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ABSTRACT 
 

RNA interference (RNAi) is a natural gene-silencing phenomenon triggered by 

dsRNA (dsRNA).  While RNAi is an endogenous process that plays essential roles in 

regulating gene expression it can also be harnessed as a tool for the study of gene 

function.  Introducing dsRNA that is homologous to target mRNA into a cell triggers the 

RNAi response causing the destruction of the homologous mRNA and a loss of function 

phenotype.  In some organisms, such as the nematode Caenorhabditis elegans, once 

dsRNA is introduced into the body cavity, the RNAi effect is seen throughout the 

organism because the dsRNA is taken up by individual cells and is then spread from cell 

to cell.  This process has been termed the systemic RNAi response.  For other organisms, 

such as the fruit fly Drosophila melanogaster, introduction of dsRNA into the body 

cavity does not result in a systemic RNAi response.  This may be due to the cell’s 

inability to take up dsRNA or spread that dsRNA from cell to cell.  For other organisms, 

including mammals, introduction of dsRNA into the body cavity does not result in a 

systemic RNAi response because the immune response causes dsRNA destruction before 

it can be utilized in the RNAi pathway.  For organisms that do not exhibit a systemic 

RNAi response, complex genetic methods are needed to introduce dsRNA into cells to 

induce the RNAi response.  Therefore, one of the challenges in utilizing RNAi as a 

genetic tool is introducing the dsRNA into individual cells.  

In recent years, systemic RNAi responses have been documented in both model 

and non-model organisms, making RNAi an accessible genetic tool.  The red flour beetle, 

Tribolium castaneum is an emerging model organism that has a robust systemic RNAi 

response.  However, the mechanism of systemic RNAi and the specific parameters 



required to obtain a strong systemic RNAi response in this organism have not been 

thoroughly investigated.  The aim of this work is to provide data that can allow RNAi to 

be better utilized as a genetic tool in Tribolium and to use this information as a basis for 

the use of RNAi in other insects in which it can be performed.  Specifically we provide 

data on the essential parameters necessary to achieve an effective systemic response in 

Tribolium, we describe differences in the systemic RNAi response between Drosophila 

and Tribolium, we analyze the conservation and function of RNAi machinery genes in 

Tribolium and we provide information on the genes critical for a systemic RNAi response 

in Tribolium. 
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to cell.  This process has been termed the systemic RNAi response.  For other organisms, 

such as the fruit fly Drosophila melanogaster, introduction of dsRNA into the body 

cavity does not result in a systemic RNAi response.  This may be due to the cell’s 

inability to take up dsRNA or spread that dsRNA from cell to cell.  For other organisms, 

including mammals, introduction of dsRNA into the body cavity does not result in a 

systemic RNAi response because the immune response causes dsRNA destruction before 
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RNAi response, complex genetic methods are needed to introduce dsRNA into cells to 

induce the RNAi response.  Therefore, one of the challenges in utilizing RNAi as a 

genetic tool is introducing the dsRNA into individual cells.  

In recent years, systemic RNAi responses have been documented in both model 

and non-model organisms, making RNAi an accessible genetic tool.  The red flour beetle, 

Tribolium castaneum is an emerging model organism that has a robust systemic RNAi 

response.  However, the mechanism of systemic RNAi and the specific parameters 



required to obtain a strong systemic RNAi response in this organism have not been 

thoroughly investigated.  The aim of this work is to provide data that can allow RNAi to 

be better utilized as a genetic tool in Tribolium and to use this information as a basis for 

the use of RNAi in other insects in which it can be performed.  Specifically we provide 

data on the essential parameters necessary to achieve an effective systemic response in 

Tribolium, we describe differences in the systemic RNAi response between Drosophila 

and Tribolium, we analyze the conservation and function of RNAi machinery genes in 

Tribolium and we provide information on the genes critical for a systemic RNAi response 

in Tribolium. 
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Introduction 

RNAi 

The RNA interference (RNAi) phenomenon, in which dsRNA induces gene silencing, 

was first documented in 1990 when it was discovered that the introduction of a chalcone 

synthase (CHS) transgene into petunia plants resulted in silencing (cosupression) of the 

endogenous CHS gene (Napoli et al. 1990).  Soon after documentation of this “cosupression” 

phenomenon, it was discovered that homologous RNA sequences could also silence gene 

function in the fungus Neurospora crassa by a process described as “quelling” (Romano and 

Macino 1992).  Several years later, mRNA silencing by sense and antisense RNA was described 

in the animal model, Caenorhabditis elegans (Guo and Kemphues 1995).  While all of these 

processes resulted in gene silencing, their mechanism was unknown and therefore they were not 

recognized as related processes until 1998 when Fire and Mello described double-stranded RNA 

(dsRNA) as the trigger for RNAi (Fire et al. 1998) (reviewed in Sen and Blau 2006).   

Since the identification of dsRNA as the silencing trigger, a decade of work has resulted 

in elucidation of the molecular mechanism of the “classic” RNAi pathway (Fig 1A).  This 

pathway is composed of two phases, the initiator phase and the effector phase, which together 

result in post-transcriptional gene silencing (PTGS) (reviewed in Hammond 2005).  The initiator 

phase begins when the dsRNA trigger is bound, with the help of a dsRBM protein, by the type III 

endonuclease, Dicer.  Dicer then mediates the cleavage of dsRNA into short interfering RNAs 

(siRNAs) approximately 21bp in length (Bernstein et al. 2001; Knight and Bass 2001; Carmell 

and Hannon 2004).  The effector phase of the pathway begins when the siRNAs are incorporated 

into the multiprotein RNA-induced silencing complex (RISC) (Hammond et al. 2000; Filipowicz 

2005).  For this to occur, the unincorporated (passenger) strand must be cleaved from the siRNA 
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duplex by the RNase H activity of an Argonaute (Ago) protein (Matranga et al. 2005; Rand et al. 

2005).  If the incorporated strand is the antisense strand, then it guides RISC to its homologous 

target mRNA where the “slicer” activity of the Ago protein causes nucleolytic destruction of the 

target mRNA (Tabara et al. 1999; Fagard et al. 2000; Hammond et al. 2001; Song et al. 2004).     

 In addition to the “classic” mechanism described above, RNAi components have also 

been shown to play a role in two other processes; (1) post-transcriptional silencing (PTGS) 

through the action of microRNAs (miRNAs) (Fig 1B) (reviewed in Ouellet et al. 2006; Niwa and 

Slack 2007) and (2) transcriptional gene silencing (TGS) by chromatin modification (Fig 1C) 

(reviewed in Lippman and Martienssen 2004).  Regardless of whether PTGS or TGS is the 

mechanism of action, gene silencing by the RNAi pathway involves the production of small 

RNAs and utilizes Ago family members.  However, many differences between these RNAi 

pathways also exist.  Generally, the miRNA pathway results in gene silencing through a PTGS 

mechanism in the cytoplasm, in which target mRNAs are either translationally repressed or 

degraded (reviewed in Ouellet et al. 2006; Niwa and Slack 2007).  The miRNA pathway begins 

when miRNA precursors are transcribed from a class of non-coding genes.  These precursors are 

primary transcripts that form imperfect dsRNA hairpin structures  (pri-miRNA).  pri-miRNAs 

are processed by the RNase-III-type endonuclease Drosha into pre-miRNAs (Lee et al. 2002b; 

Lee et al. 2003) that are then exported to the cytoplasm via the nuclear export receptor, Exportin-

5 (Yi et al. 2003; Bohnsack et al. 2004; Lund et al. 2004).  Once in the cytoplasm, pre-miRNAs 

are further processed by Dicer to produce mature miRNAs (Hutvagner et al. 2001; Lee et al. 

2004).  Mature miRNAs are incorporated into miRNA-containing effector complexes (miRNPs) 

that contain a member of the Ago family (Mourelatos et al. 2002).  This complex then binds the 

3’ UTR of target transcripts resulting in either translational repression (Olsen and Ambros 1999; 
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Seggerson et al. 2002) or mRNA cleavage and degradation (Yekta et al. 2004; Lim et al. 2005) 

(reviewed in Ouellet et al. 2006; Niwa and Slack 2007).  In contrast, TGS can occur by the 

production of endo-siRNAs or repeat-associated short interfering RNAs (rasiRNAs) (Aravin et 

al. 2003) later renamed as PIWI-interacting RNAs (piRNA) (reviewed in Meister and Tuschl 

2004; Ghildiyal and Zamore 2009).  These small RNAs once bound by members of the Ago 

family are responsible for chromatin modification in the nucleus, which results in gene silencing 

(reviewed in Meister and Tuschl 2004; Ghildiyal and Zamore 2009). 

 The study of RNAi has resulted in the elucidation of a highly conserved, complex method 

of endogenous gene regulation that is mediated through a variety of RNA-based products 

(siRNAs, miRNAs, or piRNAs).  As these studies progress, the vast importance of this pathway 

is further revealed.  The RNAi pathway is an essential mechanism of protection against viral 

infections (Waterhouse et al. 2001; Wang et al. 2006) and random insertion of transposable 

elements (Meister and Tuschl 2004).  RNAi is also likely to have major implications in the 

biological role of heterochromatin and genome maintenance (Lippman and Martienssen 2004).  

Finally, miRNAs play important roles in development and basic cellular processes, influencing 

the expression of an estimated 30 percent of all protein coding genes (Ouellet et al. 2006).  

RNAi as a tool  

While RNAi plays an essential role in endogenous gene expression, it has also been 

harnessed in many model systems as a powerful tool to obtain loss of function phenotypes.  

Developmental biology, cellular biology, evolutionary biology and functional genomics have all 

been dramatically impacted by the ability to quickly examine gene function.  In addition to the 

benefit of using RNAi as a tool for defining the roles of genes in biological processes, there are 

also many other applications for RNAi including medical therapy for viral infection (Shankar et 
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al. 2005) or genetic diseases (Shankar et al. 2005), pest management (Baum et al. 2007; Mao et 

al. 2007) and agricultural manipulation (Siritunga and Sayre 2003; Gavilano et al. 2006; Le et al. 

2006).  The potential for RNAi as a theraputic tool in the medical field is staggering.  RNAi has 

been used successfully to inhibit viral replication of rotavirus, respiratory syncytial virus, 

influenza virus, poliovirus, West Nile virus, dengue virus, foot and mouth disease virus, human 

papillomavirus, herpes simplex virus, hepatitis B virus, hepatitis C virus, hepatitis delta virus, 

coronavirus, JC virus, and human immunodeficiency virus (Shankar et al. 2005).  RNAi may 

also be useful as a theraputic tool for cancer, since dsRNAs designed against oncogenes inhibit 

the growth and survival of tumor cells (Shankar et al. 2005).  Finally, RNAi shows great promise 

for treating dominantly-inherited neurodegenerative diseases such as Alzheimer’s, Huntington’s 

and spinocerebellar ataxia.  Clinical trials for RNAi-based treatment of macular degeneration, 

which is caused by protein overexpression, have already begun (Shankar et al. 2005).  In the 

agricultural arena, the expression of dsRNA in plants may be used to control pests by targeting 

essential insect genes (Baum et al. 2007; Mao et al. 2007) and may also be used to reduce 

naturally occurring plant toxins (Siritunga and Sayre 2003), allergens (Le et al. 2006) or 

carcinogenic compounds (Gavilano et al. 2006), making plants more agriculturally desirable.   

While the use of RNAi in biomedical, biotech and basic biological research holds great 

promise, for some organisms there is a common challenge when using RNAi as a tool.  dsRNA 

must be inside the cell to initiate the RNAi response.  Therefore, the delivery of dsRNA into 

individual cells of a multicellular organism can be problematic.  To circumvent this problem 

several delivery strategies have been developed.  First, virus-mediated methods have been used 

to deliver dsRNA hairpin constructs into individual cells (Brummelkamp et al. 2002b; Qin et al. 

2003; Rubinson et al. 2003; Stewart et al. 2003; Uhlirova et al. 2003).  Second, siRNAs have 
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been chemically modified to allow cellular uptake (Henry et al. 2006; Li and Huang 2006; Mook 

et al. 2007).  Third, transgenic approaches have been developed to express long dsRNA hairpins 

or short-hairpin dsRNAs within individual cells (Fortier and Belote 2000; Kennerdell and 

Carthew 2000; Tavernarakis et al. 2000; Piccin et al. 2001; Svoboda et al. 2001; Brummelkamp 

et al. 2002a; Lee et al. 2002a; McManus et al. 2002; Miyagishi and Taira 2002; Paddison et al. 

2002a; Paddison et al. 2002b; Paul et al. 2002; Sui et al. 2002; Yu et al. 2002; Kawasaki and 

Taira 2003).  In advanced model systems such as Drosophila melanogaster this type of approach 

has even led to the production of genome-libraries of RNAi transgenes (Dietzl et al. 2007).  

Finally, for some organisms it is possible to deliver dsRNA directly by injecting dsRNA into 

embryos at the one cell stage before cell membranes form (Kennerdell and Carthew 1998; Brown 

et al. 1999).  While all of these methods have been successful, they all have certain 

disadvantages.  Viral-mediated methods of dsRNA delivery and chemically modified siRNAs do 

not provide continuous expression, so silencing is only transient. Transgenic approaches allow 

for continuous expression (and therefore sustained silencing), but have only been developed for 

the most advanced model organisms.  Egg injections can only be performed in organisms where 

the egg develops outside the mother’s body.  These injections result in gene silencing very early 

in development making the study of pleiotropic gene function difficult.  And finally, egg 

injection is a difficult, laborious process in which few individuals survive. 

Systemic RNAi   

Fortunately, in some genetic model organisms the application of RNAi as a tool is less 

problematic, because the cells have the ability to take up dsRNA from the extracellular 

environment (and in some cases spread the dsRNA to neighboring cells) (Palauqui et al. 1997; 

Voinnet and Baulcombe 1997; Fire et al. 1998).  This process is called systemic RNAi.  This 
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term was coined when it was discovered that, in C. elegans, the RNAi effect could be seen 

throughout the organism regardless of the site of dsRNA injection (Fire et al. 1998).  Later, it 

was discovered that a systemic RNAi response could also be triggered when C. elegans were 

soaked in a solution of dsRNA (Tabara et al. 1998) or fed transgenic Escherichia coli expressing 

dsRNA (Timmons and Fire 1998).   

In C. elegans, several genes have been identified that play a role in dsRNA uptake and 

subsequent spreading, although the most important appears to be the gene encoding a 

transmembrane protein called SID-1 (Winston et al. 2002).  SID-1 is essential for uptake of 

dsRNA into somatic and germline cells (Winston et al. 2002).  It is believed to act as a passive 

dsRNA channel that shows a preference for long dsRNA molecules (Hunter et al. 2006).  Other 

genes have also been identified as critical for dsRNA uptake in C. elegans.  sid-2 is essential for 

dsRNA uptake from the gut but does not appear to play a role in dsRNA spreading beyond the 

gut (Winston et al. 2007).  The presence of sid-2 may be essential for allowing the environmental 

introduction of dsRNA in Caenorhabditis, as other Caenorhabditis species lack a sid-2 homolog 

and are unable to respond to environementally provided dsRNA.  Additionally, overexpression 

of C. elegans sid-2 in C. briggsae and C. remanei allows them to become susceptible to 

externally provided dsRNA (Winston et al. 2007; Felix 2008).  Additional genes, rsd-2, rsd-3 

and rsd-6 are all essential for the uptake of dsRNA into germline but not somatic cells in C. 

elegans (Tijsterman et al. 2004).   

Systemic RNAi has also been documented in plants, which exhibit both cellular uptake 

and spreading.  However, the mechanisms used in plants (short-range transmission of siRNAs 

through plamodesmata and longer-range transport of longer dsRNA by the phloem vasculature 

(Himber et al. 2003)) appear to be quite different from those identified in C. elegans.   
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Besides C. elegans and plants, systemic RNAi has been documented in other organisms, 

including other nematodes (Felix 2008), flatworms (Sanchez Alvarado and Newmark 1999), 

crustaceans (Robalino et al. 2005), chelicerates (Aljamali et al. 2003; Narasimhan et al. 2004; 

Soares et al. 2005; Akiyama-Oda and Oda 2006) and insects (Bucher et al. 2002; Tomoyasu and 

Denell 2004), although the mechanism is unknown.  Unfortunately, this lack of data has often led 

to unsubstantiated assumptions that all animals with a systemic RNAi response use the 

mechanism described in C. elegans.  While the mechanism of systemic RNAi in other organisms 

is not known, it is clear that the systemic RNAi response is not universal, as the leading insect 

model, Drosophila melanogaster, appears to be unable to mount a systemic RNAi response 

(Roignant et al. 2003). 

RNAi in insects 

 Insects provide powerful models for the study of gene function.  Many of them meet the 

criteria for a genetic model organism, including small body size, short generation time and large 

brood sizes.  Insects represent an extremely diverse group in regard to both morphology and life 

history traits, which makes them ideal models for comparative studies in the fields of physiology, 

evolutionary biology, developmental biology and population biology.  Additionally, knowledge 

of insect biology is crucial if we hope to solve the problems they cause as agricultural pests and 

vectors of disease. 

While Drosophila is one of the most powerful genetic models, it displays many highly 

diverged features and may not possess a particular trait of interest.  Therefore, there is a need to 

study other insect models.  The development of RNAi as a tool is vital to the study of emerging 

model insects as it provides a method to study gene function without the development of 

complex genetic tools.  Since its discovery, systemic RNAi has been reported in many insects 
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including the mosquitoes Anopheles gambiae (Blandin et al. 2002), Aedes aegypti (Zhu et al. 

2003) and Culex pipiens (Sim and Denlinger 2008), the moths Spodoptera litura (Rajagopal et 

al. 2002), Epiphyas postvittana (Turner et al. 2006), Manduca sexta (Eleftherianos et al. 2007), 

Hyalophora cecropia (Bettencourt et al. 2002), Bombyx mori (Tabunoki et al. 2004) and 

Helicoverpa armigera (Mao et al. 2007), the milkweed bug Oncopeltus fasciatus (Liu and 

Kaufman 2004), the triatomine bug Rhodnius prolixus (Araujo et al. 2006), the locust Locusta 

migratoria manilensis (He 2006; Wei 2007), the pea aphid Acyrthosiphon pisum (Mutti 2006), 

the honeybee Apis mellifera (Amdam et al. 2003), the jewel wasp Nasonia vitripennis (Lynch 

and Desplan 2006), the termite Reticulitermes flavipes (Zhou et al. 2006), the cockroaches 

Blattella germanica (Cruz et al. 2006) and Periplaneta americana (Marie et al. 2000), the cricket 

Gryllus bimaculatus (Meyering-Vos and Muller 2007), the flies Bemisia tabaci (Ghanim et al. 

2007), Sarcophaga peregrine (Nishikawa and Natori 2001), Glossina morsitans morsitans 

(Lehane et al. 2008; Walshe et al. 2008) and Lutzomyia longipalpis (Sant'Anna et al. 2008), and 

the beetles Harmonia axyridis (Niimi 2005), Protaetia brevitarsis (Kim et al. 2008), Diabrotica 

virgifera (Baum et al. 2007), Diabrotica undecimpunctaa howardii (Baum et al. 2007), 

Leptinotarsa decemlineata (Baum et al. 2007) and Tribolium castaneum (Bucher et al. 2002; 

Tomoyasu and Denell 2004) (Fig 2, STable 1).  

Among the winged insects approximately 30 species have been shown to exhibit a 

systemic RNAi response (STable 1).  These species cover a wide phylogenetic range, 

representing a wide variety of body morphologies and life history traits (Fig 2) suggesting 

possible conservation of the systemic RNAi response in insects.  While most RNAi studies in 

insects are performed by injection of dsRNA there is also limited published data on the 

effectiveness of feeding dsRNA.  Successful feeding has been documented in several insect 
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species from Dictyoptera to Endopterygota (Fig 2) suggesting that feeding may also be a possible 

mechanism of dsRNA delivery, which may provide a powerful insect pest control technique.  

While both dsRNA injection and feeding have been documented in a variety of insects, there is 

anecdotal evidence to suggest that in some insects systemic RNAi is at best inefficient.  

Interestingly, the orders for which difficulties with systemic RNAi is best known, Diptera and 

Lepidoptera, cluster together (Fig 2), suggesting a possible loss of the mechanism of dsRNA 

uptake.  However, these orders are also two of the best-studied orders.  Therefore, it is possible 

that these problems are not unique to this particular clade but instead represent independent 

losses in the insect phylogenetic tree that may be speckled with many more species unable to 

mount a systemic RNAi response.  More comprehensive study is necessary before evolutionary 

conservation of the systemic RNAi response can be inferred.   

While RNAi at multicellular stages has been successful in many insects suggesting a 

conserved systemic RNAi repsponse, studies have been limited with regard to the number of 

species examined, the number of genes studied, the variety of tissues affected and the life stages 

susceptible to RNAi (STable 1).  Thus, the full utility and conservation of the systemic RNAi 

response in these insects is unknown.  Furthermore, assumptions about the parameters necessary 

to achieve an effective RNAi response and the mechanism by which the systemic RNAi response 

occurs are based on the few organisms in which systemic RNAi has been studied (none of which 

are insects).  Therefore, if we hope to effectively use RNAi as a tool for the study of gene 

function in non-model insects then the systemic RNAi process needs to be thoroughly studied in 

insects.  Since Tribolium mounts an extremely robust systemic RNAi response and since it is an 

established insect model, we have used Tribolium as a model to study systemic RNAi in insects.  

In the following chapters I will provide data on the essential parameters necessary to achieve an 
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effective systemic RNAi response in Tribolium, describe differences in the systemic RNAi 

response between Drosophila and Tribolium, analyze the conservation and function of the RNAi 

machinery genes in Tribolium and provide data on the genes essential for the systemic RNAi 

response in Tribolium.  
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Supplemental Table 1:  Systemic RNAi in insects 

Species Common Name Method Stage Type Known Suseptible Tissue Reference #

Anopheles gambiae mosquitio injection adults dsRNA fat bodies, midgut, hemocytes, salivary glands 6, 7, 10, 40

Aedes aegypti dengue mosquitio injection adults dsRNA fat bodies, midgut 19, 44

Culex pipiens northern house mosquitio injection adults dsRNA ovaries 36

Spodoptera litura armyworm injection 5th instar larvae dsRNA midgut, germ cells 33

Epiphyas postvittana light brown apple moth feeding 3rd instar larvae dsRNA gut, antennae 39

Manduca sexta tobacco hornworm injection 5th instar larvae dsRNA hemocytes 13

Hyalophora cecropia giant silkmoth injection pupae dsRNA germ cells 5

Bombyx mori * silkworm injection pupae, 5th instar larvae dsRNA CCAP neurons, pheromone-producing cells, silk gland 37

Helicoverpa armigera cotton bollworm feeding 3rd instar larvae dsRNA midgut 24

Oncopeltus fasciatus milk weed bug injection adults dsRNA germ cells 22

Rhodnius prolixus triatomine bug injection, feeding 2nd & 4th instar nymphs dsRNA salivary glands 3

Locusta migratoria oriental migratory locust injection adults, 5th instar larvae dsRNA oocytes, epidermis 17, 42

Acyrthosiphon pisum pea aphid injection adults, 3rd instar larvae siRNA , dsRNA salivary glands, gut 18, 28

Apis mellifera Honeybee injection, feeding workers dsRNA fat bodies, brain, antennal lobe 2, 14, 32

Nasonia vitripennis jewel wasp injection pupae, adults dsRNA germ cells, rectal vesicle 1, 23

Reticulitermes flavipes eastern subterranean termite injection, feeding workers siRNA fat bodies, hemolymph 43

Blatella germanica German cockroach injection last instar nymphs dsRNA prothoracic gland, epidermis, fat bodies 9

Periplaneta americana American cockroach injection 1st instar dsRNA hemocytes, sensory neurons, epidermis 25

Gryllus bimaculatus                 field cricket injection, feeding adults, last instar larvae, 3rd instar nymph dsRNA oocytes, midgut, leg tissue 26, 27, 29, 34

Bemisia tabaci whitefly injection adult dsRNA midgut, salivary glands, ovaries 15

Sarcophaga peregrina flesh fly injection 3rd instar larvae dsRNA hemocytes 31

Lutzomyia longipalpis sand fly injection adult dsRNA unknown 35

Glossina morsitans tsetse fly injection, feeding adult dsRNA fat bodies ( only succesful with injection), midgut 21, 41

Drosophila melanogaster * fruitfly injection adults dsRNA CNS, midgut, body 11, 12, 16

Harmonia axyridis Asian lady beetle injection last instar larvae dsRNA appendages 30

Protaetia brevitarsis white-spotted flower chafer injection larvae dsRNA fat body and hemolymph 20

Diabrotica virgifera western corn rootworm feeding larvae dsRNA unknown! 4

Diabrotica undecimpunctata southern corn rootworm feeding larvae dsRNA unknown! 4

Leptinotarsa decemlineata Colorado potato beetle feeding larvae dsdRNA unknown! 4

Tribolium  castaneum red flour beetle injection  larvae, pupae, adults dsRNA many including germ cells, ectoderm, midgut 8, 38

*A few papers have been published in which RNAi at post-embryonic stages have been successful.  However, most descriptions suggest that this insect does not have a reliable systemic RNAi response.
! Individual tissues were not tested however, injection of dsRNA for a variety of housekeeping genes caused mortality or larval stunting.
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Figure 1 

Mechanisms of RNAi.  (A) Depiction of the “classic” RNAi pathway in which post-

transcriptional gene silencing (PTGS) is mediated through the production of short interfering 

RNAs (siRNAs) and their association with the RNA- induced silencing complex (RISC) and 

their mRNA targets.  (B) Depiction of the miRNA pathway in which PTGS is mediated through 

the production of microRNAs (miRNAs) which cause mRNA cleavage or translational 

repression once they bind to the 3’UTR of their target. (C) Depiction of transcriptional gene 

silencing (TGS), which utilizes RNAi component proteins to produce repeat-associated short 

interfering RNAs (rasiRNAs)/PIWI-interacting RNAs (piRNAs) which are bound by Ago 

proteins and are then capable of directly binding DNA and preventing transcription.  
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Figure 2 

Phylogenetic tree of winged insects.  General tree depicting the relationship between insects 

capable of mounting a systemic RNAi response.  Red and blue text indicataes there have been 

published reports of a systemic RNAi response in species within these insect orders.  Red text 

indicates that there have also been reports of inefficient or unsuccessful attempts performing 

RNAi in species within these groups.  # species is the number of species for which there is 

published reports of successful post embryoninc RNAi.  + indicates that either siRNA use or 

dsRNA feeding has been successful.  – indicates that siRNAs have been tried and are 

unsuccessful.  For groups without a + or – dsRNA was introduced by injection.  ND means there 

is no published data on the subject.  For more detailed information on species, life stage, tissue 

susceptibility and references see Supplemental Table 1.  Please note that the relationships within 

the holometabolist insects (Endopterygota) are still under debate.  While the tree depicted here is 

the traditional view there is data to suggest that Hymenoptera is more basal than Coleoptera.  See 

(Savard et al. 2006) for more information.



 

 27



 

 28

 

Chapter I 

 
 
 
Parameters affecting the success of RNAi in the red 
flour beetle Tribolium castaneum 
 
 
Running head:  RNAi in Tribolium 
 
 
 
Sherry C. Miller, Susan J. Brown and Yoshinori Tomoyasu* 
Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS  66506 
 
 
Keywords:  RNAi, dsRNA, Tribolium castaneum (red flour beetle) 
 
 
 
*Corresponding author:  Yoshinori Tomoyasu**, Division of Biology, Kansas State University, 
Ackert Hall, Manhattan, KS  66506 
**Current contact information:  Department of Zoology, Miami University, 212 Pearson Hall, 
Oxford, OH  45056, Phone (513) 529-3162, email:  tomoyay@muohio.edu  
 
 
 
This chapter is being prepared for publication submission.     
 



 

 29

Abstract 
 

The phenomena of RNAi, in which introduction of dsRNA into a cell triggers the 

destruction of complementary mRNA resulting in a gene silencing effect, has been shown to be 

conserved across a wide array of plant and animal phyla.  However, the mechanism by which the 

dsRNA enters a cell allowing the RNAi effect to occur throughout a multicellular organism 

(systemic RNAi) has only been studied extensively in certain plants and the nematode 

Caenorhabditis elegans.  In recent years, RNAi has become a popular reverse genetic technique 

for gene silencing in both model and non-model systems, yet little has been done to analyze the 

parameters required to obtain a robust systemic RNAi response.  The data provided here 

illustrates that in Tribolium the concentration and length of dsRNA play a profound effect on the 

effectiveness of the RNAi response both in regard to initial efficiency and duration of the effect.  

Additionally, we demonstrate that competitive inhibition of dsRNA can occur when multiple 

dsRNAs are injected together, influencing the effectiveness of RNAi.  These data together 

provide specific information essential to the design and implementation of RNAi based studies in 

Tribolium and hopefully provokes thought about RNAi studies in other systems.       
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 Introduction 
 

RNA interference (RNAi) is a mechanism of gene silencing triggered by double-stranded 

RNA (dsRNA) (Fire et al. 1998).  dsRNA mediates translational repression through mRNA 

cleavage or mRNA antisense suppression and transcriptional repression through DNA 

modification (Lippman and Martienssen 2004; Mello and Conte 2004).  While the RNAi 

pathway is an endogenous pathway known to be involved in regulating eukaryotic gene 

expression, it has also been harnessed as a genetic tool to inhibit gene expression through mRNA 

cleavage.  This pathway is initiated by the RNaseIII nuclease Dicer, which cleaves dsRNA into 

21-23 bp fragments termed short interfering RNAs (siRNA) (Bernstein et al. 2001; Knight and 

Bass 2001; Carmell and Hannon 2004).  The siRNAs are then bound by a complex of proteins 

known as the RNA induced silencing complex (RISC) (Hammond et al. 2000; Filipowicz 2005).  

This complex binds mRNA complementary to the siRNA and through the action of the catalytic 

Argonaute protein causes mRNA cleavage (Tabara et al. 1999; Fagard et al. 2000; Hammond et 

al. 2001; Parker and Barford 2006).  The cleavage of mRNA reduces the amount of mRNA 

available for translation and thus mimics a loss of function mutation.  

The RNAi phenomenon has been described and used as a genetic tool in classical genetic 

model organisms for over a decade, and recently there has been a barrage of publications 

illustrating that RNAi is an effective tool in a many emerging model systems as well (Sanchez 

Alvarado and Newmark 1999; Hughes and Kaufman 2000; Blandin et al. 2002; Bucher et al. 

2002; Amdam et al. 2003; Zhu et al. 2003; Tomoyasu and Denell 2004; Boisson et al. 2006; 

Lynch and Desplan 2006; Zawadzki et al. 2006).  However, many studies in these emerging 

model systems are limited in scope, with most of the data illustrating an RNAi effect for a 

limited number of genes, in specific tissues, at particular life stages.  Because RNAi is a 
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relatively new tool and has limited uses in Drosophila (Miller et al. 2008), there have been few 

investigations into the  parameters required to make RNAi successful in insects.  Furthermore, 

use of RNAi in mammals is difficult due to the interferon response, which can be trigged by 

dsRNA and can result in cell death (Alexopoulou et al. 2001).  Therefore, the vast majority of 

data available for the proper design of RNAi experiments is from one animal model system, the 

nematode Caenorhabditis elegans.  The aim of this work is to provide information helpful for the 

experimental design of RNAi projects in Tribolium and other insect models.  Our results show 

that the size and concentration of dsRNA play an essential role in the effectiveness of the RNAi 

response, with longer dsRNA being more effective with respect to initial knockdown and 

duration of the RNAi effect.  We also find that when multiple dsRNAs are injected, competition 

between dsRNAs can occur resulting in a less effective RNAi response.  The study of these basic 

features of RNAi in Tribolium will not only aid in experimental design but will also provide 

insight into the molecular mechanism of the systemic RNAi response in the red flour beetle.   
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Materials and Methods 

Beetle strains 

  Two transgenic lines of beetles were used in these studies.  Pu ll beetles (Lorenzen et al. 

2003; Tomoyasu and Denell 2004) are an enhancer trap line in which EGFP is expressed in the 

nervous system of first instar larvae, in the wing discs of last instar larvae and in the eyes and 

wings of pupae.  AT11 is a transgenic line in which EGFP is driven by an ! tubulin promoter 

(Siebert et al. 2008).  In the AT11 line EGFP is expressed ubiquitiously at all life stages.   

dsRNA synthesis 

Template preparation for dsRNA synthesis of Ubx and DsRed was performed by PCR.  

The primer was designed against the pCR4-TOPO vector sequence flanking the insertion site, 

with a T7 promoter sequence at the 5’ end as described previously (Tomoyasu et al. 2008).  

Template preparation for longer EGFP dsRNA (520bp and 69bp) synthesis was performed by 

PCR using template gene specific forward and reverse primers with a T7 promoter sequence at 

their 5’ ends as described previously (Tomoyasu and Denell 2004).  For the shorter EGFP 

dsRNA fragments (30bp and 31bp) EGFP template was not used.  Instead overlapping primers 

corresponding to a small region of the EGFP coding region were designed with T7 promoter 

sequence at their 5’ ends (Table 1).  These overlapping primers were dimerized in a PCR 

reaction mix at 50C for 20 minutes.  This method was chosen to avoid the possibility of 

synthesizing longer dsRNA than intended due to primers binding to the template in a non-

specific manner.  dsRNA was synthesized using the MEGAscript T7 High Yield Transcript kit 

(Ambion).  Silencer GFP (eGFP) siRNA (21 bp) was purchased (Ambion). 

Injection 



 

 33

Larvae were injected as described previously (Tomoyasu and Denell 2004).  For each 

experimental condition 20-40 larvae were injected from one dsRNA preparation (see 

supplemental tables for exact numbers and survival rates).  dsRNA was injected at a 

concentration of 1ug/ul (~0.5ug/larva) unless otherwise stated.  Coinjection of the 8 fragments of 

30bp dsRNA was performed at a total concentration of 1ug/ul (therefore the concentration of 

each 30bp dsRNA was 0.125ug/ul).  Competition experiments sometimes involved two separate 

injections.  The second injection was performed 48 hours after the first injection.  Molar 

dilutions were determined by calculating the molecular weight of dsRNA.  For these calculations 

it was assumed that each of the nucleotide bases were equally represented (therefore 1,000 bp of 

dsRNA 0.73 ug = 1 pmol).  After injection, larvae were maintained on culture flour at 30C. 

Documentation 

For documentation Tribolium larvae were sifted from the flour and submerged in water, 

which causes the larvae to stop moving, and if they are removed from the water within several 

hours, is not lethal.  After documentation the larvae were removed from the water and dried 

briefly on a Kimwipe before being returned to the culture flour.  Larvae were monitored for 

EGFP expression 5 days after the initial injection.  Pupae were documented 12 days after the 

initial larval injection.  For the duration experiment, adults were documented weekly.  Larvae, 

pupae and adults were documented using an Olympus SZX12 microscope and a Nikon DXM 

1200F digital camera.  Identical exposure times were used for all the images in one experiment.    
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Results 

dsRNA size 

  For RNAi experiments, the length of dsRNA used varies widely depending on the model 

organism (generally ranging from 21 to 1,000 base pairs).  In plants both long dsRNAs and 

siRNAs are effective in eliciting an RNAi response, as both have been shown to spread, 

silencing both locally and systemically (Klahre et al. 2002).  In mammalian cell culture, long 

dsRNAs induce the interferon response resulting in cell death (Alexopoulou et al. 2001), but 

small dsRNAs are not recognized by the immune system and thus can be used to achieve gene 

knockdown (Elbashir et al. 2001).  Therefore, either short hairpin RNAs (shRNAs) are 

engineered and expressed within the cells (Brummelkamp et al. 2002; Paddison et al. 2002) or 

short interfering RNAs (siRNAs) are transfected into cells (Elbashir et al. 2001).  In Drosophila 

S2 cells, long dsRNAs are efficiently taken up by the cell itself (Clemens et al. 2000).  However 

siRNAs are not taken up in S2 cells without the aid of a transfection reagent (Saleh et al. 2006).  

In C. elegans, the animal model in which RNAi has been best studied, it is known that siRNAs 

are not efficiently transported from cell to cell (Tabara et al. 1999; Parrish et al. 2000; Grishok et 

al. 2001; Tijsterman et al. 2002).  Therefore, in order for an effective RNAi response to be 

achieved long dsRNAs are used (the minimum length for efficient RNAi in C. elegans is 

between 50 and 100bp) (Parrish et al. 2000).  In insects the size range of effective dsRNA has 

not been fully investigated.  Most reports of RNAi use long dsRNA, although there have been 

limited reports of successful siRNA use in insects (including the pea aphid and the termite) 

(Mutti 2006; Zhou et al. 2006). 

  To test the size requirements for dsRNA in Tribolium we injected long dsRNAs or 

siRNAs corresponding to EGFP into the Pu 11 transgenic line (Lorenzen et al. 2003; Tomoyasu 
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and Denell 2004), which expresses EGFP in the nervous system of first larval instars, in the wing 

discs at the last larval stage and in the eyes and wings at the pupal stage.  When long dsRNA 

(520bp) was injected into last instar larvae, efficient knockdown of EGFP was seen in 100% of 

individuals at both the larval and pupal stages (n=29) (Fig 1C, STable 1).  However, when an 

siRNA (21bp) (silencer RNA, Ambion) corresponding to EGFP was used, normal levels of 

EGFP expression were observed in every injected individual (n=28) (Fig 1E, STable 1), 

suggesting that the use of longer dsRNA is necessary to achieve efficient gene knockdown in 

Tribolium.   

To further define the size of dsRNA necessary to achieve efficient EGFP knockdown, we 

synthesized an intermediate size dsRNA (69bp) and a short dsRNA (31bp).  Our results indicate 

that the 69bp fragment was efficient in knocking down EGFP in all individuals (n=8) (Fig 1D, 

STable 1) while the 31bp fragment was not (n=20) (Fig 1F, STable 1).  The results of the siRNA 

and 31bp dsRNA injections suggest that short dsRNAs are not effective for gene knockdown in 

Tribolium.  However, it is known that not all siRNAs are equally efficient (Holen et al. 2002; 

Kurreck 2006) therefore it may be the specific sequence rather than the size that is ineffective. 

Alternatively, short dsRNAs may not be recognized by the dsRNA cellular uptake machinery 

and are therefore not readily incorporated into the cell.   

To determine whether the lack of sequence variety was causing the short dsRNAs to be 

ineffective, we increased the sequence variety by synthesizing a second 31bp dsRNA and 

coinjecting the two 31bp dsRNA fragments.  Together, the two 31bp dsRNAs cover almost the 

entire region of EGFP targeted by the effective 69bp fragment (Fig 1A).  However, these two 

fragments were also incapable of knocking down EGFP expression, as EGFP expression was still 

seen in 100% of individuals (n=19) (Fig 1G, STable 1).  To further increase the sequence variety, 
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we synthesized eight overlapping ~30bp dsRNAs spanning 100bp of the EGFP coding region 

(Fig 1A).  In this way, we were able to drastically increase the sequence variety without 

increasing the size of the dsRNA.  When these eight ~30bp dsRNA fragments were injected into 

Tribolium larvae (n=21) they were still unable to knock down EGFP (Fig 1H, STable 1), 

suggesting that it is not the lack of sequence variety that is causing the ineffectiveness.  To 

determine whether the ineffective RNAi response was due to inefficient uptake by the cells we 

injected the eight ~30bp fragments into Tribolium embryos at the syncytial blastoderm stage.  At 

this stage of embryogenesis cell membranes have not yet formed around the multiple nuclei and 

therefore the dsRNA is being injected directly into a cell.  After the larvae hatched from the eggs 

they were monitored for EGFP expression in the nervous system.  We found that the eight ~30bp 

fragments were capable of knocking down EGFP expression when injected directly into the egg, 

as 89% of the hatached larvae showed no EGFP expression (n=16) (Fig 1I, STable 1).  These 

data support the hypothesis that small dsRNAs, are ineffective at multicellular stages in 

Tribolium because they are unable to be taken up by the cells.      

dsRNA concentration 

  We also wanted to determine what concentrations of dsRNA are effective in Tribolium. 

We performed a serial dilution (from 1ug/ul) of EGFP dsRNA (520bp) and injected the dsRNA 

into Pu 11 larvae (Fig 2A).  We saw a complete absence of EGFP expression in all injected 

individuals at concentrations as low as 0.001ug/ul (1,000 fold dilution) (Fig 2A1, A2, STable 2).  

At a concentration of 0.0001ug/ul (10,000 fold dilution) EGFP expression was reduced (Fig 2A3, 

STable 2) and at a concentration of 0.00001ug/ul (100,000 fold dilution) EGFP expression 

appeared comparable to wildtype levels (Fig 2A4, STable 2).   
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Next we asked whether the size of dsRNA injected influences the effectiveness of EGFP 

knockdown at low concentrations.  We performed a serial dilution (from 1ug/ul) of EGFP 

dsRNA (69bp) (Fig 2B), as this was the smallest size of dsRNA we tested that worked efficiently 

at a higher concentration.  As seen with the 520bp dsRNA the 69bp dsRNA resulted in complete 

absence of EGFP expression in most individuals at concentration as low as 0.001ug/ul (1,000 

fold dilution) (Fig 2B1, B2, STable 2).  However, by 0.0001ug/ul the EGFP expression appeared 

comparable to normal levels in 100% of individuals (10,000 fold dilution) (Fig 2B3, STable 2).  

This suggests that the 69bp dsRNA may be slightly less effective than the longer 520bp 

fragment, although finer scale dilutions need to be performed to determine when the 69bp 

fragment begins to lose effectiveness. 

The dilutions described above were all calculated based on dsRNA weight. Longer 

dsRNA weighs more per molecule than shorter dsRNA.  Therefore, when serial dilutions are 

based on weight the longer dsRNA dilutions will have fewer initial dsRNA molecules than the 

shorter dsRNA dilutions.  However, in the RNAi pathway the dsRNA is cleaved into siRNAs, 

which are the functional units that bind to target message.  One longer dsRNA molecule will 

give rise to more siRNAs than the shorter molecule of dsRNA.  Therefore, when calculations are 

based on weight, the initial number of dsRNA molecules will differ between the 520bp and 69bp 

dsRNA, but the final number of siRNAs should be approximately equivalent.   

We questioned whether it is the number of dsRNA molecules introduced or the number 

of siRNAs produced that determines the RNAi efficiency.  To address this question we 

performed a molar dilution series of the 520bp EGFP dsRNA (Fig 2C) such that the number of 

initial molecules in each dilution was equivalent to the 69 bp dsRNA dilution series described 

above (Fig 2B).  With this dilution series the number of 520bp and 69bp dsRNA molecules 
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injected was the same, but because the 520bp fragment is longer than the 69bp fragment there 

were more siRNAs produced in each of the 520bp dilutions.  We found that when a molar 

dilution of the 520bp dsRNA was performed there was no EGFP expression in any of the 

injected individuals at the 100 fold, 1,000 fold, or 10,000 fold dilutions (Fig 2C1-C3, STable 2).  

EGFP was not effectively reduced when the 520bp dsRNA was diluted 100,000 times (Fig 2C4, 

STable 2).  Since the 10,000 fold dilution of 69bp dsRNA was not (Fig 2B3) and the 10,000 fold 

dilution of 520bp dsRNA was (Fig 2C3) able to knock down EGFP, these data suggest that it is 

not the initial number of dsRNA molecules that determines RNAi efficiency but the number of 

siRNAs produced. 

The data above provide information about the concentration of dsRNA needed to achieve 

efficient knockdown of EGFP in Tribolium wing discs.  However, RNAi is not always effective 

in all tissue types.  In Drosophila it is known that RNAi is less effective in wing imaginal tissue 

(Kennerdell and Carthew 2000) and in C. elegans some nervous tissue is refractory to RNAi due 

to the expression of the nuclease Eri-1, which degrades the dsRNA (Kennedy et al. 2004).  We 

have previously shown that virtually all tissues in Tribolium larvae and pupae are susceptible to 

RNAi when dsRNA is used at a high concentration (Miller et al. 2008).  However, it is possible 

that not all tissues require the same amount of dsRNA.  To determine if any tissues in Tribolium 

require a higher level of dsRNA we performed a serial dilution of EGFP dsRNA (520bp) and 

injected them into transgenic beetles in which EGFP is driven by the ! tubulin promoter causing 

EGFP expression in all tissues (Siebert et al. 2008) (Fig 2D).  Our data suggest that all tissues in 

Tribolium larvae are similarly susceptible to RNAi, as EGFP expression was effectively reduced 

in all tissues at a concentration of 0.001ug/ul in most individuals (1,000 fold dilution) (Fig 2D1, 

D2, STable2).                     
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Duration of RNAi effect   

  The duration of the RNAi effect varies in organisms that exhibit a systemic RNAi 

response.  If dsRNA is not continually expressed within the cell, is not maintained by the cell, or 

is not continually provided to the organism through continued feeding, soaking, or multiple 

injections then the RNAi effect may wear off as the dsRNA is depleted (Parrish et al. 2000; Price 

and Gatehouse 2008).  However, in plants and C. elegans it is known that dsRNA provided to the 

cell can be amplified via the action of RNA dependent RNA polymerases (RdRPs) (Dalmay et 

al. 2000; Mourrain et al. 2000; Smardon et al. 2000; Sijen et al. 2001).  This amplification 

mechanism uses mRNA as template to synthesize more dsRNA, thereby increasing the amount 

of dsRNA available for the RNAi pathway.  For organisms that exhibit a prolonged RNAi effect 

it has been assumed that an amplification mechanism is needed (Price and Gatehouse 2008).  

However, available genome screens have been unable to identify RdRPs in most metazoans, 

including insects (Vienne et al. 2003; Tomoyasu et al. 2008).  Therefore, if an amplification 

method exists in Tribolium it is assumed to be via a different mechanism.  

  Regardless of whether an amplification method exists in Tribolium, the RNAi effect 

appears to be long-lived.  While this observation has been made anecdotally, duration has not 

been quantitatively studied.  Here we asked the following questions.  How long does the RNAi 

effect last in Tribolium adults?  Does either the concentration or size of the dsRNA influence the 

duration of the RNAi effect?  

To determine whether concentration influences RNAi duration we injected the 520bp 

dsRNA for EGFP at two different concentrations (0.01ug/ul and 1ug/ul) into Pu 11 larvae and 

monitored them weekly for the return of EGFP expression (Fig 3).  In Tribolium adults the wing 

EGFP expression is difficult to see so we monitored EGFP expression in the adult eye.  At the 
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lower concentration EGFP expression was first detected in some ommatidia of some individuals 

98 days after the injection (n=15) (Fig 3A, 3C, STable 3).  By day 175 all individuals were 

showing EGFP expression in some ommatidia (n=14) (Fig 3A, 3C, STable 3).  At the high 

concentration EGFP expression did not return in any individuals for the 175 days they were 

monitored (n=11) (Fig 3A, 3B, STable3).  These data suggest that in Tribolium dsRNA 

concentration does influence the duration of the RNAi effect, with higher concentrations of 

dsRNA being more effective.   

To determine whether the size of dsRNA influences the duration of the RNAi effect we 

compared individuals in which either the 69bp or the 520bp fragment were injected at a 

concentration of 0.01ug/ul (which should give rise to approximately the same number of 

siRNAs) (Fig 3).  As mentioned above when using the 520bp fragment of dsRNA at a 

concentration of 0.01ug/ul the first individual began to exhibit EGFP expression in some 

ommatidia on day 98 (n=15) (Fig 3A, 3C, STable 3).  In contrast, for those individuals injected 

with the 69bp fragment at a concentration of 0.01ug/ul, EGFP expression was first seen in some 

ommatidia 28 days after injection (n=8) (Fig 3A, 3D, STable 3).  All individuals of this group 

expressed EGFP by day 77 (n=7) (Fig 3A, 3D, STable 3).  These data suggest that in Tribolium, 

size also influences the duration of the RNAi effect, with longer fragments increasing the 

duration.        

dsRNA competition 

  Occasionally experiments require the knockdown of multiple genes.  In these situations 

combinatorial delivery of dsRNA can be used to remove the function of multiple genes 

simultaneously (Kuznicki et al. 2000).  However, research has shown that when multiple dsRNA 

or siRNAs are delivered, oversaturation of the RNAi machinery can occur (Parrish et al. 2000; 
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Yi et al. 2005; Barik 2006; Grimm et al. 2006).  This oversaturation causes several problems.  

First, because the miRNA and RNAi pathways share components, oversaturation of these 

components during the RNAi response can result in unintentional inhibition of the miRNA 

pathway resulting in phenotypes related to a loss of miRNA function.  Because miRNAs are 

essential for growth, development, and tissue homeostasis, this inhibition may result in lethality 

(Grimm et al. 2006).  Second, having a mixture of dsRNA can result in competition between the 

dsRNAs for RNAi machinery components and/or cell entry and transport components resulting 

in competitive inhibition.  This competitive inhibition results in an inability to knock down 

multiple genes at the same time (McManus et al. 2002; Hutvagner et al. 2004; Bitko et al. 2005; 

Formstecher et al. 2006; Koller et al. 2006; Castanotto et al. 2007; Stierle et al. 2007).  It has 

been shown that some siRNAs have greater competition potency than others (Formstecher et al. 

2006; Koller et al. 2006; Yoo et al. 2008).  Therefore, depending on the combination of dsRNAs 

used different levels of competition may occur.    

  To determine at what concentration competitive inhibition occurs in Tribolium we 

injected two dsRNAs simultaneously into Pu 11 larvae.  One dsRNA (the competitor) was used 

at a higher concentration and one dsRNA (the reporter) was used at a lower concentration.  For 

the competitor we used one of two dsRNAs, dsRed or Ultrabithorax (Ubx) (Fig 4).  We chose to 

use these dsRNAs as competitors for several reasons.  First, because some siRNAs may have 

greater competition potency than others it is possible that by using two different dsRNA 

competitors we may see different results.  Second, it is possible that having mRNA targets 

present may affect the competition level.  There is no DsRed expression in the Pu 11 beetles, 

allowing us to test the competition level when the competitor is an exogenous dsRNA with no 

mRNA target.  Ubx is expressed in the beetle hindwing but not the forewing (Tomoyasu et al. 
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2005).  Therefore, in one wing disc the competitor will have a complementary mRNA target and 

in the other disc it will not.  If the presence of target influences the level of competition, we may 

see differences between the two wing discs.  And third, Ubx gives a very distinct wing 

phenotype (Tomoyasu et al. 2005) enabling us to assess whether the Ubx competitor is efficient 

at down regulating Ubx.  In both cases (DsRed and Ubx experiments), EGFP is used as our 

reporter gene.  By monitoring the EGFP expression in the wing we can determine whether the 

competitor (dsRed or Ubx) is preventing the knockdown of EGFP.  

  When the competitor dsRNA was injected at 10 fold higher concentration than EGFP 

dsRNA we did not see competition at a level that resulted in inefficient knockdown of EGFP, as 

EGFP expression was effectively reduced in 100% of individuals (n=23 and n=17) (Fig 4B, 

STable 4).  In contrast, when we injected competitor dsRNA at a 100 fold higher concentration 

than EGFP dsRNA, we did see competition that resulted in inefficient knockdown of EGFP in 

some individuals (n=18 and n=10) (Fig 4C, STable 4).  The same result was seen when either 

dsRed or Ubx was used as the competitor, and there was no difference between the EGFP 

expression in the two wing discs in the Ubx experiment.  Therefore, our data suggest that the 

presence of mRNA targets does not affect the competition level. 

  When competition between dsRNA happens, it may be occurring at several levels.  It 

may occur during cellular uptake and transport of the dsRNA or it may occur during dsRNA 

processing and mRNA silencing.  We reasoned that if the competition is occurring at the level of 

dsRNA uptake, sequential injection of the competitor dsRNA and the reporter dsRNA may 

reduce the amount of competition.  We injected dsRNA for either dsRed or Ubx, waited two 

days, and then injected dsRNA for EGFP.  When this delay was introduced between injection of 

the competitor dsRNA and the EGFP dsRNA, we no longer saw competition that resulted in 
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inefficient knockdown of EGFP in any individual (n=11 and n=19) (Fig 4D, STable 2), even at 

the 100 fold higher concentration.  These data suggest that sequential injection can decease the 

amount of competition that is occurring between dsRNAs, perhaps because competition is 

occurring when the dsRNA is entering the cell.  

  The uptake mechanism of dsRNA in insects is currently unknown.  Recently, it has been 

shown that injected dsDNA can be efficiently taken up by cells and transiently expressed in at 

least one insect (Isoe et al. 2007).  We hypothesized that the uptake method of dsRNA and 

dsDNA may be related.  If the uptake of all nucleic acids occurs by the same mechanism and if 

the competition we are seeing is occurring at the uptake level, then dsDNA may be able to 

compete with dsRNA.  To test this hypothesis we coinjected dsDNA for dsRed and dsRNA for 

EGFP into Pu 11 larvae.  The dsDNA was at a 100 fold higher concentration than the dsRNA.  

At this concentration level when two dsRNAs were coinjected there is competition (Fig 4E1, 

STable 4), resulting in inefficient EGFP knockdown.  In contrast, when dsDNA was used we did 

not see competition in any of the injected individuals (n=29) (Fig 4E2, STable 4).  These results 

suggest that either the transport mechanism of dsRNA is RNA specific or the competition is not 

occurring at the cellular uptake level.         
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Discussion 

This research provides information that facilitates the planning and execution of RNAi-

based studies.  With regard to dsRNA size we established that long dsRNA appears to be the 

most effective with respect to both the initial knockdown and the duration of the RNAi effect.  

While both a 69bp and a 520bp dsRNA were capable of resulting in gene knockdown, the 520bp 

fragment was more effective.  Several explanations are possible for why the 69bp dsRNA was 

less efficient.  First, while the 69bp dsRNA will give rise to the same number of siRNAs (when 

compared to an equal weight of 520bp dsRNA) the types of siRNAs produced will be more 

limited with regard to sequence.  Therefore, the possibility exists that the longer dsRNA is not 

more effective because it is longer but because it produces a greater variety of siRNAs some of 

which may be more effective at silencing than the limited number of siRNAs produced by the 

shorter dsRNA fragment.  Another possibility is that while the 69bp dsRNA is most assuredly 

taken up by the cell, the efficiency of this uptake may not be as high, resulting in a lower 

quantity of siRNAs available for silencing.  Finally, if a dsRNA amplification or storage 

mechanism occurs in Tribolium, these processes may also be affected by dsRNA size. 

  While dsRNA 69bp and longer did result in gene knockdown, smaller dsRNAs (31 and 

21bp) were ineffective at gene silencing when injected into Tribolium at a multicellular stage.  

Our data suggest this is due to inefficient uptake of the shorter dsRNA fragments.  Data from C. 

elegans and Drosophila S2 cells support this hypothesis (Tabara et al. 1999; Parrish et al. 2000; 

Grishok et al. 2001; Tijsterman et al. 2002).  However, the use of siRNAs has effectively 

achieved gene knockdown in both the pea aphid and the termite. In these experiments siRNAs 

were derived from long dsRNA cleaved in vitro by the Dicer enzyme (Mutti 2006; Zhou et al. 

2006).  Therefore, there is a possibility that the siRNA samples contained a mixture of long 
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dsRNA and siRNAs.  Another, scenario is that insect cells from different species may recognize 

and/or uptake dsRNA in different ways.          

In C. elegans, amplification by RNA dependent RNA polymerases (RdRP) is essential to 

achieve any RNAi effect (Smardon et al. 2000; Sijen et al. 2001).  Therefore, it has been 

assumed that an amplification mechanism is needed in all organisms that exhibit a prolonged 

RNAi effect.  However, not only have RdRPs not been found in insects (Tomoyasu et al. 2008), 

but it has also been shown that isoform specific RNAi can be performed in Tribolium (Arakane 

et al. 2005), suggesting that amplification using the endogenous mRNA as template is not 

occurring.  There remains a possibility that amplification is occurring through another 

mechanism (perhaps using the dsRNA as template, as this would still allow for isoform specific 

RNAi).  However, amplification may not be needed to achieve an effective long lasting RNAi 

effect.  It is possible that insects with a robust systemic RNAi effect simply have the ability to 

efficiently take up and/or store dsRNA. 

  While the mechanism of RNAi duration in Tribolium has not been determined, we were 

able to show that when dsRNA is injected at the last larval stage the effect can last for many 

months, perhaps even for the entire lifespan of the individual.  It has also been shown that 

parental RNAi (in which female pupae or adults are injected with dsRNA and the effect is seen 

in the offspring) can also be effective for several months (Bucher et al. 2002), suggesting an 

extremely efficient RNAi response.  However, we have not seen a parental RNAi effect when 

last instar larvae are injected with dsRNA (data not shown).  In other words, when larvae are 

injected the next generation is not affected.  One explanation for this is that the female 

reproductive organs do not form until the pupal stage.  Perhaps in order for the oocytes to uptake 

dsRNA they must be formed at the time of dsRNA introduction to the body cavity.  If this is true 
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we might expect to see the RNAi effect lasting longer in established tissue and being less 

effective in tissue that is continually turned over.  

In C. elegans an RNAi effect can be seen for multiple generations if the gene being 

targeted is expressed in the germ cells (Grishok et al. 2000).  This is presumably due to repeated 

amplification of the dsRNA in the germ cells every generation.  However, even in C. elegans, 

where there is amplification and dsRNA spreading, if the gene being targeted is not expressed in 

the germ cells, the RNAi effect does not last more than one generation.  This suggests that even 

in C. elegans dsRNA amplification and subsequent spreading is not sufficient to affect new 

tissues.      

In addition to data concerning the effect of dsRNA size and concentration on the duration 

of the RNAi, the duration experiments revealed several other interesting observations.  When the 

RNAi effect wears off in the adult, EGFP expression appears to return one ommatidia at a time 

in a mosaic pattern across the surface of the eye.  In a process that takes weeks (or even months), 

more and more ommatidia begin to express EGFP until EGFP in the eye reaches wildtype levels.  

The pattern of EGFP return suggests that, at least in the eye, the RNAi is acting cell 

autonomously.  Additionally we also observed that there were vast differences in the length of 

time it took for EGFP to return in one experimental group.  For example when the 69bp fragment 

was used at a concentration of 0.01ug/ul the first individual began to express EGFP 28 days post 

injection.  However, EGFP was not seen in all individuals until 77 days post injection.  These 

differences probably represent subtle differences in injection volume between individuals, but 

may also reflect variation in the injection site (distance from the eye) or in individual’s ability to 

uptake, store, or amplify the dsRNA.   
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  It is important to note that with regard to the dsRNA concentration and duration 

experiments the results are probably gene specific.  For example, EGFP expression was removed 

with a concentration of only 0.001ug/ul, which may not be efficient to deplete the expression of 

other genes.  In our lab, RNAi experiments, that are intended to result in complete gene 

knockdown, are generally performed with dsRNA concentrations varying between 1 and 4ug/ul.  

While the exact concentration required and the exact number of days an effect will last will 

probably vary between genes, we expect the trends to remain the same.  Longer dsRNA and 

higher concentrations of dsRNA should result in more efficient gene knockdown and a longer 

knockdown duration.  

  Because the uptake, transport and processing of dsRNA all require cellular components 

and proteins that are finite, competition for these components will occur at some level.  The 

question is, which level is most sensitive to oversaturation.  Once dsRNA is injected into the 

individual, dsRNA that is not taken up into cells is presumably excreted.  Therefore, the uptake 

of dsRNA must occur relatively quickly.  However, the duration of the RNAi effect suggests that 

mRNA silencing occurs for an extended period of time.  Therefore, the fact that sequential 

injection of multiple dsRNA appears to lessen the level of competition suggests that the 

competition seen in our assay is occurring at the level of dsRNA uptake (although competition at 

the mechanism level may also occur at particular ratios).  Regardless of the step at which 

competition is occurring, our data does indicate that at certain ratios combinatorial delivery of 

dsRNA can result in competitive inhibition.  As competition potency may vary between dsRNAs 

this ratio may vary depending on the combination of dsRNAs used. 

Our competition experiments did not show any observable impact on the miRNA 

pathway.  miRNAs are essential for growth and development, and specifically are known to be 
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involved in metamorphosis in insects (Bashirullah et al. 2003).  Additionally, we have shown 

that knockdown of Tc-Argonaute-1 (an essential component of the miRNA machinery) results in 

larval lethality (Tomoyasu et al. 2008).  However, we never saw any lethality or developmental 

phenotypes indicating that the miRNA pathway was impaired due to oversaturation of miRNA 

pathway components.  In order to inhibit the miRNA pathway higher concentrations of dsRNA 

may need to be used.  It may also be possible that miRNA inhibition by oversaturation of the 

RNAi machinery may be more difficult to achieve in Tribolium due to subfunctionalization of 

the machinery components.  Both Drosophila and Tribolium appear to have proteins, such as 

Argonaute-1 and Argonatue-2, that have duplicated and subfunctionalized such that one protein 

is involved in the miRNA pathway while the other is involved in the RNAi pathway (Forstemann 

et al. 2007).  Therefore, it is possible that in these insects accidental inhibition of the miRNA 

pathway may occur less often. 

Within the last decade RNAi has become a genetic tool that has made the functional 

study of genes in non-model systems readily available.  While there has been a race to identify 

the next organism in which RNAi can be used, the details have often been overlooked.  The work 

described here provides specific data on the essential parameters for RNAi in the red flour beetle 

and hopefully brings to light important considerations when planning RNAi experiments in other 

organisms. 
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Table 1:  Primers used to synthesize EGFP dsRNA

Primer Sequence dsRNA size
GFPiF2 TAATACGACTCACTATA GGGCGATGCCACCT 520bp
GFPiR5 TAATACGACTCACTATA GGGCGGACTGGGTG

GFPiF2 TAATACGACTCACTATA GGGCGATGCCACCT 69bp
GFPiR2 TAATACGACTCACTATA GGGCACGGGCAGCT

GFPiF1d TAATACGACTCACTATA GGGCGATGCCACCTACGGCAAG 31bp
GFPIR1d TAATACGACTCACTATA GGGTCAGCTTGCCGTAGGTGGC

GFPiF1d2 TAATACGACTCACTATA GGGATCTGCACCACCGGCAAGCTGCC 31bp
GFPiR1d2 TAATACGACTCACTATA GGGAGGGCACGGGCAGCTTGCCGGTG

FragF2 TAATACGACTCACTATA GGGCACCTACGGCAAGCTGACCCTGA 30bp
FragR2 TAATACGACTCACTATA GGGATGAACTTCAGGGTCAGCTTGC

FragF3 TAATACGACTCACTATA GGGAAGCTGACCCTGAAGTTCATCTG 30bp
FragR3 TAATACGACTCACTATA GGGGTGGTGCAGATGAACTTCAGG

FragF4 TAATACGACTCACTATA GGGTGAAGTTCATCTGCACCACCGGC 30bp
FragR4 TAATACGACTCACTATA GGGCAGCTTGCCGGTGGTGCAGAT

FragF5 TAATACGACTCACTATA GGGCTGCACCACCGGCAAGCTGCCCG 30bp
FragR5 TAATACGACTCACTATA GGGCAGGGCACGGGCAGCTTGCCGG

FragF6 TAATACGACTCACTATA GGGGCAAGCTGCCCGTGCCCTGGCC 30bp
FragR6 TAATACGACTCACTATA GGGAGGGTGGGCCAGGGCACGGGC

FragF7 TAATACGACTCACTATA GGGCCGTGCCCTGGCCCACCCTCGTG 30bp
FragR7 TAATACGACTCACTATA GGGGGTGGTCACGAGGGTGGGCCA

FragF8 TAATACGACTCACTATA GGGCCCACCCTCGTGACCACCCTGA 30bp
FragR8 TAATACGACTCACTATA GGGCCGTAGGTCAGGGTGGTCACGA

Underlined represents the minimum promoter sequence for T7 polymerase. 
Bold G is the first based incorporated into RNA during transcription.
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Supplemental Table 1:  dsRNA size requirements (Fig 1)

Treatment #Injected #Surviving #GFP+ %GFP+
520bp-larvae 32 29 0 0
69bp-larvae 25 8 0 0
siRNA-larvae 40 28 28 100
31bp-larvae 27 20 20 100
2-31bp-larvae 24 19 19 100
8-~30bp-larvae 26 21 21 100
8-~30bp-eggs ~300 16 2 11
520bp-eggs ~225 13 0 0
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Supplemental Table 2:  dsRNA concentration requirements (Fig 2)  

Treatment Strain #Injected #Surviving #GFP+ %GFP+
520bp-0.01ug/ul Pu11 30 26 0 0
520bp-0.001ug/ul Pu11 29 23 0 0
520bp-0.0001ug/ul Pu11 29 25 19 76
520bp-0.00001ug/ul Pu11 24 19 19 100
69bp-0.01ug/ul Pu11 26 15 2 13
69bp-0.001ug/ul Pu11 27 18 2 11
69bp-0.0001ug/ul Pu11 27 17 17 100
69bp-0.00001ug/ul Pu11 27 16 16 100
520bp-100molar dilution Pu11 34 31 0 0
520bp-1000molar dilution Pu11 23 18 0 0
520bp-10000molar dilution Pu11 29 20 0 0
520bp-100000molar dilution Pu11 26 21 21 100
520bp-0.01ug/ul ! tubulin 43 20 0 0
520bp-0.001ug/ul ! tubulin 41 15 4 27
520bp-0.0001ug/ul ! tubulin 35 16 16 100
520bp-0.00001ug/ul !"tubulin 30 11 11 100
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Supplemental Table 3:  Duration assays (Fig 3)

Treatment
     # 
Injected

GFP+/total 
Day 14

GFP+/total 
Day 28

GFP+/total 
Day 56

GFP+/total 
Day 77

GFP+/total 
Day 98

GFP+/total 
Day 140

GFP+/total 
Day 175

520bp1ug/ul 26 0/13 0/11 0/11 0/11 0/11 0/11 0/11
520bp0.01ug/ul 24 0/15 0/15 0/15 0/15 4/15 8/14 14/14
69bp0.01ugu/ 24 0/10 3/8 5/8 7/7 5/5 5/5 5/5
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Supplemental Table 4:  Competition assays (Fig 4)

Treatment #Injected #Surviving #GFP+ %GFP+
dsRed/EGFP 10:1 23 23 0 0
Ubx/EGFP 10:1 17 17 0 0
dsRed/EGFP 100:1 34 18 8 44
Ubx/EGFP 100:1 15 10 6 60
dsRed DNA/EGFP 100:1 34 29 0 0

Treatment Injection 1 Injection 2 (EGFP) #Surviving #GFP+ %GFP+
Sequential dsRed/EGFP 100:1 42 11 11 0 0
Sequential Ubx/EGFP 100:1 51 19 19 0 0
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Figure 1 
 
The effect of dsRNA size on RNAi knockdown efficiency.  (A) Depiction of EGFP dsRNAs 

relative to the EGFP coding region.  Green:  EGFP coding region.  Red:  long dsRNA (520bp).  

Purple:  intermediate dsRNA (69bp).  Blue:  short dsRNA (30/31bp).  (B) Uninjected Pu 11 

Tribolium larvae.  (C-H)  Pu 11 Tribolium larvae injected with EGFP dsRNA.  (C) 520bp 

dsRNA.  n=29 (D) 69bp dsRNA.  n=8 (E) 21bp siRNA.  n=28 (F) 31bp dsRNA.  n=20 (G) Two 

31bp dsRNAs.  n=19 (H) Eight ~30bp dsRNAs.  n=21 (I,J)  Pu 11 Tribolium larvae injected as 

embryos with EGFP dsRNA.  (I) Top larvae; uninjected, Middle larvae; injected with eight 

~30bp dsRNAs (n=16), Bottom larvae; injected with 520bp dsRNA (n=13).  (J) Light 

microscopy image of (I). 
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Figure 2 

The effect of dsRNA concentration on RNAi knockdown efficiency.  (A) Weight dilution series 

of 520bp EGFP dsRNA injected into Pu 11 Tribolium larvae.  (1) 0.01ug/ul.  n=26 (2) 

0.001ug/ul.  n=23 (3) 0.0001ug/ul.  n=25 (4) 0.00001ug/ul.  n=19 (B) Weight dilution series of 

69bp EGFP dsRNA injected into Pu 11 Tribolium larvae.  (1) 0.01ug/ul.  n=15 (2) 0.001ug/ul.  

n=18 (3) 0.0001ug/ul.  n=17 (4) 0.00001ug/ul.  n=16 (C) Molar dilution series of 520bp EGFP 

dsRNA injected into Pu 11 Tribolium larvae.  (1) ~0.07ug/ul.  n=31 (2) ~0.007ug/ul.  n=18 (3) 

~0.0007ug/ul.  n=20 (4) ~0.00007ug/ul.  n=21 (D) Weight dilution series of 520bp EGFP 

dsRNA injected into ! tubulin EGFP Tribolium larvae.  (1) 0.01ug/ul.  n=20 (2) 0.001ug/ul.  

n=15 (3) 0.0001ug/ul.  n=16 (4) 0.00001ug/ul.  n=11 
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Figure 3 

The effect of dsRNA size and concentration on the duration of the RNAi effect.  (A) Bar graph 

depicting the percentage of individuals expressing EGFP after injection of EGFP dsRNA at two 

different concentration and sizes.  (B) Pu 11 Tribolium injected with 520bp EGFP dsRNA at a 

concentration of 1ug/ul.  n=11 (C) Pu 11 Tribolium injected with 520bp EGFP dsRNA at a 

concentration of 0.01ug/ul.  n=15 (D) Pu 11 Tribolium injected with 69bp EGFP dsRNA at a 

concentration of 0.01ug/ul.  n=8.  Asterik indicates the first day EGFP expression was detected 

in the adult eye. 
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Figure 4 

The effect of dsRNA competition on RNAi knockdown efficiency.  (A) Competitor dsRNA 

injected alone.  (1) DsRed dsRNA.  (2) Ubx dsRNA.  (B) Competitor and reporter dsRNA 

coinjected at a 10 to 1 ratio.  (1) DsRed dsRNA injected at 1ug/ul (competitor).  EGFP dsRNA 

injected at 0.1ug/ul (reporter).  n=23  (2) Ubx dsRNA injected at 1ug/ul (competitor).  EGFP 

dsRNA injected at 0.1ug/ul (reporter).  n=17 (C) Competitor and reporter dsRNA coinjected at a 

100 to 1 ratio.  (1) DsRed dsRNA injected at 1ug/ul (competitor).  EGFP dsRNA injected at 

0.01ug/ul (reporter).  n=18 (2) Ubx dsRNA injected at 1ug/ul (competitor).  EGFP dsRNA 

injected at 0.01ug/ul (reporter).  n=10 (D) Competitor and reporter dsRNA injected sequentially 

at a 100 to 1 ratio.  (1) DsRed dsRNA injected at 1ug/ul (competitor).  EGFP dsRNA injected at 

0.01ug/ul (reporter). n=11 (2) Ubx dsRNA injected at 1ug/ul (competitor).  EGFP dsRNA 

injected at 0.01ug/ul (reporter).  n=19 (E) DsRed dsRNA or DsRed dsDNA is used as the 

competitor nucleic acid.  EGFP dsRNA is coinjected as the reporter.  The ratio of competitor to 

reporter is 100 to 1.  (1) DsRed dsRNA injected at 1ug/ul.  EGFP dsRNA injected at 0.01ug/ul.  

n=18 (2) DsRed dsDNA injected at 1ug/ul.  EGFP dsRNA injected at 0.01ug/ul. n=29 
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Abstract 

RNA interference (RNAi) has become a common method of gene knockdown in many 

model systems. To trigger an RNAi response, dsRNA must enter the cell.  In some organisms, 

such as Caenorhabditis elegans, cells can take up dsRNA from the extracellular environment via 

a cellular uptake mechanism termed systemic RNAi.  However, in the fruit fly Drosophila 

melanogaster, it is widely believed that cells are unable to take up dsRNA, although there is little 

published data to support this claim.  In this study we set out to determine whether this 

perception has a factual basis.  We took advantage of traditional Gal4/UAS transgenic flies as 

well as the MARCM system to show that extracellular injection of dsRNA into Drosophila 

larvae cannot trigger RNAi in most Drosophila tissues (with the exception of hemocytes).  Our 

results show that this is not due to a lack of RNAi machinery in these tissues as overexpression 

of dsRNA inside the cells using hairpin RNAs efficiently induces an RNAi response in the same 

tissues.  These results suggest that while most Drosophila tissues indeed lack the ability to 

uptake dsRNA from the surrounding environment, hemocytes can initiate RNAi in response to 

extracellular dsRNA.  We also examined another insect, the red flour beetle Tribolium 

castaneum, which has been shown to exhibit a robust systemic RNAi response.  We show that 

virtually all Tribolium tissues can respond to extracellular dsRNA, which is strikingly different 

from the situation in Drosophila.  Our data provide specific information about the tissues 

amenable to RNAi in two different insects, which may help us understand the molecular basis of 

systemic RNAi.  
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Introduction 

Since its initial characterization in Caenorhabditis elegans, RNA interference (RNAi) has 

become a powerful genetic tool in many organisms, allowing the knockdown of homologous 

gene products by the introduction of dsRNA into cells (May and Plasterk 2005).  Introduction 

can be achieved by a variety of methods including microinjection, electroporation, and hairpin 

RNA expression (May and Plasterk 2005).  However, for some organisms, such as C. elegans, 

artificial introduction of dsRNA directly into cells is not required (Fire et al. 1998).  In these 

organisms the dsRNA is taken up from the extracellular environment (and spread from cell to 

cell) via a cellular uptake mechanism termed systemic RNAi (Fire et al. 1998).   

 In recent years, a variety of insects, including the red flour beetle Tribolium castaneum 

(Bucher et al. 2002; Tomoyasu and Denell 2004), have been shown to exhibit systemic uptake of 

dsRNA (sometimes in limited tissues) (see Tomoyasu et al. 2008 for more details about insect 

species that show a systemic RNAi response).  However, for the well-established insect model 

system, Drosophila melanogaster, there is a widely held belief that its cells are unable to take up 

dsRNA in a systemic manner.  While this perception remains entrenched in the fly community, 

little empirical data has been published to support this claim.  In fact, there are published reports 

of successful RNAi by injection of dsRNA in Drosophila adults (Dzitoyeva et al. 2001; Goto et 

al. 2003; Petruk et al. 2006).   

In this study we set out to determine whether the belief that Drosophila cells are unable 

to take up dsRNA from their environment holds true.  For comparison, we also examined dsRNA 

uptake in Tribolium castaneum.  We find that systemic RNAi in larval tissues indeed differs 

drastically between these two insect species.  While virtually all larval tissues in Tribolium are 
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able to take up dsRNA and mount an RNAi response, only one larval cell type in Drosophila, the 

hemocyte, is able to respond to injected extracellular dsRNAs. 
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Materials and methods 

Fly stocks and crosses 

Flies were raised at 25!C.  The Gal4 lines used in this study and their expression patterns 

are summarized in Table 1. These lines were crossed to either UAS-EGFP/TM3 or UAS-GFPS65T 

to obtain GFP expressing larvae for injection. The UAS-EGFP-RNAi line, (w; P(UAS-

Avic/GFP.dsRNA.R)143 (Roignant et al. 2003), was also used to induce the RNAi response in 

these EGFP expressing larvae. Tub-Gal4; Tub-Gal80 flies (w; tubP-Gal80; tubP-Gal4/TM6B, 

Tb) (Lee and Luo 2001) were crossed with UAS-GFPS65T for the Gal80 RNAi experiment. 

Beetle strains 

Beetles were cultured at 30!C on whole wheat (+5% yeast) flour.  The strain AT11, in 

which EGFP expression is driven ubiquitously by the aTub promoter (Siebert et al. 2008), was 

used for injection.   

dsRNA synthesis 

Double-stranded RNA was synthesized using the Ambion MEGAscript high yield 

transcription kit.  Template for the synthesis of EGFP dsRNA was prepared by PCR using gene 

specific primers with a T7 polymerase promoter sequence at the 5’ ends as described by 

(Tomoyasu and Denell 2004).  Templates for the synthesis of GFP and Gal80 dsRNA were 

prepared by PCR using vector specific primers with a T7 polymerase promoter sequence at the 

5’ ends as described by (Tomoyasu et al. 2008).    

Injection into beetle larvae 

Injection into beetle larvae was performed as previously described by (Tomoyasu and 

Denell 2004).  dsRNA was injected at a concentration of 1ug/ul (approximately 0.5ug per larva). 

Injection into fly larvae 
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Last instar larvae expressing the reporter gene were selected.  Larvae were dried on filter 

paper and then immobilized on double stick tape adhered to a microscope slide.  The larvae were 

positioned ventral side down and were injected on their dorsal side in an anterior to posterior 

direction.  dsRNA for EGFP and GFP was injected at a concentration of 1ug/ul (less than 0.25ug 

per larva).  dsRNA for Gal80 was injected at a concentration of 2ug/ul (less than 0.5ug per 

larva).  Larvae were removed from the slide after injection and raised at 25!C until analysis.     
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Results and discussion 

To determine whether Drosophila larval cells have the ability to take up dsRNA and 

execute an RNAi response, we employed the Gal4/UAS system (Brand and Perrimon 1993) to 

express a reporter gene (GFP or EGFP) in a variety of Drosophila tissues (Table 1, Fig 1 A-F 

left, Fig 2 A-B left and middle).  We then injected third instar larvae with dsRNA for the reporter 

gene and monitored reporter gene expression 24 and 48 hours (data not shown) after injection.  

Reporter gene expression was maintained in most of the tissues tested including wing discs, fat 

bodies, salivary glands, muscles, midgut, brain and ectoderm (Fig 1 A-F middle).  Intriguingly, 

reporter gene expression was lost in only one of the cell types tested, the hemocytes (Fig 2 A-B 

right).  A mock injection (dsRNA for dsRed) did not induce the reduction of reporter gene 

expression in hemocytes (data not shown), indicating that the dsRNA silencing in hemocytes is 

not a non-specific effect induced by dsRNA molecules.  Our findings indicate that introducing 

dsRNA by injection in the last larval stage is ineffective at triggering RNAi in many tissues.  

However, Drosophila hemocytes (visualized by pxn-Gal4/UAS GFP (Stramer et al. 2005)) do 

appear to have the ability to take up dsRNA and perform RNAi in vivo.  

To confirm our results and test other Drosophila tissues for a systemic RNAi response, 

we took advantage of the MARCM system (Lee and Luo 2001).  This system uses Gal80 as a 

repressor of Gal4 to prevent expression normally produced by the Gal4/UAS system (Lee and 

Luo 2001).  We created a line in which GFP expression was driven by UAS, and both Gal80 and 

Gal4 were expressed ubiquitously by the tubulin promoter (Table 1).  In these flies there is no 

GFP expression due to the repression of Gal4 by Gal80 (Fig 3B middle).  We attempted to 

relieve Gal4 repression by injecting dsRNA for Gal80 into last instar larvae.  When GFP 

expression was monitored 24 and 72 hours after injection, hemocytes were the only tissue in 
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which Gal4 repression appeared to be relieved (Fig 3B right).  These data confirm our initial 

results, suggesting that hemocytes are the only apparent tissue capable of taking up dsRNA and 

mounting an RNAi response.  

To determine whether the ineffective RNAi response in most Drosophila tissues was due 

to a lack of intracellular RNAi machinery or due to a more upstream process, we expressed 

EGFP hairpin RNAs to trigger RNAi inside the cells (Roignant et al. 2003) (Table 1).  We 

observed a reduction of EGFP expression in all tissues examined (Fig 1 A-F right), indicating 

that the lack of RNAi response after injection of dsRNA was not due to defects in the RNAi 

machinery.  These results lend support to the conclusion that failure in upstream events in the 

systemic RNAi pathway, such as dsRNA cellular uptake, transport, or maintenance, is 

responsible for the ineffective RNAi in most Drosophila larval tissues.  

Recent reports illustrate that post-embryonic injection of dsRNA in other non-drosophilid 

insects can result in a systemic RNAi effect.  However, in many of these organisms, only 

specific tissues, such as epidermal tissues or fat bodies, have been examined (summarized in 

(Tomoyasu et al. 2008)).  To reveal whether all tissues in Tribolium have the capacity to take up 

dsRNA, we utilized a transgenic Tribolium line in which EGFP is driven ubiquitously by the 

native alpha tubulin (aTub) promoter (Siebert et al. 2008).  Last instar larvae were injected with 

dsRNA for EGFP and then monitored for EGFP expression 48 and 96 hours later.  In contrast to 

the Drosophila results, EGFP expression was reduced or absent in virtually all Tribolium tissues 

at both larval and pupal stages (Fig 4A-F).  In most Tribolium tissues, EGFP expression appears 

completely absent.  However, some residual EGFP expression is still seen in the ventral portion 

of each larval segment (ganglia) (arrow in Fig 4D) and in the pupal brain (arrow in Fig 4F).  The 

remaining EGFP expression may be due to differences in initial expression rather than tissues 
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resistance to RNAi as both of these tissues expressed EGFP at a higher level than surrounding 

tissues prior to injection.  The higher level of initial EGFP expression in the brain and ganglion 

may require more time and/or dsRNA to achieve efficient knockdown.  Alternatively, there still 

is a possibility that some Tribolium neural tissues may be somewhat resistant to RNAi.  These 

results indicate that virtually all Tribolium larval tissues have the ability to take up dsRNA from 

the extracellular environment and mount an RNAi response.             

Our data provide insight into the use of RNAi as a tool for the study of post-embryonic 

development in insects.  While larval injection of dsRNA is not effective for many Drosophila 

tissues, some successful reports of adult injection (Dzitoyeva et al. 2001; Goto et al. 2003; Petruk 

et al. 2006) may suggest different tissue specificity at different developmental stages.  The basis 

of this difference between larval and adult tissues is unknown at this time but may be due to 

fundamental developmental differences between tissue types, such as cell ploidy, or due to 

differences in gene expression required for the uptake and transport of dsRNA.  While most 

Drosophila larval tissue in not susceptible to dsRNA by injection our data does reveal a 

potentially powerful application for RNAi in the study of hemocyte development and their role 

in insect immunity.  In addition, Tribolium’s ability to efficiently perform RNAi in virtually all 

cell types makes it an attractive insect model for the study of post-embryonic development and 

the systemic RNAi response itself. 
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Table 1:  Transgenic Drosophila  lines 

Gal4 Line Expression Genotypes for Injection dsRNA Hairpin Genotype

w; P{GawB}48Y
brain
salivary glands

w; P{GawB}48Y/+; 
P{UAS-EGFP}34/+ eGFP

w; P{GawB}48Y/ P{UAS-Avic/GFP.
dsRNA.R}143; P{UAS-EGFP}34/+

y1w; P{en2.4-Gal4}e16E
P{UAS-FLP1.D}JD1

segmental
ectoderm

w; P{en2.4-Gal4}e16EP{UAS-FLP1.
D}JD1/+; P{UAS-EGFP}34/+ eGFP

w; P{en2.4-Gal4}e16E P{UAS-FLP1.D}JD1/ P{UAS-
Avic/GFP.dsRNA.R}143; P{UAS-EGFP}34/+

w; P{GawB}c179
muscles 
salivary glands

w; P{GawB}c179/+; 
P{UAS-EGFP}34/+ eGFP

w; P{GawB}c179/ P{UAS-Avic/GFP.
dsRNA.R}143; P{UAS-EGFP}34/+

w1118; P{Cg-GAL4.A}2 fat bodies
w; P{Cg-GAL4.A}2/+; 
P{UAS-EGFP}34/+ eGFP

w; P{Cg-GAL4.A}2/ P{UAS-Avic/GFP.
dsRNA.R}143; P{UAS-EGFP}34/+

y1w1118; P{ey1x-GAL4.Exel}2
midgut 
salivary glands

w; P{ey1x-GAL4.Exel}2/+; 
P{UAS-EGFP}34/+ eGFP

w; P{ey1x-GAL4.Exel}2/ P{UAS-Avic/
GFP.dsRNA.R}143; P{UAS-EGFP}34/+

w; apMD544/CyOen11 wing discs
w; apMD544/+; 
P{UAS-EGFP}34/+ eGFP

w; apMD544/ P{UAS-Avic/GFP.
dsRNA.R}143; P{UAS-EGFP}34/+

w; pxn-Gal4 hemocytes
w; P{UAS-GFP.S65T}T2/+; 
pxn-Gal4/+ GFP N/A

w; FRT-G13, tubP-Gal80;tubP-
Gal4/TM6B, Tb none

w; FRT-G13, tubP-Gal80/P{UAS-
GFP.S65T}T2;tubP-Gal4/+. Gal80 N/A

The list of Gal4 lines used in this study.  Genotypes of crosses and the EGFP (or GFP) expression pattern in the last larval stage are also listed.  EGFP was 
used for most of the experiments.  GFPS65T was used for monitoring reporter expression in hemocytes (pxn-Gal4), because we could not detect a strong 
EGFP signal in the hemocytes.
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Figure 1 

Larval RNAi in Drosophila reporter lines.  (A-F; Left) EGFP expression driven by various Gal4 

lines.  (A-F; Middle) EGFP expression 24 hours after injection of EGFP dsRNA.  (A-F; Right) 

EGFP expression in EGFP hairpin RNA co-expressing flies.  All Drosophila larvae are last 

larval instar, oriented anterior left, posterior right. 
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Figure 2   

Larval RNAi in Drosophila hemocyte line.  (A; Left and Middle) GFP expression in the 

hemocytes driven by pxn-Gal4.  (A; Right) GFP expression 24 hours after injection of GFP 

dsRNA.  (B; Left and Middle) Pupal stage GFP expression in hemocytes driven by pxn-Gal4.  

(B; Right) Pupal stage GFP expression 48 hours after injection of GFP dsRNA into larvae.  All 

Drosophila larvae are last larval instar.  Larvae and pupae are oriented anterior left, posterior 

right. 
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Figure 3 

Injection of Gal80 dsRNA in Drosophila larvae.  (A) Gal4/UAS and the Gal80/Gal4/UAS 

system.  (Left) The ubiquitous expression of Gal4 drives GFP expression in all tissues (tub-Gal4 

UAS-GFP).  (Middle) Gal80 represses the function of Gal4 resulting in individuals with no GFP 

expression (tub-Gal80/Gal4 UAS-GFP).  (Right) GFP expression is only seen in tissues that take 

up the Gal80 dsRNA and mount an RNAi response (tub-Gal80/Gal4 UAS-GFP injected with 

Gal80 dsRNA).  (B; Left)  Larval epidermis and adult with GFP expression in the hemocytes 

driven by pxn-Gal4.  (B; Middle) tub-Gal80/Gal4 UAS-GFP larval cuticle and adult.  No GFP 

expression is observed due to repression by Gal80.  (B; Right) tub-Gal80/Gal4 UAS-GFP larval 

epidermis and adult after larval injection of Gal80 dsRNA.  Arrows point to GFP expressing 

hemocytes.  Arrowhead indicates injection wound.   
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Figure 4 

Injection of EGFP dsRNA in Tribolium larvae.  (A) Lateral view of aTub-EGFP Tribolium 

larvae.  Upper larva was uninjected.  Lower two larvae were injected with EGFP dsRNA.  (B) 

Lateral view of aTub-EGFP Tribolium larva injected with EGFP dsRNA.  (C) Ventral view of 

aTub-EGFP Tribolium larvae.  Upper larva was uninjected.  Lower two larvae were injected 

with EGFP dsRNA.  (D) Ventral view of aTub-EGFP Tribolium larvae injected with EGFP 

dsRNA.  (E) aTub-EGFP Tribolium pupa.   (F) aTub-EGFP Tribolium pupa injected with EGFP 

dsRNA.  Tribolium larvae are oriented anterior left, posterior right.  EGFP expression was 

documented 48 hours after injection of dsRNA.  Pupae are shown ventral view, oriented anterior 

up, posterior down.  EGFP expression was documented 96 hours after injection of dsRNA.  

Arrows point to residual EGFP expression.     
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The concepts and the majority of the data in this chapter were published in Genome Biology in 

January 2008.  The paper was entitled “Exploring systemic RNA interference in insects:  a 

genome-wide survey for RNAi genes in Tribolium”.  The functional data in this paper were 

provided by me and I participated in the discussion, organization, and editing of the paper.  

Because I was not involved in writing the initial paper I have written this chapter in order to 

include my contributions to the paper in my dissertation.   
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Abstract 

RNA interference (RNAi) is a highly conserved cellular mechanism of gene silencing 

triggered by double-stranded (dsRNA).  Some organisms, including the nematode 

Caenorhabditis elegans, have a systemic RNAi response, in which the response occurs 

throughout the organism regardless of the site of dsRNA entry.  Recently many insects, including 

Tribolium castaneum, have also been shown to have a robust systemic RNAi response.  

However, the leading insect model Drosophila melanogaster does not.  To study the systemic 

RNAi response in insects, we have utilized the newly sequenced Tribolium genome to identify 

and analyze Tribolium RNAi machinery genes and systemic RNAi candidate genes.  

Phylogenetic analysis suggests that Tribolium has a slightly larger inventory of potential RNAi 

machinery genes than Drosophila and functional analysis suggests that Tc-Dicer-2, Tc-

Argonauate-2a and Tc-Argonaute-2b are essential for the RNAi response.  Our results were 

unable to confirm that Tc-R2D2 or Tc-C3PO (homologous to Dm-R2D2) are essential for the 

RNAi process in Tribolium.  We also identified three Tribolium homologs (Tc-silA, Tc-silB, Tc-

silC) of C. elegans sid-1, which encodes a transmembrane domain protein essential for the 

systemic RNAi response.  While Tc-silA, Tc-silB and Tc-silC share sequence homology with Ce-

sid-1, closer analysis reveals that the Tribolium homologs have more identity with the sid-1 

related gene Ce-tag-130.  Furthermore, functional data of Tc-silA, Tc-silB and Tc-silC indicates 

that they are not involved in the systemic RNAi response in Tribolium suggesting that they are 

not true orthologs of Ce-sid-1.  Although both Tribolium and C. elegans possess a robust 

systemic RNAi response, our data suggests that the method of dsRNA uptake is not conserved.  

Further functional analysis of systemic RNAi candidate genes needs to be performed in order to 
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completely understand the degree of conservation of the systemic RNAi response and to fully 

utilize RNAi as a genetic tool. 
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Introduction 

RNA interference 

RNA interference (RNAi) is a mechanism of gene regulation that has been shown to be 

widely conserved across both plant and animal phyla.  The interference mechanism is triggered 

when double-stranded RNA (dsRNA) that is homologous to endogenous message enters a cell 

(or is transcribed within a cell) (Fire et al. 1998; Meister and Tuschl 2004; Mello and Conte 

2004).  Once in the cell the dsRNA is bound by a complex of proteins including the RNase III 

endonuclease Dicer (Dcr), which cleaves the dsRNA into small dsRNA fragments termed small 

interfering RNAs (siRNA) (reviewed in Carmell and Hannon 2004).  siRNAs are then loaded 

into RNA induced silencing complexes (RISC) (reviewed in Filipowicz 2005) with the help of 

dsRNA binding motif (dsRBM) proteins such as R2D2 and Loquacious (Loqs) (Tabara et al. 

2002; Liu et al. 2003; Pellino and Sontheimer 2003; Forstemann et al. 2005; Leuschner et al. 

2005; Saito et al. 2005).  Once in the complex siRNAs are used as a guide to find target mRNAs, 

which are then silenced by Argonaute (Ago) family protein-mediated cleavage (reviewed in 

Carmell et al. 2002; Parker and Barford 2006). 

In addition to the RNAi pathway, recent studies have highlighted the importance of a 

related pathway termed the microRNA (miRNA) pathway.  While the miRNA pathway is not the 

focus of this research, it is relevant because it uses related (and sometimes identical) proteins. 

The miRNA pathway is found in most eukaryotic organisms and is essential for negative gene 

regulation in such processes as growth, development, differentiation and metabolism (Niwa and 

Slack 2007).  miRNA precursors are synthesized within a cell by RNA polymerase II and 

processed into mature miRNAs by two RNase III enzymes, Drosha and Dicer.  Then like 

siRNAs, miRNAs are incorporated into silencing complexes, which include Argonaute family 
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proteins.  After incorporation into the silencing complex, miRNAs bind the 3’ UTR of their 

targets and regulate them through translational repression or cleavage (reviewed in Pasquinelli et 

al. 2005; Ouellet et al. 2006). 

Systemic RNAi 

The first animal in which RNAi was described, and has since been studied in extensive 

detail, is the model nematode C. elegans.  Early work in C. elegans RNAi revealed that the site 

of dsRNA injection did not impact the resulting phenotype, suggesting that a gene-specific 

silencing signal was being transported between cells (Fire et al. 1998; May and Plasterk 2005; 

Hunter et al. 2006).  In C. elegans this phenomenon, termed systemic RNAi, has since been 

shown to involve two steps; dsRNA uptake from the extracellular environment and subsequent 

spreading of dsRNA from cell to cell (Timmons et al. 2003; Tomoyasu et al. 2008).  Continued 

work on systemic RNAi in C. elegans illustrated that systemic RNAi could be triggered by 

providing dsRNA to worms via soaking or feeding (Tabara et al. 1998; Timmons et al. 2001).  

The ability to feed dsRNA to C. elegans has allowed several large-scale mutant screens 

for genes involved in systemic RNAi, and a number of genes that are essential for the uptake of 

dsRNA have been identified (Winston et al. 2002; Tijsterman et al. 2004).  These genes are 

referred to as systemic RNAi defective (sid) (Winston et al. 2002) or RNAi spreading defective 

(rsd) genes (Tijsterman et al. 2004).  The proteins encoded by five of the genes identified in 

these screens have been characterized.  SID-1, a multipass transmembrane protein, is involved in 

the uptake and spreading of dsRNA in both somatic and germ line cells (Winston et al. 2002; 

Feinberg and Hunter 2003).  SID-2, a transmembrane protein expressed on the apical side of gut 

cells, is involved in taking up dsRNA into the gut cells after dsRNA feeding (but is not involved 

in further spreading of the dsRNA) (Winston et al. 2007).  Three other genes, rsd-2, rsd-3, and 
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rsd-6, have been identified as having a role in dsRNA uptake into the germ line (Tijsterman et al. 

2004).   

Recently, systemic RNAi-like responses, in which dsRNA delivery elicits an RNAi 

response in tissues far away from the injection site, have been reported in a variety of insects 

(Marie et al. 2000; Nishikawa and Natori 2001; Bettencourt et al. 2002; Blandin et al. 2002; 

Rajagopal et al. 2002; Aljamali et al. 2003; Amdam et al. 2003; Zhu et al. 2003; Liu and 

Kaufman 2004; Narasimhan et al. 2004; Tabunoki et al. 2004; Tomoyasu and Denell 2004; 

Araujo et al. 2006; Cruz et al. 2006; Kuwayama et al. 2006; Lynch and Desplan 2006; Turner et 

al. 2006; Zhou et al. 2006; Baum et al. 2007; Ghanim et al. 2007).  This type of RNAi response 

almost certainly involves cellular uptake of dsRNA from the hemoceol, but it does not 

necessarily involve spreading of dsRNA from cell to cell.  Therefore, when referring to systemic 

RNAi in insects we are referring to the ability to achieve an RNAi response in cells away from 

the site of dsRNA injection rather than to a strict definition of dsRNA uptake and spreading.    

The best studied insect model, Drosophila melanogaster, does not appear to have a 

robust systemic RNAi response, since injection of dsRNA into the Drosophila body cavity is not 

an effective method of dsRNA delivery (Miller et al. 2008).   In contrast, we have shown that the 

systemic RNAi response in the red flour beetle, Tribolium castaneum, is very robust, as virtually 

all cell types are susceptible to dsRNA once it is introduced into the organism (Miller et al. 

2008).  Therefore, we propose to use Tribolium as a model to study the mechanism of systemic 

RNAi in insects.  

For this study we asked what genetic mechanisms might be responsible for the 

differences leading to the lack of response in Drosophila and the exceptionally robust systemic 

RNAi response seen in Tribolium.  We considered the following hypotheses.  First, perhaps 
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Tribolium has more efficient RNAi machinery thereby allowing a more robust systemic 

response.  Second, perhaps Tribolium cells have the ability to uptake and/or transport dsRNA 

efficiently, whereas Drosophila cells lack this ability.  Our results indicate that while the 

Tribolium genome has additional RNAi machinery genes there is no evidence that these genes 

enhance the robustness of the systemic RNAi response.  Additionally, we find no evidence that 

the dsRNA uptake mechanism is conserved among Tribolium and C. elegans, suggesting that 

insects with a systemic RNAi response uptake dsRNA through a different mechanism.   
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Materials and Methods 

Cloning genes 

Total RNA was extracted from Tribolium Ga-1 pupae using the RNeasy Protect Mini Kit 

(Qiagen, Valencia, CA, USA).  cDNA was synthesized using the SuperScript III kit (Invitrogen, 

Carlsbad, CA, USA).  Tribolium homologs of the Dicer, Argonaute and dsRBM proteins were 

identified using reciprocal BLAST analysis of Drosophila homologs.  Tribolium Sid-like 

homologs were identified using reciprocal BLAST analysis of Ce-SID-1.  Primers were designed 

with the PrimerSelect module of Lasergene (DNASTAR, Inc.).  PCR amplified fragments of 

each gene were cloned into pCR4-TOPO using the TOPO TA Cloning Kit (Invitrogen). 

dsRNA synthesis 

Template preparation for dsRNA synthesis was performed by PCR using a single primer 

designed against the pCR4-TOPO vector sequence flanking the insertion site with a T7 promoter 

sequence at the 5’ end as described previously (Tomoyasu et al. 2008).  For EGFP dsRNA 

template, gene specific forward and reverse primers with T7 promoter sequence at their 5’ ends 

were used as described previously (Tomoyasu and Denell 2004).  dsRNA was synthesized using 

the MEGAscript T7 High Yield Transcription kit (Ambion, Austin, TX, USA). 

Larval injections 

Larvae were injected as described previously (Tomoyasu and Denell 2004).  dsRNA for 

candidate genes were injected first at a concentration of 1ug/ul (approximately 0.5 ug/larva).  

dsRNA for EGFP was injected 48 hours later at a concentration of 0.01ug/ul (approximately 

0.005 ug/larva). 

Documentation 
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Larvae were analyzed for EGFP expression 72 hours after the second injection and pupae 

were analyzed 1 week after the second injection.  Larvae and pupae were documented using an 

Olympus SZX12 microscope and a Nikon DXM 1200F digital camera.  Identical exposure times 

were used for each image. 
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Results 

To test the involvement of Tribolium genes in the RNAi pathway, we devised an in vivo 

assay system utilizing a transgenic line of beetles (Pu 11) expressing EGFP in the eyes and future 

wing primordia (Tomoyasu and Denell 2004).  Our assay system is composed of two sequential 

injections.  Initially, we inject dsRNA for the putative RNAi component gene.  Then, two days 

later, dsRNA corresponding to EGFP is injected.  If the candidate gene plays an essential role in 

RNAi, removing its function should inhibit the ability of the organism to perform RNAi when 

EGFP dsRNA is introduced, meaning that EGFP will still be expressed (Fig 1A).  If the 

candidate gene is not essential for the RNAi response, then its loss of function should not affect 

the later RNAi and EGFP expression will be knocked down (Fig 1A).  Controls for this assay 

system were performed, in which genes not involved in the RNAi pathway (Ultrabithorax and 

dsRed) were knocked down, followed by EGFP RNAi.  dsRed represents an exogenous gene 

with no mRNA target in Tribolium (Fig 1D).  Ubx is a control for an endogenous gene, as it is 

expressed in the Tribolium hindwing (Tomoyasu et al. 2005) (Fig 1E).  When either dsRed or 

Ubx dsRNA was injected followed by EGFP dsRNA EGFP expression was not seen indicating 

that, at the concentrations chosen (1ug/ul dsRed or Ubx dsRNA and 0.01ug/ul EGFP dsRNA), 

the initial dsRNA does not inhibit the ability of the EGFP dsRNA to knock down EGFP (Fig 

1B-E). 

Core Machinery  

 To test the hypothesis that the efficient systemic RNAi response of Tribolium results 

from particularly effective core RNAi machinery, we performed functional analysis of Tribolium 

homologs of the Dicer, Argonaute and dsRBM proteins.    

Dicer 
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In C. elegans there is one Dicer protein that acts in both the RNAi and the miRNA 

pathway (Bernstein et al. 2001; Ketting et al. 2001; Knight and Bass 2001).  In Drosophila there 

are two Dicers, Dm-Dcr-1 and Dm-Dcr-2, which function in the miRNA pathway and the RNAi 

pathway, respectively (Lee et al. 2004).  Tribolium also has two Dicer proteins (Tomoyasu et al. 

2008) (Table 1).  Tc-Dcr-1 is an ortholog of Dm-Dcr-1 and homologous to Ce-DCR-1.  

However, phylogenetic analysis does not show that Tc-Dcr-2 is a clear ortholog of Dm-Dcr-2, 

although it shares similar domain architecture.  Furthermore, the domain architecture of Tc-Dcr-

1 is more similar to Ce-DCR-1 than to Dm-Dcr-1 (Tomoyasu et al. 2008), suggesting that 

perhaps both Tribolium Dicers have the ability to act in the RNAi pathway.  We hypothesized 

that having two Dicers with the potential to function in the RNAi pathway may contribute to the 

robustness of the RNAi response in Tribolium.  

When transgenic Tribolium larvae were first injected with Tc-Dcr-1 dsRNA and then 

later injected with EGFP dsRNA, we saw an absence of EGFP expression (Fig 2A), suggesting 

that Tc-Dcr-1 is not essential for the RNAi pathway.  When the same experiment was performed 

using Tc-Dcr-2, we saw EGFP expression in 10 of 17 (~59%) experimental individuals (Fig 2B), 

indicating that by knocking down Tc-Dcr-2 function we were able to inhibit the RNAi response.  

While our data suggest that Tc-Dcr-2 is the only Dicer essential for RNAi, it is possible that Tc-

Dcr-1 may play a role in RNAi but its absence is compensated by Tc-Dcr-2.  In order to test this 

hypothesis we performed a double knockdown of Tc-Dcr-1 and 2 followed by injection of EGFP 

dsRNA.  In this experiment, 12 of 30 (40%) experimental individuals showed EGFP expression 

(Fig 2C).  The fact that the double RNAi did not enhance the effect of Tc-Dcr-2 RNAi indicates 

that despite the domain architecture of Tc-Dcr-1, it is unlikely to be involved in the RNAi 

pathway.  
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dsRNA binding motif proteins (dsRBM) 

In Drosophila, dsRBM proteins act with RNase III endonucleases to load small RNA 

molecules into the silencing complexes (Tabara et al. 2002; Pellino and Sontheimer 2003; 

Forstemann et al. 2005; Leuschner et al. 2005; Saito et al. 2005).  Pasha is the dsRBM protein 

that interacts with Drosha (Denli et al. 2004) and Loqs is the dsRBM protein that acts with Dcr-1 

(Forstemann et al. 2005; Leuschner et al. 2005; Saito et al. 2005).  Both of these dsRBM proteins 

are important in the miRNA pathway.  R2D2 is the dsRBM protein that acts with Dcr-2 in the 

RNAi pathway (Liu et al. 2003; Pellino and Sontheimer 2003).  It has been hypothesized that 

these dsRBM proteins determine the specificity of Dicer proteins in Drosophila (Leuschner et al. 

2005; Saito et al. 2005).  If this is true perhaps the number and type of dsRBM proteins affect the 

efficiency of the RNAi pathway.  In Tribolium there are clear one to one orthologs of Drosophila 

loqs and pasha.  However, there are two genes that show some similarity with R2D2, named Tc-

R2D2 and Tc-C3PO (Tomoyasu et al. 2008) (Table 1).   

We hypothesized that having two dsRBM proteins capable of acting in the RNAi 

pathway may increase Tribolium’s RNAi response. To test this hypothesis we removed the 

function of R2D2 and C3PO by RNAi.  dsRNA for R2D2, C3PO, or a mixture of both was 

injected into Tribolium larvae, followed by the second injection of dsRNA for EGFP.  

Surprisingly, we found that removing the function of these dsRBM proteins had no effect on 

Tribolium’s ability to perform RNAi, as EGFP was efficiently knocked down in all the 

experimental groups (Fig 3).  We therefore hypothesized that perhaps the other related dsRBM 

protein known to interact with Dcr proteins, Loqs, is not specific to the miRNA pathway and 

may be able to compensate for the loss of R2D2 and C3PO.  We tested this hypothesis by 

removing the function of Loqs alone and removing the function of all three dsRBM proteins.  
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Again, we found that knocking down the dsRBM proteins had no effect on subsequent RNAi 

(Fig 4).  These data suggest that the dsRBM proteins may not be essential for the RNAi response 

in Tribolium.        

Argonaute 

Argonaute proteins are essential components of silencing complexes, and as such play an 

important role in both the RNAi and miRNA pathways.  Different Argonaute proteins are 

involved in transcriptional silencing, siRNA post-transcriptional silencing and miRNA post-

transcirptional silencing (Carmell et al. 2002; Filipowicz 2005; Parker and Barford 2006).  In 

Drosophila, Ago-1 is used in the miRNA pathway, Ago-2 is essential in the RNAi pathway 

(Okamura et al. 2004), and Piwi, Aubergine and Ago-3 are important in transcriptional silencing 

(Pal-Bhadra et al. 2004; Brennecke et al. 2007; Lin 2007).  In C. elegans there is a massive 

expansion of the Argonaute proteins (27 identified) and as in Drosophila these proteins function 

in different processes (Grishok et al. 2001; Tabara et al. 2002; Yigit et al. 2006).  Some 

Argonautes are involved in the miRNA pathway while others are involved in the RNAi pathway.  

One important class of Argonaute proteins in C. elegans is the secondary Argonautes, which 

interact with siRNAs that have been amplified via RNA dependent RNA Polymerases (RdRPs).  

The action of these secondary Argonautes is an essential, rate-limiting step of the RNAi response 

in C. elegans (Yigit et al. 2006).  Like Drosophila, Tribolium has five Argonaute genes.  

However, there is not a one to one correspondence with the Drosophila genes.  There is a single 

Tribolium ortholog of Dm-Ago-1, but two Tribolium Ago-2 paralogs (Tc-Ago-2a and b) that 

appear to be the result of a lineage specific duplication.  There is only one Tribolium ortholog 

corresponding to the Piwi/Aub class of Argonautes, as well as a single ortholog to Dm-Ago-3 

(Tomoyasu et al. 2008) (Table 1).   
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Since Ago-2 is important for the RNAi pathway in Drosophila, we hypothesized that the 

presence of two Ago2 proteins in Tribolium may contribute to the robust systemic RNAi 

response of this beetle. To test this hypothesis we performed RNAi on Tc-Ago-1, Tc-Ago-2a, or 

Tc-Ago-2b, individually as well as on Tc-Ago-2a and 2b concurrently. After the second injection 

of dsRNA for EGFP we examined the individuals for EGFP expression.  We found that 

removing Tc-Ago-1 had no effect on subsequent RNAi, as EGFP was efficiently knocked down 

(Fig 5A).  While the function of the RNAi pathway did not appear to be affected by Tc-Ago-1 

RNAi, we did see a phenotype that suggests a role for Tc-Ago-1 in the miRNA pathway.  When 

Tc-Ago-1 RNAi was performed, the injected individuals were incapable of pupation.  As the 

miRNA pathway has been shown to play a role in both C. elegans developmental timing 

(Feinbaum and Ambros 1999; Reinhart et al. 2000; Grishok et al. 2001) and insect 

metamorphosis (Bashirullah et al. 2003), these data are consistent with a role of Tc-Ago-1 in the 

miRNA pathway.  In contrast to the Tc-Ago-1 results, we found that removing the function of 

either of the Tc-Ago-2 genes resulted in a decrease in RNAi efficiency (Fig 5B, C).  8 of 28 

(~29%) Tc-Ago-2a RNAi individuals and 12 of 28 (~43%) Tc-Ago-2b individuals showed EGFP 

expression.  Our data indicate that while both Tc-Ago-2 genes are involved in the RNAi pathway 

they are not redundant, as an effect can be seen by the removal of just one homolog.  

Interestingly, double RNAi of Tc-Ago2a and 2b does not enhance the effect (Fig 5D) (12 of 44; 

~27%).  The results indicate that Tribolium has duplicated Argonaute genes that are functional in 

the RNAi pathway but our data does not necessarily indicate that Tribolium’s RNAi response is 

enhanced due to the duplication. 

Uptake 

Sid-1  
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We next addressed the hypothesis that the robust systemic RNAi response of Tribolium is 

due to efficient uptake and/or transport of dsRNA.  Several genes have been identified as playing 

a role in systemic dsRNA uptake in C. elegans (Winston et al. 2002; Feinberg and Hunter 2003; 

Tijsterman et al. 2004; Winston et al. 2007).  The transmembrane protein SID-1 is the best 

studied and plays a role in the widest variety of tissue, as it is important for dsRNA uptake in 

both somatic and germ line cells (Winston et al. 2002; Feinberg and Hunter 2003).  sid-1 

homologs have been identified in a variety of species (Winston et al. 2002; Duxbury et al. 2005; 

Aronstein 2006), although their function has remained largely unexplored.  Interestingly, 

Drosophila does not have a sid-1 homolog, leading to speculation that its absence is the reason 

for Drosophila’s lack of a systemic RNAi response (Dong and Friedrich 2005; Duxbury et al. 

2005; Aronstein 2006; Consortium 2006).  Additional work in Drosophila indicates that 

overexpression of Ce-sid-1 in culture cells increases the ability of these cells to uptake dsRNA 

from the external environment further supporting the idea that sid-1 is important in dsRNA 

uptake (Feinberg and Hunter 2003).   

In contrast to Drosophila, sid-like genes have been identified in several other insect 

species including Tribolium (Tomoyasu et al. 2008).  In Tribolium three sid-like genes have been 

identified (silA-C) Unfortunately, phylogenetic analysis has been unable to resolve the 

relationship between insect sil genes and C. elegans’ sid-1 (Tomoyasu et al. 2008).  The N-

terminal region of SID-1 is the extracellular domain while the C-terminal region is composed of 

transmembrane domains.  The C-terminal transmembrane domain is believed to act as a channel 

for dsRNA molecules (Winston et al. 2002; Feinberg and Hunter 2003).  When the C-terminal 

region of the protein is used for phylogenetic analysis, the relationship between sil genes, sid-1 

and the related C. elegans gene tag-130 is unresolved.  However, if the amino terminal region of 
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the protein is compared it appears that the Tribolium sil genes, as well as other insect and 

vertebrate sid-like genes, are much more similar to tag-130 than sid-1 (Tomoyasu et al. 2008).  

While the function of TAG-130 in C. elegans is unknown, we showed that it does not play a role 

in dsRNA uptake (Tomoyasu et al. 2008).  The inconclusive relationship between sid-like genes 

and sid-1 raises the question of whether sil genes in Tribolium play any role in dsRNA uptake. 

As stated previously there are three sid-like genes in Tribolium, silA, silB and silC.  Our 

functional analysis indicates that performing RNAi for each of the sil genes independently, or 

performing a triple RNAi has no effect on the individual’s ability to perform subsequent RNAi 

(as EGFP expression is always absent after EGFP RNAi) (Fig 6A-D).  These results suggest that 

the Tribolium sil genes do not play a role in Tribolium’s systemic RNAi response.  However, 

these results are not conclusive and must be interpreted with care.  Performing triple RNAi is a 

difficult procedure as competition between dsRNAs is known to occur which can result in a 

decrease in the effectiveness of the RNAi response (Castanotto et al. 2007; Yoo et al. 2008).  

Therefore, the possibility remains that sil genes play a redundant role in Tribolium’s systemic 

RNAi response and we were unable to efficiently remove the function of all sil genes during a 

triple RNAi experiment.  



 

 106

Discussion 

While work in C. elegans has provided invaluable data for the uptake and function of 

dsRNA there has been very little work done in other organisms.  The work described here is the 

first look at the function of RNAi component genes in an emerging model system.  If the 

mechanism of systemic RNAi is conserved between nematodes and insects we would expect to 

see conservation of RNAi components between C. elegans and Tribolium.  In contrast, we might 

expect at least some of these components to be absent in Drosophila. 

Core Machinery Genes 

There are several differences between the RNAi core machinery genes in Drosophila and 

Tribolium.  The first is that the Tc-Dcr-1 protein has a domain architecture more similar to Ce-

DCR-1 (Tomoyasu et al. 2008) suggesting that Tc-Dcr-1 may be involved in both the miRNA 

and the RNAi pathway.  Results from Dcr RNAi experiments indicate that, as in Drosophila, 

Dcr-2 is involved in the RNAi pathway.  In contrast, we did not find any indication that Tc-Dcr-

1 is involved in the RNAi pathway.  These data suggest that the two Dcr genes in Tribolium may 

function in a similar way as in Drosophila, with Dcr-1 involved in the miRNA pathway and Dcr-

2 involved in the RNAi pathway.  However, we did not detect phenotypes in either the Tc-Dcr-1 

or the double Dcr RNAi that would suggest Dcr-1’s involvement in the miRNA pathway.  In 

fact, with the exception of three individuals showing possible wing expansion defects we did not 

find any phenotype associated with Tc-Dcr-1 knockdown.  One explanation for this lack of 

phenotype is that removing the miRNA pathway at this life stage in Tribolium does not result in 

any observable phenotype.  We find this explanation unlikely as knockdown of Tc-Ago-1 does 

result in a metamorphosis phenotype.  Another possibility for this lack of phenotype is that Tc-

Dcr-1 is not essential for the miRNA pathway in Tribolium.  Perhaps another protein can 
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compensate for the loss of Dcr.  If this is the case it is possible that Tc-Dcr-1 can act in the RNAi 

pathway as well but the compensating protein masks its role.  The final possibility is that Tc-

Dcr-1 is essential for the miRNA pathway but we were unable to completely remove its function 

by RNAi. 

The second difference between the RNAi core machinery genes in Drosophila and 

Tribolium is that in Tribolium there are two dsRBM proteins that maybe involved in the RNAi 

pathway, whereas Drosophila only has one (Tomoyasu et al. 2008).  Removing any or all of the 

dsRBM proteins, R2D2, C3PO and Loqs did not appear to affect the ability of Tribolium to 

perform RNAi at a later date.  This is surprising since work in Drosophila has shown that R2D2 

is essential for the RNAi effect to occur.  In Drosophila R2D2 mutant embryos, injected dsRNA 

has no effect (Liu et al. 2003).  This is presumably due to R2D2’s important role in Dicer-2 

stability and its role in siRNA loading into RISC.  Again several explanations are possible for 

these results.  First, there is another dsRBM protein identified in Drosophila called Pasha.  Pasha 

is known to be involved in miRNA pathway through interactions with its partner Drosha (Denli 

et al. 2004).  While there is no evidence of Pasha being involved in the RNAi pathway it is 

possible that it can compensate for the loss of the other dsRBM proteins.  Second, removing 

R2D2, C3PO and Loqs requires triple RNAi, which may result in competition between the three 

dsRNAs.  This competition may decrease the effectiveness of the RNAi resulting in incomplete 

knock down.  Finally, the dsRBM proteins may not be absolutely essential to the RNAi pathway 

in Tribolium.  Perhaps their RNase III enzyme partners can function alone. 

  It is also important to note that RNAi of loqs did not affect pupation or cause any other 

obvious morphological phenotypes.  This indicates that in addition to not affecting the RNAi 

pathway loqs RNAi also did not disrupt the miRNA pathway.  
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The final major difference between the RNAi core machinery genes in Drosophila and 

Tribolium is that within the Ago-2 family there appears to have been a duplication in the lineage 

leading to Tribolium (Tomoyasu et al. 2008).  This duplication resulted in two Argonaute 

proteins, both of which may act in the RNAi pathway.  Our data indicate that these two 

Argonuates are, in fact, essential for the RNAi pathway, as removing the function of either 

inhibits the RNAi response.  Whether this duplication is responsible for the development of 

Tribolium’s exceptionally robust RNAi response is unknown.   However, this observation is 

intriguing because it has already been shown in C. elegans that Argonaute protein availability 

can influence the effectiveness of the RNAi response.   

Other Machinery Genes 

In addition to the core RNAi machinery genes there are several other RNAi component 

genes that may play a role in Tribolium’s robust systemic RNAi response.  For instance, in C. 

elegans, an essential step of the RNAi pathway is amplification of the dsRNA by RdRPs 

(Smardon et al. 2000; Sijen et al. 2001; Sijen et al. 2007).  It is possible that Tribolium also has 

an efficient amplification mechanism whereas Drosophila does not.  However, genome surveys 

find no evidence of RdRP-related genes in any metazoans (Tomoyasu et al. 2008), with the 

exception of several Caenorhabditis species, one mite (Gordon and Waterhouse 2007) and one 

cephalochordate Branchiostoma floridae (Vienne et al. 2003).  Therefore, if an amplification 

mechanism exists in Tribolium it differs from the system in C. elegans.   

Another type of protein that plays an important role in cell susceptiblity to RNAi in C. 

elegans is ERI-1 (Kennedy et al. 2004).  ERI-1 is a nuclease responsible for siRNA degradation.  

In C. elegans, it is believed that the expression of ERI-1 causes tissues, such as nervous tissue, to 

be insensitive to RNAi (Kennedy et al. 2004).  It is possible that overexpression of these types of 
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proteins in Drosophila may lead to the RNAi disparity between Tribolium and Drosophila.  

Again genome surveys are unable to provide evidence to support this hypothesis as eri-1 like 

nucleases in Tribolium and Drosophila belong to a different subclass than the Ce-eri-1 

(Tomoyasu et al. 2008).  The function of the Drosophila Eri-l like protein (Dm-Snipper) has 

been examined and there is no evidence that this class of Eri-1 like proteins is involved in RNAi 

(Kupsco et al. 2006).   

dsRNA Uptake 

While our functional data support the idea that the Tc-sil genes may not be involved 

dsRNA uptake, there are other systemic RNAi genes from C. elegans that could be considered 

candidate genes for uptake in Tribolium (Tijsterman et al. 2004; Winston et al. 2007).  

Unfortunately, the only other C. elegans systemic RNAi gene for which Tribolium has a 

homolog is rsd-3 (Tc-epsin-like) (Tomoyasu et al. 2008).  Drosophila also has an rsd-3 homolog 

(Dm-epsin-like), even though it does not have a robust systemic RNAi response. Therefore, it is 

not the presence or absence of epsin-like that is responsible for the disparity between these two 

insects.  It is possible, however, that expression differences of Epsin-like in Tribolium and 

Drosophila lead to differences in their RNAi abilities.     

In addition to work done in C. elegans, there has been some data obtained from 

Drosophila S2 cells concerning the uptake of dsRNA (Saleh et al. 2006; Ulvila et al. 2006).  

While Drosophila appears to lack a robust systemic RNAi response, S2 cells are able to uptake 

dsRNA from the extracellular environment.  Therefore, several RNAi screens have been done to 

determine what genes are necessary for this process.  The 28 genes that have been identified 

include endocytosis genes, genes involved in intracellular transport, scavenger receptors and 
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genes of unknown function (Saleh et al. 2006; Ulvila et al. 2006).  Whether these genes play a 

role in cellular uptake of dsRNA in other insect tissues remains to be seen.     

System Caveats  

The assay system used in this work was designed to identify whether candidate genes are 

involved in the RNAi pathway in Tribolium.  However, the results must be interpreted cautiously 

as both false negatives and false positives are possible.  If the initial candidate gene is involved 

in the RNAi effect but is not efficiently knocked down, false negatives can occur.  If the initial 

candidate gene is not involved in the RNAi response but competition occurs between the 

candidate gene and EGFP dsRNA false positives could result.   

We took several approaches and performed several controls to circumvent these 

problems.  First, the dsRNA for the candidate gene was injected at a moderately high 

concentration (1ug/ul) in order to effectively remove its function without saturating the 

machinery.  Second, the dsRNA for EGFP was used at a lower concentration (0.01ug/ul) to 

make the assay more sensitive to the removal of the candidate gene function.  Third, the EGFP 

dsRNA was injected two days after the initial candidate gene injection to help alleviate 

competition that may occur at the uptake level.  And fourth, controls were performed in which 

genes not involved in the RNAi pathway (Ultrabithorax and dsRed) were knocked down 

followed by EGFP RNAi.  While there are caveats to our in vivo assay system, it did produce 

functional data that is consistent with data from other model organisms (e.g. the essential role of 

Dcr-2 and Ago-2 in RNAi).  This assay system also produced some unexpected results in which 

dsRNA binding motif proteins and sid-1 like proteins do not appear essential for the RNAi 

response in Tribolium. 

Conclusion  
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The increasing availability of genomic data and the development of techniques such as 

RNAi (which allows the knockdown of gene function without the use of classical genetic 

mutants) have allowed the study of genes, development and cellular function in a vast array of 

non-model systems.  These types of comparative studies across phyla are essential if we hope to 

gain an understanding of biological conservation, diversity and evolution.  However, if 

techniques such as RNAi are to be fully implemented in these non-model systems the 

mechanisms need to be understood.  Our data suggest that the mechanism underlying the 

systemic RNAi effect seen in C. elegans is not conserved in Tribolium.  Therefore, insect 

systemic RNAi probably employs a different method than that seen in C. elegans.  

Understanding the mechanism of systemic RNAi in Tribolium may allow us to render other 

insects amendable to RNAi so that this technique can be used for functional analysis of genes 

and possibly as a method of pest control.    
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Table 1:  Orthology of RNAi and miRNA components

T. castaneum D. melanagaster C. elegans Remarks
R2D2
C3PO R2D2

Loquacious Loquacious
Pasha Pasha
Dicer 1
Dicer 2

Dicer 1
Dicer 2

While Tc-Dcr 1 apears orthologous to Dm-Dcr 1 the 
domain architecture of Tc-Dcr-1 is more similar to that of Ce-Dcr

Drosha Drosha

Argonaute 1 Argonaute 1 Alg 1
Alg 2

Argonaute 2a
Argonaute 2b Argonaute 2 Rde 1

Ergo
Argonaute 3 Argonaute 3

PIWI
PIWI
Aubergine

2mArgonaute

SAGO-1
SAGO-2
PPW-1
PPW2

RdRP
Ego 1
RRF 1
RRF3
M02B7.2
Eri 1

Snipper Snipper

Sid 1 like
proteins

Sil A
Sil B
Sil C

Y37H2C1
Sid 1
Tag 130

The orthology between the Tc-Sil proteins and the Ce-Sid like 
proteins is not resolved

dsRNA bindng 
proteins

Bidentate RNase 

1mArgonaute

Eri-1 like proteins

Rde 4

Dicer

The orthology between Prg proteins and the Ago 3 and 
PIWI classes of proteins is not clear

Prg 1
Prg 2
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Figure 1 

in vivo assay scheme for RNAi components in Tribolium.  (A) Scheme of the in vivo assay 

system.  (B) Uninjected Pu 11 larvae and pupae.  EGFP expression in the wing primordial at the 

larval stage and in the wings and eyes at the pupal stage.  (C) Pu 11 larvae and pupae injected 

with dsRNA for EGFP at a concentration of 0.01ug/ul.  EGFP expression is absent.  (D, E) Pu 

11 larvae were injected with dsRNA for dsRed (D) or Ubx (E) at a concentration of 1ug/ul 

followed by dsRNA injection for EGFP at a concentration of 0.01ug/ul. (F, G) Pu 11 larvae 

were injected with dsRNA for dsRed (F) or Ubx (G) at a concentration of 2ug/ul followed by 

dsRNA injection for EGFP at a concentration of 0.01ugul.  The injection of dsRed or Ubx 

dsRNA did not affect the ability of EGFP dsRNA to knock down EGFP expression.  Individuals 

injected with Ubx dsRNA show a hindwing to elytron transformation indicating successful 

knockdown of Ubx function.  
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Figure 2 

Functional analysis of Dicer proteins in Tribolium.  (A) Pu 11 larvae and pupae after injection of 

Dicer-1 dsRNA followed by EGFP dsRNA.  (B) Pu 11 larvae and pupae after injection of Dicer-

2 dsRNA followed by EGFP dsRNA.  (C) Pu 11 larvae and pupae after coinjection of Dicer-1 

and Dicer-2 dsRNA followed by EGFP dsRNA.  RNAi of Dicer-2 appears to reduce the 

efficiency of RNAi while RNAi of Dicer-1 does not.    
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Figure 3 

Functional analysis of dsRBM proteins in Tribolium.  (A) Pu 11 larvae and pupae after injection 

of R2D2 dsRNA followed by EGFP dsRNA.  (B) Pu 11 larvae and pupae after injection of 

C3PO dsRNA followed by EGFP dsRNA.  (C) Pu 11 larvae and pupae after coinjection of 

R2D2 and C3PO dsRNA followed by EGFP dsRNA.  RNAi of R2D2 and C3PO do not appear 

to reduce the efficiency of RNAi. 
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Figure 4 

Functional analysis of dsRBM proteins in Tribolium.  (A) Pu 11 larvae and pupae after injection 

of loqs dsRNA followed by EGFP dsRNA.  (B) Pu 11 larvae and pupae after coinjeection of 

loqs, R2D2 and C3PO dsRNA followed by EGFP dsRNA.  RNAi of loqs does not appear to 

reduce the efficiency of RNAi. 
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Figure 5 

Functional analysis of Argonaute proteins in Tribolium.  (A) Pu 11 larvae after injection of 

Argonaute-1 dsRNA followed by EGFP dsRNA.  (B) Pu 11 larvae and pupae after injection of 

Argonaute-2a dsRNA followed by EGFP dsRNA.  (C) Pu 11 larvae and pupae after injection of 

Argonaute-2b dsRNA followed by EGFP dsRNA.  (D) Pu 11 larvae and pupae after coinjection 

of Argonaute-2a and Argonaute-2b dsRNA followed by EGFP dsRNA.  RNAi of Argonaute-2a 

and Argonaute-2b appears to reduce the efficiency of RNAi while RNAi of Argonaute-1 does 

not.  RNAi of Argonaute-1 results in pupation defects presumably due to interference with the 

miRNA pathway. 
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Figure 6  

Functional analysis of Sid-1-like proteins in Tribolium.  (A) Pu 11 larvae and pupae after 

injection of silA dsRNA followed by EGFP dsRNA.  (B) Pu 11 larvae and pupae after injection 

of silB dsRNA followed by EGFP dsRNA.  (C) Pu 11 larvae and pupae after injection of silC 

dsRNA followed by EGFP dsRNA.  (D) Pu 11 larvae and pupae after coinjection of silA, silB, 

and silC dsRNA followed by EGFP dsRNA.  RNAi of the sil genes does not appear to reduce 

the efficiency of RNAi. 
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Supplementary Figure 1   

Injection of dsRNA for the RNAi component genes.  Control showing that injection of dsRNA 

for RNAi component genes does not effect EGFP expression.   
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Abstract 
 

Since its discovery a decade ago, the RNA interference (RNAi) phenomenon has been 

identified in many eukaryotic organisms spanning both plant and animal taxonomic kingdoms.  

The molecular mechanism of RNAi is highly conserved.  Once in a cell, double-stranded RNA 

(dsRNA) is processed into short interfering RNAs (siRNAs), which, upon binding with their 

homologous mRNAs, cause mRNA destruction resulting in a gene silencing effect.  While the 

mechanism of RNAi appears well conserved, the method of dsRNA entry into the cells of a 

multiellular organism (systemic RNAi) may be less conserved.  The degree to which the 

systemic RNAi response is conserved is unknown primarily because this process has only been 

extensively studied in plants and the nematode Caenorhabditis elegans.  Furthermore, the study 

of systemic RNAi has been inhibited, as this response is absent in some model organisms 

including the fruit fly Drosophila melanogaster.  Despite its absence in some species, recent 

work has established that many non-model systems do have a systemic RNAi response including 

many insect species.  We have utilized the red flour beetle Tribolium castaneum as a model for 

dsRNA uptake in insects.  Previous data suggested that the Tribolium homologs for the gene 

essential for dsRNA uptake in C. elegans sid-1 is not involved in dsRNA uptake in Tribolium.  

Therefore, we utilized the candidate gene approach to identify other genes that may be involved 

in dsRNA uptake in Tribolium.  Our data suggests that the Tribolium homolog of C. elegans rsd-

3 (Tc-epsin-like) plays an essential role in the systemic RNAi process.  Our data also suggests 

that fucosylation may play an important role in dsRNA uptake in Tribolium, as the knockdown 

of several genes involved in this modification process resulted in a decrease in the effectiveness 

of RNAi.  Further studies will reveal the degree to which the mechanism of systemic RNAi is 

conserved between organisms, which will increase the power of RNAi as a genetic tool.  
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Introduction 

 In this genomic era, RNA interference (RNAi) has emerged as a powerful reverse genetic 

technique to allow the study of gene function in a variety of model and non-model systems.  

RNAi is a gene-silencing pathway triggered by dsRNA complementary to an mRNA target (Fire 

et al. 1998).  When “trigger” dsRNA is introduced into a cell, it is cleaved by the endonuclease 

Dicer into short interfering RNAs (siRNAs) approximately 21bp in length (Bernstein et al. 2001; 

Knight and Bass 2001; Carmell and Hannon 2004).  These siRNAs are then incorporated into the 

RNA-induced silencing complex (RISC) (Hammond et al. 2000; Filipowicz 2005), which 

through the action of its catalytic component Argonaute binds the complementary mRNA target 

and causes its destruction (Tabara et al. 1999; Fagard et al. 2000; Hammond et al. 2001; Song et 

al. 2004; Parker and Barford 2006). 

The mechanism of RNAi is highly conserved, with its components being found across 

plant and animal phyla.  In many organisms, the RNAi pathway plays essential roles in the 

regulation of gene expression (Meister and Tuschl 2004), viral protection (Waterhouse et al. 

2001; Wang et al. 2006) and genome maintenance (Lippman and Martienssen 2004).  The 

biggest challenge in harnessing RNAi as a gene-silencing tool is introducing the dsRNA into 

individual cells to initiate the RNAi response.  In some organisms this is less problematic 

because the cells are able to uptake dsRNA from their environment (Palauqui et al. 1997; 

Voinnet and Baulcombe 1997; Fire et al. 1998).  Therefore, dsRNA only needs to be introduced 

into the body of the organism (through injection) (Fire et al. 1998) or provided to the organism 

environmentally (through feeding or soaking) (Tabara et al. 1998; Timmons and Fire 1998; 

Timmons et al. 2001).  The dsRNA is then taken up by cells, and in some cases spreads from cell 

to cell.  This process, which has been termed the systemic RNAi response, occurs in some 
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organisms including plants, planarians, the nematode Caenorhabditis elegans and the red flour 

beetle Tribolium castaneum (May and Plasterk 2005). 

Systemic RNAi has only been studied thoroughly in plants and C. elegans (May and 

Plasterk 2005).  The mechanism of dsRNA uptake and spreading is not conserved between plants 

and nematodes.  In plants physiological structures such as the plasmodesmata and the phloem 

vasculature are responsible for the spreading of dsRNA species, while in C. elegans several 

essential genes have been identified in the dsRNA uptake process (May and Plasterk 2005).  

Therefore, the question of how other organisms that show a systemic RNAi response uptake 

dsRNA from their environment has yet to be answered. 

 In C. elegans, the transmembrane protein SID-1 has been identified as playing a major 

role in uptake of dsRNA from the external environment into somatic and germ-line tissues 

(Winston et al. 2002).  While sid-1 is critical for the RNAi response in C. elegans the 

conservation of this role in other animals has yet to be determined (Tomoyasu et al. 2008).  

Drosophila melanogaster, the other highly established invertebrate model organism, does not 

have a sid-1 ortholog or a robust systemic RNAi response (Tomoyasu et al. 2008).  Therefore, it 

has not been utilized as a genetic model for the cellular uptake of dsRNA.      

Because Drosophila has neither a robust systemic RNAi response nor a sid-1 ortholog it 

has been inferred that it is the presence or absence of sid-1 that determines whether an organism 

can or cannot respond to externally provided dsRNA (Winston et al. 2002; Dong and Friedrich 

2005; Consortium 2006) (Duxbury et al. 2005).  However, as more RNAi-based studies have 

been performed, it has been shown that this correlation does not always hold true.  Mosquitoes 

do not possess a sid-1 ortholog, but RNAi has been shown to be successful for multicellular 

stages in both Anopheles gambiae (Blandin et al. 2002) and Aedes aegypti (Zhu et al. 2003) 
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(Tomoyasu et al. 2008).  In contrast, sid-1-like genes have been identified in the Bombox mori 

genome, but the application of systemic RNAi in this species has been largely unsuccessful 

(Tomoyasu et al. 2008).  Additionally, the parasitic nematode Haemonchus contortus is affected 

by dsRNA when it is provided externally, by soaking, yet sid-1-like genes have not been found 

in its genome (Zawadzki et al. 2006) (Tomoyasu et al. 2008).  Finally, while Tribolium 

castaneum does have 3 sid-1-like genes (Tc-silA, silB, and silC) and a robust systemic RNAi 

response, Tribolium sil genes appear to be more similar to C. elegans tag-130, a sid-1-related 

gene that is not required for systemic RNAi (Tomoyasu et al. 2008).  Furthermore, functional 

data in Tribolium suggests that Tc-sil genes are not essential for dsRNA uptake in the flour beetle 

(Tomoyasu et al. 2008). 

If the presence of sid-1 is not essential for all organisms exhibiting a systemic RNAi 

response, then what other mechanism for dsRNA uptake exists?  In addition to sid-1 (also 

independently identified as rsd-8) four other genes (rsd-2, rsd-3, rsd-6 and sid-2) have been 

identified as playing a role in dsRNA uptake in C. elegans (Tijsterman et al. 2004; Winston et al. 

2007).  Additionally, while most Drosophila cells do not have the ability to mount an RNAi 

response from externally provided dsRNA (Miller et al. 2008),  it has been shown that 

Drosophila S2 cells do have the ability to actively take up long dsRNAs from their culture media 

(Clemens et al. 2000).  To identify the genes essential for dsRNA uptake in Drosophila S2 cell 

culture two groups independently performed genome-wide RNAi screens and identified a 

number of genes as playing an essential role in dsRNA uptake (Saleh et al. 2006; Ulvila et al. 

2006). 

To determine whether any of these candidate genes play a role in dsRNA uptake in 

Tribolium cells we utilized an assay previously described by Tomoyasu et al. (2008) (also 
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described in the Material and Methods section).  By this assay system we show that Tc-epsin-like 

(the Tribolium homolog of C. elegans rsd-3), the Tribolium homologs of Drosophila CG5382 

and CG8671, and the Tribolium homologs of several fucosylation pathway genes may play a role 

in the RNAi process in this beetle.  
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Material and Methods 

Gene Cloning 

Total RNA was extracted from three Tribolium pupae (Ga-1) using the RNeasy Protect 

Mini kit (Qiagen, Valencia, CA, USA).  cDNA synthesis was performed using the SuperScript 

III kit (Invitrogen, Carlsbad, CA, USA).  Tribolium homologs of the candidate genes analyzed in 

this study were identified using reciprocal BLAST analysis of Drosophila or C. elegans 

homologs.  PCR Primers were designed using the PrimerSelect module of Lasergene 

(DNASTAR, Inc.).  PCR products were cloned into pCR4-TOPO vector using the TOPO TA 

cloning kit (Invitrogen). 

dsRNA synthesis 

 dsRNA template was synthesized by PCR.  For the large dsRNA fragments the entire 

cloned fragment was used as template (~500-600bp).  A PCR primer corresponding to the 

sequence flanking the insertion site of the pCR4-TOPO vector with a T7 sequence at the 5’ end 

was used in this PCR amplification (as previously described in (Tomoyasu et al. 2008)).  For the 

smaller dsRNA fragments internal gene specific primers with T7 sequences at their 5’ ends were 

utilized (~200bp).  dsRNA was synthesized using the MEGAscript T7 High Yield Transcription 

kit (Ambion, Austin, TX, USA).  

Injections 

 Larvae were injected as described previously (Tomoyasu and Denell 2004).  In the in 

vivo assay system, dsRNA for the candidate gene (~40 larvae were injected with dsRNA for each 

candidate gene) was injected into Pu 11 larvae.  Pu 11 is a transgenic line of beetles expressing 

EGFP in the wing primordia at the last larval stage and in the wings and eyes of the pupal stage.  

Two days after the injection of candidate gene dsRNA EGFP dsRNA was injected into a subset 
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of the surviving larvae (a few larvae were left uninjected to act as a control).  Three days later 

EGFP expression in the larvae and seven days later EGFP expression in the pupae was 

monitored.  EGFP expression suggests that the candidate gene is involved in the RNAi process in 

Tribolium as the initial RNAi influenced the effectiveness of the EGFP RNAi.  An absence of 

EGFP expression indicates that knockdown of the candidate gene had no effect on the ability of 

the organism to perform EGFP RNAi.  This assay was previously used to illustrate the essential 

roles of Tc-Dicer-2 (Tc-Dcr-2), Tc-Argonaute-2a (Tc-Ago-2a) and Tc-Argonaute-2b (Tc-Ago-2b) 

in the RNAi machinery in Tribolium (Tomoyasu et al. 2008).  With the publication of this assay 

system controls were also performed which illustrated that when dsRNA for genes not involved 

in the RNAi pathway (dsRed and Tc-Ubx) were knocked down via RNAi, EGFP was efficiently 

silenced (Tomoyasu et al. 2008).  dsRNA for the candidate genes were injected at a 

concentration of 1ug/ul (~0.5ug/larva).  dsRNA for EGFP was injected at a concentration of 

0.01ug/ul (~0.005ug/larva) two days after the candidate gene injection.  30 minutes after the final 

injection larvae were placed on culture flour at 30C until documentation.     

Documentation 

 Larvae were analyzed for EGFP expression 72 hours after the second injection.  Pupae 

were analyzed for EGFP expression 1 week after the second injection.  For documentation larvae 

were submersed in water.  Water submersion immobilizes the larvae without causing lethality.  

After documentation larvae were dried briefly on a Kimwipe and returned to culture flour.  

Larvae and pupae were documented using an Olympus SZX12 microscope and a Nikon DXM 

1200F digital camera.  For each experiment identical exposure times were used for each image. 



 

 143

Results 

  We identified putative Tribolium homologs for systemic RNAi candidate genes found in 

either C. elegans (Table 1) or Drosophila S2 cells (Table 2).  Of the candidate genes found in C. 

elegans, only rsd-3 has an identifiable homolog in Tribolium (Tc-epsin-like) (Table 1) and other 

animals (Tijsterman et al. 2004).  Of the 28 candidate genes found in Drosophila S2 cells, 

Tribolium has one to one putative orthology with all of them except for the SrC class of 

scavenger receptors (where Drosophila has four genes and Tribolium has only one) (Table 2).  

Orthologs of many of the genes identified in one of the two S2 cell screens were also found to be 

essential for the RNAi response in C. elegans (Saleh et al. 2006) (Table 2).  To narrow the list of 

S2 cell candidate genes we cloned and analyzed only the 11 putative Tribolium orthologs 

identified as playing a critical role in RNAi in both C. elegans and S2 cell culture. 

 To test whether Tc-epsin-like (the homolog of C. elegans rsd-3) plays a role in dsRNA 

uptake in Tribolium cells we injected dsRNA for Tc-epsin-like followed by dsRNA for EGFP 

into Pu 11 larvae.  EGFP expression was seen in the wing primorida in 41% of individuals 

(n=27) at the larval stage (Fig 1C).  Unfortunately, RNAi of Tc-epsin-like appeared to cause 

lethality resulting in a low pupation rate, therefore EGFP expression at the pupal stage was not 

monitored.  The illustration that RNAi of Tc-epsin-like did affect the knockdown of EGFP 

expression (Fig 1C) suggests that Tc-epsin-like plays an essential role in RNAi in Tribolium.  To 

verify the specificity of the dsRNA used we performed RNAi of Tc-epsin-like using two smaller 

dsRNA fragments (Fig 1A).  We found that regardless of the fragment of Tc-epsin-like dsRNA 

used EGFP expression was still seen after EGFP RNAi (Fig1C-E), indicating that Tc-epsin-like 

plays an essential role in the RNAi process in Tribolium.        
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 Each of the 11 genes identified as playing a role in dsRNA uptake in both Drosophila S2 

cell culture and C. elegans was tested via the candidate gene assay.  Eight out of the 11 genes 

showed a percentage of individuals expressing EGFP after EGFP dsRNA injection at the larval 

stage (Arf72A, Gmer, CG5382, nina C, egghead, CG3911, CG8671, CG5161) (Fig 2A).  

However, EGFP expression is still seen at the larval stage in 4% of EGFP control individuals 

(n=48) in which no candidate gene has been knocked down (Fig 2A).  This is probably due to 

slight differences in the amount of EGFP dsRNA injected between individuals.  Therefore, the 

expression seen at the larval stage in the experimental individuals may be due to incomplete 

knockdown of EGFP that is unrelated to the candidate gene knockdown.  In EGFP control pupae 

(n=106) EGFP expression is never seen (Fig 2A, B), probably because more time has elapsed 

after the injection of EGFP dsRNA and therefore the knockdown is more efficient.  Of the 11 

genes analyzed only three still showed a percentage of individuals expressing EGFP at the pupal 

stage (Gmer; 15% (n=26), CG5382; 7% (n=27), CG8671; 5% (n=18)) (Fig 2A, D, F, J).  Gmer is 

the fly ortholog of GDP-keto-6-deoxymannose 3,5-epimerase/4-reductase (GER) and plays an 

essential role in cellular fucosylation events (Roos et al. 2002; Rhomberg et al. 2006), CG5382 is 

a predicted zinc finger transcription factor with unknown targets and CG8671 has an unknown 

function (Table 2).       

 Because injection of dsRNA for these 3 candidate genes followed by injection of EGFP 

dsRNA resulted in EGFP expression at both the larval and pupal stage, they were considered the 

most likely to be involved in the systemic RNAi process in Tribolium.  However, detailed 

functional information is only known for one, Gmer.  Therefore, it was chosen for more 

extensive study.  Gmer is an enzyme essential for the de novo synthesis of GDP-L-fucose (Roos 

et al. 2002; Rhomberg et al. 2006) (Fig 3A).  GDP-L-fucose with the aid of fucosyltransferases 
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can be added to glycans or proteins through a process known as fucosylation.  If fucosylation is 

important for the systemic RNAi response in Tribolium, as is expected by the EGFP expression 

seen in individuals in which Gmer function was knocked down, we would expect to see similar 

results by inhibiting other pathway members.   

The fucosylation pathway begins when GDP-L-fucose is either synthesized from GDP-D-

mannose or is obtained from the fucose salvage pathway.  Once synthesized, fucose is 

transported to the Golgi apparatus via a GDP-L-fucose transporter.  Fucosyltransferases in the 

Golgi then use GDP-L-fucose as a donor to fucosylate glycans and proteins (Roos et al. 2002) 

(Fig 3A).  These modified sugars and proteins are known to be essential in a variety of cellular 

processes including inflammation, tumor metastasis, development and signal transduction (Roos 

et al. 2002).  In Drosophila the two enzymes essential for the conversion of GDP-D-mannose to 

GDP-L-fucose are Gmd and Gmer (Roos et al. 2002; Rhomberg et al. 2006).  The predicted 

GDP-L-fucose transporter is CG9620 and many fucosyltransferases have been identified (Roos 

et al. 2002).   

When Gmd dsRNA followed by EGFP dsRNA was injected into Pu 11 larvae 10% of the 

resulting puape (n=30) showed some level of EGFP expression.  When CG9620 dsRNA 

followed by EGFP dsRNA was injected into Pu 11 larvae 21% of the resulting pupae (n=14) 

showed some level of EGFP expression.  Removing the function of both Gmer and Gmd by 

RNAi increased the percentage of EGFP-expressing pupae from 15% and 10% respectively to 

41% (n=8).  As Gmer and Gmd are believed to act in the same pathway, this increase in EGFP 

positive individuals suggest that knockdown of Gmer and Gmd independently was not complete. 
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Discussion 

 The assay described in the above experiments was designed as an in vivo approach to 

establish whether candidate genes are essential for the RNAi response in Tribolium.  However, 

because the Pu 11 line of beetles was the only line used for these studies this data only pertains 

to uptake of dsRNA into wing discs.  The possibility remains that different tissues may utilize 

different methods of dsRNA uptake.  Results from this assay must also be interrupted carefully 

as there is a possibility for both false positives and false negatives to be obtained.  When multiple 

dsRNAs are present, competition can occur between these dsRNAs, which can influence the 

effectiveness of each dsRNA (McManus et al. 2002; Hutvagner et al. 2004; Bitko et al. 2005; 

Formstecher et al. 2006; Koller et al. 2006; Castanotto et al. 2007; Stierle et al. 2007).  Such 

competition between the candidate gene dsRNA and EGFP dsRNA could result in incomplete 

knockdown of EGFP irrespective of the role of the candidate gene in the RNAi response, 

resulting in false positives.  Controls for false positives, in which dsRNA for genes not involved 

in the RNAi response were injected followed by EGFP dsRNA, have been performed and 

published (Tomoyasu et al. 2008), but there could be differences in the competitive ability of 

each dsRNA (Formstecher et al. 2006; Koller et al. 2006; Yoo et al. 2008).  False negatives are 

also possible in this assay system as anecdotal evidence suggests that the concentration of 

dsRNA required to knockdown gene function varies depending on the gene.  If the candidate 

gene function was not efficiently knocked down by RNAi or if the candidate gene has a 

redundant role in the RNAi process, false negatives may be obtained.  While we did not 

determine the level of gene knockdown after candidate gene dsRNA injection, dsRNA injection 

of five out of the 11 candidate genes resulted in individuals unable to eclose into adults (data not 

shown) and three out of the remaining six candidates that survived to sexual maturity seemed to 
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have reduced fertility rates (data not shown).  These results suggest at least some reduction in 

gene function.       

  Our results showed that for eight of the 11 candidate genes, individuals were expressing 

EGFP at the larval stage after EGFP RNAi and for three of the 11 candidate genes individuals 

were expressing EGFP at the pupal stage.  However, the percentage of individuals expressing 

EGFP was low, varying from four to 25 percent.  This low percentage is most easily explained 

by incomplete knockdown of the candidate genes, extended function of remaining proteins, or a 

functional redundancy of genes.  However, it is important to note that even the knockdown of 

known RNAi mechanism genes does not result in 100% of individuals being insensitive to EGFP 

RNAi.  We previously showed that only 58% of Tc-Dcr-2 RNAi, 28% of Tc-Ago-2a RNAi and 

42% of Tc-Ago-2b RNAi individuals showed EGFP expression after EGFP dsRNA injection 

(Tomoyasu et al. 2008).  Inhibiting the function of RNAi component genes by RNAi may pose 

inherent difficulties, because the very genes being knocked down are required for the knockdown 

to occur.  Therefore, it may not be possible to obtain long-lasting knockdown of RNAi 

components via RNAi. 

 While we focused on the candidate genes for which EGFP expression was seen in both 

the larval and pupal stages after EGFP RNAi, those for which EGFP was observed at the larval 

stage may still be involved.  If the candidate gene knockdown was incomplete (due to 

insufficient dsRNA concentration or due to inherent problems with RNAi on genes essential for 

the RNAi process) then over time the small amount of remaining functional protein may be 

sufficient to allow cellular entry of enough EGFP dsRNA to result in EGFP knockdown.  Even 

in the Tc-Dcr-2 control there are fewer EGFP positive individuals at the pupal stage then at the 

larval stage, suggesting that over time the knockdown of Tc-Dcr-2 maybe less efficient. 
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 While other candidate genes may play a role in systemic RNAi, the most likely 

candidates for involvement in the systemic RNAi pathway in Tribolium appear to be Tc-epsin-

like, Tc-Gmer and the Tribolium homologs of CG5382 and CG8671.  The last three all yielded 

individuals expressing EGFP after EGFP RNAi at both the larval and pupal stages.  Tc-epsin-

like caused lethality before the pupal stage, but showed a much higher percentage of EGFP 

expression at the larval stage than did EGFP controls.  

Gmer is known to play an essential role in the production of GDP-L-fucose, which can be 

added to proteins or other sugars through a process known as fucosylation (Roos et al. 2002; 

Rhomberg et al. 2006).  Fucosylation has been shown to influence the binding of ligands to their 

receptors (Bruckner et al. 2000; Moloney et al. 2000).  For example, in the Notch signaling 

pathway, activity of the glycosyltransferase Fringe increases the ability of the Notch receptor to 

bind its ligand Delta (Bruckner et al. 2000; Moloney et al. 2000).  If there is a dsRNA receptor 

present on the surface of Tribolium cells, it is possible that fucosylation of the receptor may 

influence the ability of the receptor to bind dsRNA or other components necessary for the 

internalization of dsRNA.  If this fucosylation pathway is essential for the uptake of dsRNA, the 

question remains why is the percentage of individuals showing a reduced systemic RNAi 

response so low?  In vertebrates GDP-L-fucose can be synthesized via the de novo pathway from 

GDP-D-mannose, which requires both Gmer and Gmd or by the fucose salvage pathway, which 

is independent of Gmer and Gmd (Roos et al. 2002).  Therefore, GDP-L-fucose may be provided 

via a mechanism independent of Gmer and Gmd making their presence not completely essential 

for fucosylation.  The presence of a fucose salvage pathway offers a possible explanation for 

why the percentage of individuals showing a reduced systemic RNAi response in the Gmd and 

Gmer experiments is low, however, thus far there has not been a discovery of a fucose salvage 
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pathway in Drosophila (Roos et al. 2002).  Therefore, a fucose salvage pathway may not exist in 

Tribolium.   

Even if a salvage pathway is present in Tribolium and is responsible for the low 

percentage in the Gmer and Gmd experiments, the fucose transporter is required for fucosylation 

regardless of the mechanism of GDP-L-fucose synthesis and is therefore essential for 

fucosylation.  The percentage of individuals showing EGFP expression after knockdown of 

CG9620 is higher than in either the Gmer or Gmd experiments however it still is not as high as 

the Dicer-2 control.  CG9620 is thought to be the fucose transporter in Drosophila based on 

sequence similarity, however, this classification has not been functionally illustrated.  Therefore, 

it is possible that CG9620 is not the fucose transporter or shares this role with other proteins.  

Alternatively, the percentage of individuals showing a reduced systemic RNAi response may be 

low because fucosylation may only act as a modulator of the dsRNA uptake process and may not 

be absolutely essential to the process. 

The role that the other two S2 candidate genes (CG5382 and CG8671) may play in the 

RNAi response in Tribolium is not as clear.  CG5382 is a predicted zinc-finger transcription 

factor.  As a transcription factor, this protein is unlikely to play a direct role in the uptake of 

dsRNA into Tribolium cells.  However, it may play a role in regulating the transcription of genes 

essential for either the cellular uptake of dsRNA or the RNAi mechanism itself.  CG8671 has an 

unknown function in Drosophila and therefore it is impossible to speculate on its mechanism of 

action in the RNAi response. 

In addition to the genes identified from the S2 screens, one candidate gene was targeted 

due to its important role in dsRNA uptake in C. elegans germ cells.  RSD-3 is not a 

transmembrane protein and thus its Tribolium homolog is unlikely to play a direct role in dsRNA 
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uptake.  However, proteins with epsin N-terminal homology (ENTH) domains, like RSD-3, are 

known to play essential roles in clathrin-mediated endocytosis (Horvath et al. 2007).  These 

proteins facilitate vesicle-mediated transport through the creation of membrane curvature and the 

recruitment of clathrin coat components to the membrane (Horvath et al. 2007).  Therefore, it is 

possible that the inhibition of the RNAi response we see when Tc-epsin-like is knocked down is 

due to reduced internalization of dsRNA through clathrin-mediated endocytois.   

The mRNA expression of Tc-epsin-like is ubiquitious during Tribolium embryogenesis 

(data not shown).  Interestingly, Drosophila also contains an rsd-3 homolog, Dm-epsin-like, 

whose mRNA expression pattern is limited to the salivary gland primordium, gut and muscle 

system during embryogenesis.  If this gene is found to have a limited expression profile in other 

Drosophila lifestages, then its limited expression may contribute to the lack of a robust systemic 

RNAi response in Drosophila.   

 This work has utilized the candidate gene approach to identify genes involved in the 

systemic RNAi process in Tribolium.  Candidate genes were taken from model organisms in 

which the process has been studied.  The organism in which this process has been most 

thoroughly studied is C. elegans.  C. elegans is distantly related to Tribolium and there is 

evidence that, even within nematodes, species may not uptake dsRNA in the same way (Felix 

2008).  Therefore, candidate genes from C. elegans may not be the most applicable for insect 

studies.  Drosophila is much more closely related to Tribolium, but most Drosophila cells do not 

appear able to be influenced by external dsRNA (Miller et al. 2008) and therefore this process 

has not been studied thoroughly in Drosophila.  While data does exist for dsRNA uptake in 

Drosophila cell culture, these cells are likely to be hemocytes which are very specialized cells 

and therefore the way they uptake dsRNA may not be indicative of how other insect cells uptake 
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dsRNA.  In fact, we have recently shown that when dsRNA is injected into Drosophila larva, 

hemocytes are the only cells in which effective gene knockdown is seen (Miller et al. 2008).   

To fully understand the genes involved in the systemic RNAi response there is a need for 

a forward genetic screen to be performed in more organisms that exhibit a robust systemic RNAi 

response.  Unfortunately, the only method of dsRNA introduction currently available in 

Tribolium is through injection, which is a laborious process that is not ideal for high thoroughput 

screening.  Further research into the susceptibility of Tribolium to environmentally provided 

dsRNA needs to be performed.  Genetic screens in which Tribolium is mutagenized and then 

provided (either by injection or another proven method) with lethal dsRNA would allow genes 

essential for the RNAi process in Tribolium to be identified.   

Using the candidate gene approach our data indicates that the Tribolium homolog of C. 

elegans rsd-3 (Tc-epsin-like) plays an essential role in the systemic RNAi process.  Our data also 

suggests that fucosylation may play an important role in dsRNA uptake in Tribolium.  Further 

studies will reveal the degree to which the mechanism of systemic RNAi is conserved between 

organisms, which will not only aid in utilizing RNAi as a tool to study gene function in insects 

but may also provide information essential for the use of RNAi as a pest control tool.   
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Table 1:  Candidates based on systemic RNAi genes found in C. elegans

Ce Gene Name Ce Gene ID Ce Biological Function Tc Gene Name Tc Gene ID
sid-1 CO4F5.1 dsRNA uptake somatic cells sid1-like A (silA) Tc11760

sid1-like B (silB) Tc06161
sid1-like C (silC) Tc15033

sid-2 ZK520.2 dsRNA uptake gut
rsd-2 F52G2.2 dsRNA uptake germ cells
rsd-3 C34E11.1 dsRNA uptake germ cells epsin-like Tc12168
rsd-6 F16D3.2 dsRNA uptake germ cells
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Table 2:  Candidates based on systemic RNAi genes found in Drosophila S2 cells

Gene Name Dm Gene ID Dm Biological Function Ce RNAi! Tc Gene ID
Arf72A CG6025 Endosome transport Yes Tc08443
AP-50 CG7057 Endocytosis No Tc11923
Clathrin hc CG9012 Endocytosis Lethal Tc15014
ldlCp CG6177 Exocytosis Yes/No Tc10886
light CG18028 Lysosomal transport Yes Tc15204
ninaC CG5125 Rhodopsin mediated signaling Yes Tc14087
Rab7 CG5915 Endosome transport Lethal/No Tc06036
eater CG6124 Inate immune response Unknown XP_969372*
Sr-CI CG4099 Inate immune response
Sr-CII CG8856 Inate immune response Unknown Tc15640
Sr-CIII CG31962 Inate immune response
Sr-CIV CG3212 Inate immune response
Vha16 CG3161 ATP synthase/ATPase Lethal Tc11025
VhaSFD CG17332 ATP synthase/ATPase Lethal Tc06281
Gmer CG3495 Metabolism/Fucosylation Yes Tc14956
Pi3K59F CG5373 Lipid metabolism Yes/No Tc00620
Saposin-r CG12070 Lipid metabolism Unknown Tc00449
egghead CG9659 Oogenesis Yes/No Tc08154

CG4572 Peptidase No Tc02692
CG5053 Signal transduction No Tc07768
CG8184 Ubiquitin ligase Unknown Tc04152
CG8773 Peptidase No Tc16254
CG5382 Zinc finger transcription factor Yes/No Tc09067
CG5434 Translation regulation Lethal/No Tc12172
CG3248 Unknown Unknown Tc12410
CG3911 Unknown Yes Tc14009
CG8671 Unknown Yes Tc04825
CG5161 Unknown Yes Tc07973

*XP_969372 is a NCBI prediction that partially mathces Tc_02053, however, Tc_02053 seems to be  
a chimera of at least three genes
!Yes indicates that when RNAi for the homolog of this gene in C. elegans was performed the systemic  
RNAi response was effected so that subsequent RNAi using Unc dsRNA was not effective.  No indicate
that when RNAi for the homolog of this gene in C. elegans was performed the systemic RNAi response
in not effected so that subsequent RNAi using Unc dsRNA was effective.  Lethal indicates that RNAi 
for the homolog of this gene in C. elegans caused lethality so the test was not performed.  Unknown 
indicates that the test was not performed.  / indicates that two different results were obtained depending 
on the concentration of dsRNA used to remove the candidate gene function. 
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Figure 1 

Functional analysis of the candidate gene from C. elegans  (A) Illustration of the predicted Tc-

epsin-like gene and the three regions the synthesized dsRNA corresponds with.  (B) Pu 11 larvae 

injected with EGFP dsRNA.  (B insert) Uninjected Pu 11 larvae.  (C-E) Pu 11 larvae injected 

with Tc-epsin-like dsRNA followed by EGFP dsRNA.  (C insert) Control larvae in which EGFP 

dsRNA was not injected following the Tc-epsin-like dsRNA. 
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Figure 2 

Functional analysis of the candidate genes from Drosophila S2 cells.  (A) Bar graph illustrating 

the percentage of individuals at both the larval and pupal stages expressing EGFP after injection 

of candidate gene dsRNA followed by injection of EGFP dsRNA.  (B) Pu 11 pupae injected with 

EGFP dsRNA.  (B insert) Uninjected Pu 11 pupae.  (C-M) Pu 11 pupae injected with candidate 

gene dsRNA followed by EGFP dsRNA.  (C-M inserts) Control pupae in which EGFP dsRNA 

was not injected following the candidate gene dsRNA.  Numbers on bar graph represent the 

number of positive individuals for EGFP expression/number of total individuals.   
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Figure 3 

Functional analysis of genes involved in the fucosylation pathway.  (A) Illustration of the 

fucosylation pathway.  (B) Pu 11 pupae injected with EGFP dsRNA.  (B insert) Uninjected Pu 

11 pupae.  (C-E) Pu 11 pupae injected with candidate gene dsRNA followed by EGFP dsRNA.  

(C-E inserts) Control pupae in which EGFP dsRNA was not injected following the candidate 

gene dsRNA. 
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