Economic Feasibility of Owning a Small Wind Generator

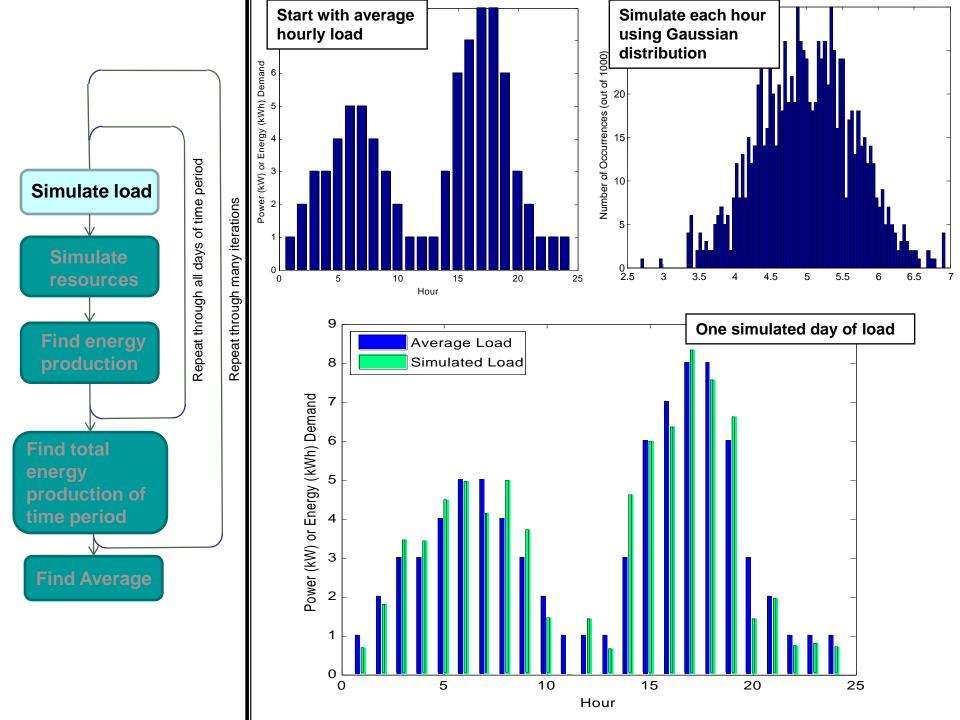
Mark Hopkins Dr. Anil Pahwa

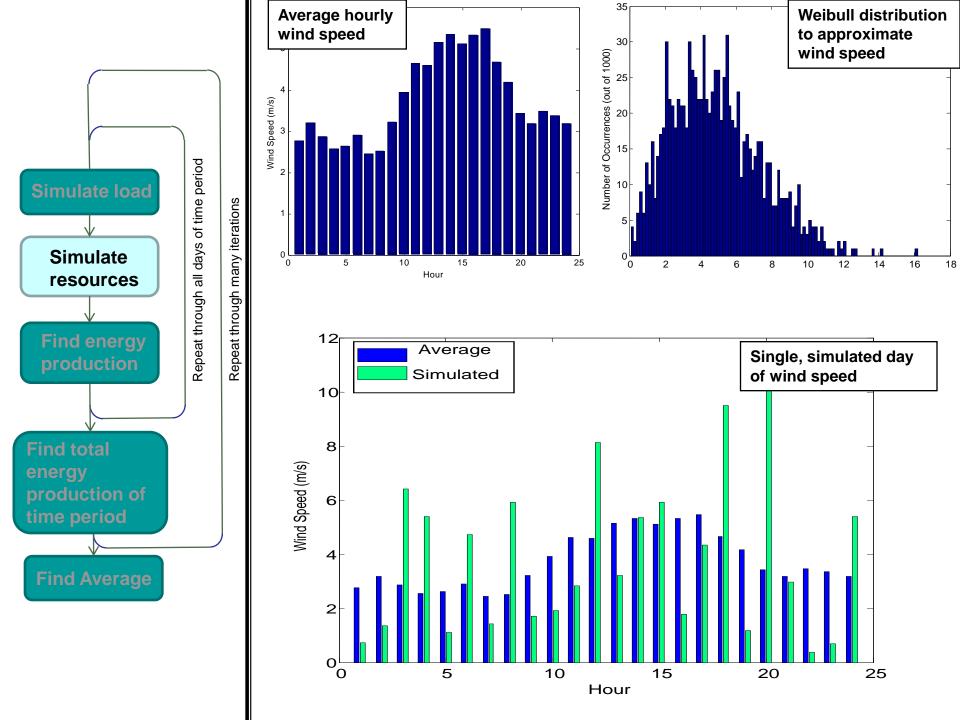
Kansas State University Department of Electrical and Computer Engineering

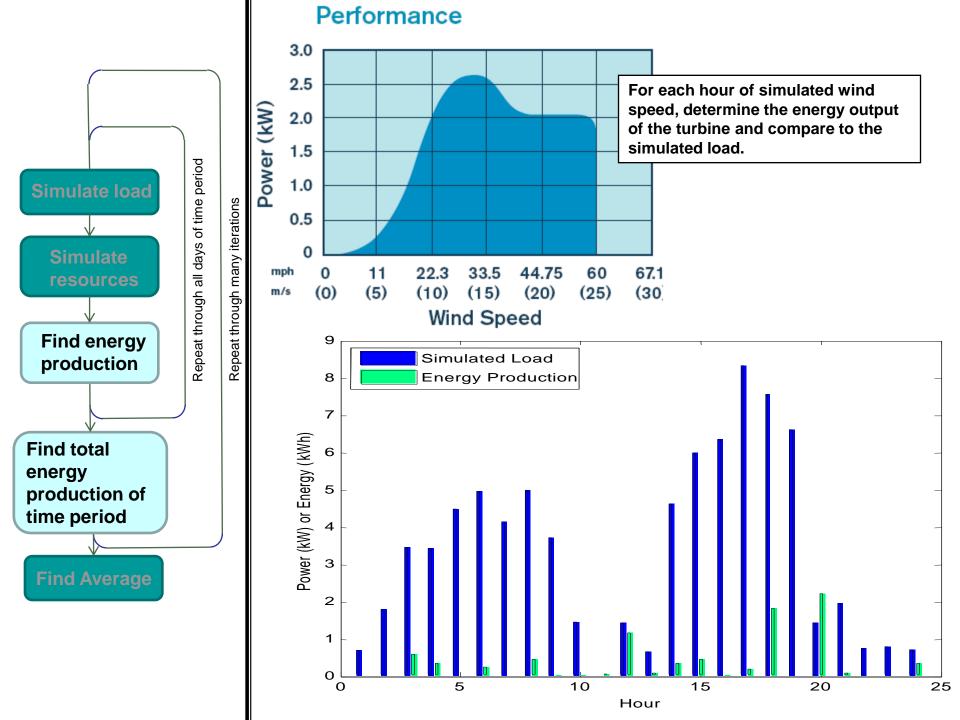
Outline

- Research Goals
- Solution/Process
- System Studies
- Conclusions

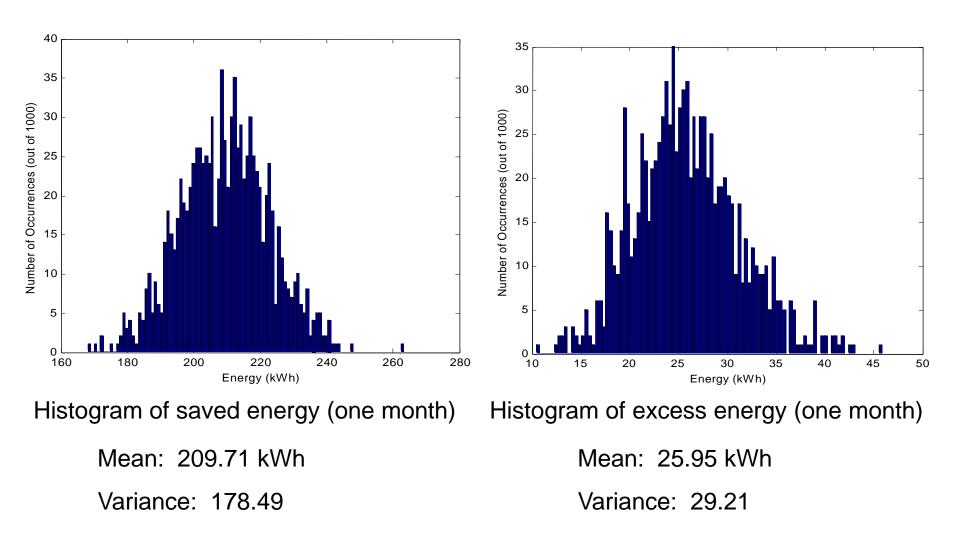
Research Goals


- Develop a tool to estimate the amount of energy that will be produced by residential sized renewable energy systems
- Use this tool to analyze several systems in various locations to...
 - ...determine expected energy production
 - ...determine if system is economically viable


Repeat through many iterations


Process

- Simulate load based on statistical 1. data
- Simulate renewable energy 2. resource based on statistical data
- Using a power curve, determine the 3. amount energy produced by the renewable generator at each time interval
- Determine the amount of saved 4 energy and excess energy produced
- Repeat for the number of days in 5. the desired time period (while keeping track of total energy production)
- Repeat all steps for the desired 6. number of iterations to find an average

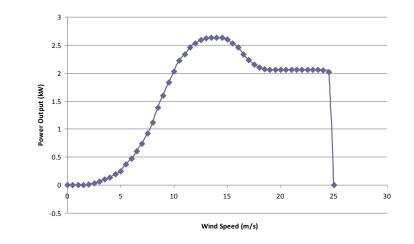


Repeat simulations until a trend is found

Systems to Study

Skystream 3.7

Excel S



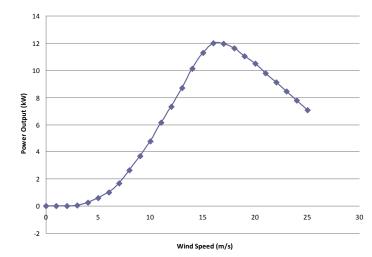
Southwest Windpower - Skystream 3.7

Rated Power Output: 1.9 kW

Rated Wind Speed: 9 m/s or 20 mph

Estimated Cost: \$6348

- •Equipment and labor not included
- •70' guyed tower


Tower Options: Various options from 30' to 70' including guyed and monopole towers

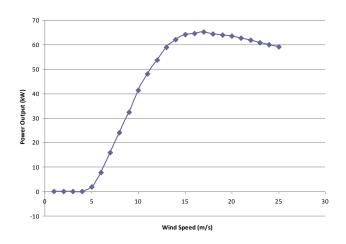
Bergey – Excel S

Rated Power Output: 10 kW

Rated Wind Speed: 13.9 m/s or 31 mph

Estimated Cost: \$41300

- •Equipment and labor not included
- •80' lattice tower


Tower Options: Various options from 60' to 140' including guyed, monopole, and lattice towers

Entegrity – EW50

Rated Power Output: 50 kW

Rated Wind Speed: 11.3 m/s or 25.3 mph

Estimated Cost: \$200000

- •Estimate from Moscow High School installation
- •100' monopole tower

Tower Options: Various options from 72' to 120' including lattice and monopole towers

Assumptions

•All Kansas Locations

•Based on expected energy production in November

•Residential Home with 2.69 kW average yearly load

•Cost of energy = 0.08 \$/kWh

•No true net metering (0.02 \$/kWh sellback)

•Cost of energy increases by 1% per year

Simulations/Results

(Kansas - Without Net Metering)

by KW average yearly			
Wh	20 Year Net Present Value (based on production mean)		
2 \$/kWh sellback)			
by 1% per year	Skystream (\$6348)	Excel S (\$41,300)	EW50 (\$200,000)
Manhattan, KS - Airport			
Avg. Wind Speed (60m) 3.32 (class 1)	\$2,516.19	\$4,949.51	\$19,311.69
Manhattan, KS - Proper			
Avg. Wind Speed (60m) 6.16 (class 2)	\$4,252.76	\$8,753.35	\$31,198.16
Moscow, KS			
Avg. Wind Speed (60m) 7.96 (class 5)	\$6,300.45	\$11,688.05	\$47,516.05

Assumptions

•All Kansas Locations

•Based on expected energy production in November

•Residential Home with 2.69 kW average yearly load

•Cost of energy = 0.08 \$/kWh

•Net metering (0.08 \$/kWh sellback)

•Cost of energy increases by 1% per year

Simulations/Results

(Kansas - With Net Metering)

2.69 kW average yearly				
S/kWh		20 Year Net Present Value (based on production mean)		
Wh sellback)				
es by 1% per year		Skystream (\$6348)	Excel S (\$41,300)	EW50 (\$200,000)
Manhattan, KS - Airport				
Avg. Wind Speed (60m)	3.32 (class 1)	\$2,620.53	\$6,503.81	\$55,976.90
Manhattan, KS - Proper				
Avg. Wind Speed (60m	n) 6.16 (class 2)	\$4,512.76	\$13,695.64	\$97,294.17
Moscow,	KS			
Avg. Wind Speed (60m	n) 7.96 (class 5)	\$6,876.33	\$20,446.53	\$155,415.69

Assumptions

•Based on expected energy production in November

•Residential Home with 2.69 kW average yearly load

•Cost of energy incre

Simulations/Results

(With Net Metering and High Cost of Energy)

eases by 1% per year	20 Year Net Present Value (based on production mean)		
	Skystream (\$6348)	Excel S (\$41,300)	EW50 (\$200,000)
0.24 \$/kWh (national high)			
Avg. Wind Speed (60m) 3.32 (class 1)	\$7,898.61	\$19,609.00	\$168,768.05
0.11 \$/kWh (national avg.)			
Avg. Wind Speed (60m) 6.16 (class 2)	\$6,205.04	\$24,368.59	\$133,779.28
0.14 \$/kWh (11 states with higher)			
Avg. Wind Speed (60m) 7.96 (class 5)	\$12,033.58	\$35,781.43	\$271,969.48

Γ	Assumptions		Simulations/Results		
	•Residential Home with 2.69 k load	W average yearly	(Best Scenarios)		
	•Cost of energy increases by ?	1% per year			
			20 Year Net Present Value (based on production mean)		production mean)
Best	est wind in KS simulated with an average month		Skystream (\$6348)	Excel S (\$41,300)	EW50 (\$200,000)
	0.10 \$/kWh				
	Avg. Wind Speed (60m)	8.25 (class 6)	\$9,015.44	\$27,221.18	\$205,392.81
Best wind in KS simulated with the best month (Apri		il)			
	0.10 \$/kWh				
	Avg. Wind Speed (60m)	8.25 (class 6)	\$12,148.56	\$42,283.35	\$291,022.88
Best wind in US simulated with the best month					
	0.24 \$/kWh				
	Avg. Wind Speed (60m)	10.8 (class 7)	\$34,048.67	\$132,823.78	\$871,567.38

Conclusions

- A tool for predicting energy production by renewable energy sources has been developed. From this tool, payback estimates can be found.
- Through these simulations we have found
 - Net metering is not essential if systems are sized properly. However, large wind generators are economically infeasible without it.
 - Proper siting is essential for systems to succeed economically, due to both cost of energy and available wind resources

One Thing to Note

Most simulations were based on data from the month of November because it is a very average month for both wind resources and electrical load. More accurate analysis could be done by simulating each month of the year individually. Thanks

Dr. Ruth Douglas Miller Todd Halling

Questions?