
 

The largest part of the COLTRIMS is a vacuum chamber, which contains five stages: the 

catcher, the main chamber (where the detectors are located), two intermediate chambers and a 

source chamber (Fig. 3.3). The last two are connected with a skimmer (0.5mm) and are 

evacuated using turbo-pump. The source chamber is usually kept at pressures in the 10-4 torr 

range, whereas the first and second intermediate chambers, which are separated by a 2mm 

diameter slit, are kept at 10-6 and 10-9 torr respectively. The intermediate chamber is connected to 

the main chamber (10-11 torr) with piezo-electric slit. The ion gauge is used to monitor all of our 

pressure. The catcher is used for removing the residual gas. (For details see [59]) 



 

21 

 

 
Fig.  3.3  Pumping stage of the COLTRIMS.  
The source chamber is typically at 10-4 torr of pressure, the intermediate chambers are at 10-6 
and 10-9 torr, the main chamber can reach the pressures around 10-11 torr. Laser beam direction 
is out of the plane of the paper. 

 

3.2.2 Gas jet 
 

The gas jet used in the COLTRIMS has to be cold in order for us to be able to measure 

recoil ion momentum because the typical value of the momentum is in the order of the molecular 

momentum spread at room temperature. The jet is made with a 30 µm nozzle followed by 0.5 

mm skimmer, two 2 mm slits and a piezo-electric slit which adjustable from 40 µm to 2 mm 

wide. All this allows us to have an extremely thin jet, which has two advantages for high 
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intensity experiments. Firstly, target molecules are present mostly in the most intense part of the 

beam, and secondly, the small interaction volume contains on average less than a single target 

molecule. 

 
Fig.  3.4  Free-jet expansion. From [64]. 

 

Gas passing through the pin-hole forms the so-called: zone of silence (Fig. 3.4) [64]. In 

this region all gas molecules are moving at the same speed without interacting, which lowers the 

internal temperature of the gas in the zone of silence to only a few Kelvin. Its dimensions depend 

strongly on the ratio of gas supply pressure P0 and the background pressure Pb of the expansion 

chamber. A skimmer, if it has appropriate position, can then cut out gas from the zone of silence, 

creating a very directional and a high velocity gas jet. At this juncture the length Xzos of the zone 

of silence is of particular interest: 

                      Xzos = 0.67(P0 Pb⁄ )1/2 ∙ d                (3.8) 

where d is the diameter of the nozzle (slit). See appendix B for jet temperature and velocity. 

 

3.2.3 Spectrometer 
 

The spectrometer is usually made out of copper plates connected in a series with several 

resistors (Fig. 3.5). The voltage applied across spectrometer produces a uniform electric field. 
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The electric field separates positive and negative particles and sends them onto the detectors 

located at both ends of the spectrometer. Positively charged particles go to the ion side of the 

spectrometer, which is about 5 cm away from the interaction region, and the electrons go to the 

electron side separated by about 24 cm. 

 
Fig.  3.5  Spectrometer.  
(The photo was taken by former members of our group before assembling the COLTRIMS 
apparatus). 
 

3.2.4 Detectors 
 

Detection of the charged particles involves multi-channel-plates (MCP) (Fig. 3.6) and 

delay-line anodes (DLA) (Fig. 3.7) [78]. For the ion and electron side of the COLTRIMS 

detector two MCP (8cm in diameter) plates are used, aligned in a V shape (also known as a 

Chevron configuration). When a charged particle hits the front of the MCP it produces electrons 

which further multiply in the channels (Fig. 3.6). The main purpose of using a MCP is to amplify 

the charge of the detected particle so that a signal can be measured. The channels in the MCP are 

inclined around 8o to the normal direction to guarantee that an incoming particle hits the wall of 

the channel for amplification.  
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Fig.  3.6  Working principle of an MCP, electrons are multiplied in several million independent 
channels 
 (from J. L. Wiza, Reprinted from Nuclear Instruments and Methods, Vol. 162, (1979), pages 587 
to 601). 

 
Fig.  3.7  Drawing of DLA- position and time sensitive detector with micro channel plates [78], and 
illustration of a pair of wires is wrapped around the ceramic squares.  
 

We get our position signals from the DLA and we get the timing signal from the MCP. In 

the DLA a pair of wires (signal and reference) is wrapped around the ceramic squares in two 

perpendicular directions (x and y). There is a potential difference (around 50V) between the two 

wires, the one which is at lower voltage is called the “difference” and the one at the higher 

voltage is called the “signal” wire. The voltage difference causes an electron, once it hits the 

DLA to travel though the wires in the 4 directions (x1, x2, and y1, y2). These signals are then 
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sent to the difference amplifier where the noise gets subtracted from the total signal (x1s-

xd1=x1…) and the real signal gets amplified. The position of the signal is determined by the 

difference in the time travelled through the wires. The pulses travel through the wires at the 

speed of light. The signals traveling velocity (calibration constant for DLA) is measured and 

known for each detector. 

One can get the position of the signal using the expressions 

x = g(x1 − x2) and y = g(y1 − y2)                (3.9) 

where g is the calibration constant (conversion factor for changing the timing signal into a 

position signal) and has a value near one mm/ns. The exact value for the detectors we used in the 

COLTRIMS setup is g=0.9 mm/ns. 

 

3.2.5 Magnetic coils 
 

For guiding charged particles to the detectors we used a combination of both electric and 

magnetic fields. For that purpose, our COLTRIMS used six coaxial magnetic coils separated 

from the center of the spectrometer as shown on Fig3.8. The large coils are used to create a 

homogeneous magnetic field across the spectrometer, and the other two pairs are used to correct 

it. The magnetic field can be calculated at any point x along the axis of the coil by using the 

formula 

B = μ0NI r2

2
�(r2 + (d + x)2)−3/2 + (r2 + (d − x)2)−3/2�    (3.10) 

where N, I, r, and d are correspond to the number of turns, the current through the coil, the radius 

of the coil and the separation between the two coils (the starting point in our case is the center of 

the spectrometer, μo=4π x10-7
 Tm/A is the permeability constant). 

We also used additional coils to cancel out the Earth’s magnetic field. For that purpose, 

four Ribbon cables (95 inches long and 20 wires wide) were wrapped around the plastic frame as 

shown in Fig. 3.9. All of the wires are collinear with the two (horizontal and vertical) 

perpendicular lines to the spectrometer axis. In our experiments we were applying 1.6 A and 3 A 

to the coils which corresponded to total magnetic field of 6.1 Gauss and 12.8 Gauss respectively. 
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Fig.  3.8  Magnetic coils of the COLTRIMS apparatus.  
The radius of the small four coils is 10.16cm and the radius of the two bigger coils is 33.0 cm. 
The number of the copper wire turns is 122 on large coils, 6 on the small two coils located near 
large ones, and 26 on the coils located furthest from the center of the spectrometer. 
 

 
Fig.  3.9 Setup for the magnetic coil frame used to cancel the Earth’s magnetic field.  
(top view). 
 

3.3 Theory and Operation of Optical Parametric Amplifier 
 

An Optical Parametric Amplifier (OPA) is a laser light source that emits light of variable 

wavelengths by an optical parametric amplification process [15, 17, 34]. It converts a laser pulse 

of one fundamental wavelength to short pulses of high intensity with a continuously tunable 
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wavelength. In the general case, an ultra short pulse of high intensity propagates in a nonlinear 

crystal to provide gain for a weak pulse at the signal wavelength. The infrared part of the 

spectrum is commonly used for investigating molecular structures [4-8, 11, 56, 76, 88]. Short 

infrared pulses are used in the detection of molecular bond breaking and forming [16, 65, 66]. 

Therefore, it is very important to develop techniques of producing femtosecond pulses tunable in 

the infrared and near-infrared region of the spectrum. Most of these techniques are based on 

parametric difference-frequency processes. Parametric processes are photon interactions in 

which one high frequency photon is annihilated and two low frequency photons are created. This 

section will describe the theory behind an OPA and how an OPA is designed and operated. 

 

3.3.1 Parametric Amplification 
 

Crystal materials lacking inversion symmetry can exhibit so-called χ (2) nonlinearity [15]. 

Apart from frequency doubling and sum and difference frequency generation, this allows for 

parametric amplification. Parametric processes are photon interactions in which one high 

frequency photon is annihilated and two lower frequency photons are created (parametric down 

conversion).  

Parametric amplification is a phenomenon where a signal can be amplified using a 

parametric nonlinearity and a pump wave. Here, the signal beam propagates through the crystal 

together with a pump beam of shorter wavelength. Photons of the pump wave are then converted 

into (lower-energy) signal photons and the same number of so-called idler photons; the photon 

energy of the idler wave is the difference between the photon energies of pumps and signal 

wave. As the pump energy is fully converted into the energy of signal and idler beams, the 

crystal material is not heated in this process.  

When there is a phase mismatch, the relative phases of the waves will change during 

propagation, so that after some distance the power in signal and idler can be converted back 

toward the pump. Therefore, phase matching, which can be achieved only in a limited frequency 

range, is important for efficient amplification. Under certain special conditions, a very large 

phase-matching bandwidth may be achieved. A very beneficial property of optical parametric 

amplifiers is that fundamentally there is no dissipative process in the nonlinear crystal. The 

absence of heat generation makes OPA quite suitable for high power operation. 
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3.3.2 Theory 
 

When the laser field interacts with media, the system changes its optical properties and 

can give nonlinear response [17]. The dependence of the characteristic polarization of the system 

on the applied field can be expressed as 

...)(2)()2()()1()( ++= tEttEtp
 χχ                  (3.11) 

where χ(1) and χ(2) are the first and second order nonlinear susceptibilities. 

The reason why polarization plays such a key role in the description of nonlinear optical 

phenomena is that a time-varying polarization can act as the source of new components of the 

electromagnetic fields.  

The wave equation in nonlinear optical media has the form 
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where n is the usual linear refractive index, c is the speed of light in vacuum, and PNL is the 

nonlinear part of the polarization. If the incident field consists of two frequency components, 
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the non-linear polarization will be given by the expression 
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The polarization contains different terms with different frequencies. One of the terms is 
teEE )(*

21
)2(

0
212 ωωχε −−  with an amplitude of *

2104 EEdP effε=  (for fixed field propagation and 

polarization directions), where )2(5.0 χ=effd  is the effective nonlinear coefficient of the media. 

It describes the process of difference frequency generation. The frequency of the generated wave 

is the difference of the applied fields. In terms of photons this means that for every photon 

created at a frequency of ω3 = ω1-ω2, the input photon at a frequency of ω1 is destroyed and 

another photon ω2 is created (ω1> ω2< ω3).  
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Fig.  3.10 Difference frequency generation (See text). 

 

Consider the situation shown in Fig. 3.10, where optical waves at frequencies ωp and ωs 

interact in a lossless nonlinear optical medium to produce an output wave at a difference 

frequency of ωi=ωp-ωs. Now assume that ωp is the frequency of the strong wave which we are 

going to call the “pump wave”, and the wave with a frequency of ωs is the “signal wave”. Both 

waves are incident on the nonlinear lossless media. Then an idler wave with a frequency of 

ωi=ωp-ωs (ωp>ωi>ωs) is generated. 

If we represent the amplitude of the electric field as ikzAeE = , the nonlinear response of 

the media to the signal wave is  

                                       
zikpki

eiApAeffdsP
)(

04
+

= ε      (3.15) 

and has the same form for the idler wave. Substituting these equations into the wave equation 

(3.12) and assuming lossless media and slowly varying amplitudes along the z direction, we 

come up with equations for amplitudes for the idler and signal waves 

,*2 kziesApAeffd
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dz
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ω
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csn
si

dz
sdA ∆= *2ω

     (3.16) 

where isp kkkk −−=∆  is the phase mismatch. 

 

3.3.3 Phase matching 
 

Phase matching is an important factor in optical parametric amplification because the 

energy exchange between the pump and the signal waves depends on how perfectly they match. 

The intensity of a generated field depends on the wave vector mismatch ∆k=kp-ks-ki as [15, 17]      
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This means that the intensity of the signal decreases dramatically as ∆k increases. The difficulty 

with setting ∆k=0 arises because of  the normal dispersion in media, i.e. due to the frequency 

dependent index of refraction.  

For the case ∆k=0 we can write 

p p s s i in n nω ω ω= + ,      ,p s iω ω ω= +            p i sω ω ω> >                    (3.18) 

Such that  
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A solution cannot be found for this system of equations because for a normal dispersion, 

np>ni, ni>ns. Therefore the left-hand side of (3.20) is positive, but the right-hand side is negative. 

At this point we can make use of crystals which are birefringent. That means that the refractive 

index depends on the direction of the wave polarization. If the ωp-wave is polarized in the 

direction corresponding to the lowest refraction index - say, extraordinary for an uniaxial crystal 

– then there are two possibilities for the signal and idler waves to have the same polarization 

(type I phase matching) or to be orthogonal (type II phase matching).  

 

Angle tuning is one of the methods used to achieve phase matching. The nonlinear 

(uniaxial) crystal is rotated in such a manner that its optical axis makes an angle θ with the vector 

k of the pump wave. This wave can be polarized perpendicularly to the plane containing k and 

the optical axis or in the same plane. In the first case the refractive index would be ordinary (no), 

but in the second case it would be extraordinary (ne), which depends on the angle θ. For θ=900, 

ne equals to some principle value, at =00 it equals to no. Precisely adjusting the angle between an 

optical axis and the wave vector of the incoming wave we can achieve such a value for ne (θ) that 

the phases are matched. But even when phase matching is achieved there are still some walk-off 

effects which cause waves to drift from each other in space and time. It causes a decrease in 

effectiveness of the energy exchange between interacting waves. 
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3.3.4 TOPAS (Traveling-wave Optical Parametric Amplifier of Super Fluorescence) 
 

TOPAS is a model of an optical parametric amplifier which is used in the James R. 

Macdonald Laboratory. The general principles of a TOPAS design are described below [47]. A 

calibration chart for TOPAS is given in Appendix C. 

 TOPAS employs one stage for the generation of super fluorescence and four light 

amplification stages arranged in a single BBO crystal. Wavelength tuning is performed by 

rotating the nonlinear crystal which is operated in a type II phase matching configuration. For 

type II phase matching, the polarization of the signal and idler waves are orthogonal. Therefore 

the signal and idler waves can be separated using a polarizer. TOPAS can be pumped with 

different kinds of lasers with a wavelength in the range from UV to near infrared [47]. The 

working principle of TOPAS can be broken down in to a three-step process:  

1) Generate a broadband seed (seed = signal + idler) from a small portion of the pump. 

2) Narrow the seed’s spectrum and pre-amplify with a small portion of the pump. 

3) Amplify the seed with most of the pump.  

The incoming pump beam is split in three components upon entering the device. One of the 

components, which is just 15% of the total intensity, is used for generating of the seed. This 

component will complete three passes in the nonlinear crystal (NC). Figs. 3.11(a)-3.11(b) 

 

The first pass is needed to produce the super fluorescence (SFL) in the NC and the 

second pass amplifies the collinear components of the SFL. TOPAS pumped by ~800 nm light 

generates IR wavelengths (1.1-1.6 µm for the signal and 1.6-2.6 µm for the idler). After the third 

pass, which amplifies the second one, the beam hits the center of the diffraction grating. The 

diffraction grating is used to reduce the spectral width of the seed (signal), to separate signal, 

idler and pump in space, and to make the wavelength tuning more precise in the wavelength 

range close to NC absorption band. The procedure for tuning the NC in TOPAS is arranged in 

such a way that the diffraction grating and the crystal are rotated together. The fourth pass in 

TOPAS is employed for the formation of a stable; nearly transform limited, and a low diffraction 

seed for the power amplifier (Figs. 3.12(a)-3.12(b)). 
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As a result of the three first passes we have a weak broad banded radiation pattern with a 

significant divergence in the vertical plane. With another small portion of the pump, the signal is 

amplified in the NC and shaped as if there was a small amplifying aperture in the far field of the 

seeder. This happens because when the pump and signal overlap in the NC, only a small part of 

the signal is amplified since the pump beam waist is small. The fifth pass is the final 

amplification. By this moment we have seed radiation which is coherent in space and time but 

weak, and it is amplified in the fifth pass with approximately 70% of the pump beam. This 

component of the pump beam and the seed are matched in size where they overlap in the NC for 

effective energy conversion. On the fifth pass the signal is amplified from several micro joules to 

the specified energy, depending on the energy of the pump. (Fig. 3.13(a) - 3.13(b)) 

 

 

 
Fig.  3.11 Top view (a) and side view (b) of first, second, and third passes of beam in TOPAS  
(From [47]). 

(b) 
 

(a) 
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Fig.  3.12. Top view (a) and side view (b) of the fourth pass (pre-amplification of the seed beam) 
of the beam in TOPAS. 
(From [47]). 
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Fig.  3.13  Side view (3.13.1) and top view (3.13.2) of the fifth pass of the beam in TOPAS  
(final amplification, from [47]). 

 

(a) 
 

(b) 
 



 

35 

 

CHAPTER 4 - Data processing 

In this chapter the data recording, processing and calibration of the experimental 

parameters will be discussed.  

 

4.1. Data Acquisition 
 

As mentioned in the previous chapter, COLTRIMS detectors contain MCPs and delay 

lines for obtaining time and position signals. For extracting the right signal from the DL it is 

important to introduce the parameter, which is called time sum. The sum of the time signals that 

travel through the two ends of the copper wires in the DL after the charged particle hits it, is a 

constant independent on the hit position 

t1+t2=constant      (4.1) 

where t1 (x1d, x1s, y1d, y1s) (See Fig. 3.7) and t2 (x2d, x2s, y2d, y2s) (See  Fig. 3.7) correspond 

to the time travelled through one wire. The time signal is measured relative to the event 

registered on the MCP such that 

t1+t2 - 2tmcp= time sum.      (4.2) 

In reality, there are two parallel wires wrapped around the ceramic frame of the DL (Fig. 3.7) 

such that we have two time sums: 

Time sum x=x1+x2-2tmcp          (4.3) 

Time sum y=y1+y2-2tmcp  ,        (4.4) 

where x1, x2 and y1,y2 are time signals that travelled through perpendicular wires. Having the 

time sums is essential for assigning the values for position coordinates on the detector to the 

corresponding time of flight properly. 

 

The schematic diagram of the data acquisition is shown on Fig. 4.1. The photodiode 

signal is used to initialize the system (start time), the signal is positive but our constant fraction 

discriminator (CFD) will only accept a negative signal input, so we have to invert the photodiode 

signal to negative using the inverter. After inverting the signal from the photodiode using the 

Ortec inverting transformer 100 (IT-100) and the amplifier, it is sent to the CFD Ortec 934 where 



 

36 

 

the signal gets accurate timing and digitalization. The CFD takes three different signals from the 

MCP recoil, the MCP electrons, and the photodiode. The three outputs from the photodiode 

signal are then sent to the time-to-digital convertor (TDC). The position signals from delay line 

are amplified by the delay line amplifier DLA 800 and are fed to the input channels of the TDC 

(8 position signals+ 2 timing signals). The TDC we used is a LeCroy 3377 multi-hit time-to-

digital converter with 32 channels, capable of registering 16 hits per channel. It has 10 ns dead 

time after each hit so if the detector is hit by two particles (ion or electron) during this time, only 

one will be detected. From the TDS the digitalized signals are passed to a computer and analyzed 

using Lab-View program data. 

 
Fig.  4.1  Schematics of the data processing. 

 

The FORTRAN code (appendix D) [59] is used to translate the timing and position 

information of our raw data into physical quantities like momentum and energy. Before using the 

code, a calibration of all experimental parameters needs to be performed. The calibration 

parameters can be found in the code itself. The parameters are the absolute time zero, the 

position zero, and the cyclotron period. The parameters related to the geometry of the setup such 

as time-of-flight distance, spectrometer length, and gap between the spectrometer grid and 

detector, are known. 
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4.2. Calibration 
 

For relating the raw data to the real physical values, it is very important to have the 

correct value for time zero. An offset needs to be added to the time of flight to have a real time. 

In order to determine the time zero for the case when only ions are detected, the time-of-flight 

spectra are plotted. The peak values vs. square root of the ratio of mass over charge of the 

corresponding ion are plotted and fitted with a line. The intercept of the line with the time-of-

flight axis gives us the value of the time zero. 

 
Fig.  4.2  (a) Nodes of the wiggle spectrum, 2D plot of the distance from the center of the 
detector to the electron hit position versus time of flight (TOF) of the electrons, (b) so called “x-
fish” which is a plot of the electron hit position x coordinate versus TOF of electrons, (c) so 
called “y-fish” is the same as X-fish but TOF versus y coordinate of the hit position.  

 

In our experiments we detect ions and electrons in coincidence, such that we can produce 

a very broad electron time-of-flight that will give several positions of nodes as a result of the 

cyclotron motion in the magnetic field as shown in Fig. 4.2. This so-called ‘wiggle’ spectrum is a 

plot of the distance from the center of the detector to the point where an electron hits the detector 

vs. time of flight.  The nodes corresponding to the positions of the electron at the center of the 



 

38 

 

detector are spaced equally from each other and the time distance between them corresponds to 

the cyclotron period (Tc). 

 With a changing magnetic field the position of the nodes shifts. The node position is 

independent of the initial energy of the electrons and the electric field across the spectrometer. 

Depending on the magnetic field, the period of the cyclotron motion of the electron and 

corresponding time between the node positions are 

Tc = 2πm
eB

       (4.5) 

where Tc is the cyclotron period and is equal to the distance between any two consecutive node 

positions. B is the magnetic field, e is the electron charge, and m is the electron mass. The 

cyclotron frequency is  

ωc = 2π
Tc

         (4.6) 

Assuming that the electric and magnetic fields are parallel and in the z direction (Fig. 

4.3), the distance travelled by the electron in the z direction can be written from classical 

mechanics as 

Z = v∥t + at2

2
= v∥t + eℇt2

2m
        (4.7) 

=>  v∥ = Z
t
− eℇ

2m
t       (4.8) 

where a is the acceleration, ℇ is the electric field, and m is the electron mass. The cyclotron 

radius can be written as 𝑅𝑅 = 𝑣𝑣⊥/𝜔𝜔𝑐𝑐  where the cyclotron frequency is given by (4.6),  v⊥ =

(v2 − v∥2)1/2, and v = (2E/m)1/2, E is the total energy. 

The distance the electron hits from the center of the detector can be written as 

r = 2R �sin ωc t
2
�                (4.9) 

r = 2
ωc
�v2 − v∥2 �sin ωc t

2
� = 2

ωc
�2E

m
− �Z

t
− eℇ

2m
t�

2
�sin ωc t

2
�  (4.10) 

This expression is plotted for specific parameters in Fig. 4.4. One can fit the experimental 

wiggles with the wiggles given by expression (4.10) and find all the necessary parameters such 

as the cyclotron period (or frequency), absolute time-zero, and the electric field of the 

spectrometer. 
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Calibration of the intensity by can be done either using equation (3.7) or the momentum 

plots of the singly charged ions in circularly polarized light. The first method requires measuring 

the pulse duration and the focal radius of the beam. In the second method one can deduce the 

peak intensity from the measured drift momentum gained by an electron due to ionization by 

circularly polarized light. The value of the drift momentum an electron can gain in the circularly 

polarized field is directly proportional to the strength of the electric field, which is related to the 

peak intensity. Compared to the drift momentum gained by an electron in a linear pulse, the drift 

momentum gained by an electron in a circularly polarized pulse is independent of the phase at 

which the electron was born [30]. 

 
Fig.  4.3  (a) the schematics of the electron motion in the combined magnetic and electric fields 
which are parallel to each other and are perpendicular to the detector. (b) Electron trajectory 
projection in the perpendicular direction to the magnetic field. 

 

 
Fig.  4.4  Wiggle spectrum plotted from equation (4.10) for the magnetic field of 12 G, a voltage 
across the spectrometer of  33 V (1.38 V/cm), and 12 eV initial energy.  
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From Fig. 4.5 one can approximately find the drift momentum (by taking the distance 

between the peaks which is in atomic units) by using the following formula to calculate the peak 

intensity: 

I = 2 ∗ �∆pz
2

ω�
2

      (4.11) 

For a peak difference of 1.6 a.u. and 1.8 a.u. (Fig. 4.5) one can get (for ω=0.057a.u.) 

5.8x1014 W/cm2 and 7.4x1014 W/cm2 correspondingly after converting from atomic units to 

W/cm2. 

 
Fig.  4.5  Projection of the momentum of Ar+ on the polarization plane for circularly polarized 
pump and probe pulses. 
 

It is important to note that this method for determining the peak intensity is only valid in 

the case when the ionization rate changes rapidly before reaching the peak intensity. A more 

accurate way to determine the peak intensity is given in [5] where the experimental curve is 

fitted with the theoretical ionization rate as a function of the drift momentum at peak intensity for 

different temporal profiles. The obtained laser intensity is found to be independent of the 

temporal profile which proves that the calibration method used in this paper is correct. 
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CHAPTER 5 - Angular dependence of D2 ionization 

5.1 Introduction  
 

The fact that strong-field ionization of the molecules strongly depends on the angle 

between the molecular axes and laser polarization direction is now well recognized. Knowing the 

angle-differential multi-photon ionization cross-sections (probabilities) allows us to understand 

most of the strong field phenomena quantitatively, such as high harmonic generation [22, 62], 

non-sequential ionization [41, 94], and above-threshold ionization [73]. Therefore, it is not 

surprising that understanding molecular ionization has become very important in strong field 

ionization studies. To interpret all these physical phenomena it is very important to know the 

angular dependence of molecular ionization.   

The angular dependence can be determined by the character of the molecule’s highest 

occupied molecular orbital (HOMO) [4]. Electrons which are ionized from the valence orbits of 

the neutral molecule contain more information about molecular orbital structure than what we 

can get from the molecular ions. The molecular orbital information can be obtained from the 

angular distribution of electrons ionized from aligned molecules [8]. 

The angular dependence of the field ionization can be measured experimentally either by 

using transient alignment generated by a weaker pump pulse [56], or by measuring the 

momentum of the molecular fragments and determining the angle between the field polarization 

and the molecular axis [4, 56, 74, 8]. In both cases the ionizing pulse should not disturb the 

initial distribution of the molecular axes. The measurements were usually performed on large 

linear molecules such as N2, O2, CO, CO2, C2H2 [7, 56, 75]. Lighter molecules such as H2 and D2 

pose a bigger challenge because it is much harder to control their dynamical alignment due to 

their low rotational inertia and low polarizability anisotropy. When placed in the intense laser 

field, H2 and D2 rotate very fast and change orientation significantly even during a short few 

cycle pulse. The reason is that they are very light. Despite these difficulties the angle-dependent 

ionization yield of pre-aligned D2 molecules using 8 fs 800 nm laser pulses was estimated [16].  

At the same time, Staudte and co-workers [88] came up with a method which does not 

require molecular alignment for measuring the angular dependence of the ionization. The method 
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is based on the fact that the same pulse dissociates a significant fraction of the ionized molecules 

via BS H2
+ → H+ + H0. The direction of the molecular axis before dissociation is determined by 

measuring the 3D momentum of the resulting protons. However it is not suitable for determining 

the angular dependence of ionization for linearly polarized pulses because BS itself is very 

anisotropic and molecules were found to rotate by up to 90° between ionization and dissociation 

events [74].  

 

5.2. Molecular alignment 
 

The laser interaction with the molecule can be described by considering the coupling of 

the laser with molecular degrees of freedom such as: electronic motion, vibrational motion, and 

rotational motion. The time scales for each of these motions are different, approximately 

attosecond (10-18) for the electronic motion, femtosecond (10-15) for the vibrational motion, and 

picoseconds (10-12) for the rotational motion. Compared to atoms, the molecules are not an 

isotropic system, and the ionization of the molecules depends on the alignment direction, i.e., the 

angle between the molecular axis and the polarization direction of the laser field. 

 

5.2.1 Adiabatic and non-adiabatic alignment 
 

Molecules can be aligned by a laser pulse adiabatically or non-adiabatically, based on the 

difference of the rotational period of the molecule and the duration of the aligning laser field. If 

the laser pulse is longer than the rotational period (τpulse >> τrot), the molecules are aligned 

adiabatically which means that molecules orient themselves in the direction of the field during 

the pulse and go back to the original field free state upon the adiabatic turn-off of the laser field 

[43, 82]. In the case when the pulse duration is shorter than the rotational period of the molecule 

(τpulse << τrot ), an intense pulse transmits large amount of the angular momentum to the 

molecular system, which causes a periodically reviving non-adiabatic alignment that sets in only 

after the pulse is turned-off [82]. 

The classical understanding of the non-adiabatic alignment is as follows: consider the 

situation when we have randomly oriented molecules in space under the action of the electric 

field of a pulse. During the kick from the laser pulse, molecules will obtain angular momentum. 
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Diatomic molecules whose internuclear axis has a larger initial angle with respect to the laser 

field will experience more torque and rotate faster compared to molecules having smaller angle 

and rotating with smaller angular momentum. Eventually faster molecules catch up with slower 

molecules, and as a result localization of density occurs and maximum alignment is achieved. 

After reaching maximum alignment the molecules will keep rotating with different velocities and 

the alignment will be destroyed [80, 35]. 

 

5.3 Ionization of randomly oriented hydrogen molecules 
 

As described above the angle dependent ionization is studied commonly using aligned 

molecules and linearly polarized laser pulses. This method has certain limitations.  

i)  Has limited angular resolution and 

ii) Is not appropriate for heteronuclear molecules as it is insensitive to the molecular orientation. 

  

A newer method developed by the Ottawa group [88] uses circularly polarized light to ionize 

molecules (H2), measuring electron and ion in coincidence. Advantages of the method are 

i) A much higher resolution and 

ii) No alignment of molecules required. 

 

The main idea behind an alignment-free experiment is to use circularly polarized laser pulses, so 

that BS is still anisotropic with fragments emerging mostly within a 10° angle from the plane of 

circular polarization. In the plane of polarization, however, there is no preferred direction for the 

rotating electric field vector, and the molecular axis direction within this plane is not affected by 

a circularly polarized pulse. It is important to note that the final drift momentum of any emitted 

electron will be opposite to the direction of the vector potential of the laser field at the moment 

of ionization. In the case of circularly polarized light the drift momentum of the electron is 

perpendicular to the direction of the laser electric field at the moment of the ionization because 

the vector potential trails the rotating electric field vector by a quarter-cycle (Fig. 5.1).  One can 

determine the dependence of the ionization yield on the angle between the molecule and the 

rotating electric field vector by measuring the distribution of relative angles within the plane of 

polarization between an electron and a proton coming from the same molecule. 
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In their experiment Staudte et al. [88] used H2 as a target with 40 fs 800 nm circularly 

polarized pulses of intensities varying between 2 and 4.5×1014 W/cm2. They found that the 

experimental ionization anisotropy (ratio of the ionization probabilities for the molecules aligned 

perpendicular and parallel to the laser field polarization direction) decreased from 1.3 to 1.18 

with increasing intensity. They introduced the theoretical model, which reproduced the decrease 

of the ionization anisotropy with increasing the peak intensity, but the result they got 

overestimated the anisotropy. The anisotropy measured by Staudte et al. [88] at large intensity 

approaches the rate ratio 1.17 which was predicted by the tunneling molecular-ADK theory [92]. 

The reason for this could simply be the saturation effect, with increase in intensity the ratio of 

ionization for the molecules parallel and perpendicular to the field polarization approaches unity. 

One more possibility is that with change in intensity the ionization mechanism changes and 

correspondingly changes the observed ionization anisotropy. For example, for 800 nm pulses of 

intensities in the range 1.0 – 2.5 × 1014 W/cm2 (Ip = 15.43 eV), the Keldysh parameter γ -varies 

from 0.7 to 1.15, and the ionization mechanism changes to multi-photon ionization as the 

intensity decreases and the anisotropy increases.   

 

Fig.  5.1 Schematics of the process molecules undergo in the experiment (From [88]).  
On the left, the ionization of the molecule by circularly polarized light, and on the right, the 
dissociation of the molecule into a proton and a hydrogen atom by the same pulse. 

 

In our experiments, using the approach Staudte et. al [88] introduced, we further 

investigated the issues mentioned above. We used laser pulses of longer wavelength (1850 nm) 

and deuterium molecules as our target. The corresponding Keldish parameter (γ < 0.5) for 1850 

nm at reasonable intensities for photo-ionization (>1014 W/cm2), corresponds to the tunneling 

regime.  
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5.4. Experimental setup 
 

The 800 nm 1.5 mJ  35 fs pulses at 1 kHz repetition rate were generated by multi-pass Ti-

sapphire amplifier. The pulses then were passed to the TOPAS optical parametric amplifier, 

which generated the 1850 nm laser pulses of 50 fs duration. After the fundamental and the signal 

(at 1415 nm) beams were separated, the 1850 nm idler beam had 120 µJ of energy per pulse (Fig. 

5.2).  

 

 Fig.  5.2  Schematics of the setup used in our experiment. 

 

For converting linearly polarized light to circularly polarized, we used a quarter 

waveplate from CVI Optics. After proper attenuation the beam was sent to the COLTRIMS 

apparatus were it was focused on a supersonic jet of deuterium molecules in the interaction 

region by a 75 mm focal length spherical on-axis mirror. The laser beam was normal to the gas 

jet and both of them were perpendicular to the axis of a uniform electric field (10 V/cm). The 

spectrometer was terminated on both sides by time and position sensitive delay-line anode 

detectors (Roendtek) for measuring electron and ion momentum in coincidence. A magnetic field 

of 13 Gauss, parallel to the spectrometer axis was applied to guide electrons to the detector and a 

smaller perpendicular magnetic field was supplemented to compensate for the Earth’s magnetic 

field. The gas target density was adjusted so that much less than one charged fragment of each 

kind was detected per laser pulse. The peak intensity of the laser pulses were determined by 

measuring momentum distributions of intact D2
+ ions as described in Chapter 4 [5]. 
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5.5 Experimental results 
 

We measured the relative angle between an emitted electron and a D+ ion resulting in the 

plane of the circular polarization of our laser pulses from a single event [57]. In Fig. 5.3 the 

kinetic energy and the two-dimensional momentum spectra for D+ ions is shown.  

 
Fig.  5.3 Kinetic energy (KE) spectra of D+ ions for circularly polarized, 1850 nm, 50 fs duration 
and 4×1014 W/cm2 peak intensity laser pulse. 
Inset: 2D momentum spectra for the ions. The low energies in the KE plot (connected with 
arrows to momentum spectra) correspond to BS and ATD, and the higher energy band 
corresponds to enhanced ionization (EI).  

 

At the intensity used in our experiment (4×1014 W/cm2 peak intensity) the energy 

spectrum includes two distinct bands. The lower energy band corresponds to one-photon BS and 

net two-photon ATD processes. In our analysis we could not resolve the BS and ATD bands and 

considered them together. At about 2.6 eV there is a broad peak, which corresponds to the 

double ionization (Coulomb explosion). We were only interested in the low energy band (0-1eV) 

(where deuterons are resulting from dissociation of the molecular ions) as we are measuring the 

angular dependence of a single ionization process. We were not able to detect the neutral D0 

fragment so we relied on the low overall count rate to ensure that both charged particles came 

from the same molecule.  
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Fig.  5.4 Distribution of the relative angles between the ion and electron momentum.  
On the left, the experimental results for low energy 0-1 eV (red dots). Solid line corresponds to 
the best fit using the ellipse equation A(cos2θ + ε sin2θ), where ε = 1.15 ± 0.05 is the ratio of the 
coincident fragment and photoelectron yields at 90° and 0° angles. On the right, the 
theoretically calculated single ionization probability (blue dots) is compared to the experimental 
data (red dots are the same as the left ones but rotated by 90° ). The probability is plotted as a 
function of the angle between the molecular axis and electric field polarization. The laser pulse 
used in the calculation was linearly polarized and had a 2×1014 W/cm2 peak intensity. The blue 
solid line is a fit to the calculated anisotropy (for the best fit ε = 1.12). 

 

In Fig. 5.4 the experimental distribution of the relative angles between the ion and electron 

momentum is shown. There is a slight anisotropy in the distribution with more electrons detected 

in direction perpendicular to the molecular axis. From the result we conclude that more 

molecules are ionized when their axes are parallel than when they are normal to the field since 

the ultimate drift velocity of a photoelectron is perpendicular to the instantaneous direction of the 

electric field vector at the moment of ionization. At the same field strength the ratio of the 

ionization probabilities for molecules aligned perpendicular and parallel to the laser field 

polarization is equivalent to the ratio of the photoelectron yields detected at angles of 0° and 90°. 

In our calculations the peak intensity of 2×1014 W/cm2 for linearly polarized pulse is same as the 

4×1014 W/cm2 peak intensity for the circularly polarized pulses. From the experimental results 

we determine that for pulses with peak intensity of 4×1014 W/cm2 the ratio of maximum and 

minimum ionization probabilities (corresponding to parallel and perpendicular alignments), is 

1.15 (±0.05). This result agrees well with the values Staudte et al [88] obtained for hydrogen 
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molecules using 800 nm pulses and also agrees well with the result of the quasi-static molecular-

ADK theory which assumes pure tunneling ionization [92].  

 

5.6 Theoretically calculated ionization rates 

 

For calculating ionization probabilities as a function of the angle between the molecular 

axis and the electric field of a linearly polarized laser pulse we developed a separate wave-

function propagation model [38, 48, 91]. In this model we use the single active electron 

approximation to solve the time-dependent two-dimensional Schrödinger equation (TDSE) in the 

velocity gauge in Cartesian coordinates (we use atomic units, e = m = ħ = 1), 

𝑖𝑖 𝜕𝜕
𝜕𝜕𝜕𝜕

Φ(𝑥𝑥,𝑦𝑦; 𝑡𝑡) = �𝑃𝑃𝑥𝑥
2+𝑃𝑃𝑦𝑦2

2
+ 𝑃𝑃𝑥𝑥𝐴𝐴(𝑡𝑡)

𝑐𝑐
+ 𝑉𝑉(𝑥𝑥,𝑦𝑦)� 𝜙𝜙(𝑥𝑥,𝑦𝑦; 𝑡𝑡)     (5.1). 

The soft-core Coulomb potential was used to model the electron-nuclei interaction  

V(x, t) = −∑ Zeff

��x+jR 0
2 cos θ�

2
+�y+jR 0

2 cos θ�
2

+α
j=±1         (5.2), 

where Px and Py are the momentum components in x and y direction, and x and y are the electron 

coordinates in the plane of the laser polarization. The distance between nucleus is fixed at R0 = 

1.4, which corresponds to the equilibrium distance for the ground state of D2. As mentioned 

earlier the laser polarization is linear in our calculation and it is pointing along the x axis. The 

angle between the laser polarization and the inter-nuclear axis is marked as θ. For a soft-core 

parameter α  = 0.64 and an effective nuclear charge zeff = 0.58 our single active electron model 

reproduces the ionization potential both at equilibrium internuclear distance and at infinite 

separation (with zeff = 1). We use the split-operator Crank-Nicholson propagation scheme to 

solve the TDSE with a time step of 0.1. The numerical grid has 2000 and 800 points in the x and 

y direction, respectively, with the spatial steps ∆x = ∆y = 0.3. The laser electric field associated 

with the vector potential A is 

𝐸𝐸(𝑡𝑡) = 𝐸𝐸0sin(𝜔𝜔𝜔𝜔)𝑠𝑠𝑠𝑠𝑠𝑠2 �𝜋𝜋𝜋𝜋
𝜏𝜏
� = − 𝜕𝜕

𝜕𝜕𝜕𝜕
𝐴𝐴(𝑡𝑡)       (5.3), 

with amplitude E0, angular frequency  ω and duration  τ.  The mask function applied was cos1/8 

over a length of 60 and 30 from the ends of the rectangular numerical grid in x and y direction in 

order to suppress unphysical reflections. By calculating the probability for the electron to remain 
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bound Pbound, we can get the ionization probability as 1-Pbound. In order to ensure converged 

results, we propagate the wavefunction past the laser pulse until the ionization probability has 

stabilized.  

The right column of the Fig. 5.4 shows the theoretically calculated ionization rate as a 

function of the angle θ for laser intensity 2×1014 W/cm2, and wavelength and pulse duration of 

1850 nm and 50 fs (FWHM), respectively. From the calculations we also conclude that 

molecules aligned parallel to the laser polarization are easier to ionize than those aligned 

perpendicularly, as expected. We obtained a value of 1.12 for the ratio of the ionization 

probabilities in the parallel and perpendicular directions to the polarization, which is in excellent 

agreement with our experimental value of 1.15±0.05.  

 

 
Fig.  5.5 Dependence of angular anisotropy of single ionization of D2 on peak intensity. 
The black full and hollow squares correspond to our experimental results and results from the 
experiment done by Staudte et al [88]. Red dots represent the calculated anisotropy for 1850 nm, 
with 50 fs duration pulse. Hollow and full blue circles correspond to the theoretically calculated 
anisotropy for 800 nm but with 40 fs and 50 fs pulse duration cases respectively. The intensities 
for the experimental data were divided by 2 to compare to the theory. 

 

In Fig. 5.5 the intensity dependence of the ionization anisotropy is shown for hydrogen 

molecules at 800 and 1850 nm wavelengths, with pulse lengths of 40 fs and 50 fs, as blue and 

red dots. The experimental results of Staudte et al. are also shown for comparison as black 
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hollow squares, and the full black square corresponds to our experimental result. One can notice 

that our theoretical results are slightly lower than the experimental ones. This slight discrepancy 

can be understood by the fact that we used a single intensity as peak intensity in our calculations, 

while in the experiment a range of intensities contributes to the final anisotropy due to spatial 

variations within the pulse. For lower intensities the anisotropy is higher and the single intensity 

calculations will give values, which are underestimated. Deviations in the intensity dependence 

of the anisotropy at 800 nm from a monotonous decrease are consistent with a numerical 

uncertainty in our calculated ionization probabilities of 0.3%. 

 

 

5.7 Conclusion 
 

In conclusion, using the coincidence measurements of the ions and the electrons we 

measure the angular dependence of the strong-field ionization probability of D2 for 1850 nm 

circularly polarized pulse. We determined that this angular dependence exhibits a weak 

anisotropy with an ionization yield ratio of 1.15±0.05 favoring the ionization of molecules that 

are aligned parallel to the electric field. We also presented a 2D single active electron ab initio 

numerical model which accurately predicts the measured anisotropy, as well as its intensity 

dependence for both our experiment at 1850 nm and Staudte et al.’s at 800 nm wavelength. Both 

our experimental and theoretical values agree very well with the results of Staudte et al. for H2, 

as well as with our own earlier estimates for D2 obtained using dynamic alignment and few-cycle 

800 fs pulses [16]. 
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CHAPTER 6 - Dependence of bond softening and bond hardening 

on laser intensity, wavelength, and pulse duration for D2
+ 

 

6.1. Introduction 
 

The recent advances in femtosecond (fs) laser technology makes it possible to control, 

observe and analyze the time dependent nuclear dynamics in small molecules, and give us a 

better understanding of the basic concepts in quantum mechanics. With short and intense laser 

pulses it is possible to enable the time resolution of the nuclear motion in small diatomic 

molecules [19, 32, 40, 48, 49, 53, 76, 97].  

Several researchers have been using time delayed laser pulses in pump-probe 

experiments with Coulomb explosion (CE) imaging of the molecular fragments. In such 

experiments, a neutral molecule is first ionized by a short pump-laser pulse [10, 14, 29, 37, 51, 

55, 63, 66, 79, 84].  The pulses are only a few fs long and the pulse bandwidths are large 

compared to the vibrational level spacing. The pump pulse coherently excites a superposition of 

stationary vibrational states of the molecular ion, resulting in a moving nuclear wave packet. 

Using a second but delayed short probe-pulse the probability density of this wave packet can be 

imaged. The probe-pulse rapidly ionizes the molecular ion leading to its fragmentation by 

Coulomb explosion [25, 26, 44, 91]. From the kinetic energy release (KER) spectra for a 

sequence of pump-probe delays τ, the dynamics of the nuclear wave packet can be reconstructed 

[8, 37]. 

The time evolution of the wave packet can be calculated theoretically by solving the time 

dependent Schrodinger equation. Based on a quantum-mechanical model, we calculate the time 

evolution of an initial nuclear vibrational wave packet in D2
+ generated by the rapid ionization of 

D2 in an ultrashort pump-laser pulse. We plot the two-dimensional internuclear-distance-

dependent power spectra by Fourier transformation of the nuclear probability density with 

respect to the time delay between the pump pulse and the instant destructive Coulomb-explosion 

imaging of the wave packet at the high-intensity spike of an intense probe-laser pulse, which 

serve as a tool for visualizing and analyzing the nuclear dynamics in D2
+ in an intermittent 

external laser field. The external field models the pedestal to the central ultrashort spike of a 
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realistic probe pulse (Fig. 6.1). Variation in the intensity, wavelength, and duration of this probe-

pulse pedestal allows us to identify the optimal laser parameters for the observation of field-

induced bond softening and bond hardening in D2
+. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  6.1 Schematics of the pump and probe pulse sequence.  
The main pulses are shown as black and the pedestal (Gaussian-shape) of the pulse as red. For 
our simulations we assume instantaneous CE by ionization in main peak of the probe pulse. 

 

6.1.1 Schematics of pump-probe experiment  
 

The schematic of the pump-probe setup is shown in Fig. 6.2. The first (pump) laser pulse 

ionizes a neutral D2 molecule from its ground state and produces an ionic molecular wave 

packet. The resulting nuclear wave packet evolves on the 1sσg ground-state potential curve in the 

deuterium molecular ion within the Born-Oppenheimer (BO) approximation [18]. The wave 

packet will start to oscillate, and its propagation is monitored by the second (probe) pulse, which 

arrives after a certain time delay and removes the second electron and induces Coulomb 

explosion of the molecular ion which is CE imaged by the time-delayed intense probe laser. CE 

mapping [26, 39] allows the measured KER spectra [8, 37, 40, 55, 60, 69, 81] to be compared 

with theoretical models for the nuclear probability densities [44, 65, 68, 69, 91]. For instance, by 

direct numerical solution of the time-dependent Schrödinger equation using wave-packet 

propagation techniques (with simplified model assumptions, such as the representation of the 
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nuclear and/or electronic motion in reduced dimensionality [8, 24, 44, 48, 65, 91]),  the 

approximate nuclear probability densities can be calculated for the simplest diatomic molecules, 

H2
+ and its isotopologues. By recording the KER as a function of the delay τ the evolution of the 

nuclear probability density ρ(R,τ) [8, 37] is analyzed. The ρ(R,τ) graphs  capture the nuclear 

dynamics in space (R) and time (τ) and allow the distinction of several pump-laser-induced 

phenomena, such as molecular fragmentation into different asymptotic dissociation channels and 

the coherent dephasing and revival [79] of bound vibrational wave packets in diatomic molecular 

ions [8, 16, 44, 61, 69, 81, 91]. 

 

 

 

 

 

 
Fig.  6.2  Schematic diagram of the pump-probe setup.  
A neutral wave packet is launched from D2 potential curve to a D2

+ 1sσg curve by the pump 
pulse. After a certain time delay an intense short probe pulse promotes the nuclear wave packet 
onto the 2D+ repulsive 1/R Coulomb explosion curve and allows for the detection of the fragment 
kinetic energy distribution. 
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6.1.2 Time series analysis of KER spectra 
 

The time series analysis of the KER spectra is an alternative and less explored method for 

investigating the nuclear dynamics in diatomic (and possibly in more complex) molecules. This 

method applies equally well to nuclear probability densities that are calculated or derived from 

measured KER spectra by CE mapping and captures the nuclear dynamics in space and 

frequency. Basically in this method we are first eliminating the strong static 

background  𝜌𝜌 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑅𝑅) in the nuclear probability density and then Fourier transforming 

  𝜌𝜌 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (𝑅𝑅, 𝜏𝜏) = 𝜌𝜌(𝑅𝑅, 𝜏𝜏) − 𝜌𝜌 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑅𝑅)   as a function of τ over a finite range 0 < τ <T at fixed 

internuclear distances.  After this procedure we have the R-dependent representation of the 

nuclear probability density 𝜌𝜌�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (𝑅𝑅,𝑓𝑓) as a function of the frequency f (quantum-beat) and 

the power spectrum 𝑃𝑃(𝑅𝑅,𝑓𝑓;𝑇𝑇) = �𝜌𝜌�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (𝑅𝑅,𝑓𝑓)�2. The time-series analysis reveals features 

that are less obvious or not at all noticeable in the more conventional “space-time” analysis of 

KER spectra [8, 40, 44, 55, 61, 81, 91]. In previous investigations [91], the P(R, f; T) was 

calculated, and the propagation of nuclear vibrational wave packets were examined in D2
+ in 

comparison with the first measured R-dependent quantum beat spectra [40].  

 

The pump and probe pulses need to be short enough (on the time scale of the nuclear 

vibrational motion) in order to resolve the nuclear dynamics in small diatomic molecules in time. 

The vibrational period for D2
+ is about 20 fs and recent experiments succeeded in resolving the 

nuclear motion with pulses with a nominal length of about 6–8 fs [8, 40, 69]. Those intense and 

ultrashort pulses have shapes that strongly differ from the Gaussian or sin-squared profiles that 

are commonly used in model calculations. So in an attempt to model realistic pulses, we include 

a pedestal in addition to the main spike of the pulse. In particular, the pedestal-to-probe pulse can 

strongly modify the nuclear dynamics immediately before it is probed by the sudden ionization 

of the molecular ion in the main probe peak (Fig. 6.1). The time delays need to be sampled over 

a time interval of about 1ps, in order to distinguish adjacent vibrational quantum beats in D2
+, 

and to produce KER power spectra of sufficient resolution [91]. This means that during a small 

fraction of the sampling time, a relatively weak pedestal field can leave a pronounced effect on 

the observed KER spectra. The pedestal pulses applied here will serve as prototypical 
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intermittent laser fields, for which we analyze the effects on the evolution of nuclear wave 

packets.  

We analyze the nuclear motion in D2
+ by discussing KER power spectra for an 

appropriate range of carrier frequencies, peak intensities, and pulse lengths of the oscillating 

laser field. This will allow us to (i) reveal the sensitivity of the laser-induced nuclear dynamics in 

response to the controlled change in the laser parameters frequency, intensity, and pulse length, 

(ii) assess the range of applicability of the Floquet interpretation [12,18] in pulsed laser small 

molecule interactions, and (iii) restrict the range of laser parameters at which transient field-

induced effects, such as BS [1, 11, 21, 45, 54, 76, 83, 91, 95] into different asymptotic Floquet 

channels and BH [1, 11, 42, 46, 83, 91], are most prominently displayed. Unless indicated 

otherwise, we designate the vibrational ground states of D2 and D2
+ with the index ν =0 and 

excited states with ν≥1. 

 

6.2 Theory 

  

6.2.1. Two-state model for the nuclear wave-packet dynamics in D2
+ 

  

Assuming that the neutral D2 molecules are singly ionized by an intense short pump-

pulse, the quantum state of the resulting molecular ion can be approximated as 

Φ(𝑟𝑟,𝑅𝑅; 𝑡𝑡) = 1
√2
�𝜒𝜒𝑔𝑔(𝑅𝑅, 𝑡𝑡)𝜙𝜙𝑔𝑔(𝑅𝑅, 𝑡𝑡) + 𝜒𝜒𝑢𝑢(𝑅𝑅, 𝑡𝑡)𝜙𝜙𝑢𝑢(𝑅𝑅, 𝑡𝑡)�       (6.1) 

where 𝜙𝜙𝑔𝑔and 𝜙𝜙𝑢𝑢  are the D2
+ electronic 1sσg and 2pσu states in BO approximation and  𝑟𝑟��⃗  is the 

electron position vector. By projecting out the electronic states the bound and dissociating 

nuclear motions of the molecular ion can be described in this two-electronic-state model. For the 

evolution of the gerade 𝜒𝜒𝑔𝑔  and ungerade 𝜒𝜒𝑢𝑢  nuclear wave-function components a set of coupled 

equations can be obtained, 

𝑖𝑖 𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝜒𝜒𝑔𝑔(𝑅𝑅, 𝑡𝑡)
𝜒𝜒𝑢𝑢(𝑅𝑅, 𝑡𝑡)

� = �
𝑇𝑇𝑅𝑅 + 𝑉𝑉𝑔𝑔(𝑅𝑅) 𝐷𝐷𝑔𝑔𝑔𝑔 (𝑅𝑅)𝐸𝐸(𝑡𝑡 − 𝜏𝜏)

𝐷𝐷𝑔𝑔𝑔𝑔 (𝑅𝑅)𝐸𝐸(𝑡𝑡 − 𝜏𝜏) 𝑇𝑇𝑅𝑅 + 𝑉𝑉𝑢𝑢(𝑅𝑅) � × �
𝜒𝜒𝑔𝑔(𝑅𝑅, 𝑡𝑡)
𝜒𝜒𝑢𝑢(𝑅𝑅, 𝑡𝑡)

�     (6.2) 

where μ is the reduced mass of the nuclei,  and 𝑇𝑇𝑅𝑅 = − 1
2𝜇𝜇

𝜕𝜕
𝜕𝜕𝑅𝑅2, 𝑉𝑉𝑔𝑔(𝑅𝑅) and 𝑉𝑉𝑢𝑢(𝑅𝑅) are the BO 1sσg 

and 2pσu potential curves. The linearly polarized laser field E is directed along the internuclear 
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axis, and rotation of the molecular ion is not taken into consideration. The dipole coupling 

between gerade and ungerade states is designated by 𝐷𝐷𝑔𝑔𝑔𝑔 = 〈𝜙𝜙𝑔𝑔|𝑟𝑟|𝜙𝜙𝑢𝑢〉 [54]. 

We numerically solve Eq. (6.2) using the Crank-Nicholson method [44, 77, 91] with 

spacial steps ΔR=0.05 with R covering the range between 0.05 and 30.0 and time steps of Δt=1.0. 

(See [77, 91] for more details). We assume that the initial state of the molecular ion is bound, 

𝜒𝜒𝑔𝑔(𝑅𝑅, 0) = ∑ 𝑎𝑎𝜇𝜇𝜒𝜒𝜇𝜇 (𝑅𝑅)𝜇𝜇 ,𝜒𝜒𝑢𝑢(𝑅𝑅, 0) = 0                                                        (6.3) 

where {aμ} are the set of amplitudes (in general complex) in the basis of stationary vibrational 

eigenstates {χμ} of the D2
+ electronic ground-state potential Vg(R). The action of the pump pulse 

is modeled with Franck-Condon (FC) factors {|aμ|2} in sudden approximation and all phases are 

randomly set to zero in order to obtain the set of real amplitudes {aμ} for the bound initial wave 

packet. Using imaginary time propagation the trial function on the ground-state BO potential 

curve of D2 is propagated and the ground state wave function 𝜒𝜒0 of the neutral parent molecule is 

calculated. Subsequent projection on the D2
+ vibrational states {𝑎𝑎𝜇𝜇 = �𝜒𝜒𝜇𝜇 �𝜒𝜒0�} generates the real 

function 𝜒𝜒𝑔𝑔(𝑅𝑅, 0). Without  an external laser field, the two states in Eq. (6.2) are decoupled, and 

the nuclear wave function evolves as a bound nuclear wave packet on the 1sσg potential curve, 

undergoing characteristic cycles of dephasing and revival [44, 91].  

The main peak of the probe pulse is time-delayed from the probe-pulse and is assumed to 

instantaneously ionize the molecular ion and induce CE. On the other hand, the probe-pulse 

pedestal is supposed to be weak enough to not contribute to the fragmentation of the molecular 

ion by CE. We do not include a pedestal to the pump pulse in our model (Fig. 6.1) as it would 

not change our numerical results presented below. Immediately following the end of the (main) 

pump pulse the simulation of the evolution of the initial wave packet in D2
+ starts at time t=0 for 

a given delay τ,  and ends at time t=τ, immediately preceding the main probe pulse, as indicated 

in Fig. 6.1.  During the evolution, the pedestal (thick red line in Fig. 6.1) 

𝐸𝐸(𝑡𝑡, 𝜏𝜏) = 𝐸𝐸0sin[𝜔𝜔(𝑡𝑡 − 𝜏𝜏)]𝑒𝑒𝑒𝑒𝑒𝑒 �−2𝑙𝑙𝑙𝑙2 �𝑡𝑡−𝜏𝜏
𝐿𝐿
�

2
�          (6.4) 

is the only external field that couples χg and 

𝜒𝜒𝑢𝑢(𝑅𝑅, 𝑡𝑡) = ∫ 𝑑𝑑𝑑𝑑𝑎𝑎𝐸𝐸𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝜒𝜒𝐸𝐸(𝑅𝑅)∞
0   ,                                              (6.5) 

leading to the correlated motion of the nuclear wave packet on the 1sσg and 2pσu D2
+ BO 

potential curves. The pedestal is characterized by its amplitude E0, frequency ω, and the duration 

[full width at half maximum (FWHM) in the laser intensity] L. The dissociating part χu of the 
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nuclear wave packet is written in terms of (continuum) eigenstates {�|χ�E〉} in the 2pσu BO 

potential with (undetermined) coefficients {aE}. The numerical results for a range of these 

parameters will be discussed in Sec. 6.3 below.  

 

6.2.2. R-dependent quantum-beat power spectrum 
 

The amplitudes {aμ} in Eq. (6.3) remain time independent during the field-free 

propagation from t=0 to the probe time delay τ. The nuclear probability density as a function of 

time at τ is 

𝜌𝜌(𝑅𝑅, 𝜏𝜏) = �𝑑𝑑𝑑𝑑|Φ(𝑟𝑟,𝑅𝑅; 𝜏𝜏)|2 = �𝜒𝜒𝑔𝑔(𝑅𝑅, 𝜏𝜏)�2 + |𝜒𝜒𝑢𝑢(𝑅𝑅, 𝜏𝜏)|2 

=  ∑ �𝑎𝑎𝜇𝜇 �
2

𝜇𝜇 �𝜒𝜒𝜇𝜇 (𝑅𝑅)�2 + ∑ 𝑎𝑎𝜇𝜇∗𝑎𝑎𝜈𝜈𝑒𝑒−𝑖𝑖�𝐸𝐸𝜈𝜈−𝐸𝐸𝜇𝜇 �𝜏𝜏𝜒𝜒𝜇𝜇∗(𝑅𝑅)𝜒𝜒𝜈𝜈(𝑅𝑅)𝜇𝜇≠𝜈𝜈     (6.6) 

The diagonal term in μ (second line) is time independent and gives an incoherent 

background to the wave function probability density. By subtracting the diagonal contribution 

we get rid of incoherent static terms in Eq. (6.6). By Fourier transforming the coherent terms 

over the finite sampling time T, and taking the square of the result, we obtain the power spectrum 

𝑃𝑃(𝑅𝑅,𝜔𝜔;𝑇𝑇) = �∑ 𝑎𝑎𝜇𝜇∗𝑎𝑎𝜈𝜈𝜒𝜒𝜇𝜇∗(𝑅𝑅)𝜒𝜒𝜈𝜈(𝑅𝑅)𝛿𝛿𝑇𝑇(Δ𝜔𝜔𝜇𝜇 ,𝜈𝜈 − 𝜔𝜔)𝑁𝑁
𝜇𝜇 ,𝜈𝜈=0 �2                (6.7) 

where the complex-valued distribution is given as 

𝛿𝛿𝑇𝑇(Ω) ≡ 1
2𝜋𝜋 ∫ 𝑑𝑑𝑑𝑑𝑒𝑒𝑖𝑖Ω𝑡𝑡 = 1

𝜋𝜋
𝑒𝑒𝑖𝑖ΩT/2 sin (ΩΤ/2)

Ω
𝑇𝑇

0                                          (6.8) 

and centered at the quantum-beat energies Δωμ,ν=ων−ωμ. It is broadened due to the Fourier 

transformation over a finite time interval. In the limit of large sampling times, it becomes 

identical with the usual delta “function,” and the power spectrum P(R,  ω ;∞) reproduces the 

quantum-beat spectrum at infinite resolution. In contrast, T=3 ps yields a finite-energy resolution 

of 2.7 meV, which allows for the distinction of quantum beats between virtually all populated 

vibrational states in the hydrogen molecular ion in P(R, ω ; T) . Further details on the properties 

and interpretation of P(R, ω; T) can be found in [91]. 

It is important to note that result (6.7) was derived under the assumption of free wave-

packet propagation. It does not apply if external fields are present during the time propagation. 

However, it nevertheless constitutes a valuable guideline for the interpretation of external field 

effects in molecular power spectra if the external field acts during a time interval that is short 
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compared to T. This condition is fulfilled in the recent experiment by Feuerstein et al. [40], 

where power spectra were measured with a sampling time of T=3 ps while the nuclear wave 

packet was exposed to an intermittent electric laser for less than 100 fs. All numerical examples 

in Sec. 6.3 below are calculated with T=3 ps and for pedestal pulse lengths of 200 fs or less. 

Equation (6.7) will therefore help in the interpretation of our numerical results. As shown below, 

this equation correctly describes the quantum-beat energy and several features that are related to 

the bound motion of the nuclei. It fails where strong-field effects become dominant, in particular, 

near the curve crossing points between field-dressed adiabatic molecular potential curves. 

 

6.3. Numerical results 
 

The interactions of the continuum wave (cw) laser field with the molecule in Floquet 

theory are described using adiabatic laser-dressed potential curves [46, 83, 95], which are also 

referred to as “Floquet adiabatic molecular potential curves” or simply “Floquet curves.” The 

Floquet curves represent the field-free molecular potential curves that are shifted in energy due 

to the interaction with the laser field. The shift in energy depends on the net number of photons 

the molecule absorbs from the field. The absolute value of the Floquet energies is irrelevant and 

is given relative to a laser field with a fixed macroscopic number of photons. In our simulation 

we consider short laser pulses for which the cw Floquet picture may be not applicable without 

restrictions. Floquet potential curves are a suitable reference for the description of laser-molecule 

interactions with laser pulses of finite duration.  

       Fig. 2.8 shows the Floquet adiabatic potential curves for two different intensities, 5x1011 

and 1013 W/cm2 for D2
+ in a 500 nm cw laser  field, based on the two lowest field-free diabatic 

electronic potential curves of the molecular ion, Vg(R) and Vu(R) [13]. In the Floquet picture, 

field-free potential curves combine to form the field-dressed adiabatic potential curves. The 

Floquet curves are labeled as 1sσg−2nω and 2pσu− (2n−1) ω, specifying the corresponding field-

free potential curves and the net number of photons n that are released to the photon field. The 

dipole-allowed coupling between field-free potential curves of gerade and ungerade symmetries 

[18], due to the absorption or release of an odd number of photons, leads to characteristic 

“avoided” crossings between Floquet curves. The avoided crossings near internuclear distances 

of R=4 and R=3 originate in the exchange of one and three photons, respectively, between the 
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molecular ion and cw laser field. An increase in the laser intensity increases the gap between 

adjacent adiabatic field-dressed potential curves. 

Depending on the laser intensity the potential well can be formed near avoided crossing 

point by the potential curves. The well is referred to as BH well, in which molecular probability 

density is trapped and the corresponding quantum states are called BH states. The shape of the 

BH well depends on the laser intensity [1, 11, 42, 46, 83]. At higher intensities it becomes 

shallower and wider, and, at sufficiently high intensities, looses the ability to bind BH states. In 

contrast to the BH well, the less energetic Floquet potential curve below the gap forms a barrier 

that may enable BS [1, 11, 21, 45, 76, 83, 95], i.e., dissociation of the molecule due either to 

classically allowed over-the-barrier escape or by tunneling.  

The KE is determined by the number of absorbed photons. The dipole-allowed absorption 

of one or three photons leads to dissociation into the 1-ω and 3-ω dissociation channel, 

respectively. Dissociation by the effective absorption of an even number of photons can also 

occur, without violating the dipole selection rule, by proceeding over two avoided crossings. For 

example, exposed to sufficiently large laser intensities, D2
+ can dissociate into the 2-ω channel 

by first absorbing three and then releasing one photon.  

Even though the numerical results presented in this work are in strong support of the 

interpretation of the laser influenced nuclear motion in D2
+ based on (time independent) Floquet 

potential curves, we briefly mention an interesting alternative dynamical interpretation [23, 67]. 

BH, which is also referred to as “vibrational trapping” or “dynamical dissociation quenching,” 

has been discussed by Châteauneuf et al. [23] in terms of the time-periodic potential curves V±(R, 

t) that are obtained by diagonalization of the field-free 1sσg and 2pσu BO potential curves subject 

to the time-dependent dipole coupling matrix elements Dgu(R, t) at fixed t and R. The authors 

showed that the dynamical interplay between the time-dependent force associated with the upper 

V+(R, t) curve and the moving nuclear wave packet can lead to the efficient quenching of the 

laser-induced dissociation. This is in agreement with the classical interpretation of the nuclear 

motion receiving an inward directed restoring force if the moving potential barrier included in 

V+(R, t) is appropriately synchronized with the nuclear motion. This dynamical interpretation of 

BH was experimentally confirmed for the nuclear motion in H2
+ and D2

+ in a 70 fs 1.6 µm laser 

pulse that was modulated on the time scale of the nuclear vibrational motion (10 fs) [67]. The 
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modulation was obtained by the coherent superposition of two laser pulses and provided an 

adjustable pulse envelope that controls the motion of the vibrational wave packet. 

In secs. 6.3.1-6.3.3, we will discuss the bound and dissociating nuclear motion of D2
+ in a 

laser pulse by examining how power spectra are affected by the laser pedestal parameters 

intensity, frequency, and duration. Even though all simulations were carried out for (pedestal) 

laser pulses with a finite pulse length, we will show that the terminology developed based on the 

Floquet picture is appropriate. For example, even though stable BH states can only exist in cw 

laser fields, we find evidence for transient BH states in laser pulses over a large range of pulse 

lengths. 

 

6.3.1. Intensity dependence 
 

 
Fig.  6.3 Dependence of initial FC vibrational wave packet of D2

+ on pedestal intensity.  
Graphs are plotted for 200 nm pedestal laser pulses with different intensities of 0.1x1014 W/cm2 
[(a) and (d)], 0.5x1x1014 W/cm2 [(b) and (e)], and 1x1014 W/cm2 [s (c) and (f)]. Graphs (a)-(c) 
correspond to quantum-beat frequency and internuclear distance dependent power spectra in a 
logarithmic scale, and graphs (d)-(f) are field-dressed potential curves (res lines) for 
corresponding intensities. Field-free potentials are plotted as thin black lines. 
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Fig. 6.3 shows the R-dependent power spectra P(R,ω;T) for D2
+ propagating through 200 

nm 20 fs (FWHM) Gaussian pedestal laser pulses for different peak intensities (upper panels) 

and the corresponding Floquet field-dressed potential curves which are displayed in red in the 

lower panels. The three columns show results for pedestal intensities of 1013 (left), 5x1013 

(middle), and 1014 W/cm2 (right column). Note that the field-free adiabatic molecular potential 

curves are also included in the lower panels as thin black lines. As for all other numerical results 

shown further below, the molecular ion is assumed to be produced by the rapid ionization of D2 

and is characterized by a FC distribution of stationary vibrational states, as described above.  
 

For the frequency and R range shown in Fig. 6.3, the R dependence in the power spectra 

[7] reflects the nodal structure of the product of the probability densities |aµ|2 and |aν|2 of the two 

adjacent stationary vibrational states ��𝜒𝜒𝜇𝜇 〉� and |�𝜒𝜒𝜈𝜈 〉� that beat against each other with the 

frequency 𝑓𝑓 = Δ𝜔𝜔𝜇𝜇 ,𝑣𝑣 /2𝜋𝜋 [91]. The thin black vertical lines facilitate the association of minima 

of the 1-ω BH wells in the power spectra (upper row of graphs in Fig. 6.3) with BH wells in the 

Floquet potential curves (lower row). For the displayed intensities, the power spectra show a 

significant amount of nuclear probability density that is intermittently trapped in the 1-ω BH 

well. 

The nuclear probability density in the 1-ω BH well increases with intensity at the expense 

of probability that is associated with the bound motion of the molecular ions in field-dressed 

1sσg potential curve. The power spectra confirm the intuitive expectation that dissociation across 

the 1-ω BS barrier, either by classical over-the-barrier motion of the two nuclei or by tunneling, 

(i) increases with increasing peak intensity and (ii) progresses by first depleting the highest  

vibrational state components of the nuclear wave packet with vibrational quantum numbers ν≥4 

(at quantum-beat frequencies near 40 THz) (left column in Fig. 6.3) to the lowest vibrational 

components of the initial FC distribution (right column). 
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6.3.2. Wavelength dependence 
 

For shorter wavelengths and otherwise identical laser parameters, the character of the 

power spectra changes. In comparison with the 200 nm results in Fig. 6.3, the power spectra 

calculated for 800 nm in 6.4 indicate that the nuclear motion in D2
+ sensitively depends on the 

carrier wavelength.  

To a large extent, this change can be understood within the Floquet picture. As the 

photon energy decreases, the spacing in energy between Floquet potential curves decreases. This 

decrease increases the significance of couplings between more than two curves, which, in turn, 

may result in the overlap of (1-ω with 3- ω) BH wells and their bond-prohibiting flattening. At 

800 nm and 1013 W/cm2 peak intensity (left column in Fig. 6.4), the power spectrum shows only 

weak evidence for the temporary trapping of nuclear probability density in the 1-ω BH well that 

is centered near R=5. The molecular ion remains most likely bound in the electronic ground 

state. At the higher intensities (middle and right columns), dissociation via BS becomes 

increasingly important but cannot be as clearly assigned to the 1-ω BS barrier as for the case of 

200 nm wavelength. 

 
Fig.  6.4  Same as Fig. 6.3,  but for 800 nm pedestal laser pulses. 
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At 800 nm and 5x1013 W/cm2 (middle column in Fig. 6.4), the 1-ω BH well has 

disappeared in the Floquet potential curve (graph e) and BH is mostly confined to the 3-ω BH 

well centered at smaller distances near R=3.5 in the power spectrum. The same applies to the 

highest shown intensity (1014 W/cm2, right column) where dissociation via 1-ω, and to a lesser 

extent, 3-ω BS, strongly decreases the molecular ion’s chance for survival in the bound 

electronic ground state. Note that graph (b) also shows weak evidence for BH states in the 1-ω 

well near R=5 due to temporary vibrational trapping during the increasing laser intensity of the 

pedestal, although graph (e) would prohibit such states. 

A more systematic study of the wavelength dependence of BS and BH is shown in Fig. 

6.5 for power spectra (upper row) and Floquet potential curves at a fixed intensity of 1013 

W/cm2. Since the crossing point in the field-free potential curves (thin black lines in the lower 

panels) changes with the photon energy, we expect that the laser wavelength will affect BS and 

BH.  

 
Fig.  6.5 Dependence of the initial FC vibrational wave packet of D2

+ on the laser wavelength 
(Same logarithmic color scale as in Fig. 6.3). Graphs are plotted for 1013 W/cm2 peak intensity 
pedestal laser pulses with different wavelength of 200 nm [(a) and (f)], 500 nm [(b) and (g)], 800 
nm [(c) and (h)], 1024 nm [(d) and (i)],  and 1600 nm [(e) and (j)]. Graphs (a)-(e) correspond to 
quantum-beat frequency and internuclear distance dependent power spectra in a logarithmic 
scale, and graphs (f)-(j) are field-dressed potential curves (res lines) for corresponding 
intensities. Field-free potentials are plotted as thin black lines as above. 
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  The power spectra in graphs (a)–(e) show that dissociation by BS decreases with 

increasing wavelength, while the 1-ω BH well moves to larger internuclear distances. For 200 

nm wavelength graphs (a) and (f) show a very prominent 1-ω BH well due to the strong coupling 

between the 1sσg and 2pσu electronic states. For this wavelength, all vibrational eigenstates in 

the initial FC distribution above ν=2 are being depleted by BS, while the deep BH well traps 

even the highest initially occupied vibrational states. 

For 500 nm (Figs. 6.5(b) and 6.5(g)) the 1- ω BH well remains populated but receives 

less probability density than for the case of 200 nm, while the nuclear motion is more likely to 

remain bound in the electronic ground state. This trend continues for 800, 1024, and 1600 nm 

(three right columns in Fig. 6.5) to the point that BH in the 1- ω well disappears at 1600 nm. This 

also follows from the comparison of Figs. 6.3(c) and 6.4(c) above. As the wavelength increases, 

BS through and over the 3- ω well becomes energetically possible for an increasing number of 

stationary vibrational states of the nuclear wave packet.  

However, as the simulated power spectra show, the peak intensity of 1013 W/cm2 is too 

low for three-photon processes to become relevant. Therefore, 3-ω BS and BH are not clearly 

noticeable in Fig. 6.5. In the left four columns of Fig. 6.5, the positions of the 1-ω BH well agree 

in power spectra and Floquet potential curves. At 1600 nm, however, according to the Floquet 

picture the 1- ω BH has disappeared and BH is expected to happen near the 3- ω crossing point 

(Fig. 6.5(j)). This prediction of the cw Floquet picture is not fully confirmed in the power 

spectrum in Fig. 6.5(e) that shows very weak evidence of 1-ω BH states centered near R=7 and 

no apparent traces of 3-ω BS or BH. 

This mismatch is related to the fact that the Floquet picture assumes infinite pulse 

lengths, while at 1600 nm the power spectrum simulates the propagation of the nuclear wave 

packet across a pedestal pulse with a length of L=20 fs (FWHM), corresponding to the 

illumination of the wavepacket by the pedestal laser pulse over just two optical cycles and with a 

rapidly changing envelope. We therefore interpret this discrepancy as due to both the onset of the 

breakdown of the Floquet picture for short pulses, and more importantly, an effective laser 

intensity in the power spectra that is much smaller than the peak intensity for which the Floquet 

curves were calculated.  



 

65 

 

6.3.3. Pulse-length dependence 

 

The combined effect on the power spectra of changing pulse duration and wavelength is 

shown in Fig. 6.6. The panels in this figure are ordered with pedestal wavelengths increasing 

from 200 (top) to 1600 nm (bottom). The pedestal length increases from L=50 (FWHM, left) to 

200 fs (right). For each wavelength (each row), the BH probability decreases with increasing 

pulse length. Even though one might expect longer pedestal pulses to enable more pronounced 

BH due to longer trapping times, our simulations show the opposite trend which we assign to the 

dominant influence of the pulse energy. Longer pedestals transfer more energy to the molecule. 

This favors both dissociation by BS directly out at the electronic ground state (leaving less 

probability to be potentially trapped in a BH well) and the decay of BH states by nonadiabatic 

couplings to dissociative potential curves that are neglected in the BO approximation [18]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  6.6  Quantum-beat frequency and internuclear distance dependent power spectra in log 
scale. 
(Same color scale as in Fig. 6.4). For fixed peak intensity of 1014 W/cm2 the propagation of an 
initial FC wave packet is plotted for different (200, 800, 1600 nm) wavelengths and pedestal 
lengths (FWHM 50, 100, and 200 fs). 
 

At shorter wavelengths, the same pedestal pulse envelope includes more optical cycles. 

Thus, the power spectra in Fig. 6.6 with the shortest wavelength and longest pulse duration are 
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most amenable to their interpretation within the Floquet picture. However, this trend is 

somewhat difficult to follow over a large range of pulse lengths, since, for high pulse durations 

(high pulse energies) BS can dominate to the point that all bound states become depleted. This is 

illustrated in the top right corner of Fig. 6.6. For a wavelength of 200 nm (top row), BS 

dissociation is rapidly depleting the electronic ground state and leaves a noticeable population in 

the 1-ω BH well only for the lowest shown pulse energy (L=50 fs). At 800 and 1600 nm, in 

contrast, the electronic ground state remains populated at all displayed pulse lengths but, as 

expected, gets increasingly depleted with increasing pulse length by BS over and through the 1- 

BS barrier. The comparison of all panels in Fig. 6.6 suggests that BH is most pronounced at the 

shortest wavelengths and for the shortest pedestals. The comparison with Fig. 6.3 above shows 

that BH at short wavelengths is robust over a large range in peak intensities. 

 

 

6.4. Conclusion 
 

We imaged the nuclear dynamics of the D2
+ molecules in short laser field with different 

peak intensities, wavelengths, and pedestal lengths by simulating the R-dependent quantum-beat 

power spectra. The power spectra were analyzed in terms of field-dressed Floquet potential 

curves focusing on dissociation by BS and BH. Except for the longest wavelengths used in our 

simulations (1600 nm), we confirmed the Floquet picture as appropriate for characterizing the 

main features of the nuclear dynamics in few-cycle laser pulses despite its inherent cw 

assumption. Our simulations suggest that pulses with a wavelength between 200 to 300 nm, a 

peak intensity of about 1014 W/cm2, and a duration of less than 50 fs (FWHM) are well suited for 

the observation of transient vibration trapping of the molecular motion in the 1-ω BH well. At 

wavelengths of 1600 nm, we found that dissociation proceeds via both 1-ω and 3-ω BS. For the 

same wavelength, our simulations indicate transient trapping in the 3-ω BH well. To the best of 

our knowledge, existing technology [5, 8] allows for the detailed experimental test of our 

findings. 
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CHAPTER 7 - Conclusion 

In conclusion, we covered the basics concepts and theory related to the behavior of atoms 

or molecules in strong laser fields, experimental setup used in our experiments and the technique 

of data processing in chapters 2 to 4.  

 

In chapter 5, we measured the angular dependence of the strong-field ionization 

probability for D2 in 1850 nm circularly polarized infrared laser pulses without having to align 

the molecules first. We determined that this angular dependence exhibits a weak anisotropy with 

an ionization yield ratio of 1.15±0.05 favoring the ionization of molecules that are aligned 

parallel to the electric field. We also presented a 2D single active electron ab initio numerical 

model which accurately predicts the measured anisotropy, as well as its intensity dependence for 

both our experiment [57] at 1850 nm and Staudte et al.’s at 800 nm wavelength [88]. Both our 

experimental and theoretical values agree very well with the results of Staudte et al. for H2, as 

well as with our own earlier estimate for D2 [16] obtained using dynamic alignment and few 

cycle 800 fs pulses. 

 

In chapter 6, we investigated the nuclear dynamics in D2
+ for different peak intensities, 

wavelengths, and pedestal lengths of the laser pulses, based on simulated R-dependent quantum-

beat power spectra [58]. By analyzing these spectra in terms of field-dressed Floquet potential 

curves we focused on dissociation by BS and transient binding of the nuclear motion by BH. We 

confirmed that, despite the incoherent cw assumption, the Floquet picture is suitable for 

characterizing the main features of nuclear dynamics, such as BS, BH in few-cycle laser pulses, 

except for the longest wavelength we used in simulations (1600 nm). From the simulations we 

concluded that peak intensity of about 1014 W/cm2, pulses with a wavelength between 200 to 300 

nm, and a duration of less than 50 fs (FWHM) are most suitable for the observing the vibration 

trapping of the molecular motion in the 1- ω BH well. At wavelengths of 1600 nm dissociation 

can proceed via both 1-ω and 3-ω BS, and our simulations indicate transient trapping in the 3-ω 

BH well at the same wavelength.  Existing technologies [49, 40] can be used to test our findings 

experimentally.   
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Appendix A - Atomic units 

The SI unit system is based on four constants of the nature: length - meter, time - second, 

mass - kilogram and current - ampere. In atomic physics it is more convenient to use atomic units 

where,  

Atomic unit of action:    ħ  =  1 

Atomic unit of mass:    me  =  1 

Atomic unit of charge:    e   =  1 

Atomic unit of the Coulomb force constant: 1/4πε0  =  1 

 

The unit of the length in atomic units set as Bohr radius of the hydrogen. The Bohr radius 

is the radius of the orbit of the electron in the ground state of the hydrogen: 

 

𝑎𝑎0 = (4𝜋𝜋𝜀𝜀0)ℏ2

𝑚𝑚𝑒𝑒2 = 5.29177 × 10−11𝑚𝑚    (A.1) 

 

The unit of the mass is taken as the mass of the electron, the unit of the charge is 

electrons charge, and unit of the angular momentum is ħ. The unit of the velocity is taken as 

velocity of the electron in the first Bohr orbit of hydrogen: 

 

𝑣𝑣0 = 𝑒𝑒2

(4𝜋𝜋𝜀𝜀0)ℏ
= 𝛼𝛼𝛼𝛼        (A.2) 

 

where α is the fine structure constant and equal to 1/137 and c the speed of the light, so in 

atomic units speed of the light is 137 a.u.. 

In atomic units for energy we will have: 

𝐸𝐸𝑛𝑛 = − 𝑍𝑍2

2𝑛𝑛2       (A.3) 

 

For hydrogen the energy in atomic units is -0.5 a.u. such that the atomic unit of the 

energy (which is called hartree) is 27.2 eV. 
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The table below summarizes the transition from atomic units to SI units. 

 

dimension formula a.u. SI units 
length a0 1 5.29177 x10−11 m 

time a0/v0 1 2.41888 x 10−17 s 

mass me 1 9.10938 x10−31 kg 

charge qe 1 1.60218 x10−19 C 

velocity v0 1 2.18769 x 106 m/ s 

intensity 1/2 cε0(e/(4 πε0a0
2))2 1 3.50953 x 1016 W/cm2 

energy e2/(4 πε0a0) 1 27.2116 eV = 1 hartree 

momentum mev0 1 1.99285 x 10−24 kg m /s 

angular momentum ħ = a0mev0 1 1.05457 x 10−34 kg m2/ s 

frequency v0/(2πa0) 1 6.57969 x 1015 Hz 

angular  frequency v0/a0 1 4.13414 x 1016 Hz 

action ħ = e2/(4 πε0v0) 1 1.05457 x 10−34 J s 

electric field e/(4 πε0a2
0) 1 5.14221 x 1011 V/m 

magnetic field ħ/(ea0
2) 1 2.35052 x 105 T 

 

Table A.1 Transition from atomic units to SI units. 
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Appendix B - Jet velocity and temperature 

Measuring jet velocity and temperature experimentally is straight forward. We measure 

(plot) the time of flight spectrum and 2D momentum of the target jet and background gas in the 

detector plane (x,y) (direction of the jet is  along y axis, targets used were D2 and H2, and mostly 

H2O and H2 as background gases). 

 
Fig. B.1 Time-of-flight plot for D2 target.  
The voltage across the spectrometer is 10V. The ion flight distance is 5.2 cm. 

 

Fig. B.1. shows the time-of flight spectra for D2 target. Gating on time-of-flight (TOF) 

for each background gas we plot the py distribution. Fitting it with the Maxwell-Boltzmann 

(Gaussian) distribution gives us the jet temperature and velocity. The Boltzmann distribution is 

given as: 

𝑓𝑓𝑝𝑝�𝑝𝑝𝑦𝑦� = � 𝑚𝑚
2𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇

�
1/2

exp �− 𝑝𝑝𝑦𝑦2

2𝑘𝑘𝐵𝐵𝑇𝑇
�      (B.1.) 

where kB is Boltzmann’s constant.  

We are fitting data using a Gaussian which has form: y=y0+Aexp(-(x-xc)2/(2w2))  where 

A corresponds to the term in front of the exponent in (B.1) and has units of sec/m w2=mkBT and 

has units of inverse momentum squared. From Fig. B.1, using fitting parameters for the 

temperature we get: 
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       𝑇𝑇 = (1.7×1.99×10−24  𝑘𝑘𝑘𝑘  𝑚𝑚/𝑠𝑠)2

4×1.66×10−27𝑘𝑘𝑘𝑘×1.38×10−23𝐽𝐽/𝐾𝐾
= 124𝐾𝐾 = −149℃                                           (B.2) 

𝑇𝑇 = (5.5×1.99×10−24𝑘𝑘𝑘𝑘  𝑚𝑚/𝑠𝑠)2

18×1.66×10−27𝑘𝑘𝑘𝑘×1.38×10−23𝐽𝐽/𝐾𝐾
= 291𝐾𝐾 = 18℃                                              (B.3) 

where  (B.2) corresponds to the temperature of the jet ions and the (B.3) corresponds to the hot 

background temperature. 

 
Fig. B.2 py momentum distribution for the H2O background gas in the case of backing pressure 
12 psi of the D2 target.  
The data is fitted using Gaussian as y=y0+Aexp(-(x-xc)2/(2w2)) where w2=mkBT,  kB is Boltzmann 
constant, A=(m/(2kBTπ))0.5, xc is the distance from the origin on x axis,  y0 on the y axis, w is 
FWHM*2*(ln4)0.5. The blue fit corresponds to the D2 ions and the red fit corresponds to the hot 
background. 

 

The jet velocity relative to the background can be calculated using fitting parameter xc 

(has units of the momentum in atomic units). From Fig. B.2, for the D2 gas jet and gating on H2O 

TOF we found xc=2 relative to thebackground. py=xc(at x=0) => vy=xc/m where m is the mass of 

the D2 in our case.  Thus  

𝑣𝑣𝑗𝑗𝑗𝑗𝑗𝑗 = 2×1.99×10−24

4×1.66×10−27𝑘𝑘𝑘𝑘
𝑘𝑘𝑘𝑘  𝑚𝑚
𝑠𝑠

= 599.4 𝑚𝑚
𝑠𝑠
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Appendix C - OPA calibration 

To ensure that we obtain correct signal and idler readings from the OPA we calibrated using a 

spectrometer. Fig. C.1 shows the calibration plot for counts vs. wavelength for this spectrometer.  

 
Fig. C.1 Spectrometer calibration 

 

Table C.1 summarizes the OPA signal and the spectrometer counts, the third column is obtained 

using calibration curve in Fig. C.1. 

 
OPA  

Signal 

Spectrometer 

count 

Spectrometer  

wavelength (nm) 

OPA 

Idler 

Spectromet

er count 

Spectrometer  

wavelength (nm) 

1280 444 1239.6 2077.38 962 ~2160 

1310 464 1287.5 2002.93 900 ~2075 

1340 480 1317.5 1936.64 849 1993.2 

1370 500 1353 1877.23 825 1942.8 

1400 519 1385 1823.68 785 1880.1 

1430 539 1422.96 1775.17 759 1825 

1460 554 1450.5 1731.02 726 1769.5 

1490 560 1460.5 1690.66 706 1729.4 

1520 571 1485.7 1653.63 674 1674.5 

1550 576 1490.9 1619.53 647 1623.95 

1580 _ _ 1588.02 
  

1610 _ _ 1568.32 
  

 

 Table C.1  OPA and spectrometer readings. 
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Fig. C.2 Comparing the software reading (OPA Black) with the spectrometer calibration 
(Spectrometer red) for Signal and Idler pulses. 
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The output from OPA  

Output: TOPAS (DM3 Closed) 

Polarization: S-V  I-H 

S 

wavelength( nm) 

S+I 

energy (µJ) 

S 

wavelength( nm) 

S+I 

energy (µJ) 

1140 10 1420 280 

1160 100 1440 270 

1180 190 1460 260 

1200 260 1480 245 

1220 300 1500 215 

1240 310 1520 210 

1260 320 1540 160 

1280 320 1560 85 

1300 315 1580 35 

1320 305 1600 35 

1340 300 1620  

1360 295   

1380 290   

1400 280   

 

Table C.2 The OPA output datasheet provided by manufacturer. 
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Power outputs measured 

OPA entry power=  1.4 W 

(S) nm (I) nm power (mW) 

 

(S) nm (I) nm power (mW) 

1160 2496.52 7 

 

1410 1806.99 390 

1170 2451.43 10 

 

1420 1790.83 375 

1180 2408.66 20 

 

1430 1775.17 380 

1190 2368.04 55 

 

1440 1760 365 

1200 2329.41 110 

 

1450 1745.29 360 

1210 2292.63 210 

 

1460 1731.02 350 

1220 2257.57 230 

 

1470 1717.17 345 

1230 2224.11 310 

 

1480 1703.72 320 

1240 2192.14 330 

 

1490 1690.66 300 

1250 22161.57 362 

 

1500 1677.97 270 

1260 2132.31 370 

 

1510 1665.63 250 

1270 2104.27 390 

 

1520 1653.63 200 

1280 2077.38 400 

 

1530 1641.95 190 

1290 2051.57 410 

 

1540 1630.59 200 

1300 2026.77 410 

 

1550 1619.53 160 

1310 2002.93 405 

 

1560 1608.75 130 

1320 1980 420 

 

1570 1598.25 120 

1330 1957.92 400 

 

1580 1588.02 110 

1340 1936.64 385 

 

1590 1578.05 100 

1350 1916.13 400 

 

1600 1568.32 60 

1360 1896.34 410 

 

1610 1568.32 50 

1370 1877.23 415 

 

1620 1549.57 - 

1380 1858.78 405 

    1390 1840.94 410 

    1400 1823.68 405 

     

Table C.3  OPA output. 
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Appendix D - FORTRAN Code 

Following is the subroutine (only part changing for each experiment) of the main 

program which analyses the raw data for electrons and ions and generates the Lab view plots. 

For more details see [9, 59]. 
c************************************************************************************* 

c Filename:    analyse_labview.f 

c Subroutines: analyse, booking, histout 

c Functions:   tof_to_pe, coss, ceil, cubic 

c Description: Analyzes data and generates all of the same spectra which 

c              labview generates. This routine analyzes both electrons and 

c              recoils. 

c************************************************************************************* 

c------------------------------------------------------------------------------------- 

      subroutine analyse(tdc,cnt,counts,adc,nadc,scl,nscl,param)      

C ------------------------------------------------------------------------------------ 

c ************************ Declare Variables ***************************************** 

implicit none 

integer*4 cnt(32), adc(*),scl(*),nscl, nrec, nel, energy, counts(*) 

integer*4 mu1, mu2, qu1, qu2 

integer ln, rn, tn, bn, cpn, nadc, param, k,m,l, parama 

integer left, right, up, down, mcp, i 

real tdc(32,16),flux 

real tim, m1, m2, q1, q2, xshift, yshift, x, shift 

real s1, E1, z, s2, E2, E, s, q, Ef, sp   

real a1,a2,t1,t2,tofall,xr3,yr3,xr4,yr4,rtof3,rtof4,dif,sum 

real xr_20,yr_20,re,Ez,Exy,pz,py,px,rr 

real xe1,xe2, xe_0, ye1,ye2, ye_0, te1,te2,te_0 

real edx1,edx2, edy1,edy2, gxe, gye, re1,re2,tr_0 

real xr1,xr_0, yr1,yr_0, rtof1,rtof2, xr2,yr2, gx,gy, gxr,gyr 

real xesum, yesum, xesd, yesd, xrsum, yrsum, xrsd, yrsd, rr1d 

real pxe, pxe1, pye, pye2, pze, pze2,pze3, ppe,ppe2,pe1,pe2, le1 

real pev, totalr, temp, temp2,pp1,pp2, pe  

real tof_to_pe, rndm, coss, cos1, cos2           ! function       

real vy1, vy2, vz1, vz2, et1, et2 

real cosfi, fi, cosbt, betta, v1, v2 

real alpha, pxe_prime, pye_prime, theta, theta_prime, inc, dalpha 

real ppr, pr, prrx, prry, prrz, prrz2, prd, prs !pxr, pyr, pzr, 

real pxr(4), pyr(4), pzr(4), tsum, prd2, prdif 

real tsumxe, tsumye, tsumxr, tsumyr 

real rec(3,16),el(3,16) 
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real omega, c 

real onex(16),twox(16),oney(16),twoy(16),cp(16),ec,xcm,ycm 

real xp,yp,angler,anglee       

real pau, vjet, PI, me, mu, mar, mn2 

real nx, ny, nz 

real dt, rtof0, etof, edx, edy 

real pxtot,pytot,pztot 

double precision cubic                     ! function 

c *********************** Initialize Constants *************************************** 

parameter (PI=3.14159265359) 

 parameter (mu=1.661E-27)                   ! proton mass (kg) 

parameter (me=9.1094E-31)                  ! electron mass (kg) 

parameter (mar=6.634E-26)                  ! Argon atomic mass (kg) 

parameter (mn2=2.324E-26)                  ! N2 atomic mass (kg) 

 data omega/0.224/ !GHz(B=gauss)cyclotron frequency calculated from wiggles 

 data pau/1.993E-24/                         ! a.u. of momentum 

data ec/1.602E-19/                          ! electron charge 

data xesum/-89.56/                          ! electron time sums 

data xesd/4./ 

data yesum/-88.88/ 

data yesd/4./ 

 data xrsum/-107.64/                        ! recoil time sums 

  data xrsd/2./ 

  data yrsum/-104.57/ 

data yrsd/2./         

data gx/1.064/                             ! gain factor for electron detector 

data gy/1.064/                             ! 0.5[mm/ns]       

data gxr/1.064/                            ! gain factor for recoil detector 

data gyr/1.064/         

vjet=9.E-4                                 !gyr*(delta(ns))/tof(ns)    

data te_0/-20./                            ! electron zero time 

data tr_0/-11./                            ! recoil zero time 

c data rtof0/1./                             ! recoil peak time in ns              

data xe_0/0.1/                             ! electron detector center 

data ye_0/0.6/ 

data xr_0/0./                              ! recoil detector center 

data yr_0/0./ 

 data xr_20/0./                             ! recoil detector center 

data yr_20/0./ 

c ********************** Set Analyze Paramters *************************************** 

s    = 0.235                               ! electron distance [m] 

s1   = 0.0636                              ! recoil distance [m] 
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E    =100.                                 ! electric field [V/m] 

q    = 1.*ec                               ! electron charge 

c***************** Set Charge and mass of recoil products***************************** 

q1 = 1*ec                                  ! charge of Ar(N2)+ 

q2 = 1*ec                                  ! charge of Ar(N2)+ 

m1 = 28.                                   ! mass of N2+ 

m2 = 28.                                   ! mass of N2+ 

c  m1 = 40.                                   ! mass of Ar+ 

c  m2 = 40.                                   ! mass of Ar+ 

       

c ************* End of Constants and analyze parameters ****************************** 

c ************************** Time Sums ***********************************************  

c******************** Calculate all Time Sums***************************************** 

tsumxe=-(2*tdc(10,1)-tdc(15,1)-tdc(16,1)) 

tsumye=-(2*tdc(10,1)-tdc(3,1)-tdc(4,1)) 

tsumxr=-(2*tdc(9,1)-tdc(5,1)-tdc(7,1)) 

tsumyr=-(2*tdc(9,1)-tdc(6,1)-tdc(8,1)) 

c****************** populate Time Sum histograms************************************** 

call hf1(1,tsumxe,1.) 

call hf1(2,tsumye,1.) 

call hf1(3,tsumxr,1.) 

call hf1(4,tsumyr,1.) 

call hf2(-1,tsumxe,tsumye,1.) 

call hf2(-2,tsumxe,tdc(1,1)-tdc(2,1),1.) 

call hf2(-4,tsumye,tdc(3,1)-tdc(4,1),1.) 

call hf1(-5,tdc(1,1)-tdc(2,1),1.) 

 call hf1(-6,tdc(3,1)-tdc(4,1),1.)  

c ************************************************************************************ 

c ******************** Electron positions and MCP ************************************ 

c ******** Here we obtain the electron time and position data ************************ 

left  = 15 

right = 16 

down  = 3 

up    = 4 

mcp   = 10               

ln = cnt(left) 

do i=1,cnt(left) 

onex(i)=tdc(left,i)+.5*rndm() 

enddo 

rn = cnt(right) 

do i=1,cnt(right) 

   twox(i)=tdc(right,i)+.5*rndm() 
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enddo 

bn = cnt(down) 

do i=1,cnt(down) 

oney(i)=tdc(down,i)+.5*rndm() 

enddo 

tn = cnt(up) 

do i=1,cnt(up) 

twoy(i)=tdc(up,i)+.5*rndm() 

enddo 

cpn = cnt(mcp) 

do i=1,cnt(mcp) 

cp(i)=tdc(mcp,i)+.5*rndm() 

enddo 

nel = 4 

  call resort(nel,cp,cpn,onex,ln,twox,rn,     ! now resort the hits 

*            oney,bn,twoy,tn, 

*            xesum,yesum,xesd,yesd, 

*            el) 

c     if(nel.lt.1.) return  

c ************************************************************************************ 

c ************************ Analyze Electrons ***************************************** 

c ******* Here we analyze the electron time and position data ************************ 

etof = tdc(11,1)-el(1,1)-te_0               ! electron time of flight 

 edx1 = gx*el(2,1)                           ! mm/2  electron positions 

edy1 = gy*el(3,1)       

edx1 = edx1+xe_0 

edy1 = edy1+ye_0  

re = sqrt(edx1**2+edy1**2)  

c = tan(omega*etof/2.) 

re1  = sqrt((edx1+0)**2+(edy1-0)**2)  

pxe  = 5.E5*me*omega*(edx1/c+edy1)/(2.*pau) !electron momenta counter clockwise 

pye  = 5.E5*me*omega*(edy1/c-edx1)/(2.*pau) 

c pxe  = 5.E5*me*omega*(edx1/c-edy1)/(2.*pau)  !electron momenta  clockwise 

c  pye  = 5.E5*me*omega*(edy1/c+edx1)/(2.*pau)       

pze  = (1.E9*me*s/etof - 1.E-9*E*q*etof/2.)/pau 

ppe  = sqrt(pxe**2+pye**2)         

pe   = sqrt(ppe**2+pze**2)            ! total electron momentum [a.u.] 

pev  = 27.2*pe**2/2.                  ! total electron momentum [eV] 

Ez =27.2*pze**2/2. 

Exy=27.2*ppe*2/2. 

c ********************** End Analyze Electrons *************************************** 

c ******************** Recoil positions and MCP ************************************** 
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c ******** Here we obtain the recoil time and position data ************************** 

left  = 5 

right = 7 

down  = 6 

up    = 8 

mcp   = 9 

c ************************************************************************************        

c************************* Handle "param"********************************************* 

c  parama=param/1000.+(1.+(-0.5*Rand())) 

parama=param+(1.+(-0.5*Rand())) 

param=parama     

c********************** Done handling "param"***************************************** 

ln = cnt(left) 

do i=1,cnt(left) 

onex(i)=tdc(left,i)+.5*rndm() 

enddo 

rn = cnt(right) 

do i=1,cnt(right) 

twox(i)=tdc(right,i)+.5*rndm() 

enddo 

bn = cnt(down) 

do i=1,cnt(down) 

ney(i)=tdc(down,i)+.5*rndm() 

enddo 

tn = cnt(up) 

do i=1,cnt(up) 

twoy(i)=tdc(up,i)+.5*rndm() 

enddo 

cpn = cnt(mcp) 

do i=1,cnt(mcp) 

cp(i)=tdc(mcp,i)+.5*rndm() 

enddo 

nrec=2 

call resort(nrec,cp,cpn,onex,ln,twox,rn, 

*            oney,bn,twoy,tn, 

*            xrsum,yrsum,xrsd,yrsd, 

*            rec)      

c******************** Get recoil times of flight from the TDC*************************   

c   rtof=tdc(11,1)-rec(1,1)+tr_0 

rtof1=tdc(11,1)-rec(1,1)+tr_0 

rtof2=tdc(11,1)-rec(1,2)+tr_0 

rtof3=tdc(11,1)-rec(1,3)+tr_0 
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rtof4=tdc(11,1)-rec(1,4)+tr_0        

do k=1,4 

tofall=tdc(11,1)-rec(1,k)+tr_0 

call hf1(553,tofall,1.)       

enddo 

c********************* Retrieve position of the recoil hit****************************  

xr1 = gxr*rec(2,1) 

yr1 = gyr*rec(3,1) 

call hf1(11,rec(2,1),1.) 

call hf1(12,rec(3,1),1.) 

xr2 = gxr*rec(2,2) 

yr2 = gyr*rec(3,2) 

call hf1(13,rec(2,2),1.) 

call hf1(14,rec(3,2),1.) 

rr = sqrt(xr1**2+yr1**2)       

c   xr1 = gxr*rec(2,1)-xr_0 

c   yr1 = gyr*rec(3,1)-yr_0 

c  xr2 = gxr*rec(2,2)-xr_20 

c   yr2 = gyr*rec(3,2)-yr_20 

c********************** Reset hit position relative to the detector center************ 

c  xr1 = xr1+xr_0 

c yr1 = yr1+yr_0 

c********************* Done with Recoil hit position********************************** 

c xp=xr1*cos(angler)+yr1*sin(angler)      !recoil detector rotation 

c  yp=yr1*cos(angler)-xr1*sin(angler)         

c  rr1=sqrt((xr1+0)**2+(yr1+5)**2) 

c ************************************************************************************ 

c ************************* Analyze Recoils ****************************************** 

c ******************* Here we analyze the recoil time and position data **************        

shift = 0.                 ! usually varies from 10-25 for the sq room COLTRIMS 

xshift = shift*sqrt(m1*ec/q1)  

yshift = shift*sqrt(m2*ec/q2) 

c  x      = (rtof1-xshift)*1E-9 

c  tim    = 2.*s1*m1*mu/(q1*E*x) 

c  tim    = (tim*1.E9 + yshift)      

c********************** Calculate recoil momentums************************************        

pzr(1) = (1.E9*m1*mu*s1/(rtof1-xshift)- 1.E-9*E*q1*(rtof1-xshift)/2.)/pau 

pyr(1) = (5.E5*m1*mu*(yr1-yr_0)/(rtof1-xshift))/pau 

pxr(1) = (5.E5*m1*mu*(xr1-xr_0)/(rtof1-xshift))/pau 

et1    = 27.2*((pxr(1))**2+(pyr(1))**2+(pzr(1))**2)/(2.*m1*1836.)        

pzr(2) = (1.E9*m2*mu*s1/(rtof2-yshift)- 1.E-9*E*q2*(rtof2-yshift)/2.)/pau 

pyr(2) = (5.E5*m2*mu*(yr2-yr_20)/(rtof2-yshift))/pau 
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pxr(2) = (5.E5*m2*mu*(xr2-xr_20)/(rtof2-yshift))/pau  

      et2    = 27.2*((pxr(2))**2+(pyr(2))**2+(pzr(2))**2)/(2.*m1*1836.)       

c------------------------------------------------------------------------------------- 

prrx   = pxr(1)-pxr(2) 

prry   = pyr(1)-pyr(2) 

prrz   = pzr(1)-pzr(2) 

  pz = pzr(1)+pzr(2) 

py = pyr(1)+pyr(2) 

px = pxr(1)+pxr(2)  

prs = sqrt((px)**2+(py)**2+(pz)**2) 

c      totalr = 27.2*((pxr(1)-pxr(2))**2+ 

c  *               (pyr(1)-pyr(2))**2+ 

c   *               (pzr(1)-pzr(2))**2)/(52.*1836.) 

totalr=et1+et2 

c **************************** End Analyze Recoils *********************************** 

pxtot = px+pxe 

pytot = py+pye 

pztot = pz+pze 

c ***************************** Fill Histograms ************************************** 

call hf1(150,etof,1.) 

c if(pze.gt.0.) then 

c  if (ppe.lt.5.) then  

c   if (pxe.lt.0.5.and.pxe.gt.-0.5) then       

c   if (pye.lt.0.5.and.pye.gt.-0.5) then 

c if(pze.lt.0.5.and.pze.gt.-0.5) then 

if (re.lt.50.) then          

call hf2(100,edx1,edy1,1.)       

call hf2(200,etof,re1,1.) 

call hf2(201,etof,edx1,1.) 

call hf2(202,etof,edy1,1.) 

call hf2(700,prs,totalr,1.)               ! Energy vs mom. 

call hf2(710,pxe,pye,1.)             

call hf1(720,pze,1.) 

call hf1(721,pxe,1.) 

call hf1(722,pye,1.) 

call hf1(723,ppe,1.) 

call hf2(730,pze,pye,1.) 

call hf2(740,pze,pxe,1.) 

call hf2(750,pze,ppe,1.) 

call hf1(3000,pev,1.) 

call hf1(3010,Ez,1.) 

call hf1(3020,Exy,1.)        
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c      end if 

c end if 

c 11   end if 

c 12   end if  

c 13   end if 

c 14   end if 

c      end if 

call hf2(510,xr1,yr1,1.) 

call hf2(511,xr2,yr2,1.) 

if(tofall.gt.18800.and.tofall.lt.19650.) then             

c if (rr.gt.60.) then 

call hf1(311,pxtot,1.)                 

call hf1(312,pytot,1.) 

call hf1(313,pztot,1.)           

call hf2(400,pev,totalr,1.) 

call hf1(520,px,1.) 

call hf1(521,py,1.) 

call hf1(522,pz,1.) 

call hf1(530,pzr(1),1.) 

call hf1(531,pzr(2),1.) 

call hf1(551,rtof1,1.) 

call hf1(552,rtof2,1.)         

sum = rtof1 + rtof2 

dif = rtof2 - rtof1 

call hf2(600,rtof1,rtof2,1.)                 ! Pipico 

call hf2(650,sum,dif,1.)                     ! Rotated Pipico 

call hf2(800,pzr(1),pyr(1),1.)               ! Recoil momentum 

call hf2(930,(param/1000.),totalr,1.)        ! KER 

call hf1(931,totalr,1.) 

c endif 

c endif 

       end if 

       end if  

       end 

c *********************** End Fill Histograms **************************************** 

C------------------------------------------------------------------------------------- 

      subroutine booking(histfile) 

C------------------------------------------------------------------------------------- 

      call hbook1(1,'Electron Time Sum X',50,-100.,-50.,0.) 

call hbook1(2,'Electron Time Sum Y',50,-100.,-50.,0.) 

call hbook1(3,'Recoil Time Sum X',50,-130.,-80.,0.) 

call hbook1(4,'Recoil Time Sum Y',50,-130.,-80.,0.) 
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call hbook1(11,'rec21',50,-100.,100.,0.) 

call hbook1(12,'rec31',50,-100.,100.,0.) 

call hbook1(13,'rec22',50,-100.,100.,0.) 

call hbook1(14,'rec32',50,-100.,100.,0.) 

call hbook2(100,tEDetect,300,-100.,100.,300,-100.,100.,0.)! Elec Detector 

call hbook1(150,'etof1',300,-10.,500.,0.) 

call hbook2(200,tWiggle,600,0.,300.,500,0.,130.,0.)       ! Wiggles 

call hbook2(201,'x; etof; edx',250,0.,300.,250,-200.,200.,0.) 

call hbook2(202,'y; etof; edy',250,0.,300.,250,-200.,200.,0.)       

call hbook1(311,'pxtot',800,-100.,100.,0.) 

call hbook1(312,'pytot',800,-100.,100.,0.) 

call hbook1(313,'pztot',800,-100.,100.,0.)       

call hbook2(400,'Eelectr,Erecoil',450,0.,50.,450,0.,50.,0.)       

call hbook2(510,tRDetect,100,-5.,5.,100,-5.,5.,0.)        !Recoil Detector 

call hbook2(511,'xy r2',100,-5.,5.,100,-5.,5.,0.)       

call hbook1(520,'pxr',800,-100.,100.,0.) 

call hbook1(521,'pyr',800,-100.,100.,0.) 

call hbook1(522,'pzr',800,-100.,100.,0.) 

call hbook1(530,'pzr1',450,-100.,100.,0.) 

call hbook1(531,'pzr2',450,-100.,100.,0.)    

call hbook1(551,'rtof1',350,0.,19000.,0.) 

call hbook1(552,'rtof2',350,0.,19000.,0.) 

call hbook1(553,'rtofall',350,0.,20000.,0.) 

  call hbook2(600,tPipico,400,0.,8000.,400,0.,8000.,0.)     ! Pipico 

c  call hbook2(601,tPipico,400,0.,2000.,400,0.,2000.,0.)     ! Gated Pipico 

call hbook2(650,tPipRot,400,0.,8000.,400,-4000.,4000.,0.) ! Rotated Pipico 

c  call hbook2(651,tPipRot,400,1500.,3000.,400,0.,1500.,0.)  ! Rotated+gated       

call hbook2(700,'tEvsP',200,0.,200.,400,0.,40.,0.)        ! Energy vs mom     

call hbook2(710,'e px py; pxe; pye',250,-4.,4.,250,-4.,4.,0.) 

call hbook1(720,'pze',450,-10.,10.,0.)       

call hbook1(721,'pxe',450,-10.,10.,0.) 

call hbook1(722,'pye',450,-10.,10.,0.) 

call hbook1(723,'ppe',450,-10.,10.,0.) 

call hbook2(730,'e pz py;pze;pye',250,-4.,4.,250,-4.,4.,0.) 

 call hbook2(740,'e pz px;pze;pxe',250,-4.,4.,250,-4.,4.,0.) 

call hbook2(750,'e pz ppe;pze;ppe',250,-4.,4.,250,0.,4.,0.) 

call hbook2(800,'Recoil mom;pzr;pyr',350,-50.,50.,350,-50.,50.,.0) 

call hbook2(930,'KER;Delay (fs);KER',20,0.,100.,2400,0.,20.,.0) 

call hbook1(931,'totalr',450,1.,50.,0.) 

call hbook1(3000,'total electron Energy (eV)',300,-1.,100.,0.) 

  call hbook1(3010,' Energy z comp (eV)',300,-1.,100.,0.) 

  call hbook1(3020,' Energy xy comp (eV)',300,-1.,100.,0.)       



 

91 

 

  end 

c *********************** End Book Histograms **************************************** 

c **************************** Helper Subroutine ************************************* 

C------------------------------------------------------------------------------------- 

      real function tof_to_pe(tof) 

C------------------------------------------------------------------------------------- 

implicit none 

real tof, pau 

real s1,e1,s2,e2,q,m 

real a1,a2,t,t1,result 

real cubic          ! function 

pau = 1.993E-24     ! 1 a.u. of momentum 

q   = 1.602E-19 

m   = 9.1094E-31 

s1  = .006          ! m 

E1  = 344.7         ! V/m 

s2  = .15 

E2  = 0. 

a1  = q*E1/m 

a2  = q*E2/m 

t   = tof*1.E-9     ! to get time in secs 

c   te2 = etof2*1.E-9 

c   te1 = etof1*1.E-9 

  t1  = cubic(t*(2*a2-a1)/(a1-a2),   ! general case 

   *            (2*s1+2*s2-a2*t*t)/(a1-a2), 

    *            t*2*s1/(a2-a1)) 

c   t1  = cubic(-t,6*s1/a1,-2*t*s1/a1) ! s2=2s1 drift 

result = m*(s1/t1-a1*t1/2.) 

tof_to_pe = result/pau 

end 

C------------------------------------------------------------------------------------- 

      subroutine normal(x1, y1, z1, x2, y2, z2, nx, ny, nz) 

C------------------------------------------------------------------------------------- 

implicit none 

real x1, y1, z1, x2, y2, z2, nx, ny, nz, x, y, z 

real l1, l2, l3 

x  = (y1*z2-y2*z1) 

y  = (z1*x2-z2*x1) 

z  = (x1*y2-x2*y1) 

l1 = sqrt(x1*x1+y1*y1+z1*z1) 

l2 = sqrt(x2*x2+y2*y2+z2*z2) 

l3 = sqrt(x*x+y*y+z*z) 
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if(l1.eq.0.or.l2.eq.0.or.l3.eq.0.) then 

  nx = 0. 

       ny = 0. 

       nz = 0. 

else 

       nx = x/l3 

       ny = y/l3 

       nz = z/l3 

endif 

end 

C------------------------------------------------------------------------------------- 

   real function coss(x1, y1, z1, x2, y2, z2) 

C------------------------------------------------------------------------------------- 

implicit none 

       real x1, y1, z1, x2, y2, z2 

real scal, l1, l2 

scal = x1*x2+y1*y2+z1*z2 

l1   = sqrt(x1*x1+y1*y1+z1*z1) 

l2   = sqrt(x2*x2+y2*y2+z2*z2) 

  if(l1.eq.0..or.l2.eq.0.) then 

coss = 0. 

else 

 coss = scal/(l1*l2) 

endif 

end 

C------------------------------------------------------------------------------------- 

  integer function ceil(x) 

C------------------------------------------------------------------------------------- 

implicit none 

real x 

if(x-int(x).eq.0.) then  

ceil = int(x) 

else 

ceil = int(1.+x) 

endif 

end 

C------------------------------------------------------------------------------------- 

      subroutine histout 

C------------------------------------------------------------------------------------- 

c     call hindex 

c      call hrput(0,histfile,'N') 

   call hrout(0,icycle,' ') 
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     call hrend('als98') 

     close(1) 

    end 

C-------------------------------------------------------------------------------------     

real function cubic(a,b,c) 

c  the real root of the cubic equation with coefficients 1,a,b,c 

c MAKE SURE TO CHOOSE THE RIGHT ROOT IN CASE OF 2 OR 3 REAL 

C------------------------------------------------------------------------------------- 

implicit none 

real a, b, c 

double precision n, aa, bb, cc, q, r, d, s, t, z, z2, z3, PI 

PI = 3.14159265359 

n  = 2.0E-8 

c  n  = EXP(((log(sqrt(a*a))+2*log(sqrt(b*b)) 

c    *        +3*log(sqrt(c*c))))/14.) 

aa = a/n 

    bb = b/n**2 

    cc = c/n**3 

    q  = (3.*bb-aa*aa)/9. 

  r  = (9.*aa*bb-27.*cc-2.*aa*aa*aa)/54. 

  d  = q*q*q + r*r 

     if(d.le.0.)then 

t  = acos(r/sqrt(-q*q*q)) 

    z3 = 2.*sqrt(-q)*cos(t/3.) - aa/3 !real root #1 right most 

     z2 = 2.*sqrt(-Q)*cos((T+2.*PI)/3.) - aa/3.; ! real root #2 

z  = 2.*sqrt(-Q)*cos((T+4.*PI)/3.) - aa/3.; !real root #3 same if D=0 

else 

      if(r+sqrt(d).gt.0.) then 

     s = (R+sqrt(D))**(1./3.) 

      else 

s = -(-R-sqrt(D))**(1./3.) 

endif 

if(r-sqrt(d).gt.0.) then 

t = (R-sqrt(D))**(1./3.) 

 else 

t = -(-R+sqrt(D))**(1./3.) 

endif 

z = s + t - aa/3. 

endif 

cubic = z*n 

  end 

c ************************** End Helper Subroutines************************** 


	Abstract 
	Table of Contents

	List of Figures
	List of Tables
	Acknowledgements
	Dedication
	Preface
	CHAPTER 1 -
Introduction
	CHAPTER 2 -
Background and Theory
	2.1. Atoms in Strong Laser Field
	2.1.1 Single Ionization
	2.1.1.1 Multi-photon process
	2.1.1.2 Tunneling ionization
	2.1.1.3 Over the Barrier ionization

	2.1.2 Double Ionization
	2.1.2.1 Simple man’s theory


	2.2 Molecules in strong laser field
	2.2.1 Above Threshold Dissociation
	2.2.2 Bond Softening
	2.2.3 Bond Hardening
	2.2.4 Charge Resonance Enhanced Ionization


	CHAPTER 3 -
Experiment
	3.1 Laser
	3.2 COLTRIMS
	3.2.1 Vacuum chamber
	3.2.2 Gas jet
	3.2.3 Spectrometer
	3.2.4 Detectors
	3.2.5 Magnetic coils

	3.3 Theory and Operation of Optical Parametric Amplifier
	3.3.1 Parametric Amplification
	3.3.2 Theory
	3.3.3 Phase matching
	3.3.4 TOPAS (Traveling-wave Optical Parametric Amplifier of Super Fluorescence)


	CHAPTER 4 -
Data processing
	4.1. Data Acquisition
	4.2. Calibration

	CHAPTER 5 -
Angular dependence of D2 ionization
	5.1 Introduction
	5.2. Molecular alignment
	5.2.1 Adiabatic and non-adiabatic alignment

	5.3 Ionization of randomly oriented hydrogen molecules
	5.4. Experimental setup
	5.5 Experimental results
	5.6 Theoretically calculated ionization rates
	5.7 Conclusion

	CHAPTER 6 -
Dependence of bond softening and bond hardening on laser intensity, wavelength, and pulse duration for D2+
	6.1. Introduction
	6.1.1 Schematics of pump-probe experiment
	6.1.2 Time series analysis of KER spectra

	6.2 Theory
	6.2.1. Two-state model for the nuclear wave-packet dynamics in D2+
	6.2.2. R-dependent quantum-beat power spectrum

	6.3. Numerical results
	6.3.1. Intensity dependence
	6.3.2. Wavelength dependence
	6.3.3. Pulse-length dependence

	6.4. Conclusion

	CHAPTER 7 -
Conclusion
	Bibliography
	APPENDIX A -
Atomic units
	APPENDIX B -
Jet velocity and temperature
	APPENDIX C -
OPA calibration
	APPENDIX D -
FORTRAN Code

