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Abstract

Objectives: Antenatal exposure to organic pollutants is a
leading public health problem. Meconium is a unique
matrix to perform prenatal studies because it enables us to
retrospectively evaluate fetal exposure accumulated dur-
ing the second and third trimester. The aim of the present
study was to evaluate associations between organic
pollutant levels in meconium and birth weight in NW
Spain.
Methods: In this study, we quantify the concentrations of
50 organic pollutants together with the total values of the
most important chemical groups in meconium using gas
chromatography coupled to tandem mass spectrometry.
Results: Organochlorine pesticides, polychlorinated
biphenyls and polybrominated diphenyl ethers were
detected with the highest levels in meconium from small
for gestational age newborns. It was estimated that several
congeners were statistically significant (p<0.05). However,
organophosphorus pesticides attained higher concentra-
tions in newborns with an appropriate weight.
Conclusions: The occurrence of transplacental transfer
can be confirmed. Prenatal exposure to organic pollutants
was associated with a decrease in birth weight and,

therefore, organic pollutants could have an impact on fetal
growth. Nevertheless, these results need validation in
larger sample sized studies.

Keywords: environmental pollutants; infant; meconium;
prenatal exposure; prenatal exposure effects; small for
gestational age.

Introduction

Fetal growth defect is defined by the impossibility to
achieve intrauterine growth potential. This is usually due
to placental insufficiency, normally of unknown origin.
Interaction between environmental and genetic factors
(fetal, placental or maternal) could be pointed out. For
practical purposes, a child born “small for gestational age”
(SGA) is defined as that newborn (NB)whose birthweight is
less than the 10th percentile for gestational age and sex and
according to data derived from an appropriate reference
population [1].

This is the same definition as obstetricians apply to
define a “small fetus for gestational age” [2]. SGA neonates
are exposed to a higher risk of health problems not only
during neonatal development but also during young adult-
hood, especially short stature, neurocognitive dysfunction,
diabetes mellitus, hypertension and higher risk of cardio-
vascular disease [3].

Organic pollutants (OPs) are among possible etiolog-
ical factors for SGA [4–7]. OPs are a set of lipophilic
chemical products, most of them resistant to environ-
mental breakdown that can bio-accumulate and bio-
magnify inside the food chain [8] or transfer to animals and
humans. SomeOPsmay act as potent EndocrineDisrupting
Chemicals defined as “a chemical agent or mixture of
chemicals that interferes with any aspect of hormonal
action” [9].

Some endocrine disruptors are highly lipophilic, such
as polychlorinated biphenyls (PCBs), polybrominated
diphenyl ethers (PBDEs), dioxins and organochlorinated
pesticides (OCPs). These organic molecules are stored in
adipose tissue and have very long half-lives ranging from
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months to several years. Different authors have demon-
strated the ability of OPS to deposit in the placenta and
pass to the fetus [4, 10, 11].

Meconium is the earliest fecal excretion of an NB. In
70%of casesmeconium is expelled in the first 12 h of life. In
term infants, 99% pass their first formed stool by 48 h [12,
13]. In situations of stress, some fetuses expel meconium
into the amniotic fluid before birth but even in these NB
most of the meconium remains in the bowel. Meconium is
comprised ofwater, lipids, proteins, sterols and cholesterol
precursors, free fatty acids and other products derived from
swallowing amniotic fluid, epithelial cells, bile, lanugo
and intestinal secretions [14–16].

OPs can deposit in the meconium by several routes [17]:
– Dissemination of chemicals transported by the blood.
– Swallowing of OPs excreted by the skin, kidneys and

fetal defecation itself in the amniotic fluid.
– Excretion in the gastrointestinal tract by means of bile

after liver metabolism or other intestinal secretions.

Different studies suggest that meconium is metabolically
inert, such that once toxic substances attain this, they
remain “fossilized” [10, 18]. Therefore, meconium is a
unique matrix for the NB and enables a retrospective
evaluation of fetal exposure to OPs during a broad window
of detection in the second and third trimesters.

Meconium is a stable record of antenatal exposure and
has been used previously to evaluate exposure to envi-
ronmental toxic agents and maternal substance abuse [19,
20]. Their most important advantages [21, 22] are:
a) easily obtained as waste material;
b) generally large biological sample;
c) Meconium usually begins to form at the beginning of

the second trimester.

To the best of our knowledge, this is the first study about
the relationship between OPs and SGA using a non-
invasive biological matrix as meconium.

Materials and methods

Study design

This is a case control study with prospective and retrospective data
collection from the electronic Clinical History at the University Hos-
pital of Ourense (Ourense – Latitude: 42°20′12″ N; Longitude: 7°51′50″
O-, Spain).

Fifty pregnant women with low obstetric risk were recruited
betweenOctober andDecember 2017. Theywere given the opportunity
to takepart in the studyby transferring their clinical data anddonating

the meconium expelled by their NB the first 48 h after birth to study
environmental contaminants (Supplementary Table 1). They all signed
the informed consent after receiving information. The initial cohort
was split into two subgroups according to the NB’s birth weight.

Case group: Pregnant women who accepted to participate and whose
NB presented a birth weight lower than the 10th percentile according
to the tables of Spanish neonatal weights for gestational age and sex.

Control group: Pregnant women who accepted to participate and
whose NB presented at birth a weight greater/equal to the 10th
percentile.

Exclusion criteria: Pregnant women aged under 18, pregnant women
with pregestational chronic pathology (diabetes mellitus, chronic
hypertension, conjunctive tissue diseases, etc.), twin gestations,
pregnant women with an intrauterine diagnosis of fetal pathology
(excluding growth abnormalities) and/or vertically transmitted
infections and patientswho did not agree to take part in the study after
reading the informed consent.

Pontevedra-Vigo-Ourense Research Ethics Committe approved
the study with registration number 2014/410. The Declaration of
Helsinki on biomedical research was applied at all times.

Collection of samples

Meconium samples were collected immediately after deposition into a
diaper in the first 48 h after NB birth. The samples were also coded and
kept refrigerated until arrival at the laboratory in the University of
Vigo. Afterwards, the samples were separate from the diaper, placed
into 60 mL amber glass bottles, and frozen at −20 °C until analysis.

Extraction and detection methodologies

Meconium samples were processed following analytical procedures
optimized by Fernández-Cruz et al. [8]. Briefly, 0.50 g of the homo-
genised meconium samples were spiked with 0.50 μg/kg of surrogate
standards of each target family of chemicals (PCBs: PCB 14, PCB65 and
PCB 166; PBDEs: PBDE 77; PAHs: Chrysene-D12; OCPs: αHCH-D6,
HCB-13C6, γ-HCH-D6; DDTs: DDE-D8 and OPPs: Chlorpyrifos-D10)
(Supplementary Table 1, 2). Afterwards, the meconium samples were
pre-treated by pulverization with 2.4 g of diatomaceous earth and
extracted with acetonitrile in a SPLE (Selective Pressurized Liquid
Extraction) at 100 °C, 100 bar, three cycles and 5.0 min of cycle. Prior
the extraction, the 40 mL PLE (Pressurized Liquid Extraction) cells
with cellulose filters (BÜCHI, Switzerland) were filled from bottom to
top with two glass fibre filters, 10 g neutral silica and the pre-treated
meconium, and finally one glass fibre filter on top. The final extract
was reduced until dryness under a gentle nitrogen (analytical grade
C-45 nitrogen, Carburos Metálicos, Vigo, Spain) stream using a
TurboVap (LifeScience, Hopkinton, MA, USA). The dried extract was
redisolved in 500 uL of acetonitrile (CHROMASOLV for HPLC≥99.9%)
before the clean-up step. For such purpose, dual-layer EZ-POP SPE
cartridges (Supelco, Bellefonte, PA) were conditioned with 20 mL of
acetone (CHROMASOLV for HPLC≥99.8%), then the extracts were
added and finally 40 mL of acetonitrile were used as eluting solvent.
The eluate extracts were reduced until dryness and redissolved again
with 100 μL of acetone with APs containing 50 ng of the internal
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standards (PCB 30 andDDT-D8 and) for GC-QqQ-MS/MSdetection (gas
chromatography-triple quadrupole tandem mass spectrometry)
(Supplementary Table 3).

Statistical analyses

Descriptive statistics were performed with all variables included. A
descriptive analysis of all variables included in the studywasperformed.

Quantitative variables were expressed as mean and standard
deviation. Qualitative variables were reported with absolute and
relative frequency (percentage). Mean values of variables of interest
were compared according to the case/control group by means of the
Student’s t-test or Mann-Whitney test, as appropriate; this was after
prior verificationwhether the variables followed a normal distribution
(Kolgomorov-Smirnov test). Qualitative variables association was
estimated with the Chi-squared test. Multivariate linear regression
models were utilized in order to evaluate the correlation between OPs
and the birth weight of the NB, adjusted for maternal age, maternal
BMI, gestational week, tobacco, and the gender of the NB.

IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM
Corp.was used for statistical data analysis. Statistical significance was
considered p<0.050

Results

Twenty percent NB weighed less than the 10th percentile
for gestational age and, sex and 80% NB were of normal
weight and identified as a control group.

Table 1 shows the most important clinical features of
the total cohort, as well as of the case and the control
group. Neither group presented any significant differences
in terms of age, BMI or gestational age. In both groups 80%
were primiparous (p=0.658). A total of 35 and 40% of the
case and control groups, respectively, were smokers
(p=0.941).

Tables 2–4 show statistical values detected for OCPs,
OPPs, PCBs and PBDEs in meconium both in case and
control groups, as well as in the total sample. Significant
differences between case and control groups have been
included.

The analysis of results by chemical groups is as
follows:

Organochlorinated pesticides (OCPs): Their presence
was determined in 90% of meconium samples (Table 2).

Dieldrin and some 1,1-Bis-(4-chlorphenyl)-2,2,2-
trichelorethan (DDT) isomers were not detected in any of
the cohort samples. Cis-Chlordane was detected in higher
concentrations in the SGA group than the control group
with statistical significance (p=0.0040). Trans-Chlordane,
∑DDT and ∑OCPs values followed the same trend without
statistical significance.

Organophosphorus pesticide (OPPs): The com-
pounds evaluated are shown in Table 2. Detectable levels
were determined in 86% of samples. All congeners from
this group had concentrations that were detectable in
meconium. Diazinon and ∑OPPs had higher concentra-
tions in the control group than the SGA group with sta-
tistically significant difference (p=0.033 and p=0.029
respectively).

Polychlorinated biphenyls (PCBs): Levels detected of
PCB congeners are shown in Table 3. As can be seen, all of
the target congeners were found in 94% of meconium
samples except PCB123 that was not detected in any
sample.

Highest concentrations were determined for PCB 157
(p=0.042), PCB 209 (p=0.005) and PCB 189 (p=0.05) in the
case group vs. the control group with statistically signifi-
cant difference.

Polycyclic aromatic hydrocarbon (PAHs): PAH levels
are shown in Table 4. Theywere only detected in 43%of the
meconium samples and benzo[a]anthracene (BaA),
chrysene (Chry) and benzo[k]fluoranthene (BkF) were no
detected in any sample. The congeners with the highest
contribution were pyrene (P), dibenzo[ah]anthracene
(DBahA), indeno[1,2,3-cd]perileno (Ind123cdP) and fluo-
ranthene (F). None of the target PAHs analyzed attained
statistically significant differences among groups.

Polybrominated diphenyl ethers (PBDEs): Table 4
shows the target PBDEs.

The rate of detection in meconium was 48%. The
average values of PBDE congeners studied were always
higher in the case vs. the control group, except for PBDE
166 that was not identified in any meconium sample from
the SGA group. Statistically significant differences were
detected for PBDE 154 between groups (p=0.049).

Table : Details about the donors.

Age,
years

BMI,
kg/m

Amenorrhea at
birth, weeks

Newborn
weight, g

Controls n    

Mean . . . .
DS . . . .
Median  . . ,
Minimum   . 

Maximum   . ,
Cases
(SGA)

n    

Mean . . . ,
DS . . . .
Median    .
Minimum  . . 

Maximum  . . ,
p-Value . . . <.
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Discussion

OP detection rate in the selected meconium samples
ranged between 43 and 90%, with an average rate of 75%.
This suggests generalized fetal exposure to the target OPs
during intra-uterine life in the city of Ourense located in
NW Spain, with low level of industrialization and marked
by a predominance of service sector.

Several scientific studies have been published in the
medical literature over the last years that examine the fetal
exposure to OPs,mainly to persistent OPs (POPs) and using
other biological samples such as umbilical cord blood,
urine and neonatal blood. Nevertheless, these invasive
biological samples are difficult to collect, implicate ethical
issues and some of them are only available at the precise
time of birth. Moreover, they only show a temporary record
of exposure to OPs and cannot reflect the mother and the
child long-term exposure. The use of meconium as non-
invasive samples, offer any advantages in sampling,
handling, and ethical issues, while ensuring reliability and
similar sensitivity.

OP levels detected in the present study were relatively
low in comparison with those reported in previous studies
[23, 24]. However, they were determined in most of the
selected meconium samples that showed a profile of the
exposition of OPs during intra-uterine life. Despite their
presence in such biological samples their production and
use ofmost of themhas beenbanned formore than 30years.
OPs still remain in the environment or in the mother’s body
and can cross the placenta [23] and remain in the fetus.

Organochlorinated pesticides: Cis-chlordane levels
were higher in meconium of SGA group than in meconium
of the control groupwith statistically significant difference.
Literature about antenatal exposure to chlordane and its
effects on the fetus is scarce. Tan et al. [25], with 41 NB
umbilical cord blood samples fromSingapore reported that
chlordane concentration is inversely related to the neo-
nate’s weight, cranial circumference and height. Similar
results, but without attaining statistical significance, have
been published by other groups [24].

Despite not attaining statistical significance in the
comparison of total DDT, we observed how these com-
pounds present higher levels in the SGA group. These
contaminants reached the environment after their pro-
duction and massive use as a pesticide in the 1950s. Their
use was prohibited in the USA and definitively in Spain in
the 1970s and 1990s, respectively. However, they continue
to be used in endemic malaria areas and are distributed
into the environment from old or current waste.

These lipophilic OPs are resistant to breakdown and
tend to bio-accumulate and therefore, they are commonly

found at low levels in human adipose tissue [26, 27]. The
Stockholm Convention recognizes POPs as “Highly toxic,
stable and persistent. It takes decades for them to break
down. They evaporate and travel long distances through
air and water and build up in human adipose tissue and
wildlife species” [28].

Different authors have reported associations between
DDT levels and SGA concentrations [29–33]. Guo et al. [29]
reported DDT levels in maternal and umbilical cord blood
in 81 mother-child pairs. They used multiple linear
regression analysis to find correlations between both bio-
logical matrices. They found that for every 1.0 ng/g of DDT
in umbilical cord serum neonatal weight decreased 0.10 g.

DDT is classified as a neuroendocrine disruptor. The
theoretical basis for its association with SGA focuses on its
similarity to thyroid hormones. It is plausible that this may
interfere with the hypothalamus-pituitary-thyroid axis
with the consequent development of maternal hypothy-
roidism [33]. Thyroid hormones play an important role in
bone growth by stimulating ossification center. Moreover,
these hormones improve glycogenolysis and inhibit
glycogen synthesis, whereby they increase use of glucose
in the peripheral tissues by stimulating fetal growth
[34–36].

Kim et al. [37] after analyzing thyroid hormone levels in
umbilical cord blood observed inverse relationships be-
tween DDT concentrations with thyroxine (T4) and triido-
thyronine (T3), which suggesting fetal hypothyroidism. In
their meta-analysis, Gheidarloo et al. [38] specifically
emphasized the disruptive effect of DDT and their inter-
action effects on neonatal or fetal thyroid function. How-
ever, they reported that the exact mechanism of action was
not clearly determined. In animal experiments, it was
observed lower thyroid hormone levels during DDT expo-
sure, mainly after inhibition of the thyroid stimulating
hormone (TSH) receptor in the peripheral gland [39].
Similar results were also obtained in vitro [40].

Furthermore, a low enzyme activity in the fetus should
be pointed out, such as cytochrome P450. Therefore, OP
biotransformation and detoxification processes could be
limited during the immediate fetal andneonatal period and
their anti-thyroid effect would be more noticeable [41].

Other authors [42] have published that DDT and its
metabolites are capable of negatively modulating the
insulin-like growth factor (IGF) system, especially in
women. Insuline-like growth factors 1 and 2 (IGF1, IGF2) are
expressed in the placenta and are known to regulate fetal
growth [43]. Whilst it has been demonstrated that maternal
IGF1 stimulates fetal growth by increasing nutrient transfer
to the fetus [44], fetal IGF1 stimulates its growth by
boosting anabolic events and DNA synthesis [45–47]. DDT
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might alter fetal growth by acting on the IGF system on a
maternal, placental and/or fetal level.

Nevertheless, we continue to detect conflicting data
in the literature and after large series studies some authors
do not reveal an association between DDT and SGA [6, 48].
It is possible that this inconsistency is due to the use of
populations with different degrees of exposure to OPs,
different definitions of growth abnormalities or possible
confounding factors not being discarded. However, it may
also be due to the lack of homogeneity in the matrices
studied: progestationalmaternal serum,maternal serumat
different stages of pregnancy, umbilical cord blood,
placenta, etc.

Exposure to OPPs may occur because of occupational
use or proximity to agricultural areas. However, most
populations are exposed to OPPs through diet [49, 50].
There is a strong biological plausibility that associates the
effect of OPPswith fetal growth anddevelopment bymeans
of interfering adenylyl cyclase activity. Cyclase activity is
essential to cellular differentiation [51], thyroid hormone
function alteration inmother or fetus [52] or deregulation of
nutrient transport through the placenta [53].

Most of the reported studies have been focused on the
determination of OPP metabolites in maternal urine and
found an inverse relationship between these levels and
neonatal weight [54–56]. However, other authors such as
Ferguson et al. [57] observed an association of OPP values
with delayed intra-uterine growth estimated by ultra-
sound. However, they did not detect an association be-
tween birth weight and OPP levels.

We have detected that diazinon and ∑OPP concen-
trations were higher in the control group than the SGA
group, which conflicts with prior literature. It is not
possible to compare the results of prior reports and our
findings due to variousmethodological differences. Firstly,
OPPs metabolize quickly in the human body and concen-
trations of their metabolite in urine (dialkyl phosphates)
are moderately stable during pregnancy [50]. An isolated
sample only reflects a precisemoment from the pregnancy.
Furthermore, OPPs are metabolized by means of para-
oxanase enzymes (PON1 paroxonase) and, polymorphisms
from just one nucleotide in genotypes of these enzymes can
modify relationships between exposure to OPPs and peri-
natal outcomes [58–60]. The reported results about asso-
ciations between prenatal OPP exposure and birth weight
are ambiguous due to the ability of pregnant women to
detoxify OPPs by means of the paraoxonase enzyme.

However, we have analyzed OPPs (not their metabo-
lites) in meconium samples, which offers a profile of fetal
exposure during the final trimester of gestation.

Finally, Koutroulakis et al. [61] quantified dialkyl
phosphate values (OPP metabolite) in 514 samples of am-
niotic fluid liquid extracted by amniocentesis between
week 18 and 20. They reported that macrosomic infants
presented the highest dialkyl phosphate levels (p=0.043)
with positive linear between the target OPPmetabolite and
birth weight percentile (p=0.016) and they obtained a
positive linear association with birth weight percentile
(b=4.43, p=0.016). These data are in accordance with our
results.

None of the PAH studied in our analysis revealed sta-
tistically significant differences. However, the values of
some congeners determined in SGA meconium were
higher. We only found one study performed by the present
authors [8], which analyzed meconium PAH concentra-
tions. However, we found studies in the medical literature
with PAH analyses in the placenta and umbilical cord
blood [62, 63] which reveal their materno-fetal transfer.

PAHs are generated primarily during the incomplete
combustion of organic materials (e.g. coal, oil, petrol, and
wood). Outdoor PAH levels come from industrial combus-
tion, forest fires, automobile exhaust gases [64] whereas
heating, home cooking or tobacco exposure are the main
sources of indoor PAHs [65].

PAHs can be classified into low and high molecular
weight, according to the number of aromatic rings. The
aqueous solubility decreases as molecular weight and
molecular size increases, with the consequent increase in
lipophilic nature. Our analysis of PAHs isolated more
commonly and with higher levels corresponded to those of
high molecular weight, just as reported by other authors
[62].

In the absence of studies performed on PAHs in
meconium, and even fewer studies that relate PAHs in
meconium to SGA, we proceeded to review other matrices.
NB weight and length have been related with PAH levels
and DNA-PAHs adducts (chemical compounds formed by
the union of PAH to DNA) detected in the food chain, as
well as in outdoor and indoor places [66–69].

Drwal et al. [70] in a recent review argued that PAH
levels can have a significant impact on fetal growth by
means of two mechanisms. In the first mechanism, PAH
interrupt endovascular proliferation of the early tropho-
blast and its ability to infiltrate the myometrium, which
entails an altered vascular structure in the placenta, a
reduced area of the fetoplacental vascular surface and
altered apoptosis in fetal endothelial and syncytio-
trophoblast cells; that is they will alter placental angio-
genesis. The secondmechanism proposed would be PHAs
fetotoxicity.
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We believe that in our study, statistical significance
has not been attained because of the reduced number of
samples studied.

A literature review showed that it is not possible to find
studies that evaluate PCB levels in meconium and their
relationship to fetal growth abnormalities. As commented
before, in the present study PCBs were detected in 94% of
meconium samples and PCB 157, 189 and 209 showed
higher concentrations in the case group than in the control
ones with statistical significance.

SGA related to PCBs was reported for the first time in
humans since the Yusho (Japan) incident in 1968, where
thousands of pregnant women were intoxicated with rice
oil for cooking contaminated with PCBs [71]. Since then,
multiple studies have found the same association: the
higher the concentration of PCB, the higher the risk of SGA,
after analyzing maternal blood at different stages of
gestation [13, 72–77] or umbilical cord blood [13, 78, 79].
However, other authors have not managed to reveal this
association [80–82].

We should highlight that studies that analyzed PCB
levels in umbilical cord blood as a biological matrix
manage to demonstrate a statistically significant associ-
ation between PCBs and SGA. That is, analysis of a bio-
logical sample of the fetal compartment (cord blood,
meconium, and amniotic fluid) is more sensitive in com-
parison to maternal blood or breast milk. Furthermore,
some OPs, including PCBs, do not show a statistically
significant correlation between maternal and fetal serum
concentrations [4].

A meta-analysis that attempts to elucidate the rela-
tionship between PCBs and SGA was recently published in
2019 [83]. Its results revealed a statistically significant
correlation between the reduction in birth weight and
exposure to PCBs during pregnancy (β=−0.586 g; 95%
CI:−0.629–0.543). They also shown an inverse correlation
between birth weight and exposure to PCB using umbilical
cord serum as a matrix (β=−0.833 g, 95%CI:−1.695–0.029)
or maternal serum (β=−0.504 g, 95% CI:−0.785–0.223).

The biological mechanism whereby PCBs interfere
with fetal growth is still not well established. Some
mechanisms have been involved. Some PCBs and their
metabolites have been identified as endocrine disruptors
capable of modulating the thyroid hormonal system, such
that they can interfere with and reduce circulating levels
of maternal thyroid hormones [33, 84–86]. It has been
revealed that even the subclinical type of maternal hy-
pothyroidism may be a risk factor for SGA [87].

Maervoet el al. [88] reported negative statistically
significant correlation between PCB levels and thyroid
hormones (T3, T4) in umbilical cord blood. However, they
did not detect an association with TSH values.

The other mechanism involved in the relationship be-
tween PCBs and SGA is their ability to alter the configura-
tion of the placenta. Tsuji et al. [89] found that PCB trace
levels in maternal blood of non-selected pregnant women
(n=22) are negatively associatedwith the estimated volume
of syncytiotrophoblast. Moreover, they observed a statis-
tically significant positive association between exposure to
PCBs and PIGF (placental growth factor) levels. However,
they did not detect a relationship with sFlt-1 (soluble Fms-
like tyrosine kinase-1) concentration. Therefore, PCB
exposure could also affect to the vascular remodeling and
to the nutrient transport.

Just as occurred with previous OPs, we have not found
any studies that evaluate levels of PBDEs inmeconium and
their relationship to fetal growth abnormalities. Moreover,
when comparing our results to other authors we find that
studies performed with maternal samples are not valid to
compare our findings, given that various authors [90–92]
suggest that PBDE values in umbilical cord blood are
higher and not correlated to values detected in maternal
blood. This demonstrates that the placenta is not an
effective barrier for transport of PBDEs. Therefore, we can
suppose that something similar would occur in meconium
samples.

Some authors account for the relationship between
PBDEs and SGA because of alteration to these OPs in the
thyroid system. Lin et al. [93], specifically report an inverse
relationship between PBDE 153, PBDE 154 and PBDE 184
with thyroid hormones in umbilical cord blood. We have
been able to determine higher and statistically significant
concentrations of PBDE 154 in SGA.

To explain the relationship PBDEs and SGA is the
recent proposal by Zhao et al. [94]. This working group
justifies that the negative impact of PBDEs (at trace levels)
on fetal growth could be accounted for by aberrant
methylation of placenta DNA, specifically HSD11B2
(hypermethylation) or IGF2 (hypomethylation), which
would hypothetically lead towards epigenetic changes in
these two genes.

After a literature review, we can state that there is a
sufficient body of scientific evidence that associates some
OPs with fetal growth abnormalities.

We must bear in mind that the initial stages of life are
especially vulnerable to exposure to environmental chemical

Álvarez-Silvares et al.: Organic contaminants in meconium and fetal growth 9



agents. The developing fetus is especially vulnerable to
adverse toxicological actions due to their high levels of cell
proliferation, reduced capacity to detoxify OPs, reduced ca-
pacity for an immune response and their physiological
immaturity.

However, theproblemofOPsgoesbeyond intra-uterine
life and several authors have detected relationships be-
tween antenatal exposure and pathology during childhood
and adult life. PCBs and PBDEs have been associated with
adverse effects on neurological performance and cognitive
development during childhood and adolescence [95–97].
Dichlorodiphenyldichloroethylene has been associated
with child obesity [98] and endocrine abnormalities such
as diabetes and hypothyroidism, among others.

Conclusions

To the best of our knowledge, this is the first study about
the relationship between OPs and SGA using a non-
invasive biological matrix as meconium. Meconium as a
biologicalmatrixwill enable us to analyze a lengthy period
of exposure to OPs during fetal life. OPs deposited in
meconium build up and increase in concentration, which
makes their detection more likely. Trace values in a region
that is not very contaminated reveal a relationship be-
tween some OPs and fetal growth. The exact mechanism of
action whereby OPs can have an impact on fetal growth is
unknown. Study of antenatal exposure to OPs may
contribute to shedding light on etiology and notifying
strategies to prevent many adult diseases, especially dis-
easeswith a growing incidence such as obesity or diabetes.
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