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 1 

Abstract—Livestock is increasingly treated not just as food containers, but as animals that can be susceptible to stress 2 

and diseases, affecting, therefore, the production of offspring and the performance of the farm.  The breeder needs a 3 

simple and useful tool to make the best decisions for his farm, as well as being able to objectively check whether the 4 

choices and investments made have improved or worsened its performance. The amount of data is huge but often 5 

dispersive: it is therefore essential to provide the farmer with a clear and comprehensible solution, that represents an 6 

additional investment. This research proposes a genetic programming approach to predict the yearly number of weaned 7 

calves per cow of a farm, namely the measure of its performance. To investigate the efficiency of genetic programming 8 

in such a problem, a dataset composed by observations on representative Piedmontese breedings was used. The results 9 

show that the algorithm is appropriate, and can perform an implicit feature selection, highlighting important variables 10 

and leading to simple and interpretable models. 11 

Keywords—Genetic Programming, Precision Livestock Farming, Cattle Breeding, Piedmontese Bovines.  12 
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1. Introduction 13 

In this article, the performance of the breeding farms of Piemontese bovines are investigated. The considered cattle 14 

farms are located in Piedmont, a region in Northwestern Italy. The Piedmontese cattle derives its name from this region, 15 

its cradle of origin, even if today it is spreading in several foreign countries. The bovines are usually bred in beef intensive 16 

farms, which are therefore provided with the installation of stables to control the animals, grazing for fattening 17 

purposes, the addition of different artificial fodder on feed and curative intents, and particular attention to the 18 

reproduction of the livestock. The main information that represents the yield of a Piedmontese cattle farm is given by 19 

the count of calves per cow per year [1, 2]. It is a quantity that is basically predicted considering the average calving 20 

interval intp, expressed in days, and the average perinatal mortality of the farm m, referred to the previous 12 months: 21 

 22 

𝑌𝑎 =
365

𝑖𝑛𝑡𝑝
(1 −

𝑚

100
)        (1) 23 

However, this expression does not take into account the period following the birth of the calf. Calf mortality is an 24 

important cause of economic losses in Piedmontese cattle farms [2]. It represents for the farmer the loss of the 25 

economic value of the calf and the reduction of the herd’s genetic potential. Furthermore, the high mortality rate 26 

reduces the number of young animals to be used to increase the size of the breeding. From the analysis of the recordings 27 

in 2017, described later in the manuscript, the difference between the number of dead calves at birth and those that 28 

did not survive through the weaning period is straightforward extremely significant. In Figure 1, the distributions of 29 

dead calves are represented for the selected group of breedings. Most of the farms report no death at birth (mean 30 

value: 0.13), whereas during weaning period records show up to 23 deaths per farm in the considered year (mean value 31 

3.02), entailing that many of the newborns were not able to survive. This issue can lead to the need of buying animals 32 

and, therefore, to additional costs. Perinatal mortality is related to birth and the first few hours after it: it is mainly due 33 

to the delivery itself (difficulty of parturition of the cow and its health condition) and to the difficulty of birth and the 34 

weight of the newborn. 35 

However, the complete development of the calf occurs in the 60 days following birth. During the weaning period, the 36 

physiological development process of the animal reaches completion and it is straightforward that the gestational phase 37 

alone is not exhaustive: it is therefore crucial to consider neonatal mortality, outlining the calf’s ability to survive. Thus, 38 

in addition to the genetic factors previously mentioned, it is inevitable to consider congenital calf’s defects, such as 39 

arthrogryposis or macroglossia. Together with environmental and food conditions, they affect the quality of life of the 40 



newborn, denoting an important source of stress that can compromise the immune response, the growth rate, the 41 

disease resistance, and the well-being of the animals. It is therefore necessary to incorporate in expression (1) the 42 

factors that encapsulate the effect of the weaning period of the newborn. This issue leads to the reformulation of the 43 

problem into the following question: 44 

“How many weaned calves per cow are produced per year?” 45 

It is straightforward that a proper model should be formulated, with the encapsulation of other parameters, among 46 

those available in the dataset.  47 

 48 

Fig.1 Distribution of the number of dead calves at birth and during the weaning period in 2017. Mean values are 49 

represented with the dashed line at the two different time reference. The data derive from the dataset described in 50 

Section III. All the breedings (725) show extremely different values between the dead calves at birth (in blue) and (in 51 

red) at 60 days after it (Kruskal-Wallis test: p-value << 0.001). 52 

 53 

This study aims hence at investigating the production performances of Piemontese calves and its optimization for 54 

fattening purposes but also for the calf’s reproductive career. In particular, the intention is to extend the horizon by 55 

investigating which administrative and production variables available in the dataset may influence the production of 56 

calves. Studies conducted so far within the association are based on traditional statistical identification approaches. 57 

Actual modelling involves only two variables, without exploiting the huge number of parameters in the dataset [1, 2, 3]. 58 

Without making a priori bio-, epi-, or eco- logical assumptions about data or the relationship between the response and 59 

the independent variables, even if still uncommon for this class of problems, Machine Learning (ML)  techniques may 60 

provide interesting feature selection characteristics, representing a flexible and robust alternative in predictors 61 



identification.  Specifically, the potential of Genetic Programming (GP) [4, 5] is investigated to create and to analyze 62 

predictive models for the number of weaned calves in Piedmontese cattle breedings, which could improve the analysis 63 

of Piedmontese breeding performance. Inside the ML arena, we chose to use GP, because this technique has a set of 64 

interesting characteristics, that distinguish it from many other methods. First of all, it assumes no hypothesis about the 65 

shape of the final model, which is very important for the problem under investigation, considering that no a priori 66 

knowledge is given. Secondly, using some precaution, GP can be able to generate readable and interpretable models, 67 

which is crucial for our application. Finally, GP is able to perform an automatic feature selection, thus relieving us from 68 

any pre-processing task. These models are compared with the predictive model that is currently adopted by the National 69 

Association of Piedmontese Cattle Breeders ANABORAPI to monitor the progress of each farm.  70 

 71 

The paper is organized as follows: in Section II, the background is described. Then, the dataset is analyzed and some 72 

basic assumptions on the model are made in Section III. GP models and their performance are illustrated in Section IV, 73 

where hypothesis tests and results are examined. Finally, discussions are presented, and further developments are 74 

highlighted in Section V. 75 

2. Background 76 

The ’Piemontese’ is an Italian bovine breed native of Piedmont and represents a characteristic element of the territory. 77 

It is the major bred breed among beef cattle in the region, showing both organoleptic and zootechnical remarkable 78 

qualities. If, on one side, it results in greater tenderness of the meat, on the other hand, it is a breed with exceptional 79 

character skills, such as meekness, maternal attitude, resistance to diseases, little stress, and great adaptation to 80 

pasture. It, therefore, allows easy management and, not less important, the use and development of the local area [1, 81 

3]. The association ANABORAPI is responsible for promoting the breed through the study of the productive, reproductive 82 

and management processes of the Piemontese breeding [6]. The activity is carried out with the management of the 83 

Herd Book of the Race, a complex database that preserves the pedigrees of all the registered animals and a series of 84 

additional information, such as validation of breed characters, reproductive career, morphological studies, and genetic 85 

values. Nowadays, these activities must deal with new needs, increasingly connected to the sustainability of breeding 86 

and well-being of animals, in the perspective of monitoring every animal. The contribution of each individual is the 87 

concept behind Precision Livestock Farming (PLF). It is the solution to avoid imprecise or non-objective farmers 88 

evaluations and to facilitate management methods, to obtain hence the best profit both for the individual and the 89 

community. ANABORAPI offers to its members a wide section of statistics, which provide a detailed analysis of various 90 



parameters of technical and economic efficiency of the farm and can contribute to identifying the breeding strengths 91 

and critical points for possible improvements or developments. In particular, the average situation of breeding due to 92 

the main fertility parameters is monitored, summarized by the average number of calves per cow produced in the last 93 

year, net of mortality and calving interval (the period between two deliveries of a cow). This is then translated into a 94 

brief economic summary, which compares the gross revenue with the mortality losses, providing the farmer with an 95 

economic indicator of breeding performance. 96 

 97 

A large amount of data is now collected through the use of sensors, ear tags, collars, images and video recordings in 98 

many fields, and livestock sector is not different [7-9]. It is increasingly common in farms to monitor each animal: as 99 

already mentioned, the PLF approach aims for greater accuracy on the quantity and quality of information, to achieve 100 

the economic and environmental sustainability of farms. The breeder must generally deal with animals’ problems like 101 

their health conditions and social behavior, that affect the quality of the product, the life of the animal, and the 102 

performance of the farm. Indeed, the PLF approach provides the offset of incurred costs, as these issues are identified 103 

in advance, allowing decisions to be made in time [10, 11]. The creation of prediction models on a specific result in the 104 

zootechnical field is increasingly addressed with the use of ML techniques [10-20]. These approaches are suitable for 105 

the management of large data sets and are used to predict livestock issues such as the time of disease events, risk 106 

factors for health conditions, and failure to complete a production cycle. Studies have been conducted, based on the 107 

application of ML techniques, to model the individual intake of cow feed [12], optimizing health and fertility, to predict 108 

the rumen fermentation pattern from milk fatty acids [13], which influence the quantity and composition of the milk 109 

produced but also the sensorial and technological characteristics of the meat. The use of ML techniques is also often 110 

exploited to identify potential disease predictors, e.g. Bovine Viral Diarrhoea Virus (BVDV), Infectious Bovines 111 

Rhinotracheitis (IBR), Bovine Tuberculosis (TB), lameness, and mastitis [14-16, 21], to classify grazing and social behavior 112 

[17-19], and to predict carcass conformation [20], an important component of price negotiations between beef 113 

producers and market operators. These works are mostly carried out on dairy cattle, which are more critical to manage 114 

from a health point of view. Dairy animals generally have a shorter average life compared to the lifespan of beef bovines 115 

and are usually affected by diseases and metabolic problems. In the beef cattle sector, and in particular in the 116 

Piedmontese cattle breed, animals are more resistant and exposed to fewer stress factors. This is an explanation why 117 

meat farms show moderate use of devices. However, individual information is already recorded and loaded by the 118 

technicians during the checks, and therefore the management of big data is necessary. 119 



3. The Dataset 120 

The content of the dataset elaborated by the ANABORAPI system covers a total of over 4000 active farms, keeping 121 

historical records for all of them. The elaboration processed by the ANABORAPI system to evaluate Ya (see Equation (1)) 122 

goes back 365 days, starting from the last check, to process the average summaries. A first restriction is therefore the 123 

isolation of the data of a whole year (in our case 2017) and to consider the target we want to infer for the following year 124 

(2018). Since the performance of the farm mainly focuses on fertility, the data concerning multiparae cows were 125 

considered to elaborate the number of deliveries and the calving intervals. In the same way, data on bulls used for 126 

artificial insemination were maintained (i.e. selection indices, that represent namely estimations of the additive genetic 127 

effect of a subject). Information referred to inbreeding levels between animals were not incorporated into the study, 128 

since they required more investigations. However, they will be included in future developments, for a more accurate 129 

inspection on the consanguinity of unborn calves. Finally, restrictions on farms were imposed to obtain a solid 130 

representative subset: filters on breeding located in Piedmont with at least 30 cows and percentage of artificial 131 

insemination between 90% and 100% were applied. This last condition means that a part of the considered farms 132 

actually own bulls and carry out natural impregnations. Thereby, two main groups of farms result from the selection: a 133 

smaller one, containing 330 farms, and a larger one, consisting of 395 breedings, resulting in a total of 725 breedings. 134 

The difference between the two sets results in a major use of the breeding bull: this means that instead of recording 135 

the date on which the insemination took place, breedings belonging to the second group use to set a period of several 136 

days, followed by the diagnosis of the pregnancy. As both datasets are representative for the Piedmontese breeding 137 

reality, where the second dataset features a more diffused situation and the first one the most accurate one, we used 138 

both groups in the study, as propaedeutic to the objective. Since the aim is the building of predictive models via a ML 139 

technique, we therefore decided to designate the first set of farms (size 330) as a learning set, as the algorithm can 140 

learn on precise recordings, while the second set (size 395) was designated as a test set. Each record of the final datasets 141 

stands for a single farm and variables {1 – 19} refer to year 2017, whereas Y is the actual number for weaned calves 142 

recorded in 2018 (Table I). All variables can only assume positive values. 143 

 144 

4. Application of GP 145 

GP main traits. 146 

The GP technique is a tree-based algorithm, in which the initial population evolves through mechanisms of selection, 147 

mutation, and recombination of individuals (i.e. mutation and crossover), as in a biological evolutionary process. 148 



Subtrees at each generation are recombined and recursively evaluated. The best candidates are eligible for the new 149 

generation and they are on average fitter than previously generated individuals, i.e. show a smaller error. The error is 150 

measured with a fitness function, that is an objective function used to evaluate the distance from the experimental 151 

target.  with a regression problem we have chosen as fitness function the Root Mean Square Error (RMSE) between the 152 

expected and predicted numbers as the measure for the fitness of the models: lower values represent better solutions 153 

(i.e. expressions fitting well correspond to low error levels). 154 

 155 

Dataset partitioning. 156 

For our experimental study, we used the GPLab Toolbox of MATLAB [4]. As mentioned in the previous section, the first 157 

group of farms (size 330) was used as a learning set, while the second one (size 395) as a test set. We considered the 158 

possibility of dividing the datasets through a k-fold cross validation approach. However, the reduced set of data does 159 

not allow us to find a suitable k value: for instance, if we chose a k smaller than 10, we would obtain a small number of 160 

subsets, leading to a small number of runs (i.e. less than 10). On the contrary, with a k greater than 10, we would have 161 

a restrained number of records within the test sets (i.e. less than 39 test farms for each run). We used the splitting of 162 

the learning set into 30 different subsets, with constant training-validation partitioning (75%-25%). Each division was 163 

carried out with a random choice of records at each run with uniform distribution and without repetition, keeping 164 

separate training and validation. In other words, among the total 330 learning records, 83 records were chosen to form 165 

the validation set, and the remaining 247 were labeled as training ones, reiterating the process with different sets for 166 

all the 30 runs. For each run, the individuals obtained on the training set were evaluated on the validation set, in order 167 

to select the best ones (i.e. models with the lowest error among the validation set). Finally, the generalization ability of 168 

the latters was checked, by analyzing the respective error achieved on the test set.  169 

 170 

Terminals, nodes and operators 171 

The GP individuals were generated using a tree-based representation, where the trees were built using a set of terminal 172 

symbols T and a set of primitive functional symbols F. The set T was composed by the previously described variables, 173 

plus a set of random constants between 0 and 1 generated during the initialization process. The set F was equal to {plus; 174 

minus; times; mydivide}, where plus, minus and times indicate the usual operators of binary addition, subtraction and 175 

multiplication, respectively, while mydivide represents the protected division, that returns the numerator when the 176 

denominator is equal to zero. In order to limit overfitting and maintain the models as simple as possible, besides 177 



crossover and mutation, operators such as shrinkmutation and swapmutation (predefined in GPLab) were used. These 178 

two operators respectively exchange a subtree with a terminal node and permutate binary non-commutative functions’ 179 

elements. Table II reports the employed experimental setting. 180 

 181 

Performance evaluation. 182 

The performance of the simulations is reported in Figure 2, where the fitness among the 30 runs on the training, the 183 

validation and the test sets are presented. The Lilliefors test, performed with significance level α=0.05, showed that a 184 

normal distribution can be assumed only on the training set. Hence, we applied a Kruskal-Wallis test (α=0.05), under 185 

the alternative hypothesis that, at the end of the runs, the RMSEs do not have equal medians. Results entailed that 186 

there is no significant difference between the three distributions: given a p-value p=0.17, the null hypothesis was not 187 

rejected, that is the median values of the errors committed on the three sets are not different. The median value 188 

obtained on the test set allows us to affirm that the obtained models are able to generalize well, on unseen data. 189 

 190 

 191 

Fig.2 Performance of the best 30 selected models, respectively, on the training, validation and test sets. There is no 192 

significant difference between the results (Kruskal-Wallis test: p = 0.17, with α=0.05), i.e. the median values of the errors 193 

committed on the three phases are not different. 194 

 195 



Table I. Final set of variables used in the studied dataset. The last line (variable Y) represents the dependent variable, 196 

target of the predictive models generated by GP. 197 

 198 

 199 

 200 

 201 

 202 

 203 

 204 

 205 

 206 

 207 

 208 

 209 

 210 

 211 

 212 

 213 

 214 

 215 

 216 

 217 

 218 

 219 

 220 

 221 

 222 

 223 

 224 

 Reference 
Year 

Variable Description 

1 2017 COWS Consistency for cow (n. of cows in the farm) 

2 2017 C_AGE Mean age of cows, expressed in days. 

3 2017 INT_P 
Mean value of calving interval, i.e. the average number of days 
that elapse between a parturition and the following one. 

4 2017 C_PAR Mean number of parturitions of cows. 

5 2017 N_PAR Number of occurred deliveries. 

6 2017 C_EASE 
Number of easy parturitions, that did not require human 
intervention and that did not cause stress to the cow nor the calf. 

7 2017 C_GRAV ID Number of pregnant cows. 

8 2017 C_INS Number of inseminated cows. 

9 2017 BIRTHW_M Mean birth weight of male calves. 

10 2017 BIRTHW_F Mean birth weight of female calves. 

11 2017 IND_PAR 
Mean Genetic selection index referred to facility of parturition of 
the cows. 

12 2017 TFA_BIRTH 
Mean Genetic selection index referred to facility of birth of the 
bulls, which semen has been used on artificial inseminations. 

13 2017 TFA_PAR 
Mean Genetic selection index referred to facility of parturition 
with which the bulls, which semen has been used on artificial 
inseminations, have been born. 

14 2017 N_ELIM Number of calves dead within 60 days after birth. 

15 2017 N_TOT Total number of newborns. 

16 2017 N_BALIV E Total number of calves born alive. 

17 2017 N_CORRECT 
Percentage of calves born without birth defects, such as 
Macroglossia or Arthrogryphosys. 

18 2017 ABORT Percentage of abortions. 

19 2017 MORT Mean neonatal mortality. 

20 

2018 
 
range= 
[0.26;1.24] 

Y 

Number of calves per cow per year. It is obtained on data from 
2018 with the following: 
 

𝑌 =
𝑁_𝐵𝐴𝐿𝐼𝑉𝐸 − 𝑁_𝐸𝐿𝐼𝑀

𝐶𝑂𝑊𝑆
 

 
 



Table II. Parameters used in our experimental study 225 

 226 

 227 

 228 

 229 

 230 

Key role variables result in non-null median frequencies among the best solutions on all the runs, whereas negligible 231 

ones correspond to null estimations: values greater than zero suggest that the corresponding variables were used in 232 

over 50% of the final solutions, namely the number of cows (COWS), the number of occurred deliveries in the farm 233 

during the year (N_PAR), and the number of calves that were born alive (N_BALIVE). The information was confirmed 234 

also by the equivalent percentage, reported in the second column of Table III. 235 

 236 

Finally, we investigated the interpretability of the expressions, considering the number of variables involved in each one 237 

of the best final models and the corresponding fitness. In order to compare the performance of the GP models, we 238 

examined the number of parameters encapsulated in each one, paying attention to the corresponding fitness obtained 239 

on the test set (Table IV). Observing Table IV, we can identify a general trend: models that use less variables tend to 240 

have a worse fitness (i.e. a larger error) on the test set than those that use more variables. Among the 19 variables in 241 

the dataset, the obtained models encapsulate from a minimum of 3 to a maximum of 10 variables. An intermediate 242 

situation is represented by models involving 4 of these parameters, since in this case the error is small and, as shown 243 

later, the expression is interpretable. We selected two models in order to make comparisons, the one showing the best 244 

fitness among all the evolved expressions (GP3 in Figure 3) and the one with the best fitness among the models that use 245 

4 variables (GP8 in Figure 3). The choice of the second model was entailed, as shown below, as a consequence of its 246 

interpretability. For both Models GP3 and GP8, the distance values between predictions based on 2017 and target values 247 

Yi recorded in 2018 are represented through boxplots, that is: 248 

 249 

𝛥𝑚𝑜𝑑𝑒𝑙,𝑖 = 𝑌𝑚𝑜𝑑𝑒𝑙,𝑖 − 𝑌𝑖  250 

for each record i = 1…,395 in the test set. Predictions obtained with the two models GP3 and GP8 are not significantly 251 

different (Kruskal Wallis: p-value = 0.2372). 252 

Parameter Description 

Maximum number of generations 20 

Population size 500 

Selection Method Lexicographic Parsimony Pressure 

Elitism Keepbest 

Initialization Method Ramped half and half 

Tournament Size 2 

Subtree Crossover Rate 0.8 

Subtree Mutation Rate 0.1 

Subtree Srinkmutation Rate 0.05 

Subtree Swapmutation Rate 0.05 

 



Table III. Median frequencies and percentage of use of each variable among the best 30 individuals found by GP. 253 

 254 

 255 

 256 

 257 

 258 

 259 

 260 

 261 

 262 

 263 

 264 

 265 

 266 

 267 

Fig.3 Comparisons between GP models on the test set. Distributions of the differences between predicted and real 268 

values are plotted. Both GP predicted values are not significantly different (Kruskal-Wallis: p - value = 0.2372). GP3 269 

shows a median value equal to -0.0005928782, smaller than the median value obtained with GP8 (-0.0146762341). 270 

Variable Median % of use on 30 runs 

X1 - COWS  
X2 – C_AGE  
X3 - INTP  
X4 – C_PAR 
X5 – N_PAR  
X6 – C_EASE  
X7 – C_GRAVID  
X8 – C_INS  
X9 – BIRTHW_M  
X10 – BIRTHW_F  
X11 – IND_PAR  
X12 – TFA_BIRTH  
X13 - TFA_PAR  
X14 – N_ELIM  
X15 – N_TOT  
X16 – N_BALIVE  
X17 – N_CORRECT  
X18 - ABORT  
X19 - MORT  

1  
0  
0  
0  
1  
0  
0  
0  
0  
0  
0  
0  
0  
0  
0  
0.5  
0  
0  
0 

73% 
27% 
43% 
27% 
53% 
40% 
23% 
17% 
13% 
10% 
37% 
13% 
23% 
37% 
43% 
50% 
37% 
23% 
13% 

 



Table IV. Fitness on the test set, number of involved variables and corresponding percentage are reported for each 271 

model evolved by GP in each one of the 30 performed runs. 272 

Prediction model  Fitness on Test  N. of variables  % of variables 

model 1  
model 2  
model 3  
model 4  
model 5  
model 6  
model 7  
model 8  
model 9  
model 10  
model 11  
model 12  
model 13  
model 14  
model 15  
model 16  
model 17  
model 18  
model 19  
model 20  
model 21  
model 22  
model 23  
model 24  
model 25  
model 26  
model 27  
model 28  
model 29  
model 30  

0.1379  
0.1418  
0.1218  
0.1354  
0.1660  
0.1290  
0.1370  
0.1321  
0.1258  
0.1357  
0.2422  
0.1461  
0.1286  
0.1548  
0.1320  
0.1261  
0.1285  
0.1371  
0.1610  
0.1571  
0.1355  
0.1450  
0.1291  
0.1426  
0.1935  
0.1330  
0.1305  
0.1543  
0.1308  
0.1361  

5  
3  
9  
8  
3  
8  
4  
4  
8  
3  
9  
3  
7  
4  
9  
7  
8  
9  
3  
4  
9  
3  
7  
4  
5  
10  
6  
3  
7  
9  

26% 
16% 
47% 
42% 
16% 
42% 
21% 
21% 
42% 
16% 
47% 
16% 
37% 
21% 
47% 
37% 
42% 
47% 
16% 
21% 
47% 
16% 
37% 
21% 
26% 
53% 
32% 
16% 
37% 
47% 

 273 

We therefore concluded that the two models, whose expression is provided in Equations (3) and (5), perform likewise, 274 

incorporating different variables with respect to Ya (see Equation (1)). Parameters such as MORT and N_ELIM used in 275 

Equation 1 were encapsulated also in GP expressions, i.e. mortality at 60 days (GP8) and number of calves born alive 276 

(GP3 and GP8). Regarding GP3, the expression in infix notation to obtain the predictions is: 277 

 278 

𝑌𝐺𝑃3 =
𝑋11

𝑋17+
𝑋3

𝑋16
+

𝑋3

𝑋6∙
2∙𝑋18+𝑋16

𝑋9
𝑋19

+𝑋1

,    (3) 279 

 280 

where 281 



 282 

 283 

 284 

 285 

 286 

 287 

In model GP3, the denominators of mydivide operator do not meet existence conditions, that is they can assume null 288 

values (e.g. perinatal mortality X19 is null for some records). It is not possible to assert that the mydivide operator is 289 

actually a division and the previous expression (3) cannot be further simplified. Contrarily to GP3, the model for GP8 is 290 

comprehensible: 291 

𝑌𝐺𝑃8 =
𝑋5

(𝑋5∙𝑋14+𝑋16) 

𝑋1
+𝑋1

.    (4) 292 

Since we previously set the constraint in the dataset on farms with more than 30 cows, and the other variables can even 293 

assume only positive values, the denominators of mydivide that appear in the latter model are also positive (in Model 294 

4, the mentioned values cannot reach null levels, since the number of cows is added to a quantity, greater than zero). 295 

Existence conditions are in this case always verified and therefore the function mydivide is a division, leading to a 296 

simplified version: 297 

 298 

𝑌𝐺𝑃8 =
𝑋1∙𝑋5

𝑋1
2+𝑋5∙𝑋14+𝑋16

,    (5) 299 

where 300 

 301 

 302 

 303 

Model (5) can further be rewritten as 304 

𝑌𝐺𝑃8 = ((
𝑁_𝑃𝐴𝑅

𝐶𝑂𝑊𝑆
)

−1

+
𝑁_𝐸𝐿𝐼𝑀

𝐶𝑂𝑊𝑆
+ (

𝑁_𝐵𝐴𝐿𝐼𝑉𝐸

𝐶𝑂𝑊𝑆
∙

1

𝑁_𝑃𝐴𝑅
))

−1

. (6) 305 

The first term can be expressed as the invers of the number of mean value of the yearly deliveries occurred in the farm, 306 

since the number of all parturitions is divided by the total number of cows (𝑁_𝑃𝐴𝑅̅̅ ̅̅ ̅̅ ̅̅ ̅). Likewise, the second and third 307 

terms contain, respectively, the yearly number of calves per cow that did not survive during the weaning period 308 

(𝑁_𝐸𝐿𝐼𝑀̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) and the yearly number per cow of calves born alive (𝑁_𝐵𝐴𝐿𝐼𝑉𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ), that is: 309 

X1-COWS, 

X3-INTP, 

X6-C_EASE, 

X9-BIRTHW_M, 

X11-IND_PAR, 

X16-N_BALIVE, 

X17-N_CORRECT, 

X18-ABORT, 

X19 – MORT. 

 

X1 - COWS 

X5 – N_PAR 

X14 – N_ELIM  

X16 – N_BALIVE. 



𝑌𝐺𝑃8 = (
1

𝑁_𝑃𝐴𝑅̅̅ ̅̅ ̅̅ ̅̅ ̅̅
+ 𝑁_𝐸𝐿𝐼𝑀̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ +

𝑁_𝐵𝐴𝐿𝐼𝑉𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑁_𝑃𝐴𝑅
)

−1

.     (7) 310 

Stated otherwise, by renaming the terms and performing basic operations, we obtained the following: 311 

1 = 𝑛𝑗𝑣1,𝑗 + 𝑛𝑗𝑣2,𝑗 + 𝑛𝑗𝑣3,𝑗,     (8) 312 

for j=1,…,725, since we considered the complete dataset with all the selected farms (see Section III), and where: 313 

 314 

 315 

 316 

 317 

 318 

It is straightforward that Equation (8) can be formulated as the sum of rescaled variables 319 

 320 

1 = 𝑣̃1,𝑗 + 𝑣̃2,𝑗 + 𝑣̃3,𝑗,  (9) 321 

where 𝑣̃𝑖,𝑗 = 𝑛𝑗𝑣𝑖,𝑗  for i={1,2,3}. Thereby, it was possible to measure the contribution of each term in the sum expressed 322 

in Equation (9). The distributions of each 𝑣̃𝑖,𝑗  was statistically analyzed and the three boxplots were displayed (Figure 323 

4). Extremely significant difference is verified between all variables (Wilcoxon test with Bonferroni correction: α=0.017, 324 

p<<0.001). Moreover, we inspected how far the mean value of each variable is from the unit. We compared, one by 325 

one, the three distributions via a single sample Wilcoxon test. We set alternative hypothesis that the distribution shows 326 

a mean value μ≠1, with α=0.05. Once again, we found an extremely statistical difference between the mean value of 327 

𝑣̃𝑖,𝑗  from the value 1. Similarly, we compared the distributions with respect to 0. The results of the test were analogous 328 

to the previous ones: with extremely significant p-values (p<<0.001), we could deduce that 𝑣̃2,𝑗 and 𝑣̃3,𝑗 remain relevant 329 

parameters, even assuming values close to zero, providing hence a minimal contribute in Equation (8). In other words, 330 

we could assert that all the variables in Equation (9) are influent: in particular, 𝑣̃1,𝑗 is the most important one, since its 331 

mean value was μ1=0.951, whereas 𝑣̃2,𝑗 and 𝑣̃3,𝑗  respectively showed μ2=0.032 and μ3=0.021.  Model (5) can be 332 

simplified, to the point of being expressed as the sum of three parameters. We verified that these three parameters are 333 

the average number of parts occurred during the year in the herd ((𝑁_𝑃𝐴𝑅̅̅ ̅̅ ̅̅ ̅̅ ̅)−1), the number of calves per cow that have 334 

not passed the weaning phase (𝑁_𝐸𝐿𝐼𝑀̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) and finally the number of calves per cow live births compared to the total 335 

number of parts of the herd during the year (𝑁𝐵𝐴𝐿𝐼𝑉𝐸
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ /𝑁_𝑃𝐴𝑅). From a zoological point of view, these are actually the 336 

main parameters that intuitively can give an idea of the economic performance of the farm. All of them play a significant 337 

role with respect to the response variable: more importance is given to the parameter  (𝑁_𝑃𝐴𝑅̅̅ ̅̅ ̅̅ ̅̅ ̅)−1, associable to the 338 

𝑛𝑗 = 𝑌𝐺𝑃8,𝑗 , 

𝑣1,𝑗 = (𝑁_𝑃𝐴𝑅𝑗
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

−1
, 

𝑣2,𝑗 = 𝑁_𝐸𝐿𝐼𝑀𝑗
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  , 

𝑣3,𝑗 =
𝑁_𝐵𝐴𝐿𝐼𝑉𝐸𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑁_𝑃𝐴𝑅𝑗
 . 

 



inverse of the mean calving interval (days between two deliveries) of the farm, whereas 𝑁_𝐸𝐿𝐼𝑀̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and 𝑁𝐵𝐴𝐿𝐼𝑉𝐸
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ /𝑁_𝑃𝐴𝑅 339 

give a smaller contribute. 340 

 341 

Summing up, the most frequent variables in the models, obtained with GP, are the number of cows in the farm (COWS), 342 

the number of deliveries occurred in the breeding (N_PAR) and the number of calves born alive (N_BALIVE). The calving 343 

interval (INTP) and the number of dead calves at 60 days (N_ELIM) are slightly less frequent. Perinatal mortality is not 344 

so recurring, meaning that it could play a minor role in the prediction. The most frequent variables encapsulated in the 345 

expression (3) are COWS and N_BALIVE, followed by INTP and MORT. Then there are 5 less frequent additional 346 

parameters that could, therefore, be relevant in the refinement of the prediction. The median error of predictions 347 

obtained with model GP3 is slightly smaller than the one obtained with model GP8. The latter however processes less 348 

variables, exploiting exactly the three most frequent ones, listed in Table III. 349 

 350 

 351 

 352 

Fig.4 Boxplots of the distributions of the variables in Equation (9). Wilcoxon test with Bonferroni correction at 353 

α=0.017 reported p<<0.001. Hence, the variables are significantly different. The single sample Wilcoxon test, with 354 

α=0.05, showed for each distribution a mean value μ≠1(p<<0.001). Therefore, all the variables are extremely significant 355 

in Equation (9). Mean values are respectively μ1=0.951, μ2=0.032 and μ3=0.021(red dots). 356 



5. Conclusions and Future Works 357 

In this study, we investigated the performance of medium to large farms located in Piedmont of Piedmontese cattle, 358 

starting from the model implemented in the systems of the National Association of Piedmontese Bovines (ANABORAPI) 359 

[1-3]. The currently used model (reported in Equation (1)) predicts the number of calves per cow per year. However, it 360 

is not completely suitable to represent the performance of the farms. In fact, during the weaning period, many calves 361 

do not survive, entailing great losses to the economic revenues of the breedings. The reasons for those deaths are 362 

various and difficult to identify objectively. It is hence necessary to take into account crucial parameters, that encompass 363 

the calf’s weaning in the output, as, for example, the number of calves born alive and those dead after the weaning 364 

period, within 365 days. Although biologically acceptable, these hypotheses could not be sufficiently informative or they 365 

could be informative enough, but not exhaustively combined in the formulation of a model. It is therefore difficult to 366 

build a model with only zootechnical speculations and an automatic learning method has been applied, which can meet 367 

the requirements. In addition, it is necessary to research and propose a simple model, which can be easily interpreted 368 

by the breeder. The expression to target should be a simplification and an added value to the management of the farm. 369 

The breeder should be able to easily read the information, in order to identify the critical points and strengths in 370 

production. 371 

 372 

Given its ability to perform an automatic feature selection, a Genetic Programming approach (GP) was used applied [4, 373 

5] to build predictive models, trained, validated and tested on data recorded in 2017 and 2018. Accurate models were 374 

achieved, and this means that GP can learn from a smaller dataset composed by representative farms and predict good 375 

results on the selected test set. Moreover, the algorithm was able to select and process important variables, without 376 

previous assumptions on the zoological aspect. The variety of expressions obtained by GP is composed of well-377 

performing models that involve more parameters, resulting in a more complex expression, hardly reducible to a simpler 378 

one. However, other predictive models were also achieved that encapsulate fewer variables. Although these 379 

expressions have a slightly larger error, their formula can be extremely simple and possibly easier to interpret from the 380 

zoological point of view.  381 

 382 

It is therefore worth investigating further the application of GP to a larger dataset. In this first study, we focused on data 383 

directly referred to parturitions and artificial insemination, in order to process sound and solid data. The dataset was 384 

filtered and resized, and 19 variables were kept among 210: many were duplicate fields, aggregates of several variables, 385 



and even incomplete ones, because introduced lately in the database of ANABORAPI.  Parameters such as those on 386 

heifers, i.e. bovines that did not give birth yet, were not considered, since we focused on data directly referred to cows, 387 

i.e. bovines that gave birth at least once.  In breeding farms, heifers are mostly intended to the production of calves and 388 

are going to contribute to the restock of the herd. The behavior of GP and its features selection ability among these 389 

variables will be investigated, as well as among parameters on the bulls used for natural insemination. To this purpose, 390 

their genetic indexes will be added to the analysis, as well as the levels of consanguinity of calves that will be born from 391 

ongoing pregnancies. Comparisons with other machine learning methods will be performed, to inspect better the 392 

potential of GP in the zootechnical field, and to explore possibly better models. 393 

In future developments, data regarding environmental conditions inside the farm will also be taken into account, such 394 

as the size of the boxes and the surface available to the animals, air and water quality and the composition 395 

of the food ration. These factors are usually considered as marginal. It is common to think that cow-calf problems are 396 

almost exclusively induced by genetic and pathological factors associated to pregnancy and childbirth. Indeed, not 397 

enough importance is given to the period after the birth, in which the cow and the calf need feeding and environmental 398 

conditions, suitable for the respective postpartum and weaning phases. In this context, once again, the ability of GP to 399 

automatically select features will be very important to understand if and which of these variables are influential. 400 

 401 
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