
Chapter 6

An Expert System Based on Computer Vision and
Statistical Modelling to Support the Analysis of
Collagen Degradation

Yaroslava Robles-Bykbaev, Salvador Naya,
Silvia Díaz Prado, Daniel Calle-López,
Vladimir Robles-Bykbaev, Luis Garzón-Muñóz,
Clara Sanjurjo Rodríguez and Javier Tarrío Saavedra

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.72982

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited. 

Yaroslava Robles-Bykbaev, Salvador Naya, 
Silvia Díaz Prado, Daniel Calle-López, 
Vladimir Robles-Bykbaev, Luis Garzón-Muñóz, 
Clara Sanjurjo Rodríguez and Javier Tarrío Saavedra

Additional information is available at the end of the chapter

Abstract

The poly(DL-lactide-co-glycolide) (PDLGA) copolymers have been specifically designed 
and performed as biomaterials, taking into account their biodegradability and biocom-
patibility properties. One of the applications of statistical degradation models in material 
engineering is the estimation of the materials degradation level and reliability. In some 
reliability studies, as the present case, it is possible to measure physical degradation (mass 
loss, water absorbance, pH) depending on time. To this aim, we propose an expert system 
able to provide support in collagen degradation analysis through computer vision meth-
ods and statistical modelling techniques. On this base, the researchers can determine 
which statistical model describes in a better way the biomaterial behaviour. The expert 
system was trained and evaluated with a corpus of 63 images (2D photographs obtained 
by electron microscopy) of human mesenchymal stem cells (CMMh-3A6) cultivated in a 
laboratory experiment lasting 44 days. The collagen type-1 sponges were arranged in 3 
groups of 21 samples (each image was obtained in intervals of 72 hours).

Keywords: computer vision, collagen degradation, statistical modelling,  
long short-term neural networks

1. Introduction

The statistical analysis (almost classical) of data collected through techniques like segmentation 

of images of biomaterials focuses their attention on a descriptive analysis and an implication  
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analysis or quasi-implication analysis. This approach can cause the loss of the study of pos-

sible influences of variables relative to the experiment of cell seed over biomaterials like type 
I collagen.

However, there are alternatives to classical statistical analysis based on classification meth-

ods, descriptive statistics, implication statistics and quasi-implication statistics, among oth-

ers. One of them is the hybrid methodology based on the application of neural networks, 

image segmentation and statistical modelling of the probable relation of variables that affect 
biomaterials degradation like type I collagen in the mesenchymal stromal cell culture over 

those biomaterials. This hybrid system becomes a robust system with high complexity and 

low computational cost. On the one hand, it allows a reliable analysis of experimental data 

relative to the seeding of those cells, that is, to establish if there is any possible relationship 

between the medium of cell culture and the degradation of the biomaterial where the named 

cell lineage is seeded. On the other hand, the system enables the making of decisions taking 

into account into the acquired data after the application of the analytical model.

Meanwhile, image segmentation allows the improvement of images to use them later and the 

following data collection to analyse this data statistically. While neural networks are capable 

of improving data prediction [1], the statistical modelling allows identifying and explaining 

possible relationships among variables (predictor ones) that could influence in the degrada-

tion of type I collagen as regards time (in vitro one). Therefore, the hybrid system encom-

passes several data analysis systems. In addition to the cluster analysis, the system includes 

an alternative statistic for improving the method to examine the experimental results of the 

cell culture over biomaterials.

The growing requirement for making new materials compatible with life implies not only 

their design and tests, but it also involves the statistical study of the relationship between the 

type of biomaterial and the cells seeded in it. This analysis is necessary due to the following 

experimental phases that depend upon it. Some examples of this kind of studies are:

• Statistical analysis devoted to determining the biomaterials degradation. This kind of stud-

ies allows a better identification of the effects of the variables under investigation like the 
type of biomaterial, the cell group, the culture medium, the time of cell growth and the 

degradation of the biomaterial as regards time [2 –5].

• Chen et al. developed a numeric model taking into account the stochastic hydrolysis and 

the transportation of mass to simulate the biomaterials degradation process and their ero-

sion [2].

• Hoque et al. have modelled the loss of mass using an exponential expression. They made it, 

supposing that water diffusion and water hydrolysis are the leading causes of the degrada-

tion processes of the biomaterials under analysis [3].

• To our purpose, we applied statistical learning tools (field related to the interrelation be-

tween statistics and informatics) relative to complex data for modelling tends of degrada-

tion and reliability regarding the studied materials [6].

The above research shows up the need for modelling statistically not only the mechanical, 

physical or rheological phenomes of biomaterials like type I collagen, as well as the requirement  
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to model the degradation degree for this biomaterial in cell cultures. But also, it is necessary 

to statistically model the cell growth and cell distinction. All these studies establish robust 

methods to analyse these degradation processes thanks to the contribution with additional 

information about the variables effects. The analysis of these variables is usually unknown 
with the application of just descriptive statistical methods.

The current proposal focuses their attention on a smart model that combines segmentation 
and analysis of images to get databases, which can be analysed later with a statistical model. 

Additionally, the intelligent system applies neural networks to the previously obtained data 

for improving the capacity of prediction processes. Namely, the smart system is a method-

ological proposal that allows predicting and understanding the behaviour of experimental 

data of biological populations.

2. Baseline methodologies for the system development

The objective of this proposal is to determine the relationship among the degradation of type 

I collagen where we seeded mesenchymal stromal cells. This deterioration was conditioned 

by the time (period) of study we made the observation.

The experiment was done through the statistical modelling of the type I collagen degrada-

tion degree. Additionally; we did a previous segmentation analysis (particle identification 
and particle detachment) of images acquired by an optical microscope and coloured with 

haematoxylin-eosin techniques.

This intelligent system allows the improvement of making decisions and conclusions because 

its methodology is more precise thanks to the system that applies data arithmetic analysis. 

Thus, decision-making is made according to a robust statistical analysis of the relationship 

between the type I collagen degradation and the presence of possible influent variables in 
that degradation.

As is depicted in Figure 1, below we describe all methodologies used to make up our proposal.

2.1. Generalised linear models (GLM)

Regarding the statistical modelling of experiments relative to the cell culture, that is, mod-

elling the biological behaviour, we applied GLM because this kind of models allows some 

degree of flexibility for this type of data. Nelder and Wedderburn used GLM for the first time 
in 1972. These models let variables to follow an exponential probability distribution and not 

just a normal distribution [7].

Concerning the summary of the GLM function, this last one does not produce a p-value to 

the model nor an R2. The maximum verisimilitude estimation is the base for estimation and 

inference with GLM, even though, maximisation of probability requires an iterative method 

for the least-squares approach [8].

GLM capacity to adjust the mean of the data μ, instead of the data, is the base to choose these 

models. In a GLM context, a reasonable approach would be to select among models considering 

their capacity to maximise log-likelihood l (β; μ) instead of l (β; y). But, to apply this focusing,  
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it is necessary to estimate l (β; μ) first. Likewise, it is essential to select the model with the low-

est value of Akaike information criterion (AIC) [8].

In GLM models, the linear predictor is

  n =  β  
0
   +  β  

1
    x  

1
   +  β  

2
    x  

2
   + … + β  

p
    x  

p
    (1)

where

h(μ) = η

 h =  link function

 η =  nonadditive lineal predictor

2.1.1. Predictive values

Predictive values communicate what the value of result would be expected according to the 

observed pattern between the co-variables and the outcome. At least three different values are 
essential for us, which can be calculated by regression adjustment:

1. Values adjusted to representative or particular values of X

2. Values adjusted to the mean of X

3. Values adjusted to the arithmetic mean [8]

Figure 1. General architecture of the proposed approach.
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2.2. Computer vision in decision-making for cell differentiation

Nowadays, the computer vision allows us determining the cells’ biological behaviour such as 

the growth and cell differentiation as well as the biomaterials degradation (collagen type I). 
In this line, the image segmentation is an important methodology used to achieve this objec-

tive: “a central problem in many studies, and often considered as the cornerstone of image 

analysis, is its segmentation” [9]. That is why “the type and quality of the acquired images 

influence the success of cell segmentation (identification and separation of objects)” [10].

In the same line, although segmentation seems a process with a certain degree of complexity 

and “although the segmentation is conceptually simple, it lacks generality and, therefore, can-

not be implemented reliably and effortlessly in all cell lines, modalities of image and densities 
of cells without pre-processing images” [11].

The limitations such as the specific needs related to the research, the type of objects to be treated 
in the image, the objectives pursued by the research and the restricted knowledge of the techni-

cian in charge of the segmentation process lead to the need to create specialised proposals for 

the treatment and image analysis. The absence of a universal image segmentation procedure 

is no surprise; however, it is now possible to analyse the 2D images of the behaviour of stem 

cells in vivo, such as sequential growth and differentiation with time using various techniques 
[11]. The most commonly used segmentation and image processing techniques include colour 

threshold, region growth, edge detection and Markov random fields (MRF) [12].

2.2.1. Random forest classifier

Using the extracted descriptors from the images, it is possible to apply any classifier to per-

form the image segmentation by pixels (a division of the image into different segments or 
groups of pixels that share certain characteristics). In this research, we have used a classifier 
that allows operating on modular attributes avoiding the overfitting of certain classes and has 
an optimised computational cost.

In recent years, decision forests have established themselves as one of the most promising 

techniques in machine learning, computer vision and medical image analysis [13].

The random forests operate by constructing several decision trees (predictive processes that 

map observations on an article to conclusions about the objective value of the article) in the 

training phase, to then result in class fashion (by its nature as a classifier) for each tree.

In order to train the classifier, it is necessary to define attributes, so it is necessary to extract the 
following information for each region of interest (ROI) in the training images:

• Structure tensor

A structure tensor is a matrix representation of the image partial derivatives defined as the 
second-order symmetric positive matrix J:

  J =  [ 
<  f  
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  ]    (2)

where   f  
x
    and   f  

y
    are the images of the partial spatial derivatives, ∂f/∂x and ∂f/∂y, respectively [14].
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From this matrix, all major and minor eigenvalues are separated for each pixel and channel 
in the image:

  T (v)  = 𝜆v   (3)

• Entropy

Draws a circle of radius r around each pixel, obtains the histogram of that separated circle as 

fragments of binarised image and then calculates the entropy as   ∑ 
pin histogram

     − p ∗  log  
2
   (p)   for each par-

ticle, where p is the probability of each chunk in the histogram of each channel of the image, 

in both RGB and HSB.

• Gaussian blur

In order to obtain the features related with the Gaussian blur, we perform circumvolutions 

with a Gaussian function to smooth; for this we define the following values:

• σ represents the decay radius  exp (− 0.5) ~61% . For example, the standard deviation σ of the 
Gaussian.

• Scale units represents that the value of σ is not in pixels but in units defined by the scale of 
the image size.

Then, for the process of extracting attributes, we perform n individual circumvolutions with 

Gaussian nuclei with n normal variations of σ. The larger the radius, the more unfocused the 

image will be until it reaches the point where the pixels are homogeneous [15]:

   𝛔  
min

  , 2  𝛔  
min

  , 4  𝛔  
min

  , … ,  2   n−1   𝛔  
min

     (4)

where   2   n−1   𝛔  
min

   ≤  𝛔  
max

  . 

It should be noted that for all convolution operations, the pixels that are outside the image are 

assigned the value of the pixel corresponding to the nearest edge. This gives more weight to 

the pixels at the edge of the image with respect to the central ones and greater weight to the 

pixels of the corners than to the non-corners [16].

• Sobel filter

The Sobel operator, sometimes called the “Sobel-Feldman operator” or “Sobel filter”, is used 
in image processing and computer vision, particularly in edge detection algorithms where 

images are generated with sharp edges. This operator makes a measurement of the spatial 

gradient of an image in order to highlight areas with high spatial frequency that corresponds 

to the edges. The numerical analysis shows that for certain kinds of surfaces, an even better 
estimate can be obtained by using the average weights of three such central differences [17].

For the extraction of attributes related to this filter, an approximation of the gradient of the 
intensity of each pixel in the image is calculated. Prior to the application of the filter, Gaussian 
blurs are applied varying the value of σ.
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Based on the identification of the components of the training images, the intelligent system will 
be in charge of receiving the pertinent attributes to said classes, to later classify each pixel of 
all the images of the corpus. The correct identification of these classes allows generating prob-

ability maps [15] for each object class of CMMh3A6 cells and extracting attributes such as the 
area for further analysis. With the probability maps assembled, we proceeded to segment the 

images and extract several interesting features (physical features) such as area, mean, ratios, etc.

2.3. Long short-term memory neural networks as forecasting support tools

In addition to the statistical modelling techniques that were applied to model the level of 

degradation of type I collagen, a long short-term memory neural network (LSTM NN) was 

implemented. A network of this type is characterised by being able to learn long-term depen-

dencies, an aspect that makes them an ideal strategy to carry out prediction processes based 

on previously viewed values. Traditional recurrent neural networks (RNNs) work with pre-

determined time lags in order to learn the processing of temporal sequences. This aspect 

makes it inappropriate to use an RNN for the problem described in this chapter, since the 

time periods in which the laboratory samples that are taken could be variable. When using 

an NTS LTSM, we have two important advantages over traditional RNNs: (i) it is feasible to 

take a long number of samples to train the system, and (ii) the optimal time window size can 

be variable [18].

Figure 2 presents the general architecture of the LSTM NN used. The basic unit of this net-

work is the block of memory that contains one or more memory cells and a pair of adaptive, 

multiplicative gather units which gate input and output to all cells in the block. Memory 

blocks allow cells to share the same gates in order to reduce the number of adaptive param-

eters. Each memory cell has a linear unit called Constant Error Carousel (CEC) connected to 

it. This unit allows that when there is no new input or error signals sent to the cell, the local 

value of the error (CEC) remains constant [18, 19].

In this line, we have used in this research a LSTM NN with the aim of forecasting intermediate 

values of the collagen type I degradation. Originally, the laboratory samples were taken each 

day (21 samples), whereas with the neural network, we can generate around 180 projection 

values (for every variable such as area, perimeter, diameter, eccentricity or roundness, mean 

intensity, centroid (x, y), skew and kurtosis, with respect to time). To this aim, the neural 

network was trained with the 21 original samples, and posteriorly, it predicted the rest of the 

values according to intervals of 0.25* day (6 hours).

2.4. Principal component analysis (PCA)

During the last decades, some techniques such as the Fourier-transform infrared spectroscopy 
(FTIR) has shown their high potential carrying out some genetic studies as well as providing 
support as a complementary tool for immunohistochemical methods. The great development 

that experimented several techniques of molecular biology aimed at the study of cell differ-

entiation has shown that implementing alternative approaches to perform the analysis of an 

important set of data that can be obtained from in vivo or in vitro tests is necessary [20].
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The principal component analysis (PCA) is a statistical method that has been widely used in 

several types of research of different scientific areas. Given a set data obtained experimentally, 
this method allows selecting the most representative variables and, consequently, reducing 

the dimensionality. For example, nowadays this method is used to perform different tasks 
such as X-ray fluorescence image analysis [21, 22] to identify objects; classify and extract fea-

tures from gastric cancer images [23]; determine complex interrelations between patients, dis-

eases and the best treatments for lung cancer [24]; or analyse sets of data obtained from brain 

magnetic resonance imaging (MRI) [25].

3. Experiment: Materials and samples getting

Biomaterials are considered like mechanically, functionally and physiologically acceptable 

products used to replicate the function of living tissues in biological systems securely. These 

Figure 2. General architecture of a LSTM NN [19].
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products are implanted temporarily or permanently inside a body to try the restoration of the 

existent effect and, in some cases, tissue regeneration [26].

We cultivated human mesenchymal stem cells 3A6 (CMMh-3A6); it means a lineage of immor-

talised mesenchymal stem cells, which were given by the Department of Medical Research & 

Education and Orthopaedics & Traumatology, Veterans General Hospital, Taipei, Taiwan.

We cultivated 4′200.000 CMMh-3A6 cells from x + passages. We made two changes in culture 
medium and one subcell culture (passage2 or overseeding) per week. These changes were 

made due to the observed plaques by the inverted microscope; we saw a great confluence 
(90%) in a relatively short period (approximately between 3 and 4 days).

The biomaterial type I collagen (trade house) was obtained by using a biopsy punch and cut-

ting the biomaterial in shape of 8 mm diameter discs. We arrange Col I sponges in 3 groups of 

21 samples each of them. For technical purposes, we call group #1, #2 and #3 like CCO, CCT 
and CO, respectively.

The 21 samples of group No. 1 (CCO) were type I collagen, CMMh-3A6 cells and commer-

cial osteogenic cell culture medium: hMSC Osteogenic Differentiation BulletKit™ Medium 
(Lonza, España). The group No. 2 (CCT) had 21 samples formed by CMMh-3A6 cells, type I 

collagen and cell culture medium DMEM (Dulbecco’s modified essential medium). These cells 
had 1 g/L D-glucose and pyruvate (Gibco, Estados Unidos), 5% glutamax (Gibco) and 10% 
foetal bovine serum (Gibco). This cell culture medium was seeded over type I collagen bio-

material. Finally, the group N° 3 (CO) had only 21 samples with type I collagen and commer-

cial osteogenic cell culture medium—hMSC Osteogenic Differentiation BulletKit™ Medium 
(Lonza, España)—but without cells. Therefore, the last group was the group of control.

The experiment lasted 44 days in total, and it was under conditions to replicate human organ-

ism (culture oven): pH = 7.4, temperature = 37°C and 5% of CO2. The samples were sent 
to histomorphology to embed them in paraffin. After that, paraffin was removed from the 
samples (de-paraffinisation, de-waxing). Later, we stain the samples with haematoxylin and 
eosin. Finally, we took 2D photographs with electronic microscopy. The result was 60 photos, 
which were segmented through machine learning algorithms for each group of analysis with 

a set of binary features. The classification takes into account according to the following char-

acteristics: type I collagen, extracellular matrix, image artefacts and background.

That process requires extraction of attributes to train the system, characteristics that are 
the base for the learning process. Then, we extract a set of binary images (one per each seg-

mentable attribute), and from these pictures, we get relevant information for detecting these 
characteristics in any photo.

4. Results

We segmented the images of the three experimental groups (group #1 CCO, group #2 CCT 
and group #3 CO). The group of control was group #3 because it had only type I collagen and 
commercial osteogenic cell culture medium without cells: hMSC Osteogenic Differentiation 
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BulletKit™ Medium (Lonza, España). Groups #2 and #1 contained not only cell culture 
medium (osteogenic and non-osteogenic, respectively), but also they had mesenchymal 

stromal cells. Besides, each group had 21 samples. Then, the results we got from the image 

segmentation with and without the use of a neural network and after the application of gen-

eralised linear models (GLM) to the database are:

4.1. Generalised linear models (GLM) without the neural network

In this section, we show up the results we got from the statistical modelling of the data 

group that was acquired from the image segmentation and before the application of a neural 

network.

GLM modelling: collagen degradation as regards time + cell culture group—time effects and 
cell group in the degradation of type I collagen.

With this model, where  η =  μ  
x
   =  β  

0
   +  β  

1
    x  

1
    (Time)  +  β  

2
    x  

2
    (group)  ,   μ  

x
    follows a normal distribution. 

The variance proportion explained in the model (residual deviance) was apparently small 

(4.0879e-05), and the AIC was 1454.2.

To test  H0 :  β  
0
   = 0 , we use  z = 2.049  (p − value = 2.70e − 08)  . Consequently, the cell culture group, as 

regards time, seems to have a meaningful impact on the probability of the type I collagen deg-

radation after time goes (i.e., once the model includes that variable “glm.without.network”). 

Namely, that model has the best p-value for time and the group and the smallest values for 

AIC and residual deviance compared to the other proposed models (see Table 1).

Next, we display the graphic diagnosis of the model (see Figure 3):

The normal QQ-plot shows normalised standard waste. Waste for predicted values is in the 

left panel. This waste presents a tendency to the mean; therefore, the error independence 

condition is fulfilled. It means the lower left panel exhibits that collagen degradation (pixels) 
has a tendency.

The right panel displays how the waste values of the model “glm.without.network” adjust to 

the regression line of the model, and there are atypical values. Probably, these atypical results 

belong to the error allowed in this type of experiment, as it is complicated to control shifts that 

occur due to the intrinsic activity of the cell samples under culture.

To determine the waste normality, we applied the Shapiro–Wilk test, where:

• HO: this sample comes from a normal distribution.

• H1: this sample does not come from a normal distribution.

Coefficients P-value

(Intercept) <2e-16***

Time 2.70e-08***

Group 0.0453*

Table 1. Statistical significance of the time and group co-variables in the results of the model without neural network.
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As the obtained p-value (0.0006396) is less than 0.05, we cannot deny that the distribution is 

normal (Figure 4).

Violet tone, as result of haematoxylin and eosin stain, depicts how collagen gradually 

degrades by time. This colour shows up according to the pixel intensity (from 0 to 255 values) 

or to the initial amount of collagen. (See Figure 3, these images display how the collagen has 

Figure 3. Images of primary control (diagnosis) to the model “glm.Without.Network” of the type I collagen degradation 

as regards time and cell culture group.

Figure 4. Adjustment of type I collagen degradation according to time and the group through the use of the model 

“glm.Without.Network” without the neural network. The image displays the prediction of this model for collagen 

degradation as regards time and according to each group of cell culture (CCO, CCT and CO).
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more colour at the beginning and less intensity at the end. Also, the graphics show how the 

part of the extracellular matrix is more stained than the beginning.) As white is predominant, 

then the value of pixels is close to 255 (this is the maximum colour for pixels: white). In such 

manner, this variance of intensity from violet hue to palest hue can be understood as indirect 

degradation of collagen in pixels as regards time and influenced by it. Then, this figure of the 
model predictions illustrates, in a particular manner, how this model adjusts better to type I 
collagen degradation as regards time and the cell culture group.

However, the fall of the curve, in the graphic, points out that after time, the cell activity pro-

duces an extracellular matrix (biologic cell activity). This matrix has a colouration darker than 

the collagen during the degradation process; therefore, it tends to the initial values. To under-

stand this process, see Figure 5 that depicts the three groups of the sample cells in culture 

(CCO, CCT and CO) and their colour change. This figure presents the cells at the beginning 
(T0) and the end (T40) of the experiment and exhibits how the intensity of colour diminishes 

in the collagen but increases in the extracellular matrix.

To calculate how the probability of collagen degradation changes as regards time and the 

group, we computed the odds ratio for time (1.074290e+00), the odds ratio for the group 

(1.111437e+00) and the corresponding intervals of confidence. As the interval of confidence is 
from 1.051247 to 1.097838e+00 and odds ratio for time is 1.074290e+00, then this value is inside 

the range. It means if the group variable is included in the model “glm.without.network”, then 

the probabilities of collagen degradation, regarding the time, will increase by 11.6% (0.111).

Figure 5. The difference of the colour of type I collagen between time 0 and 40 for the three cell culture groups is shown. 
Notice how the intensity of haematoxylin-eosin for collagen diminishes, while the tone for extracellular matrix begins to 

increase. The scale of all images is 300 μm.
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Therefore, when we include the group in the model “glm.without.network”, the time of col-

lagen degradation is associated with an increase of 11.1% in the mean of probabilities for the 

collagen degradation.

4.2. Generalised linear models (GLM) with the neural network

GLM modelling: collagen degradation as regards time + a group of cell culture—time effects 
and cell group in the degradation of type I collagen.

With this model, where  η =  μ  
x
   =  β  

0
   +  β  

1
    x  

1
    (Time)  +  β  

2
    x  

2
    (group)  ,   μ  

x
    follows a normal distribution. 

The variance proportion explained in the model (residual deviance) was apparently small 

(0.00006353), and the AIC was 12,200.

To test  H0 :  β  
2
   = 0 , we use  z = 38.035  (p − value = 2e − 16)  . Consequently, the cell culture group, as 

regards time, seems to have a meaningful impact on the probability of type I collagen deg-

radation after time goes (i.e., once the model includes that variable “glm.with.network”). 

Namely, that model has the best p-value for time and the group, and the smallest values for 

AIC and residual deviance compared to the other proposed models.

Then, the following image shows the graphic diagnosis of the model (see Figure 6).

The normal QQ-plot shows normalised standard waste. Waste for predicted values is in the 

left panel. This waste presents a tendency to the mean; therefore, the error independence con-

dition is fulfilled. Thus, collagen degradation (pixels) has a tendency.

The right panel displays how the waste values of the model “glm.with.network” adjust to the 

regression line of the model, and there are atypical values. Probably, these atypical results, 

same as the model without red, could be due to the error allowed in this type the experiment. 

As we explained previously, it is complicated to control shifts that occur due to the intrinsic 

activity of the cell samples under culture.

To determine the waste normality, we applied the Shapiro–Wilk test, where:

Figure 6. Graphics of primary control (diagnosis) to the model “glm.With.Network” for type I collagen degradation as 

regards time and cell culture group.
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• HO: this sample comes from a normal distribution.

• H1: this sample does not come from a normal distribution.

As the obtained p-value (3.414e-14) is less than 0.05, we cannot deny that the distribution is 

normal.

Figure 7 shows how the model with the neural network, as Figure 3 does with the model 

without the neural network, represents the prediction of collagen degradation as regards time 

and the group. Figure 7 depicts a softer behaviour about the recovering of violet tone that 

belongs to the colour of extracellular matrix that is produced by cell culture in their last days 

as we explained with Figure 4. It means the colour shows up according to the intensity of the 

values of pixels (0–255) or to the initial value of collagen. Then, the violet tone, as a result of 

haematoxylin and eosin stain, shows how collagen gradually degrades by time (see Figure 7; 

these images display how the collagen has more colour at the beginning and less intensity 

at the end. Also, the graphics show how the part of the extracellular matrix is more stained 

than the beginning). As white is predominant, then the value of pixels is close to 255 (this is 

the maximum colour for pixels: white). In such manner, this variance of intensity from violet 

hue to palest hue can be understood as indirect degradation of collagen in pixels as regards 

time and influenced by it. Then, this figure of the model predictions illustrates, in a particular 
manner, how this model adjusts better to type I collagen degradation as regards time and the 
cell culture group.

Figure 7. Adjustment of type I collagen degradation according to time and the group through the use of model “glm.

With.Network” with the neural network. The image displays the prediction of this model for collagen degradation as 

regards time and in function of each cell culture group (CCO, CCT and CO).
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Nonetheless, as we stated before, the biological behaviour of the cell culture is the same. This 

conduct means the fallen of the curve, in the graphic, shows up that after time and the cell 

activity produces an extracellular matrix (biologic cell activity). This matrix has a coloura-

tion darker than the collagen during the degradation process; therefore, it tends to the initial 

values. To understand this process, see Figure 7 that depicts the three groups of sample cells 

in culture (CCO, CCT and CO) and their colour change. This figure presents the cells at the 
beginning (T0) and the end (T40) of the experiment and exhibits how the intensity of colour 

diminishes in the collagen but increases in the extracellular matrix.

To calculate how the probability of collagen degradation changes as regards time and the 

group, we computed the odds ratio for time (1.068284e+00), the odds ratio for the group 

(1.116472e+00) and the corresponding intervals of confidence. As the interval of confidence 
is from 1.064654e+00 to 1.071926e+00 and odds ratio for time is 1.074290e+00, then this value 

is inside the range. The odds ratio for the group is 1.116472e+00, value that is also inside the 

interval of confidence (1.085327e+00, 1.148511e+00). It means if the group variable is included 
in the model “glm.with.network”, then the probabilities of collagen degradation, regarding 

the time, will increase by 11.6% (0.111).

Hence, when we include the group in the model “glm.with.network”, the time of collagen 

degradation is associated with an increase of 11.6% in the mean of probabilities for the col-

lagen degradation.

4.3. PCA applied to a set of images acquired by means of optical microscopy

In this section, we will describe the strategy followed with the aim of determining the rela-

tions among variables or descriptors obtained through optical microscopy from the cali-

brated images. For our study, we have worked with the following variables (descriptors): 
area, perimeter, diameter, eccentricity or roundness, mean intensity, centroid (x,y), skew and 

kurtosis. Each of the aforementioned variables can be related to physical variables in the sta-

tistical models. In our case, with the support of the PCA method, we want to determine how 

the area varies with respect to time, considering that several groups of study with specific 
characteristics exist.

In order to establish points of comparison for the descriptors, we used on each group of 

images the machine learning approach described in Section 2. The mathematical backgrounds 

as well as the details of the method followed (PCA) are described in several researches pub-

lished in the last years [27–30].

In this analysis, we have established three groups of study, where the collagen is present in 

each of them. Through the image analysis and machine learning approach are followed, we 

were able to define regions of interest and extract the corresponding descriptor for each value 
of time. In this way, the information matrix of each group of images is defined as follows:

a. Cells + collagen + osteogenic culture medium (CCO).

b. Cells + collagen + non-osteogenic medium (CCT).

c. Collagen + osteogenic culture medium, (CO), has no cells (control group).
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With the aim of applying the PCA analysis, we started from the hypothesis of time depen-

dence (0–40 days) in which determining the area variation is possible. The area “variation” 

in which determining aspects such as presence of extracellular matrix due to the collagen 

degradation, the change of pixel intensity as time goes by or the geometric shape that adopts 

the group in study according to time is possible is part of the analysis proposal as well as of 

the statistical model to interpret the images according to the group and time. Likewise, as a 

complementary part, we propose that groups in the analysis have a relevant weight in the col-

lagen degradation.

The following analysis shows how the area classified according to the groups CO, CCT and 
CCO changes. We have used labels with the following structure: XX_T, where XX represents 

the group and T the time. For example, the label CO_14 is the label for group CO and for the 

day (time variable) 14.

From the principal components extracted in the CO group, we selected the three most repre-

sentative that have a cumulative variance of 80.60%. In Figure 8, the weights of the compo-

nents selected are represented, and it is possible to see that the variables of the right side have 

a positive correlation. However, the variables standard deviation (StdDeev) and Round have 

a negative weight (negative correlation). In this line, it is possible to establish that a positive 

correlation between time and the descriptors of the right side of the figure exists. This means 
that area grows when the variables of the right side grow.

Figure 9 shows a graphic dispersion (biplot) of the data obtained for the groups CO, CCO and 

CCT in the 40 days of experimentation (two principal components). Likewise, it is possible to 

see small groups far from the centre.

Figure 8 presents the groups under study and the corresponding descriptors. In the same 

way, in Figures 9 and 10, it is possible to see how the first two components explain the 68.4% 
of data. The standard deviation is in the region of control groups during the first 3 days. On 
the other hand, all the variables placed on the right side of the principal component are posi-

tively correlated. In the same way, the groups that can be observed are those of control CO_T, 

with values greater than 30 days, CCO with values greater than 20 days and CCT with values 

greater than 15 days.

Figure 8. Plot of component weights obtained for CO control group.

Intelligent System138



5. Conclusions

GLM models allow greater flexibility in the statistical modelling. Namely, we can observe 
how neural networks support the improvement of p-values both for group co-variables 

like for the time. Neural networks also enhance probabilities of collagen degradation (see 

Tables 2–5) as it changes from 11.1% when a neural network is not applied to 11.6%. In the 

same manner, waste of the model is presumably smaller 4.0879e-05 than 0.00006353 without 

the neural network. It is necessary to point out that the AIC value is slightly sacrificed when 
the neural network is applied. However, this loss is part of this implementation; and despite 

this, in a general view, the use of a neural network has allowed a better adjust of the model.

Figure 9. Biplot for descriptors and dispersion values.

Figure 10. Plot of principal components enhances CO, CCO and CCT groups.
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The proposal that was established about the dependence of the area with respect to time, 

the study group and the descriptors obtained through image analysis will help to establish 

a mathematical model to explain the variation of the area. In the method used, we observed 

groupings that allow us to interpret similarities and highly positive or negative correlations 

with respect to time and the study group. An important aspect to take into account when 

Variables IC

2.5% 97.5%

(Intercept) 47839.657556 8.052878e+04

Time 1.051247 1.097838e+00

Group 1.004596 1.229641e+00

Table 2. Confidence intervals to the parameters of the model “glm.Without.Network”.

Coefficients GLM without neural network GLM with neural network

P-value Odds ratio P-value Odds ratio

(Intercept) <2e-16 6.206826e+04 <2e-16 7.349473e+04

Time 2.70e-08 1.074290e+00 <2e-16 1.068284e+00

Group 0.0453 1.111437e+00 1.09e-13 1.116472e+00

AIC 0.00006353 4.0879e-05

Residual deviance 0 12,200 1454.2

Table 5. Comparison for goodness of fit of parameters between GLM with and without the application of a neural 
network.

Coefficients P-value

(Intercept) <2e-16***

Time <2e-16***

Group 1.09e-13*

Table 3. Statistical significance of the time and group co-variables in the results of the model with neural network.

Variables IC

2.5% 97.5%

(Intercept) 7.115130e+04 7.591534e+04

Time 1.064654e+00 1.071926e+00

Group 1.085327e+00 1.148511e+00

Table 4. Confidence ranges to the parameters of the model “glm.With.Network”.
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deciding what type of neural network and the types of filters to use can both define the 
thresholds in the images and eliminate information that is not representative.

On the other hand, the LSTM neural network allows predicting a presumptive value of the 

level of collagen degradation for those instants of time for which information is not available 

(features, measurements, etc.). All this is feasible since the neural network has a recurrent 

structure and a short-term memory, whereby can infer better what are the possible values that 
will have to increase the time. Similarly, we have observed in this work that neural networks 

of this type can work with a long number of samples to train the system and also support 

optimal time window size variables.
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