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Abstract

In this dissertation we present a mathematically minded development of the correction
proof of Kleene’s theorem conversion of regular expressions into finite automata, on
the basis of equivalent expressive power. We formalise a functional implementation of
the algorithm and prove, in full detail, the soundness of its mathematical definition,
working within the Why3 framework to develop a mechanically verified implementation
of the conversion algorithm. The motivation for this work is to test the feasibility of
the deductive approach to the verification of software and pave the way to do similar
proofs in the context of a static analysis approach to (object-oriented) programming. In
particular, on the subject of behavioural types in typestate settings, whose expressiveness
stands between regular and context-free languages and, therefore, can greatly benefit
from mechanically certified implementations.

Keywords: Deductive verification; Formal languages;Automata theory; Regular expres-
sions; Kleene’s theorem; Why3.
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Resumo

Nesta dissertação apresentamos um desenvolvimento matemático da prova de correc-
ção da conversão de expressões regulares em autómatos finitos do teorema de Kleene,
com base no seu poder expressivo equivalente. Formalizamos uma implementação fun-
cional do algoritmo e provamos, em detalhe, a correcção da sua definição matemática.
Trabalhando no framework Why3 para desenvolver uma implementação mecanicamente
certificada do algoritmo de conversão. A motivação para este trabalho é testar a viabili-
dade da metodologia e preparar o caminho para fazer provas semelhantes no contexto de
uma abordagem de análise estática na programação (orientada para objectos). Em particu-
lar, no tópico dos tipos comportamentais com typestates, cuja expressividade está entre a
das linguagens regulares e livres-de-contexto. Podendo, por isso, beneficiar enormemente
de implementações mecanicamente certificadas.

Palavras-chave: Verificação dedutiva; Linguagens formais; Teoria de autómatos; Expres-
sões regulares; Teorema de Kleene; Why3.
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CHAPTER 1
Introduction

1.1 Context

As the complexity of software increases, so does the occurrence of bugs and attacks
exploiting software vulnerabilities, and as applications begin to deal with more and more
sensible data, society becomes less tolerant to faults in these systems. This brings out the
necessity for methods that enable the growing community of software developers and
engineers to build resilient and robust systems and, specifically, the need for tools able
to give guarantees about the correctness of a program.

The rampant production of code often leads to incomplete specifications and the
neglect of program correctness. Programmers and companies still heavily rely on testing
to raise confidence in a piece of code. Indeed, a carefully designed test suite may detect the
presence of many bugs, but it does not guarantee their absence [31]. Another widespread
practice is the use of programming languages with type systems. These ensure that
programs do not present errors for executing invalid operations, but the type of detected
errors is quite limited.

Just this year, on the 16th of February, not long before travel restrictions, travellers in
the UK have experienced the consequences of software failure, when Heathrow’s airport
was hit by a technical problem a↵ecting departure boards and check-in systems. Passen-
gers were left with little to no information about their flights, and electronic tickets could
not be checked-in. The issue was fixed a few hours later but, nonetheless, more than
300 flights were cancelled or grounded across Europe, with disruptions extending to the
following days1.

In a highly connected and computationally developedworld, detecting software errors
and vulnerabilities is becoming increasingly important. Companies are beginning to take
notice of the issue and, in the last few years, the push for certified software has never

1
https://www.theguardian.com/uk-news/2020/feb/17/heathrow-delays-continue-after-techn

ical-glitches

1

https://www.theguardian.com/uk-news/2020/feb/17/heathrow-delays-continue-after-technical-glitches
https://www.theguardian.com/uk-news/2020/feb/17/heathrow-delays-continue-after-technical-glitches


CHAPTER 1. INTRODUCTION

been greater. Not only from industries that have been historically demanding of highly-
secure systems, such as the aircraft control industry, but also mainstream companies like
Facebook, with their static program analyser tool Infer [15], and the use of TLA+ for
formal specification and model checking at Amazon AWS [69].

1.2 Problem

The idea of verifying programs has been around since Turing presented the first known
proof of a program in the late 40s [86], and was later popularised by the works of Robert
Floyd [40] and Tony Hoare [45], resulting in what is known as Hoare Logic, and Dijkstra’s
calculus of the weakest precondition [32]. To mathematicians the notion of proof may
be ordinary, however, many who took upon the role of programming are not capable of
designing a program specification through careful logical arguments.

One of the biggest challenges of program verification is the distance between formal
specification and the object’s behaviour it means to model and represent [64]. It is very
di�cult to know to which extent do the models accurately capture all the relevant as-
pects of the underlying system [9], which makes the process of specification all the more
delicate and complex. For this reason, when certifying software, the design phase of de-
velopment is much more thorough. In turn, this leads to fewer problems when debugging
during test and integration phases, potentially saving time, money, and other resources.

In many science and engineering fields, such as Physics or Electronics, the use of
mathematical models is very common, and so is true for the foundations of Computer
Science [43]. However, it seems like over time, with the popularisation of programming
languages and software development, computer scientists have lost their connection with
formal approaches. Undoubtedly, theoretical computer science courses taught at univer-
sities include the study of many algorithms with a strong mathematical argument. Such
is the study of formal languages, automata theory, or computational logic. Nonetheless,
most of these mathematical concepts are rather informal, which presents a barrier when
reasoning about possible implementations of these techniques and mechanised proofs of
their correction.

1.3 State of the Art

There are currently several approaches to the assistance of programmers and engineers
in the verification and validation of software, some more popular and easy to use than
others. Concretely, we consider the deductive verification [36], dynamic analysis [6], and
static analysis [90] of software. To better understand what di↵erentiates them, it is also
important to distinguish between verification and validation. Essentially, the process
of verification is concerned with the correct specification of the program, to guarantee
that it was built accordingly, consisting of structural and behavioural aspects. Whereas
validation evaluates if the program is compliant with what was envisioned and, therefore,
is usually a dynamic process that assesses if the software satisfies the expected use cases.

2
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The deductive verification of software is an incredibly powerful method to express the
correctness of a program. It allows programmers to design specifications by annotating
the source code with a set of logical statements and, with the assistance of automatic
or interactive theorem provers, prove that the implementation is correct in regards to
the specification. It is, however, a very complex and fastidious process since it demands
a great deal of time to ensure that the specification is both complete and sound, and,
furthermore, requires programmers to have a profound knowledge of logics.

Dynamic analysis is a process that examines the properties of a procedure during
runtime. While it might not be able to establish properties for the program as a whole,
it can detect violations and vulnerabilities, and provide a better understanding of the
program’s behaviour in execution. The dependence on inputs is a double-edged sword:
it easily relates changes in input to changes in the program’s behaviour and output, but
makes dynamic analysis incomplete. Furthermore, dynamic analysis requires building
possible execution models and scenarios, which escalate with the procedure’s dimension
and execution time, frequently rendering the approach unreliable or even unfeasible.

In contrast, static analysis is capable of deriving properties that hold for the program
as a whole, examining the source code directly, without actually executing it. By eval-
uating all possible execution paths and structure values, static analysis is able to avoid
faults from simple programming errors or syntax violations, to security vulnerabilities,
such as bu↵er overflows. The automatic quality of static analysis is a great advantage,
especially when compared to manual code reviews and, therefore, less prone to human
error, increasing the likelihood of finding software vulnerabilities. However, unlike dy-
namic analysis, static analysis is not able to reason about the program’s behaviour when
in runtime, i.e., it is not able to predict every context of execution, for example, how
possible inputs might a↵ect it. This usually leads to the paring of both techniques in
software quality-control environments.

Regardless, static analysis and, although rarely, dynamic analysis may, at times, use
approximation models of the properties they intend on verifying. This can lead to the
detection of false positives, i.e., identifying violations that do not actually exist. Solving
false positives requires additional review time and filtering them automatically may lead
to false negatives (undetected violations), which pose a big concern when developing
mission-critical software, often leading programmers to avoid program analysis [50].

An increasingly popular approach to static analysis is the use of behavioural types [4]
to enrich the expressive quality of types in order to describe dynamic aspects of pro-
grams. In particular, behavioural types allow programmers to specify valid sequences of
operations, for example, in terms of state-dependent availability of methods or collective
communication and interaction protocols for concurrent entities. One great advantage of
specifying behavioural models is the ability to guarantee protocol fidelity, i.e., respecting
the established constraints on the sequence of operations. In addition, the idea of cor-
rect interaction can further guarantee both safety and liveness properties, for example,
ensuring the absence of deadlocks and the eventual termination of an interaction.

3



CHAPTER 1. INTRODUCTION

1.4 Goals and Contributions

This September, we published work [85] on the subject of behavioural types, based on
Mungo [28], a tool used for associating behavioural specifications — typestates or usages—
with Java classes, and verifying if objects are used accordingly. These typestate specifica-
tions abstract the available operations on an object by defining the sequence of permitted
method-calls, which depend on the state of the object [2, 82]. The main contribution
of this work was the development of a tool to help Java programmers reason and better
visualise the behaviour of objects as typestates, by designing an algorithm that, from a
Mungo usage computes an equivalent state machine representation, and vice versa. This
can be incredibly helpful in the designing phase of a system since it is quite simple to
define automata to represent an entity or system. Furthermore, it simplifies the adapta-
tion of legacy code to incorporate behavioural specifications, which is a great step in the
popularisation of this approach and in increasing system trustability.

A great part of the work that led to the implementation of this tool was the definition
of an automaton model— deterministic object automaton (DOA)— that rightfully captures
the expressive capacity of Mungo typestates; the definition of a formal grammar for
Mungo protocols; and, inspired by the equivalence of regular expressions and finite
automata given by Kleene’s Theorem [54], the definition of a method for the bi-directional
translation between typestates and automata, by way of two algorithms that convert
Mungo protocols into DOAs, following the production rules of the grammar, and produce
a Mungo protocol by following all possible execution paths of a DOA.

It is only natural, that a tool concerned with rigour and respecting specifications
should itself be certified, in order to create trust on all levels of use. Therefore, in a
following stage of development, we hope to apply the deductive approach to the certifica-
tion of such a tool, defining a mathematical proof of the expressive equivalence of Mungo
protocols and DOAs, to develop a mechanically certified version of the tool.

In an attempt to test the viability of deductive verification and pave the way towards
such a goal, and given the obvious similarities and inspiration on the conversion between
regular expressions and finite automata, our e↵orts with this dissertation concern a con-
structive formal proof of the expressive equivalence of regular expressions and finite
automata, based on the work of Hopcroft et al. [46]. We use it to formalize and specify a
mechanisation of the mathematical results in a certified proof of the conversion algorithm
within the Why3 framework [89]. Specifically, we will be using the informal definitions
of the literature to design more rigorous and complete mathematical definitions of the
functions and concepts necessary for the conversion from the regular expression to fi-
nite automaton. The equivalence of the two representations is obtained by a language-
preserving translation. Therefore, the correctness proof of the algorithm comes down
to the proof that the accepted language remains the same upon translation. Addition-
ally, we will be implementing each of the defined mathematical concepts, including the
functions and the conversion algorithm preceding the formal proof of equivalence, as

4
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pure functional code, and specify them through careful logical assertions, in order to
mechanically-check their correction following the learnings of the constructive proof,
where, once again, the proof of expressive equivalence, comes down to the correction of
the conversion algorithm.

All in all, this thesis proves to be an important exercise for the certification of pro-
grams. Concretely, the certification of a program for the conversion of regular expressions
into finite automata. Hopefully contributing to a future where deductive verification of
software becomes mainstream in the development of our everyday systems.

1.5 Outline

In Chapter 2 we discuss the concept of formal methods, in particular, that of deductive pro-
gram verification, and their relevance in today’s necessity for reliable systems, followed
by an introduction to Why3’s platform, and the exposition of a few relevant examples of
certified projects. In Chapter 3 we review and define some of the relevant concepts of
formal languages, along with the conversion algorithm for the translation from regular
expressions into finite automata, and define a formal correctness proof for such compi-
lation. This lays the groundwork for Chapter 4, where we will be implementing these
concepts and algorithm as pure functional code, specifying them, and discussing their
mechanically-assisted verification. For these two chapters, we also include a review of
related work and discussion regarding our contributions. We conclude this document
with Chapter 5, in which we analyse the developments presented in this dissertation and
possible future explorations.

5





CHAPTER 2
Background

The general approach to programming, especially in environments that promote the
rapid production of code, is to rely on empirical methods such as testing, code reviews,
or informal guidelines. In particular, testing is the most widely adopted approach since
it can be easily automated and can, to some extent, help building confidence in a piece of
code. However, testing is not a perfect solution, as it does not guarantee the absence of
bugs. To do so would require developers to be able to draft a fully-exhaustive test suit —
something that no one can be certain of. If we intend on building complex systems that
deal with highly sensitive information or where precision is of utmost importance, there
is a special need for more thorough verification methods [47].

In this chapter, we take a look at formal methods, which try to mitigate this problem
by specifying mathematical models of systems, in order to prove properties about such
systems. On this topic, we consider abstract interpretation, model checking, type systems, be-
havioural types, and deductive program verification. The latter opens the way to an overview
of Why3, a tool that facilitates the specification of a program and its verification, with the
help of theorem provers, and the one we have chosen to work with for the developments
herein presented. Finally, we review a few projects built on top of deductive verifica-
tion tools, showing that applying deductive methods in the construction of real-world
programs is realistic and rewarding.

2.1 Formal Methods

Formal methods [22, 64] appear as a complement to system testing rather than a solution.
The use of formal methods becomes a necessity when one requires a high assurance that
the system behaves as intended. The idea is that by formalising a mathematical model
of the system — the specification — we are then able to verify the system properties and
prove whether the program complies with the desired specification, ensuring its correct

7



CHAPTER 2. BACKGROUND

behaviour. However, as testing does not guarantee the absence of errors, formal methods
do not solve bad assumptions in the system’s design or incomplete specifications.

Previously, in Sec. 1.3, we have discussed the di↵erences between dynamic analysis,
static analysis and deductive verification, as well as a brief introduction to behavioural
types. In this section, we will have a more in-depth look at some of the approaches to
program analysis, such as abstract interpretation, model checking, type systems, and
behavioural types, as well as a more detailed account of deductive program verification.

2.1.1 Abstract Interpretation

Abstract interpretation [26, 27] establishes an abstract domain (an approximation model)
in order to gain information about the semantics of a program, without performing every
calculation. It maps concrete semantics to abstract semantics, whenever, at some point,
concrete semantics pose an undecidable problem. These qualities make compilers one
of the main applications of abstract interpretation, for example for constant propagation
optimisation, where constant variables are replaced with literal values in order to save
loads of the variables and remove their uses. However, due to the loss of precision, ab-
stract interpretation models may result in over-approximations of the states in a program,
leading to the compromise of decidability over tractability.

2.1.2 Model Checking

In model checking [9, 20, 47], a program is modelled as a finite state machine and its
properties specified with temporal logic. The model checker must consider all possible
behaviours of the system, to verify if the model — the system requirements — respects
the specification, exploring any reachable states to verify safety and liveness properties.
However, trying to predict all possible execution paths may lead to a state explosion prob-
lem, i.e., the state space can grow exponentially [21]. Therefore, variants of this method
include symbolic model checking [14], in which states are represented using boolean func-
tions, avoiding the explicit construction of state machine graphs and using binary deci-
sion diagrams instead, or bounded model checking [9], a technique that limits the search
space to some threshold.

2.1.3 Type Systems

As simply put by Cardelli in his seminal work, Type Systems [16], “the fundamental
purpose of a type system is to prevent the occurrence of execution errors during the
running of a program”. Type systems can prevent these errors and prove the absence
of certain damaging behaviours by computing a static approximation of the runtime
behaviour of a program [74]. This can be achieved by syntactically classifying program
expressions according to the kind of values they can produce [71].

The fact that type systems can perform independently with very few interventions
from the programmer, makes them tractable and simple to use, thus their popularity and

8
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presence in most modern programming languages. With type systems, the programmer
is able to define abstractions that help reason about concrete intuitions, and structure
systems modularly, allowing interfaces to be designed independently from implementa-
tion [16, 74]. To be considered safe, a language must be able to guarantee that both the
language’s inherent abstractions and those defined by the programmer are preserved.

There are several approaches that answer to the necessity of more expressive type
systems, such as polymorphism [63], providing the flexibility to reuse the same code
fragment with di↵erent argument types, at the cost of increasing time for finding bugs;
dependent types [61], which allow types to be parameterised by terms of the language [71]
and can be used to mechanically encodemathematical proofs through logical prepositions
and reason about the functional correctness of a program; or behavioural types, which we
will be reviewing in the following section.

2.1.4 Behavioural Types

Stateful objects are non-uniform [70], i.e., their methods’ availability depends on their
internal state. Behavioural types [4, 48] have appeared at the need for tools that allow one
to reason about the possible behaviour of an entity, such as an object or a communication
channel. They do this by describing those entities in terms of constraints on the sequences
of operations that allow for the correct use of involved entities.

There are several approaches to behavioural types applications. In particular, session
types [48] in association with concurrent or distributed procedures to model the correct
interaction between parties and encompass safety and liveness properties; typestates in
object-oriented programing, to specify state-dependent availability of operations, allow-
ing the easy representation of objects through state machines; or choreographies, which
specify collective communication behaviour, for example, to describe the topology of
communication networks [4]. These methods can prevent errors such as trying to read
from a file that is not yet open, or guarantee the absence of deadlocks or that a message
will eventually be received.

Tools based on behavioural types allow the programmer to statically check if the code
of a program respects the intended behaviour of each entity, by defining usage proto-
cols capturing the availability of operations. And, while the definition of these contracts
requires more manual work and reasoning than current type systems, for example, in
object-oriented languages such as Java, increasingly more tools are making the use of be-
havioural types more practical. Our tool [85] is one example, making the iterative process
of program development simpler by allowing users to model objects as finite automata
and turning them into typestates, which they can associate with their Java code. Scrib-
ble [91], a language used to model distributed applications through multiparty protocols,
describing communication between participating parties, is able to verify if the produced
protocol is safe to be implemented and automatically generate local protocols for each
role (participating party), describing how the role interacts with other parties. Another

9



CHAPTER 2. BACKGROUND

incredibly useful contribution is StMungo [28], which translates Scribble local protocols
into Mungo typestate specifications for each role, based on the protocol’s message flow.
StMungo is then able to abstract each role as a Java class by following its generated types-
tate protocol, as well as a Java main class corresponding to that same role, which complies
with the generated Mungo protocol.

2.1.5 Deductive Program Verification

Deductive program verification is the process of turning the correctness of a program
into a set of mathematical statements [36, 71] — verification conditions— and prove them
by applying deductive reasoning. One of the most relevant challenges of deductive verifi-
cation is to understand how does one establish the connection between the program itself
and its mathematical specification. In his 1949 paper, “Checking a large routine”, Alan
Turing presents the rigorous proof of a program that computes the factorial of a num-
ber by repeated additions [68, 86]. Turing approaches the previous issue by associating
mathematical assertions to each instruction of the program and verifying each assertion
individually to guarantee the correctness of the program.

Modern-day program verification, however, is most influenced by the works of Robert
Floyd [40] and Tony Hoare [45]. Commonly referred to asHoare Logic, their work presents
a formal systemwith a set of logic rules that help reason about the correction of a program.
The idea is to formalise the specification of a program as a logical representation of
its behaviour. The specification consists of two logical formulas, a precondition and a
postcondition, leading to the notion of Hoare triple:

{P} C {Q}

Here P, the precondition, is a predicate that states that a command C must execute in a
state satisfying the conditions of P, and Q, the postcondition, states that the execution
of C leads to a state that satisfies Q. Intuitively, we can read the above triple as: for all
states satisfying P, the execution of C results in states satisfying Q, if C terminates.

Hoare Logic provides a set of axioms and inference rules that help specify any con-
struct in a simple imperative programming language. Through the composition of these
axioms and rules, we can reason about the validity of a triple. From a practical standpoint,
to prove the validity of a triple of a program we would have to assert each of its instruc-
tions with pre and postconditions. Besides making it hard to scale correctness proofs for
larger programs, annotating each and every instruction would be error-prone. Later, how-
ever, Dijkstra proposes that the programmer is only required to explicitly provide logical
assertions in certain parts of the program, with the remaining intermediate assertions
being inferred automatically [32]. This is done by computing the weakest precondition of
a program C given a postcondition Q — wp(C,Q) — such that the execution of C ends
in a state satisfying Q. Consequently, the Hoare triple {wp(C,Q)} C {Q} is valid, and,
therefore, the validity of a triple of the form {P} C {Q} derives from wp(C,Q) =) P.
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After formalising the specification of a program, one needs to prove the validity
of the mathematical statements entailing that specification, i.e., prove P and Q. One
approach is to draft the proof manually, similarly to what Hoare did for his proof of the
FIND algorithm [44]. However, this would be a complex and fastidious task with a great
chance of introducing errors during the proof, and probably the reason why Hoare sent
the first version of FIND’s proof to referees [51]. Fortunately, modern-day programmers
and engineers can count on theorem provers, tools that can be used to write and check
formal proofs. On this subject, one possibility is to use an interactive proof assistant,
such as Coq [8] or Isabelle [88], which requires the user to manually conduct most of the
deductive reasoning. Alternatively, automatic theorem provers are able to automatically
search for the proof of a given mathematical formula. In particular, SMT (Set Modulo
Theory) provers, such as Alt-Ergo [10], CVC4 [7] or Z3 [29], have been very successful.

Throughout the years, other logic systems based on the foundations of Hoare Logic,
such as separation logic [76], have been proposed with the goal of verifying a specific
class of problems. Dijkstra’s contribution has also played a big role in today’s deductive
program verification medium, with several verification tools based on the calculus of the
weakest precondition. We can cite Dafny [58], KeY [1], VeriFast [49], and Why3 [38]. In
the following section, we will be focusing on the latter, as this is the tool of choice for the
procedures we will be presenting with this dissertation.

While the deductive verification of programs can be an incredibly powerful method to
assert software correctness, it can also be incredibly challenging and complex. It demands
much more work from programmers compared to automatic program analysis methods
and, furthermore, requires programmers to have a deep knowledge of logics. At the
same time, it is very di�cult to ensure that the specification is complete and correct,
a process that, along with that of developing the specification itself, escalates with the
size of the programs we are building. These issues are some of the biggest obstacles in
the mainstream adoption of deductive program verification, but an extremely important
piece in the development of safety-critical systems.

2.2 The Why3 framework

Why3 [89] is a tool for the deductive verification of software, allowing the user to im-
plement and specify programs, and consequently prove their correctness. Once veri-
fied, Why3 supports the extraction of correct-by-construction executable code of those
programs [38]. For its correction proofs, Why3 has the advantage of supporting many
external automatic theorem provers (such as Alt-Ergo, CVC4 and Z3) and proof assistants
(such as Coq and Isabelle).

TheWhy3 framework provides a specification and implementation language, WhyML,
which includes features popular to functional languages, such as polymorphism, algebraic
data types or pattern matching, as well as imperative features like records with mutable
fields and exceptions. In addition, WhyML programs can be annotated with pre and
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postconditions, invariants and termination measures. These annotations are then used to
generate verification conditions based on its implementation of a weakest precondition
calculus. The user is also allowed to introduce assertions in the code to ease automatic
proofs.

WhyML’s specification component grants the possibility of writing ghost code [37] —
code that does not interfere with program flow—with the sole purpose of aiding verifica-
tion. Since it has no computational use, it can be safely removed from the code, without
compromising the end result of the certified code, at the time of code extraction [71].

Once completed, the program implementation and specification follows the auto-
mated proof that the program satisfies its specification. When attempting to prove the
validity conditions, generated from the annotations in the program, the user can call
the automated provers. However, these provers might not be able to prove a validity
condition right away. Fortunately, Why3 allows the user to apply logical transformations,
such as splitting conjunctions or unfolding definitions, to simplify the formulae and help
the provers. When an automated prover successfully proves a verification condition we
may assume its validity, granted that we trust the soundness of the tools we are using.
Otherwise, an unsuccessful attempt of proof may indicate that: even though the verifica-
tion condition is valid, the provers were not able to discharge its correctness and the user
might need to apply a few transformations; there is an error in the code, i.e, it does not
comply with the intended specification; or the specification might be insu�cient.

In our experience of using the Why3 tool, besides the characteristics we have been
describing, one of the most helpful features is its ability to show which verification con-
ditions it is trying to prove at a time, and point what are the errors in the proof or what
are the verification conditions it was not able to discharge. This is a great improvement,
for example, when compared with Dafny or VeriFast.

2.3 Certified software

Let us conclude this chapter by introducing a few of the most prominent and interesting
projects proven correct using formal methods. These not only show that it is possible
and realistic to include deductive program verification in the development of real-world
software but, perhaps most importantly, they open a hopeful perspective to a future
where every piece of deployed software can be mechanically verified.

CompCert is an example of certified software taking on the problem of miscompilation,
by formally verifying a C compiler using the Coq proof assistant [23]. Since compilers are
complex software and implement delicate algorithms, the fact that they might contain
bugs is a potential way of introducing problems in otherwise proven-correct software,
weakening the usefulness of formal verification of source code. The idea of CompCert
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is that by formally verifying the compiler, if source-level verification of a program certi-
fies that it respects a certain specification — it respects the defined set of acceptable be-
haviours — then we are guaranteed that the compiled code also satisfies that specification.
Verification of the CompCert compiler was achieved by proving semantic preservation: if
a given source program has well-defined semantics, its compiled code is observationally
equivalent [23, 59]. However, abstracting from the details of proof, the most interesting
takeaway from this project is how the use of an interactive proof assistant can scale to the
proof of an industrial-sized system and, especially, how it opens the way for complete
toolchains of verified software — from verified source programs to certified low-level
representations of those programs.

DeepSpec comprises of multiple projects working towards building a network of spec-
ifications that promote the verification of full functional correctness of software and
hardware [30]. This, of course, goes in line with the goals of many other e↵orts in the
science of developing certified software. Where DeepSpec stands out, and what is in-
tended by the so-called network of specifications, is the desire for end-to-end correction.
That is, besides the more common standard of considering useful specifications those
describing behaviour in detail with formal semantics, a maximally useful interface speci-
fication should also be two-sided — connected to both implementations and clients. This
results in the development of specifications at many levels, including application-level
and machine-level interfaces. Two of DeepSpec’s projects are CertiKOS [17], a formally
verified hypervisor kernel, and Kami [53], a Coq library for reasoning over hardware
designs. CertiKOS tackles the problem of bugs and vulnerabilities at a machine-level
interface, by proposing a certified kernel structured using di↵erent abstraction layers,
which are formally specified and certified by verifying each kernel module at its proper
abstraction level [41, 42]. This not only allows each component to be certified separately
— by formally specifying each of the components — but also to minimising the number
of unwanted interfaces while maximising modularity and extensibility [17, 42]. Kami, on
the other hand, extends beyond software implementation and specification to hardware.
It moves away from the typical verification of hardware, generally focused on a limited
scope of verifiable components, proven with relatively weak specifications and invariants,
to a procedure that goes in line with the methodology used for verification of code, sup-
porting techniques for machine-checked correctness proofs, further allowing extraction
to translate the program — in this case, high-level hardware designs — into low-level
circuit descriptions [19, 53]. To simplify this task, the hardware design is broken down
into di↵erent, simpler, components, formalised as labelled transitions systems, reasoning
about each of them individually, specifying, implementing, and verifying each module
separately, entirely within Coq [19, 53, 87].

seL4 , more specifically, the seL4 Microkernel, is a general-purpose operating system
kernel with an end-to-end functional correctness proof [75, 84]. Its philosophy goes in
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line with CompCert’s and CertiKOS’: the need for trusting the software where other
(possibly verified) programs run on, and, specifically, the requirement of built-in safety
and security on low-level software. Given the complexity of verification, seL4’s approach
was to design an architecture based on components, that simplifies this process. Part of
that is done by establishing what pieces of software should be verified. Therefore, keeping
in mind the necessity for preserving integrity and confidentiality, the trusted computing
base (TCB) was reduced and split into what was considered critical code and non-critical
code. In other words, the amount of code with privileged access to the hardware had to be
minimised and verified to guarantee that no faults or failures, occurring when executing
the non-critical code, a↵ect critical execution. And, while untrusted software can be part
of and contribute to the system, it must not have the ability to interfere with critical
operations [55, 75, 84]. Furthermore, formal proofs of seL4 extend to prove security and
safety, meaning that if its specification enforces integrity, confidentiality and availability,
so does the implementation. However, and once again, given the complexity of the system,
assumptions had to be made, mainly those related to the model of the system, specifically
how faithful is it regarding the system and how much do guarantees over the model
translate to the system itself. The latter, for example, can be tackled with the existence of
projects such as CompCert, that by formally verifying the compiler and its generated code,
reduce the assumptions over the correctness of the model of the hardware. Lastly, the
assumption that formally stated properties are indeed good descriptions of the system’s
behavior [75]— an issue transversal to any system built upon deductive specification. The
seL4 Microkernel has already been deployed in several real-world applications [84]. One
of the most notorious being DARPA’s project [39, 83] related to preventing cyberattacks
on autonomous drones, such as the Boeing Unmanned Little bird, an optionally-piloted
helicopter [39, 57].

VOCaL is a fairly recent e↵ort towards developing a mechanically verified OCaml li-
brary of general-purpose data-structures and algorithms [5, 18]. It is not enough to have
a program proven correct if the tools, specifically libraries, o↵ered by the programming
languages we use are not correct themselves. One of the steps towards building this
verifiable library was to design a specification language for OCaml [18], whose semantics
are defined by means of translation into separation logic, allowing the description of the
scope and nature of the side e↵ects of the code, and, for each function, the specification
of what part of the mutable state it may access, modify, create and destroy. This further
allows the specification language to be independent from the verification tool. Programs
can be verified either using CFML (for targeting pointer-based data structures), Coq, or
Why3. One of the interesting aspects of VOCaL is the goal of producing modular proofs.
As many specifications and proofs for data-structures and algorithms can be independent
of the programming language, this approach promotes the development of other formally
verified libraries, and even the possibility of developing cross-language bases for formally
verified code [5].
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MetaCoq. Something we can easily understand from the previous projects is that, the
deeper we go in program certification — as to say, the lower the level upon which verifica-
tion is done— the stronger will be the correctness guarantees of (upper level) applications
running on top of that system. One of the common aspects between the projects we have
seen before is that, to mechanically verify programs, one has to use proof assistants and
consequently trust that, in fact, they are well specified, implemented, and work as ex-
pected. MetaCoq [62] aims at solving this problem on the scope of the Coq proof assistant,
verifying a subset of Coq’s kernel using Coq. As has been the pattern of certifying code,
one of the necessary steps for building verified programs is to formally specify those pro-
grams. MetaCoq provides a formalisation of Coq in Coq by defining the formal semantics
of Coq’s type theory [80]. The project builds on top of a quoting library for Coq, that is,
a translation from Coq to an equivalent simpler language, responsible for the reification
of Coq’s internal syntax and logical environment, and type-checking algorithms [80]. It
defines a correspondence from Coq kernel terms to a representation of their syntax tree
as an inductive type. Based on the specification of Coq, and assuming its correction, the
correctness proof can be done over this simpler language [81].
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CHAPTER 3
Equivalence of Regular Expressions

and Finite Automata

Included in the curriculum of any Computer Science undergraduate is the study of ab-
stract state machines, regular expressions, grammars and languages. Some of these con-
cepts, like finite automata and formal grammars, help students and computer scientists
alike design and formalise programs, ranging from hardware to software.

In this chapter, we take on the work presented by Hopcroft et. al [46], Kozen [56], and
others [60, 77, 78], and complement it by defining a mathematical correctness proof of
the classic algorithm of the conversion from regular expressions to finite automata. Other
contributions include easy to read mathematical definitions of inductive descriptions of
the concepts leading to the definition of the algorithm and its correctness proof. In order
to test these developments, we have implemented them in functional OCaml code1.

At first, we present the reader with a few relevant notions about formal languages
for the sections to come, followed by the definition of regular expression and language
of a regular expression, as well as the definition and formal notation of finite automata,
specifically, nondeterministic finite automata with epsilon-transitions ("-NFAs). We then
propose mathematical definitions for epsilon-closures and the extended transition func-
tion for "-NFAs, based on their informal definitions as described by Hopcroft et al. in [46].
Finally, based on the previous definitions, we present the notion of language of an "-NFA,
leading to the definition of the conversion algorithm from regular expressions to finite
automata by way of a function.

Using these concepts, we conclude this chapter with the definition of a formal correct-
ness proof of the equivalence between finite automata and regular expressions, paving
the way for the formalisation of a machine-checked proof of the conversion algorithm in
the next chapter, and a discussion regarding similar proofs in classic literature and recent
works.

1
https://github.com/draexlar/Correction-of-RegEx-to-FA
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CHAPTER 3. EQUIVALENCE OF REGULAR EXPRESSIONS AND FINITE
AUTOMATA

3.1 Preliminaries

Let us begin this chapter by reviewing the basic mathematical definitions of formal lan-
guages and regular expressions. An alphabet ⌃ is a finite set of symbols, while a word —
represented by the letters w, u and v throughout this chapter — is a sequence of symbols
from ⌃. A language over ⌃ is a set of words in ⌃⇤. Note that, according to the Kleene
closure, for any set A, A⇤ =

S
n2N0

An, therefore ⌃⇤ is an infinite type, representing the
language of all words.

3.2 Regular Expressions

Regular expressions are an algebraic description of languages, o↵ering a declarative way
to express the strings we want to accept, thus serving as the input language for many
systems that process languages [46]. We consider regular expressions as defined by the
following grammar:

R := ; | " | a | R ·R | R+R | R⇤

where ; is the empty regular expression, " represents the empty word, and the letter a de-
notes a generic input symbol in the alphabet, while R ·R (or RR) denotes the concatenation
of two regular expressions, R+R the union of two regular expressions, and R⇤ the Kleene
closure.

3.3 Language of a Regular Expression

The language of a regular expression R, written as L(R), is defined inductively as follows:

Definition 1. Language of a regular expression R

L ✓ RegEx! 2⌃
⇤

L(;) = ; L(R ·E) = L(R) ·L(E) = {v ·w | v 2 L(R) ^ w 2 L(E)}
L(") = {"} L(R+E) = L(R)[L(E)
L(a) = {a} L(R⇤) = L(R)⇤ = {w1 · ... ·wn | n � 0 ^8i,0 < i  n. wi 2 L(R) }

Properties of languages. Let L be a language. Since languages are sets, in the following
list we omit usual properties, as the ones in regards to the union, such as commutativity
and associativity, or the ; being the identity, among others.

• Since the empty word, ", is an identity with respect to the concatenation of words
(8u,v. u"v = uv), then {"}⇤ = {"}.

• The empty language is the absorbing element of the concatenation: ; ·L = ; = L ·;.

• The Kleene closure of the empty set (or language) is ": ;⇤ = {"}.

• The Kleene closure is idempotent: (L⇤)⇤ = L⇤.
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3.4 Formal Notation of an "-NFA

We now centre our attention to finite automata that, as opposed to regular expressions,
are machine-like descriptions of languages. They allow one to, more easily, reason about
languages as a sequence of actions between states. Specifically, we will be looking into
nondeterministic finite automata with epsilon-transitions ("-transitions), as these are the
ones for which the algorithm of conversion of regular expressions is defined.

In the subject of finite automata, nondeterminism is seen has the capacity to be in
multiple states at once, often perceived as the ability of “guessing” something about
the input [46]. Finite automata with "-transitions — often referred to as "-NFA — are
nothing else than nondeterministic finite automata that allow the execution of a transition
through the symbol ". This is seen as a spontaneous transition and, given that " represents
the empty word, this capability does not alter the class of languages accepted by finite
automata.

Formally, we represent an "-NFA A by a quintuple

A = hS, ⌃, s0, �, Fi,

where:

1. S is a finite set of states in the automaton.

2. ⌃, as we have mentioned before, is the alphabet: a finite set of input symbols, recog-
nised by the automaton.

3. s0 is the initial state (where the computation begins), and must be one of the states
in S .

4. � (� ✓ S ⇥⌃! S) is the transition function. Particularly, in the instance of "-NFAs,
� takes as arguments a state in S , and a member of ⌃[ {"}, which can either be an
input symbol or the symbol ", returning a subset of S .

5. F, a subset of S , is the set of final or accepting states — the states where the compu-
tation can finish.

3.5 Epsilon-Closures

Now that we have defined "-NFAs, we would like to define a function that allows one to
reflect on the behaviour of an automaton given a sequence of symbols, otherwise known as
a word. However, we must first present the concept of "-closure of a state in the automaton.
The idea is to find all states reachable from a given state s along a path with "-transitions.
Meaning, we compute all the states reachable from s by following all "-transitions out of
s, and follow the same procedure for each of the obtained states, and so on.

Below, we give an inductive definition to function ECLOSE for computing the "-closure
of a given state s, based on the textual description proposed in [46].
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Definition 2. Eclose function
ECLOSE ✓ S! 2S

ECLOSE,
n
(s,Q)

��� Q = {s}[ { r | 8q. q 2 �(s,") ^ q , s ^ r 2 ECLOSE(q) }
o

Notice that, included in the "-closure of a state is the own state. This is the base step
of execution of ECLOSE. Other than that, if a state q is in ECLOSE(s), and there is an "-
transition from q to a state r, then r is in ECLOSE(s) as well. More precisely, we could
say that ECLOSE(s) contains all states in �(q,"), and even that ECLOSE(q) ✓ ECLOSE(s). This
automatic computation of "-transitions contributes to the perception that the "-closure
describes a “hidden” behavior of the automaton.

3.6 Extended Transition Function

To understand what it means for an "-NFA to accept a certain input, we turn to the defi-
nition of extended transition function. This function, which we represent as �⇤, reflects
on the behaviour of the automaton given a word which, in turn, will help us reason about
the language accepted by the automaton. Informally, given a state s and a word w, the ex-
tended transition function returns the set of states reachable from the given state s, along
a path whose labels (input symbols) form the given word, when concatenated. Note that
the empty word, ", does not contribute to the word, i.e., it can be implicit (8u,v. u"v = uv)
but will nonetheless be consumed thanks to function ECLOSE.

Below, we present the inductive definition for �⇤, which, like in the previous section,
we have defined based on the textual description given by Hopcroft et al.in [46].

Definition 3. Extended transition function

�⇤ ✓ S ⇥⌃⇤ ! 2S

BASIS: If the label of the path is ", then we can only follow "-transitions from the given
state. This corresponds to the above definition of ECLOSE. As such we define the
base case for �⇤ as:

�⇤(s,") = ECLOSE(s)

INDUCTION: Considering a word of the form w = ua, where a is the last symbol of the
w, we define the induction step as:

�⇤(s,ua) =
[

q2Sr2�⇤(s,u) �(r,a)

ECLOSE(q)

= { p | 8r,q. r 2 �⇤(s,u) ^ q 2 �(r,a) ^ p 2 ECLOSE(q) }

Simply put, to compute �⇤(s,ua), we begin by computing �⇤(s,u) — all states reach-
able from s following a path u. Then, for each of state r in the set �⇤(s,u), we have
to compute �(r,a). In other words, we have to follow all a-transitions from states
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reachable from s along a path u. The resulting states from this computation are,
thus, states reachable from s along a path w. Note, however, that we have to account
for the possibility that this path may end with multiple "-transitions, which in turn
may have others (recall that " can be implicit in the word). Therefore, we must per-
form an additional closure step, and compute the ECLOSE for each of those states,
in order to follow any subsequent "-transitions.

At a first glance, our definition of the extended transition function might resemble
that of Kozen in [56]. However, key di↵erences such as the use of "-closures in the
definition and the first argument being a state rather than a set of states, simplify the
computation of acceptance — performing "-transitions automatically, rather than having
" explicit in the middle of words — and helps in the formalisation of these concepts,
which we will be presenting in Chapter 4.

3.7 Language of an NFA

The language of an NFA is, thus, the set of words accepted by the automaton. Concretely,
we define it as the set of words in the closure of the automaton’s alphabet— every possible
word constructed by the concatenation of symbols accepted by the alphabet or " — that
lead the automaton’s initial state to any of its final states.

Formally, the language L of an NFA, as defined in [46], is as follows. Note that the
properties previously defined for the language in Sec. 3.3 are also true here.

Definition 4. Language of an NFA A

L ✓NFA⌃! 2⌃
⇤

L(A) = {w 2 ⌃⇤ | (�⇤(s0,w) \ F) , ;}

3.8 Converting Regular Expressions into Finite Automata

For the translation of regular expressions into finite automata, we will be using an auxil-
iary function, Compile. This function takes a regular expression R, over a certain alphabet
⌃, as an argument and returns an "-NFA, over that same alphabet.

The conversion methodology we follow is actually inspired by the algorithms pre-
sented by Hopcroft et al. [46] and Sipser [78], in order to build more compact and easy to
understand "-NFAs. For the definition of the conversion algorithm, we make use of a Com-
pile function, which we have adapted from the lecture notes of Theory of Computation
by A. Ravara.

The definition of the Compile function can be done inductively on R, with the basis
being the construction of automata from R = ; (representing the empty regular expres-
sion), R = ", and a single input symbol R = a (a 2 ⌃). Afterwards, it is possible to construct
automata from the combination of these simpler ones, through concatenation, union and
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closure of regular expressions. For each of these cases, we present the corresponding
computation, as well as a graphic representation of the resulting automaton.

Definition 5. Compile function

Compile ✓ RegExp! "-NFA⌃

BASIS:

Case R = ;. To accept the empty language basically means the automaton stays idle,
so it only needs an initial state, no final states and no transitions.

Compile(;) = h {s0}, ;, s0, ;, ; i

Case R = ". To accept the empty word we only need one initial state and one final
state, with an "-transition from one to the other.

Compile(") = h {s0, s1}, ;, s0, {(s0,", s1)}, {s1} i

Case R = a. Similarly, to accept the word with length 1 (a symbol a, such that a 2 ⌃)
we only need one initial state and one final state, and a transition from the
initial state to the final state through symbol a.

Compile(a) = h {s0, s1}, {a}, s0, {(s0, a, s1)}, {s1} i

INDUCTION:

Let us consider two regular expressions, E and G, each with its own alphabet:

E 2 RegExp(⌃E) and G 2 RegExp(⌃G),

and let us define their corresponding automata as:

Compile(E) = h SE, ⌃E, s0E , �E, FE i and Compile(G) = h SG, ⌃G, s0G , �G, FG i,

we define the automata resulting from the concatenation, union, and closure, re-
spectively, as follows.
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Case R = EG. To accept the words resulting from the concatenation of a word from
the language of E and a word from the language of G, we need to build an
automaton that, similarly, connects the automaton resulting from E and the
one resulting from G. We do this by adding "-transitions that connect the final
states of the automaton described by E (Compile(E)) to the initial states of the
one described by G (Compile(G)).

Compile(EG) = h SE [ SG, ⌃E [⌃G, s0E , �EG, FG i , with

�EG = �E [ {(f ,", s0G ) | f 2 FE}[ �G , and

SE \ SG = ;

Case R = E +G. To accept the word belonging to L(E +G), that is, a word either
belonging to L(E) or L(G), we need to decide whether the word should be com-
puted by Compile(E) or Compile(G). We need to start the computation of the
word in a new state that nondeterministically decides if to go to the initial state
of Compile(E) or Compile(G), and consequently reach the accepting state of ei-
ther one of these automata. Thus, the resulting automaton from Compile(E+G)
has a new initial state i (the only one), that transitions to the previous initial
states of Compile(E) and Compile(G) through a "-transition.

Compile(E +G) = h {i}[ SE [ SG, ⌃E [⌃G, i, �E+G, FE [FG i, with

�E+G = {(i,", s0E ), (i,", s0G )}[ �E [ �G , and

i < (SE [ SG) ^ SE \ SG = ;

Case R = E⇤. Recall that, by definition, L(E⇤) = L(E)⇤. This means that " 2 L(E⇤)
(by the Kleene closure). Therefore, the automaton we will build must accept
the empty word ". On the other hand, we can think of E⇤ as a successive con-
catenation of expressions E (" +E +EE +EEE + ...). Intuitively, it seems that to
construct the new automaton we have to use ideas both from the concatena-
tion and union of regular expressions. Hence, the resulting automaton from
Compile(E⇤) has a new start state i, that will also be the only final state of this
NFA (thus accepting "), and has two new " � transitions: one exiting i to the
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previous initial state of the automaton Compile(E), and another one from the
previous final state of that automaton to state i.

Compile(E⇤) = h {i}[ SE, ⌃E, i, �E⇤ , {i} i, with

�E⇤ = {(i,", s0E )}[ �E [ {(f ,", i) |f 2 FE} , and
i < SE.

3.9 Proof of Correctness

The algorithm presented in the previous section showed us that regular expressions can
be converted in finite automata. Now, we would like to confirm that, in fact, these two
representations have equivalent descriptive power. That is, to show that the generated
NFA recognises the language described by the original regular expression, regardless of
their apparent representational di↵erence.

Concretely, to prove the correctness of the conversion algorithm (or function) is to
prove that the given regular expression and the automaton resulting from the conversion
of that same regular expression convey the samemeaning. Formally, we want to show that,
for any regular expression R, the finite automaton obtained from applying the function
Compile to R describes a language equal to that of the regular expression.

Theorem 1. 8R 2 RegExp(⌃). L(R) = L(Compile(R)).

The proof herein presented is done by structural induction on a given regular expres-
sion. Therefore, similarly to the reasoning followed when defining the Compile function,
we consider the possibilities of an empty regular expression, ;, the empty word, ", or a
single input symbol a, as well as the concatenation and union.

For the following proof recall the definitions of "-closure, extended transition func-
tion, and language of an "-NFA A:

ECLOSE,
n
(s,Q)

��� Q = {s}[ { r | 8q. q 2 �(s,") ^ q , s ^ r 2 ECLOSE(q) }
o

�⇤(s,") = ECLOSE(s)

�⇤(s,ua) = { p | 8r,q. r 2 �⇤(s,u) ^ q 2 �(r,a) ^ p 2 ECLOSE(q) }

L(A) = { w 2 ⌃⇤ | (�⇤(s0,w) \ F) , ; }.

Proof. The proof is done by structural induction on the regular expression R.
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Case R = ;.
By definition, L(;) = ;.
Let A = Compile(;) = h {s0}, ;, s0, ;, ; i.

We want to show that L(A) = ;.

Let F = finalStates(A) = ;.
Hence, L(A) = { w 2 ;⇤ | (�⇤(s0,w) \ ;) , ; } = ;, since the defining property is false.

Case R = ".

By definition, L(") = {"}.
Let A = Compile(") = h {s0, s1}, ;, s0, {(s0,", s1}, {s1} i.

We want to show that L(A) = {"}.

Note that, by definition, ;⇤ = {"} and {"}⇤ = {"}.
Let F = finalStates(A) = {s1}.
We have,

�⇤(s0,") = ECLOSE(s0)

= {s0}[ { r | 8q. q 2 �(s0,") ^ q , s0 ^ r 2 ECLOSE(q) }
= {s0}[ { r | 8q. q 2 {s1} ^ q , s0 ^ r 2 ECLOSE(q) }
= {s0}[ ECLOSE(s1)
= {s0}[ {s1}[ { r | 8q. q 2 �(s1,") ^ q , s1 ^ r 2 ECLOSE(q) }
= {s0}[ {s1}[;
= {s0, s1}

Hence,

L(A) = { w 2 ⌃⇤ | (�⇤(s0,w) \ F) , ; }
= { w 2 {"}⇤ | (�⇤(s0,w) \ {s1}) , ; }
= { w 2 {"} | (�⇤(s0,") \ {s1}) , ; }
= { w 2 {"} | ({s0, s1} \ {s1}) , ; }
= {"}

Case R = a.

By definition, L(a) = {a}.
Let A = Compile(a) = h {s0, s1}, {a}, s0, {(s0, a, s1}, {s1} i.

We want to show that L(A) = {a}.
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Note that, by definition, {a}⇤ = {an | n 2 N0} and a0 = ".
Furthermore, 8w 2 ⌃⇤. w = "w = w".
Let F = finalStates(A) = {s1}.
Notice that, by definition of the automaton A, no word of length greater than 1 will
lead the initial state s0 to the only final state s1. Moreover, given the alphabet of A,
the only words possible to form are sequences of a.

Lemma 2. 8n 2 N0, n > 1, �⇤(s0, an) < F

We have,

�⇤(s0,") = ECLOSE(s0)

= {s0}[ { r | 8q. q 2 �(s0,") ^ q , s0 ^ r 2 ECLOSE(q) }
= {s0}

�⇤(s0, a) = { p | 8r,q. r 2 �⇤(s0,") ^ q 2 �(r,a) ^ p 2 ECLOSE(q) }
= { p | 8r,q. r 2 {s0} ^ q 2 �(r,a) ^ p 2 ECLOSE(q) }
= { p | 8r,q. r = s0 ^ q 2 �(s0, a) ^ p 2 ECLOSE(q) }
= { p | 8r,q. r = s0 ^ q 2 {s1} ^ p 2 ECLOSE(q) }
= { p | 8r,q. r = s0 ^ q = s1 ^ p 2 ECLOSE(s1) }
= ECLOSE(s1)

= {s1}

Hence,

L(A) = { w 2 ⌃⇤ | (�⇤(s0,w) \ F) , ; }
= { w 2 {a}⇤ | (�⇤(s0,w) \ {s1}) , ; }
by Lemma 2

= { w 2 {", a} | (�⇤(s0,w) \ {s1}) , ; }
= { w 2 {"} | (�⇤(s0,") \ {s1}) , ; }[ { w 2 {a} | (�⇤(s0, a) \ {s1}) , ; }
= {a}

Case R = EG.

Let E 2 RegExp(⌃E) and G 2 RegExp(⌃G)
By definition, L(EG) = L(E) ·L(G)

Let

Compile(E) = h SE, ⌃E, s0E , �E, FE i, and
Compile(G) = h SG, ⌃G, s0G , �G, FG i.
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By induction hypothesis,

L(Compile(E)) = L(E) and L(Compile(G)) = L(G) .

Finally, let

A = Compile(EG) = h SE [ SG, ⌃E [⌃G, s0E , �EG, FG i , with

�EG = �E [ {(f ,", s0G ) | f 2 FE}[ �G , and

SE \ SG = ;

Remark. �E [ {(f ,", s0G ) | f 2 FE}[ �G = �E ] {(f ,", s0G ) | f 2 FE}] �G.

We want to show that L(A) = L(EG).

Note that, by definition of the automaton A, the words leading from the initial state,
s0E , to the accepting state(s) in G, are those who first go through the automaton for
E, and then go through the automaton for G. This is given by the above definition
of �EG, where words starting in one of the final states for the automaton for E lead
to the start state of the automaton for G, s0G , by ". Therefore, words accepted by
A can be split into two words: one accepted by Compile(E) and one accepted by
Compile(G).

Lemma 3.

8w 2 ⌃⇤. (�⇤EG(s0E ,w)\FG) , ;
=) 9u 2 ⌃⇤E, 9v 2 ⌃⇤G. w = uv ^ (�⇤E(s0E ,u)\FE) , ; ^ (�⇤G(s0G ,v)\FG) , ;

Once again, we point to the fact that the " symbol is the empty word, thus not con-
tributing to the overall structure of the word: 8u,v 2 ⌃⇤. uv = u"v. Therefore, we
know that, when we compute the acceptance of a word, by automaton A (�⇤EG),
whenever we reach the (what used to be) the final state(s) of Compile(E), the transi-
tion to (what used to be) the initial state of Compile(G) is performed automatically,
due to ECLOSE. Specifically, we have,

8f 2 FE, ECLOSE(f ) = {f }[ {r | 8q. q 2 �EG(f ,") ^ q , f ^ r 2 ECLOSE(q)}
= {f }[ ECLOSE(s0G )
= {f , s0G }[ {r | 8q. q 2 �EG(s0G ,") ^ q , s0G ^ r 2 ECLOSE(q)}
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Hence,

L(A) = { w 2 ⌃⇤ | (�⇤EG(s0E ,w) \ FG) , ; }
= { w 2 (⌃E [⌃G)⇤ | (�⇤EG(s0E ,w) \ FG) , ; }
by Lemma 3

= { uv 2 (⌃E [⌃G)⇤ | (�⇤E(s0E ,u) \ FE) , ; ^ (�⇤G(s0G ,v) \ FG) , ; }
= { u 2 ⌃⇤E | (�⇤E(s0E ,u) \ FE) , ; } · { v 2 ⌃⇤G | (�⇤G(s0G ,v) \ FG) , ; }
= L(E) ·L(G)

by induction hypothesis

= L(EG)

Case R = E +G.

Let E 2 RegExp(⌃E) and G 2 RegExp(⌃G)
By definition, L(E +G) = L(E)[L(G)

Let

Compile(E) = h SE, ⌃E, s0E , �E, FE i, and
Compile(G) = h SG, ⌃G, s0G , �G, FG i.

By induction hypothesis,

L(Compile(E)) = L(E) and L(Compile(G)) = L(G) .

Finally, let

A = Compile(E +G) = h {i}[ SE [ SG, ⌃E [⌃G, i, �E+G, FE+G i, with

i < (SE [ SG) ^ SE \ SG = ;, and
�E+G = {(i,", s0E ), (i,", s0G )}[ �E [ �G
FE+G = FE [FG

We want to show that L(A) = L(E +G).

Remark. 8w 2 ⌃⇤. w = "w.

We have,

ECLOSE(i) = {i}[ { r | 8q. q 2 �E+G(i,") ^ q , i ^ r 2 ECLOSE(q) }
= {i}[ { r | 8q. q 2 {s0E , s0G } ^ q , i ^ r 2 ECLOSE(q) }
= {i}[ ECLOSE(s0E )[ ECLOSE(s0G )
= {i, s0E , s0G }
[ { r | 8q. q 2 �E+G(s0E ,") ^ q , s0E ^ r 2 ECLOSE(q) }
[ { r | 8q. q 2 �E+G(s0G ,") ^ q , s0G ^ r 2 ECLOSE(q) }
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Note that, by definition of automaton A, starting at the new initial state, i, we can go
to the start state of either the automaton for E or the automaton for G. This is given
by the above definition of the transition function �E+G, where the start state, i, leads
to either s0E or s0G , the initial states for the automata for E and G, respectively, by ".
This behaviour is, furthermore, shown in the above computation of ECLOSE(f ). We
can, thus, reach one of the accepting states of automaton A — which, by definition,
is in FE [ FG — through a word w that, if part of ⌃⇤E leads to an acceptance state
of the automaton for E, otherwise (w 2 ⌃⇤G), leads to an acceptance state of the
automaton for G. This is also given by the definition of �E+G since, besides the
transitions we mentioned before, it comprises of the union of �E and �G.

Lemma 4.

8w 2 ⌃⇤. (�⇤E+G(i,w)\FE+G) , ;
=)

⇣
w 2 ⌃⇤E ^ (�⇤E(s0E ,w)\FE) , ;

⌘
_

⇣
w 2 ⌃⇤G ^ (�⇤G(s0G ,w)\FG) , ;

⌘

Hence,

L(A) = { w 2 ⌃⇤ | (�⇤E+G(i,w) \ FE+G) , ; }
= { w 2 (⌃E [⌃G)⇤ | (�⇤E+G(s0E ,w) \ (FE [FG)) , ; }
by Lemma 4

= { w 2 (⌃E [⌃G)⇤ | (�⇤E(s0E ,w) \ FE) , ; _ (�⇤G(s0G ,w) \ FG) , ; }
= { w 2 ⌃⇤E | (�⇤E(s0E ,w) \ FE) , ; }[ { w 2 ⌃⇤G | (�⇤G(s0G ,w) \ FG) , ; }
= L(E)[L(G)

by induction hypothesis

= L(E +G)

⌅

With the successful conclusion of the correction proof of the Compile function, we
can now be confident that the conversion from regular expressions to finite automata is
language-preserving, i.e., both representations describe the same language.

3.10 Discussion and Related Work

In this chapter, we have contributed to the classic study of automata and regular ex-
pressions with formal mathematical definitions of classical concepts such as "-closure
(Sec. 3.5) and the extended transition function (Sec. 3.6), as well as a proof of correc-
tion for the conversion of regular expressions into finite automata, by proving that the
language described by the given regular expression is the same as the language of the
resulting automaton. While we have not yet defined the correctness proof for the third
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inductive case of regular expressions, the closure (R = E⇤) — given the increased com-
plexity compared to the other inductive cases, due to the infinite nature of the definition
of closure — and left some lemmas to our basis of trust, the work herein presented is
already of great value.

Existing proofs in classic literature tend to be more focused on proving that it is
possible to construct an automaton from a regular expression [46, 56, 78] rather than
actually proving the equality between their languages, even if that is what they propose
to do, ending up defining the conversion algorithm as proof. And while there is work
that, just likes us, successfully proves this equality — the most interesting being given by
Michael Sipser in a lecture for his course on Theory of Computation [79] — even though
quite intuitive, it is nonetheless informal, proving the equivalence textually rather than
through mathematical statements. Kaiser [52], on the other hand, besides being more
focused on mechanisation, presents a variation on the more common translation between
regular expressions and finite automata that uses deterministic finite automata (DFAs)
instead of NFAs. Subsequent more formal works [33, 34], with also mechanically-checked
proofs (ours will be discussed in the next chapter), can be found as well. However, they
lack a direct explanation of the proof of equivalence between regular expressions and
NFAs, for example by only proving that a language is regular (a language is accepted by
an NFA) leaving the proof of language equality implicit. Furthermore, missing a clear
and easy to understand exposition of the proof, pointing in the direction of the proof
but, for instance, only explaining what the result should be (prove the equality of the
languages), with far less specificity and details compared to the one we present.

Our main goal is an elegant presentation of the results that are well known in the
literature for automata theory. By giving formal definitions to classical concepts, like
the ones mentioned at the beginning of this section, and designing a formal proof for
the conversion from regular expressions to finite automata, through clear mathematical
statements, detailing every step of the proof, we not only strengthen the credibility of
the algorithm and help reason about the relation between regular expressions, automata
and languages, but also help guide towards the formalisation of a mechanically-checked
proof of the algorithm, which we will be discussing in the next chapter.
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CHAPTER 4
Mechanical Verification

TheWhy3 framework allows users to implement and specify programs, and prove that the
implemented code is compliant with the specification. This requires the formalization of
the underlying algebraic theory and proof that, indeed, the behaviour of the implemented
program is correct and respects the contracts of the specification.

In this chapter, we present a mechanical proof of the conversion from regular ex-
pressions to finite automata. We do so by implementing a functional WhyML program,
following the concepts we have introduced in the previous chapter and, for each of them,
formalise logical assertions based on their mathematical definitions and the correctness
proof proposed in the previous chapter.

The work we have presented in Chapter 3 has, thus, proved to be very helpful in
structuring the mechanical proof and guiding us towards specifying the right pre and
postconditions, and defining base properties and lemmas. However, we have come to
understand that many concepts that may be perceived as obvious (to us humans, at least)
and, therefore, implicit in the constructive mathematical proof, may raise several issues
and must be further clarified and specified in order to help the machine verify certain
statements.

Throughout the next sections, we will guide the reader on understanding our thought
process for implementing and formalizing a specification for the concepts we defined in
the previous chapter, detailing each assertion that went into their specification, as well
as implementation and specification problems. We will also discuss the issues we faced
while verifying the specification in regards to the proposed implementation, and possible
alternatives and solutions to specific problems and limitations. We conclude the chapter
with a discussion about related work concerning the formalization of formal languages
and Kleene algebra.
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4.1 Implementation and Specification

For every proof, especially when talking about deductive program verification, there is
a certain degree of assumptions that can be and are made. For the present issue, the
execution of the algorithm only depends on function Compile, therefore, only that and
other auxiliary functions it might depend upon have to be implemented. Simply put,
what this means is that all other functions are only necessary for the specification of the
program. As to say, functions only used in pre and postconditions or lemmas, do not
require implementation, and thus need not be proven, as the only requirement in the
context of proof is their specification.

Notwithstanding, having an implementation for even those functions that are only
required in the logical context not only can be helpful when specifying contracts for those
functions, avoiding under-specifying, but can also help in verifying other functions that
might depend on them. This is why we have decided to implement every function. In
the end result — the possible extraction of the code — this will not have an apparent
implication. However, it will lighten our basis of trust because, on one hand, and as
we have mentioned before, this may contribute to a stronger specification, and on the
other, if proven correct it means that we do not have to trust it to be true: we know for a
fact. Consequently, this might influence the proof of the core code that is extractable and
meant to be run.

We begin this section by presenting the reader with a few basic type definitions, as
well as the basic concepts we have defined in Chapter 3, such as regular expression
and nondeterministic finite automaton. From Sec. 4.1.2 forward, we take a top-down
approach and, opposed to the previous chapter, start with the implementation of the
conversion algorithm, presenting other important concepts and functions as they become
relevant.

In order to keep this section as brief as possible, we have omitted the code for some
auxiliary functions, lemmas, and axioms, for which we will give simple and concise
explanations of their purpose, whenever necessary, or present them in Sec. 4.2 if relevant.
For implementation details regarding this procedure, we recommend the reader to refer
to our online repository1, where we make the code available.

4.1.1 Basic Types

The first step to our implementation is defining the types for regular expression and "-
NFA. Note that, for this implementation, we are not concerned with the parsing of strings,
as this is not relevant for the definition of the conversion algorithm.

We start by presenting the basic types for our program in Listing 4.1. These include: a
constant representing the empty word ", denoted eps; the notion of symbol and alphabet,
which is a set of symbols; words, strings obtained through the concatenation of symbols,

1
https://github.com/draexlar/Correction-of-RegEx-to-FA
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which we represent by a list of symbols; the notion of language, defined as a set of words;
the idea of state, which can be defined by an integer, and set of states; the notion of
transition, represented as a tuple with an initial state, a symbol and a final state, as well
as transition set. Notice that we omit the actual value of eps since, for the correctness
proof, this representation is su�cient at a logical level and, at the same time, makes the
proof more modular.

1 val constant eps : char (* used for representing the empty transitions *)

2

3 (* defining input symbols and alphabet *)

4 type symbol = char

5 clone import set.SetApp as SA with type elt = symbol

6

7 (* defining word and language as a set *)

8 type word = list symbol

9 clone import set.SetApp as SL with type elt = word

10

11 (* defining a state and a set of states *)

12 type state = int

13 clone import set.SetApp as SS with type elt = state

14

15 (* defining a transition and a set of transitions *)

16 type transition = (state , symbol , state)

17 clone import set.SetApp as ST with type elt = transition

Listing 4.1: Basic types necessary for definition of symbols, words, and sets.

The definition of a type for regular expressions is quite simple. Recall that, alike the
mathematical proof defined in the previous chapter, we are not considering the Kleene
closure of a regular expression (R⇤). As such, we consider: the case of it being empty
(represented by Empty); the empty word " (represented by Eps); a single input symbol
a (represented by Symb); the concatenation of two regular expressions (represented by
Seq); and the union of two regular expressions (represented by Plus). Additionally, in
listing 4.2, we include the definition of a function that, given a regular expression, returns
the language of the regular expression, according to the definition presented in Sec. 3.3.

1 (* Type representing a Regular Expression *)

2 type regex =

3 Empty

4 | Eps

5 | Symb symbol

6 | Seq regex regex

7 | Plus regex regex

8

9 (* Given a Regular Expression, returns its language *)

10 function regex_lang (r: regex) : fset word =

11 match r with
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12 | Empty ! empty

13 | Eps ! add (Cons eps Nil) empty

14 | Symb a ! add (Cons a Nil) empty

15 | Seq e f ! let l = regex_lang e in

16 let m = regex_lang f in

17 concat l m

18 | Plus e f ! union (regex_lang f) (regex_lang e)

19 end

Listing 4.2: Type for regular expression and language of a regular expression.

Function concat — used in the definition of language for regular expressions and
implemented in the following listing — is an auxiliary function that, as the name implies,
performs the concatenation of two given languages. Due to the complexity of implement-
ing such function and the fact that it is only needed in the logic context of the proof, we
have decided to axiomatise it, rather than implement it, based on the axiomatization of
other functions in the Set library of Why32, such as filter or map. In Listing 4.3, we also
define a few important properties about the concatenation of languages that will be rele-
vant for the proof of the conversion algorithm. Namely: ; is the absorbing element of the
concatenation; if we concatenate two non-empty languages, then the resulting language
will also be non-empty; if the concatenation of two languages is empty, at least one of
those languages is also empty; for any word u belonging to a language L1 and any word v

belonging to a language L2, the word resulting from their concatenation (u ·v) is accepted
by a language L = L1 ·L2. These lemmas are easily discharged.

1 (* Concatenation of languages *)

2 function concat (a: fset word) (b: fset word) : fset word

3 axiom concat_def:

4 forall l1 l2: fset word, w: word.

5 mem w (concat a b) $ exists u v. mem u l1 ^ mem v l2 ^ w = (u ++ v)

6

7 (* The empty language is absorbing element of the concatenation. *)

8 lemma neutral_left_concat:

9 forall l1 l2: fset word. is_empty l1 ! is_empty (concat l1 l2)

10

11 lemma neutral_rigth_concat:

12 forall l1 l2: fset word. is_empty l2 ! is_empty (concat l1 l2)

13

14 (* If none of the languages to be concatenated is empty, then the resulting

language is not empty. *)

15 lemma not_empty_concat:

16 forall l1 l2: fset word.

17 not is_empty l1 ^ not is_empty l2 ! not is_empty (concat l1 l2)

18

2
http://why3.lri.fr/stdlib/set.html
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19 (* If the language resulting from the concatenation of two other languages is

empty, then, at least, one of those languages is empty. *)

20 lemma empty_concat:

21 forall l1 l2: fset word.

22 is_empty (concat l1 l2) ! ( is_empty l1 _ is_empty l2 )

23

24 (* For any two words belonging to two languages, respectively, the concatenation

of those two words is accepted by the language resulting from the

concatenation of two previous languages. *)

25 lemma composition_concat:

26 forall u v: word, l1 l2: fset word.

27 mem u l1 ^ mem v l2 ! mem (u ++ v) (concat l1 l2)

Listing 4.3: Concatenation of two languages.

Notice, in Listing 4.1, that constant eps and type symbol are of type char. This can
bring ambiguity, especially when we enter the case where the regular expression is Symb.
We do not want to have the case where the symbol in Symb would be eps. It may not seem
to be a big problem, but the reason will become clear further down this section. For now,
su�ces to say that we do this for the sake of coherence. So, to solve this problem, we have
defined a predicate regex_wf (in Listing 4.4) that checks if a given regular expression is
well-formed, specifically, an atómic regular expression cannot be ".

1 (* RegEx is well formed *)

2 predicate regex_wf (r: regex)

3 =

4 match r with

5 | Symb a ! a , eps

6 | Seq e f ! regex_wf e ^ regex_wf f

7 | Plus e f ! regex_wf e ^ regex_wf f

8 | _ ! true

9 end

Listing 4.4: Well-formed regular expression.

The type of automaton, presented in the listing below, is straightforward and is taken
directly from the definition of "-NFA in Sec. 3.4. The only observable di↵erence is the use
of a set for transitions, instead of a transition function �, which does not translate in a big
di↵erence in the structure of the automaton, but will simplify the formalization for the
rest of the program. Nonetheless, we have implemented a function delta (in Listing 4.6)
which, just like the definition of Sec. 3.4, returns the set of states reachable from a given
state through a transition labelled by a given symbol.

1 type automaton = {

2 states: SS.set;

3 alphabet: SA.set;

4 start: state;

5 transitions: ST.set;

35



CHAPTER 4. MECHANICAL VERIFICATION

6 final_states: SS.set;

7 } invariant { mem start states }

8 invariant { not (is_empty states) }

9 invariant { not mem eps alphabet }

10 invariant { forall x. mem x alphabet ! exists a, c. mem (a,x,c) transitions }

11 invariant { subset final_states states }

12 invariant { forall t: transition. mem t transitions !
13 let (a,b,c) = t in

14 mem a states ^ mem b (add eps alphabet) ^ mem c states }

Listing 4.5: Type for a finite automaton.

Notice we have included invariants in the definition of automaton. These respectively
guarantee that: any start state must be one of the defined states in the automaton; the
automaton cannot have an empty set of states; by definition, " is not part of the alphabet;
if a symbol is part of the automaton’s alphabet, then there must be a transition performed
by that symbol; all acceptance states must be states defined in the automaton; and, finally,
any transition in the automaton must be a tuple, where the first and last elements are
states in the automaton and the second element must be " or a symbol accepted by the
alphabet.

In the implementation of function delta below, the assertions guarantee that any
reachable states must be in the automaton and that for every state in the result there
has to be a transition in the automaton that reaches that same state through the given
state s and symbol symb, and vice versa. The function filter_trans is responsible for
obtaining every transition in the automaton where the first element matches the given
state s, and the second element matches the symbol symb. Because filter_trans is a
recursive function, we define a variant on the cardinality of the received set of transitions
— that decreases in every recursive call — to prove the termination of the function. Lastly,
the auxiliary function delta_get_3rd, whose implementation we omit, returns the set of
the third element of every transition in a given set of transitions.

1 (* Returns states reachable from s through sym *)

2 let ghost function delta (s: state) (sym: symbol) (a: automaton) : fset state

3 ensures { subset result a.states }

4 ensures { forall c. mem (s, sym, c) a.transitions $ mem c result }

5 ensures { (not exists c. mem (s, sym, c) a.transitions) ! is_empty result }

6 =

7 let trans = filter_trans s sym a.transitions in

8 delta_get_3rd trans

9

10 (* Returns a set of transitions with initial state s, performed by symbol sym *)

11 let rec ghost function filter_trans (s: state) (sym: symbol) (t:fset transition)

: fset transition

12 variant { cardinal t }

13 ensures { subset result t }
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14 ensures { forall a, b, c. mem (a, b, c) result ! b = sym ^ a = s }

15 ensures { forall c. mem (s, sym, c) t ! mem (s, sym, c) result }

16 ensures { (not exists c. mem (s, sym, c) t) ! is_empty result }

17 =

18 if is_empty t then empty

19 else let elem = pick t in

20 let (a,b,_) = elem in

21 if s = a && eq b sym then

22 add elem (filter_trans s sym (remove elem t))

23 else filter_trans s sym (remove elem t)

Listing 4.6: Implementation of the transition function (�).

4.1.2 Compile

The implementation of the Compile (Listing 4.7) function is straightforward, based on
the formal definition we have presented in Sec. 3.9. Therefore, following the definition of
regular expression in Listing 4.2, we implement a function compile that, given a regular
expression, returns the corresponding finite automaton, considering four cases: the empty
regular expression (R = ;), returning an automaton with a single (non-accepting) state;
the empty word (R = "), returning an automaton with a single transition through ",
and therefore with only one start state and one final state; the singular input symbol
(R = a), returning an automaton with one initial state, one final state, one transition
performed by a, and the alphabet containing only symbol a; the concatenation of two
regular expressions (R = EF), returning an automaton resulting from joining the automata
obtained from converting each of the regular expressions with an "-transition; and the
union of regular expressions (R = E + F), returning an automaton with a new initial
states that transitions to either one of the automata, obtained from converting each of the
regular expressions E and F, through an "-transition.

According to what we have seen in Sec. 4.1.1, we begin by defining a precondition
guaranteeing that any regular expression must be well-formed to perform the conversion
(line 3). The postcondition in line 4 ensures that any acceptance state in the automaton
must be reachable from another state. Ultimately, however, what we want to prove is the
equivalence between the given regular expression and the resulting automaton. For that,
and following the reasoning conducted in the previous chapter, we specify a postcondi-
tion stating that the language of the automaton, generated from the regular expression,
is equal to the language of that same regular expression (line 6).

In the implementation of compile, you may notice the use of function add_eps_trans

(line 34), whose implementation we have omitted. This function is responsible for joining
automata a and b, by adding "-transitions from each of the final states in a to the initial
state of b, following the definition of Compile in Sec. 3.8.

1 (* Translates a given regular expression into an eps-NFA *)

2 let compile (r: regex) : automaton
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3 requires { regex_wf r }

4 ensures { forall f. mem f result.final_states

5 ! exists q, w. mem (q, w, f) result.transitions }

6 ensures { regexLang r = automatonLang result }

7 =

8 match r with

9 | Empty ! let i = next_val c in

10 { states = SS.singleton i;

11 alphabet = SA.empty ();

12 start = i;

13 transitions = ST.empty ();

14 final_states = SS.empty (); }

15 | Eps ! let start = next_val c in

16 let final = next_val c in

17 let states = SS.singleton start in

18 let states = SS.add final states in

19 { states = states;

20 alphabet = SA.empty ();

21 start = start;

22 transitions = ST.singleton (start, eps, final);

23 final_states = SS.singleton final }

24 | Symb a ! let start = next_val c in

25 let final = next_val c in

26 let states = SS.singleton start in

27 let states = SS.add final states in

28 { states = states;

29 alphabet = SA.singleton a;

30 start = start;

31 transitions = ST.singleton (start, a, final);

32 final_states = SS.singleton final }

33 | Seq e f ! let a = compile e in let b = compile f in

34 let a_to_b = add_eps_trans a.final_states a.final_states b.start (ST.

empty ()) in

35 { states = SS.union a.states b.states;

36 alphabet = SA.union a.alphabet b.alphabet;

37 start = a.start;

38 transitions = ST.union a_to_b (ST.union a.transitions b.transitions);

39 final_states = b.final_states }

40 | Plus e f ! let i = next_val c in

41 let a = compile e in let b = compile f in

42 let trans = ST.add (i, eps, b.start) (ST.singleton (i, eps, a.start)) in

43 let trans = ST.union trans a.transitions in

44 let trans = ST.union trans b.transitions in

45 { states = SS.add i (SS.union a.states b.states);

46 alphabet = SA.union a.alphabet b.alphabet;

47 start = i;
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48 transitions = trans;

49 final_states = SS.union a.final_states b.final_states }

50 end

Listing 4.7: Implementation of the Compile function.

There are also a few other properties that can be ensured for the automata resulting
from R = " or R = a. For example, we know that it is sure that, in these cases, there is only
one accepting state:

(r = Eps _ forall a. r = Symb a) ! cardinal result.final_states = 1

We also know that, in these cases, every state of the resulting automaton has either an
outward transition to another state or an inward transition from another state:

(r = Eps _ forall a. r = Symb a)

! forall s. mem s result.states ! exists q, w. mem (s, w, q) result.

transitions _ mem (q, w, s) result.transitions

Following this reasoning, a more interesting idea is that all states in automata, result-
ing from these cases, must be useful (formalised in Sec. 4.1.3). A state is useful if it is
reachable — there is a path from the initial state of the automaton to the said state — and
productive — if that state can reach one of the automaton’s final states.

(r = Eps _ forall a. r = Symb a)

! forall s. mem s result.states ! useful s result

It is quite simple to understand why these assertions would not work for the cases
where the regular expression is ; or one of the inductive cases (the concatenation and
union of regular expressions). The empty case is elementary, given that there are no final
states and no transitions. For the inductive cases, we have to think about the possibility
of one of the regular expressions being ;. In the case of the concatenation, creating
an automaton that is disconnected (if ; is the first regular expression) or does not have
final states (; is the second regular expression). Whereas, in the case of the union, an
automaton where one of the branches does not have final states. Knowing this, we can
rewrite the first condition of each of the previous ensures as:

( r = Eps _ forall a. r = Symb a _
(forall e f. e , Empty ^ f , Empty ^ (r = Seq e f _ r = Plus e f)) )

4.1.3 Path

In the previous chapter, mainly during the definition of "-closures (Sec. 3.5) and the
extended transition function (Sec. 3.6), and just in the previous section on the subject of
useful states, we have referred to the concept of path. Even though we have not given it a
formal definition, having this notion will be helpful for the specification of the program.

The idea of path is to check if a given state s can arrive in a given state f , by computing
a given word w, i.e., if state f can be reached from state s along a path w.
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We formalise a predicate path (Listing 4.8) that takes two states, a word and the
automaton on which we will check the path, using structural recursion over the given
word — a list of symbols in our implementation. In WhyML, pattern matching considers
three types of lists (or words, in our case): Nil — the empty list — representing the
implicit empty word (equivalent to an explicit "); the list with only one element, either
a symbol of the alphabet or an explicit "; and the list with more than one element — the
word composed by multiple input symbols.

1 (* True if there is a path from state s to f, through word w. *)

2 predicate path (s: state) (w: word) (f: state) (a: automaton)

3 =

4 match w with

5 | Nil ! path_eps s f a

6 | Cons x Nil ! mem x (add eps a.alphabet) ^
7 if x = eps then path_eps s f a

8 else mem (s, x, f) a.transitions _
9 (exists q. (path_eps s q a) ^ mem (q, x, f) a.transitions) _
10 (exists q, r. (path_eps s q a) ^ mem (q, x, r) a.transitions ^
11 path_eps r f a)

12 | Cons x xs ! xs , Nil ^ mem x (add eps a.alphabet) ^
13 exists r. ( mem (s, x, r) a.transitions _
14 (exists q. (path_eps s q a) ^ mem (q, x, r) a.transitions) ) ^
15 path r xs f a

16 end

Listing 4.8: Predicate path.

Remember that, after each state, there may be multiple "-transitions. Following the
reasoning used in the cases where the word is " and that of using ECLOSE in the definition
of the extended transition function �⇤, we use a predicate path_eps to account for the
possibility of "-transitions in-between states, which we implement in the listing below.

1 (* True if there is a path through successive eps-transitions from one state to

the other. *)

2 inductive path_eps state state automaton

3 =

4 | path_base: forall s a. mem s a.states ! path_eps s s a

5 | path_ind: forall s q r a. mem (s, eps, q) a.transitions ! path_eps q r a !
path_eps s r a

Listing 4.9: Predicate that checks a path through successive "-transitions, between two
given states.

Notice the condition in the base case for s to be a defined state in the automaton. This
is necessary because we can only say there is a path for a state in the automaton if it is
part of the automaton. Since in the inductive step we need to check if a transition is in
the automaton and the recursive call might hit the base case, it is not necessary to check
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if any of the states is in the automaton. The same is also true for the definition of path in
Listing 4.8.

We can now formalise the concept of useful state by means of a predicate path (List-
ing 4.10). Recall that a state is useful if it is reachable — there is a path from the initial
state of the automaton to the said state — and productive — if that state can reach one of
the automaton’s final states.

1 (* True if there is path from the start state of the automaton a to the given

state s. *)

2 predicate reachable (s: state) (a: automaton)

3 =

4 exists w. path a.start w s a

5

6 (* True if a given state s can reach a final state of automaton a. *)

7 predicate productive (s: state) (a: automaton)

8 =

9 exists w, q. mem q a.final_states ^ path s w q a

10

11 (* True if a state is both reachable and productive. *)

12 predicate useful (s: state) (a: automaton)

13 =

14 reachable s a ^ productive s a

Listing 4.10: Predicates for reachable, productive, and useful state.

4.1.4 Language of an NFA

Let us now rewind to the last postcondition of compile (Listing 4.7), stating that the
language of the given regular expression must be equal to that of the resulting automaton.

Recall the definition of language of an NFA, we have presented in Sec. 3.7:

L(A) = {w 2 ⌃⇤ | (�⇤(s0,w) \ F) , ;}

We can immediately notice a problem with this definition: ⌃⇤ is not a finite set, some-
thing that is hard to reason about and, furthermore, the definition by comprehension can
be somewhat complicated. A first approach would be to just think about the three base
cases and implement a constructive function, as in the listing below, where the definition
of language is based on the cardinality of the set of final states or the set of transitions.
However, not only would we have to think about a possible implementation for the induc-
tive cases, but we would also have to formalise assertions making sure the constructive
implementation is equivalent to the mathematical definition.

1 function automatonLangConstr (a: automaton) : fset word

2 =

3 if is_empty a.final_states then empty

4 else
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5 let tail =

6 if mem a.start a.final_states then singleton (Cons eps Nil)

7 else empty

8 in

9 if is_empty a.transitions then tail

10 else

11 if cardinal a.transitions = 1 then

12 let (s, x, q) = pick a.transitions in

13 if s = a.start && mem q a.final_states then add (Cons x Nil) tail

14 else tail

15 else tail (* inductive steps *)

Listing 4.11: Constructive implementation of the automaton language.

Fortunately, WhyML’s Set library3 makes available a function filter (in Listing 4.12)
that allows us to define a set by comprehension, making the implementation of the func-
tion automatonLang quite straightforward, regarding the mathematical definition.

1 (* { x | x in s ^ p x } *)

2 function filter (s: fset ’a) (p: ’a ! bool) : fset ’a

3 axiom filter_def:

4 forall s: fset ’a, p: ’a ! bool, x: ’a. mem x (filter s p) $ mem x s ^ p x

Listing 4.12: Function filter.

You can see that there is a clear resemblance to the formal definition of language,
where set s would be ⌃⇤ and predicate p would be (�⇤(s0,w) \ F) , ;. However, the prob-
lem of how we can represent ⌃⇤ in WhyML remains an issue. We have first to understand
what it really means for a word to belong to this non-finite set. Being defined over the
alphabet ⌃, its closure is, thus, the set of all words that can be formed with symbols in
the alphabet and, while it is hard to reason about the actual content of an infinite set —
the actual words that are part of it — we can reason about their properties or, perhaps
better put, their structure. For example, we know that all words in ⌃⇤ are exclusivelymade
up of symbols in ⌃. Therefore, we can write a function sigma_ext (naturally receiving
an alphabet as argument) that, although cannot have an implementation (which is not
a problem, given that it is only used in the logical context), we can define its properties
through pre and postconditions, as in the listing below.

1 val function sigma_ext (a: fset symbol) : fset word

2 ensures {forall w. mem w result ! w , Nil}

3 ensures {forall w. mem w result ! forall x. mem x w ! mem x (add eps a)}

4 ensures {forall x w. mem x w ^ mem x (add eps a) ^ w , Nil ! mem w result}

Listing 4.13: Formalizations of ⌃⇤.

The definition of a predicate accepted_words (Listing 4.14) that, as suggested by its
signature, checks if a word is accepted by a given automaton, is quite simple, with an

3
http://why3.lri.fr/stdlib/set.html
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implementation that follows very closely the definition in language ((�⇤(s0,w) \ F) , ;).
Once again, you can see the use of predicate path in its postcondition. Indeed, we have
to be sure that if the result is true, i.e., if the word w is accepted, then there is a final state
that can be reached from the initial state of the automaton along a path w, and vice versa.

1 (* True if word w leads the start state of the automaton a to a final state *)

2 let ghost predicate accepted_words (a: automaton) (w: word)

3 ensures { result $ exists f. mem f a.final_states ^ path a.start w f a }

4 =

5 not ( is_empty (inter (delta_ext a.start w a) a.final_states) )

Listing 4.14: Predicate accepted_words.

With function sigma_ext and predicate accepted_words now defined, we can make
use of function filter (presented in Listing 4.12), to formalise the language of the au-
tomaton in a manner resembling the mathematical definition of Sec. 3.7, as shown in the
listing below.

1 (* Returns the language of an automaton a *)

2 let ghost function automatonLang (a: automaton) : fset word

3 =

4 filter (sigma_ext a.alphabet) (accepted_words a)

Listing 4.15: Formalization of the automaton’s language.

The specification of automatonLang is quite delicate since it will be the main respon-
sible for the result we will be proving on compile. We begin by making sure that, in the
automaton received as an argument, all final states can be reached by another state. Note
that, this is quite di↵erent from saying these states are reachable, which would mean
there is a path from the start state of the automaton to the final state. This is certainly
not true in a case where, for example, the automaton received was generated by a regu-
lar expression R = ; · E, where E could be any kind of regular expression. Nonetheless,
it serves to ensure the automaton is constructed according to the algorithm since final
states are originally created by the base cases for R = " and R = a, where the assertion is
unmistakably true.

1 let ghost function automatonLang (a: automaton) : fset word

2 requires { forall f. mem f a.final_states

3 ! exists q, x. mem (q, x, f) a.transitions }

Surely, we know that if a word is in the language of the automaton then it must be an
element of ⌃⇤, just like stated by mathematical definition and implementation.

1 ensures { forall w. mem w result ! mem w (sigma_ext a.alphabet) }

2 ensures { forall w. mem w result ! w , Nil }

We also know that if there are no final states, no words are accepted by the automaton
and, thus, the language is empty (line 1) and, certainly, if the language is not empty, then
there must be acceptance states (line 2).

43



CHAPTER 4. MECHANICAL VERIFICATION

1 ensures { is_empty a.final_states ! is_empty result }

2 ensures { result , empty ! a.final_states , empty }

If the initial state of the automaton is also a final state, then the empty word " is
accepted by the automaton and therefore part of the language (line 1). In fact, if this is
the case and, besides, there are no transitions at all, the language of the automaton is a
set with only the empty word (line 2). While if there are no transitions but the start state
is not final, the language is empty (line 4).

1 ensures { mem a.start a.final_states ! mem (Cons eps Nil) result }

2 ensures { (is_empty a.transitions ^ mem a.start a.final_states)

3 ! result = singleton (Cons eps Nil) }

4 ensures { (is_empty a.transitions ^ not mem a.start a.final_states)

5 ! result = empty }

Similarly, if there is a direct transition from the start state of the automaton to a final
state, the symbol performing the transition is an element of the language (line 1). And, if
it is the only transition and the start state is not final, it is the only accepted word by the
language (line 2).

1 ensures { forall x f. mem f a.finalStates ^ mem (a.start, x, f) a.transitions

! mem (Cons x Nil) result }

2 ensures { forall x f. mem f a.finalStates ^ a.transitions = singleton (a.

start, x, f) ^ not mem a.start a.finalStates ! result = (singleton (Cons x

Nil)) }

Intuitively, following the previous reasoning and the one used when implementing au-
tomatonLang, we can conclude that either the language is empty or there is a wordw such
that w 2 ⌃⇤, and it is accepted by the automaton ((�⇤E(s,w)\F) , ;) (line 1). Equivalently,
we can ensure that all words that are in the language are accepted by the automaton and
are elements of ⌃⇤ (line 2).

1 ensures { is_empty result _ (exists w. mem w result ^ mem w (sigma_ext a.

alphabet) ^ not is_empty (inter (delta_ext a.start w a) a.final_states)) }

2 ensures { forall w. mem w result ! ( inter (delta_ext a.start w a) a.

finalStates , empty ^ mem w (sigma_ext a.alphabet) ) }

Similarly to the postcondition of accepted_words (and, in fact, due to it), the com-
putation of automatonLang should ensure that if a word is in the result then the set of
final states is not empty, there is a path along that same word from the start state of the
automaton to one of the final states, and the word is an element of ⌃⇤.

ensures { forall w. mem w result ! (a.finalStates , empty ^ exists f. mem f a

.finalStates ^ path a.start w f a ^ mem w (sigma_ext a.alphabet)) }

The reverse should also be true. And since Nil cannot be part of the language, when-
ever it is accepted, the word " must be in the result (as if in replacement of Nil).

1 ensures { forall w. (w , Nil ^ mem w (sigma_ext a.alphabet)
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2 ^ inter (delta_ext a.start w a) a.finalStates , empty) ! mem w result }

3 ensures { forall w f. (w , Nil ^ mem w (sigma_ext a.alphabet) ^ mem f a.

finalStates ^ path a.start (reverse w) f a) ! mem w result }

4 ensures { forall w. (w = Nil ^ inter (delta_ext a.start w a) a.finalStates ,
empty) ! mem (Cons eps Nil) result }

4.1.5 Extended Transition Function

We have now to formalise the function delta_ext that is used in Listing 4.14 to assess if
a word is accepted by an automaton.

Recall the formal definition of extended transition function, presented in Sec. 3.6:

�⇤(s,") = ECLOSE(s)

�⇤(s,ua) = {p | 8r,q. r 2 �⇤(s,u) ^ q 2 �(r,a) ^ p 2 ECLOSE(q)}

Notice that �⇤ is defined recursively starting from the right end of the word w = ua.
Based on this definition, we implement the extended transition function using pattern
matching and structural recursion on a given word w, as can be seen in Listing 4.16.
Given that the type word is defined as a list of symbols and pattern matching on lists in
WhyML is done on a head-tail “style”, if we were to receive a word that is structurally
identical to w, we would not have direct access to the last symbol a. Therefore, to make
an implementation resembling that of the mathematical definition, we assume the word
w in delta_ext to be reversed, where the last symbol (of what would be the normal word)
is at the head of the list.

Because we are reasoning over a recursive function, we have to define a condition to
guarantee its termination. Since in this case we are doing structural recursion over the
list of symbols w, and we are removing elements from the list in every recursive call, we
can define the termination with a variant over the length of word w.

1 let rec ghost function delta_ext (s: state) (w: word) (a: automaton): fset state

2 variant { length w }

3 =

4 match w with

5 | Nil ! eclose s a

6 | Cons x Nil ! if eq x eps then eclose s a

7 else let rs = eclose s a in

8 let qs = fold_delta rs x a in

9 fold_eclose qs a

10 | Cons x u ! let rs = delta_ext s u a in

11 let qs = fold_delta rs x a in

12 fold_eclose qs a

13 end

Listing 4.16: Implementation of the extended transition function �⇤.
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Similarly to the formal definition, our function takes as arguments a single state, a
word, and an automaton (which in contrast with the mathematical definition, needs to
be an argument), and returns a set of reachable states under the given word, from the
given state. Just like the mathematical definition, we begin by considering the case where
the input string is the empty word ", represented implicitly by Nil or explicitly by eps.
In this case, we need only to compute the "-closure of the given state (lines 5 and 6).
Otherwise, we apply similar reasoning to the inductive step of �⇤. For the case where the
word is a single input symbol (w = a), the recursive call would (�⇤(s,u)) be the result of
ECLOSE (since u = ") on the given state (line 7). Otherwise, we perform the recursive call
on �⇤ to obtain all states reachable from s along a path u (line 10). From there, for each of
those states, we compute the transition through symbol x (lines 9 and 11) — equivalent
to the �(r,a) step — and account for the possibility of subsequent "-transitions (lines 9
and 12).

In the interest of keeping this section brief, we omit the implementation of func-
tions fold_delta and fold_eclose. As implied by the above explanation of function
delta_ext, fold_delta takes a set of states and a symbol and, by applying function
delta (recall Listing 4.6) to each state in the given set, outputs a set with all reached sates.
Function fold_eclose computes the "-closure (which we will be formalizing in the next
section), for each state in a given set of states, outputting a set with all reached states
through "-transitions. Both functions have also to be specified in order to help verify
the correction of delta_ext. Usually annotated with postconditions that may directly
resemble those of the main function delta_ext (which we will be specifying ahead), for
example, ensuring that for all states in the result of fold_eclose there must be a path
through a sequence of "-transitions from one of the states in the initial set, or vice versa.

Hence, we now have to specify the pre and postconditions to ensure the correct usage
and function of delta_ext, which will be know of the function in the context of proof.
Perhaps most obvious is the fact that every state in the set returned by delta_ext must
be a state of the given automaton:

ensures { subset result a.states }

More interesting would be to define postconditions that, in some way, help reason not
only about the contents of the result, but also about the process of how we got there. Intu-
itively, we understand that, just like its mathematical counterpart in Sec. 3.6, delta_ext
returns a set of states reachable along a path w. Therefore, we could be tempted to define
a postcondition such as the one below:

ensures { forall r. path s w r a ! mem r result }

However, recall that we are reasoning over a word that is flipped. Therefore, it is not
state r that is reachable from state s along a path w, but the other way around. To tackle
the issue, we have implemented a predicate htap that checks if there is a path along a
word between an arriving state and a departing state, whose implementation follows very
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closely that of path in Listing 4.8 and can be viewed on our online repository. We can
now, rewrite the previous postcondition as:

ensures { forall r. htap r w s a ! mem r result }

ensures { forall r. path s (reverse w) r a ! mem r result }

Notice we have also included a postcondition using predicate path with the word
w being reversed. Indeed, one might ask why not just use path with the flipped word
instead of implementing another predicate that, surely, required a reverse thought process.
However, and without venturing too much in the subject of Sec. 4.2, the postcondition
with predicate htap is easier to prove since the predicate and the implementation of
delta_ext follow the same flow (or sequence) of execution, consuming the word from
the last symbol to the first. Whereas path with a flipped word starts by consuming the
first symbol.

Similarly, it should also be true that, if a state is in the result of delta_ext, it is because
there is a path between r and the given state s:

ensures { forall r. mem r result ! htap r w s a }

ensures { forall r. mem r result ! path r (reverse w) s a }

We have chosen not to specify preconditions since the only true pre-requisite on the
function is the type of arguments it receives which is already guaranteed by its signature.
On a first impression, one might think we should require the state we receive to be one
of the defined states in the automaton, or the word to be composed by elements of the
alphabet or ". However, these would be stronger than necessary, as these functions have
to naturally check these kinds of requirements while computing, not solely for avoiding
execution problems but because it is actually how they work — for example checking
if a transition exists or not — and, therefore, no problems might arise from not having
these as preconditions. The same reasoning also lead us to not define preconditions, for
example, for function delta in Listing 4.6.

Taking into account the issue regarding the necessity for the word to be reversed in or-
der to compute delta_ext, all other functions depending on it (such as accepted_words
and automatonLang) must also conform to these changes, for example changing their
postconditions using path to work over reverse w instead. Regardless, in case we just
want to use the specification without the implementation, this is not a problem, since
we can assume a possible implementation where the word follows what would be an
expected natural construction, leaving the correct specification of the function on our
basis of trust. However, further down this chapter, we will look into a more elegant
solution to this problem. Nonetheless, delta_ext proves to be a great example of how
implementation can influence the specification of a program.

4.1.6 ECLOSE

The implementation of the ECLOSE function (Listing 4.17) presented a rather challenging
task, just like its formal definition. We begin by recalling that this function is responsible
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for computing the states reachable from a given state through a sequence of "-transitions,
which explains the use of a recursive definition. This also results in an implementation
that receives a set of states instead of a single one, contrary to the formal definition of
ECLOSE. With the help of fold_next_states, we compute the set of states reachable
through one "-transition, for each state in a given set, including that same state. If the ob-
tained set is a subset of the initial — no new states were reached— no further calculations
are needed. Otherwise, we must compute the eclose of the obtained states.

It may seem as though function eclose does not terminate and, indeed, the set com-
puted by fold_next_states, can only increase in the number of elements or remain
unchanged. However, we point to the fact that we are dealing with finite automata, which
means that we are dealing with a finite number of states to explore, thus guaranteeing
the function eventually returns a result.

1 (* Computes all states reachable from each state in ss through successive eps-

transitios. *)

2 let rec ghost function eclose (ss: fset state) (a: automaton): fset state

3 variant { cardinal a.states - cardinal ss }

4 =

5 if is_empty a.transitions then ss

6 else let ns = fold_next_states ss a in

7 if subset ns ss then ns

8 else eclose (union ss ns) a

9

10 (* Obtains the next states through eps-transitions from each state in s. *)

11 let rec ghost function fold_next_states (ss: fset state) (a: automaton): fset

state

12 variant { cardinal ss }

13 =

14 if is_empty ss then empty

15 else if is_empty a.transitions then ss

16 else let q = pick ss in

17 let nxt_sts = add q (delta q eps a) in

18 union nxt_sts (fold_next_states (remove q ss) a)

Listing 4.17: Implementation of the ECLOSE function.

The problem with this implementation is not only the fact that it is di↵erent in terms
of the arguments it receives, compared to the mathematical definition, but in terms of
the flow of execution. The breadth-first structure, besides being di↵erent from the math-
ematical definition of ECLOSE in Sec. 3.5, makes it harder to reason about the sequence
in which we perform the transitions and, therefore, about the path we are following.
Remember that the idea of the function is to find all states reachable from a given state
s along a path of consecutive "-transitions, so this should be something we are able to
ensure.

In order to tackle the issue, we now dive in a depth-first approach to the formalization
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of function eclose, that more closely resembles the formal definition, which we recall
below.

ECLOSE,
n
(s,Q)

��� Q = {s}[ { r | 8q. q 2 �(s,") ^ q , s ^ r 2 ECLOSE(q) }
o

We begin by creating a wrapper-function eclose that, just like the above definition,
receives a single state as an argument, as well as the automaton. We need this function
to make sure we start the execution with an empty sequence of visited nodes, a struc-
ture that will make sure we do not visit a state twice. The actual algorithm runs on
function eclose_n that checks if a given state was already visited (line 10), computes
its "-transitions (line 12), and computes the "-closure for each of the reached states (line
13). Function fold_next is thus responsible for repeating the algorithm for each of those
states. As you can see, this happens using mutual recursion, which, on its own, is a
problem when proving the termination of the functions.

1 (* Depth-first version of ECLOSE *)

2 let ghost function eclose (s: state) (a: automaton) : fset state

3 =

4 if is_empty a.transitions then singleton s

5 else eclose_n empty s a

6

7 (* Computes the eclose for state q: all states reachable from q through

successive epsilon-transitios. *)

8 let rec ghost function eclose_n (visited: seq state) (q: state) (a: automaton) :

fset state

9 =

10 if not mem q visited then

11 begin

12 let ns = (delta q eps a) in

13 fold_next (snoc visited q) ns a

14 end

15 else to_set visited

16

17 with ghost function fold_next (visited: seq state) (ns: fset state) (a:

automaton) : fset state

18 =

19 if is_empty ns then to_set visited

20 else if subset ns (to_set visited) then to_set visited

21 else let q = pick (diff ns (to_set visited)) in

22 union (eclose_n visited q a) (fold_next visited (remove q ns) a)

Listing 4.18: Depth-first implementation of ECLOSE.

As in the formal definition, we must ensure the "-closure of a state includes the
own state (line 2). No less obvious, is that all states in the result are states of the given
automaton (line 3), or that, if there are no transitions, the "-closure of one state is the
singular set with the own state (line 4).
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1 let ghost function eclose (s: state) (a: automaton) : fset state

2 ensures { mem s result }

3 ensures { subset result a.states }

4 ensures { is_empty a.transitions ! result = singleton s }

We could also specify postconditions regarding the contents of the result. For example,
if a state is in the result of function eclose, it is either because it is the starting state or
because one other state in the result can reach that state through an "-transition (line 1).
And the reverse case should also be true: if a state is part of the reached states and has
a "-transition to one other state, that state he can reach should also be part of the result
(line 3).

1 ensures {forall f. mem f result !
2 f = s _ (exists i. mem i result ^ mem (i, eps, f) a.transitions)}

3 ensures {forall i, f. mem i result ^ mem (i, eps, f) a.transitions

4 ! mem f result}

However, we can be even more ambitious. In fact, recall that eclose finds states
along a path of successive "-transitions. Thus, we should be able to ensure that for all
states to which we have an “"-path”, these are in the result of the function eclose (line
1). Similarly, if a state is in the result, surely there must be a path through "-transitions
leading to it from the starting state (line 2).

1 ensures { forall r. (path_eps s r a) ! mem r result }

2 ensures { forall r. mem r result ! path_eps s r a }

While it is also necessary to specify the functions eclose_n and fold_next, we omit
the assertions we have designed for them, not only because it would make this section
increasingly longer and cumbersome — for example, having to reason about the set of
visited states in every assertion, or postconditions being interdependent because of the
mutual recursion — but also because only eclose’s assertions will be present in the
context of proof for other functions that use it (eclose_n and fold_next’s postconditions
are, however, necessary to prove those in eclose). Moreover, for the same reason we have
not defined preconditions for delta_ext, we also do not define them for eclose.

4.2 Verification

With the program implemented and fully specified, we can move on to the mechanical
verification of the implemented procedures. For each lemma, axiom, annotated function,
invariant or assertion, Why3 generates a verification condition (VC) to be proved. Since
Why3 is oriented towards automatic proofs, supporting many external automatic theorem
provers, to solve the validity of a verification condition we can call on provers such as Alt-
Ergo, Z3 or CVC4. And while, as mentioned in Chapter 2, Why3 also supports interactive
proof assistants such as Coq or Isabelle, in this thesis we are just focused on the use of
SMTs.
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Figure 4.1: The Why3 IDE graphical interface.

It can happen that the provers can easily discharge a selected verification condition,
just like delta in Fig. 4.1, or that we need to make formulas and annotations easier to
prove by applying logical transformations in order to help provers discharge them, as for
lemma_subset_wf_visited. Naturally, the feedback we get from the solvers in each VC
— either because it was able to prove the contract, timed out because it was not able to
complete the proof in a certain time, or even was able to refute it — will influence the
way we proceed with our proof. An unsuccessful attempt to prove a verification condition
can be an indicator of: an insu�cient specification; the simple incapacity of the prover,
leading to the necessity of applying tactics, we have mentioned before;or even a bug or
incorrect implementation of the code.

During our verification e↵ort, we came across many of these issues. Some of them,
we have already mentioned in the previous sections. Our approach was to first imple-
ment every function we thought would be necessary to produce a complete program,
with all concepts introduced in Chapter 3. Gradually annotating the code with pre and
postconditions and introducing lemmas, as they became relevant to the proof of our im-
plementations and in regards to what seemed to be lacking. This methodology brings
both advantages and disadvantages. On one hand, focusing on proving the correctness of
functions that are just needed for the logical context of proof, such as eclose, delta_ext
or automatonLang, is time-consuming and draws us away from tackling what could be
considered the main proof: the equality between the languages of regular expression and
NFA. On the other hand, it creates an iterative process where we are able to build stronger
specifications — annotating, asserting and creating lemmas as they become necessary —
that not only might help in proving other functions correct, but also increase confidence
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in the implementation, by becoming aware of properties that should be true and, most
importantly, able to be proven regarding the implementation.

ECLOSE. Function eclose was perhaps the most challenging and time-consuming to
implement and, especially, verify. A breadth-first implementation (Listing 4.17) makes it
harder to reason over the concept of path, which becomes a problem when other imple-
mentations, such as that of delta_ext, depend on eclose and, therefore, its specification.
A depth-first implementation solves this issue, following a flow of execution compara-
ble to that of predicate path. However, this alternative introduces other issues that are
equally di�cult to solve. The necessity of avoiding checking a state twice introduces
new structures that have to be specified and controlled, such as sequence visited in
Listing 4.18. For example, by having to guarantee that states are added to visited se-
quentially, in order to ensure that all states along a path of " are reached. Otherwise,
visited could have any state — before and after the starting state — and could not guar-
antee all states along the path would be visited. Furthermore, mutual recursion raises
problems related to the termination and interdependence between pre and postcondi-
tions of the functions eclose_n and fold_next, where the termination and contracts of a
function have to be proven in relation to the other, which greatly increases the complexity
of proof and, consequently, that of the wrapper function eclose.

However, we have managed to solve many of these issues and discharge most of
the verification conditions for eclose, eclose_n and fold_next. However, the proof of
termination of the last two functions remains an open issue. And so is true for the proof
of a postcondition ensuring that, if a state is in the result, there must be a path from the
starting state to it. The proof of this postconditions is dependent on a similar proof for
eclose_n and fold_next, but requires a more thorough exploration due to the problems
we have mentioned above, regarding mutual recursion.

In Sec. 3.5, we have made reference to two properties of ECLOSE, that could be in-
teresting to include in our program. Even though, at this point, they are not entirely
necessary for our procedures, we formalise them in Listing 4.19. Lemma close_eclose
states that, if a state q is in the "-closure of a state s (q 2 ECLOSE(s)) and there is an "-
transition to any other state r, then state r must also be an element of ECLOSE(s). Lemma
subset_eclose states that, for any state q 2 ECLOSE(s), its "-closure is a subset of that of s
(ECLOSE(q) ✓ ECLOSE(s)).

1 (* If q in ECLOSE(s) and there is an eps-transition from q to a state r, then

r in ECLOSE(s) *)

2 lemma close_eclose:

3 forall a:automaton, s q r:state.

4 mem s a.states ^ mem q (eclose s a) ^ mem (q, eps, r) a.transitions

5 ! mem r (eclose s a)

6

7 (* If q in ECLOSE(s), then ECLOSE(q) must be a subset of ECLOSE(s). *)
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8 lemma subset_eclose:

9 forall a:automaton, s:state, q:state. let ecl = (eclose s a) in

10 mem s a.states ^ mem q ecl ! subset (eclose q a) ecl

Listing 4.19: Properties of function eclose.

The former is easily proven by Why3. The latter, however, might seem obvious, espe-
cially when paired with the first, but is dependent (and proven) by a property of transi-
tivity for path_eps— if there is a "-path from a state x to a state y and from y to a state
z, then there is a path from x to z — but which we have yet to prove.

Extended Transition Function. Assuming the specification of eclose, the proof of
delta_ext did not require much e↵ort, as we were able to prove each and every one
of its postconditions. However, as you may recall from Sec. 4.1.5, predicate path parses
the word in natural order, from the first symbol of the word to the last. This makes it
harder to compare with the execution of function delta_ext, which does it in the reverse
order. For this reason, we have defined a predicate htap, that works very similarly to path
but receives a word assumed to be flipped, just like delta_ext and, therefore, without
much transformations, is simple to prove. Since other functions are dependent on path,
we have also created postconditions using the normal predicate but with the reversed
word (that which would be considered in the normal order). However, the problem re-
mains that path and delta_ext parse the word in di↵erent directions. With the creation
of htap we can now define a lemma ensuring that having one implies the other, as shown
in the listing below.

1 lemma path_htap:

2 forall x y: state, w: word, a:automaton.

3 path x w y a $ htap y (reverse w) x a

Listing 4.20: A path between x and y through w, implies a path between y and x through
an inverted word w.

Due to its complexity, and the reason that drove us to define htap in the first place,
we have not begun the proof of this lemma yet. Trusting that its result is true and assured
that it should be proven, its proof is one of our future tasks.

An alternative in consideration is the redefinition of type word as a sequence of sym-
bols, rather than a list. This would not grant us the commodities of pattern-matching,
but would allow us to work with the word in its correct order — since sequences allow
direct access to the last element — and perhaps be easier to prove a postcondition with
path, even if they parse the sequence in di↵erent orders. Furthermore, it would allow us
to work solely with the symbols, not having to consider the case where the list (or word)
is Nil. Which, even though representing ", as you could see in the implementation of
language in Sec. 4.1.4, cannot be an element of the language. Hence, this change would
also simplify any confusion that might be introduced by a Nil word.
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Language of an NFA. The specification of delta_ext proved to be strong enough since,
allied with the specification of sigma_ext (Listing 4.13), it helped discharge the post-
conditions proposed for the implementation of automatonLang (Listing 4.15). This, of
course, having in mind the fact that we are now considering the word in reverse because of
delta_ext, which, as you may recall, is necessary for the definition of accepted_words.

Unfortunately, we have noticed a problem raised by the use of reversed words, as
necessary for delta_ext: the elements of the language are also reversed words, since
these are the ones we are being filtered by predicated accepted_words (Listing 4.14).
This means that, when we compute the automaton language for any of the inductive steps
(the basis does not have this problem, given that the language is either empty or has
only one symbol), the words will be di↵erent from those of the language of the regular
expression and, therefore, make it impossible to actually prove their equality.

There are several alternatives to this. The first we have already presented, which
would be to change the type of word from list to sequence, and consequently have it and
its predicates use the word in a natural order. However, this solution would require a
complete restructuring of the code, something that does not answer to the immediacy of
the problem. The second alternative would be to reverse all of the obtained words in the
implementation of automatonLang, i.e., after the computation of the function, reverse
all of the elements in the language. Fortunately, there is a solution that is both more
elegant and easy to implement, without a complete redefinition of either delta_ext or
automatonLang, or of the code as a whole.

As we have mentioned above, predicate accepted_words is the one responsible for
filtering the words that are accepted by the language, by checking which words can
reach the final states, starting from the initial state of the automaton. Recall the current
definition of predicate accepted_words in the listing below, according to the changes
made necessary by the implementation of delta_ext.

1 let ghost predicate accepted_words (a: automaton) (w: word)

2 ensures { result $
3 exists f. mem f a.final_states ^ path a.start (reverse w) f a }

4 = not (is_empty (inter (delta_ext a.start w a) a.final_states))

Listing 4.21: Current formalization of predicate accepted_words.

A smarter solution would be to consider word w to be ordered naturally, and instead of
flipping it for predicate path in the postcondition, do it for delta_ext, as in Listing 4.22
below. This will allows us to use word w normally in function automatonLang as well, and
just like in predicate accepted_words, use (reverse w) for calls on delta_ext and w for
calls on predicate path. Additionally, this also makes it easier to read and understand the
code of functions depending on path or delta_ext.

1 let ghost predicate accepted_words (a: automaton) (w: word)

2 ensures { result $ exists f. mem f a.final_states ^ path a.start w f a }
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3 = not (is_empty (inter (delta_ext a.start (reverse w) a) a.final_states))

Listing 4.22: Correct formalization of predicate accepted_words.

Proof of Equivalence. Much like the mathematical proof introduced in the previous
chapter, the proof for the base cases (R = ;, R = " and R = a) was quite simple and with
little exploration. The other postconditions introduced in Sec. 4.1.2 for function compile

were mostly straightforward as well, both for the basis and inductive steps. However,
much like the mathematical proof, the complexity of the proof becomes evident when we
try to prove the equality of the languages for regular expression and automaton, for the
concatenation and union. There are several issues that might have to be considered here,
one of them quite delicate.

Recall that, by definition of the concatenation of languages, presented both in Sec. 3.3
and Listing 4.2, every character of the concatenation is explicit, including ". Whereas
in an "-NFA, the computation of " is automatic since "w = w and w" = w. This does not
mean that any of the computations is wrong or that it prevents the proof of equality. It
does, however, require a bit more delicate exploration of the proof.

In Sec. 3.9, we proved that the language of the concatenation of two automata is
equal to the concatenation of the languages of those two automata, based on the idea that
all words accepted by the resulting automaton, naturally, have to go through the first
automaton of the concatenation and then the second. In other words, this means that
words accepted by the resulting automaton are concatenations of words accepted by the
first automaton and words accepted by the second automaton. We defined this by means
of Lemma 3, recalled below.

8w 2 ⌃⇤. �⇤EG(s0E ,w)\FG , ;
=) 9u 2 ⌃⇤E, 9v 2 ⌃⇤G. w = uv ^ (�⇤E(s0E ,u)\FE) , ; ^ (�⇤G(s0G ,v)\FG) , ;

We would like to have a similar result in our program, in the hopes that this can help
our mechanically checked proof. As such, we implemented the previous lemma:

1 lemma word_concat:

2 forall a b c: automaton, w: word. c = automaton_concat a b ^
3 mem w (sigma_ext c.alphabet) ^
4 inter (delta_ext a.start (reverse w) c) b.finalStates , empty !
5 exists u v: word.

6 mem u (sigma_ext a.alphabet) ^ mem v (sigma_ext b.alphabet) ^
7 w = Append.(++) u v ^
8 inter (delta_ext a.start (reverse u) a) a.finalStates , empty ^
9 inter (delta_ext b.start (reverse v) b) b.finalStates , empty

10

11 lemma alang_concat:

12 forall a b c: automaton, w: word.

13 let le = automatonLang a in let lf = automatonLang b in
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14 let lef = automatonLang c in

15 c = automaton_concat a b ^
16 mem w lef ! exists u v. w = Append.(++) u v ^ mem u le ^ mem v lf

Listing 4.23: Lemma 3 formalised in WhyML.

Lemma alang_concat just better translates the meaning of the first one, and therefore
is easily proven, while being even more helpful. Note that we are omitting the conditions
that respect the preconditions of automatonLang, in the interest of simplicity and legibil-
ity. However, while the definition of Lemma 3 may be clear enough for us to conclude
the mathematical proof, Why3 requires a greater exploration or the definition of clearer
properties. In our case, we had to define a property regarding the equality of languages
(or sets):

1 lemma set_equality:

2 forall x y: fset ’a.

3 (forall a. mem a x ! mem a y) ^ (forall a. mem a y ! mem a x)

4 ! x = y

Listing 4.24: Set equality.

This lemma is obvious and easy to discharge, and means that, if we want to prove that,
for example, lef = (concat le lf), it is not enough to prove that every word in lef is
in (concat le lf), but also the other way around. The former condition is easy to prove
using the previous two lemmas, the latter is not as simple. Therefore, we must define a
lemma similar to Lemma 3 (or word_concat) but stating that, for any two words u and v,
respectively accepted by an automaton A and B, the concatenation of those two words is
accepted by the automaton resulting from the concatenation of A and B:

Lemma 5.

8u 2 ⌃⇤A, v 2 ⌃⇤B, w = uv. (�⇤A(s0A ,u)\FA) , ; ^ (�⇤B(s0B ,v)\FB) , ;
=) w 2 ⌃⇤AB ^ (�⇤AB(s0A ,w)\FB) , ;

1 lemma concat_word:

2 forall a b c: automaton, u v w: word. ^
3 mem u (sigma_ext a.alphabet) ^ mem v (sigma_ext b.alphabet) ^
4 inter (delta_ext a.start (reverse u) a) a.finalStates , empty ^
5 inter (delta_ext b.start (reverse v) b) b.finalStates , empty ^
6 w = Append.(++) u v ^ c = automaton_concat a b !
7 mem w (sigma_ext c.alphabet) ^
8 inter (delta_ext a.start (reverse w) c) b.finalStates , empty

9

10 lemma concat_alang:

11 forall a b c: automaton, u v w: word.

12 let le = automatonLang a in let lf = automatonLang b in

13 let lef = automatonLang c in
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14 mem u le ^ mem v lf ^ w = Append.(++) u v ^ c = automaton_concat a b !
15 mem w lef

Listing 4.25: Lemma 5 formalised in WhyML.

Once again, lemma concat_alang better translates the meaning of the first one and,
therefore, is easily discharged, while being more helpful for the proof. One other inter-
esting possibility would be to define a transitivity property for predicate path, similar to
the one we have discussed before for path_eps.

The proof of the inductive step of the union of regular expressions will also require
the formalization of certain concepts, mainly that of Lemma 4 (recalled below), which
states that a word accepted by the automaton resulting from the union of two others is
either accepted by one or the other.

8w 2 ⌃⇤. �⇤E+G(i,w)\FE+G , ;
=)

⇣
w 2 ⌃⇤E ^ (�⇤E(s0E ,w)\FE) , ;

⌘
_

⇣
w 2 ⌃⇤G ^ (�⇤G(s0G ,w)\FG) , ;

⌘

1 lemma word_union:

2 forall a b c: automaton, w: word, i: state.

3 c = automaton_union i a b ^ mem w (sigma_ext c.alphabet) ^
4 inter (delta_ext c.start (reverse w) c) c.finalStates , empty !
5 (mem w (sigma_ext a.alphabet) ^
6 inter (delta_ext a.start (reverse w) a) a.finalStates , empty) _
7 (mem w (sigma_ext b.alphabet) ^
8 inter (delta_ext b.start (reverse w) b) b.finalStates , empty)

9

10 lemma alang_union:

11 forall a b c: automaton, w: word, i: state.

12 let le = automatonLang a in let lf = automatonLang b in

13 let lef = automatonLang c in

14 c = automaton_union i a b ^ mem w lef ! mem w le _ mem w lf

Listing 4.26: Lemma 4 formalised in WhyML.

Once again, the formalization of Lemma 4 (word_union in Listing 4.26) is accompa-
nied by the definition of one other lemma that simplifies its meaning and the proof as
well. Moreover, we have to keep in mind the definition of set equality, we have mentioned
before, that led us to define two new lemmas to prove the equality of the concatenation.
The proof of the union is no di↵erent. Therefore, similarly to Lemma 4, we have to define
a new lemma stating that for any word w accepted either by an automaton A or B, the
automaton resulting from the union of these two automata must also accept w:

Lemma 6.

8w. (w 2 ⌃⇤A ^ (�⇤A(s0A ,w)\FA) , ;)_ (w 2 ⌃⇤B ^ (�⇤B(s0B ,w)\FB) , ;)
=) (�⇤A+B(s0A+B ,w)\ (FA [FB)) , ;
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1 lemma union_word:

2 forall a b c: automaton, w: word, i: state.

3 ((mem w (sigma_ext a.alphabet)

4 ^ inter (delta_ext a.start (reverse w) a) a.finalStates , empty) _
5 (mem w (sigma_ext b.alphabet)

6 ^ inter (delta_ext b.start (reverse w) b) b.finalStates , empty)) ^
7 c = automaton_union i a b !
8 mem w (sigma_ext c.alphabet) ^
9 inter (delta_ext c.start (reverse w) c) c.finalStates , empty

10

11 lemma union_alang:

12 forall a b c: automaton, w: word, i: state.

13 let le = automatonLang a in let lf = automatonLang b in

14 let lef = automatonLang c in

15 (mem w le _ mem w lf) ^ c = automaton_union i a b ! mem w lef

Listing 4.27: Lemma 6 formalised in WhyML.

The definition of the last few lemmas successfully concludes the correctness proof of
function compile and, therefore, the mechanically checked proof of the expressive equiv-
alence of regular expressions and finite automata. However, while lemmas alang_concat,
concat_alang, alang_union, and union_alang are easily discharged, given their prede-
cessors, the proof of lemmas word_concat, concat_word, word_union, and union_word

remains an open issue. Even though these might seem natural, given the definition of
concatenation and union, they have proved to be rather complex. One of the possibilities
to consider, particularly in the case of the concatenation, is the use of the result of transi-
tivity for predicate path, which, as we have mentioned before, we hope to formalise and
prove in the future.

4.3 Discussion and Related Work

The theoretical and practical significance of formal languages and automata theory has
driven many to formalise and develop mechanically-checked proofs for various of their
concepts, representations, and algorithms related to the Kleene algebra.

In 1997, Filliâtre [35] produced one of the earliest works on formalizing and verify-
ing the Kleene theorem, proving the expressive equivalence of regular expressions and
finite automata, within the Coq proof assistant, and extracting a functional program that
translates a regular expression into a finite automaton. Kaiser’s [52] recent approach
to the formalization of the Kleene theorem, which uses Coq as well, does not allow au-
tomata with "-transitions, working on top of an alternative to the classic algorithm using
deterministic finite automata instead of nondeterministic finite automata, in order to
avoid the issues and complexity introduced by concepts such as the "-closure. More re-
cently, and following on this work, Doczkal et al. [33, 34], propose a formalization of
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regular language representations in Coq’s constructive type theory, including the equiv-
alence between di↵erent automaton representations and a constructive approach to the
Myhill-Nerod theorem.

Other works on the formalization of automata theory include Constable et al.’s [24]
approach to constructively formalise the Myhill-Nerod theorem on the minimization of
finite automata in NuPRL, and, more recently, Paulson’s [72] formalised automata theory
in Isabelle/HOL, including the Myhill-Nerode theorem and Brzozowski’s minimization
algorithm [12], based on hereditarily finite sets.

There are also substantial developments in the mechanization of decision procedures
for the equivalence of regular expressions. Coquand and Siles’ [25] approach was to me-
chanically check a decision procedure for equivalence based on Brzozowski’s algebraic
method [13]. Braibant and Pous [11] use Coq to verify a reflexive decision procedure for
equalities in Kleene algebras based on finite automata, and prove it sound and complete.
Moreira et al. [66, 67] developed a mechanically verified decision procedure based on
the equivalence of the partial derivatives of regular expressions, following on Pereira and
Moreira’s [73] formalization of Kleene algebras with tests, Almeida et al.’s [3] correct-
ness proof of a partial derivative automata construction from regular expressions using
the Coq proof assistant, and their work on the mechanization of Kleene algebra within
Coq [65].

Although the work presented in this chapter is not the first to mechanise a correc-
tion proof for the conversion of regular expressions into finite automata, our approach
is original. Compared to Filliâtre’s take [35], which, despite also being based on the
conversion method proposed by Hopcroft et al. [46], skips on the formalization of con-
cepts such as the "-closure (ECLOSE) or the extended transition function (�⇤), by defining
the acceptance of words and, therefore, the language by means of a predicate path, our
approach is comparable to the theoretical work not only for the actual translation, but
also every definition that precedes it, which makes it more complex but more complete
as well. Moreover, as of the moment of this writing, ours is the first work to propose a
mechanised proof for the equivalence of regular expressions and finite automata, or any
formalization of formal language theory, within the Why3 framework.
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CHAPTER 5
Conclusion

With this dissertation, we prove that regular expressions and finite automata are equiva-
lent descriptions of formal languages, both mathematically and mechanically. We show
that the two are equally expressive by proving that, after converting a regular expression
into a nondeterministic fine automaton, the language of the two representations is the
same — the conversion is language-preserving.

The results we prove have been the subject of much work and studied in seminal pub-
lications since Kleene first introduced regular expressions as a specification language for
finite automata [54], leading to the equivalence of regular expressions and finite automata
in a work to be known as Kleene’s theorem. However, contributions on the theory of for-
mal languages and automata across the years have been quite informal, leaving space for
more rigorous mathematical definitions of involved algorithms and proofs, which can
be especially helpful and rewarding when the end goal is to implement mechanically
certified programs based on these concepts. Furthermore, these existing works prove
the equivalence between regular expressions and finite automata on the possibility to
generate one from the other. Yet, if we want to validate a procedure that performs such
conversion, it is not enough to “show” that it is possible. We need a more fine and ac-
curate method for proving their equivalence and that is to show that some properties
remain unchanged. In particular, being descriptions of regular languages, the proof of
equivalence comes down to a proof of correction of the conversion algorithm showing
that the language of a regular expression is equal to that of the resulting automaton.

This led us to redefine some of the textual concepts that are needed for the definition
of automaton language in a more formal manner, making them simpler to reason about
in a context of proof. Additionally, we present an adapted version of the conversion
algorithm, in a more formal mathematical interpretation, and finally define the proof for
the equality of the languages in a pen-and-paper style, using the new redefinitions.

The mechanization of algorithms and proofs is a delicate process. An incomplete or
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faulty specification is enough to weaken the validity of the procedure. To reach a formal-
ization of the algorithm and consequent mechanization of the proof, this was a necessary
step. The redesign of many of the concepts in a more formal manner allowed us to imple-
ment them in a way that is faithful to the mathematical development. At the same time,
detailing a formal proof of equivalence on the basis of language equality, made it easier to
understand the sequence of proof and underlying properties necessary to the conclusion
of the correctness. In particular, through the definition of lemmas, as well as possible pre
and postconditions. The Why3 mechanization, thus, follows the pen-and-paper proof
closely. The choice to implement every introduced concept preceding the formal proof,
instead of just using what would be an expected specification, was time-consuming, but
at the same time allowed us to build a more confident specification. The process of im-
plementing and specifying becomes iterative and, in some sense, gives us feedback on
our work. If the theorem provers are not able to discharge the verification conditions,
something is wrong in our procedure: either the implementation has a bug, or the speci-
fication is faulty or insu�cient. In the end, this proves to be an advantage, resulting in a
more complete program and greater confidence in the validity of our mechanized proof.

The present work shows that the Why3 framework is a program validation environ-
ment capable of being used in the development of realistic verified software. Particularly
in our case, allowing for a mathematically rewarding mechanization of results on formal
languages and automata theory, with reasonable e↵ort.

However, a work of this dimension is not without its challenges or faults along the way.
Although Why3 presented to be very powerful in regards to specification and, especially,
very versatile in terms of the theorem provers we can use, their feedback (for example
o↵ering counterexamples), and the immensity of tactics that can be applied in the context
of proof, we have noticed a bit of a nondeterministic behaviour. It happened that on some
occasions we would not get the same result twice, for example, having two equal programs
where Why3 would be able to discharge some contracts in one, but not the other. This,
of course, can be influenced by the processing power of the machine in use, how much
memory was available, etc. Furthermore, there were instances where obvious properties
had to be further asserted in order to be discharged and induction could be cumbersome.

5.1 Future Work

There are several, more direct and imminent, developments to complement the works
presented in this dissertation. In particular, as we have made clear before, we would
like to narrow our trust basis. Firstly, by closing the correctness of ECLOSE, proving
its termination and discharging the remaining postconditions. Related to the latter, as
discussed in Sec. 4.2, we are also looking into proving certain properties of predicates
path and path_eps, such as transitivity. Lastly, and once again taking advantage of
the previous results, we would like to prove the lemmas word_concat, concat_word,
word_union and union_word (Listings 4.23, 4.25, 4.26 and 4.27, respectively). Another
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interesting possibility would be to take advantage of Why3’s capability of extracting
correct-by-construction code, to extract certified OCaml code of the current development,
obtaining a verified program for translating regular expressions into finite automaton.
While we could have already performed this last step, we felt it would not pose a great
contribution to what we have already developed, since it would only be natural and easy
to use if we implemented a parser transforming the user’s input into our structure for
regular expressions.

The results from this work can also be followed by the mechanization of concepts
such as the minimization of finite automata or the equivalence between nondeterministic
finite automata and deterministic finite automata. However, we believe that above these,
the most interesting next step would be to produce the converse proof for the conversion
from finite automata to regular expressions. In this case, the proof would be based on
the same principle as the one developed herein: to prove that the translation preserves
the language. Nonetheless, requiring a great deal of mathematical redefinitions and
formalizations, akin to the work we present in this document.

Regardless, the contributions of this dissertation open the possibility for develop-
ments beyond regular languages. Particularly, we intend on applying the insights and
learnings from this work to the development of verified versions of the algorithms and
tool for the bi-directional translation between Mungo typestates and deterministic object
automata, we have introduced in [85]. For an initial stage of development, this means
defining concepts similar to those we have introduced in Chapter 3, such as the language
of deterministic object automata or the acceptance of words. Leading to the development
of a proof of correctness of the conversion algorithms where, here too, the language must
be preserved. Our interest in developing a proof of correction in both directions of the
conversion is what makes it important to develop a proof of correction for the conversion
from finite automata to regular expressions, as well.

Finally, we intend on converting the existing OCaml code in WhyML and complement
it, by formalizing the necessary concepts from the previous phase, in order to develop
a mechanized proof of the equivalence between Mungo typestates and DOA. Resulting
in verified procedures that can be, later on, adapted to build a certified version of the
tool we have presented. Allowing programmers to use it with confidence in the results it
produces.
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