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Abstract 

Enterococci are gram-positive bacteria typically found as commensals in the 

gastro-intestinal tracts of most mammals.  Enterococci, most notably Enterococcus 

faecalis and Enterococcus faecium, have become problematic causative agents of several 

nosocomially acquired infections including urinary tract infections, bacteremia, surgical 

sight infections, and endocarditis.  These bacteria must first overcome the innate immune 

response in order to establish infection.   

Many bacteria produce capsular polysaccharides that contribute to pathogenesis 

by helping the microbe evade the host innate immune response.  The capsular 

polysaccharide produced by E. faecalis has been shown to play a role in pathogenesis; 

however the mechanisms of innate immune avoidance were unknown.  Moreover, the 

number of capsule serotypes produced by E. faecalis and the genetic differences that 

contribute to capsule serospecificity were in doubt.  In the current study it is made clear 

that only two capsule serotypes are produced by E. faecalis and that both capsule 

serotypes contribute to evasion of the host innate immune system.  This work shows two 

mechanisms by which the capsule of E. faecalis contributes to immune evasion.  First, 

the presence of capsule inhibited complement mediated phagocytosis through limiting the 

detection of opsonic complement protein C3 on the surface of the bacteria. Secondly, the 

presence of capsule altered cytokine signaling of macrophages by shielding bacterial 

components from detection.   Many pathogenic strains of E. faecalis also produce an 

extracellular protease known as gelatinase (GelE).  This work also shows a novel 

mechanism involving GelE in innate immune evasion through the degradation of the 

anaphylatoxin C5a.  Degradation of C5a by GelE resulted in decreased neutrophil 

recruitment in vitro.  A rabbit model of endocarditis was employed to assess the effect of 

GelE production on disease development and progression. Rabbits infected with GelE 

producing strains had increased bacterial burdens in the heart compared to rabbits 

infected with strains that were GelE negative.  Reduced phagocyte infiltration at primary 



 

and secondary infection sites was also observed in rabbits infected with GelE producing 

strains compared to GelE negative strains. 

 The work presented here demonstrates that both the capsular 

polysaccharide and GelE play roles in E. faecalis evasion of innate immune responses.  

Moreover, these pathogenic determinants would be suitable targets for developing 

alternative therapeutics used to treat E. faecalis infections.   
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Abstract 

Enterococci are gram-positive bacteria typically found as commensals in the 

gastro-intestinal tracts of most mammals.  Enterococci, most notably Enterococcus 

faecalis and Enterococcus faecium, have become problematic causative agents of several 

nosocomially acquired infections including urinary tract infections, bacteremia, surgical 

sight infections, and endocarditis.  These bacteria must first overcome the innate immune 

response in order to establish infection.   

Many bacteria produce capsular polysaccharides that contribute to pathogenesis 

by helping the microbe evade the host innate immune response.  The capsular 

polysaccharide produced by E. faecalis has been shown to play a role in pathogenesis; 

however the mechanisms of innate immune avoidance were unknown.  Moreover, the 

number of capsule serotypes produced by E. faecalis and the genetic differences that 

contribute to capsule serospecificity were in doubt.  In the current study it is made clear 

that only two capsule serotypes are produced by E. faecalis and that both capsule 

serotypes contribute to evasion of the host innate immune system.  This work shows two 

mechanisms by which the capsule of E. faecalis contributes to immune evasion.  First, 

the presence of capsule inhibited complement mediated phagocytosis through limiting the 

detection of opsonic complement protein C3 on the surface of the bacteria. Secondly, the 

presence of capsule altered cytokine signaling of macrophages by shielding bacterial 

components from detection.   Many pathogenic strains of E. faecalis also produce an 

extracellular protease known as gelatinase (GelE).  This work also shows a novel 

mechanism involving GelE in innate immune evasion through the degradation of the 

anaphylatoxin C5a.  Degradation of C5a by GelE resulted in decreased neutrophil 

recruitment in vitro.  A rabbit model of endocarditis was employed to assess the effect of 

GelE production on disease development and progression. Rabbits infected with GelE 

producing strains had increased bacterial burdens in the heart compared to rabbits 

infected with strains that were GelE negative.  Reduced phagocyte infiltration at primary 

and secondary infection sites was also observed in rabbits infected with GelE producing 

strains compared to GelE negative strains. 



 

The work presented here demonstrates that both the capsular polysaccharide and 

GelE play roles in E. faecalis evasion of innate immune responses.  Moreover, these 

pathogenic determinants would be suitable targets for developing alternative therapeutics 

used to treat E. faecalis infections. 
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CHAPTER 1 - Literature Review: Enterococcus capsule, 

proteases, and stealth 
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Introduction 

The first descriptions of a bacterial isolates from diseased patients infected by what is 

now known to be Enterococcus faecalis occurred nearly simultaneously in 1899 by 

Thiercelin (103) and MacCallum and Hastings (54, 103).  Early descriptions of these 

disease causing diplococci from fecal origins resulted in many names including 

Micrococcus zymogenes (54) and Enterococcus proteiformis (Proposed in 1903 by 

Thiercelin and Jouhoud) (17) among several others.  It was not until 1906 that the first 

clear classification of seven distinct groups of streptococci including Streptococcus 

faecalis was conducted by Andrewes and Horder (2).  Eventually, in 1984, two of 

members the gut originating streptococci, Streptococcus faecalis and Streptococcus 

faecium, were re-classified as Enterococcus faecalis and Enterococcus faecium based 

primarily on comparative 16S rRNA studies (88).  Even though E. faecalis has been 

studied as a pathogen for more than a century, it was not until the past couple of decades 

that members of the genus Enterococcus (primarily E. faecalis and E. faecium) emerged 

as common and problematic nosocomial pathogens. 

 E. faecalis and E. faecium are common commensal organisms that are found in 

the intestinal tracts of most mammals. Aside from their generally benign existence as 

commensals, E. faecalis and E. faecium are currently some of the most common sources 

of hospital acquired infections. Most infections caused by enterococcal species are due to 

either E. faecalis or E. faecium (45, 68).  Historically, 90% percent of enterococcal 

infectious were caused by E. faecalis with close to 8% of infections caused by E. faecium 

(86).  Recently, the percentage of infections caused by E. faecium compared to E. faecalis 

has increased due to the higher incidence of vancomycin resistant E. faecium.  Results 

from a 2005 study conducted in the United Kingdom involving 7066 cases of 

enterococcal bacterimia revealed that nearly 63% of the infections were caused by E. 

faecalis compared to 28% caused by E. faecium (29).  

 Enterococci as a whole are generally not thought of as community acquired 

pathogens, but instead are nosocomial pathogens.  A nosocomial infection is not present 

upon admittance to hospital or other clinical setting but is acquired by the patient in the 

clinical setting.  A comprehensive surveillance study carried out from 1992-1998, 
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comprising intensive care units (ICUs) from 205 hospitals and 498,998 patients revealed 

that 29,041 (5.8% ) patients admitted to the ICU acquired an infection that was not 

present prior to admittance (84).  Enterococcus species were responsible for 2468 of the 

29,041 infections including 11.8% of ICU acquired bacteremias, 14.3% of ICU acquired 

urinary tract infections, 17.1% ICU acquired of surgical site infections, and 8.7% ICU 

acquired of cardiovascular infections (84). Recent estimates indicate that enterococci 

annually account for 110,000 urinary tract infection, 40,000 wound infections, 25,000 

incidents of bacteremia, and 1,110 cases of endocarditis in the United States alone (43).  

Typically, of all the manifestations of enterococcal disease, endocarditis is the most 

difficult to treat with mortality rates ranging from 15-20% (60, 69).   Enteroccoci cause 

subacute-chronic endocarditis and are the causative agents of up to 20% of native valve 

endocarditis and 15% of prosthetic valve endocarditis (25, 63, 69).  Enterococcal 

endocarditis is unique among enterococcal infections in that it is most commonly 

community acquired.  However, more recent studies show that there is a significant risk 

of nosocomially acquired enterococcal endocarditis (26, 27). 

   The rapid increase in the rate of enterococcal infections over the past three 

decades is cause for concern as one of the most problematic trends encountered when 

treating patients with enterococccal infections is the increase in acquired antibiotic 

resistances (35).  One of the most disturbing resistances seen in enterococci is the 

acquired resistance to Vancomycin.  Vancomycin is often regarded as the antibiotic of 

last resort for treating various multi-resistant gram positive cocci infections, including 

enterococcal infections.  The first descriptions of vancomycin resistant enterococci were 

reported in England and France in 1988 and in the US (strain V583) shortly after (50, 87, 

107).  The incidence of infection with vancomycin resistant strains has rapidly increased 

since. The most recent (2004) National Nosocomial Infections Surveillance (NNIS) 

report indicated that nearly 30% of enterococci isolated from clinical settings were 

resistant to vancomycin.  This constituted a 12% rise from the previous five years (73).  

In some cases, the death risk associated with antibiotic resistant enterococci compared to 

antibiotic susceptible enterococci is seven fold higher (22). 

 The emergence of these microbes as nosocomial pathogens coincides with the 

advent of modern antibiotic therapies.  Treatment with antibiotics (primarily 2
nd

 and 3
rd
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generation cephalosporins) can lead to increased enterococcal burdens in the gut (19, 20, 

77).  However, new studies indicate that prior treatment with beta-lactams can also 

increase susceptibility to colonization with VRE in the ICU (77, 98).  Most of these 

studies speculate that the lack of competition from antibiotic susceptible flora allow the 

enterococci to replicate without inhibition.  However, treatment with antibiotics can also 

cause repression in the expression of a C-type lectin, RegIIIγ, which kills enterococci in 

the gut (8).  Regardless of the conditions required for colonization and eventual infection 

with E. faecalis, the bacteria must also overcome the host barriers to cause infection.   

 E. faecalis produces several factors that have been shown to contribute to 

pathogenesis.  One of the most studied phenomena associated with E. faecalis infections 

is the formation of biofilms.  Strains responsible for infective endocarditis are 

significantly better biofilm formers than non-endocarditis isolates (66).  Furthermore, 

cells composing biofilms are up to 1000 times more resistant to antibiotics than their 

planktonic counter parts and biofilms are also considered to be a location conducive to 

the dissemination of antibiotic resistance genes (10). Adhesion to artificial surfaces such 

as catheters or in-dwelling medical devices as well as host surfaces is key for the 

establishment biofilms and infection.  E. faecalis produces several proteins that aid in 

adhesion including at least two loci that encode for pili.   The endocarditis and biofilm 

associated pili locus (ebp) and the biofilm enhancer in Enterococcus locus (bee) contain 

genes encoding for four and five proteins respectively that enhance binding to host cells 

and aid in biofilm development  (71, 90).  E. faecalis also produces several other cell wall 

anchored proteins that aid in binding host cells including adhesin to collagen of E. 

faecalis (Ace) which also plays a role in virulence (47, 49, 70, 83).  Two other surface 

proteins involved with E. faecalis adhesion are enterococcal surface protein (Esp) and 

aggregation substance.  Esp is involved in colonization of the bladder and biofilm 

formation (93, 99, 106).  Aggregation substance is involve in conjugation, adhesion to 

eukaryotic cells, and is associated with endocarditis (11, 12, 39, 48, 89). 

 E. faecalis also produces several proteins with enzymatic properties that 

contribute to pathogenesis. The proteases gelatinase (GelE) and serine protease (SprE) 

are co-transcribed through regulation by the fsr regulatory system (80, 81).  The secreted 

protease SprE has been implicated in contributing to disease in animal models but the 
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mechanism of SprE activity is unknown (23, 81, 96, 97).  GelE is a zinc-metalloprotease 

(56) that is related to the Staphylococcus aureus protease aureolysin and the 

Pseudomonas aeruginosa protease elastase (79).  GelE is known to contribute to biofilm 

formation (36, 104), but GelE also contributes to virulence through degradation of a 

broad range of host proteinaceous substrates.  There are several known host substrates 

targeted by GelE including collagen, fibrinogen, fibrin, endothelin-1, bradykinin, LL-37, 

and the complement components C3 and C3a (56, 57, 75, 76, 91, 109).  Some pathogenic 

strains also produce a hemolysin known as cytolysin.  Cytolysin lyses both prokaryotic 

and eukaryotic cells and contributes to pathogenicity in rabbit and mouse models of 

infection (11, 13, 44).    

 Non-proteinaceous components produced by E. faecalis are also known to 

contribute to pathogenesis.  Lipoteichoic acid is the group antigen of enterococci that has 

been shown to play a role in biofilm formation and resistance to antimicrobial peptides 

(24).  E. faecalis also produces two serotypes (C and D) of capsular polysaccharide (105).  

Studies have shown that both capsule serotypes of E. faecalis are anti-phagocytic (34, 

42). More recently, a study by McBride et al. indicated that serotype C clinical isolates 

harbored greater repertoire of antibiotic resistance cassettes, and were more likely to 

possess multiple virulence factors compared to the other serotypes, suggesting that the 

presence of the capsule is associated with pathogenic lineages of E. faecalis (42, 59).  

Another cell surface polysaccharide associated with pathogenesis in E. faecalis is the 

rhamnopolymer commonly called Epa.  Epa mutants are more susceptible to phagocytic 

killing (100) although questions remain as to whether the rhamnopolymer is a virulence 

factor.  Unlike the capsular polysaccharides, the Epa polymer and its genetic locus appear 

to be highly conserved in E. faecalis (34, 100).  A recent report by Teng et al. (101) 

demonstrated gross changes in the bacterial cell shape of Epa mutants in the OG1RF 

background that may partially explain the pleiotropic affects ascribed to the Epa locus in 

virulence studies (101, 113).     

 To fully understand the contributions of virulence factors in disease establishment 

and progression, one must take in to account the factors produced by the host that the 

pathogen must contend with.  All pathogens, whether they are viral, fungal, parasitic, or 

bacterial in nature, must deal with and eventually overcome the host defense 
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mechanisms.  The first line of host defense is characterized as the innate immune system.  

The innate immune system is responsible for detection of pathogens, alerting other host 

cells and systems to infection, and eventual eradication of the invading microbe.  The 

innate immune response is a highly complex interaction of soluble protein elements and 

cell mediated responses that coordinate a potent rebuttal to all types of pathogenic 

challenge.  Many effectors of the innate immune response are highly specialized and only 

deal with specific microbial challenges such as viruses, bacteria, or parasites (32).  The 

following section describes key components of innate immune response with a focus on 

the effectors that are essential for dealing with gram-positive extracelluar pathogens such 

as E. faecalis. 

Components of innate immunity contributing to detection and clearance 

of extracellular bacterial pathogens 

Innate immunity is considered the first line of defense against invading pathogens that 

can react without prior exposure to the invading pathogen.  The innate immune system 

consists of four primary components including physical anatomical and chemical 

barriers, soluble proteins, pattern recognition receptors, and phagocytes (Table 1.1).  The 

physical and chemical barriers of innate immunity are composed of mucus membranes, 

epidermis, and chemical barriers such as acidity of the stomach.  Enterococcus faecalis is 

an extracellular bacterial pathogen that must find a way past the physical barriers of the 

host to establish infection.  In most cases, the introduction of a catheter or other in-

dwelling medical device allows E. faecalis to bypass the host physical barriers.  Breaks in 

the skin are also common routes of entry for several bacterial pathogens, including 

enterococci, which are the most common sources of hospital acquired surgical site 

infections (43, 84).  Once E. faecalis has entered the host it must circumvent a myriad of 

host defense mechanisms.  First, invading bacterial pathogens must escape detection by 

the host.  Toll-like receptors found on the surface of several cells in the host detect 

pathogen associated molecular patterns (PAMPs) which leads to expression of cytokines 

that alert other cells to infection. Bacterial PAMPs are often components of the cell wall, 

such as lipopolysaccharide, peptidoglycan, lipoteichoic acids and cell-wall lipoproteins.  

Invading pathogens must also overcome soluble molecules found in host serum including 
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antimicrobial peptides and the complement proteins of the host.  Complement proteins 

have several functions in defending against pathogens including opsoniztion, signaling, 

and the formation of membrane attack complexes. Finally, invading pathogens must 

escape clearance by host phagocytic cells in order to establish infection.  Each component 

of these host innate immune system (detection, complement, and clearance) works in 

conjunction with the others to efficiently eradicate most invading microbes.  

Table 1.1: Components of the innate immune system 

Components Effectors 

Physical and anatomical 

barriers 

Epidermis 

Stomach acidity 

Cilia 

Mucus membranes 

Soluble Proteins Antimicrobial peptides (AMPs) 

Complement system 

Pattern recognition 

receptors 

C-reactive protein (CRP) 

Mannose binding lectin (MBL) 

Nucleotide-binding oligomerization domain protiens 

(NOD) 

C-type lectins 

Scavenger receptors 

Toll-like receptors (TLRs) 

Phagocytic cells Dendritic cells 

Macrophages 

Polymorphonuclear neutrophils (PMNs) 

 

Bacterial detection and Toll-like receptors 

Bacteria and other potential pathogens produce several pathogen specific molecular 

patterns that are not commonly found in mammalian hosts.  Most complex multi-cellular 

organisms have evolved numerous mechanisms to detect these pathogen associated 

molecular patterns (PAMPs).  Pattern recognition receptors (PRRs) play an integral role 

in detection and response to potential pathogens.  There are many host receptors 

associated with detection of invading pathogens, and triggering several PRRs 

simultaneously can induce diverse innate immune responses.  Some PRRs are soluble and 

recognize specific carbohydrate moieties associated with pathogens.  Soluble PRRs 

including the mannose binding lectin (MBL) and the C-reactive protein (CRP) are 
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considered acute phase proteins that are only expressed at high levels in response to 

pathogenic challenge (38, 61).  Both CRP and MBL act as opsonins and binding of MBL 

to terminal mannose residues of bacterial carbohydrates can active the complement 

cascade (38, 61).  However, a strong stimulus is required to stimulate the expression of 

acute phase proteins.  Accute phase response proteins are secreted by hepatocytes in 

response to the pro-inflammatory cytokines IL-1β, IL-6 and TNF-α (61).  The production 

of these pro-inflammatory cytokines is dependent on a separate form of detection and 

response.  Because acute phase PRRs require a stimulus to be expressed in large 

quantities they are not generally considered the first PRRs to detect and respond to 

bacterial challenge.  

 Another class of PRRs are located intracellularly including some Toll-like 

receptors (TLRs).  Most intracellular TLRs are involved in sensing obligate intracellular 

pathogens or pathogens that have been phagocytosed.  Two non-TLR intracellularly 

located PRRs that recognized bacterial PAMPs are Nod1 and Nod2.  Both Nod1 and 

Nod2 contain a nucleotide-binding oligomerization domain (NOD) and are members of a 

large family of proteins called the nucleotide-binding domain, luecine rich containing 

proteins (NLRs) involved in pathogen recognition and recognition of damaged cellular 

components (46, 61).  Nod1 and Nod2 are important detection of bacterial challenge due 

to their ability to detect specific peptidoglycan moieties (38, 61).  However, much like 

the soluble PRRs, intracellular PRRs are usually not the first responders to challenge with 

extracellular bacterial pathogens as they require phagocytosis of the microbes prior to 

detection.  The PRRs that are most likely to first come in contact with extracellular 

pathogens are the membrane spanning or surface associated PRRs. 

 The three primary groups of the membrane spanning PRRs are scavenger 

receptors, C-type lectins, and the Toll-like receptors (38).  Membrane spanning C-type 

lectins (CLRs) are a diverse group of proteins that can recognize a variety of PAMPs.  

The PAMPs recognized by C-type lectins are mostly carbohydrate in nature and include 

mannose, fucose, and β-1,3 glucan (32).  Detection of PAMPs by CLRs leads to changes 

in cytokine production, and depending on the receptor, to internalization and degradation 

of the pathogen (32, 108).  Membrane spanning CLRs such as Dectin-1 are known to 

contribute to defense against Mycobacterium and fungi but their contributions to 
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protection against other bacterial pathogens has not been fully elucidated (32, 61).  

Scavenger receptors are a large and diverse family of transmembrane proteins primarily 

found on dendiritic cells, macrophages, and endothelial cells (4).  The primary role of 

scavenger receptors is to mediate non-opsonized phagocytosis through recognition of 

PAMPs, however, scavenger receptors can also act as co-receptors for TLR-2 (4). 

Scavenger receptor-A (SR-A) and CD36 are two scavenger receptors that are important 

to host innate immune defense against extracellular bacteria.  Recognition of pathogens 

by SR-A results in non-opsonin mediated phagocytosis of both gram-positive and gram-

negative bacteria (4).   The scavenger receptor CD36 recognizes LTA and is an essential 

co-receptor for TLR-2/6 complex response to LTA (4, 21).  When expressed on 

macrophages, CD36 is a phagocytic receptor that has been shown to be important in 

defense against infection with Staphylococcus aureus (4).  Scavenger receptors and C-

type lectins contribute to defense against infection by extracellular bacteria and are 

presumably important for protection against infection with E. faecalis, but the best 

characterized and arguably most important PRRs for detection of extracellular and 

intracellular pathogens are the Toll-like receptors.  

 The first descriptions of Toll-like receptors (TLRs) and their contributions to 

immunity was barely a decade ago, but now they are the most studied, best understood, 

and arguably the most important pattern recognition receptors.  The discovery of the 

importance of TLRs came in 1996 when mutations in Drosophila for a receptor called 

Toll increased susceptibility to fungal infection (53).  A human homologue of Toll was 

subsequently discovered that induced cytokine expression and is now known as TLR-4 

(62).  TLRs are classified as type 1 transmembrane proteins due to the fact that the N-

terminus is outside of the membrane.  TLRs are composed of three domains including a 

luecine rich repeat domain responsible for recognition of PAMPs, a transmembrane 

domain, and an inracellular domain known as the Toll/IL-1R (TIR) domain (46).  TLR 

signaling is initiated by the dimerization of TLRs following recognition of the cognate 

PAMP.  The dimerization facilitates the recruitment of cytoplasmic adapter molecules 

that also contain TIR domains.   
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Table 1.2: The Toll-like receptors 

Toll-like 

receptor 

Cellular 

location 

Relevant Ligands Target 

organism 

TLR-2/TLR-1 Cell surface Triacyl lipopeptides Bacteria 

TLR-2 Cell surface Peptidoglycan 

Liparabomannan 

Bacteria 

Bacteria 

TLR-3 Intracellular dsRNA Virus 

TLR-4 Cell surface Lipopolysaccharide Bacteria 

TLR-5 Cell surface Flagellin Bacteria 

TLR-2/TLR-6 Cell surface Diacyl lipopeptides 

Lipoteichoic acid 

Zymosan 

Bacteria 

Bacteria 

Fungus 

TLR-7 Intracellular ssRNA Virus 

TLR-8 Intracellular ssRNA Virus 

TLR-9 Intracellular CpG DNA Bacteria 

TLR-10 Cell surface Unknown Unkown 

  

One of a combination of four adapter molecules (MyD88, TIRAP, TRIF, and/or TRAM) 

are recruited to the receptor complex and elicit a PAMP appropriate response (46).  The 

most commonly used adapter molecule is MyD88 which is used by every TLR with the 

exception of TLR-3.  Recruitment of MyD88 initiates the activation of NF-κB which 

induces the expression of cytokines.  Activation of TLRs generally leads to the 

production of pro-inflammatory cytokines including TNF-α, interleukin-1β (IL-1β), and 

IL-6.  The cytokines TNF-α and IL-1β induce vasodilation of local endothelium and 

increase permeability of blood vessels thus allowing leukocytes to be recruited to the 

infection site (61).  Adding to the inflammatory response, IL-6 and IL-1β activate 

hepatocytes to produce acute phase proteins such as MBL and CRP (38, 61).  

 Toll-like receptors (TLRs) are expressed on or in a myriad of cells including 

dendritic cells, macrophages, mast cells, B lymphocytes and intestinal epithelium.  The 

list of TLRs along with the list of TLR ligands is constantly expanding (Table 1.2).  The 

current list of known mammalian TRLs has 12 members.  TLRs-1-9 are conserved in 

both humans and mice but TLRs-11 and 12 are absent in humans (46). The TLRs most 

associated with recognition of extracellular bacteria, TLR-4 and TLR-2, are surface 

localized. However, some internally localize TLRs such as TLR-9 are thought to play a 



11 

role in responding to bacterial challenge.  Currently, TLR-2 is considered the most 

important TLR for detection of extracellular gram-positive bacteria including E. faecalis. 

 TLR-2 is the crucial PRR for recognition of extracellular gram positives.  TLR-2 

is unique among TLRs in that it forms heterodimers with TLR-1 or TLR-6 depending on 

the PAMP.  In some cases TLR-2 may also use CD36 as a coreceptor (40).  TLR-2 is 

thought to be able to recognize and respond to a wide variety of PAMPs including 

lipoteichoic acid (LTA), some lipopolysaccharides (LPS), lipoproteins, lipopeptides, 

lipoarabinomannans, lipomannans, glycosylphosphatidylinositol, glycoproteins, zymosan 

and peptidoglycan (PGN) (112).  However, recent studies indicate that TLR-2 is not as 

promiscuous as it may appear and may not be able to respond to such a diverse group of 

molecules at physiologically relevant concentrations (112).   

 Critically important to detection of extracellular gram-positive pathogens such as 

E. faecalis is the ability of TLR-2 to detect LTA and PGN.  The cell walls of all gram-

positive bacteria contain lipoteichoic acid (LTA) with only slight chemical differences 

between genera.  LTA from most bacteria consists of repeating glycerophophate units 

and D-alanine or N-acetylglucosamine substituents anchored by a lipohilic glycolipid 

(21).  The differences in glycosylation of the glycerophosphate backbone on enterococci 

distinguish them from other streptococci.  Peptdioglycan is a heteropolymer consisting of 

β-1,4 linked N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM) with short 

oligopeptide stems on the three position of NAM and an interlinking peptide connecting 

the parallel layers of repeating NAGs and NAMs (112).  Currently there is some 

ambiguity as to which of the two PAMPs is essential for TLR-2 detection with some 

arguments made for LTA and others for PGN (21, 112).  One fact that remains clear is 

that TLR-2 is important for detection of gram-positive pathogens regardless of which 

PAMP is critical for detection.        

Soluble proteins and the complement system 

Soluble molecules such as natural antibodies, antimicrobial peptides, and complement 

proteins are major contributors to host innate immune defenses.  Naturally occurring 

antibodies are potent opsonins and can also neutralize toxins produced by pathogens.  

Bound antibodies can also initiate the classical pathway of complement activation.  
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However, pathogen specific antibody production requires prior exposure to the potential 

pathogen and is not present in totally naive hosts.  Other host proteins are more direct in 

action and do not require prior exposure to the pathogen to be effective.  Soluble proteins 

with the ability to directly kill or inhibit the growth of microbes are referred to as 

antimicrobial peptides (AMPs).  

 Antimicrobial peptides are produced by all forms of life and exhibit a broad 

spectrum of activity against fungi, viruses, and all types bacteria as is the case with 

lysozyme, the first described AMP.  There are several human proteins that have AMP 

like properties including enzymes, enzyme inhibitors and some chemokines, but the two 

primary groups of AMPs are the defensins and cathelicidins (31, 82).  Some AMPs have 

the ability to alter host cell responses to infection, but most AMPs are known for 

inhibiting microbial growth or killing (31).  Most AMPs are cationic and are composed of 

20 to 60 amino acid residues.  The mechanisms for microbial killing are diverse and 

depend on the AMP and the nature of the target microbe.  The cationic nature of AMPs is 

thought to allow recognition of the overall negative charge associated with gram-positive 

and gram-negative cell walls (82).  One of the most studied AMPs is a cathelicidin 

known as LL-37.  In its fully processed form LL-37 consists of 37 amino acids with two 

conserved leucines (31, 82).  LL-37 is constitutively present in dermal layers and 

infection can induce high levels of expression (31).  LL-37 has potent broad spectrum 

antibacterial properties, but it is also a chemotractant involved in neutrophil recruitment 

and angiogenesis (31, 82).  LL-37 is just one example of an AMP, but AMPs in general 

are formidable components of the innate immune response with their combined abilities 

of immunoregulation and antimicrobial activity. 

 Another group of soluble proteins that are important for host defense against 

infection is the complement system.  The complement system is composed of 16 proteins 

and makes up 10% of the total serum proteins.  The complement system plays several 

roles in defense against pathogens including direct microbial killing through the 

membrane attack complex (MAC), clearance of pathogens through opsonization, 

triggering inflammation, and recruitment and activation of phagocytic cells.  Activation 

of the complement system leads to a cascade event where proteins are sequentially 

modified to produce opsonins, pro-inflammatory anaphylatoxins, and the MAC.     
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Figure 1.1: Alternative complement activation 

Alternative activation of the complement system leads to the production of the opsonin 

C3b, the anaphylatoxins C3a and C5a, and the membrane attack complex.  The 

anaphylatoxins C5a and C3a are critical for the recruitment of neutrophils.  The protein 

C3b is an effective opsonin of E. faecalis in the absence of antibodies.  E. faecalis is 

impervious to the membrane attack complex due to the thickness of the peptidoglycan.  

The complement system can be activated through one of three ways, the classical, lectin, 

and alternative pathways.  The end result of each pathway is the activation of the C3 

convertase which in turn produces the anaphylatoxins C3a and C5a, the opsonin C3b and 

iC3b, and induces the formation of the MAC (7).   The classical pathway of complement 

activation relies on the recognition of bound antibodies by the complement protein 

C1qr2s2 followed by the creation of the C3 convertase utilizing C4 and C2.  Activation of 

the classical pathway relies on prior exposure to the invading microbes and is not utilized 

in naive hosts.  The lectin pathway relies on lectins such as the mannose binding lectin 

(MBL) for recognition of PAMPs.  The microbe bound lectins also induce the production 

of the C3 convertase through C4 and C2.  The alternative pathway (Figure 1.1) relies on 

the spontaneous hydrolysis of C3 to C3b(H2O) which can interact with factors B and D to 

form the C3 convertase, C3bBb.  There are several regulatory mechanisms preventing the 

alternative pathway from getting out of control including degradation of the C3bBb 

convertase or through degradation by C3b by factors H and I.  If not inhibited by factors 

H and I, C3bBb acts as a C3 convertase and can activate downstream products leading to 

the MAC. 



14 

 Arguably the most important components of the complement cascade for defense 

of extracellular gram-positive pathogens are the opsonins and the anaphylatoxins.  The 

membranes of host cells and pathogens have a net negative charge making it difficult for 

the two bodies to adhere.  Opsonization is the process of coating an object with proteins 

(antibodies or complement) that enhance phagocytosis.  The C3 products C3b and iC3b 

are two opsonins that are produced during the complement cascade regardless of the 

method of activation.  Inactivated C3b (iC3b) is recognized by host complement 

receptors 3 and 4 (CR3 and CR4).  CR3 and CR4 (also known as CD11b/CD18 and 

CD11c/CD18) are found primarily on neutrophils and dendritic cells (7).  The most 

efficient opsonin produced during the complement cascade is C3b which is recognized by 

CR1 (CD35) found on dendritic cells, macrophages, erythrocytes, and neutrophils (7).  

Coating of an antigen with C3b or iC3b followed by recognition by their cognate 

receptors on a phagocytic cell induces engulfment of the antigen and can lead to 

activation of the phagocyte and neighboring cells.   

 Activation of the complement cascade also leads to the production of 

anaphylatoxins.  Anaphylatoxins are pro-inflammatory and induce mast cell 

degranulation, increase vascular permeability and can cause anaphylactic shock when 

injected into animals.  Anaphylatoxins also recruit leukocytes including neutrophils, mast 

cells, and basophils to infection sites.  Three anaphylatoxins are produce during the 

complement cascade including C3a, C4a, and C5a.  These three peptides were termed 

anaphylatoxins at the time of their discovery because of their ability to cause the 

degranulation of mast cells, basophils and neutrophils.  Of the three, C4a is the least 

active with only some effects on local inflammation.  Moreover, C4a is only produced 

during the classical and lectin binding pathways of complement activation.  C3a and C5a 

are products of all complement pathways and both are key mediators of inflammation and 

leukocyte recruitment.  The C3a anaphylatoxin is involved in the recruitment and 

activation of eosinophils, but is limited in its ability to activate and recruit neutrophils 

(16, 18, 28, 57).  By comparison, C5a is a least a 100 times more potent than C3a in the 

activation and recruitment of neutrophils (28, 51). Neutrophil activation and recruitment 

to infection sites is essential for clearance of extracellular pathogens indicating that the 

production of C5a is more beneficial to the host than C3a when challenged by these 
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microbes. Binding of C3a and C5a to their cognate receptors (C3aR and C5aR/CD88 

respectively) on macrophages and neutrophils results in increased expression of 

adhesions essential for extravasion (51).  Binding of C5a also activates the phagocytes by 

inducing the expression of pro-inflammatory cytokines as well as increasing the 

production of reactive oxygen intermediates that aid in killing phagocytosed microbes. 

 Complement and other serum proteins along with recognition of extracellular 

bacterial pathogens by PRRs are essential for alerting the host to infection and starting an 

effective immune response.  However, these components are usually not enough to 

prevent the spread of the pathogenic bacteria from the original infection site even though 

antimicrobial peptides and complement have some bactericidal properties.  A reoccurring 

theme associated with microbial detection by PRRs and serum proteins is the production 

of pro-inflammatory molecules that activate and recruit professional phagocytic cells to 

infection sites.  These professional phagocytes are at the core of the innate immune 

response through their actions of clearing the infectious agents by phagocytosis.     

Phagocytic Cells 

Three cells types are primarily responsible for phagocytosis of extracellular bacteria in 

innate immune responses. Two cell types, neutrophils and macrophages, are responsible 

for clearance of most infectious agents.  Two cell types, dendritic cells and macrophages, 

are also antigen presenting cells that can stimulate other parts of the immune system.  

Dendritic cells are responsible for phagocytosis of foreign particles and presentation of 

processed antigens to T cells.  Dendritic cells are found throughout the epithelium and 

must become activated to fully maximize its potential as an antigen presenting cell.  In 

order for dendritic cells to become active they must first receive a signal.  Two primary 

signal types can activate dendritic cells. The first is activation through chemical signals 

produced by other cells at the infection.  Tumor necrosis factor alpha (TNF-α) and other 

chemical signals are produced by macrophages and neutrophils when they encounter 

foreign particles and activate dendritic cells.  The second mechanism of activation 

involves Toll-like receptors on the surface of the cell that recognize pathogen associated 

molecular patterns (PAMPs) associated with infectious agents.  Following activation, 

dendritic cells phagocytose surrounding particles and migrate to the nearest lymph node.  
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The phagocytosed antigens are processed, loaded into class I or II MHC molecules, and 

presented on the dendritic cell surface to T-cells in the lymph nodes (32).  Dendritic cells 

are not considered "professional phagocytes" because of their role in bridging innate 

immunity and adaptive immunity through antigen presentation and are primarily thought 

of as professional antigen present cells.  Dendritic cells are phagocytic but are more 

important for their ability to recognize potential pathogens and produce signals that alert 

other components of the innate immune system including the professional phagocytic 

cells,  macrophages and neutrophils.   

 Macrophages are a heterogeneous population of leukocytes widely distributed 

throughout the body that have different properties correlating to their microenvironment 

such as intestine, lung, or adipose tissue (6). Macrophages have many functions in the 

host including roles as antigen presenters, sentinels that detect pathogens through PRRs, 

and clearance of damaged erythrocytes and other cell debris (6, 67).  However, once 

activated, macrophages make important contributions to the clearance of pathogens.  

Activation of macrophages is rapid and fully reversible indicating that macrophages not 

only take part in inflammation but also in its resolution (6).  Macrophages can be 

activated by a variety of stimuli including recognition of PAMPs by surface Toll-like 

receptors, cytokines from neighboring cells, and/or by the anaphylatoxins C3a and C5a.  

Activated macrophages exhibit greater phagocytic ability and produce high levels of 

reactive oxygen and nitrogen species that help in killing the ingested pathogens (6).  

Macrophages also secrete cytokines that trigger other aspects of the immune response 

including the recruitment of circulating neutrophils and macrophages.  Unlike 

neutrophils, macrophages are distributed throughout all tissues in the host and along with 

resident dendritic cells are usually the first dedicated immune effector cells that encounter 

invading pathogens.    

 Polymorphonuclear neutrophils (PMNs) are the dominant cells in circulation that 

contribute to the innate immune response.  Neutrophils are recruited from the blood to 

infection sites through a process of extravasion by following the chemical signals from 

the residential cells or by components of the complement cascade.  Neutrophils are 

professional phagocytes that destroy invading pathogens through phagocytosis.  

Phagocytosis by neutrophils is mediated by recognition of antibody or complement 



17 

opsonins coating the surface of the microbe.  Much like in macrophages, the 

phagocytosed microbes are compartmentalized in an intracellular vesicle referred to as 

the phagolysosome.  Microbes inside the phagolysosome are bombarded with reactive 

nitrogen and oxygen species along with several enzymatic proteins that have 

antimicrobial properties. Recruitment of neutrophils to infection sites is essential for the 

clearance of infections.  This evident in the observation that patients with defects in 

neutrophil extravasion or activation have significantly higher mortality rates than normal 

individuals due to microbial challenge (72). 

 Even though dendritic cells have the ability to phagocytose and kill bacterial 

invaders, their primary duty is as sentinels and professional antigen presenting cells.  The 

bulk of the burden in clearance of invading pathogens falls on activated macrophages and 

recruited neutrophils.  Both cell types can directly recognize and phagocytose 

extracellular pathogens, but phagocytosis is dramatically increased when foreign 

substances are coated by opsonins.  In non-naive hosts antibodies and complement 

provide a powerful combination of opsonins.  However, a naive host must rely solely on 

complement opsonization due to the absence of pathogen specific antibodies.  Antibodies 

are generally thought of as part of adaptive immunity even though adaptive immunity and 

innate immunity are in many ways indistinguishable. However, many bacteria 

(pathogens) are able to overcome the first line of host defense even as formidable a 

barrier as innate immune response is to invading microbes.  Overcoming this barrier is 

essential for pathogens to establish infection and disseminate through the host.  Over 

innumerable generations bacterial pathogens have developed several mechanisms for 

subverting most the innate immune response that will be reviewed here.   

Bacterial evasion of the innate immune response 

One of the keys to being a successful pathogen is the ability to overcome the host defense 

mechanisms that try to prevent colonization and dissemination.  In order for the potential 

pathogen to be successful it must find a way to survive in a hostile host environment.  

Several bacteria are only pathogenic if the host is weakened and cannot mount a full 

response.  Other bacteria are fully pathogenic regardless of the health status of the host.  

These bacteria have developed many mechanisms for subverting and evading the host 
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innate immune response.  Enterococci fall primarily in the first category as it is rare for a 

completely healthy individual to acquire enterococcal infections.  However, even in a 

weakened state, the host the innate immune defenses can still be quite substantial, 

requiring the microbe to employ several mechanisms to subvert the host response.   

 Bacterial capsular polysaccharides have long been known to enhance 

pathogenicity.  Many pathogenic bacteria produce capsules including the gram-positive 

cocci Staphylococcus aureus (78, 110), Streptococcus pneumoniae (1), and group-B 

streptococci (9).  The presence of capsule allows bacteria to escape detection and 

clearance by the host immune system through several different mechanisms (33, 78, 85, 

111).  Most capsules convey antiphagocytic properties to the bacteria even in the 

presence of opsonins including C3b.  Several reports have shown that capsule producing 

species of bacteria are more resistant to opsonophagocytosis by inhibiting the deposition 

and/or detection of C3b on the surface of the organism (78, 85, 111).  Some capsule 

serotypes of S. aureus and S. pneumoniae inhibit C3 deposition on the bacteria surface 

(15, 64).  In some cases, such as the capsule of S. aureus, the amount C3 deposition is not 

altered, but C3 is buried beneath the surface of  the capsule thus rendering it less 

accessible to complement receptors on the surfaces of macrophages and neutrophils 

(110). 

 Bacterial capsular polysaccharides are also known to aid in the avoidance of 

innate immune responses including immune surveillance.  Immune surveillance relies on 

pathogen recognition receptors (PRRs), including Toll-like receptors, to sense pathogen 

associated molecular patterns (PAMPs) as reviewed earlier in the chapter.  The primary 

PAMPs associated with gram-positive bacteria are peptidoglycan and LTA.  Bacterial 

capsules can act as barriers that limit detection of PAMPs by PRRs (1, 33).  The 

encapsulation of Streptococcus suis inhibits detection of the bacteria by TLR-2 and alters 

cytokine production of host cells (33).  The capsule of S. suis not only alters cytokine 

production, but can also inhibit signaling pathways involved with phagocytosis (92).  A 

common gut microbe, Bacteroides fragilis, produces a capsule polysaccharide that 

inhibits the production of pro-inflammatory cytokine IL-17 and induces the expression of 

the anti-inflammatory cytokine IL-10 (58).  Capsular polysaccharides are important for 
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immune evasion, but are not the only mechanisms employed by bacteria to subvert the 

innate immune response.  

 Extracellular proteases from pathogenic bacteria assume many roles in 

manipulation and subversion of host innate immune responses (79).  Multiple bacterial 

species produce extracellular proteases that contribute to pathogenesis through 

manipulation of the host immune response (79).  These proteases target several 

components of the host innate immune system including complement, antimicrobial 

peptides (AMPs), cytokines and cytokine receptors (79).  S. aureus in particular produces 

many proteins that have roles in inhibiting complement activation, binding antibodies, 

lyse neutrophils, and neutralize antimicrobial peptides (30).  

Enterococcus faecalis and innate immunity 

Apart from studies on the roles of gelatinase and cytolysin (14, 65, 75), relatively little is 

known about the mechanisms employed by E. faecalis to circumvent host innate immune 

responses. Active cytolysin consists of two small peptides that are lytic for a broad range 

of prokaryotic and eukaryotic cells and increases virulence in animal models (13).  

Gelatinase is known to contribute to immune evasion through degradation of several host 

proteins including the immuno-modulatory and antimicrobial peptide LL-37 as well as 

complement components C3 and C3a, and other host proteins including collagen, 

fibrinogen, fibrin, endothelin-1, and bradykinin (56, 57, 75, 76, 91, 109).  Some studies 

also implicate capsular polysaccharides of E. faecalis in immune evasion. One study 

involving the known capsular polysaccharides showed that the presence of capsule 

enhances persistance at infection sites and that capsule inhibited phagocytosis by 

neutrophils in the presence of complement (35).  

 Even though not much is known in the method of innate immune evasion by 

enterococci, several aspects of the innate immune response to enterococci are known.  A 

study employing un-encapsulated strains of E. faecalis concluded that E. faecalis is not 

susceptible to the membrane attack complex of the complement system due to the 

thickness of the peptidoglycan, and that complement C3b is an effective opsonin in the 

absence of antibodies for effective phagocytic clearance of E. faecalis by neutrophils (3).  

A study involving Enterococcus faecium, which produces serologically identical LTA to 
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E. faecalis, showed that TLR-2 mediated signaling was critical for early immune 

response and clearance of E. faecium (52).  Furthermore, TNF-α is thought to play a key 

role in E. faecalis-mediated inflammatory responses even though the exact role remains 

unclear (5, 74).  Based on these studies, recognition of enterococcal LTA and/or 

peptidoglycan by TLR-2 would appear critical for an efficient host immune response, and 

the masking of these integral wall components by capsule could result in increased 

pathogenesis by limiting the host response to the organism. 

Scope of thesis 

The innate immune response is essential for early detection and clearance of extracellular 

pathogens including E. faecalis.  Currently, there is little understanding of the 

mechanisms employed by E. faecalis to escape the host innate immune response.  Two 

virulence factors associated with E. faecalis that are known to contribute to E. faecalis 

pathogenesis are GelE and capsular polysaccharide.  Several attempts have been made to 

establish a serotyping system for E. faecalis capsular polysaccharides (41, 55, 94, 95).  

However, these serotyping schemes were flawed in that they included differences in 

capsular polysaccharide antigens, but were are also based on differences in surface 

antigens including lipoteichoic acid (41, 102).  To date, only one study has linked genetic 

evidence with capsule production (37).  Furthermore, these studies proposed a link to 

some of their capsular polysaccharide serotypes and innate immune evasion, but could 

not reconcile the fact that not all proposed capsule serotypes conferred the same 

advantage  (42, 59).  Compounding the issue was the lack of a mechanism correlating to 

inhibition of phagocytosis.  As opposed to capsule, several mechanisms for GelE have 

been reported that contribute to pathogenesis, but none of these has been directly 

correlated with in-vivo observations. 

 The effects of capsular polysaccharide and GelE were examined with the broad 

goal of understanding the mechanisms employed by the virulence factors that contribute 

to pathogenesis. The first part of this thesis (chapter 2) reconciles the genetics of capsule 

production with the previously proposed serotyping schemes.  Chapter three examines the 

contributions of capsule to innate immune evasion.  This chapter proposes two 

mechanisms employed by capsule that contribute to innate immune evasion.  Chapter 
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four examines the role of GelE in a rabbit model of endocarditis.  This chapter sheds light 

on a novel mechanism of GelE in immuno-modulation of the host. Finally, chapter five 

summarizes the work described in the thesis along with prospective future research that 

may result in the production of novel therapeutics for treating enterococcal infections. 
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Abstract 

Many bacterial species produce capsular polysaccharides that contribute to pathogenesis 

through evasion of the host innate immune system.  The gram positive pathogen 

Enterococcus faecalis was previously reported to produce one of four capsule serotypes 

(A, B, C, or D).  Previous studies describing the four capsule serotypes of E. faecalis 

were based on immuno-detection methods; however the underlying genetics of capsule 

production did not fully support these findings.  Previously, it was shown that capsule 

production for serotype C (Maekawa type 2) was dependent on the presence of nine open 

reading frames (cpsC-cpsK).   Using a novel genetic system, we demonstrated that seven 

of the nine genes in the cps operon are essential for capsule production indicating that 

serotypes A and B do not make a capsular polysaccharide.  In support of this observation, 

we showed that serotype C and D capsule polysaccharides mask LTA from detection by 

agglutinating antibodies.  Furthermore, we determined that the genetic basis for the 

difference in antigenicity between serotypes C and D is the presence of cpsF in serotype 

C strains.  HPAEC-PAD analysis of serotype C and D capsules indicated that cpsF is 

responsible for glucosylation of serotype C capsular polysaccharide in E. faecalis. 
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Introduction 

Enterococcus faecalis is a gram-positive bacterium commonly found as a commensal 

organism in the gastro-intestinal tracts of most mammals.  E. faecalis is one of the 

leading causes of hospital acquired urinary tract infections, bacteremia, and surgical site 

infections (29).  The development of multiple antibiotic resistances, including resistance 

to vancomycin, makes treatment of enterococcal infections difficult (11).  The 2004 

National Nosocomial Infections Surveillance (NNIS) report indicated that nearly 30% of 

enterococci isolated from clinical settings were resistant to vancomycin constituting a 

12% rise from the previous five years (26).  The development of alternative therapies to 

treat enterococcal infections has frequently been suggested due to rising percentages of 

antibiotic resistant enterococcal strains (13-15, 19).  

Capsular polysaccharides are major contributors to virulence of many 

microorganisms. The presence of capsule allows these microbes to escape detection and 

clearance by the host immune system (9, 27, 30, 41). There have been several 

publications regarding the role of cell wall polysaccharides in the pathogenesis of 

enterococcal infections (10, 13, 17, 37, 43).  Several attempts have been made to 

establish a serotyping system for E. faecalis capsular polysaccharides (16, 23, 35, 36).  

These serotyping schemes include differences in capular polysaccharide antigens, but are 

also based on differences in surface antigens including lipoteichoic acid (16, 38).  To 

date, only one study has linked genetic evidence with capsule production (12).  Two loci 

that have been reported to contain putative genes for capsule production are the epa and 

cps operons (10, 42).  The polysaccharide produced by the epa locus is thought to be the 

cell wall rhamnopolymer (10), but cannot be detected on the surface of the bacterium 

(43).  Although rhamnopolymer production is reported to be abrogated by mutation (43), 

the full nature of rhamnopolymer production is yet to be determined for many E. faecalis 

strains.  Probing the genomes of serotype A and B strains with a probe specific to the cps 

locus including genes cpsA and cpsB identified a single ClaI restriction fragment for 

serotypes A and B (16).  However, multiple ClaI restrictions fragments were identified in 

serotypes C and D (16) suggesting that the genes responsible for capsule production in 
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serotypes C and D were absent in serotypes A and B.  Furthermore, the hybridization 

pattern between serotype C and D strains indicated a single restriction fragment 

polymorphism, but the basis for which genes were different between the two serotypes 

was not fully characterized (16).  Studies based on the serotyping scheme proposed by 

Hufnagel et al. (17) have shown that serotype C and D strains are much more resistant to 

opsonophagctyosis by neutrophils in the presence of normal human serum.  More 

recently, a study by McBride et al. indicated that serotype C clinical isolates harbored 

greater repertoire of antibiotic resistance cassettes, and were more likely to possess 

multiple virulence factors compared to the other serotypes, suggesting that the presence 

of the capsule is associated with pathogenic lineages of E. faecalis (17, 24).   

It is essential to understand the underlying mechanisms of capsule production in 

E. faecalis because of ongoing efforts to develop alternative therapies targeting capsule.   

Here, we use a novel vector system for creating isogenic, in-frame deletion mutants to 

analyze the genetic basis for capsule production and serotype specificity.  Our results 

show that only serotype C and D strains of E. faecalis produce capsular polysaccharides 

based on the observation that deletions of cps C D E G and I abolish the production of 

capsule.  In conjunction with these observations we also demonstrate that the presence of 

capsule prevents detection of lipoteichoic acid on the surface of serotype C and D strains 

but not on un-encapsulated strains.  Our data also show that CpsF is responsible for the 

difference in serospecificity between serotype C and D strains. 

Materials and Methods 

Bacterial Strains and Growth conditions  

All relevant bacterial strains are listed in Table 2.1.  Escherichia coli EC-1000 (20) and 

Electro-10 Blue (Stratagene) were used for plasmid construction.  E. coli clones were 

grown in Luria-Bertani (LB) broth supplemented with the appropriate antibiotics when 

required (32).  E. faecalis strains were cultivated in Todd-Hewitt broth supplied with the 

appropriate antibiotics when needed (THB; Becton, Dickinson and Company, Sparks, 

Maryland).  When required for selective growth of E. coli, chloramphenicol (Cm) was 

used at 10 µg/mL and spectinomycin (Sp) was used at 150 µg/mL.  When required for 
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the selective growth of E. faecalis, Cm was used at 15 µg/mL and Sp was used at 750 

µg/mL. For detection of β-galactosidase activity, X-gal was used at 80 µg/mL for E. coli 

and 120 µg/mL in E. faecalis.            

Dot Blot Analysis 

We performed dot blots with DNA from representative E. faecalis strains, including FA2-

2, V583, MMH594, Maekawa types 1, 2, 4, 5, 7, 8, 11, 18, and strains OG1RF, 12030, 

12107, and E-1 to determine the presence of cps operon genes.  Purified DNA from each 

strain was denatured in 0.4 M NaOH to a concentration of 1 g/ml and spotted onto 

nylon membranes.  The membranes were rinsed several times with TE buffer, pH 8.0. 

DNA was cross-linked to the membrane using ultraviolet irradiation.  Gene specific 

radiolabeled probes were generated by PCR using primers listed in table 2.3 for each of 

the cpsA through K genes, and the downstream gene, hcp.  Membrane strips were placed 

in 12 hybridization tubes to be probed independently by each gene-specific probe.  

Following hybridization, membrane strips were aligned adjacent to one another 

beginning with the strip probed by the cpsA-specific probe and continuing through to 

hcp.  These membranes were then exposed to X-ray film for autoradiography. 

Construction of pLT06   

Descriptions of all primers and plasmids are included in tables 2.3 and 2.2 respectively.  

pLT06 is a combination of pCJK47 (20) pGB354 (3), and pCASPER (6) (Figure 2.1).  

The ermC cassette in pCJK47 was replaced with the chloramphenicol acetyl transferase 

(cat) gene from Streptococcus agalactiae plasmid pGB354.  Vector pCJK47 was digested 

with the restriction enzymes BglII and NsiI resulting in 5.8 Kb and 0.9 Kb fragments.  

The cat gene from pGB354 was amplified by PCR with the primers Cat5’ and Cat 3’.  

The resulting PCR product was cloned as a blunt-end fragment into 5.8 Kb fragment of 

pCJK47 (T4 DNA polymerase treated).  The resulting construct was called pKS05.  

pKS05 was subsequently digested with SmaI and EcoNI  and the 5.7 Kb fragment 

containing P-pheS, cat, and lacZ was gel extracted (QIAGEN, QUAquick gel extraction 

kit) followed by klenow treatment (Bioline).  pCASPER was digested with EcoRV and 

PshAI and the 2.15 Kb product containing orfB, orfC, repA (Ts), and orfD was gel 
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extracted.  The 5.75 Kb pKS05 product and the 2.15 Kb product of pCASPER were blunt 

end ligated resulting in pLT06.   

Construction of markerless exchange vectors 

 Vector pLT06 was used to create in-frame deletions of cpsC, cpsD, cpsE, cpsF, cpsG, 

cpsH, and cpsI in E. faecalis strains V583 and FA2-2.  Relevant primers are listed in 

table 2.3.  Fragments (1.0 kb) were PCR ampflied upstream and downstream of the gene 

targeted for mutation.  The PCR products were ligated and re-amplified resulting in a 2.0-

kb product.  The 2.0-kb PCR product was digested by restriction enzymes as described in 

Table 2.2 and ligated with pLT06.  The ligated products were electroporated into E.coli 

Electro 10 Blue (E10B) for propagation and grown on Luria-Bertani (LB) plates 

containing Cm and X-gal at 30 C.  Blue colonies were screened for the presence of the 

~2.0 kb inserts using primers OriF and KS05SeqR.  Positive clones were grown 

overnight in liquid LB media containing Cm10 at 30 C.  The plasmid was purified using 

the QIAprep spin miniprep kit (QIAGEN).  The ~2.0-kb inserts from each construct were 

sequenced using primers OriF and KS05SeqR to ensure that no mutations arose during 

cloning.  The resulting deletion constructs pLT08, pLT13, pLT16, pLT18, pLT22, 

pLT23, and pLT24 were used to generate the cpsF, cpsH, cpsD, cpsE, cpsC, cpsG, and 

cpsI deletions respectively. 

Generation of deletion mutants 

E. faecalis V583 and FA2-2 were used for the generation of isogenic, in-frame cps 

deletion mutants.  Both V583 and FA2-2 are classified as serotype C strains and contain 

cpsF (16).   Deletion constructs were transformed by electroporation into V583 and FA2-

2 as previously described (8).  Transformed bacteria were grown on Todd-Hewitt broth 

(THB) plates containing Cm and X-gal at 30 C.  Blue colonies were screened for the 

presence of the engineered deletion constructs by colony PCR using primers OriF and 

KS05SeqR.  Colonies that were positive for the deletion constructs were inoculated into 

5.0 mL of THB containing Cm and grown overnight at 30 C.  The cultures were back 

diluted 1:1000 in fresh THB with 15 g/mL Cm and grown for 2.5 hours at 30 C 

followed by shifting to 42 C for 2.5 hours to force single-site integration by homologous 



43 

recombination.  Following incubation at 42 C, the cells were serially diluted and plated 

on THB containing Cm and X-gal.  Blue colonies growing at 42 C were screened for the 

targeted integration using PCR with primers flanking the site of integration.  Positive 

integration clones were serially passaged from overnight cultures for two successive days 

in THB with no selection at 30 C to force the second site recombination event.  

Following serial passage at 30 C, the cultures were plated by serial dilution on 

MM9YEG plates containing 10mM p-chloro-phenylalanine and X-gal at 37 C.  Resulting 

white colonies were screened for the deletion of the target genes by PCR.  Genomic DNA 

from colonies containing the deletions were purified and sequenced to confirm gene 

deletions.  The resulting deletion mutants are listed in Table 2.1.   

Complementation of deletion mutants   

The markerless gene deletions were complemented in trans by cloning target genes in a 

pAT28 plasmid background (39).  The promoter region for the cps operon (cpsC 

promoter) was PCR amplified from the plasmid pCPSC2 using primers Vlac1 and Vlac2 

(12, 28).  The amplified product was cloned as an EcoRI/BamHI fragment into pAT28 

generating pLT09 (Table 2.2).  PCR amplified gene products were generated for cpsC, D, 

E, F, G, H, and I from purified V583 genomic DNA using primers listed in table 2.3.  

The amplified products were cloned into pLT09 generating complementation plasmids 

pLT10 (cpsF), pLT14 (cpsH), pLT25 (cpsD), pLT32 (cpsE), pLT33 (cpsG), pLT34 

(cpsC), and pLT35 (cpsI) (Table 2.2).    The complementation vectors were transformed 

by electroporation into the corresponding deletion mutants (Table 2.1), resulting in 

strains LT03, LT04, LT07, LT08, LT25, LT27, LT29, LT31, and LT33.  The serotype D 

strains T-5 and T-18 and the serotype B strain OG1RF were complemented with pLT10 

generating strains LT09, LT10, and LT11 respectively (Table 2.1). 

Determination of serospecificity by enzyme linked immunosorbent assay (ELISA) 

and slide agglutination 

Serotype C strains, including FA2-2 and V583, can be detected by ELISA or 

agglutination using the Maekawa Type 2 (MT2) antibody (12, 23).  However, serotype D 

strains such as Maekawa serotypes T-5, T-6, and T-18 cannot be detected by ELISA or 
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agglutinated by MT2 antibodies (16, 23).  We used the MT2 antibodies to compare the 

serospecificity of V583, FA2-2, LT01, LT03, T-5, LT09, T-18, LT10, OG1RF, and 

LT11. 

Overnight cultures were diluted 1:100 in fresh THB supplemented with the 

appropriate antibiotics and were allowed to grow to mid-log phase (O.D.600 of 0.6).  Log 

phase cells were washed three times with and equal volumes of phosphate buffered saline 

(PBS), aliquoted (50 L) into wells of a high binding 96 well costar plate (Corning), and  

allowed to adhere overnight at 4 C.  Simultaneously, MT2 antibodies were diluted 

1:1000 in PBS and were absorbed against T-5 cells in PBS overnight at 4 C to remove 

any crossreactivity.  Following overnight incubation, the ELISA plates were washed 

three times in PBS Tween 20 (PBS-T) (0.05%) and blocked with 5.0% skim milk in PBS 

for two hours. Plates were subsequently washed three times with PBS-T, and the primary 

MT2 antibodies were added at a dilution of 1:1000 and allowed to bind over night at 4 C.  

The plates were washed again with PBS-T, and goat anti-rabbit secondary antibodies 

conjugated to horse radish peroxidase (HRP) (Jackson ImmunoResearch, West Grove, 

PA) were added to the wells. The plates were incubated at room temperature for two 

hours followed by washing with PBS-T three times followed by washing with PBS three 

times to remove residual detergent.  The ELISA was developed in the presence of o-

phenylenediamine dihydrochloride (OPD, Sigma) substrate for 30 minutes in the dark.  

The ELISA plates were analyzed by a PowerWave XS 96 well plate reader (Bio-Tek 

instruments) at an optical density of 490 nm.  

Slide agglutination assays were performed as previously described (23).  Serotype 

A anti-serum contains antibodies directed towards E. faecalis lipoteichoic acid (LTA) 

(16).   Briefly, 5.0 L of serum was added to 15.0 L of test cells on a glass slide, and 

gently rotated for one minute.  Agglutination was determined by visual clumping of the 

cells.  Sterile PBS was used in place of antiserum as a negative control.  

Preparation and purification of cell wall carbohydrates 

 Cell wall carbohydrates and capsular polysaccharides were isolated and purified as 

previously described with slight modifications (10, 14).  Briefly, bacteria were grown in 
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two or four liters of THB supplemented with 1% glucose at 37 C to mid-log phase.  Cells 

were washed in 300 mL of Tris-sucrose solution (10 mM Tris-Cl [pH 8.0]; 25% sucrose), 

and the resulting cell pellets were re-suspended in Tris-sucrose solution with lysozyme 

(1mg/mL), mutanolysin (10 U/mL), 0.05% sodium azide, and incubated with gentle 

rocking at 37  for 16 hours.  Following incubation, the samples were centrifuged and the 

supernatants were treated RNase A (100 g/mL) and DNase (10U/mL), and incubated for 

four hours at 37 C with gentle agitation.  Pronase (50 g/mL) was added to the samples 

and additionally incubated at 37  16 hours.  The supernatants were collected and passed 

through a 0.2 micron filter followed by extensive dialysis against distilled water.  The 

samples were then lyophilized and re-suspended in minimal volume of gel filtration 

buffer (50 mM Tris-base/15 0mM NaCl /0.05% sodium azide, pH 7.0), and were run over 

an S-400 size exclusion column (GE Healthcare Bio-Sciences, Uppsala, Sweden).  

Collected fractions were analyzed for capsular polysaccharide content using acrylamide 

gel electrophoresis and the cationic dye Stains-All for detection as previously described 

(10).  Fractions containing capsular polysaccharide were pooled, extensively dialyzed 

against distilled water, lyophilized, and re-suspended in a minimal volume of 50 mM Tris 

buffer (pH 8.0).  The sample was applied to an anion exchange Q-sepharose column for 

further purification (GE Healthcare Bio-Sciences, Uppsala, Sweden). Bound capsular 

polysaccharide was eluted using a step wise gradient starting with 50 mM Tris (pH 8.0) 

and ending with 50mM Tris/1 M NaCl (pH8.0).  Determination of fractions containing 

capsular polysaccharide was carried out as described above. Capsular polysaccharide 

containing fractions were pooled, extensively dialyzed against distilled water, 

lyophilized, and used for downstream applications.  

Small scale cell wall carbohydrate preparations for determining production of 

capsular polysaccharide were performed as stated above with slight modifications. Cells 

were grown in 25 mL of THB supplemented with 1% glucose until they reached an 

O.D.600 of 0.6-0.8.  The cells were harvested, washed with 2.0mL of Tris-sucrose 

solution, and treated with lysozyme and mutanolysin at the same concentrations listed 

above for 16 hours at 37  C.  The cell suspensions were centrifuged and the pellets were 

discarded.  The remaining supernatants were treated with RNase (100 µg/mL) and DNase 
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(10 U/mL) for 4 hours before final treatment with pronase as described above.  

Remaining impurities were extracted with 500 L of chloroform, and the remaining 

carbohydrates were precipitated with ethanol at a final concentration of 75% at -80 C for 

30 minutes.  The resulting pellets were air dried, re-suspended in 100 L of sterile 

distilled water, and 25 L was loaded onto an acrylamide gel as previously described.  

The gels were stained in Stains-All following electrophoresis.  Stained gels showed the 

presence of three distinct staining regions with the highest molecular weight band 

corresponding to capsular polysaccharide (10).     

Carbohydrate Compositional Analysis 

Analysis of purified capsular polysaccharide was performed at the Glycotechnology Core 

Resource at the University of California San Diego using high pH anion exchange 

chromatography using a Dionex DX 500 HPLC (Dionex, Sunnyvale, CA) with pulsed 

amperometric detection (ED40; Dionex)  (HPAEC-PAD).  Samples were hydrolyzed 

with 2M trifluoroacetic acid at 100° C for five hours, dried, and resuspended in 25 µl 

distilled water. Sugars were eluted with 120 mM sodium hydroxide at a flow rate of 0.4 

ml/min. The carbohydrate composition of each polysaccharide was determined by 

comparison to known carbohydrate standards that were prepared under identical 

conditions. 
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Table 2.1 List of strains used in this study 

___________________________________________________________ 

Strain    Description   Reference 

___________________________________________________________ 

V583    Serotype C   (31) 

FA2-2    Serotype C   (7) 

MMH594   Serotype C   (18) 

OG1RF   Serotype B   (25) 

12030    Serotype A   (14) 

12107    Serotype B   (14) 

E-1    Serotype NT*   (4) 

Maekawa Type-1  Serotype B   (23) 

Maekawa Type -2  Serotype C   (23) 

Maekawa Type -5  Serotype D   (23) 

Maekawa Type-7  Serotype A   (23) 

Maekawa Type-8  Serotype NT*   (23) 

Maekawa Type-11  Serotype NT*   (23) 

Maekawa Type-18  Serotype D   (23) 

LT01    FA2-2 cpsF   This Study 

LT02    V583 cpsF   This Study 

LT03    LT01 + pLT10  This Study 

LT04    LT02 + pLT10  This Study 

LT05    FA2-2 cpsC   This Study 

LT06    V583 cpsC   This Study 

LT07    LT05 + pLT34  This Study 

LT08    LT06 + pLT34  This Study 

LT09    T-5 + pLT10   This Study 

LT10    T-18 + pLT10   This Study 

LT11    OG1RF + pLT10  This Study 

LT15    V583 ΔcpsD   This Study 

LT17    V583 ΔcpsE   This Study 

LT19    V583 ΔcpsG   This Study 

LT21    V583 ΔcpsH   This Study 

LT23    V583 ΔcpsI   This Study 

LT25    LT15 + pLT25  This Study 

LT27    LT17 + pLT32  This Study 

LT29    LT19 + pLT33  This Study 

LT31    LT21 + pLT14  This Study 

LT33    LT23 + pLT35  This Study 

_________________________________________________________________ 

* These strains were non-typeable by conventional serotyping methods (16). 



48 

 

Table 2.2 Plasmid constructs used in this study 

___________________________________________________________________ 

Plasmid   Description    References 

___________________________________________________________________ 

pCJK47      Conjugative donor plasmid, , carries OriTpCF10, lacZ,  (20) 

       and P-pheS* used in pLT06 construction. 

pGB354      Contains Cat
r
 used in the construction of pLT06  (3) 

pCASPER   Contains orfB, orfC, RepA ts, and orfD used in pLT06 (6) 

pAT28      Broad range shuttle vector, spectinomycin resistant (39) 

pCPSC2      Source of the CpsC promoter used in pLT09  (12) 

pKS05      pCJK47 derivative containing Cat
r   

This Study 

pLT06      Deletion construct used for making mutants  This Study 

pLT08      pLT06 containing a 2.0-kb EcoRI/PstI fragment  This Study  

        containing engineered cpsF deletion. 

pLT09      pAT28 containing a 398-bp EcoRI/BamHI fragment  This Study 

                 containing the native CpsC promoter    

pLT10      pLT09 containing 851-bp SalI/SphI fragment containing This Study 

        cpsF. 

pLT13      pLT06 containing a 2.0-kb EcoRI/PstI fragment   This Study 

       containing engineered cpsH deletion 

pLT14      pLT09 containing a 447-bp BamHI/SphI fragment This Study  

      containing cpsH  

pLT16     pLT06 containing a 2.0-kb BamHI/SmaI fragment This Study 

      containing engineered cpsD deletion  

pLT18     pLT06 containing a 2.0-kb EcoRI/PstI fragment  This Study 

      containing engineered cpsE deletion  

pLT22     pLT06 containing a 2.0-kb EcoRI/PstI fragment   This Study 

      containing engineered cpsC deletion 

pLT23     pLT06 containing a 2.0-kb SmaI/SphI fragment  This Study 

      containing engineered cpsG deletion 

pLT24      pLT06 containing a 2.0-kb EcoRI/PstI fragment  This Study 

      containing engineered cpsI deletion 

pLT25     pLT09 containing a 1418-bp BamHI/SphI fragment This Study 

      containing cpsD 

pLT32     pLT09 containing a 2562-bp BamHI/SalI fragment This Study 

      containing cpsE 

pLT33     pLT09 containing a 2555-bp SalI/SphI fragment  This Study 

      containing cpsG  

pLT34     pLT09 containing a 1319-bp BamHI/SphI fragment This Study 

      containing cpsC 

pLT35     pLT09 containing a 1192-bp BamHI/SphI fragment This Study 

      containing cpsI 
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Table 2.3 Primers used in this study 

_________________________________________________________________________________________________ 
Primer Length  Sequence      5’ Nucleotide position in source sequence 

____________________________________________________________________________________________________________________ 

CpsC1  31mer 5’GAGAGAATTCTATGTCACTGTAATGTTGTTG   126 of cpsB    

    EcoRI  

CpsC2  31mer 5’CTCTGGATCCGGCTTGATGTATACTATTCTC    35 of cpsC complementary strand 

    BamHI 

CpsC3  30mer 5’GAGAGGATCCTGCCTTGAAAATCAGGATGC    1113 of cpsC 

    BamHI 

CpsC4  30mer 5’CTCTCTGCAGCCTTTTACTGAATGGATACC    947 of cpsD complementary strand  

    PstI 

CpsCseq  20mer 5’GTTTAGGTACCTTGTGAGTT      88 between cpsB and cpsC 

 

CpsC5’  30mer 5’GAGAGGATCCGATAATCTAATGTAAAGGAT    445 between cpsB and cpsC 

    BamHI 

CpsC3’  30mer 5’CTCTGCATGCCCACGTTTCAGTATCTAACA    68 of cpsD complementary strand 

    SphI 

CpsD1  30mer 5’GAGAGAATTCTTGATGCCAAGAGCTCAGTA    264 of cpsC    

    EcoRI 

CpsD2  32mer 5’CTCTGGATCCGGACAGCTTAAATTGACTTAAC   98 of cpsD complementary strand 

    BamHI 

CpsD3  31mer 5’GAGAGGATCCAGTTATCAGGTAGAGTTGCCA   1353 of cpsD 

    BamHI 

CpsD4  31mer 5’CTCTCTGCAGGCTGCTGGATCATTTGCAATT    940 of cpsE complementary strand 

    PstI 

CpsDseq 20mer 5’CAGATTATTCATCGGTTATG      877 of cpsC 

 

CpsD5’  31mer 5’GAGAGGATCCTGCCACTAGACAGCTGATTTC   1130 of cpsC 

    BamHI 

CpsD3’  30mer 5’CTCTGCATGCCAATGACTGACACTTTCACA    27 of cpsE complementary strand  

     SphI 

CpsE1  32mer 5’GAGAGAATTCAGTAAGCCATATTATGTGGATG   519 of cpsD 

    EcoRI 

CpsE2  32mer 5’CTCTGAATTCTTCCCTCACTTATCATTTATAG   60 between cpsD and cpsE complementary 

strand 

    EcoRI 

CpsE3  31mer 5’GAGAGAATTCGCAAAAGGGTTGTTGAAATAG   2490 of cpsE 

    EcoRI 
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CpsE4  31mer 5’CTCTCTGCAGTTGGTTATACCACCAGCCCAT   38 of cpsG complementary strand 

    PstI 

CpsEseq 20mer 5’CATGAATGCTTATGCAGAAG      1199 of cpsD 

 

CpsE5’  32mer 5’GAGAGGATCCCAGGATATTTTGAGTATACAAC   18 between cpsC and cpsD 

    BamHI 

CpsE3’  31mer 5’CTCTGTCGACCTATTTCAACAACCCTTTTGC    2510 of cpsE complementary strand 

    SalI 

CpsF1  30mer 5’GAGACCCGGGGCTGACACGAATCGTTAGAC   1568 of cpsE  

    XmaI 

CpsF1Eco 30mer 5’GAGAGAATTCGCTGACACGAATCGTTAGAC    1568 of cpsE 

    EcoRI 

CpsF2  33mer 5’CTCTCTGCAGGCCTTTATCAATTCTTTCTCTTC   58 of cpsF complementary strand 

    PstI 

CpsF3  31mer 5’GAGAATGCATGGTATACACGGCCTTACGATA   777 of cpsF 

    NsiI 

CpsF4  30mer 5’CTCTGTCGACCGTCTAGTTTCGCCAAGCTC    949 of cpsG complementary strand 

    SalI 

CpsF4Pst 30mer 5’GAGACTGCAGCGTCTAGTTTCGCCAAGCTC    949 of cpsG complementary strand 

    PstI 

CpsF5’  31mer 5’GAGAGTCGACAGCAAAAGGGTTGTTGAAATA   2489 of cpsE 

    SalI 

CpsF3’  32mer 5’CTCTGCATGCCCTACTTTCTCTGTTACTTAAT   17 between cpsF and cpsG complementary 

strand 

    SphI 

CpsG1  30mer 5’GAGACCCGGGGATACAATGACAAGTATTGG   2388 of cpsE 

    SmaI/XmaI 

CpsG2  31mer 5’CTCTCTGCAGCCACCAGCCCATAATTGCTGC   29 of cpsG complementary strand 

    PstI 

CpsG3  30mer 5’GAGACTGCAGATGTGGGAAGCAAGTTTAAC   2424 of cpsG 

    PstI 

CpsG4  30mer 5’CTCTGCATGCTAATTCCGTAGCCTTACGTC    509 of cpsI complementary strand 

    SphI 

CpsGUp  21mer 5’AAGGCTATACCTTACTACAAG     2212 of cpsE 

 

CpsGDwn 21mer 5’ATAGCTGTATAACCGTCGACA     610 of cpsI complementary strand 

 

CpsG5’  33mer 5’GAGAGTCGACGATTAAGTAACAGAGAAAGTAGG   846 of cpsF 

    SalI 

CpsG3’  30mer 5’CTCTGCATGCCCACAACCGATACCAATTGC    52 of cpsH complementary strand 
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    SphI 

CpsH1  31mer 5’GAGAGGATCCCATCCGATACAAAAACCTAAG   1410 of cpsG 

    BamHI 

CpsH2  30mer 5’CTCTGTCGACTTTCTTCATGTCACACACTC    8 of cpsH complementary strand 

    SalI 

CpsH2B  30mer 5’CTCTGGATCCTTTCTTCATGTCACACACTC    8 of cpsH complementary strand 

    BamHI 

CpsH3  32mer 5’GAGACTCGAGTAAATAATGCATTTGGTGTTTG   396 of cpsH  

    XhoI 

CpsH3B  31mer 5’GAGAGGATCCTAAATAATGCATTTGGTGTTT   396 of cpsH 

    BamHI 

CpsH4  29mer 5’CTCTCTGCAGTCGCCATTCCATTATCCGT    875 of cpsI complementary strand 

    PstI 

CpsH5’  33mer 5’GAGAGGATCCTAAACAGGGGAGTGTGTGACATG   2451 of cpsG  

    BamHI 

CpsH3’  32mer 5’GAGAGCATGCCAAACACCAAATGCATTATTTA   20 between cpsH and cpsI complementary 

strand 

    SphI 

CpsHSeqF 20mer 5’ATGACATGGTAGGAACTGTC     2134 of cpsG 

 

CpsHUp  21mer 5’AGAATCGTCGGTAAATATGTG     1356 of cpsG 

 

CpsHDwn 21mer 5’ACTTGGTCCATATCATAGTAT     1084 of cpsI complementary strand 

 

CpsI1  30mer 5’GAGAGAATTCATTCCAGGAACCATTGGTGG    1905 of cpsG 

    EcoRI 

CpsI2  30mer 5’CTCTGGATCCACTAACTTCTCCTAACAAAG    56 between cpsH and cpsI complementary 

strand 

    BamHI 

CpsI3  30mer 5’GAGAGGATCCTACTATGATATGGACCAAGT    1065 of cpsI 

    BamHI 

CpsI4  30mer 5’CTCTCTGCAGTCTTCGTACCAAGAGTCATT    930 of cpsJ complementary strand 

    PstI 

CpsIUp  21mer 5’ATGACTGCCTTGAATTATCGT     1779 of cpsG 

 

CpsIDwn 21mer 5’TTGTATCCTTCCCTGCTACTT     1074 of cpsJ complementary strand 

 

CpsI5’  30mer 5’GAGAGGATCCGTAACTTTGTTAGGAGAAGT    33 between cpsH and cpsI 

    BamHI 

CpsI3’  30mer 5’CTCTGCATGCATTTGTTCCTCCGAGTCTAA    2 of cpsJ complementary strand 
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    SphI 

CpsE5  19mer 5’GAACAATTTGTTGGCGAGG      1485 of cpsE 

 

CpsE3seq 20mer 5’ATACAAGCAATGCCAGCGGA     2068 of cpsE 

 

CpsG5seq 20mer 5’ATCGTCGTCTACCCAACCAT      320 of cpsG complementary strand 

 

CpsG3seq 19mer 5’AGCAATCTTTCCAGCGGTC      1040 of cpsG complementary strand 

 

CpsB  21mer 5’CATCTTGCCAGGACATGGTGG     584 of cpsB 

 

CpsK  21mer 5’GAAGATAAGCCCCAGCTTGTT     705 of cpsK 

 

Hcp  22mer 5’CACTTAATGTTGTCACTAACGC     108 of hcp complementary strand 

 

Vlac1   23mer 5’GTTGAATAACACTTATTCCTATC     Amplification of cps promoter from 

pCPSC2 

 

Vlac2   21mer 5’CTTCCACAGTAGTTCACCACC     Amplification of cps promoter from 

pCPSC2 

 

Cat 5’  21mer 5’ AAGCGAACGAAAAACAATTGC     Amplification of Cat
r
 from pGB354 

 

Cat 3’  22mer 5’ AAAATGTGGTTGTTATACGTTC     Amplification of Cat
r
 from pGB354 

 

M13F  19mer 5’ TGTAAAACGACGGCCAGTG      Sequencing and screening pLT09 

derivatives 

 

M13R  20mer 5’ CAGCTATGACCATGATTACG     Sequencing and screening pLT09 

derivatives 

 

OriF  21mer 5’ CAATAATCGCATCCGATTGCA     Screening and sequencing pLT06 

derivatives 

 

KS05seqR 22mer 5’ CCTATTATACCATATTTTGGAC     Screening and sequencing pLT06 

derivatives 



 
53 

 

Results 

Dot blot analysis of the capsule locus from serotype A, B, C, and D strains 

Dot blot analysis was performed for representatives of the four E. faecalis serotypes.  E. 

faecalis serotype A or B strains E-1, OG1RF, Type-1, Type-4, Type-7, 12030, and 12107 

as well as serotype C strains FA2-2, V583, MMH594, Type-2, Type-8, and type-11, 

along with serotype D strains Type-5 and Type-18.  Blots were performed to determine 

the presence or absence of specific capsule operon genes (cpsC-K), as well as the 

conserved flanking genes cpsA, cpsB, and hcp that are known to reside adjacent to the 

capsule operon.  All serotypes contained genes cpsA, cpsB, and hcp (Fig. 2.1).  Only 

serotypes C and D contained genes cpsC-cpsK with the only identifiable difference 

between the two serotypes being that serotype D strains lacked cpsF (Fig. 2.1).    

 

Figure 2.1 Dot blot analysis of the four putative serotypes of E. faecalis. 

Serotypes A and B (top) only hybridize to cpsA, cpsB, and the control gene hcp that sits 

outside of the capsule  locus.  The serotype C strains (middle) hybridize to all the genes 

in the cps locus (cpsC-cpsK) as well as cpsA, cpsB, and hcp genes.  Serotype D strains 

(bottom) hybridize to all genes of the cps locus except cpsF.   
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Construction of pLT06 and generation of cps operon deletion mutants.   

The development of pCJK47 by Kristich et al. was one of the first vector systems for 

generating gene deletion mutations in E. faecalis. (20).  Limitations of this system 

involved the necessity to conjugally mate the plasmid construct from a donor strain (20).  

This delivery method is inefficient for delivery of cloned DNA into target strains that 

harbor endogenous plasmids such as the vancomycin resistant strain V583.  Another 

noted obstacle associated with this system is the mobilization and unwanted transfer of 

genomic DNA from the donor strain into the recipient strain. The erm resistance cassette 

used in pCJK47 for selection was also unsuitable for work with V583 due to inherent 

resistant to erythromycin.   

To counter these limitations we constructed an improved vector system, pLT06, 

to generate markerless in-frame deletions of cps operon genes (Figure 2.2).  Insertional 

inactivation techniques would not have been suitable to assess the contributions of the 

individual cps operon genes to capsule production or serospecificity.  The pLT06 vector 

contains components of pCJK47, including lacZ and the counterselectable marker P-pheS 

(Figure 2.2).  pLT06 also contains the chloramphenicol acetyl transferase (cat) marker 

from pGB354 for selection purposes, and orfB, orfC, repA (Ts), and orfD from 

pCASPER.  The combination of genes comprising pLT06 allowed for direct 

transformation by electroporation of cloned DNA into target E. faecalis strains.  The 

plasmid can replicate in E. faecalis at permissive temperatures of 30 C, but cannot 

replicate at the non-permissive temperature of 42 C due to the temperature sensitive 

nature of the repA gene.  Flanking regions of the gene targeted for deletion were cloned 

into pLT06 to serve as templates for targeted recombination.  Derivatives of pLT06 

designed to delete the targeted genes are forced to integrate into the host genome through 

single-site homologous recombination when grown at non-permissive temperatures in the 

presence of chloramphenicol.  If recombination does not occur then the subsequent 

clones of the host cell harboring pLT06 will not survive as they will not carry the cat 

cassette for resistance to chloramphenicol.  Clones containing properly integrated pLT06 

constructs were serially passaged at the permissive temperature in THB without selection 

to induce the second site recombination event and subsequent loss of pLT06.  Bacteria 
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harboring integrated or circularized pLT06 constructs should not grow on MM9YEG 

agar due to the presence of the p-chloro-phenylalanine substrate and the P-pheS cassette 

(20).  White colonies from the MM9YEG plates were screened by PCR to confirm 

deletion of the target gene.  Approximately 50% of the screened colonies harbored the 

desired mutation.  PCR amplification from the cpsE-G junction in serotype C strains 

(FA2-2 and V583), the corresponding cpsF mutants (LT01 and LT02), and serotype D 

strains (T-5 and T-18), shows a 2.8 kb amplicon in strains containing cpsF and a 2.0 kb 

amplicon in strains lacking cpsF.  DNA sequence analysis of LT01 and LT02 and 

complementation with cpsF with pLT10 showed that a non-polar deletion was generated 

using pLT08.  

 

A. 
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B. 

 

Figure 2.2 Construction of pLT06 and generation of an isogenic, in-frame deletion 

mutant in E. faecalis 

A. Strategy for the construction of plasmid pLT06 used in this study for construction of 

isogenic, in-frame, deletion mutants in E. faecalis.  See materials and methods for details.  

The erm marker from pCJK47 was replaced with the cat marker from pGB354 resulting 

in pKS05.  The oriT from pKS05 was replaced with an enterococcal origin of replication 

and the temperature sensitive repA resulting in pLT06.  pLT06 was subsequently used to 

engineer all of the isogenic, in-frame, deletion mutants used in this study.  B.  Diagram of 

the generation of the in-frame, isogenic cpsF mutation using pLT08.  Integration through 

homologous recombination of pLT08 into the E. faecalis genome took place at the non-

permissive temperature of 42  C.  Strains harboring the integrated plasmid were serially 

passaged at the permissive temperature of 30  C in the absence of the selecting antibiotic 

chloramphenicol.  Serial passaging induced the second site homologous recombination 

event and the excision of the plasmid.  Bacteria were plated on media containing -

chlorophenylalanine and X-gal to screen for isolates that lost the plasmid.  White colonies 

were screened by PCR for the deletion event, and isolated DNA was sequenced to 

confirm that and in-frame deletion had occurred.      

Determination of capsular polysaccharide production in serotypes A, B, C, and D 

Cell wall polysaccharides were purified from parental and mutant strains to assess 

capsule production.  This method of detection allows for the most direct and solid 

evidence of the presence of a capsule as opposed to an antibody based method that could 
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falsely detect other cell wall antigens (38).  Small scale cell wall polysaccharide 

preparations were loaded on polyacrylamide gels, eletrophoresed, and stained with the 

cationic dye Stains-All.  The high molecular weight dark blue band corresponds to 

capsular polysaccharide, and correlates with previously described high molecular weight 

E. faecalis capsule (10).  The light blue band immediately below the capsule corresponds 

to the rhamnopolymer and the low molecular weight dark blue smear corresponds to 

teichoic acid as previously described (10).  From figure 2.3 it is clear that serotype A and 

B strains (lanes B and C showing 12030 and OG1RF respectively) do not produce the 

high molecular weight capsular polyscaccharide.  Interestingly, the serotype A strain 

12030 did not appear to produce detectable rhamnopolymer, however the basis for this 

observation is not known at the present time.  Consistent with genetic data (Fig.2.1) all 

serotype C and D strains produced the high molecular weight band corresponding to 

capsular polysaccharide (Fig. 2.3). 

 

Figure 2.3 Capsule production is serotype A, B, C, and D strains of E. faecalis 

Acrylamide gel stained with Stains-All showing the presence/absence of capsule 

production in serotype A-D strains.  The high molecular weight bands correspond to 

capsular polysaccharide as previously described (10).  The serotype A strain 12030 (B) as 

well as the serotype B strain OG1RF (C) do not produce the capsule band.  Serotype C 

strains V583 and FA2-2 (D and E) and the serotype D strains T-5 and T-18 (F and G) 

produce the high molecular weight capsule band. 

Determination of serospecificity between serotype C and D strains 
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Given that the only genetic difference between serotype C and D strains is the presence 

of cpsF in serotype C strains, we hypothesized that CpsF was the sole contributor to 

differences in antigenicity between serotype C and D strains.  We performed ELISA with 

Maekawa Type 2 (MT2) antiserum to detect the serotype C antigenic determinant (23).  

MT2 antisera has been shown to be specific for the serotype C antigen (12).  While the 

serotype C strain FA2-2 was detected by the MT2 antisera, LT01 (FA2-2 ΔcpsF) and the 

serotype D strains T-5 and T-18 were not detected by the MT2 antiserum (Fig. 2.4).  

Strain LT03 (FA2-2 ΔcpsF+pLT10), along with the serotype D strains LT09 (T-5), and 

LT10 (T-18) containing the complementation vector pLT10 were detected by the MT2 

antisera.  As expected the serotype B strain OG1RF was not detected by the MT2 

antiserum after transformation with pLT10 (LT11) (Fig. 2.4).    

 

Figure 2.4 Serotype C capsule ELISA 

CPS ELISA using MT-2 antibodies to detect serotype C capsule.  Serotype C strains 

V583 and FA2-2 show reactivity with the MT2 antibody.  The cpsF deletion mutant 

LT01 is not detected by the antibody, but complementation of LT01 (FA2-2 ΔcpsF) with 

pLT10 (LT03) restores reactivity to the antibody.  The serotype D strains T-5 and T-18 

are not detected by the serotype C antibody.  However, LT09 (T-5 + pLT10) and LT10 

(T-18 + pLT10) are seroconverted to serotype C strains when complemented with cpsF.  

The serotype B strain OG1RF is not detected by the MT-2 antibody before or after 

(LT11) complementation with pLT10 indicating that serotype conversion cannot occur in 

a strain that does not produce capsular polysaccharide. 
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Capsule production alters detection of lipoteichoic acid by slide agglutination 

Recently, it was discovered that agglutinating antibodies generated to the serotype A 

strain 12030 were directed towards lipoteichoic acid (LTA), and not towards capsule as 

previously described (16, 38).  This suggests that sera developed for serotyping and 

detecting serotype A strains should recognize other strains with exposed LTA.  We used 

serotype-A antisera in agglutination assays to determine if our mutant strains could be 

agglutinated.  No agglutination was observed for FA2-2 and LT01 (FA2-2 ΔcpsF), but 

12030 and LT05 (FA2-2 ΔcpsC) agglutinated in the presence of these antibodies (Table 

2.4).  This suggests that the presence of capsule in serotype C and D strains protects LTA 

from detection by agglutinating antibodies. 

Table 2.4 Slide agglutination using serotype C antiserum 

__________________________________________________ 

Strain      Agglutination 

__________________________________________________ 

FA2-2      Negative 

FA2-2 ΔcpsF     Negative 

FA2-2 ΔcpsC     Positive 

12030      Positive 

__________________________________________________ 

Comparison of serotype C and D capsule polysaccharides by high performance 

anion exchange chromatography with pulsed amperometric detection 

We used purified capsular polysaccharide from FA2-2 (serotype C) and LT01 (FA2-2 

ΔcpsF/serotype D) to determine the contribution of cpsF to the difference in antigenicity 

between serotype C and D strains.  Capsular polysaccharides were purified as described 

in the materials and methods.  Analysis of the FA2-2 capsule compared to the LT01 

capsule indicated a difference in the ratio of glucose compared to galactose between the 

two capsule serotypes (Table 2.5) indicating that CpsF could be a glucosyltransferase.  

Contributions of cps operon genes to capsule production  

We generated in-frame deletions of cps C, D, E, F, G, H, and I in the serotype C strain 

V583 to determine their contribution to capsule production.  Figure 2.5 clearly shows that  
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Table 2.5 HPEAC-PAD analysis 

_______________________________________________________________________ 

Strain    Galactose   Glucose 

________________________________________________________________________ 

FA2-2        1.0        4.4 

FA2-2 ΔcpsF       1.0        3.0 

________________________________________________________________________ 

 

 

 

Figure 2.5 Capsule production in cps mutant strains 

Polyacrylamide gel stained with Stainz-all showing the high molecular weight capsule 

bands of capsule mutants and complemented mutants.  A. V583, B. LT06 (V583 ΔcpsC), 

C. LT08 (V583 ΔcpsC + pLT10), D. LT15 (V583 ΔcpsD), E. LT25 (V583 ΔcpsD + 

pLT25), F. LT17 (V583 ΔcpsE), G. LT27 (V583 ΔcpsE + pLT32), H. LT02 (V583 

ΔcpsF), I. LT04 (V583 ΔcpsF + pLT10), J. LT19 (V583 ΔcpsG), K. LT29 (V583 ΔcpsG 

+ pLT33), L. LT21 (V583 ΔcpsH), M. LT31 (V583 ΔcpsH + pLT14), N. LT23 (V583 

ΔcpsI), O. LT33 (V583 ΔcpsI + pLT35). Only genes cpsF and cpsH are not essential for 

capsule production.  Deletion of genes cpsC, D, E, G, and I completely abrogates capsule 

production.  This observation supports the evidence that serotypes A and B do not 

produce capsule based on the absence of essential genes for capsule production in these 

strains.  Complementation of these deletions restores capsule production.   

 

genes cps C, D, E, G, and I are essential for production of the high molecular weight 

capsular polysaccharide.  Further, these phenotypes were not due to polar effects on 

downstream genes as complementation of each gene in trans restores capsule production.   

The genes cpsF and cpsH are the only genes in the cps operon that are not essential for 

capsule production (Fig. 2.5). 
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Discussion 

Previous reports of capsule production in E. faecalis have focused on differences in 

antigenicity between cell surface polymers (16, 22).  One study divided E. faecalis into 

21 different serogroups based on differences in agglutination to polyclonal antibodies 

generated to heat killed cells (23).  The antiserum used in this study was possibly 

detecting capsule as well as other surface antigens (16).  A more recent study, grouped 

strains of E. faecalis into four capsular serotypes (A-D) based on serospecificity (16).  

This study alluded that serotypes A and B shared a locus similar to serotypes C and D 

that was responsible for capsule production in all four serotypes.  Accordingly, the 

capsular antigen of serotype A was purified, compositionally analyzed, and the structured 

deduced by NMR (14, 40).  However, it was recently reported that the serotyping 

antibody used to classify serotype A isolates actually recognized LTA, and that the 

determined structure of the serotype A capsule corresponded to LTA (38).  To date, only 

one genetic locus had been determined to be responsible for capsule production in E. 

faecalis (10).  The capsule locus described by Hancock et al. is comprised of nine genes 

(cps C-K) that directly contribute to the expression of a capsular polysaccharide in E. 

faecalis (10).  We have shown that serotypes C and D strains contained all genes of the 

cps locus described by Hancock et al. (proceeded by cps A and cps B) with the variation 

between serotypes C and D being attributed to the presence (serotype C) or absence of 

cpsF (serotype D).     

Previous studies have shown that the genes cpsA and cpsB are not part of the 

capsule operon as they are transcribed from a different promoter (12).  Attempts to 

mutate these genes never resulted in the recovery of viable isolates (12).  However, 

reactive capsule antigen could be produced in a heterologous host (E. coli) by 

complementation with the cpsC-K operon (12).  The absence of capsule production by 

serotypes A and B (Fig. 2.3) highlights the fact the CpsA and CpsB play no role in 

capsule production.  Therefore, based on sequence homology we propose to rename cpsA 

to uppS consistent with its function as undecylprenyl pyrophosphate synthetase.  We also 

propose to rename cpsB as cdsA as it shares strong sequence similarity with known 

cytidyl transferase activity.  Both UppS and CdsA are known to be essential proteins in 
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other bacterial systems (1) which explains the inability to recover such mutants in E. 

faecalis (12).   

We demonstrate that the production of capsule prevents detection of LTA by 

agglutinating antibodies (Table 2.4).  This observation is consistent with the argument 

that LTA is shielded from agglutinating antibodies by capsule.  Our observations support 

a role for CpsF in determining serospecificity between serotype C and D strains.  

Compositional analysis suggests that CpsF is responsible for the altered ratios of glucose 

to galactose present in the capsules of serotypes C and D (Table 2.5).  Additionally, we 

propose that serotypes C and D are the only E. faecalis serotypes that produce a capsular 

polysaccharide which is supported with the data in figure 2.3 and the underlying genetics 

known to contribute to capsule production (Figs. 2.1 and 2.5).   

CpsF has no known sequence similarity to any characterized protein thus making 

it difficult to predict a possible contribution to serotype differences.  Purified capsular 

polysaccharide extracts from FA2-2 (serotype C) and LT01 (serotype D) were analyzed 

by HPAEC-PAD to determine the possible contribution of CpsF.  HPAEC-PAD analysis 

revealed a difference in glucosylation of the polysaccharides with FA2-2 containing an 

extra glucose relative to galactose when compared to LT01 (FA2-2 ΔcpsF) (Table 2.5).  

The ratio of glucose to galactose for the serotype C strain FA2-2 is identical to previous 

compositional analysis (10).  This result indicates that CpsF is a putative 

glucosyltransferase, but ongoing studies to reveal the structure of the repeating unit will 

provide solidifying evidence for the functional role of CpsF. 

Opsonophagocytic killing of both serotype C and D strains by healthy human sera 

is drastically reduced when compared to the unencapsulated serotype A and B strains 

(17).  Additional studies with the serotype B strain, OG1RF, demonstrated the presence 

of protective antibodies in normal serum leading to clearance of E. faecalis (2).  This 

could be due by the presence of opsonizing anti-lipoteichoic acid (LTA) antibodies 

present in normal human serum (17).  Presumably, the presence of capsule in serotype C 

and D strains masks LTA from detection by the circulating anti-LTA antibodies.  

Serotype A antibodies that recognize LTA (38) cannot recognize or agglutinate the 

encapsulated serotype C and D strains (Table 2.4).  However, these same antibodies 
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readily recognize and agglutinate the un-encapsulated strain LT05 (V583 ΔcpsC) and the 

serotype A strain 12030.  These observations are consistent with the increased virulence 

associated with serotype C and D strains (24).  Furthermore, LTA is a pathogen 

associated molecular pattern (PAMP) that is recognized by the pattern recognition 

receptor (PRR) Toll-like receptor 2 (TLR-2) (33, 34).  Recognition of LTA results in 

increased cytokine production and neutrophil recruitment to the site of infection (5, 21).  

Presumably, the presence of capsule would attenuate the host innate immune response. 

Currently, we are conducting studies to determine the effects of capsule on innate 

immune system evasion.  

In summary, the results presented in this study argue that only E. faecalis serotype 

C and D produce a true capsular polysaccharide while serotypes A and B do not.  We 

provide empiric proof that CpsF is the basis for the difference in antigenicity between 

serotype C and D strains.  Finally, the inability to detect LTA on the surface of 

encapsulated strains indicates that the capsule of E. faecalis may play a role in evasion of 

the host innate immune response.  Future studies will aim to address such questions in 

order to develop targeted therapies to treat infections caused by multi-drug resistant E. 

faecalis. 
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CHAPTER 3 - Enterococcus faecalis capsular polysaccharide 

serotypes C and D and their contributions to host innate 

immune evasion  
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Abstract 

It has become increasingly difficult to treat infections caused by Enterococcus  faecalis 

due to the high levels of intrinsic and acquired antibiotic resistances.  However, few 

studies have explored the mechanisms that E. faecalis employs to circumvent the host 

innate immune response and establish infection.  Capsule polysaccharides are important 

virulence factors that are associated with innate immune evasion.  We demonstrate that 

capsule producing E. faecalis strains of either serotype C or D are more resistant to 

complement-mediated opsonophagocytosis compared to un-encapsulated strains using 

cultured macrophages (RAW 264.7).  We show that differences in opsonophagocytosis 

are not due to variation in C3 deposition, but due to the ability of capsule to mask bound 

C3 from detection on the surface of E. faecalis.  Similarly, E. faecalis capsule masks 

detection of lipoteichoic acid which correlates with decreased TNF-α production by 

cultured macrophages in the presence of encapsulated strains compared to 

unencapsulated strains.  Our studies confirm the important role of the capsule as a 

virulence factor of E. faecalis, and provide several mechanisms by which the presence of 

the capsule influences evasion of the innate immune response, and suggest that the 

capsule could be a potential target for developing alternative therapies to treat E. faecalis 

infections. 
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Introduction 

Enterocoocus faecalis is an important nosocomial pathogen associated with many types 

of infections including surgical site infections, bacteremia, urinary tract infections, and 

endocarditis (31).  Many infections caused by E. faecalis are difficult to treat due to 

increasing resistance to conventional antibiotic therapies including vancomycin (10-12).  

Apart from studies on the roles of gelatinase and cytolysin (5, 22, 27), relatively little is 

known about the mechanisms employed by E. faecalis to circumvent host innate immune 

responses.  

In other bacterial pathogens, the production of capsular polysaccharide is a known 

virulence factor as it aids in avoidance of the host innate immune response (25, 30, 36).  

E.  faecalis is known to produce two capsular polysaccharide serotypes (C and D)(10, 12, 

14, 40) that contribute to pathogenesis and evasion of the host innate immune response 

(10).  Hufnagel et al. reported decreased neutrophilic killing of  encapsulated serotype C 

and D strains compared to the un-encapsulated A and B strains (15).  In addition, a recent 

comprehensive analysis of clinical E. faecalis isolates indicated that most pathogenic 

strains of E. faecalis belonged to serotype C (19).  Despite a link between capsule and 

virulence, little is known about the specific mechanism(s) of how capsule enhances 

pathogenesis.  

The complement system plays a central role in the activation of the immune 

system and in the clearance of pathogens.  Cleavage of C3 to C3b provides a highly 

effective opsonin in the absence of antibodies.  Several reports have shown that capsule 

producing species of bacteria are more resistant to opsonophagocytosis by inhibiting the 

deposition and/or detection of C3b on the surface of the organism (28, 32, 42).  

Encapsulated bacteria employ numerous mechanisms to resist C3 opsonization and 

subsequent phagocytosis, including overall reduction in C3 deposition (6).  The 

abundance of C3 deposition is known to differ between capsule producing serotypes of 

Streptococcus pneumoniae (20).  In Staphylococcus aureus, C3 is buried beneath the 

surface of  the capsule rendering C3 less accessible to complement receptors on the 

surfaces of macrophages and neutrophils (41).     
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Bacterial capsular polysaccharides are also known to aid in the avoidance of 

innate immune responses including immune surveillance.  Immune surveillance relies on 

pathogen recognition receptors (PRRs), including Toll-like receptors, to sense pathogen 

associated molecular patterns (PAMPs).  Two common PAMPs associated with Gram-

positive microorganisms are lipoteichoic acid (LTA) and peptidoglycan (PGN).  

Detection of these PAMPs by Toll-like receptor 2 in conjunction with Toll-like receptors 

1 and 6 induces the production of cytokines.  In other instances, capsule prevents the 

detection of PAMPs by PRRs which leads to decreased or altered cytokine production 

(9).  The altered cytokine response to encapsulated  pathogens appears to contribute to 

pathogenicity and virulence.   

Our data indicate that the E. faecalis capsular polysaccharides from serotypes C 

and D attenuate C3 opsonized phagocytosis, and that this attenuated response is likely 

due to decreased recognition of bound C3 on the bacterial surface.  Similarly, capsule 

inhibits detection of E. faecalis LTA on the surface and the absence of recognition of this 

molecule and/or other surface PAMPs in the presence of capsule results in decreased 

TNF-α production by macrophages.    

Materials and Methods 

Bacterial Strains, plasmids, and growth conditions 

All relevant bacterial strains are listed in table 3.1. E. faecalis strains were cultivated in 

Todd-Hewitt broth supplied with the appropriate antibiotics when needed (THB; Becton, 

Dickinson and Company, Sparks, Maryland).  

Culture of Macrophages 

The macrophage like RAW 264.7 (ATCC TIB-71) cells were cultured in DMEM 

(Invitrogen, Grand Island, N.Y.) supplemented with 100 U penicillin per mL, 100 µg 

streptomycin per mL, 2 μg L-glutamine per mL, and 5% heat inactivated fetal bovine 

serum (Atlanta Biologicals, Lawrenceville, GA).  
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Table 3.1 Strains used in this study 

Strain                              Description                                             Reference 

FA2-2 Capsule + (Serotype C) (4) 

V583 Capsule + (Serotype C) (33) 

OG1RF Capsule -  (23) 

12030 Capsule - (13) 

LT01 FA2-2 ΔcpsF Capsule + (Serotype D) (40) 

LT02 V583 ΔcpsF Capsule + (Serotype D) (40) 

LT05 FA2-2 ΔcpsC Capsule - (40) 

LT06 V583 ΔcpsC Capsule - (40) 

LT12 V583 + pMV158gfp This Study 

LT13 LT02 + pMV158gfp This Study 

LT14 LT06 + pMV158gfp This Study 

 

Complement C3 Deposition 

Overnight cultures of E. faecalis were diluted 1:100 in fresh media.  The cultures were 

allowed to reach mid-log phase (O.D. 600 of 0.6), and were washed 3X in sterile 

phosphate buffered saline (PBS) pH 7.4.  Approximately 2X10
7
 cells of each strain were 

re-suspended in 10% normal CD1 mouse serum containing complement (Innovative 

Research, Southfield, MI) diluted in PBS.  Serum for negative controls was heat 

inactivated prior to the addition of bacteria by incubating at 56ºC for 30 minutes.  

Bacteria were incubated in 10% serum for 30 minutes at 37ºC with agitation.  

Complement deposition was stopped by addition of EDTA to a final concentration of 

10mM followed by incubation on ice for 5 minutes.  The bacteria were pelleted at 4ºC, 

washed 3 times with sterile PBS to remove unbound complement, and finally re-

suspended in 30 µL of 1X SDS-PAGE loading buffer.  Whole bacteria were boiled 

vigorously for five minutes, and the cell debris was removed by centrifugation.  The 

remaining supernatants were loaded on an SDS-PAGE gel and electrophoresed.  Proteins 

in the gel were transferred to nylon membranes, and detection of C3 was carried out by 

western blot analysis using goat anti-mouse C3 polyclonal antibodies (Bethyl 

Laboratories, Montgomery, TX) and rabbit anti-goat conjugated with horse radish 

peroxidase (HRP) as secondary antibody (Bethyl Laboratories, Montgomery, TX) 
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followed by development with SuperSignal
®
 West Pico Chemiluminescent Substrate 

(Thermo Scientific, Rockford, IL).      

ELISA 

The concentration of naturally occuring anti-enterococcal antibodies present in the CD1 

(Innovative Research, Southfield, MI) mouse serum (used for subsequent phagocytosis 

assays) was analyzed by ELISA.  In addition, ELISA was performed to investigate the 

serotype specificity conferred by the presence of CpsF among E. faecalis isolates using 

serotype C-specific antibodies.  Briefly, log phase E. faecalis strains were washed 3 times 

in PBS and aliquoted (50 L) into high binding 96 well Costar plates (Corning).  The 

washed cells were allowed to adhere overnight at 4 C.  Bound cells were then incubated 

with either CD1 mouse serum or rabbit anti-serotype C serum (18) followed by 

incubation with either goat anti-mouse IgG HRP conjugate (Sigma, Saint Louis, MO) or 

goat anti-rabbit IgG HRP conjugate (Jackson ImmunoResearch, West Grove, PA).  

ELISAs were developed using o-phenylenediamine dihydrochloride (OPD, Sigma) as the 

HRP substrate, and the results were read at O.D. 490 on a Bio-Tek PowerWave XS 96 

well plate reader. 

Opsonophagocytosis assay 

E. faecalis strains V583, LT02 (V583 ΔcpsF), and LT06 (V583 ΔcpsC) were transformed 

by electroporation with the plasmid pMV158GFP (24) giving rise to LT12, LT13, and 

LT14 respectively (Table 3.1).  Strains LT12, LT13, and LT14 constitutively express 

GFP allowing fluorescent detection during the opsonophagocytosis assay.    

Log phase bacteria were washed three times in PBS prior to re-suspending in 

HBSS (Invitrogen) media.  Harvested RAW 264.7 cells were also re-suspended HBSS 

media.  A concentration of 2X10
6 

CFU/mL bacteria were added to 2X10
5
 RAW 264.7 

cells/mL followed by the addition of complement containing CD1 mouse serum to a 

concentration of 10% to give a final volume of 500 µL and a bacteria to macrophage ratio 

of 10:1.  The samples were incubated at 37ºC for 20 minutes to allow uptake of bacteria 

by macrophages.    Trypsin was then added at 0.25% final concentration and incubated 

for 10 minutes to remove any bacteria bound to the external surfaces of the RAW 264.7 
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cells.  The free bacteria were removed by three PBS washes with low speed 

centrifugation (750Xg) (7, 8).  The washed cells were fixed to glass slides by cyto-

centrifugation.  The samples were viewed under 100X oil immersion using a Ziess 

Axioplan 2 fluorescent microscope to visualize the GFP expressing bacteria inside the 

RAW 264.7 cells.  The intracellular bacteria of at least 100 RAW 264.7 cells were 

counted for each experimental replicate.  The phagocytic index was calculated by 

dividing the number of phagocytic cells (cells that had consumed bacteria) by the total 

number of macrophages counted and multiplying that number by the number of bacteria 

per phagocytic macrophage (  X ) as previously described 

(21, 29).  Data are presented as percent phagocytic index with the phagocytic index of 

LT14 (V583ΔcpsC, capsule -) set to 100%.  Data were compiled from three separate 

experiments and the standard error of the mean and statistical significance were 

calculated with Graphpad Prism software.  

Slide Agglutination 

Un-encapsulated and encapsulated strains were tested for their reactivity to serotype A 

antiserum, previously reported to be specific for enterococcal lipoteichoic acid (LTA) 

(39).  Slide agglutination assays were preformed as previously described (18, 40). 

Briefly, log phase bacteria were washed three times with PBS. Following the PBS 

washes, 5.0 L of LTA antiserum or pre-immune serum was added to 15.0 L of test 

cells on a glass slide, and gently rotated for one minute.  Agglutination was determined 

by visual clumping of the cells.  Sterile PBS and pre-immune serum were used as 

negative controls. 

Flow Cytometry 

Flow cytometry was used to determine if C3 or LTA accessibility to antibodies was 

altered by the presence of capsule.  Log phased bacteria were washed three times in PBS, 

diluted 1:2, and blocked in 5% donkey serum (Jackson ImmunoResearch).  Bacteria used 

for analyzing C3 accessibility were incubated in 50 µL of CD1 mouse serum for 20 

minutes at 37ºC to allow for C3 deposition and washed three times in PBS prior to 

blocking with donkey serum.  Blocked cells were incubated for 15 minutes on ice with 
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2.0% goat anti-C3 antibodies followed by three washes in PBS.  Similarly diluted goat 

serum was used as an isotype control.  The bacteria were then incubated with FITC 

conjugated donkey anti-goat antibody (1:1000) (Jackson ImmunoResearch) for 15 

minutes on ice in the dark.  The bacteria were again washed three times with PBS and 

analyzed by flow cytometry.  For detection of LTA accessibility, washed and blocked 

bacterial cells were incubated on ice for 15 minutes with 2.0% anti-LTA rabbit serum 

(39).  Similarly diluted pre-immune rabbit serum was used as an isotype control   Cells 

were then washed three times in PBS and incubated for 15 minutes on ice in the dark 

with FITC conjugated donkey anti-rabbit antibody (1:100) (Jackson ImmunoResearch).  

Bacteria were washed three times in PBS and analyzed by flow cytometry.  For both the 

C3 and LTA experiments, flow cytometry analysis of 50,000 bacteria was performed 

using a FACSCalibur flow cytometer (Becton and Dickinson, San Jose, CA) at a flow 

rate of ~2000 cells per second.  Data were analyzed using the WinList software program 

(VerityHouse, Topsham, ME). 

TNF-α production 

Log phase bacteria were washed three times in PBS and heat killed by incubation at 80ºC 

for 30 minutes.  RAW 264.7 cells were harvested and re-suspended in fresh DMEM 

culture media to a concentration of 1X10
6
 cells per mL.  RAW cells at a concentration of 

1X10
6
 cells/mL in a total volume of 2.0 mL were seeded in 24 well plates.  The cells 

were allowed to adhere to the plate surface for two hours prior to induction.  Bacteria 

were added to each well at a concentration of 1X10
7
 Cfu.  Lipopolysaccharide (LPS) 

from Salmonell enterica serotype typhimurium (Sigma) was used as a positive control for 

TNF-α production at a concentration of 10 ng per mL.  Clarified supernatants were 

collected from each well at four hours after the bacterial inoculation.  The amount of 

TNF-α present in the supernatants was determined by ELISA (eBioscience, San Diego, 

CA) following the manufacturer instructions.  One way ANOVA in correlation with a 

Newman-Kuels post hoc test were used to evaluate statistical significance (GraphPad 

Prism).   
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Results 

Protective effects of capsule on opsonophagocytosis 

The capsular polysaccharides of many bacterial species confer resistance to complement 

mediated opsonphagocytosis.  We examined whether E. faecalis capsule conferred 

resistance to C3 opsonophagocytosis mediated by macrophages.  We used ELISA to 

confirm that our complement source (CD-1 mouse serum) was free of detectable E. 

faecalis antibodies (Data not shown).  

Previous studies have shown that E. faecalis opsonizing antibodies exist in normal 

human serum; however, these antibodies are only directed towards the un-encapsulated 

serotype A and B strains of E. faecalis (2, 14).  In view of these studies, we determined if 

E. faecalis capsule serotypes C or D conferred resistance to complement mediated 

opsonophagocytosis compared to an isogenic acapsular mutant.  The encapsulated E. 

faecalis strains LT12 (serotype C), LT13, an isogenic cpsF deletion mutant which results 

in the production of a serotype D capsular polysaccharide (40)  and LT14, an isogenic 

cpsC deletion mutant which is un-encapsulated (40) were compared.  For this assay, we 

followed the method of Drevets et al. (8, 9) which calls for trypsin treatment and 

subsequent washes to remove externally bound bacteria as opposed to antibiotic 

treatment with gentamicin which has been shown to be internalized by macrophages 

leading to antibiotic killing affects independent of macrophage activity (9).  Our data 

shows a 50% reduction in the opsonophagocytosis of capsule producing strains by 

macrophages in the presence of complement compared to un-encapsulated strains (Fig. 

3.1).   
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Figure 3.1 Opsonophagocytosis of E. faecalis  

Capsule serotypes C and D are resistant to opsonophagocytosis in the presence of 

complement. A. Representative micrographs depicting from left to right LT12 (V583 

expressing Gfp), LT13 (ΔcpsF expressing Gfp), and LT14 (ΔcpsC expressing Gfp) 

incubated with RAW 264.7 macrophage like cells. B. Quantification of phagocytic index 

expressed as the percentage of the un-encapsulated LT14 strain (see Materials and 

Methods for calculating Phagocytic index). The light gray bar (LT12: serotype C) and the 

dark gray bar (LT13: serotype D) both show a significant reduction in phagocytic index 

when compared to LT14 (black bar).  Error bars represent SE of three replicate 

experiments. 

These data also show that there is no statistical difference in opsonophagocytosis 

between isogenic serotype C (LT12) and serotype D (LT13) strains (Fig. 3.1), suggesting 

that the mere presence of capsule regardless of serotype provides protection against 

bacterial uptake by macrophages . 
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Complement C3 deposition and surface accessibility 

Bacterial resistance to complement mediated opsonophagocytosis has been attributed to 

decreased amounts of C3 deposition on the surface of encapsulated strains (6).  We used 

western blot analysis to assess the abundance of complement C3 deposited on both 

encapsulated and un-encapsulated E. faecalis strains.  

 

Figure 3.2 Complement deposition on encapsulated and un-encapsulated strains of E. 

faecalis.  

The amount of C3 deposition does not differ between strains.  Western blot analysis was 

employed to examine the amount of the C3 deposited on the cell surface of serotype C 

(FA2-2), serotype D (LT01), and un-encapsulated (LT05 and OG1RF) strains.  The blot 

shows the 75 kDa β chain of C3 for FA2-2 (A), LT02 (B), LT05 (C), OG1RF (D) ,and 

the negative control, FA2-2 incubated with heat inactivated serum (E).  The additional 

bands present on the blot are unprocessed C3, as well as C3 and C3b breakdown products 

recognized by the polyclonal antibodies to C3.   

Two encapsulated strains FA2-2 and LT01(FA2-2ΔcpsF) and two un-encapsulated LT05 

(FA2-2ΔcpsC) and OG1RF strains were used in this experiment.  Complement C3 is 

composed of an α and a β chain (34).   

The 75 kDa C3 β chain is left intact through the processing events of C3, and was 

used to determine differences in overall C3 deposition.  Figure 2 shows the deposition of 

the 75 kDa β chain of C3 on different strains of E. faecalis.  There is no difference in the 

amount of C3 deposited on the surfaces of the un-encapsulated strains OG1RF and LT05 
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when compared to the encapsulated V583 and LT01 strains (Fig. 3.2).  The other detected 

fragments in this blot are known breakdown products of C3 and C3b.    

 

The amount of complement deposition does not vary between strains, but the 

presence of complement on the encapsulated strains could be masked from detection by 

complement receptors leading to decreased phagocytosis. We used complement 

opsonized strains of V583 (serotype C), LT02(V583ΔcpsF, serotype D) and LT06 

(V583ΔcpsC, capsule -) in conjunction with flow cytometry to determine C3 surface 

accessibility to antibodies.  Our data show that C3 deposited on the surface of LT06 is 

more detectable than C3 deposited on the surface of encapsulated strains V583 and LT02 

(Fig. 3.3).  Statistical analysis using one-way ANOVA in conjunction with a Newman-

Keuls post hoc test show a significant statistical difference (p-values < 0.05) between 

V583 and LT06, and also between LT02 and LT06 (Fig. 3.3).  There was also a 

statistically significant difference between V583 and LT02 even though they appear to be 

equally resistant to complement mediated opsonophagocytosis (Fig. 3.1).  The basis for 

this difference is not known at the present time, but may relate to structural differences in 

the capsular polysaccharides between these two serotypes.  

Lipoteichoic acid and capsule  

Lipoteichoic acid (LTA) and peptidoglycan are PAMPs present on E. faecalis that are 

known to stimulate the immune system through pathogen recognition receptors including 

TLR-2 (35).  The capsules produced by other bacteria shield PAMPs resulting in altered 

cytokine production (30).  We examined differences in LTA accessibility between 

encapsulated and un-encapsulated strains by slide agglutination assays.  E. faecalis 

serotype A anti-serum is directed against enterococcal  LTA (39).  We tested the ability 

of these antibodies to agglutinate either encapsulated or un-encapsulated E. faecalis 

strains.  The encapsulated strains V583 (serotype C) and LT02(ΔcpsF, serotype D) were 

not agglutinated by the anti-serum, whereas the un-encapsulated strains LT06(ΔcpsC) 

and 12030 (serotype A reference strain) were both agglutinated (data not shown).   
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Figure 3.3 Complement C3 accessibility 

Complement C3 is masked from detection by capsule.  Flow cytometry was used in 

conjunction with anti-C3 antibodies and FITC conjugated secondary antibodies to 

evaluate the availability of C3 to detection.  A. Representative histograms depicting 

(from left to right) flow cytometry results for serotype C (V583), seroypte D (LT02) and 

un-encapsulated (LT06) E. faecalis strains.  The isotype controls are light gray and the 

C3 antibody treated cells are dark gray.  B. Quantification of the C3 positive cells.  Using 

one-way ANOVA in conjunction with a Newman-Keuls post test, statistical analysis for 

three replicates showed statistically significant differences (p-value < 0.05) in the amount 

of positively labeled bacteria when V583 (light gray bar) and LT06 (black bar) were 

compared, and when LT02 (dark gray bar) and LT06 were compared.  Statistical analysis 

also revealed a significant difference in C3 detection between V583 and LT02 (P < 0.05).  

Error bars represent SE for three replicate. Approximately 50,000 bacteria were analyzed 

for each replicate.  
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Figure 3.4 Accessibility of LTA to antibodies 

The presence of capsule masks LTA from detection by antibodies.  Flow cytometry was 

used in conjunction with LTA antiserum and FITC conjugated secondary antibodies to 

evaluate the levels of LTA accessibility.  A. Representative histograms depicting (from 

left to right) flow cytometry results for serotype C (V583), seroypte D (LT02) and un-

encapsulated (LT06) E. faecalis strains.  The isotype controls are in light gray and the 

anti-LTA antibody treated cells are dark gray.  B. Quantification of LTA detection by 

flow cytometry.  Statistical analysis for three replicates using a one-way ANOVA in 

conjunction with a Newman-Keuls post test showed significant differences (P < 0.05) in 

the amount of LTA detected between V583 (light gray bar) and LT06 (black bar), and 

between LT02 (dark gray bar) and LT06 with p-values less than 0.05.  However, there is 

no statistical difference in LTA detection when LT02 is compared V583.  Error bars 

represent SE for three replicate. Approximately 50,000 bacteria were analyzed for each 

replicate. 
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As agglutinating antibodies are generally of the IgM class, we also used flow cytometry 

to quantify the differences of LTA availability to the IgG class.  Strains V583, LT02, and 

LT06 were incubated with Serotype A antiserum followed by a FITC conjugated 

secondary antibody.  Figure 3.4 shows the percentage of the cells that were positive for 

FITC labeling.  One-way ANOVA followed by a Newman-Keuls post hoc test showed 

significant statistical differences (p-values < 0.05) in the amount LTA detected between 

V583 (serotype C) and LT06 (capsule -), and also between LT02 (serotype D) and LT06.  

However, there was no significant statistical difference when the encapsulated strains 

V583 and LT02 were compared.   

TNF-α production in response to capsule 

 

Figure 3.5 The production TNF-α by RAW 264.7 cells increases when exposed to un-

encapsulated strains of E. faecalis. 

E. faecalis capsule reduces TNF-α production by RAW 264.7 cells.  Macrophage like 

RAW 264.7 cells were incubated with serotype C (V583), serotype D (T-5 and LT02), 

and un-encapsulated (LT06, 12030, and OG1RF) E. faecalis strains.  Supernatants were 

collected and analyzed by ELISA for TNF-α content.  Results show pg/mL of TNF-α 

production by RAW 264.7 cells in the presence of each strain.  Statistical analysis of 

three replicates using one way ANOVA and a Newman-Kuels post hoc test shows 

significant differences between the amount of TNF-α produced in response to T-5, V583 

and LT02 when compared to LT06, 12030, and OG1RF.  Interestingly, there is no 

statistically significant difference between the amount of TNF-α produced by un-induced 

RAW cells when compared to the three encapsulated strains.  Error bars represent SE for 

three replicate experiments. 
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These data indicate that capsule produced by either serotype C or D strains masks LTA 

from antibody detection. 

The presence of a capsule is known to alter the macrophage cytokine response in 

other microorganisms (10).  To examine this possibility in E. faecalis, we used ELISA to 

assess the ability of capsule producing and non-producing strains to induce TNF-α 

production by RAW 264.7 cells.  We predicted that the ability of capsule to inhibit 

detection of LTA (Fig. 3.4) would translate to less TNF-α production by RAW 264.7 

cells.  The capsule producing strains T-5 (serotype D), V583 (serotype C), LT02 

(serotype D) along with the un-encapsulated strains (LT06, 12030, OG1RF) were heat-

killed and incubated with RAW 264.7 cells.  Clarified supernatants were collected at 4 

hours post inoculation, and were analyzed for TNF-α production.  The TNF-α produced 

in response to the un-encapsulated strains is significantly higher than that produced in 

response to encapsulated strains with p-values < 0.05 using one-way ANOVA and a 

Newman-Keuls post hoc test analysis (Fig. 3.5).  However, there is no statistically 

significant difference when comparing the encapsulated strains with each other or when 

comparing the un-encapsulated strains with each other.  Strikingly, there is no statistically 

significant difference in the amount of TNF-α produced by RAW cells when comparing 

the strains T-5, V583, and LT02 to the un-induced RAW control cells.  

 

Discussion 

Capsular polysaccharides contribute to the virulence of microorganisms through multiple 

mechanisms including resistance to opsonophagocytosis, and masking bacterial surface 

antigens from detection by the host immune system (1, 9).  Several Gram-positive cocci 

including S. aureus (26), S. pneumoniae (1), and group-B streptococci (4) produce 

capsular polysaccharides that are known to contribute to virulence.  Previous reports have 

indicated that E. faecalis strains can be classified by the presence or absence of capsular 

polysaccharide (11, 15, 16, 40).  Hancock and Gilmore (11) showed that the presence of 

capsule enhances persistence at infectious sites using a murine infection model, and 

subsequently showed that encapsulation protects the bacteria from killing by neutrophils, 

whereas an unencapsulated isogenic mutant was readily killed by neutrophils.  The 
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killing of the unencapsulated mutant by neutrophils was dependent on the opsonic 

activity of complement.   

Here, we demonstrate that E. faecalis capsular polysaccharide serotypes C and D 

provide resistance to complement opsonized phagocytosis by macrophages.  In good 

agreement with previously reported work on the role of the E. faecalis capsule in 

affecting resistance to opsonic killing by neutrophils (11, 16), we observed a 50% 

reduction in phagocytic killing in encapsulated strains compared to the isogenic acapsular 

mutant.  An additional cell wall polysaccharide in E. faecalis termed Epa has also been 

shown to contribute to resistance to phagocytic killing (37), and may account for why the 

protective effect of the capsule is not more substantial in E. faecalis.  Unlike the capsule, 

the Epa polymer and its genetic locus appear to be highly conserved in E. faecalis (10, 

37).  However, a direct comparison on the relative contribution of Cps and Epa in the 

same strain background has not possible to date, because the OG1RF strain in which Epa 

mutants were created lacks the capsule locus (14, 40), and in our hands we have been 

unable to generate Epa mutants in encapsulated strain backgrounds (L.T., unpublished 

data).  A recent report by Teng et al. (38) demonstrated gross changes in the bacterial cell 

shape of Epa mutants in the OG1RF background and this may account for our inability to 

generate such mutants in our encapsulated strains and may partially explain the 

pleiotropic affects ascribed to the Epa locus in virulence studies (38, 43).   

An additional benefit of the macrophage system is the use of cultured cells that 

are less likely to vary from experiment to experiment compared to the neutrophil assay, 

which requires fresh isolation of neutrophils from human blood donors.  Furthermore, 

because the strains used in this comparative study were isogenic derivatives we can make 

a direct assessment on the role of capsule and serotype differences in host immune 

evasion as has been observed in other microbial pathogens (28, 32, 42, 43).  Our findings 

show that E. faecalis capsular polysaccharides alter the detection of C3 and LTA by 

antibodies (Figs. 3.3-3.4).  Paralleling these findings, we also demonstrate that the 

presence of capsule also abrogates TNF-α production by macrophages (Fig. 3.5).  

Together these data provide a mechanism by which the presence of capsule alters 

complement-mediated opsonophagocytosis by altering accessibility of the bound C3b 

opsonin, and by altering the production of TNF-α in response to encapsulated E. faecalis.   
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It is noteworthy that capsule serotype differences in an isogenic background did 

not result in significant changes in resistance to opsonin-mediated phagocytosis, or in 

altered TNF-α response.  McBride et al. (19) recently showed that clinical isolates of E. 

faecalis possessing multiple virulence factors, as well as multi-drug resistance were more 

likely to be identified as capsule serotype C.  Our findings suggest that either of the 

encapsulated serotypes (C or D) benefit the bacterium in evasion of the host innate 

response.  We did however observe a significant difference in the amount of bound C3 

detectable on the surface of isogenic serotype C compared with serotype D capsule, but 

this difference did not correlate with changes in the phagocytic index of these strains, 

leaving open the question as to why the more pathogenic and drug-resistant clinical 

isolates are more frequently identified as serotype C as opposed to D.  In S. aureus, 

comparison of the contribution of type 5 and type 8 capsule in the same strain 

background revealed that the presence of N-acetylation on the type 5 capsule structure 

conferred a fitness advantage in vivo (41).  Whether a similar affect will also be observed 

in the comparison of E. faecalis serotype C and D strains in vivo will be the focus of 

future studies.     

Aside from anti-phagocytic properties, bacterial capsules also act as barriers that 

limit detection of PAMPs by PRRs (1, 9).  A common PAMP shared by all strains of 

enterococci is LTA.  The LTA of E. faecalis is known to stimulate TNF-α production via 

TLR-2.  Although not fully understood, TNF-α is thought to play a key role in E. 

faecalis-mediated inflammatory responses (3, 26).  A study involving Enterococcus 

faecium, which produces serologically identical LTA to E. faecalis, showed that TLR-2 

mediated signaling was critical for early immune response and clearance of E. faecium 

(17).  Based on these studies, recognition of enterococcal LTA and/or peptidoglycan by 

TLR-2 would appear critical for an efficient host immune response, and the masking of 

these integral wall components by capsule could result in increased pathogenesis by 

limiting the host response to the organism.  Interestingly, a study by Kau et al. (16) 

demonstrated that the response to E. faecalis in a urinary tract infection model is not 

TLR-2 dependent.  The capsule phenotype of the clinical isolate used in this study is not 

known, and based on our finding that the presence of the capsule alters recognition of an 
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important PAMP (LTA) known to be recognized by TLR-2, suggest that TLR-2 signaling 

might only be of benefit against E. faecalis strains that lack capsule. 

Our goal was to understand the mechanism of how encapsulation enhances the 

resistance of E. faecalis to innate immunity.  Taken together, our results show that two 

capsule serotypes produced by E. faecalis can subvert host innate immune responses by 

conferring resistance to complement-mediated phagocytosis, as well as altering the innate 

response to the pathogen.  This study provides mechanistic evidence demonstrating that 

the E. faecalis capsule alters the accessibility of bound C3 supporting the observation that 

the most pathogenic lineages of E. faecalis are encapsulated (19, 39).  By masking 

PAMPs on the surface of E. faecalis, the capsule also alters the host response to infection 

by encapsulated strains.  It is our contention that the capsule produced by E. faecalis 

serotypes C and D is an important virulence determinant that plays multi-faceted roles in 

evasion of host innate immune responses.  Because of this, the E. faecalis capsule could 

serve as a target for developing future therapeutics. 
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CHAPTER 4 - Enterococcus faecalis proteases degrade 

complement C5a and contribute to evasion of innate immunity 
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Abstract 

The gram-positive pathogen Enterococcus faecalis is a leading agent of nosocomial 

infections including urinary tract infections, surgical site infections, and bacteremia. 

Among the infections caused by E. faecalis, endocarditis is the most serious clinical 

manifestation and unique as it is commonly acquired in a community setting.  

Enterococcal endocarditis is a complex disease with many host and microbial 

components contributing to disease outcome.  Using a rabbit model of endocarditis and 

isogenic protease [gelatinase (GelE) and serine protease (SprE)] mutants, we examined 

the contributions of the E. faecalis extracellular proteases in the development and 

progression of endocarditis.  Both of these proteases have been shown to contribute to the 

virulence of E. faecalis in other animal models, and here we show a novel mechanism by 

which the proteases contribute to host innate immune evasion.  Our work shows that 

GelE and SprE can proteolyze the anaphylatoxin complement C5a and that this 

proteolysis leads to decreased neutrophil migration in vitro.  However, using protease 

mutants in the rabbit endocarditis model we only observed a significant decrease in 

bacterial burden in rabbits infected with GelE
-
 strains, suggesting that GelE is the 

principal protease involved in disease progression.  Correlating with these observations 

was the decrease of heterophil (neutrophil-like cells) infiltrate at tissue sites infected with 

GelE producing strains.  Taken together, these observations provide a novel mechanism 

employed by E. faecalis to avoid host immune responses by limiting the recruitment of 

host phagocytes (neutrophils) to the site of infection.   
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Introduction 

Enterococci are leading causes of hospital acquired infections including 

bacteremia, surgical site infections, and urinary tract infections (29).  However, the most 

frightful manifestation of enterococcal infection is endocarditis with mortality rates 

ranging from 15-20% (22).  Enterococci, most commonly E. faecalis, are the third 

leading cause of infective endocarditis (20).  Enteroccoci cause subacute-chronic 

endocarditis and are the causative agents of up to 20% of native valve endocarditis and 

15% of prosthetic valve endocarditis (20, 22).  Unlike other enterococcal infections, 

endocarditis is most commonly community acquired, although recent studies indicate that 

there is a significant risk of acquiring enterococcal endocarditis in a clinical environment 

(6, 7). 

Infectious endocarditis is responsible for 1 in 1000 hospital admissions, and is 

relatively uncommon with an incidence of 1.7-6.2 cases per 100,000 persons each year 

(5, 22).  Despite improvements in diagnosis and treatment, infectious endocarditis 

continues to cause significant morbidity and mortality with mortality rates ranging 

between 4-50% depending on the causative agent (22).  Infective endocarditis is caused 

by colonization of damaged heart endothelium followed by encasement in fibrin and 

platelets resulting in a lesion known as a vegetation (15, 22), and complications from 

infective endocarditis can arise following embolization to secondary sites (2, 22).      

Enterococci form vegetations on the valves of the heart, and emboli that dislodge 

from these vegetations can spread to other body sites (15).  In experimental endocarditis 

in rabbits, mortality  is often associated with embolization to secondary infectious sites 

including blood vessels of the heart, brain, and kidneys (10).  Occasionally the emboli 

occlude blood vessels in the secondary infection sites leading to tissue damage.  Of these 

secondary infection sites, E. faecalis displays   affinity for the kidneys (10).  Previous 

studies indicated that the presence of extracellular proteases (GelE and SprE) 

significantly increased mortality in animal infection models, but the relative contribution 

of each protease in experimental endocarditis has not been examined to date  (10, 33).   
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Multiple bacterial species produce extracellular proteases that contribute to 

pathogenesis through manipulation of the host immune response (26).  These proteases 

target several components of the host innate immune system including complement, 

antimicrobial peptides (AMPs), cytokines and cytokine receptors (26).  The E. faecalis 

proteases GelE and SprE are co-transcribed through regulation by the fsr regulatory 

system (27, 28).  SprE has been shown to contribute to disease in animal models (4, 28, 

32, 34), but mechanistically how it contributes is not known at the present time.  

Gelatinase is a zinc-metalloprotease (17) that is related to aureolysin from 

Staphylococcus aureus and elastase from Pseudomonas aeruginosa (26).  Gelatinase is 

known for its contribution to biofilm formation (12, 36), and is also thought to contribute 

to virulence through degradation of a broad range of host substrates including collagen, 

fibrinogen, fibrin, endothelin-1, bradykinin,  LL-37, and complement components C3 and 

C3a (17, 18, 24, 25, 31, 37).  

Complement C3a is an anaphylatoxin involved in activation and recruitment of 

eosinophils, but is limited in its ability to activate and recruit neutrophils (1, 3, 8, 18).  

Comparatively, complement C5a is at least 100 times more potent in activation and 

recruitment of neutrophils than C3a (8).  Determination of the effects of E. faecalis 

proteases on C5a is of particular importance because of the relevance of neutrophil 

recruitment for bacterial clearance.   

  The broad substrate specificity of GelE probably contributes significantly to the 

complexity of endocarditis pathology, but specific mechanistic contributions to 

endocarditis have not been elucidated.  We sought to elucidate the specific contributions 

of each protease to endocarditis as well as assess direct mechanisms that are associated 

with increased pathogenesis. Here we show that GelE, and to a lesser extent SprE, 

degrade human complement component C5a.  Incubation of C5a with GelE or SprE 

curtailed chemotaxis of neutrophil like cells across a membrane in-vitro.  Using a rabbit 

model of endocarditis and isogenic protease mutants we demonstrated that the production 

of GelE by E. faecalis correlates with increased bacterial burdens at the primary infection 

site and decreased heterophil recruitment to primary and secondary infection sites.  Our 

results show a new mechanism employed by E. faecalis to circumvent host innate 
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immune responses, and adds to the growing list of roles of GelE and SprE as important 

virulence factors in E. faecalis infections. 

Materials and Methods 

GelE and SprE purification 

GelE was purified as previously described with some minor differences (12).  

Two liters of Todd Hewitt Broth (THB) were inoculated with 20 mL of an overnight 

culture of the GelE over expressing E. faecalis strain FA2-2 harboring the pML29 

plasmid (12).  The 2.0 L culture was incubated at 37º C for 24 h.  Bacteria were removed 

by centrifugation for 30 min at 15,000 × g.  The recovered supernatants were filter-

sterilized and incubated at 37º C for 24 h with 10 μg/mL RNase A and 1.0 U/mL DNase.  

The GelE was precipitated from the supernatant upon addition of ammonium sulfate to 

60% saturation followed by incubation overnight at 4º C.  The mixture was centrifuged 

for 30 min at 27,500 × g, and the pellets were recovered by dissolving in 150 mL of GelE 

buffer (50mM Tris and 1 mM CaCl2, pH 7.8).  The 150 mL sample was applied to a CL-

4B column (2.5 × 17 cm) at a flow rate of 5.0 mL/min using a Bio-Rad  BioLogic LP.  

The column was washed with six column volumes of GelE buffer.  Five millimeter 

fractions were collected as GelE was eluted from the column by washing with three 

column volumes of 50% ethylene glycol (vol/vol) in GelE buffer.  Ten microliters from 

each fraction was spotted on a THB agar plate containing 1.5% skim milk.  Fractions 

showing proteolytic activity on the THB 1.5% skim milk plates were pooled and dialyzed 

extensively against GelE buffer or 5.0 mM sodium phosphate (pH 7.0) using dialysis 

tubing (Mr cutoff of 12,000 – 14,000).  After dialysis, the protease purity was checked by 

SDS-PAGE and silver stained.  Purified GelE was aliquoted and stored at 20º C.  Each 

aliquot was tested for activity on a THB 1.5% skim milk plate prior to use.  SprE was 

purified as previously described (35). 

C5a Degradation  

Recombinant human complement C5a and recombinant human complement C5a (His-

Tag) were commercially obtained from BioVision (Mountain View, CA).  Human 
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Table 4.1 Strains used in this study 

__________________________________________________________________ 

       Strain Relevant Genotype Relevant Phenotype  Reference  

        V583 Parental    GelE
+
 SprE

+
   (30) 

        VT01 V583 ΔgelE    GelE
-
 SprE

+
   (36)  

        VT02 V583 ΔsprE               GelE
+
 SprE

-   
(36) 

        VT03 V583 ΔgelE ΔsprE   GelE
-
 SprE

-
   (36) 

 

complement protein C5a (His-Tag) (M.W. 12 kDa) was incubated with purified GelE or 

SprE to determine the ability of the proteases to hydrolyze C5a.  Equal amounts (0.5 µg) 

of GelE or SprE and C5a were incubated in total volume of 25.0 µL in GelE buffer 

(50mM Tris pH 7.8, 1 mM CaCl2) or SprE buffer (50 mM Tris pH 7.4, 5 mM CaCl2) for 

20 minutes at 37º C.  A 15.0 µL aliquot from each sample was analyzed on a Tris-Tricine 

10-20% gradient gel (Invitrogen) by silver staining as previously described (23).  The 

remaining 10 µL were prepared for MALDI-TOF analysis using a ZipTip (Millipore, 

Bedford, MA) following the manufacturer instructions.  Samples were eluted in a 

solution of 50% acetonitrile containing 0.1% trifluoroacetic acid, mixed with 2,5 

dihydroxy benzoic acid (Sigma, Saint Louis, MO), and spotted on a Bruker aluminum 

plate for MALD-TOF analysis.  Samples were analyzed using a Bluker Ultraflex II mass 

spectrometer.     

HL-60 growth and differentiation 

The human promyelocytic leukemia HL-60 cells (ATCC CCL-240) were grown 

in Iscove’s modified Dulbecco’s medium (Invitrogen) supplemented with 10% fetal 

bovine serum (FBS), 50 U/mL penicillin, and 50 µg/mL streptomycin at 37º C with 5% 

CO2. 

It is known that HL-60 cells can be differentiated into neutrophil like cells upon 

the addition of dimethylsulfoxide (DMSO)(13), and that differentiated HL-60 (dHL-60) 

cells are a reliable substitute for isolated neutrophils in chemotaxis and migration studies 

(14, 38).  HL-60 cells for use in downstream applications were differentiated as 

previously described (14).  Briefly, HL-60 cells were incubated for five days in Iscove’s 
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modified Dulbecco’s media supplemented with 1.2% DMSO at a concentration of 5X10
5
 

cells/mL.  Cell differentiation was evaluated by analyzing CD11b expression on the 

surface of HL-60 and dHL-60 cells by flow cytometry.  Briefly, HL-60 and dHL-60 cells 

were harvested and resuspended in culture media to a concentration of 1X10
6
 cells/mL.  

The cells were washed three times in 200 µL of stain media containing PBS (pH 7.0), 

10% fetal bovine serum, and 0.2% sodium azide.  The Fc receptors were blocked with 

FcR block (BD Biosciences, San Jose, CA), followed by incubation on ice for 15 minutes 

with anti-CD11b APC conjugated antibodies (BioLegend, San Diego, CA) or anti-F4/80 

FITC conjugated antibodies (eBiosciences, San Diego, CA) as a negative control.  Cells 

were washed three times in stain media and resuspended to a final volume of 500 µL and 

analyzed by flow cytometry using a FACSCalibur flow cytometer (Becton and 

Dickinson, San Jose, CA) at a flow rate of ~200 cells per second.  Data were analyzed 

using the WinList software program (VerityHouse, Topsham, ME). 

dHL-60 Transmigration Assay 

Differentiated HL-60 (dHL-60) cells were labeled with carboxyfluorescein 

diacetate, succinimidyl ester (CFDA-SE) prior to the migration assay.  Briefly, dHL-60 

cells were pelleted and resuspended in three milliliters of PBS containing 0.1% BSA at a 

concentration of 1X10
6
 cells/mL followed by the addition of an equal of volume CFDA-

SE in PBS at a concentration of 20 µM.  The cells were incubated with CFDA-SE for 10 

minutes at 37º C and subsequently washed three times with DMEM supplemented with 

human serum albumin (HSA) (5.0 mg/mL) and HEPES (15 mM).  Washed cells were 

resuspended in DMEM HSA/HEPES at a concentration of 1X10
6
 cells/mL and 100 µL of 

cells were aliquoted into the upper chamber (3.0 µM polyester membrane) of a 24 well 

Transwell (Corning) plate.  A volume of 600 µL of DMEM HSA/HEPES containing 

either C5a (10
-9

 M) alone, C5a incubated with GelE or C5a incubated with SprE was 

added to the lower wells prior to the addition of upper chambers.  Culture media 

containing either GelE or SprE was used in the lower wells as a negative control.  The 

dHL-60 cells were allowed to migrate towards the bottom chamber for 70 minutes at 37º 

C.  Cells that had migrated to the bottom well were collected, washed three times in PBS, 

and lysed with 0.2 M NaOH.  The amount of CFDA-SE present from the cell lysates was 
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measured spectrofluorometrically with excitation at 492 nm and emission at 571 nm on a 

Perkin Elmer Victor 3 fluorescent plate reader.  Fluorescence values for the negative 

controls were subtracted from the samples and data were analyzed as percent 

fluorescence with C5a alone set to 100 percent.  Statistical analysis was performed using 

GraphPad Prism software.   

   Experimental endocarditis 

New Zealand White rabbits weighing approximately 2 kg were anesthetized by 

intramuscular injection with ketamine (25 mg/kg) and xylazine (20 mg/kg).  The right 

carotid artery was exposed for catheterization by surgical incision and a polyethylene 

catheter with an internal diameter of 0.86 mm (Becton Dickinson, MD) was introduced in 

the right carotid artery and advanced until it traversed the aortic valve into the left 

ventricle.  Proper catheter placement was determined by feeling the resistance and noting 

the pulsation of the catheter line.  Wound clips were used to close the incision, and all 

rabbits recovered without complications.  Groups of 6-8 catheterized rabbits were 

injected with 1 ml of diluted cultures (1 X 10
7
 cfu) of E. faecalis strains V583, VT01 

(ΔgelE), VT02 (ΔsprE), or VT03 (ΔgelEsprE) (Table 4.1) via the marginal ear vein 24 

hours after catheter insertion.  Two negative control rabbits received sterile saline.  To 

prepare the bacteria for injection, enterococci (V583, VT01, VT02 and VT03) were 

grown to stationary phase, washed twice and diluted to a final cell density of ~10
7
 cfu/ ml 

in sterile saline. The rabbits were euthanized 48 hours after the bacterial challenge by 

intraperitoneal administration of sodium pentobarbital.  Research was conducted in 

compliance with the Animal Welfare act and other federal statutes and regulations 

relating to animals and experiments involving animals and adheres to the principles stated 

in the Guide for the Care and Use of Laboratory animals, NRC publication, 1996 edition.   

Determination of bacterial burden 

Animals with macroscopic valvular vegetations and proper catheter placement 

were analyzed for data in this study.  Blood was drawn just prior to euthanasia to 

determine bacterial CFU in blood at the time of sacrifice.  At the time of sacrifice, aortic 

valves and left ventricular vegetations were removed, weighed, and homogenized in 1.0 
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ml of sterile PBS, pH 7.4 and quantitatively cultured by plating serial dilutions on THB 

agar plates (referred to collectively as heart tissue).  To determine the extent to which 

emboli formed from cardiac vegetations, enterococci present in the spleen, liver, and 

kidney were also assessed by plate count.  Harvested organs were introduced into 3 mL 

of sterile PBS, pH 7.4 and thoroughly homogenized with a tissue homogenizer.  Tissue 

homogenates were serially diluted and plated on THB agar and colonies counted after 

overnight incubation at 37ºC.  Bacterial loads were expressed as log10CFU per gram of 

tissue.   

Histology 

The left kidneys, walls of the aorta, and aortic valves exhibiting vegetations from 

representative rabbits infected with V583, VT01, VT02 and VT03 were fixed in 10% 

buffered formalin for histopathology. For general histology, tissues (kidneys and regions 

of the aorta including the aortic valve) were embedded in paraffin and serial sections 

(5µm thick) were stained with either  HE (hematoxylin and eosin) or Gram-stain.   

Image analysis and statistical analysis 

Images were obtained at a final magnification of 400X and analyzed using imageJ 

software.  For quantitative analysis of heterophils surrounding emboli in the kidneys or in 

the matrix layer (ML, generally thought to be composed of host fibrin, fibronectin, 

plasma proteins and platelets, (21)) around the vegetations in the aorta, images were 

initially converted to 8-bit and a threshold was applied to contrast heterophils from the 

background.  Heterophils were counted from images using dimensions obtained from a 

training dataset.  In cases where heterophils overlapped, the watershed algorithm was 

applied to delineate heterophil boundaries before counting particles. The total number of 

heterophils from each bacterial treatment was normalized to the area of the surrounding 

kidney emboli or ML layer and reported as the number of heterophils per 10 mm
2
 (10000 

µm
2
).   

Statistical analysis of heterophil counts and bacterial tissue burdens was carried 

out with GraphPad software.  One way analysis of variance followed by Neuman-Keuls 
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post hoc test was carried out to determine statistical significance.  A P< 0.05 was 

considered to be statistically significant. 

Results 

Rabbit Endocarditis Bacterial Burden 

We used a GelE (VT01), a SprE (VT02), and a double GelE/SprE (VT03) mutant 

in an isogenic background (V583) (Table 4.1) to determine the pathogenic effects of the 

proteases in a rabbit endocarditis model.  Bacterial burdens were determined from the 

hearts, kidneys, blood, livers, and spleens from each rabbit.  The kidneys were of special 

interest because E. faecalis is known to have a tropism for kidneys (10, 16).  Figure 4.1 

shows the log10 CFU per gram of tissue from the hearts (Fig. 4.1A) and both kidneys 

(Fig. 4.1B).  A one way ANOVA with a Neuman-Keuls post hoc test indicates a  

 

Figure 4.1 Bacterial burdens from the hearts and kidneys of infected rabbits 

A rabbit endocarditis model was used to assess the pathogenesis of isogenic GelE, SprE 

and double GelE/SprE mutants compared to a wild type (V583) strain.  Horizontal bars 

represent the mean  A. Rabbits infected with GelE producing strains (V583 and VT02) 

have higher bacterial burdens in the heart than rabbits infected with strains lacking GelE 

(VT01 and VT03). (N=6-8) B.  Bacterial burdens in the kidneys do not differ 

significantly. (N=6-8) 
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statistically significant difference (P<0.05) in the bacterial burdens in the hearts of rabbits 

infected with the wild type strainV583 and compared to VT01 (GelE
-
SprE

+
) and VT03 

(GelE
-
SprE

-
) (Fig 4.1A).  Conversely, there is no significant difference in bacterial  

burdens in the heart between rabbits infected with V583 compared to VT02 (GelE
+
SprE

-

), nor is there a significant difference in rabbits infected with VT01 (GelE
-
SprE

+
) 

compared to VT03 (GelE
-
SprE

-
).  Bacterial burdens in the hearts from rabbits infected 

with VT02 (GelE
+
SprE

-
) were significantly different when compared to rabbits infected 

with VT01 (GelE
-
SprE

+
).  Even though we did not observe a statistically significant 

difference in the bacterial burdens in the hearts of rabbits infected with VT02 

(GelE
+
SprE

-
) when compared with VT03 (GelE

-
SprE

-
), the overall trend of increased 

bacterial burden in the hearts of rabbits infected with GelE
+
 strains remained consistent.  

Other tissues harvested from the rabbits including the kidneys (spleen, liver, blood, and 

kidneys) did not display significant difference in bacterial burden for any of the E. 

faecalis strains (Fig 4.1B and data not shown).   

Heterophil Recruitment 

Rabbit heterophils are the equivalent of human neutrophils.  Based on the 

observations that GelE, and to a lesser extent SprE (Fig. 4.4) degrade C5a and other pro-

inflammatory peptides, we predicted that rabbits infected with E. faecalis strains 

producing one or both proteases should have decreased heterophil recruitment to 

infection sites.  The aortas and half sections of the left kidney were collected from rabbits 

infected with V583, VT01 (GelE
-
), VT02 (SprE

-
), and VT03 (GelE

-
 SprE

-
).  The number 

of heterophils/ 10 mm
2
 of matrix layer (ML) was determined from four aorta sections 

containing vegetations for each strain.  Figure 4.3 shows that rabbits infected with strains 

lacking GelE (VT01 and VT03) had significant (P<0.05) higher numbers of heterophils/ 

10 mm
2
 in ML than rabbits infected with strains producing GelE (V583 and VT02).   
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Figure 4.2 Histopathology of rabbit aortic vegetations 

Histology of aortic vegetations. Panels A, B, C and D are representative images of gram-

stained cross-sections (5µm) of vegetations formed on the ascending aorta of rabbits 

infected with V583, VT01, VT02 and VT03 respectively (magnification, x 200). Black 

arrows point to E. faecalis biomass on the surface of the endothelium. Red arrows point 

to deposited matrix layer (ML) composed mostly of platelets and fibrin. Green arrows 

point to influx of heterophils and other immune cell infiltrates.    

 

There was no significant difference in the amount of heterophils/ 10 mm
2
 of ML between 

rabbits infected with VT01 (GelE
-
) or VT03 (GelE

-
 SprE

-
) or between rabbits infected 

with V583 or VT02 (SprE
-
).  

The number of heterophils/ 10 mm
2
 surrounding the emboli in the kidneys were 

also assessed from rabbits infected with V583 or the three protease mutant strains.  

Similar to results seen from the heart vegetations, GelE producing strains (V583 and 

VT02) had significantly (P<0.05) less heterophils/ 10 mm
2
 surrounding the emboli than 

did strains 
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Figure 4.3 Quantification of heterophil infiltration in vegetation matrix layers 

Quantification of heterophil chemotaxis in the hearts or rabbits infected with E. faecalis.  

Differences in the number of heterophils that have migrated to the bacterial vegetations 

were determined from histological images (magnification, x 400) and were normalized to 

the area of ML surrounding them. Heterophils were counted using Image J software from 

4 random images of vegetations from each strain and reported as the total number of 

heterophils trapped per 10 mm
2
 of ML (Mean ± SEM). (N=4)  

 

 lacking GelE (VT01 and VT03) (Figs. 4.3 and 4.5).  There was no statistically 

significant difference in the number of heterophils/ 10 mm
2
 around the kidney emboli in 

rabbits infected with the GelE producing strains (V583 and VT02) which is also similar 

to the results from the heart vegetations.   However, unlike the observations from the 

heart vegetations, rabbits infected with VT01 (GelE
-
) had significantly (P<0.05) fewer 

heterophils surround kidney emboli than did rabbits infected with VT03 (GelE
-
 SprE

-
) 

suggesting that SprE has some effect on heterophil recruitment in this tissue.       

GelE and SprE Degradation of C5a 

Previous studies showed that GelE degrades C3a (24), however, C5a is 100 times more 

potent in neutrophil activation and recruitment (8).  We incubated purified human C5a 

with purified GelE and SprE to determine if either protease possessed proteolytic activity 

targeting C5a.  We used Tris-Tricine gel analysis and MALDI-TOF analysis to determine 

activity of the enterococcal proteases towards C5a.  Our results show that GelE 

completely degrades C5a as shown in Figures 4.6A and 4.6B.  These results are similar to 
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Figure 4.4 Histopathology of rabbit kidneys 

Representative histopathology slides of rabbit kidneys stained with hematoxylin and 

eosin.  White arrows indicate emboli and black arrows indicate heterophils.  Panels A and 

C show emboli from rabbits infected with GelE producing strains (V583 and VT02 

respectively).  Panels B and D show emboli from rabbits infected with GelE
-
 strains 

(VT01 and VT03 respectively).  Emboli consisting of V583 (A) and VT02 (C) do not 

have any significant heterophil influx compared to emboli consisting of VT01 (B) and 

VT03 (D).  

 

the reported GelE activity towards C3a (24).  Conversely, SprE had limited proteolytic 

activity towards C5a, with some degradation observed on the Tricine gel compared to 

C5a alone (Fig. 4.6B), which was confirmed by MALDI-TOF analysis (Fig. 4.6A).  

In-Vitro Neutrophil Chemotaxis in Response to C5a incubated with GelE and SprE 

GelE and to a lesser extent, SprE, can hydrolyze the complement protein C5a (Fig. 4.6).  

Because C5a is a powerful neutrophil chemotractant, we determined if incubation of C5a 
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Figure 4.5 Quantification of heterophil infiltration surrounding emboli in the kidneys 

Quantification of heterophils/10 mm
2
 of tissue surrounding the emboli in the kidney 

shows a significant decrease (P<0.05) in influx in GelE producing strains (V583 and 

VT02) compared to GelE
-
 strains (VT01 and VT03).  There is also a significant 

difference in heterophil density per 10 mm
2
 between VT01 (GelE

-
SprE

+
) and VT03 

(GelE
-
SprE

-
) suggesting a limited role for SprE in limiting heterophil recruitment.  (N=8-

11) 

with GelE and SprE decreased neutrophil chemotaxis in-vitro.  We used dHL-60 cells in 

conjunction with Transwell migration assays to determine the effect of dHL-60 

movement across a membrane in response to C5a or C5a incubated with GelE or SprE.  

Flow cytometry in conjunction with CD11b antibodies was employed to ensure that HL-

60 cells incubated with DMSO had differentiated into neutrophil like cells (Fig. 4.7).  As 

previously described (14, 38), HL-60 cells displayed increased levels of CD11b on their 

surface following five days of incubation with DMSO indicating differentiation into 

neutrophil like cells.  
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Figure 4.6 Degradation of C5a by GelE and SprE 

GelE and SprE degrade C5a.  A.  MALDI-TOF spectra of C5a (~12 kDa) alone, Buffer 

alone, C5a incubated with SprE, and C5a incubated with GelE.  Incubation of C5a with 

GelE results in complete hydrolysis of C5a where as incubation of C5a with SprE results 

in partial degradation.  B.  Silver stained Tris-Tricine showing the molecular weight 

marker ~12 kDa (A), C5a incubated with GelE (B), C5a incubated with SprE (C), GelE 

buffer (D), SprE buffer (E), and C5a (F).  GelE completely degrades C5a.  
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Figure 4.7 Differentiation of HL-60 cells 

Flow cytometry analysis of CD11b expression on dHL-60 cells.  Black shows CD11b 

expression on HL-60 cells prior to incubation with DMSO.  Blue shows CD11b 

expression on HL-60 cells following incubation with DMSO.  Increased expression of 

CD11b on HL-60 cells following incubation with DMSO indicates differentiation into 

neutrophil-like cells.  Differentiated HL-60 cells were used to study chemotaxis in 

response to C5a incubated with E. faecalis proteases. 

 

 

Figure 4.8 Transwell transmigration assay 

Incubation of C5a with GelE or SprE inhibits dHL-60 migration through Transwell 

membranes.  Neutrophil like dHL-60 cells were labeled with fluorogenic CFDA-SE and 

allowed to migrate through a 3.0 µM membrane in response to C5a or C5a previously 

incubated with GelE or SprE.  Incubation of C5a with GelE or SprE significantly 

(P<0.05) reduces dHL-60 chemotaxis compared to C5a alone.  
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The dHL-60 cells (labeled with CFDA-SE) were allowed to migrate towards C5a 

or C5a incubated with GelE or SprE for 70 minutes.  As expected, incubation of C5a with 

GelE resulted in a significant reduction in neutrophil movement across the Transwell 

membrane compared to C5a alone (Fig. 4.8).  Interestingly, incubation of C5a with SprE 

also led to a significant decrease in neutrophil chemotaxis compare to C5a (Fig. 4.8) 

despite the observation that hydrolysis of C5a by SprE is limited (Fig. 4.6).  There is no 

statistically significant difference in the amount of neutrophil migration across the 

Transwell membranes when C5a is incubated with GelE or SprE, even though GelE is 

more efficient in hydrolyzing C5a.   

 

Discussion 

Extracellular proteases from pathogenic bacteria assume many roles in manipulation and 

subversion of host innate immune responses (26).  The E. faecalis extracellular proteases 

GelE and SprE are known to contribute to pathogenesis through contributions to biofilm 

production as well as degradation of important immune peptides (12, 24, 31, 36).  Here 

we show a new mechanism of innate immune evasion for GelE and SprE through 

degradation of C5a.  The complement protein C5a is a potent inflammatory peptide with 

a broad spectrum of functions including the modulation of cytokine production, induction 

of oxidative bursts, and also serves as powerful chemoattractant for neutrophils and 

monocytes (9, 11).  GelE thoroughly hydrolyzes C5a which leads to decreased neutrophil 

migration in vitro.  SprE has limited proteolytic activity towards C5a, which is sufficient 

to limit neutrophil chemotaxis in vitro.  However, our data indicate that SprE is not as 

effective as GelE in limiting rabbit heterophil chemotaxis in the heart suggesting that the 

limited proteolytic activity of SprE alone is not sufficient to hinder heterophil recruitment 

in vivo.  The matrix layer covering the vegetations in the heart from rabbits infected with 

VT01 (GelE
-
 SprE

+
) contain as many heterophils/10 mm

2
 as similar sites from rabbits 

infected with VT03 (GelE
-
 SprE

-
).  In contrast, rabbits infected with GelE producing 

strains of E. faecalis (V583 and VT02) had significantly decreased heterophil density in 

the matrix layer compared to rabbits infected with VT01 (GelE
-
SprE

+
) or VT03 (GelE

-

SprE
-
).  Interestingly, matrix layers from rabbits infected with V583 and VT02 
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(GelE
+
SprE

-
) show no difference in heterophil density, implying that GelE alone is 

sufficient for limiting heterophil recruitment to the matrix layer and that SprE does not 

augment this effect in the heart.  Correlating with this data is the observation that 

bacterial burdens from rabbit hearts infected with GelE producing strains (V583 and 

VT02) are significantly higher than those from rabbits infected with the GelE
-
 strains 

(VT01 and VT03). 

Previous investigations into the role of E. faecalis proteases in endocarditis have 

been conducted by others (10, 33).  Gutschick et al.(10) compared proteolytic isolates of 

E. faecalis (Streptococcus faecalis subspecies liquefaciens) to non-proteolytic isolates (S. 

faecalis) and found that rabbits infected with proteolytic strains had shorter mean survival 

times (3.9 days compared to 7.1 days) and significantly more emboli in the kidneys than 

those infected with non-proteolytic strains.  Rabbits that succumbed to the infection also 

had significantly higher bacterial burden in the heart when infected with proteolytic 

strains compared to non-proteolytic isolates, which is consistent with our observations for 

GelE expressing strains.  For humane reasons, we did not use death as our endpoint, but 

still found that vegetations were smaller in rabbits infected with GelE producing strains.  

This is principally due to the fibrinolytic activity observed in histology (Fig. 4.2) and 

consistent with the ability of GelE to cleave fibrin (37).  Gutschick et al. (10) used 

proteolytic isolates but could not distinguish between a role for GelE or SprE, as isogenic 

mutants were not available at that time.  More recently, Singh et al. (33) compared an 

isogenic fsrB deletion mutant and a gelE insertion mutant in an OG1RF strain 

background in the rat model of experimental endocarditis.  These authors also reported a 

significant role for protease production in the early stages of endocarditis.  As gelE and 

sprE are cotranscribed, an insertion in gelE is known to exert a polar affect on sprE 

transcription (28).  Therefore, the study by Singh et al. was unable to discern a role for 

either GelE or SprE in the endocarditis model.  Here we used isogenic deletion mutants in 

both GelE and SprE, as well as a double deletion mutant, and have shown that GelE is the 

principle protease involved in mediating bacterial burden in the heart.   

Despite in vitro cleavage of C5a by SprE, there appeared to be little effect on 

heterophil recruitment or bacterial burden when comparing strains with (VT01) or 

without (VT03) SprE expression in the absence of GelE.  One possible explanation for 
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the lack of correlation between in vivo and in vitro SprE activity could be that serum 

protease inhibitors are selectively targeted to serine proteases as compared to 

metalloproteases.  Additionally, the molar ratio of C5a to either protease in vivo is not 

known and this may also explain the absence of correlation.  At a 1:3 molar ratio of GelE 

to C5a, we observed complete proteolysis of C5a in 10 minutes.  Under similar 

conditions, C5a was only partially degraded by SprE, yet this partial degradation was 

sufficient to interfere with C5a-dependent neutrophil (dHL-60) chemotaxis in vitro.  

However, we did observe some affect of SprE expressed in the emboli lodged in the 

kidney, in that fewer heterophils were recruited to this site when infected with strain 

VT01 (GelE
-
,SprE

+
) compared to VT03 (GelE

-
,SprE

-
).   

Infective endocarditis begins with bacterial colonization of damaged heart 

endothelium followed by encasement in fibrin in platelets resulting in a characteristic 

lesion called a vegetation (15).   Vegetations are prone to embolization often leading to 

leading to secondary infections within the kidney, spleen, and brain (15).  Because 

emboli resulting from E. faecalis endocarditis have a tropism for the kidney (10) we 

explored kidney pathology of rabbits infected with our protease mutants.  We observed a 

greater influx of rabbit heterophils around the emboli localized to the kidney of rabbits 

infected with VT01 (GelE
-
SprE

+
) and VT03 (GelE

-
SprE

-
) compared to rabbits infected 

with V583 or VT02 (GelE
+
SprE

-
) despite the absence of difference in overall bacterial 

burdens from this tissue.  These results indicated that GelE is important for innate 

immune evasion following colonization of secondary sites of infection as well as the 

primary site of infection.  We also observed a lesser extent of heterophil recruitment 

around the emboli in rabbits infected with VT01 (GelE
-
SprE

+
) compared to rabbits 

infected with VT03 (GelE
-
SprE

-
).   This result was surprising based on the observation 

that the density of heterophils recruited to the site of infection in the heart is the same in 

the rabbits infected with either strain.  We speculate that the limited proteolytic effect of 

SprE on C5a may be sufficient early in infection to partially delay heterophil recruitment, 

but may not be sufficient to continually repress heterophil recruitment over an extended 

period of time.  However, one can not discount the timing of emboli release from the 

vegetation as being a factor.  Perplexingly, we did not see a decrease in the bacterial 

burden in rabbits infected with VT01 (GelE
-
 SprE

+
) or VT03 (GelE

-
 SprE

-
) compared to 
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V583 or VT02 (GelE
+
 SprE

-
), even though we see significant differences in heterophil 

recruitment in the kidneys.  The similarity in bacterial burden in the kidneys may be due 

to the short duration of infection in the rabbits.  During the 48 hour period post 

inoculation, the bacteria must colonize the damaged heart valve, form vegetations, and 

expel emboli that then lodge in other organs in the rabbit.  Even though 48 hours was 

enough time to see a difference in bacterial burden in the original infection site (heart) it 

may not have been enough time to allow for efficient bacterial clearance in other organs.  

However, we do see an increased influx of rabbit heterophils around the emboli in the 

kidneys of rabbits infected with VT01 (GelE
- 
SprE

+
) and VT03 (GelE

-
 SprE

-
) suggesting 

that given sufficient time these tissues would have decreased bacterial loads compared to 

the kidneys of rabbits infected with the GelE producing strains V583 and VT02. 

Infective endocarditis is a complex disease with many bacterial and host factors 

contributing to diverse pathologies.  Most virulence factors studied in relation to 

enterococcal endocarditis have focused on adherence (19).  The extracellular proteases 

GelE and SprE are two known virulence factors that contribute to E. faecalis 

pathogenesis in other disease models.  Elevated bacterial burden in the hearts of rabbits 

infected with the GelE producing strains V583 and VT02 is consistent with a crucial role 

for GelE in pathogenesis.  Additionally, reduced heterophil recruitment to infections sites 

in animals infected with GelE producing strains is consistent with the observation of C5a 

degradation.  The role of SprE is more ambiguous than that of GelE.  The presence of 

SprE does not significantly increase bacterial burden in the heart as does GelE, nor does 

SprE inhibit heterophil recruitment in the matrix layer. However, SprE may play a 

limited role in early stages of infection by limiting phagocyte recruitment.  Despite the 

indistinct role for SprE, it remains clear that GelE is important for innate immune evasion 

in endocarditis, thus adding to the ever growing list of GelE contributions to 

pathogenesis.   
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General Summary 

Over the past several decades enterococci have emerged as one of the most 

common sources of hospital acquired infections.  Enterococci have been known to cause 

disease for nearly a century, but modern medical practices using antibiotic therapeutics 

combined with innate and acquired antibiotic resistances in the bacteria have resulted in a 

rapid increase in the incidence of enterococcal diseases (7, 8, 13, 28).  Enterococci are 

resistant to a broad range of antibiotics with the resistance to vancomycin being the most 

disturbing from a clinical standpoint.  Glycopeptide antibiotics including vancomycin are 

often turned to as the last resort to treat many infections.  A 2005 NNIS report revealed 

that 30% of enterococci isolated from a clinical setting were vancomycin resistant (25).  

Predictably, mortality rates for individuals infected with vancomycin resistant 

enterococci are significantly higher than for individuals infected with susceptible strains 

(9).  Multiple antibiotic resistant enterococci are not only more difficult to treat, but 

antibiotic resistance also provides enterococci with a selective advantage over competing 

microbes in the gastrointestinal (GI) tract.  Treatment of intensive care unit (ICU) 

patients with 2
nd 

and 3
rd

 generation cephalosporins or with other beta-lactams results in 

increased GI colonization with enterococci due to the lack of competition from 

susceptible bacterial species  (7, 8, 28, 40).   

 Regardless of antibiotic resistance profiles and increased colonization due 

to antibiotic treatment, enterococci must still overcome a myriad of host defense 

mechanisms to establish infection at extraintestinal sites.  Host innate immune barriers 

include physical and chemical barriers, soluble proteins, pattern recognition receptors, 

and phagocytic cells.  These innate immune effectors are reviewed in Chapter 1 with 

special attention paid to those effectors that are key in defense against extracellular gram-

positive pathogens.  Like most pathogens, E. faecalis produces several virulence factors 

(reviewed in Chapter 1) that aid in establishing infections.  Most of the studies involving 

E. faecalis virulence factors have focused on adherence or biofilm formation, while only 

a handful have focused on mechanisms employed to circumvent host immune responses.  

Studies from this work have shown two virulence factors (capsule and GelE) produced by 

E. faecalis that contribute to host innate immune evasion.  Furthermore, these studies not 
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only demonstrate that these factors contribute to immune evasion but also yield 

mechanisms for subversion of the host response.  Adding to these studies is the 

elucidation of the genetics required for capsule production and how the underlying 

genetics correlate with differences in capsule serotypes.         

 Bacterial capsular polysaccharides are known to contribute to the 

pathogenicity of numerous microbes including several gram-positives (1, 5, 29, 45).  The 

influence of E. faecalis surface polymers thought to be capsule have been studied in 

relation to pathogenesis in the past (12, 16, 18, 41, 48).  Most of these studies have 

divided E. faecalis into groups based on one of several serotyping schemes (17, 20, 36, 

37).  However, these studies are not reliable due to the fact that these serotyping schemes 

were based on many surface antigens including lipoteichoic acid (17, 42).  As discussed 

in Chapters 1 and 2, only two loci (epa and cps) had been reported to contain putative 

genes for capsule production (12, 47), but only one study had directly linked the genetic 

evidence with physical proof of capsule production (15). Prior to the studies reported in 

this thesis, the capsule serotyping scheme divided E. faecalis into four groups (A, B, C, 

and D).  

 In Chapter 2, evidence presented demonstrates that only two serotypes (C 

and D) of E. faecalis produce a capsular polysaccharide.  Previous studies had shown that 

the genes cpsA and cpsB are not part of the capsule operon as they are transcribed from a 

different promoter (15).  This indicated that serotypes A and B did have the necessary set 

of genes to produce a capsular polysaccharide.  This was clearly demonstrated to be the 

case in Chapter 2 by the absence of capsule production in isogenic mutants lacking the 

genes cps C, D, E, G, or I.   Furthermore, data in this chapter shows that differences in 

serospecificity between serotypes C and D is due to the presence of cpsF.  Data from this 

work indicates that cpsF may be a glucosyltransferase.  Data in Chapter 2 also indicated 

that the group antigen (LTA) is hidden from detection by agglutinating antibodies thus 

providing some insight into how capsule may be limiting immune detection of 

encapsulated E. faecalis strains.  Consistent with this finding is the observation that 

serotype C and D strains tended to be more pathogenic than their A and B counterparts 

(18, 24).   
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Several studies have shown that bacteria employ capsules as a means to defend 

against components of the host innate immune system.  The inhibition of phagocytosis 

and evasion of detection by the host are two primary mechanisms attributed to capsule in 

the evasion of the innate immune response.  In Chapter 3 the role of capsule with regard 

to immune evasion by E. faecalis was explored.  Hufnagel et al. had previously reported 

that opsonophagocytic killing of both the serotype C and D strains by healthy human sera 

was drastically reduced when compared to the un-encapsulated serotype A and B strains 

(18).  At the time of the Hufnagel et al. manuscript (18), it was thought that all four 

serotypes were encapsulated.  However, in light of the discoveries in chapter 2, we 

hypothesized that only strains producing capsule (serotypes C and D) were protected 

from opsonophagocytosis.  This hypothesis was tested in chapter 3 using isogenic 

mutants that were defective in capsule production that had been incubated in serum 

containing opsonic C3.  As suspected, the absence of capsule increased the rate of 

opsonophagocytosis by macrophages when compared to encapsulated strains.  The 

contribution of capsule to the reduction of opsonophagocytosis can be attributed to either 

an inhibition of complement deposition or to the ability of capsule to mask the detection 

of bound complement on the surface of the microbe (29, 31, 46).  The results presented in 

Chapter 3 showed that the decrease in opsonophagocytosis of encapsulated E. faecalis 

strains was due to the ability of capsule to hide C3 from detection.  Similarly, the capsule 

also hid surface LTA from detection by specific antibodies.   

 It is known that LTA is recognized by the pattern recognition receptor 

(PRR) Toll-like receptor 2 (TLR-2), and that recognition of LTA results in increased 

cytokine production and neutrophil recruitment to the site of infection (4, 19, 33, 35).  

Presumably, the presence of capsule would attenuate the host innate immune response by 

limiting cytokine production.  Encapsulated strains along with naturally un-capsulated 

and isogenic capsule negative mutants were incubated with macrophages to test this 

hypothesis.   

Results presented in chapter 3 showed that the presence of capsule significantly 

reduces the production of the pro-inflammatory cytokine, TNF-α.  These results indicate 

that the capsule of E. faecalis provides protection from the host innate immune response 



 
128 

through inhibition of phagocytosis, and by inhibiting the detection of pathogen associated 

molecular patterns which limits cytokine production by the host (Figure 5.1).  

 Even though capsular polysaccharide production is associated with the 

most pathogenic lineages of E. faecalis, several un-encapsulated strains also cause 

disease.  Two factors that were known to contribute to E. faecalis pathogenesis were the 

secreted proteases GelE and SprE.   The secreted protease SprE had been implicated in 

contributing to disease in a number of animal models but the mechanism of SprE activity 

is unknown (10, 30, 38, 39).   GelE was also known to contribute to virulence presumably 

through degradation of a broad range of host proteinaceous substrates including LL-37 

and complement components C3 and C3a (21, 22, 26, 27, 32, 44).  In Chapter 4 a new 

mechanism is described for both SprE and GelE with regards to innate immune 

subversion.  Both proteases were able to degrade the anaphylatoxin C5a with SprE 

having slightly reduced activity compared to GelE.  However, incubation of C5a with 

either purified GelE or SprE resulted in decreased neutrophil migration in-vivo when 

compared to whole C5a.  The relative contributions of GelE and SprE were tested in a  

 

Figure 5.1: The capsule of E. faecalis contributes to innate immune evasion. 

The capsular polysaccharide produced by E. faecalis inhibits the detection of LTA from 

detection by Toll-like receptors.  Capsule also prevents detection of opsonic antibodies 

and complement by their cognate receptors. 
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 rabbit model of endocarditis.  Hearts and Kidneys from rabbits infected with either a 

wild type strain, a GelE
-
 strain, an SprE

-
 strain, or a GelE

-
/SprE

-
 strain (all in an isogenic 

background) were compared in terms of bacterial burden and heterophil influx.  The data 

showed that in the primary infection site (heart) the bacterial burden decreased if the 

bacteria lacked the ability to produce GelE.  Corresponding to this data was the 

observation that the matrix layers of the vegetations of rabbits infected with GelE 

producing strains had significantly less heterophil density than the matrix layers from 

GelE
-
 infected rabbits.  Surprisingly, all rabbits had similar bacterial burdens in the 

kidney regardless of which strain they were infected with.  However, there was 

significant difference in the amount of heterophil infiltrate around the emboli.  Rabbits 

infected with the double protease mutant strain had significantly higher levels of 

heterophil infiltrate compared to rabbits infected with any of the other three strains.  

Interestingly, rabbits infected with the GelE
-
 strain had significantly higher heterophil 

influx than did the rabbits infected with either of the GelE producing strains.  This would 

indicate that early in infection, the activity of SprE may be enough to suppress the initial 

levels of C5a signaling.  However, as infection progresses the amount of C5a generated 

during the continual activation of the complement cascade may eventually overwhelm the 

limited proteolytic activity of SprE. This is evident in the heart where the effect of SprE 

by itself was null in terms of limiting heterophil influx.  Regardless of the effect of SprE, 

it was evident that GelE contributed significantly to pathology presumably through the 

degradation of C5a as well as other immune effectors it is known to target.   

Future Directions  

The data in Chapter 4 shows a novel mechanism the contribution of GelE to 

pathogensis through the degradation of C5a, and also indicates a limited role for SprE in 

immune evasion.  The data in Chapters 2 and 3 provide insight into the relevance of 

capsule production, and how the production of capsule contributes to host innate immune 

evasion.  Even though discovery of these novel mechanisms is relevant, there is much 

more to understand about the interaction of the microbe and the host.  The studies in 

Chapter 4 show one mechanism of GelE in pathogenesis and it is well known that GelE 

also contributes to biofilm formation, especially on artificial surfaces (14, 43).  The 
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subject that requires more study is the contribution of GelE to biofilm formation in-vivo.  

The size of the vegetations in the hearts of the rabbits infected with GelE producing and 

GelE mutant strains did not differ, which would indicate that GelE may not be directly 

involved with biofilm formation on heart valves.  Because of the complex nature of 

endocarditis, the relative conditions of factors known to contribute to in-vitro biofilms 

may not extend to this disease model.  Enterococci are one of the leading causes of 

urinary tract infections.  Urinary tract infections (UTI) are thought to be caused by 

bacterial biofilm formation in the catheter which then serves as point of dissemination for 

the microbes.  Enterococci are also known to form biofilms on in-dwelling medical 

devices and on artificial heart valves.  However, the contribution of GelE to biofilm 

formation in these conditions has yet to be elucidated.  

The work presented here explored the effects of capsular polysaccharide on 

resistance to opsonophagocytosis and cytokine production.  From a bacterial standpoint, 

the mechanisms of capsule for immune evasion are quite simple: limit the detection of 

opsonins and mask the detection of surface PAMPs.  However, enterococci exist 

primarily as gut commensals and are only seen as pathogens when the natural balance of 

the host has been disrupted.  Disruption in this case could be trauma which temporarily 

weakens host defenses, or treatment with antibiotics which kill other gut commensals, 

thereby allowing enterococci to outgrow their natural niche.  In some cases it seems to be 

a combination of these events that leads to enterococci becoming pathogens.  Regardless 

of the conditions required for enterococci to be pathogens, one question remains: why do 

normally non-pathogenic microbes such as enterococci produce a capsular 

polysaccharide?  The production of a capsule by a commensal organism would not seem 

to be beneficial from an evolutionary standpoint.  There should be no selective pressure 

for keeping a genetic locus that leads to the production of an energy demanding surface 

polymer which only seems to aid the bacteria during a pathogenic lifestyle.  The answer 

to this question may have been revealed during the study of other gut commensals.  The 

capsular polysaccharides produced by other organisms of gut origin trigger an anti-

inflammatory response by the residential host cells (23).  In this scenario the presence of 

capsule is not beneficial in terms of pathogenesis, but exists to provide an advantage for a 

commensal lifestyle.  The capsule of E. faecalis could be providing this same advantage.  
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As previously stated, prior treatment with various types of antibiotics can result in the 

explosion of enterococcal populations in the gut which predisposes patients to infection.  

It is also known that encapsulated strains of E. faecalis contain higher levels of antibiotic 

resistance and are more pathogenic (24). The presence of a capsule may provide a 

selective advantage that allows the serotype C and D strains to outcompete un-

encapsulated counterparts in a gut environment that is devoid of other competition.  This 

could be tested in a competition animal model in which the animals are treated with high 

levels of antibiotics and are subsequently inoculated with equal numbers of encapsulated 

and un-encapsulated E. faecalis strains.    

Along with possible contributions of capsule to commensalism, capsule is almost 

certainly playing a role in pathogenesis.  Some of the work presented here indicates this.                

Nevertheless, studies exploring the full effect of encapsulation on the host response have 

barely scratched the surface.  As described earlier, the production of capsule by other gut 

microbes can have an anti-inflammatory effect.  Furthermore, the presence of capsule on 

Streptococcus suis inhibits pro-inflammatory cytokine production, and alters cytokine 

production in a MyD88 independent manner suggesting that the encapsulated strains are 

no longer recognized by TLR-2 (11, 34).  This study has shown that the presence of E. 

faecalis capsule decreases the amount of TNF-α produced by macrophages, but the effect 

on the production of other cytokines is not known.  A comprehensive analysis of pro- and 

anti-inflammatory cytokine production in response to un-encapsulated and encapsulated 

strains of E. faecalis has never been done, but could provide many relevant insights into 

the contribution of capsule to pathogenesis.  Additional studies on the effect of capsule in 

in-vivo models (including bacterial burdens, cytokine production, and immune cell 

recruitment) should also be investigated to provide more comprehensive view into the 

world of host pathogen interactions. 

 Determining the mechanisms employed by bacteria to establish infection 

and subvert the host innate immune response is critical for developing new therapeutics.  

However, this is only the first step in a long process of developing novel treatments.  The 

high level of antibiotic resistance in enterococci is well documented and illustrates the 

need for development of new treatment strategies.  One relatively novel approach for 

treating multi-drug resistant bacteria is the development of humanized monoclonal 
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antibodies.  Antibody based serum therapies have been around since the 1890s but were 

abandoned due to the discovery of antibiotics (6).  Today, serum based therapies have too 

many negative drawbacks to be considered a safe alternative to traditional therapeutics.  

However, the ability to produce fully humanized monoclonal antibodies in mice has 

brought back the idea of highly specific immuno-therapies for treating bacterial 

infections.  Several clinical trials have been conducted for such therapies in treating 

multi-resistant Staphylococcus aureus strains, yet most of these trials have failed.  The 

natural antibody response to a pathogen consists of multiple antibodies targeting multiple 

antigens produced by the microbe (polyclonal), but the antibodies in these studies 

targeted one highly specific antigen (3).  As reviewed in chapter 1, it is obvious that 

even a relative weak pathogen such as E. faecalis produces several factors that contribute 

to pathogenesis.  It has now become clear that multiple monoclonal antibodies targeting 

several antigens may be more relevant.  

The number of virulence factors produced by E. faecalis is relatively modest 

when compared to other pathogens like S. aureus.  If nothing else, E. faecalis could serve 

as a microbial model organism for determining proof of principle for the development of 

humanized immuno-therapies targeting several antigenic determinants.  Several virulence 

factors expressed by E. faecalis contribute to adhesion which leads to the development of 

biofilms.  Bacteria in biofilms are not only more resistant to antibiotics, but are 

impervious to penetration by antibodies.  Again, most enterococcal infections are 

acquired in a clinical setting, such as surgical site infections, endocarditis due to valve 

replacement, and UTIs due to catheterization, which could be prevented by inhibiting the 

bacteria from establishing infection.  This could be done in a prophylactic manner by 

treating patients with antibodies targeting the adhesion proteins Esp and Ace prior to 

these invasive procedures.    

 Most healthy humans have circulating antibodies that efficiently opsonize 

E. faecalis  (2, 18). However, these antibodies are only known to target un-encapsulated 

E. faecalis strains and are not effective in clearing capsule producing strains (18).  

Targeting of surface antigens with antibodies directed towards capsule could allow for 

clearance of encapsulated strains.  Indeed, preliminary evidence from unpublished data 

(L. R. Thurlow) shows that polyclonal antibodies produced to encapsulated strains of E. 
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faecalis dramatically increases the rate of opsonophagocytosis in a macrophage assay.  

Additionally, this work and the work of others has shown that GelE makes significant 

contributions to pathogenesis and biofilm formation.  The production of highly specific 

polyclonal antibodies targeting GelE has provided some interesting preliminary data.  

The antibodies are able to inhibit GelE activity in-vitro and the incubation of antibodies 

with E. faecalis inhibits biofilm formation on the surface of plastic plates (data not 

shown).  These preliminary results should be studied in greater detail to determine the 

potential of these antibodies as prospective therapeutics.  Furthermore, these and other 

antibodies targeting E. faecalis virulence factors should be tested for both the 

prophylactic and therapeutic potential in animal models of infection.  Hopefully, the 

continuation of the work presented here will lead to the discovery of important aspects of 

host pathogen interactions, and potentially to the development of novel therapeutics for 

preventing and treating E. faecalis infections.   
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