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Abstract

Processing driving data and investigating driving behavior has been receiving an

increasing interest in the last decades, with applications ranging from car insurance

pricing to policy-making. A popular way of analyzing driving behavior is to move

the focus to the maneuvers as they give useful information about the driver who is

performing them.

Previous research on maneuver detection can be divided into two strategies, namely,

1) using fixed thresholds in inertial measurements to define the start and end of spe-

cific maneuvers or 2) using features extracted from rolling windows of sensor data

in a supervised learning model to detect maneuvers. While the first strategy is not

adaptable and requires fine-tuning, the second needs a dataset with labels (which is

time-consuming) and cannot identify maneuvers with different lengths in time.

To tackle these shortcomings, we investigate a new way of identifying maneuvers

from vehicle telematics data, through motif detection in time-series. Using a pub-

licly available naturalistic driving dataset (the UAH-DriveSet), we conclude that motif

detection algorithms are not only capable of extracting simple maneuvers such as ac-

celerations, brakes, and turns, but also more complex maneuvers, such as lane changes

and overtaking maneuvers, thus validating motif discovery as a worthwhile line for

future research in driving behavior.

We also propose TripMD, a system that extracts the most relevant driving patterns

from sensor recordings (such as acceleration) and provides a visualization that allows

for an easy investigation. We test TripMD in the same UAH-DriveSet dataset and show

that (1) our system can extract a rich number of driving patterns from a single driver

that are meaningful to understand driving behaviors and (2) our system can be used

to identify the driving behavior of an unknown driver from a set of drivers whose

behavior we know.

Keywords: Driving behaviors, Road safety, Motif Discovery, Acceleration, Sensors,

Time-series
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Resumo

Nas últimas décadas, o processamento e análise de dados de condução tem rece-

bido um interesse cada vez maior, com aplicações que abrangem a área de seguros de

automóveis até a atea de regulação. Tipicamente, a análise de condução compreende a

extração e estudo de manobras uma vez que estas contêm informação relevante sobre

a performance do condutor.

A investigação prévia sobre este tema pode ser dividida em dois tipos de estratégias,

a saber, 1) o uso de valores fixos de aceleração para definir o início e fim de cada

manobra ou 2) a utilização de modelos de aprendizagem supervisionada em janelas

temporais. Enquanto o primeiro tipo de estratégias é inflexível e requer afinação dos

parâmetros, o segundo precisa de dados de condução anotados (o que é moroso) e não

é capaz de identificar manobras de diferentes durações.

De forma a mitigar estas lacunas, neste trabalho, aplicamos métodos desenvolvidos

na área de investigação de séries temporais de forma a resolver o problema de deteção

de manobras. Em particular, exploramos área de deteção de motifs em séries temporais

e testamos se estes métodos genéricos são bem-sucedidos na deteção de manobras.

Também propomos o TripMD, um sistema que extrai os padrões de condução mais

relevantes de um conjuntos de viagens e fornece uma simples visualização. TripMD é

testado num conjunto de dados públicos (o UAH-DriveSet), do qual concluímos que

(1) o nosso sistema é capaz de extrair padrões de condução/manobras de um único

condutor que estão relacionados com o perfil de condução do condutor em questão e (2)

o nosso sistema pode ser usado para identificar o perfil de condução de um condutor

desconhecido de um conjunto de condutores cujo comportamento nos é conhecido.

Palavras-chave: Perfil de condução, Segurança rodoviária, Descoberta de motifs, Ace-

leração, Sensores, Séries temporais
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CHAPTER 1. INTRODUCTION

1.1 Vehicle telematics

The word telematics is a direct translation of the word télématique, a concept first

introduced by Nora and Minc [1] in their report to the French government about the

possible impacts of computerization on society. At the time, telematics referred to the

broad connection between telecommunications (télécommunications) and computers

(informatique) [2] and to any services where telecommunications were used to share

information. However, nowadays, it is normally associated with vehicle telematics and

all the technology that enables "sending, receiving and storing vehicle information"[3].

Therefore, sensor generated data is at the core of vehicle telematics. The first col-

lection of sensor data was done with On-Board Diagnostics (OBD) systems. These

systems connect to the car’s control unit and provide reporting and self-diagnostic

features to the car’s driver, manufacturer and/or technician. Since the 1980s, OBD

systems have suffered many adaptations and they are still a major source of telematics

data. Nowadays, they can provided real-time information about various car malfunc-

tions, fuel consumption and emissions, engine rotations, car velocity, and the driver’s

use of pedals, transmission and steering wheel. The data can then be accessed via USB

or Bluetooth.

With the widespread adoption of smartphones and their growing capabilities, the

smartphone-base telematics market has been gaining some traction, both in the indus-

try and in the academia [4]. To collect data, the driver simply has to mount his/her

smartphone in a fixed place in the car and let the device record and process infor-

mation from its built-in sensors, which makes it a very cheap implementation. The

processed data can be used locally in a smartphone app or sent to a central repository

via wireless communication. The sensors used in smartphone-base telematics are usu-

ally the GPS and other location services, Accelerometer, Magnetometer, Gyroscope,

Microphone and Camera.

In the last two decades, the telematics market has grown significantly and many ap-

plications for this technology have been introduced. These include traffic management

to improve traffic flow in cities [5, 6], navigation [4], carsharing [7], road condition

monitoring [4] and fuel consumption optimization [8]. However, in this work, we’ll

focus on a specific application of vehicle telematics, namely the analysis of driving

behavior. In the next section, the connection between telematics and driving behavior

will be further explored.

1.2 Telematics and driving behavior

In the car insurance market, the introduction of telematics created a whole new prod-

uct line that is currently offered by many insurers.Usage-based Insurance (UBI) is

an insurance scheme that relies on telematics to assess the driving of each individual

client and to provide discounts accordingly. Instead of using static proxies (such as age,

2



1.2. TELEMATICS AND DRIVING BEHAVIOR

gender, etc.) filled by customers in questionnaires, insurers can now collect real-time

data that expresses the individual behavior of customers and improve their pricing

and reserving models.

In both actuarial and transportation research communities, there seems to be a

consensus that UBI schemes can have some benefits for insurers and the society in

general. In particular, Tselentis et al. [9] identified four benefits of UBI:

• It is fairer to consumers and avoids the use of potentially discriminatory vari-

ables, such as gender and age. By using metrics that better describe driving

behavior, customers will be priced based on the real risk of having accidents.

• Cross-subsidization is somewhat lessened. In other words, a more personalized

pricing reduces the cases where "good drivers"pay higher premiums than they

should to compensate the claims generated by "bad drivers".

• Drivers are encouraged to improve their driving performance by reducing high

risk behaviors since their premiums would increase in those situations.

• Some schemes provide feedback to drivers, which raises their awareness of high

risk behaviors and may ultimately lead to a long-term improvement of driving

performance.

With these features, UBI has the potential to make the car insurance market fairer

and the transportation system safer. However, these benefits can only materialize if

the schemes provide the right incentives to customers. Therefore, the issue of using

telematics data to correctly identify risky driving behaviors and model accident risk is

extremely relevant in this context.

There are two main types of UBI schemes. The pay-as-you-drive (PAYD) schemes

take into account driving habits, such as average mileage and general route, to better

access the exposure of that driver, while the pay-how-you-drive (PHYD) schemes use

more detailed data, for instance GPS coordinates, velocity and acceleration, to identify

and characterize driving behavior.

In practice, because implementing a PAYD is much simpler and requires less com-

plexity, most telematics insurance products currently in the market are based on PAYD

schemes [9]. However, driving habits are only one part of the story. Two drivers with

similar habits can have completely different risk profiles just because of how they

drive. This is the main shortcoming of current PAYD insurance schemes and it is

what is pushing experts to have a closer look at PHYD schemes and, as a consequence,

strategies that analyze driving behavior.

However, being able to identify driving behavior from telematics is not only rel-

evant for the insurance market. Manufacturers and policymakers can also leverage

driving data to understand which factors are associated with accidents and improve

road safety with better safety systems and regulation, respectively. This is visible

3



CHAPTER 1. INTRODUCTION

in the shift research related with accident risk experienced with the introduction of

Naturalistic Driving Studies (NDS).

In these studies, participants agree to have their own cars instrumented with small

cameras and sensors and, during a specific period of time (usually months), their

driving is continuously recorded as they go about their daily routines. Since the aim is

to capture natural behaviors, no specific instructions are given to the participants and

there are no human observers during the experiment [10].

Note that NDS usually have two main goals, namely collecting data that reflects

patterns of normal driving behavior, and recording data in the leading moments to a

crash. The idea is to either study the prevalence of certain driving behaviors or to find

which behaviors are more associated with accidents [11]. Thus, finding better ways of

analyzing driving behavior for telematics can also have an impact of road safety and

accident risk research.

Finally, this research can also have an impact on two more growing transportation

industries. In fleet management, studying the relationship between driving behavior

and fuel consumption can improve driving performance and reduce costs. In the

self-driving cars industry, analyzing how the cars perform can also help developers

understand what is working correctly with the autonomous system and which areas

need to be improved.

1.3 Driving behavior and maneuvers

When tackling the driving behavior problem, it is common to start with the maneuvers.

This strategy can be successful because the exact maneuvers being performed during

a trip and the way they are performed can provide relevant information about the

behavior of the driver during the trip. Thus, finding ways of detecting and analyzing

maneuvers from telematic data an is important part of designing systems to identify

driving behavior. From the papers we could find on this topic, most of them can be

aggregated into two main strategies, namely, the fixed thresholds strategy and the

rolling windows strategy.

In the fixed thresholds strategy [12, 13, 14, 15], authors set specific thresholds on

acceleration or other inertial measurements in order to define the beginning and end

of maneuvers. For instance, a left turn could be identified as the interval where the

lateral acceleration is higher than 0.3g and the velocity is higher than 30km/h. These

types of approaches have the advantage of being easy to implement, lightweight, and

interpretable. However, since the choice of the thresholds is essential to the detection

of maneuvers, these methods require fine-tuning for each specific dataset and are

inflexible to changes in the data.

The second type of strategies [16, 17, 18, 19, 20, 21, 22, 23, 24] involves the use

of rolling windows, in which the trip is divided into fixed-sized time windows that

can have some level of overlap. Then, each window is used a detection model that
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classifies it as a specific maneuver. In this strategy, the window size and the percentage

of overlap are important parameters that need to be set beforehand. In a paper testing

the rolling window method for identifying simple maneuvers such as braking, turning

and acceleration, Xie et al. [19] conclude that the window size is very relevant to

the classification performance and that the optimal size can vary depending on the

type of maneuver, which leads to the conclusion that an "adaptive window sizing

method"would be better suited. Thus, again, the inflexibility of the window size is a

disadvantage in this method as well.

Another issue with the rolling windows method is the overlap parameter. If no

overlap is used, then the way a trip is split may not be optimal since a window can

also split a single maneuver and information may be lost. On the other hand, using

the maximal overlap (i.e., moving the window a single time step) comes with its own

problems. In their paper, Keogh and Lin [25] argued that clustering time-series sub-

sequences is meaningless when rolling windows are used to build the subsequences.

In particular, they state that "clusters extracted from these time series are forced to obey a
certain constraint that is pathologically unlikely to be satisfied by any dataset, and because
of this, the clusters extracted by any clustering algorithm are essentially random". Thus,

one needs to use rule-based detection (which suffers from the same issues as fixed-

threshold methods) or one use supervised machine learning models (and this requires

labeled data, which is very difficult and time-consuming to collect).

Therefore, with both strategies having their own unique shortcomings, there is

a clear space to explore new solutions. Having in mind the need for an adaptable

method that can detect maneuvers without the need of labels, we seek to investigate

approaches from the time-series data mining community. Firstly, telematics data are,

in essence, time-series as they correspond to streams of sensor data. Secondly, the

time-series data mining is an established research area with many published works

and a large community of researchers.

1.4 Research questions

As previously hinted, the aim of this work is to investigate methods that can detect

maneuvers from high-frequency telematics and to understand how the extracted ma-

neuvers relate with driving behavior.

Our hypothesis is that maneuvers are an important component of driving and

therefore, extracting maneuvers and analyzing them will allow us to get meaningful

insights into the driving behavior of individual drivers.

In particular, we address the following research questions:

• How can we leverage time-series data mining techniques to build an adaptable

method that can detect maneuvers from acceleration data without the need of

labels?

5
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• How can we summarize the extracted maneuvers in a space-efficient visualiza-

tion for further analysis?

• Can we use the extracted maneuvers to get insights into the driving behavior of

a single driver?

1.5 Contributions

The times-series data mining community is a large area of research and contains nu-

merous tools to analyze time-series data. When researching this field, one tool seemed

to fit particularly well the maneuver detection task, namely motif detection. In short,

a motif is a subsequence of a time series that repeats itself throughout that same time

series. For instance, a single heartbeat in an electrocardiography (ECG) recording

would be a motif since the same temporal pattern is repeated throughout the entire

ECG time series.

Even though this was not yet fully tested, we hypothesize that a specific maneuver

would be a motif in a collection of trips of the same driver. The core idea is that a driver

would be consistent in how he performs recurrent maneuvers such as turning or over-

taking and, thus, one can detect these maneuvers from the time series of acceleration

recordings using motif detection approaches.

Before going into detail about the direction taken, it is important to note that

throughout this work, we use a naturalistic driving dataset published by a group

of researchers from Spain. It is called the UAH-DriveSet [26] and it contains trip

recordings from six different drivers in two specific routes in Madrid, Spain. The

authors asked each driver to repeat two predefined routes simulating three different

behaviors, namely, normal, aggressive and drowsy. During the trips, they collected

both raw and processed signals using the DriveSafe app [27, 28]. The dataset also

contains video recordings taken from the smartphone, which can be used to validate

results.

In our path to explore motif detection approaches to tackle the problem of maneu-

ver extraction from telematics data, we start by investigating whether motif detection

is indeed capable of extracting meaningful maneuvers from acceleration data (Chap-

ter 3). In particular, we implement a modified version of a classical motif detection

algorithm, apply it to the UAH-DriveSet and perform a systematic exploration of the

resulting motifs. Here we conclude that the motif detection algorithm is capable of

extracting simple maneuvers such as accelerations, brakes, and curves, but also more

complex maneuvers, such as lane changes and overtaking maneuvers. In turn, these

results validate our claim that motif discovery can indeed be used to extract maneu-

vers.

In this initial work, we also note that the number of motifs extracted from the

UAH-DriveSet trips is too large to explore manually. Thus, in Chapter 4, we propose a
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summarization algorithm, DTW-SOM, to cluster the motifs extracted by any desired

motif discovery algorithm. DTW-SOM is an adaptation the SOM algorithm, a well-

known feature reduction and visualization algorithm). In order to work for time-series

subsequences, with possibly variable lengths and multiple dimensions, the original

SOM algorithm was changed to use the DTW distance as its similarity metric and two

specific initialization routines for the SOM network were proposed. We apply DTW-

SOM to three different datasets (not related to telematic data) and conclude that our

method is capable of extracting relevant information from a set of motifs and display

it in a visualization that is space-efficient.

Finally, in Chapter 5, we put the work done in the previous two chapters together

and propose TripMD, a system that extracts the most relevant driving patterns from

sensor recordings (such as acceleration) and provides a visualization that allows for an

easy investigation. We test our system using the UAH-DriveSet dataset and show that it

can extract a rich number of driving patterns from a single driver that are meaningful

to understand driving behaviors. Interestingly, we also note that TripMD can be used

to identify the driving behavior of an unknown driver from a set of drivers whose

behavior we know.
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CHAPTER 2. LITERATURE REVIEW

2.1 Driving behavior and styles

2.1.1 Human driving

What exactly is driving behavior? Ever since cars became ubiquitous, driving and road

safety have been widely researched and, in the last decades, many advances have been

made towards a clear understanding of the factors and behaviors that explain road

accidents. Even though there is a common belief that the actions a driver takes have

an impact on his accident risk, literature is still fragmented between different fields

(e.g. transportation and actuarial sciences).

Therefore, it is very difficult to find generally accepted concepts and frameworks

across the literature. After an in-depth review of the literature related with driving

behaviors and road safety, Sagberg et al. [29] tried to address this issue by proposing a

high-level framework aimed at conceptualizing and understanding what they called

driving styles. In particular, they defined driving style as "a habitual way of driving,

which is characteristic for a driver or a group of drivers".

Although seeming somewhat straightforward, this definition raises an interesting

point. The term habitual way of driving suggests that a driving style is a set of behaviors

a driver shows consistently across varied situations and thus we can look at the issue

of driving styles from two perspectives. On one hand, it is important to rate driving

styles according to accident risk since we are identifying which groups of drivers are

consistently riskier. On the other hand, it could be also interesting to recognize when

a driver with a low-risk driving style presents irregular behaviors that are outside of

his driving style as it could lead to an increased risk in respect to the low-risk driving

style.

Sagberg et al. [29] further synthesized previous research by categorizing driving

styles and presenting examples of indicators and measures that were used in the liter-

ature. They began by differentiating between specific and global driving styles. The

first comprehends single behaviors, such as speeding or jerky driving, and can be

measured by few indicators. Alternately, global driving styles correspond to general

styles manifested by more than one specific driving style and which can only be under-

stood by a variety of indicators. As an example, the most common global driving style

is aggressive driving, which can be perceived by specific behaviors such as speeding,

tailgating and excessive honking.

In relation to specific driving behaviors, which tend to be easier to define, Sagberg

et al. [29] divided them into six categories, namely, longitudinal control, lateral con-

trol, gap acceptance, errors and violations, visual behavior and, finally, other. Table

2.1 presents the most common examples of specific driving styles for each category,

provides a summary of potential motives behind each style (as presented by Sagberg

et al. [29]) and summarizes the main conclusions found in the literature relating those

styles and accident risk.
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Table 2.1: Examples of specific driving styles, underlying motives and relations with
accident risk

Category Specific driving
styles

Possible motives Relation with accident risk

Longitudinal
control

Speeding and
hash acceleration

Expediency, group
pressure, sensation

seeking and
inattention

Good base of research confirming that, in
general, high speeds are associated with
high accident risk. Alternately, Waard et
al. [30] concluded that, when merging at
lower speed, elderly drivers would experi-
ence higher risk.

Jerky driving Expediency,
aggression and

inattention

Based on jerk, Desai and Haque [31] built
the “spikiness index” to quantify alertness.
Murphey et al. [18] used information from
the jerk profile to classify drivers.

Tailgating Expediency and
aggression

Sagberg et al. [29] reported a finding by
Bukasa and Risser (1985) where “too short
distance to car ahead” was positively corre-
lated with recorded accidents. According to
MacAdam et al. [32], tailgating can be also
used as an indicator of aggressiveness.

Lateral
control

Variable lateral
position

Expediency and
inattention

This style is mainly used to complement
speeding behaviors.

Speeding in
curves

Expediency, group
pressure, sensation

seeking and
inattention

This style is mainly used to complement
speeding behaviors. Additionally, it is a
theoretically good indicator of accident risk,
mainly for low-friction roads.

Gap accep-
tance

Short gaps in
crossings or
over-takings

Expediency Literature focuses on this style’s relation
with age and aggressiveness.

Visual
behavior

Narrow eye
fixating

Inexperience and
impairment

Literature focuses on this style’s relation
with age and experience

Engagement in
secondary tasks

Group pressure Dingus et al. [33] reported that the risk of
engaging in distracting activities was two
times higher than the baseline.

Errors and
violations

Violating traffic
lights, stop signs,

etc.

Expediency, group
pressure and
inattention

Based on policy reports, Junger et al. [34]
reported a strong association between acci-
dent risk and involvement in traffic crime.

Other Inappropriate
honking

Aggression Literature focuses on this style’s relation
with aggressiveness

Until now, driving styles related with speeding are the most researched, which

is not surprising. In fact, many papers point a clear relationship between this style

and accident risk, with high speed profiles usually associated with high accident risk.

Nevertheless, as Sagberg et al. [29] pointed out, speed alone cannot explain all aspects

of accident risk and the relationships between other driving styles and accident risk

need to be further researched.

Early works by Robertson et al. [35] suggested that longitudinal and lateral acceler-

ation could be used to build an "acceleration signature"aimed at characterizing driving

styles and identifying drivers. The main hypothesis here was that safe and skilled

11



CHAPTER 2. LITERATURE REVIEW

drivers are not prone to show extreme acceleration, in other words, high acceleration

signatures could detect both sensation seeking and unskilled drivers.

On a similar trend, Wåhlberg [36] built on past research by proposing the concept

of driving celeration behavior as an overall predictor of accident risk. The author defined

it as "the sum or average of all (absolute) accelerations and decelerations (changes in

speed) made by a vehicle, in any direction on a two-dimensional plane"and suggested

that all behaviors which result in speed variations (namely speed, close following,

braking and steering control actions) contribute to the overall driving celeration.

Both approaches are quite interesting because instead of measuring specific driving

styles separately, the authors propose general indicators which incorporate many styles.

It is interesting to note that most categories proposed by Sagberg et al. [29] can be

detected using acceleration and velocity data. This means that a simple high-frequency

telematics device that only collects these data can already provide meaningful insights

into driving behavior.

Recent studies have looked more closely at inattentive behaviors. According to

Dingus et al. [33], crash causation has experienced a shift, with distraction being a

fundamental factor for road safety. On a similar note, Dozza [37] concluded that some

behaviors associated distraction, namely attendance to secondary tasks and eyes-off-

road, reduced significantly drivers’ response time in near-crash settings.

2.1.2 Autonomous systems

Another exciting area in driving behavior research is the analysis of how self-driving

cars operate (both in real and simulated conditions) and how human drivers interact

with automated driving systems.

Even though the idea of autonomous cars has existed for a long time, the switch

from a fully human-operated road to a fully machine-operated road is a gradual pro-

cess. One of the most used taxonomies for describing this gradual change is one

published by the Society of Automotive Engineers (SAE). In their report [38], the SAE

sets six levels of driving automation, namely:

• Level 0 - No Driving Automation

• Level 1 - Driver Assistance

• Level 2 - Partial Driving Automation

• Level 3 - Conditional Driving Automation

• Level 4 - High Driving Automation

• Level 5 - Full Driving Automation
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In level 0, cars are controlled at all times by the human driver. Although there may

be some auxiliary systems, such as an emergency braking system, the driving is always

done by the driver since these systems do not technically perform driving functions.

In levels 1 and 2, we start seeing some automation, however, the driver is still in

charge of monitoring the road and making most decisions. A classical level 1 system is

the Adaptive Cruise Control (ACC), which was introduced in the 1990s. These systems

are designed to maintain road safety by automatically keeping a safe distance from the

car in front and ensuring that the car travels within the speed limits. In other words,

the system would change the car’s speed without the driver’s intervention.

On the other hand, a level 2 system is capable of performing multiple automation

tasks, such as controlling both the steering and the speed of the car. Here the automa-

tion falls short of self-driving since the driver is still in the seat and must take control

of the car in response to changes to the environment. A common example of level 2

are the Advanced Driver Assistance Systems (ADAS).

ADAS were introduced to address some of the road accidents caused by human

error. Even though not all of the systems include the full list, ADAS include a wide

range of safety applications, including, pedestrian detection and avoidance, automatic

emergency braking, blind spot detection, traffic sign recognition, and lane departure

warning/correction.

With driver inattention being an ever-increasing source of road accidents (as we

discussed in the previous subsection), these systems had the potential of improving

road safety by automating some important safety mechanisms. However, previous

work investigating how human drivers interact with level 1 and 2 systems leads to the

conclusion that more automation in cars may cause a reduction in drivers’ attention,

which in turn contributes to an impaired driver performance during system failures

[39, 40].

Interestingly, this finding highlights that driving automation does lead to unin-

tended (and sometimes unexpected) effects. And this is one way that driving behavior

analysis can help with the shift to a road with fully autonomous cars. In the cases

where humans still need to make driving decisions and interact with autonomous

systems, understanding driving behavior will help manufacturers and policy makers

improve the systems to avoid the pitfalls of driver inattention.

What about vehicles with higher levels of automation that do not require as much

driver intervention? From level 3 onwards, the automation systems start to make some

of the driving decisions based on the environment they are experiencing. However,

in level 3, the system cannot intervene in unexpected circumstances or the case of

system failures. Thus, in level 3, even though the car will drive most of the time, the

driver still needs to be in the seat and maintain awareness of the environment to act

in unexpected situations.

Using a simulation environment, Jamson et al. [41] analyzed how drivers re-

sponded in a highly automated system versus a manual system. They concluded that
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participants experiencing high automation were less prone to retake control of the

car for certain tasks such as overtaking. They also observed that safety margins in car

following were improved in light traffic conditions. However, in the scenario of high

automation, drivers were more distracted by in-vehicle entertainment tasks than the

drivers in manual driving, which led to a decreased attention to the road. On a similar

note, Merat et al. [42] states that level 3 automation systems do lead to a decrease in

drivers’ attention and slower response times to retake control of the car, which could

be an issue in the case of a system failure.

Finally, in levels 4 and 5, the system is capable of intervening if anything unex-

pected happens or if there is a system failure. The difference between the two is that

in level 4 the drive still has the option of overriding the system’s decisions, while in

level 5 humans are merely passengers and cannot overriding decisions.

At these levels, understanding the driving behavior of a human driver is not as

important since the car will do all the driving. However, analyzing the driving perfor-

mance of these systems will still be relevant as a means of diagnosing problems and

improving them.

2.1.3 Maneuver detection

In the previous two subsections, we looked into driving behavior in general terms,

either in the case when a human driver is fully in control or when there is some sort

of automation. However, we have not yet discussed how to identify driving behavior

from telematics data.

From the available research, many authors have proposed solutions for the task

of identifying maneuvers from high-frequency trip recordings. In general terms, all

methods can be split into two main strategies. Table 2.2 contains a summary of previ-

ous work on this topic and maps each article to the respective strategy.

The first strategy, which we refer to as fixed thresholds, involves the use of prede-

fined thresholds set on the acceleration and/or other inertial measurements to define

when each maneuver begins and ends. For instance, Paefgen et al. [13] defined thresh-

olds on the lateral acceleration to identify left and right turns, and used threshold

on the longitudinal acceleration to detect acceleration and braking maneuvers. On

a slightly different approach, Johnson and Trivedi [12] computed a simple moving

average of the rotational energy of smartphone sensors and utilized thresholds on this

metric to identify a general maneuver.

The fixed thresholds strategy has the benefit of being easy to implement, easy to

interpret, and fast. However, since the choice of the thresholds is fundamental to the

detection, these methods require fine-tuning for each specific dataset and are inflexible

to changes in the data.

In the second strategy, the authors use rolling windows to split the trip record-

ings. More specifically, each trip is divided into fixed-sized time sequences that can
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Table 2.2: Overview of maneuver detection methods

Strategy Method specifics Reference

Fixed Use of rotational energy to detect different maneuvers [12]
thresholds Use of lateral acceleration to detect turns and longitudinal

acceleration to detect braking and acceleration
[13]

Use of rotational energy to detect different maneuver [15]
Combination of acceleration and other signals to detect
different maneuvers

[14]

Rolling Window sizes of 15, 9, 6 and 3 seconds [18]
windows Window sizes from 0.5 to 5 seconds [21]

Window sizes of 20, 50 and 100 time steps [22]
Window sizes of 0.2 seconds [23]
Small size (5-30 seconds) and medium size (1-30min) win-
dows with no overlap

[17]

Window sizes from 2 to 7 seconds [24]
Windows with 64 time steps and with 50% overlap [16]
Windows with 7 time steps [20]
Window sizes from 0.5 to 5 seconds, with no overlap [19]

have some level of overlap, and then each sequence is fed into a supervised learning

algorithm that predicts which maneuver is being performed if any. It is important to

note that some authors do the prediction directly on the rolling windows while other

introduce feature extraction step before the prediction.

Xie et al. [19] test different variations of this second strategy. Particularly, the

authors evaluate various feature extraction methods in the task of detecting maneuvers

such as brakes, turns, and accelerations. In the definition of the rolling windows, they

used several window sizes, but always without overlap. The conclusion there was

that the window size is very important for the overall detection performance and that

different maneuvers are better detected using different window sizes. In addition,

they suggest the use of an "adaptive window sizing method"to address this. This work

highlights one of the main disadvantages of the rolling windows strategy, namely, the

inflexibility of the window size.

The degree of window overlap is another relevant parameter that authors treat

differently. For instance, Saleh et al. [16] built windows from inertial sensors and

classified them as aggressive, normal, or drowsy using a stacked-LSTM model. Here

they used windows of 64 time-steps and a 50% overlap. In contrast, Weidner et al. [17]

used windows of acceleration and velocity with no overlap, computed features from

those windows, and fed them to a classifier.

The reason why there are very different approaches to the overlap parameter in

the literature is that there is no obvious setting that works best. If no overlap is used,

there is no guarantee that each maneuver will be contained a single window. In other

words, the windows will likely split some maneuvers and information will be lost as a

consequence. However, increasing the level of overlap comes with its issues.
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To this point, Keogh and Lin [25] argue that clustering time-series subsequences

built from rolling windows with overlap is essentially meaningless. Specifically, they

state that "clusters extracted from these time series are forced to obey a certain constraint
that is pathologically unlikely to be satisfied by any dataset, and because of this, the clusters
extracted by any clustering algorithm are essentially random".

It should be noted that this problem only appears when using clustering (i.e., an

unsupervised learning algorithm). This means the one needs to use a supervised

approach when using rolling windows with high levels of overlap. However, labeling

maneuvers in high-frequency telematics datasets is a massive job and thus the datasets

available are extremely scarce. So, and because using unsupervised or semi-supervised

methods is quite helpful, for this specific problem, rolling windows does not seem to

be an optimal strategy.

The paper from Keogh and Lin [25] goes one step further by also proposing a

possible solution to the problem of clustering rolling windows, namely, using time-

series motifs as the input for the clustering algorithm. This idea triggered us to look

more closely into the field of time-series data mining as an avenue of approaches

for maneuver detection, and, in particular, to look more closely at the area of motif

detection.

However, before defining more concretely what time-series motifs are and how they

can be extracted, we need to start with two major areas in time-series data mining, i.e,

representation methods and similarity measures. Thus, in the next section, we will

discuss these two topics and, afterward, delve deeper into motif detection.

2.2 Time-series Data Mining

It is clear that telematics data can be very useful when studying driving behavior

and accident risk. However, high-frequency sensor data comes with its own issues.

Firstly, sensor data is very prone to noise, which can distort results. Secondly, due

to its high dimensionality, working with raw sensor data can be expensive, both in

terms of computation time and storage. Thirdly, measuring similarity between two

streams of sensor data can be very challenging since the time structure of each stream

is extremely relevant.

However, these issues are not exclusive of high-frequency sensor data as most

time series analysis, in general, encounter these same problems [43]. Given the per-

vasiveness of time series and their potential for applications, this field of research is

somewhat mature and many advancements have been made in the last few years. For

the sake of conciseness, three main topics related with time-series data mining will be

reviewed, namely representation methods, similarity measures and time-series motifs.
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2.2.1 Representation methods

Representation methods correspond to transformations that reduce the dimensional-

ity of a dataset without losing relevant information or characteristics of that dataset.

Since most time-series data mining tasks are computationally insensitive, using rep-

resentation methods to reduce dimensionality is the first step in many tasks in this

area. Besides dimensionality reduction, some methods can be also useful for noise

reduction.

Wang et al. [43] implemented eight different representation methods, which are

summarized in table 2.3, and compared their indexing effectiveness in 38 publicly

available time series data sets. The authors tentatively concluded that, even though

there was not a clearly superior method, some classes of representations were more

effective for specific time series. For example, Wang et al. [43] stated that "on a highly

periodic data set the spectral methods are better, whereas on bursty data sets Adaptive

Piecewise Constant Approximation (APCA) can be significantly better."

Additionally, Symbolic Aggregate approXimation (SAX) [44] is the one of the most

widely used representation method in practice. It has three main advantages, (1) it

is simple, (2) requires very little memory and (3) provides indexing with a lower-

bounding distance measure. SAX transforms sliding windows of the original time-

series into discrete sequences of characters. Since each sliding window is encoded

with a predefined number of characters, the continuous time-series is broken into a

list of fixed-sized sequences of characters (or words).
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Table 2.3: Summary of main representation methods for time series

Method Acronym Reference Description

Discrete Fourier
Transformation

DFT [45] It converts time series into their discrete frequency
representation. This method approximates the se-
ries with sinusoids.

Chebyshev
approximation

CA [46] It is a polynomial approximation using as the or-
thogonal basis Chebyshev polynomials. This ap-
proximation is very close to the minimax poly-
nomial, the theoretical approximating polynomial
that has the smallest maximum deviation from the
function being approximated.

Haar’s Discrete
Wavelet

Transformation

DWT [47] This transformation is very similar to Fourier-
based transformations. However, instead of using
trigonometric functions to approximate the origi-
nal time series, it uses Haar’s wavelet, which is a
sequence of squared-shaped functions that form
an orthonormal basis.

Piecewise Aggregate
Approximation

PAA [48] It is an approximation where equal-length seg-
ments of the time series are represented by the
mean of the points falling within the segment.

Adaptive Piecewise
Constant

Approximation

APCA [49] In this method, time sequences are approximated
by constant segments in such a way that minimizes
the reconstruction error.

Single Value
Decomposition

SVD [50] It applies a linear transformation to the original
time series (rotation and scaling) in such a way
as to maximize the discriminatory power of the
first components. It is a generalization of Princi-
pal Component Decomposition.

Symbolic Aggregate
approXimation

SAX [44] It is a symbolic representation of SAX, where each
segment is represented by a character based on the
level of its mean value.

Indexable Piecewise
Linear

Approximation

IPLA [51] This method corresponds to a piecewise linear ap-
proximation of the time sequences with a new dis-
tance function that permits indexing.

2.2.2 Similarity measures

The analysis on similarity measures was based on two comparative studies where

the authors tested the accuracy of some similarity measures on a big set of publicly

available time series datasets. They both applied a one-nearest neighbor classifier

using the similarity measures under test and computed the accuracy of the resulting

model. This is a standard choice as the error of this classifier depends heavily on the

similarity measure used. Table 2.4 shows the main measures tested by Wang et al. [43]

and by Serrà and Arcos [52].

There are two main families of similarity measures for time series, namely, lock-

step and elastic. As the name suggests, lock-step measures make a one-to-one com-

parison of single points from the same time location. The most common examples

are the Lp-norms, such as the Euclidean distance and the Manhattan distance. They
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Table 2.4: Summary of similarly measures tested by Wang et al. [43] and Serrà and
Arcos [52]

Type Measure Reference Wang et
al.

Serrà &
Arcos

Lock-step Euclidean distance [53] X X
DISSIM [54] X

Elastic Dynamic Time Warping [55] X X
Longest Common Subsequence [56] X
Edit Distance with Real Penalty [57] X
Edit Distance on Real sequence [58] X X

Sequence Weighted Alignment model [59] X
Time-warped edit distance [60] X

Minimum jump costs dissimilarity [61] X

Other Spatial Assembling Distance [62] X
Search based on Threshold Queries [63] X

are quite used because they are easy to understand, are parameter-free and have a

linear complexity. However, due to their inflexibility, these measures cannot adapt to

time series with different lengths or frequencies (and thus one time series needs to be

re-sampled to the size of the other) and are blind to situations where the time series

are misaligned in time.

From their analysis, Wang et al. [43] concluded that even though it could be sensi-

tive to noise and time-shifts, the Euclidean distance compared surprisingly well with

other more complex measures. In fact, for large datasets, the accuracy and speed of

this measure seemed to converge to the ones showed by the best performing measures.

Conversely, Serrà and Arcos [52] reported that in general the Euclidean distance per-

formed statistically worse than other elastic measures. It should be noted that time

misalignments are frequent in driving data and thus this specific case may have just

enough noise to render lock-step measures insufficient.

On the other hand, elastic measures aim at mitigating this drawback by allowing a

more flexible mapping between points in time. The first example is the DTW measure,

which was briefly presented in the previous section. The DTW was introduced in the

time series research community by Berndt and Clifford [55] and since then different

authors proposed ways of improving its accuracy and efficiency, making the DTW a

rather competitive option. This was supported by Wang et al. [43], who concluded

that, on average and across varied datasets, the DTW was no worse than other more

recent measures.

Another well known group of elastic measures are the editing measures. They were

developed as an extension of the original edit distance [64], which was introduced to

compute dissimilarity in strings. There are a quite a few of these measures, although

from the two comparative studies mentioned before, they seem to be more or less

comparable in terms of accuracy. According to Serrà and Arcos [52], there was an
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exception. The Time-Warped Edit Distance (TWED) from Marteau [60] proved to

consistently outperform all other measures. The TWED has the advantage of being a

metric and thus being capable of exploiting the triangular inequality for speeding up

searches. Additionally, Marteau [60] introduced a stiffness parameter which controls

the degree of the time shifting allowed.

Finally, it should be noted that both comparative studies conceded that there were

always cases where a general low-performing measure could have the best performance

in a specific dataset.

2.2.3 Time-series motifs

The concept of motifs in time-series was first introduced by Lin et al. [65] and is

usually associated with over-represented segments in a time-series. More precisely, a

motif is group of time-series segments, or subsequences, that meets three conditions

[66]:

• Behavior constrain - This condition states that subsequences should only belong

to the same motif if they present the same general behavior. According to [67],

distortions such as noise or time and amplitude shifts can be accepted, depending

on the application.

• Distance constrain - This condition states that the subsequences of a motif must

have a distance smaller than a predefined radius R to the center of the motif,

where the center is defined as the subsequence that best represents the motif. The

radius R is one of the most important parameters any motif detection algorithm

and it usually needs to be defined by the user through expert judgment.

• Non-overlapping constrain - This condition states that two subsequences in the

same motif cannot overlap in time. The condition aims to avoid trivial matchings

[65], which are subsequences that share most of the same observations.

From this general definition, several authors tackled the problem of detecting

motifs in time-series from diverse perspectives. More precisely, there are three dimen-

sions in which the task of motif detection can vary from author to author, namely the

definition of motif relevance, the type of search, and the subsequence length type. In

the next paragraphs, we’ll go into more detail about these problem dimensions.

The motif relevance states how important a motif is. In other words, for all groups

of time-series subsequences that meet all the conditions to form a motif, how can we

find which groups are more important? According to Mueen [68], there are two main

ways of defining the relevance of a motif:

• Support-based - the most relevant motifs are the ones with the largest number

of subsequences.
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• Similarity-based - the most relevant motifs are the ones where the subsequences

have the highest similarity between them (i.e., the lowest distance).

Thus, while similarity-based definition results in highly similar motifs, the support-

based definition results in highly frequent motifs.

There are two types of searches in the motif detection problem. The first corre-

sponds to discovering the most relevant motif, which in turn depends on the definition

of relevancy discussed int the previous article. In the second type, instead of focusing

on the single most important motif, the search aims at extracting the k most important

motifs or, as usually referred to in the literature, the k-motifs [65]. In this search type,

one orders all the groups of subsequences that meet the requirements of a motif and

takes the first k motifs. However, in order to avoid extracting motifs with overlapping

subsequences, there’s an additional distance constrain in this search type. For any two

motifs in the k-motifs, their centers must have a distance higher than 2R, where R is

the radius that sets which subsequences are considered to belong to each motif.

The final dimension is related to the subsequence length type [67]. In other words,

how do you define the size of the subsequences that make each motif? There are two

possible length types - fixed or variable. The first motif detection algorithms started to

address the fixed-length problem, where the goal was to find motifs with a predefined

length. Therefore, the algorithms assumed that motifs had a fixed size that was known

beforehand. However, for some applications, assuming all motifs have the same size

can be too restrictive and, thus, one needs to look for variable-length motifs. In this

case, we don’t know beforehand the exact size of all motifs and, instead, we search for

motifs in a range of motif sizes. This added flexibility comes with a cost as the search

space is larger and more complex.

In every flavor of motif detection, there is a prevalent problem. Because motif

detection requires the comparison of all possible pairs of subsequences from a time-

series, it is a computationally demanding task. Consequently, all motif detection

algorithms need to find a strategy to speed up the search.

One of the most popular solutions is to use a low dimensional representation of the

original time-series where the distance of subsequences in the original representation

is similar [68]. With this dimensionality reduction, one can extract motif candidates

in the low-dimensional representation (which is more efficient than using the original

representation) and filter the candidates based on the real distance in the original

representation. Common representation methods used in motif detection algorithms

include SAX [44] and Discrete Fourier Transformation (DFT) [45], methods that were

discussed in Subsection 2.2.1.

Another widely used approach to speed-up the search is the Matrix Profile (or MP)

[69]. The MP is a meta time-series that annotates the original time-series by providing

the distance and the index of each fixed-size sequence’s nearest neighbors, excluding
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trivial matches. There are a few efficient implementations of the MP, either approx-

imate or exact, and, once the MP is computed, extracting similarity-based motifs is

trivial.

In addition to the speed-up strategy, the other essential component of any motif

detection algorithm is the choice of the distance function. In other words, how does

the algorithm measures the distance between two subsequences? Most authors use the

Euclidean distance [53] or the DTW distance [55], which were discussed in subsection

2.2.2.

Finally, motif detection algorithms can be further divided into two groups, depend-

ing on the dimensionality of the time-series. The simplest case is to find motifs in

one-dimensional time-series. However, for some use-cases, the time-series contain

more dimensions, which requires algorithms that can find multidimensional motifs.

To solve the multi-dimensionality problem, different authors proposed varied ap-

proaches, ranging from using dimensionality reduction techniques coupled with a

one-dimensional motif detection algorithm [66] to applying a motif detection algo-

rithm to every dimension independently and looking for co-occurrences to extract the

multidimensional motifs [70, 71, 72, 73].
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Article no. 1 - Finding maneuver motifs in

vehicle telematics

This chapter contains the first article of the thesis. This article was published in the

journal Accident Analysis & Prevention and can be accessed at https://doi.org/10.

1016/j.aap.2020.105467.

The main contribution of the article is to validate our hypothesis that motif detec-

tion cab be used to detect maneuvers and other driving patterns from high-frequency

telematic data. In particular,

• We review the main algorithms to detect time-series motifs and do a critical

analysis on their feasibility for detecting maneuvers.

• We make our own implementation of one of the motif detection algorithms.

• We explore the relationship between the motifs from the UAH-DriveSet dataset

and the respective maneuvers being performed.
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3.1 Introduction

Driving behavior has a great impact on road safety. According to Dingus et al. [33],

accident causation has experienced a shift, with driver-related factors being a funda-

mental factor for road safety. On a similar study, Dozza [37] found that some behaviors

associated with distraction, such as attendance to secondary tasks and eyes-on-road,

reduce significantly drivers’ response time in near-accident settings and, therefore,

distraction and inattention are a major factor in traffic accidents.

On the other hand, because data acquisition systems such as smartphones or OBD

devices are easier to access and data is cheaper to store and process, researchers have

the opportunity of using vehicle telematics to better understand driving behaviors and

the factors contributing to car accidents [11].

Driving behavior analysis also has impact for practitioners. In the insurance mar-

ket, driving behavior has been used through the implementation of UBI [9]. These

schemes rely on collecting continuous streams of cars’ sensor data on single customers

and using that data to assess their driving behavior and provide discounts on the pre-

miums. Other applications include fuel consumption optimization, fleet management

and evaluation of self-driving cars’ performance.

When tackling the driving behavior problem, it is common to focus on maneuvers.

The exact maneuvers being performed during a trip and the way they are being per-

formed is very informative of the driving behavior of the driver. In this context, the

question of how to use telematics to correctly identify and compare maneuvers needs

to be addressed. Previous research has dealt this issue through two main strategies,

namely, 1) using fixed thresholds in inertial measurements (e.g. acceleration or rota-

tional energy) to define the start and end of specific maneuvers or 2) using features

extracted from rolling windows of sensor data (e.g. velocity and acceleration) in a su-

pervised learning model to detect maneuvers. While the first method cannot adapt to

small fluctuations in the signal and requires fine-tuning, the second requires a dataset

with labels indicating where the maneuvers appear and cannot identify maneuvers

with different lengths in time.

Having in mind the need for an adaptable method that can detect maneuvers with-

out the need of labels, we sought to investigate a type of methods created in the time-

series data mining community that can bring insights into the maneuver detection

use-case, namely, the algorithms for detecting time-series motifs. Particularly, after a

review of the available algorithms for motif detection, we made our own implemen-

tation of a specific algorithm, applied it to a publicly available naturalistic driving

dataset and explored the relationship between the extracted motifs and maneuvers.

The rest of the paper is organized as follows - Section 2 includes a review on the

methods for identifying driving behavior with telematic data and explores the field of

time-series motif detection algorithms, Section 3 presents the specific algorithm used

for this paper and explains the modifications added to better fit this use-case, Section
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4 summarizes the main results and the fifth and final section concludes the paper and

opens the path for future research.

3.2 State of the art

3.2.1 Driving behavior in telematic data

Identifying driving behavior or detecting maneuvers high-frequency trip recordings

is not a straightforward task and many authors proposed some ways of tackling this

problem. Nevertheless, most papers can be aggregated into two main strategies - fixed

thresholds [12, 13, 14, 15] on inertial variables and rolling windows [16, 17, 18, 19, 20,

21, 22, 23, 24].

In the fixed thresholds strategy, authors set specific thresholds on acceleration or

other inertial measurements in order to define the beginning and end of maneuvers.

These maneuvers are then used as input to the driving performance algorithm. As

an example, Paefgen et al. [13] defined four types of maneuvers by specifying thresh-

olds on lateral acceleration (for the left turn and the right turn) and on longitudinal

acceleration (for forward acceleration and for braking). In another paper, Johnson and

Trivedi [12] applied a simple moving average on the rotational energy derived from

smartphone’s sensors and defined a specific interval to set the beginning and end of a

maneuver, independently of its type. These types of approaches have the advantage

of being easy to implement, lightweight and interpretable. However, since the choice

of the thresholds is essential to the detection of maneuvers, these methods require

fine-tuning for each specific dataset and are inflexible to changes in the data.

The second type of strategies involves the use of rolling windows, in which the trip

is divided into fixed-sized time windows that can have some level of overlap. Then,

each window is used as input to a supervised model that classifies it as a specific ma-

neuver. In this strategy, the window size and the percentage of overlap are important

parameters that need to be set beforehand. Saleh et al. [16] built windows from inertial

sensors and classified them as aggressive, normal or drowsy using a stacked-LSTM

model. Each window had 64 time steps and had a 50% overlap. On a different direc-

tion, Xie et al. [19] compared three feature extraction methods for identifying various

maneuvers such as braking, turning and acceleration. They also used rolling windows

for splitting the trips and they tested different window sizes with no overlap. The

authors state that the window size is very relevant to the classification performance

and that the optimal size can vary depending on the type of maneuver, which leads to

the conclusion that an "adaptive window sizing method"would be better suited. Thus,

again, the inflexibility of the window size is a disadvantage in this method as well.

Another issue with the rolling windows method is the overlap parameter. If no

overlap is used, then the way a trip is split may not be optimal since a window can

also split a single maneuver and information may be lost. On the other hand, using
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the maximal overlap (i.e., moving the window a single time step) comes with its own

problems. In their paper, Keogh and Lin [25] argued that clustering time-series sub-

sequences is meaningless when rolling windows are used to build the subsequences.

In particular, they state that "clusters extracted from these time series are forced to obey a
certain constraint that is pathologically unlikely to be satisfied by any dataset, and because
of this, the clusters extracted by any clustering algorithm are essentially random".

It is important to note that Saleh et al. [16] used an 50% overlap with great success,

which seems to validate the use of rolling windows. However, the authors used a su-

pervised approach and Keogh and Lin [25] only argues against using rolling windows

in unsupervised methods. Nevertheless, building high-frequency labeled datasets for

driving behavior is quite laborious and requires a lot of resources, which is evident in

the extremely low number of labeled datasets available to researchers. Thus, and since

the possibility of using unsupervised or semi-supervised methods is quite desirable,

for this specific problem, using rolling windows is not the optimal approach.

The paper from Keogh and Lin [25] not only proves the point of the meaningless-

ness of clustering rolling windows but also proposes a solution, motif-based clustering.

According to the authors, time-series motifs are over-represented subsequences in a

time-series. The concept of motifs was first introduced in the genetics research as

sequences of amino-acids in the DNA with biological significance [67] and, since then,

the field of motif discovery for time-series has been receiving a lot of attention from

the data mining community. Keogh and Lin [25] proposes to use a motif detection

algorithm to find the set of motifs with the highest representation in the original

time-series and then to apply the clustering algorithm directly to the motifs.

Therefore, in this paper, we propose to use a motif detection algorithm in inertial

measurements to extract maneuvers from a trip. In other words, our main hypothesis

is that over-represented segments of inertial time-series are highly connected to ma-

neuvers and, by looking at the most relevant motifs for a trip, we will be able to get

insights on the maneuvers performed during that trip.

In the next subsection, we will explore the motif discovery task, taking into con-

sideration the specific requirements of the maneuver detection use-case. The method

needs to be flexible enough to detect maneuvers with variable sizes, which implies

that the motif detection algorithm needs to be able to extract variable-length motifs.

3.2.2 Motif discovery overview

Even though the concept of motifs relates to over-represented time-series segments,

the exact definition of the most relevant motifs varies slightly among authors and

areas of application. Mueen [68] states that there are two main definitions, namely a

similarity-based and a support-based. In the first, the motifs can be ordered based on

the similarity of the segments that belong to the motif, while the second orders motifs

based on the number of repetitions of the motif throughout the time-series. Thus,
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the similarity-based definition results in highly similar motifs and the support-based

definition results in highly frequent motifs.

Additionally, there is some constrains which the time-series segments belonging

to a motif must meet [66]. The behavior constrain introduces the idea that segments

in a motif should present the same general behavior. Note that, depending on the

application, distortions such as noise or time and amplitude shifts may be accepted

[67]. The distance constrain goes a bit beyond by stating that all motif’s segments need

to have a distance smaller than a predefined radius R to the center of the motif (i.e., the

segment that represents that motif). This radius is a very important parameter in any

motif detection algorithm and it needs to set beforehand. Finally, the non-overlapping

constrain sets that motif segments cannot overlap in time, which avoids what Lin et al.

[65] refers to as trivial matchings.

There are also some motif detection use-cases in which one is not interested in

finding the single most important motif, but instead the k most important motifs or,

as referred in the literature, the k-motifs [65]. Put simply, based on the desired motif

definition, one can order the entire set of motifs found with a certain algorithm and

then extract the first k ordered motifs. However, in order to avoid extracting motifs

with overlapping members, these motifs have to meet a distance constrain, namely, all

the pairs of motif’s representative (or the centers) need to have a distance higher than

2R, where R is the radius discussed in the previous paragraph.

Independently of the exact definition, motif discovery is a computational intensive

task as it involves comparing all possible pairs of time-series subsequences. The most

prevailing strategy to speed this search is to use a low dimensional representation

of the original time-series in which the distance of subsequences in the original rep-

resentation is approximately maintained [68]. This way, one is able to extract motif

candidates in the low-dimensional representation (which is more efficient than use

the original representation) and simply filter the candidates based on the real distance

in the original representation. The most used representation for motif detection is

the SAX, which transforms sliding windows of the original time-series into discrete

sequences of characters [44]. Since each sliding window is encoded with a predefined

number of characters, the continuous time-series is broken into a list of fixed-sized

sequences of characters (or words). Another common approach is to used spectral

representations such as the DFT, the classical representation of a time-series in the

frequency domain [45].

Another important component of motif discovery is the distance used to compare

time-series segments. Most papers use either the Euclidean distance [53] or the DTW

[55]. While the first is very efficient and thus allows for a fast comparison of segments,

the second has the advantage of allowing to compare segments with different lengths

and with time distortions by computing the optimal alignment in time of the two

time-series that are being compared.

Motif discovery in time-series started with the fixed-length motif problem, where
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the goal was to find motifs with a predefined length. However, as stated in the in-

troduction, we are interested in finding motifs with no predefined length and even

allowing segments from the same motif to have different lengths. Therefore, because

the fixed-length motif discovery is too restrictive for this use-case, we will need to use

variable-length motifs.

According to Torkamani and Lohweg [67], there is a considerable set of papers that

address the variable-length problem by applying a fixed-length algorithm to a range

of window sizes and then choosing the most representative motifs based on their motif

definition and motif ranking schemes [74, 75]. However, this strategy does not allow

to have segments with different lengths in the same motif. On the other hand, Tanaka

et al. [66] introduced a strategy that allows a more flexible comparison of motifs

with different lengths. In particular, they proposed to use the SAX representation for

building a discrete list of words and to aggregate repeating words in the same word.

3.3 Implementation of the motif detection algorithm

The motif discovery algorithm chosen for this paper is the EMD algorithm by Tanaka

et al. [66]. The main advantage of this algorithm, and the reason why we chose it, is

the possibility of having subsequences with different lengths in the same motif. The

EMD algorithm has three main components:

• Discretization of the 1-dimensional time-series via an adaptation of SAX rep-

resentation [44]. This adaptation is what allows the method to find segments

with different lengths in the same motif. Put simply, the algorithm starts by

applying the SAX representation to sliding windows of the same length, which

produces a sequence of SAX words, each representing a specific window in the

original time-series. Then, the algorithm looks for consecutive sets of equal

SAX words. If consecutive repeating words are found, the algorithm aggre-

gates them into the same modified SAX word and joins the windows that were

represented by those repeated words. For instance, given the SAX sequence

CSAX = [abc,abc,cde, f de, f de, f de] representing 6 sliding windows of size n, the

adaptation returns the modified sequence C̃SAX = [abc,cde, f de] that represents

3 windows of size n+ 1, n and n+ 2, respectively.

• Extraction of all the variable-length motif candidates with an iterative pattern

matching routine. This process iterates over all the sets of consecutive modified

SAX words (or patterns) and looks for repeating patterns that meet the distance

constrain discussed in previous section.

• Computation of the description length of each motif candidate, which is based

on the Minimum Description Length (MDL) principle [76]. The description
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length (or MDL cost) can be then used to select the most relevant motifs from

the extracted candidates.

Since, to the best of our knowledge, there was not a publicly available implemen-

tation of the EMD algorithm, we did our own implementation of the algorithm 1. In

addition, implementing the algorithm gave us the the flexibility to add two simple

features that were not discussed in the original paper and a major change that we will

argue benefits the use-case of finding maneuvers from inertial measurements.

The first addition is related to the avoidance of the trivial matchings discussed in

the previous section. In their paper, Tanaka et al. [66] did not give any details on

how to prune overlapping subsequences that belong to the same motif. Therefore, we

implemented it with a simple heuristic. Given a motif, its center subsequence and its

members subsequences, when two members overlap, we exclude the member with the

largest distance to the motif’s center and keep the member with the lowest distance.

The second addition involves the extraction of k-motifs. Since we are interested

in finding different maneuvers, we had to implement a routine that pruned the entire

set of motifs found by the EMD algorithm in order to avoid overlaps between different

motifs. Tanaka et al. [66] had already defined a method for ordering motifs using the

MDL cost. However, they did not discuss the issue of overlapping motifs and thus we

used the heuristic proposed by Lin et al. [65]. Namely, we defined the k-motif as the

motif with the lowest MDL cost and whose center has a distance higher than 2R to the

the center of each the j-motifs, for 1 ≤ j ≤ k − 1. We named this step motif pruning.

The major change we introduced to the EMD algorithm concerns the SAX repre-

sentation. In the original method, each sliding window is transformed into a sequence

of n numbers, which is defined by dividing the window into n equal-size segments

and by computing the mean of each segment. Then, each of the n numbers is mapped

to a unique character based a set of computed break-points. These break-points are

defined separately for each window so that the characters’ frequency in that window

exhibit a Gaussian distribution.

With this adaptive break-points method, windows that have the same behavior

but are shifted in amplitude are mapped to the same SAX word and consequently

will be compared as candidates for the same motif. Although useful in some cases,

because amplitude is extremely important for identifying different maneuvers, this

adaptive feature is not desirable in our use-case. As an example, if we used adaptive

thresholds, acceleration increases from 0G to 0.2G would have the same SAX word as

acceleration increases from 0G and 0.8G and thus, we wouldn’t be able to have these

two subsequences as distinct motifs. In other words, we would not observe smooth

maneuvers and aggressive maneuvers as different motifs.

Finally, after some investigation of the results, we observed that the motif punning

reduced significantly the number of motifs detected. In order to better investigate all

1https://github.com/misilva73/manueverMotifs
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the original motifs found by the EMD algorithm, we applied a clustering method to the

centers of each motif and grouped them based on their DTW distance. For this purpose,

we used the DBSCAN algorithm [77]. This is a density-based algorithm that defines

core points of high-density (points with many close neighbors) and expands clusters

from these points. The algorithm has two main parameters, namely, the maximum

distance to consider two points neighbors and the minimum number of neighbors a

points must have to be considered a core points. Based on this two parameters, the

algorithms finds both outliers and the clusters in the data. This is a main advantage as

we do not need to give a predefined number of clusters and can discover outlier motifs,

which can be also interesting to analyze.

3.4 Results and discussion

In order to investigate whether the EMD algorithm is able to extract meaningful motifs

for detecting maneuvers, we applied the algorithm to the UAH-DriveSet, a publicly

available naturalistic driving dataset with trip recordings from six different drivers

and two specific routes in Madrid, Spain. Romera et al. [26] asked each driver to repeat

two predefined routes simulating three different behaviors, namely, normal, aggressive

and drowsy. During the trips, they collected both raw and processed signals using an

app designed by them and called DriveSafe [27, 28].

We run two experiments2. In the first, we aimed to identify brakes and accelera-

tions, while in the second we focused on curves and other lateral maneuvers. For each

experiments, we run the algorithm in four different trips - one representing a normal

trip in a secondary road and three related to trips in a motorway and exhibiting the

three behaviors present in the dataset (normal, aggressive and drowsy).

In the experiments, we used the accelerometer’s measurements in the y and z axis

with a frequency of 10Hz, which were already aligned with the three car axis and

denoised with a Kalman filter. Since the y-axis represents the lateral acceleration of

the car and the z-axis represents the longitudinal acceleration of the car, we used the

first to detect curves and the second to detect accelerations and brakes. This dataset

also included a record of the start of acceleration events captured by the DriveSafe

app, such as turns, brakes and accelerations. These events were marked with a fixed-

thresholds strategy and thus, we used these labels to help in the motif visualization.

The EMD algorithm has four main parameters, namely, the window size used to

build each individual SAX word, the Piecewise Aggregate Approximation (PAA) size,

which corresponds to the number of characters in each SAX word, the SAX alphabet

size, which is the maximum number of characters used in the SAX representation, and

the radius R, discussed in the definition of a motif. We tested a range of values for each

parameter and, based on an exploration of the resulting motifs, the final parameters

2https://github.com/misilva73/manueverMotifs
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used in all the experiments were window_size = 20, paa_size = 2, alphabet_size

= 5 and R = 0.1.

In order to validate the results, we used the video recordings of the trips and the

measurements of car’s velocity. The videos were mostly useful in the lateral experi-

ment, while the velocity was used to validate the longitudinal maneuvers. Note that

we did this in-depth analysis on the smaller set of pruned motifs as the full set of

extracted motifs was too big for such manual analysis. Therefore, we applied the

clustering algorithm DBSCAN [77] as an exploratory tool.

3.4.1 Identifying brakes and accelerations in the longitudinal
acceleration

Table 3.1 summarizes the main results obtained with the EMD method and the DB-

SCAN clustering. For each trip, it displays 1) the number of motifs extracted by the

EMD algorithm, 2) the number of motifs remaining after the motif pruning, 3) the

types of maneuvers detected after punning, 4) the number of clusters obtained with

the DBSCAN algorithm, excluding the outliers cluster, and 5) the number of motifs in

the outlier cluster.

Table 3.1: Summary results of the analysis in the longitudinal acceleration

Trip Motifs
Motifs after

pruning maneuvers[∗] DBSCAN
clusters

DBSCAN
outliers

Motorway Normal 1849 3 B, B-A 5 383
Aggressive 1272 8 B, B-A 8 771
Drowsy 2039 5 B, B-A 5 477

Secondary Normal 1591 3 A, B-A 2 162
[∗] A = Acceleration ; B = Brake ; B-A = Brake followed by acceleration

From these results, we were able to observe that the motif pruning step reduces the

number of motifs by three orders of magnitude, which is a very significant reduction.

This indicates that most of motifs detected by the EMD algorithm are in fact very

close to each other and therefore represent either the same maneuver or very similar

maneuvers. Additionally, after the motif pruning step, the remaining motifs in all

trips contained relevant maneuvers, which indicates that motif detection algorithms

can help in the task of discovering maneuvers in a signal of longitudinal acceleration.

Figure 3.1 displays three motifs extracted with the EMD algorithm and they all have

an easily identifiable maneuver.

In all the trips explored, the most relevant motif found by the EMD algorithm

contained the absence of a maneuver. In other words, this motif corresponded to the

action of driving at a constant speed without changes in longitudinal acceleration,

which is consistent with routes where these trips where recorded. In motorways and

secondary roads, driving is done in a constant speed at most times and thus we expect

to have this behavior as the most significant motif of these trips.
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(a) No maneuver

(b) Brake maneuver

(c) Brake-acceleration maneuver

Figure 3.1: Three example motifs found in the motorway aggressive trip. They corre-
spond to the first, second and fifth most relevant motifs, after pruning. Red and green
points represent the original labels (computed using a threshold method) present in
the UAH-DriveSet, where red marks indicate the beginning of a brake and green the
beginning of an acceleration.
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It is also interesting to note that in all the four trips, the algorithm was able to

identify a motif with the maneuver of a brake followed by an acceleration, which

could be indicative of a tailgating behavior.

Another common factor to all the explored trips was the variability of the lengths of

segments belonging to the same motif, which was one of the main reasons for choosing

the EMD algorithm in the first place. The ability of extracting motifs whose members

have slightly different lengths is a major advantage of this algorithm as it allows us

to find maneuvers that have the same type (e.g. a brake) but have lightly different

lengths.

We also observed that this method was capable of finding subsequences that corre-

spond to the same maneuver but, because they are slightly bellow the thresholds set

in the DriveSafe app, they are not marked as a maneuver in the original dataset. As an

example, Figure 3.2 shows the plot of two subsequences that belong to the same motif.

The first was marked as a brake but the second, because it was bellow the threshold

set by the app, was not marked as a brake. This motif was extracted from the drowsy

trip in the motorway route.

The results obtained with the DBSCAN clustering algorithm show that the majority

of the motifs are very close and represent the same behavior, the absent of a maneuver.

However, all trips have a cluster of outliers, which are motifs that are different from the

majority motifs and do not have a big enough neighborhood to form a cluster. These

are the most interesting motifs from the perspective of maneuver detection. Therefore,

investigating outlier motifs can be a way of enriching the motifs found with the pruned

version of the EMD algorithm.

Figure 3.2: Zoom-in on a motif extracted from the drowsy trip in the motorway route.
The second subsequence was marked as a brake in the UAH-DriveSet and the EMD
algorithm extracted it as a member of a motif. The first, although not being marked,
could be also recognized as a brake by belonging to the same motif as the first subse-
quence.

3.4.2 Identifying turns in the lateral acceleration

Similarly to the previous section, Table 3.2 summarizes the main results obtained with

for the lateral acceleration analysis and Figure 3.3 shows three motifs extracted with

the EMD algorithm with pruning. In general, results were consistent with the ones
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obtained in the longitudinal acceleration experiments and thus conclusions are not

much different.

Table 3.2: Summary results of the analysis in the lateral acceleration

Trip Motifs
Motifs after

pruning maneuvers[∗] DBSCAN
clusters

DBSCAN
outliers

Motorway Normal 1532 3 LC, OT 6 1328
Aggressive 634 7 D, LC 1 614
Drowsy 1464 8 LC, C 5 1292

Secondary Normal 1113 1 None 2 929
[∗] LC = Lane change ; OT = Overtaking ; D = Drift, C = Curve

Motif pruning continues to reduce significantly the number of motifs and, after

pruning, we could identify some relevant maneuvers in the remaining motifs. In all

trips, the most relevant motif was the one representing the absence of a maneuver

which was expected given that both routes do not have many curves. In three trips,

some of the motifs extracted after the pruning related to lane changes, which was easily

validated in the videos recordings. Additionally, in one of the trips, we were able of

observe a motif that included a mush more complex maneuver, namely a overtaking

maneuver.

The video recordings also showed that some motifs included clear patterns in

the lateral acceleration which, in most cases, were related to a lane change but, in a

few cases, included no visible maneuver. We hypothesize that these patterns in the

acceleration time-series can be caused by road inclinations or blasts of wind. This

means that by looking at a single signal, motifs will be more prone to errors and

thus, as future work, we should combine multiple sensors and find multi-dimensional

motifs.

Compared to the longitudinal analysis, the DBSCAN detected more outliers, which

suggests that this signal leads a higher number of motifs which are distant from the

"no maneuver"behavior and thus one would need to spend more time analyzing these

motifs.

3.5 Conclusion and future work

As many papers have shown, driving behavior has a great impact on road safety. A

popular way of analyzing driving behavior is to move the focus to the maneuvers as

they give useful information about the driver performing those maneuvers. In this pa-

per, we investigated a new way of identifying maneuvers from vehicle telematics data,

motif detection in time-series. Put simply, time-series motifs are over-represented sub-

sequences in a time-series [65]. With the hypothesis that over-represented segments

of inertial time-series are highly connected to maneuvers, we sought to analyze the

relationship between the most relevant motifs of a trip and the maneuvers performed

during that trip.
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(a) No maneuver

(b) Lane change

(c) Drift

Figure 3.3: Two example motifs found in the motorway aggressive trip (1st and 4th
motif) and one example found in the motorway drowsy trip (2nd motif). Orange
points represent the original labels present in the UAH-DriveSet (and computed using
a threshold method), where the marks indicate the beginning of a turn.
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We implemented a slightly modified version of the EMD algorithm [66], a classical

motif detection algorithm for time-series which is capable of finding subsequences

with different lengths in the same motif, and we applied it to the UAH-DriveSet [26],

a publicly available naturalistic driving dataset with trip recordings from six different

drivers and two specific routes in Madrid, Spain. Particularly, we ran two different

experiments. In the first, we aimed to identify acceleration and brakes from the lon-

gitudinal acceleration time-series and, in the second, we aimed to identify turns from

the lateral acceleration time-series.

After a systematic exploration of the extracted motifs, we were able to conclude that

the EMD algorithm was capable of extracting simple maneuvers such as accelerations,

brakes and curves. We identified additional maneuvers that could be associated with

more complex behaviors. In the longitudinal experiments, we identified a motif with

the maneuver of a brake followed by an acceleration, which could be indicative of a

tailgating behavior. In the lateral experiment, we found motifs with lane changes and

overtaking maneuvers.

Additionally, by providing a way of ordering the motifs by its relevance in the trips,

the EMD algorithm gives some extra information on the trip itself. As an example,

in the drowsy trip, the second most relevant maneuver in the lateral acceleration was

the drift while, in the aggressive trip, the lane changes occupied the most interesting

motifs. This is very indicative of the type of driving that was being made in both trips:

the aggressive trip was dominated by lane changes, thus showing a higher level of

impatience, and the drowsy trip was dominated by drifts, which can be associated

with inattention and sleepiness.

Although validating motif discovery as a worthwhile line of research for detecting

maneuvers, there is still some work to be done. Firstly, the analysis performed in this

paper was exploratory in nature as we did not have a more automated way of identify-

ing which maneuver was being performed in each motif. Therefore, an important next

step to make motif detection work in practice is to build a method for finding similar

motifs and associating that motifs to a specific maneuver without the need to visual

exploration.

Secondly, even though motif pruning showed some promise in ordering and select-

ing motifs, the DBSCAN analysis leads us to believe that by only looking at the pruned

motifs and discarding all the others, we might be missing some interesting maneuvers.

Therefore, it would be also interesting to further investigate a better grouping of the

motifs as a way of finding more instances of with maneuvers.

Thirdly, we applied the EMD algorithm to single trips independently. This means

that if a driver performs a specific maneuver only once during the trip, the EMD will

not recognize it as a motif since it only appears once. However, if we were to expand

the search for motifs to a varied set of trips instead of focusing on a single trip, we

expect to see these cases become very rare. Thus, this work should be further extended

to multi-trip motif discovery.
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Finally, we used the lateral and longitudinal acceleration time-series separately

to find simple maneuvers such as turns and brakes. However, the ideal setup would

be to look for motifs in the two acceleration axis at the same time and also include

other sensors such as velocity. This way, we would be able to extract more complex

maneuvers and we would reduce errors created but changes in road inclination or

blasts of wind.

This idea is equivalent to the task of detecting motifs in multidimensional time-

series. The two main ways of tackling this problem are to reduce the number of

variables to one and apply a motif discovery algorithm to the resulting 1-dimensional

time-series [66] or to apply a motif discovery algorithm to each individual dimension

and search for co-occurrences of the 1-dimensional motifs to extract the final multidi-

mensional motifs [70, 71, 72]. While the first has the advantage of avoiding running a

motif detection algorithm in all the dimensions, the second is more accurate as there

is no information loss due to dimensionality reduction. Therefore, it would be very im-

portant to explore these two options and to discover if they are suited for the use-case

of maneuver detection.
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Article no. 2 - Exploring time-series

motifs through DTW-SOM

This chapter contains the second article that composes this thesis. The article was

accepted for presentation at the International Joint Conference on Neural Networks

(IJCNN) 2020 and published in the conference proceedings. The published version

can be accessed at https://doi.org/10.1109/IJCNN48605.2020.9207614.

In the previous chapter, we notice that the motif pruning step from the EMD algo-

rithm is too restrictive and thus excludes relevant maneuvers from the trip. On the

other hand, the number of motifs extracted by the algorithm is too large to allow a

human to explore it manually. In other words, we need a summarization and visu-

alization tool to get the full benefit to motif detection algorithm for the use-case of

maneuver detection.

With this in mind, in our second article, we proposed the use of the SOM clustering

algorithm to explore the motifs extracted by any desired motif discovery method. This

new algorithm is called DTW-SOM and it receives the centers of a set of motifs, groups

them into a predefined set of clusters and provides a space-efficient visualization that

aids the investigation of the main extracted patterns.
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4.1 Introduction

In the last decade, motif discovery has become a fundamental step in many data min-

ing tasks for time-series data, such as clustering, classification or anomaly detection.

In general, a time-series motif corresponds to a over-represented segment of a time-

series and thus motif discovery involves extracting all (or a specific subset) of these

over-represented segments [68]. Figure 4.1 illustrates an example of two motifs built

from dummy data.

Figure 4.1: Toy example of two different motifs, each with two highly conserved sub-
sequences.

Due to its relevance, many methods and strategies have been proposed to tackle

motif discovery. However, the step of exploring and visualizing motifs, which can be

useful to understand results of downward tasks, has not received as much attention.

To the best of our knowledge, papers that address this question focus only on visualiz-

ing the actual time-series subsequences that belong to each individual motif [78, 79,

80]. We argue that, even though exploring individual motifs can help to understand

the individual patterns, these methods cannot provide information about the overall

relationships between the extracted motifs. In other words, they are not ideal to an-

swer questions such as: Are motifs similar to each other? Can we define clusters of

motifs? Additionally, exploring individual clusters is not tractable in the cases where

a high number of motifs is extracted.

In this paper, we propose the use of a widely-studied method for feature reduction

and visualization, the SOM [81], to explore the centers of motifs extracted by any de-

sired motif discovery algorithm. Taking into account that these centers are time-series

subsequences, with possibly variable lengths and multiple dimensions, we adapted

the original SOM algorithm to apply the DTW distance [55] as its similarity metric

and added two specific initialization routines for the SOM network.

The rest of the paper is organized as follows: Section 2 introduces academic work

related to (1) motif discovery and (2) Self-Organizing Maps, Section 3 describes our

own implementation of the DTW-SOM, Section 4 presents the experimental setup and

reports the results obtained on three different datasets and, finally, Section 5 concludes

this paper and discusses future work.
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4.2 Related work

In this section, we’ll cover two areas which, although seemingly unrelated, serve as

basis for this paper - motif discovery and self-organizing maps.

4.2.1 Motif Discovery

Despite, in general, the concept of motifs being associated with significant time-series

segments, there are two main definitions of motifs that vary on the way they set the

concept of "significance"[68]. Similarity-based motifs focus on the similarity of the

time-series segments and thus this definition results in highly similar motifs. On the

other hand, support-based motifs focus on the repetition of the segments throughout

the time-series and thus this definition leads to highly frequent motifs.

In addition to the concept of significance, there are additional constraints a group

of time-series segments must meet to be considered a motif [66]. The first is a behavior

constraint, which determines that segments in a motif should have the same general

behavior, even if some level of noise or time and amplitude shifts are allowed [67].

The second, the non-overlapping constraint, aims to avoid trivial matchings [65] by

setting that motif segments cannot overlap in time. The third is a distance constraint,

which restricts all motif’s segments to have a distance smaller than a radius R to the

center of the motif (i.e., the segment that represents that motif). Note that in most

motif discovery methods, the radius is a parameter that needs to be set by the user.

Finally, when the task is to extract a set of motifs instead of the most significant motif,

there is an additional constraint with the goal of avoiding the extraction of motifs with

overlapping members. This last constraint states that all the motifs’ centers must have

a distance higher than 2 radius, 2R.

Independently of the exact definition, motif discovery is a computationally inten-

sive task as it involves computing distances between all possible pairs of time-series

subsequences. Therefore, much of the work related to motif discovery algorithms has

aimed at making the search more efficient. One of the most common techniques to

reduce the search space is to convert the original time-series into a lower-dimensional

representation where the distance between subsequences in the original representa-

tion is approximately maintained [68]. With this strategy, motif candidates can be

extracted in the low-dimensional representation (which is more efficient) and the final

set of motifs can be computed with the real distance on the smaller set of candidates.

In motif discovery, the SAX representation [44] is the most used. This representation

first extracts sliding windows from the original time-series and then converts each

sliding window into a fixed-sized sequence of characters. Thus, the time-series is split

into a list of "words".

An important part of any motif discovery is the choice of distance. Most authors

use the Euclidean distance [53] or the DTW [55] for comparing subsequences. The
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advantage of the Euclidean is its efficiency, which allows a faster comparison of motif

candidates. However, this efficiency comes with a loss of flexibility as it is not robust

to time-shifts, distortions, differences in phase and variable-length sequences. On

the other hand, the DTW distance finds the optimal time alignment between the

subsequences that are being compared. Thus, it is much less efficient but it can adapt

to the shifts discussed before.

In terms of the algorithms for motif discovery, there are two main types, namely

fixed-length and variable-length. In the fixed-length algorithms, users need to pro-

vide the length of window and that parameter is used to extract all the possible sub-

sequences. Thus, all motifs contain subsequences of the same size. The MK exact

algorithm [82], the motif extraction from the Matrix Profile [69] and the EMMA-SAX

algorithm [65] are all examples of methods that extract fixed-length motifs.

The variable-length algorithms are a bit more flexible and don’t required the user to

set the window size beforehand. However, this is a much harder problem as the search

space is bigger and more complex. Most variable-length algorithms solve this problem

by applying a fixed-length algorithm to a range of window sizes and then choosing the

most representative motifs based on their motif definition and motif ranking schemes

[67]. The work of [74] and [75] are two examples of this approach. On the other hand,

Lin’s grammar-based approach [83] and Tanaka’s EMD algorithm [66] already take

into consideration variable-length motif during the search process by adapting the

way subsequences are represented in the low-dimensional representation.

4.2.2 Self-organizing map

SOM were proposed by Tuevo Kohonen at the beginning of the 1980s [81], and con-

stitute the product of his work on associative memory and vector quantization. The

SOM’s basic idea is to map high-dimensional data onto a low-dimensional discrete fea-

ture map, maintaining the relations between data patterns [84]. Its main objective is to

"extract and illustrate"the essential structures from a dataset through a map resulting

from an unsupervised learning process [85, 86] and thus it can be used at the same

time for visualization and exploration of data and for clustering.

SOM is also considered a good method for extracting data patterns and associations

when the extraction of information becomes a challenging task due to the number of

parameters or the use of a multidimensional dataset.

Usually, SOM maps the original high-dimensional data to a discrete feature map

with one, two, or three-dimensions, although 2-dimensions are the most common.

The grid formed by the units or neurons is usually referred to as output space, as

opposed to input space, which is the original space [87]. When the output space is

2-dimensional, it is usually formed by a rectangular or hexagonal grid of units [81].

Each unit of the SOM, is represented by a vector mi = [mi1...,min] of dimension

n, where n equals the dimension of the input space. In the training phase, a given
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training pattern x is presented to the network, and the closest unit is selected. This

unit is called the best-matching unit (BMU). The unit’s vector values and those of its

neighbors are then modified in order to get closer to the data pattern x:

mi =mi +α(t)hci(t)‖x −mi‖ (4.1)

where α(t) is the learning rate at time t, and hci(t) is the neighborhood function

centered in unit c, and i identifies each unit. To allow SOM to converge to a stable

solution, both the learning rate α(t) and the neighborhood radius hci(t) should decrease

to zero during training. Usually these parameters decrease in a linear fashion but other

functions can be used. Additionally, the update of both parameters can be done after

each individual data pattern is presented to the network (iteration) or after all the

data patterns have been presented (epoch). The former case is known as sequential

training and the latter is usually known as batch training. The sequential algorithm

pseudo-code is presented bellow, in Algorithm 1.

Algorithm 1: SOM Sequential Training
Input: X = {x1,x2, . . . xn}: training patterns

W =
(
wij

)
∈ Rp×q: SOM network’s units

α ∈]0,1[: initial learning rate
r ∈ R: initial neighborhood radius

1 Let h(wij ,wmn, r) be the neighborhood function
repeat

2 for k = 1 to n) do
3 forall wij ∈W do
4 dij = ‖xk − xij‖
5 Select the unit that minimizes dij as the winner wwin
6 Update wij ∈W : wij = wij +αh(wwin,wij , r)‖xk −wij‖
7 Decrease the value of α and r
8 until α = 0;

For each randomly selected training pattern presented to the network, the BMU

(i.e. its closest unit) is found. The BMU is then updated according to the weights of

the training pattern and the learning rate. Initially this learning rate is high allowing

bigger adjustments of the units. The unit’s mobility will decrease proportionality

with the decrease of the learning rate. Based on the neighborhood rate, a group of

surrounding units is also moved closer to the training pattern. There are several ways

to visualize the SOM and improve the understanding of the data patterns [88]. Two of

the most important visualization tools are the component planes [81] and the U-matrix

[89].

In a component plane, each unit is colored according to the weight of each variable

in the SOM. Through the analysis of the component planes, data distribution can be

evaluated. For instance, it is quite simple to identify variables which are correlated
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(their component planes will have the same shape), and it is also possible to have an

improved understanding of the contributions of each variable to the SOM. By com-

paring two or more component planes, one can visually identify correlations between

variables, both globally and at a local scale.

The U-matrix is one of the most used methods to visualize SOM [89]. U-matrices

are computed by finding the distances in the input space of neighboring units in the

output space. There are two ways to visualize a U-matrix. The most common is to use

a color code to depict distances, corresponding to the values of the U-matrix. Usually a

grey-scale is used, with the highest value being represented with black and the lowest

with white. Another possibility is to plot these distances in the form of a 3D landscape

with mountains and valleys. A mountain region indicates large distances between

units, while low distances between the units form valleys.

Some of the challenges in applying SOM to motif discovery in time-series are

related to the fact that not all dimensions are equally relevant and the different size of

motifs. Some work has been developed to overcame these problems [90, 91, 92]. One

example is the Local Adaptive Receptive Field Dimension Selective Self-organizing

Map (LARFDSSOM), proposed in [91], where the application of different weights for

each input dimension and for each cluster is proposed, as well as the use of a Time-

Varying Structure of the SOM. In [92] the authors propose VILMAP to allow the use

of different sizes of samples and consequently the discovery of Motifs with different

lengths.

SOM can, as shown in the previous references, be used to identify and extract time-

series motifs. In this paper, we propose the use of this technique not to perform such

tasks but to analyze the motifs extracted by others motif discovery algorithms.

4.3 DTW-SOM

As explained in previous sections, the goal of the DTW-SOM method is to serve as

an auxiliary tool in motif discovery and, as such, it needs to be flexible enough to

deal with a different range of motif discovery methods and definitions. Particularly, it

should:

1. Be able to compare time-series segments.

2. Receive all types of motifs, meaning fixed-length and variable-length motifs.

3. Represent multi-dimensional motifs (i.e., motifs extracted from a multi-dimensional

time-series).

4. Take into account an given order of significance in the motifs of a provided set

of "most significant"motifs.
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5. Provide a visualization from which a user can get insights into the general rela-

tionships between the motifs and their shapes.

To achieve these goals, we extended the vanilla batch-training SOM algorithm

that was implemented in the PyClustering python package [93] to process variable-

length multidimensional time-series subsequences. The idea is that when someone

wishes to investigate a set of motifs previously extracted, he just needs to collect the

center subsequences of each motif and feed that list of centers to the DTW-SOM. For

readability, from now on, we’ll refer to these center subsequences that are the input to

the DTW-SOM as patterns.

Firstly, we added two network initialization routines, namely a random sample

initialization and an anchor initialization. In the random sample initialization, each

unit is randomly assigned to one input pattern in such a way that no two units are

exactly the same. In other words, a random sample is taken from the input patterns to

initialize the network. In the anchor initialization, a list of patterns must be provided

by the users (the anchors) and each anchor will be set to a single unit. Note that the

provided list cannot have more anchors than units and, in the case of an input with

less anchors then units, a random sample will be taken from all the input patterns to

initialize the remaining units. In the case of having less anchors than units, we tried to

spread out the first anchors (as we are assuming that they are ordered by significance)

by first filling the diagonals of the network and just after that filling the rest of the

network.

Note that the anchor initialization was designed to address the fourth requirement

presented above. If the motif discovery method provides an ordering of the motifs or

a subset of most significant motifs, one can use these motifs as the anchors and thus

the DTW-SOM will more easily focus on these more important motifs.

The second adjustment we implemented to the vanilla SOM was the swap of the

distance function from the Euclidean distance to the DTW distance, which allows us

to process patterns with different lengths and with multiple dimensions. Finally, the

last big change implemented was in the Adaptation phase of the training. Since we

are comparing patterns and units with variable lengths, we had to adapt the way each

unit’s values are updated. When computing the distance between two segments, the

DTW distance finds an optimal alignment in time between the segments and uses this

optimal match to compute the distance between individual points along the segments.

Thus during the adaptation phase of training we leverage this matching to guide the

update of the BMU’s vector values.

As an example, Figure 4.2 shows the DTW alignment between an input pattern

and its BMU. In the DTW-SOM, the vector values of an unit are simply the sequence of

time-series observations as presented in figure. During Adaptation, every vector value

needs to move slightly closer to the pattern as defined by equation 4.1. In this case, the
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Figure 4.2: Example of the time-alignment between an input pattern and an unit com-
puted by the DTW algorithm. The black points are the actual time-series observations
while the red and dashed lines represent the alignment matching returned by the DTW
algorithm.

first BMU’s value, which is the point marked as A, will move closer to the its matching

point in the pattern, which is the point A′.

Due to warping, we can have cases where one point in the BMU can be matched

to more than one point in the pattern, as is the case with points B, B′ and B′′. In these

cases, equation 4.1 needs to be changed to equation 4.2:

wi = wi +α(t)hcw(t)

1
n

∑
j≤n

xj −wi

 (4.2)

where i is the index of the unit’s sequence, t is the training epoch, α(t) is the

learning rate at epoch t, hcw(t) is the neighborhood function, n is the number of pattern

points that where matched to the BMU’s vector value wi and the xj are the pattern

point’s values.

4.4 Evaluation

To test DTW-SOM, we did three experiments. In the first, we generated synthetic

motif data and explored visually the results. In the second, we used a widely used

classification dataset from the UCR Time Series Classification Archive [94], the Gun-
Point dataset [95]. Particularly, we adapted the dataset to be suitable for the motif

discovery task, we used the Matrix Profile [69] to efficiently extract all the motifs and

we explored the resulting motifs with our method. Finally, in the third experiments,

we used the same approach as in the second experiments, but used a dataset from the

UCR Time Series Classification Archive with more classes and more extracted motifs,

namely the UWaveGesture dataset [96].

4.4.1 Experiment with the synthetic motif dataset

To build this synthetic dataset, the idea was to create a dataset of motifs centers that

formed 3 clear clusters. If we were able to detect these clusters in the final visualization,
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then the DTW-SOM was working as expected. The synthetic dataset included 180

motif centers which were generated using the following heuristic:

1. We chose three general behaviors sequences for the clusters, namely, low-middle-

high, high-middle-low and middle-middle-middle.

2. For each behavior (low, middle and high), we defined intervals from which we

could sample points exhibiting that behavior. Particularly, the low interval was

[−3,−1.5], the middle interval was [−0.5,0.5] and the high interval was [1.5,3].

3. For each motif center, we set the length of which behavior by randomly selecting

an integer between 5 and 10. In other words, for each motif center, we’ll sample

three integers that define the lengths of each of its behavior subsequences and

the sum of those integers will be the total length of that motif center.

4. For each motif center, we create its time-series sequence by sampling values from

the predefined behavior intervals. As an example, if we were creating a motif

center for the low-middle-high cluster and if we had previously sampled the

behavior lengths (3,7,4), then we would sample three values from the interval

[−3,−1.5], seven values from the interval [−0.5,0.5] and four values from the

interval [1.5,3].

Figure 4.3: Plot with three examples of generated motif centers, one for each cluster.
The orange belongs to the low-middle-high cluster, the blue to the high-middle-low
cluster and the red to the middle-middle-middle cluster

Figure 4.3 shows some examples of the generated sequences. After generating the

dataset, we build a DTW-SOM network with a 3X3 layout and default parameters

and we trained it during 30 epochs. We also tested the random sample initialization

and the anchor initialization (using one motif from each cluster as the anchors). We

noted that even though the random sample initialization was able to obtain the desired

clusters, the results among different training runs were much more unstable. On the

other hand, the anchor initialization converged to the desired clusters much more

consistently and different runs did not change too much the results.
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Figure 4.4: U-matrix and Winner Matrix obtained from the DTW-SOM trained on the
synthetic motifs and using an anchor initialization.

Figure 4.4 shows the U-Matrix and the Winner Matrix obtained with the anchor

initialization. Note that the winner matrix only encodes the number of input patterns

that had each units as its BMU. We also plotted the sequence values of the nine units,

which can be observed in Figure 4.5. From both plots, we can see that the diagonal

of the network captures almost all the motifs as expected and that the rest of the

units capture some other patterns between the middle-middle-middle cluster and the

low-middle-high cluster.

4.4.2 Experiment with the GunPoint dataset

The GunPoint dataset [95] was built from the hand motion of two actors that are

performing two different actions - the first is to draw a gun (which corresponds to the

class "Gun") and the second is to point a finger (which corresponds to the class "Point").

The time-series correspond to the measurements in the x-axis of tracking the centroid

of the actor’s right hand. Because the setup was a classification task, we have a train

and a test sets with 50 and 150 time-series sequences, respectively. Each time-series

sequence includes the whole action of either the gun draw or the finger pointing and

every sequence has a length of 150.

Due to the nature of this dataset, we had to adapt it to the task of motif discov-

ery. For simplicity, we concatenated the 50 sequences from the train set into a single

time-series and use this time-series as input to the motif discovery algorithm. Fig-

ure 4.6 includes a visualization with the original sequences and a subset of the final

concatenated time-series.

The algorithm we used was the one based on the Matrix Profile [69]. Firstly, since

we had the original lengths of the sequences, we could pose the problem as a fixed-

length motifs discovery. Secondly, the Matrix Profile is known to be very efficient and,

thirdly, its parameters are few and easy to tune.

Note that this method expects to receive as input the max number of motifs to find

and thus this is actually a k-motif algorithm. However, if we set this parameter larger
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Figure 4.5: Sequence values of the units after training the DTW-SOM with synthetic
motifs. The position of each unit’s plot in the grid is consistent with its position in the
network. Thus, the U-Matrix and the Winner matrix plots are consistent with this grid
plot.

Figure 4.6: Right plot: original sequences from GunPoint’s train set. The colors in-
dicate the different labels, "Gun"and "Point". Left plot: first 500 observations of the
time-series built as a concatenation of the fixed-size sequences from GunPoint’s train
set.
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than expected (e.g. 1000 in our case), then the algorithm will return all the motifs it

can find. This is exactly what we did and the algorithm managed to extract 25 motifs.

Finally, we built a DTW-SOM network with a 3X3 layout, default parameters and

a random sample initialization. We then rained that network with the list of the

motifs’ centers during 50 epochs. Figure 4.7 shows the U-Matrix and the Winner

Matrix obtained from this DTW-SOM network and Figure 4.8 has the plots of the

units’ sequence values.

Figure 4.7: U-matrix and Winner Matrix obtained from the DTW-SOM trained on the
motifs computed from the concatenated time-series of GunPoint sequences.

In this dataset, we can observe that DTW-SOM was capable of extracting some

interesting information about the original 25 motifs computed with the Matrix Profile

algorithm. Firstly, we can see two clear clusters around the units 2 and 6 (i.e. in the

down-left and the up-right corners of the network).

Unit 2 corresponds to a pattern of raising the hand (either with a gun or not) and

lowering the hand. Its neighbors, units 1 and 5, have the same pattern and since they

were the BMU of a single input motif, they are essentially a cluster with unit 2.

Unit 6, on the other hand, has the pattern of lowering the hand and raising it again.

It corresponds to the end of one of the original sequences and the start of the next one.

Units 3 and 7 also have the lowering-raising patterns, however unit 3 has more time

of the raising while 7 has more time of lowering.

Finally, units 0, 4 and 8 have their own specific pattern. Unit zero seems to have

the original sequences of raising the hand a bit lower than the rest of sequences. In

other words, they are the flat sequences in figure 4.6 that peak at the value 1. Unit 4

is the BMU of a single motif and encodes the "no action"pattern. Unit 8 has a quicker

lowering pattern and thus encodes the end of the sequences with a quicker movement.

4.4.3 Experiment with the UWaveGesture dataset

The UWaveGesture dataset [96] corresponds to accelerometer recordings of right-hand

gestures performed with the Wii remote. The dataset was built from eight participants

doing eight specific gestures, which are presented on the left side of Figure 4.9. The
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Figure 4.8: Sequence values of the units after training the DTW-SOM with motifs
from the GunPoint dataset. The position of each unit’s plot in the grid is consistent
with its position in the network. Thus, the U-Matrix and the Winner matrix plots are
consistent with this grid plot.

remote collects acceleration measurements from its three axis, as presented in the right

side of Figure 4.9, and the UCR Time Series Classification Archive has one time-series

dataset for each axis.

Figure 4.9: Right plot: Gesture vocabulary and related labels used in the UWaveGesture
dataset, as presented in [96]. Left plot: Positioning of the accelerometer axis in the
Wii remote.

For this experiment, we chose to use the dataset with the x-axis recordings, which

corresponds to the lateral movements of the Wii remote. Because in this axis the

gestures 5 and 6 have a zero acceleration (and thus are only noise), we excluded the
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subsequences with these classes. In order to accelerate computation, we also sampled

400 sequences from the train set. Finally, similarly to the previous experiment, we

concatenated the sampled sequences into a single time-series from which we could

extract motifs. Figure 4.10 contains the original sequences, split by the gesture, and a

subset of the time-series that resulted from the sequences’ concatenation.

Figure 4.10: Blue plots: Original sequences sampled from UWaveGesture’s train set,
split by the gesture class. Orange plot: First 1600 observations of the time-series built
as a concatenation of the fixed-size sequences from UWaveGesture’s train set

In this experiment, we used again the Matrix Profile [69] with a larger than ex-

pected max number of motifs in order to extract all the fixed-length motifs. In this

dataset, the algorithm extracted 125 motifs. We then trained a DTW-SOM network

with a 4X4 layout, using the default parameters, a DTW maximum window of 100

(to limit the warping level) and a random sample initialization, which resulted in the

U-Matrix, the Winner Matrix and the units shown in Figure 4.11 and 4.12.

From the U-matrix we can distinguish different regions of the DTW-SOM network.

Unit 0, which forms its own cluster, has a simple shape similar to the third gesture.

This is a simple gesture of moving the Wii remote to the right. Units 12 and 13 are

far from their neighboring units and have a shape similar to the fourth gesture, or the

gesture of moving the Wii remote to the left. These are the simplest gestures involv-

ing lateral movement of the Wii remote and it is expected that our motif detection

algorithm would pick on these shapes.
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Figure 4.11: U-matrix and Winner Matrix obtained from the DTW-SOM trained on
the motifs computed from the concatenated time-series of UWaveGesture sequences.

Figure 4.12: Sequence values of the units after training the DTW-SOM with motifs
from the UWaveGesture dataset. The position of each unit’s plot in the grid is consistent
with its position in the network. Thus, the U-Matrix and the Winner matrix plots are
consistent with this grid plot.
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The visually biggest cluster in the U-matrix is centered at units 6 and 7. These

units have a shape similar to the first and eighth gestures. These gestures are made of

a right lateral movement followed by a left lateral movement. And so we can see that

the motif detection algorithm is being capable of extracting more complex shapes.

Even though they don’t form a visually striking cluster in the U-matrix, units 1, 2

and 5 have very similar shapes and are the only units with a shape consistent with the

left-right lateral movement present in the seventh gesture.

Interestingly, unit 15 forms its own cluster in the lower-right corner of the DTW-

SOM network, but it has a shape consistent with the third gesture. In other words, we

have two clusters in the network, one in unit 0 and another in unit 15, with the same

shape. This is due to the random initialization. Because these two similar motifs were

randomly assigned to far away places in the network, they had no option but to form

two independent clusters.

4.5 Conclusion

In this paper, we argue that visually exploring the time-series motifs computed by

motif discovery algorithms can be useful to understand and debug results. To the best

of our knowledge, no other papers investigate the problem of exploring relationships

between motifs and answering questions such as: Are motifs similar to each other?

Can we define clusters of motifs?

To conduct these investigations, we propose the use of an adapted Self-Organizing

Map on the list of motif’s centers. We called the adapted method DTW-SOM and the

main changes are (1) the use the Dynamic Time Warping distance to compute distances

between the units and the input patterns, (2) the introduction of two new network

initialization routines and (3) the adjustment of the Adaptation phase of the training

to work with variable-length time-series sequences.

We tested DTW-SOM in a synthetic motif dataset and two real time-series datasets

called GunPoint and UWaveGesture, respectively. From an exploration of results, we

can conclude that DTW-SOM is capable of extracting relevant information from a

set of motifs and display it in a space-efficient way. During the experiment with the

synthetic dataset, we observed that the random sample initialization was not as robust

as the anchors initialization. Additionally, this random initialization can also lead to

the creation of distinct clusters that have the same shapes, which is not optimal. Thus,

as future work, we propose an investigation on more robust initialization schemes to

cover the case when the user does not wish to provide anchors.
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investigation via Motif Analysis

This chapter is made of the third and final article published for this thesis. The article

was published in the journal Expert Systems with Applications and can be accessed at

https://doi.org/10.1016/j.eswa.2021.115527.

the last article, brings together the work done in the previous two articles, which

are located in Chapters

The main contribution here is the new system TripMD. This is the first that ex-

tracts the main driving patterns using motif detection and provides a summary of

these patterns in a space-efficient visualization. With this, TripMD allows for an easy

investigation of the main driving patterns obtained from high-frequency telematics

data.

In addition, to make TripMD work better for maneuver detection, we also propose

a new representation method for variable-length time-series called VSAX.
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5.1 Introduction

In the last two decades, there has been a growing interest in analyzing driving data

and understanding driving behavior, with researchers and practitioners finding new

applications for this type of data. In the car insurance sector, measuring how a client

drives is a cornerstone of the UBI schemes, which provide more custom pricing by tak-

ing into account driving behavior instead of external proxies such as sex and years of

driving experience. In fleet management and fuel consumption optimization, studying

the relationship between driving behavior and fuel consumption can improve driving

performance and reduce costs. Regulators and policymakers can also leverage driving

data to understand which factors are associated with accidents and improve road safety

with better regulation. Analyzing how self-driving cars perform can help developers

understand what is working correctly with the autonomous system and which areas

need to be improved.

A common approach to get insights about driving performance from driving data

is to analyze maneuvers. In fact, more and more authors use this type of analysis

in their work [12, 13, 16, 19, 97, 98]. The rationale is that the set and frequency of

the maneuvers performed during a trip and the way they are executed can provide

relevant information about the driving behavior of the driver during the trip. So far,

the driving data normally used in this task is high-frequency telematics (also called

automobile sensor data), such as GPS location, velocity and acceleration, and video

recordings.

In a previous article [99], we argued that using time-series motifs detection algo-

rithms to extract maneuvers from high-frequency telematics had two main benefits.

First, it was more adaptable to small fluctuations in the data than previous meth-

ods. And second, it had the advantage of not requiring labels, which is extremely

time-consuming to collect. We also noted that analyzing maneuvers through motif

detection in telematics data is a promising area of research that is yet to be fully ex-

plored.

Recently, Jain et al. [100] proposed a general method to discover motifs in noisy

time-series and, in one of their case studies, they concluded that their method was

capable of identifying turn maneuvers from automobile sensor data. This work further

validates our claim that motifs extracted from driving sensor data are highly related

to the actual maneuvers performed.

In this paper, we expand the work done in [99] by proposing TripMD, a complete

motif extraction and exploration system that is tailored for the task of analyzing ma-

neuvers and driving behaviors. Other authors have looked into the task of maneuver

detection using time-series motifs [100, 101]. However, none of these works propose

a full system that extracts motifs from automobile sensor data and summarizes the

information in a space-efficient visualization.

Particularly, our main contributions are the following:
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• We present TripMD, motif detection and summarization system that was de-

signed to extract relevant driving patterns from a set of trips. It is the first sys-

tem that not only extracts but also summarizes the main motifs of the provided

trips, which allows for an easy investigation of the maneuvers being performed.

TripMD expands our previous work by combining the motif extraction step with

a motif clustering and summarization step.

• We present a novel representation method called VSAX, which adapts the classi-

cal SAX representation from [44] to work with variable-length patterns. This new

representation is what allows TripMD to capture maneuvers of variable lengths.

To evaluate the applicability of TripMD to real tasks, we use the UAH-DriveSet

naturalistic driving dataset [26] in two experiments. Firstly, we apply our system to

the trips performed by a single driver and show that it is capable of extracting a rich

set of driving patterns. We also show that these patterns can be used to distinguish

between three different driving behaviors of the driver. Secondly, we demonstrate

that, using the patterns extracted by TripMD, we are capable of identifying the driving

behavior of an unknown driver from a group of drivers whose behavior we know. In

other words, the association between driving patterns and driving behavior achieved

with TripMD can generalize to unclassified drivers.

The rest of the paper is organized as follows. In Section 5.2, we provide an overview

of time-series motifs and motif detection algorithms, which will be helpful to under-

stand TripMD. In Section 5.3, we describe TripMD in detail. Section 5.4 is reserved for

two experiments where we showcase our system and demonstrate its usefulness. And

Section 5.5 concludes this work and introduces some ideas for future work.

5.2 Preliminaries

In simple terms, a time-series motif is a repeated pattern in the time-series that carries

information about the underlying process that generated the time-series. Based on

this general definition, there are two main ways of defining how relevant a repeated

pattern is, namely based on support or based on similarity [68]. In the support-based

definition, the most relevant pattern is the one with the highest number of repetitions,

while, in the similarity-based definition, the most relevant pattern is the one with

the most identical repetitions. Therefore, the support-based definition extracts more

frequent patterns and the support-based definition extracts more similar patterns.

There are two additional constrains that a pattern needs to meet to be considered a

time-series motif [65]. Firstly, two subsequences that belong to the same motif cannot

overlap in time. This non-overlapping constraint is set to avoid trivial matchings.

Secondly, two subsequences need to be at a distance smaller than a predefined radius

R to be considered a match (and thus to belong to the same pattern).
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Note that this second constraint is highly tailored to the use-case. On the one-hand,

in most motif detection algorithms, the radius is a parameter that needs to be defined

by the user. On the other hand, there are many distances that can be used to compute

similarity between subsequences [43, 52] and the user must decide which distance is

the most suitable to the specific use-case.

The final constrain appears when the task is not to look for a single motif but

to more than one motif. In this case, based on the motif definition, it is possible to

order motifs based on their relevance and to extract the top-k most important motifs,

which are named the k-motifs. However, any two motifs can only coexist in the list

of k-motifs if their centers (the subsequence that better represents the motif) have a

distance higher than 2R [65], where R is the radius used to define the motif’s matches.

In terms of the distance functions, the most used are the Euclidean distance [53]

and the DTW distance [55]. The Euclidean distance performs an one-to-one compari-

son of single points from the same time location and, because of this, it is very efficient.

However, the sequences being compared need to have the same size (or being padded

at the end) and the distance is not robust to time-shifts, distortions or differences in

phase. On the contrary, the DTW distance is capable of dealing with variable-length

sequences and other misalignments by finding an optimal time mapping between the

sequences that are being compared. However, this flexibility comes at the cost of

efficiency, which is a major concern when analyzing time-series data.

Independently of the distance used, because motif discovery is a task that involves

comparing all possible pairs of time-series subsequences, it is very computationally

expensive. Thus, a lot of work in motif detection has been focused on making this

search more efficient. The most used technique is to reduce the search space by con-

verting the time-series into a low-dimensional representation where the true distance

is approximately maintained. Then, we can prune motif candidates in this reduced

space and search for the final motifs in the reduce group of candidates. The SAX [44] is

the standard example of the this technique. It starts by braking the original time-series

into fixed-sized sliding windows and then converting each window into a sequence of

letters.

Using the Matrix Profile [69] is another commonly used strategy to speed-up the

search for the motifs. The Matrix Profile is a meta time-series that annotates the origi-

nal time-series by providing the distance and the index of each fixed-size sequence’s

nearest neighbors, excluding trivial matches. Note that the size of the sequence is the

only parameter of the method and the distance used is the Euclidean distance. There

are many efficient and fast implementations of the Matrix Profile, either approximate

or exact, and after the Matrix Profile is computed, extracting similarity-based motifs

is trivial.

When working with telematic data, it is common to have data from several sensors

such as the accelerometer and the velocimeter. Even in the case of the accelerometer,
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one still has two distinct time-series, namely the lateral and the longitudinal accelera-

tion. Therefore, finding maneuvers in telematic data is a multidimensional problem

and as such, we need to apply techniques for detecting multidimensional motifs.

In their work, Tanaka et al. [66] suggested to apply a dimensionality reduction

technique in order to reduce the multidimensional time-series into a single dimension,

which would simplify the problem back to the one-dimensional case. This is a smart

approach as it can easily leverage all the existing motif detection algorithms. However,

it has the drawback of information loss. If the time-series data contains relevant

information in more than one dimension at the same time (which is our case when

using acceleration data), then we won’t be able to capture all the relevant motifs with

this approach.

Another technique widely used in the multidimensional setting is to apply an one-

dimensional motif detection algorithm in each dimension independently and then

look for co-occurrences to extract the multidimensional motifs [70, 71, 72, 73]. This

setup is much more accurate (since there is no information loss) and it is more flexible

(since the search for co-occurrences can be done with an allowance for asynchronous

motifs and the rejection of uninformative dimensions). However, this setup is more

computationally expensive.

Instead of working on a two step approach, other authors search for the multidi-

mensional motifs directly by concatenating all the dimensions. For instance, Minnen

et al. [70] compute the SAX representation for each dimension and concatenate their

strings, while in [102] the authors define a new Matrix Profile, the k-dimensional Ma-

trix Profile, that encodes the distance to each sequence’s closest neighbor, taking into

account k dimensions.

When the goal is to analyze maneuvers, one needs to be able to extract variable-

length motifs. In other words, because the same maneuver does not always take the

exact same time, it is important to have flexible methods that can extract motifs of

different lengths. Even though fixed-length motifs have been the most explored so far,

there are some algorithms for the variable-length case.

Most authors propose to apply a fixed-length algorithm in a range of window

sizes and then choose the most representative motifs based on their ranking scheme.

The work of Nunthanid et al. [74] and Gao and Lin [75] are two examples of this

approach. Note, however, that this approach does not work for maneuvers since all the

subsequences that belong to a given motif have the same size. If we have a trip with

three right-turn maneuvers that have slightly different durations, these algorithms

would not be able to identify these three maneuvers as a motif.

Lin’s grammar-based method [83] and Tanaka’s EMD algorithm [66] take a different

approach. They adapt the sequences’ representation in the low-dimensional space in

order to take into consideration variable-length patterns. However, this adaption

leads to algorithms that are not exact, which means that there is no guarantee that the

method can find all the variable-length motifs in a given time-series.
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5.3 TripMD

TripMD is a system for extracting and analyzing maneuvers from trips performed by a

single driver. To achieve this, we needed algorithms that worked on multi-dimensional

time-series and, at the same time, were able to extract and analyze variable-length

patterns. Having this in mind, our solution has the following two components:

1. A motif extraction algorithm inspired by the algorithm created by Tanaka et

al. [66], which was tailored and tuned for the maneuver detection use-case. It

includes a discrete variable-length representation (VSAX) based on the widely

used SAX [44] and an iterative pattern matching process that extracts motifs in

multiple dimensions.

2. A motif clustering and visualization tool based on the Self-Organizing Map

model that extracts the most relevant motif patterns and permits the user to

quickly analyze them.

In our motif extraction algorithm, we use the support-based definition. In other

words, for a certain VSAX pattern, its motif is the largest group of non-overlapping

variable-length subsequences with that VSAX representation and in which all the

subsequences have a distance lower than a predefined radius R to the motif’s center.

Because we are working with variable-length motifs, we use the DTW distance [55] to

measure similarity between two multi-dimensional subsequences.

In the following subsections, we’ll go through each component in more detail.

5.3.1 Motif extraction

The motif extraction step of TripMD receives a list of trip recordings T and some

parameters and returns the listM of all the motifs in those trips that meet our support-

based definition.

Algorithm 2 presents the motif extraction algorithm. First, we compute the list

of sequences V that contains the VSAX representation of T . This step is further de-

scribed in Section 5.3.1.1, but in short, each element of T is a sequence of symbols that

summarize a particular time-series of T .

Next, for each pattern size w, we extract a list of all words in V for that size (Ww).

A word in Ww is a sequence of w VSAX symbols that correspond to a variable-length

subsequence in T .

Then, for each unique word in Ww, if it exists, we extract its corresponding motif

using the algorithm described in Section 5.3.1.2. We add all the motifs found to the

list M and the loop ends when no more motifs of a certain pattern size exist.
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Algorithm 2: Motif extraction
Input: T : List of multidimensional time-series representing the trips’ recordings

lsize ∈ Z+: Default letter size
wmin ∈ Z+: Minimum pattern size
R ∈ R+: Motif radius

Output: M: List of all motifs.

1 V ← GetVsaxSequence(T , lsize)
2 M←∅
3 w← wmin
4 repeat
5 Ww← sequence of VSAX words of size w
6 Ww

unique← list of unique word patterns

7 forall pattern ∈Ww
unique do

8 m← GetMotif(pattern,R,Ww,T )
9 if number of motif members of m > 1 then

10 M←M ∪ {m}
11 w← w+ 1
12 until |Ww

unique | = |W
w | (i.e., no more repeating patterns)

5.3.1.1 Variable SAX

VSAX is a time-series discretization method that transforms a time-series into a se-

quence of symbols that captures the general behavior of the original time-series. It

serves two main purposes. Firstly, by providing a discretization of the time-series, it

allows for a more efficient motif search and, at the same time, reduces the impact of

small levels of noise. Secondly, it is capable of splitting the time-series into subse-

quences of variable lengths depending on the underlying behavior of the time-series,

which allows a simple pattern matching algorithm to find variable-length motifs.

Algorithm 3 lists the main steps of the VSAX algorithm. For simplicity, we present

the case where the trips are represented as an one-dimensional time-series. The appli-

cation of the algorithm to the multi-dimensional case is discussed in the last paragraph

of the subsection.

To better explain how the algorithm works, we provide a example in Figure 5.1

with a single one-dimensional time-series.

Initially, the time-series is split into fixed-length sliding windows (tssk). The length

of the window is one of the parameters of VSAX, the default letter size. Then, the values

in each sliding window are averaged to obtain a discrete value for that window (paak),

which in turn is converted to a symbol (ck) based on a predefined segmentation of the

time-series domain.

After obtaining the symbol ck , the pruning phase checks whether tssk should be

concatenated to the previous window tssk−1 (line 14 in Algorithm 3). The rationale is

that if two consecutive windows have similar behaviors (which translates into being

transformed into the same symbol), then they should be a single window and be

considered together when searching for motifs. Thus, in the end, we have a sequence
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Algorithm 3: Variable SAX (VSAX)
Input: T : List of one-dimensional time-series

lsize ∈ Z+: Default letter size
Output: V : list of VSAX letter sequences, one sequence per trip
Let αi , be the symbol that represents the time-series domain [bi ,bi+1[, where 1 ≤ i ≤ 5.

1 Function GetVsaxSequence(T , lsize):
2 V ←∅
3 {bi}1≤i≤6← ComputeVsaxBreakpoints(T )
4 foreach time-series ts of T do
5 Vts←∅
6 tssize← size of the trip’s time-series ts
7 for k← 1 to tssize − lsize do
8 tssk ← ts[k : k + lsize]
9 paak ← 1

lsize

∑
tssk[i]

10 ck ← αi s.t. paak ∈ [bi ,bi+1[
11 if |Vts | = 0 or ck , ck−1 then
12 letterk ← (ck , tssk)
13 Vts← Vts ∪ {letterk}
14 else
15 tssk = tssk−1 ∪ tssk
16 letterk ← (ck , tssk)
17 Vts← (Vts \ {letterk−1})∪ {letterk}
18 V ← V ∪ {Vts}
19 return V

Figure 5.1: Simple example of the Variable SAX representation process.

of symbols V that map to variable-length subsequences of the original time-series and

that encode information about the general behavior of the subsequences.

The segmentation of the time-series domain is similar to the way it is done in

SAX [44]. Break-points are determined based on the time-series’ values and these
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break-points define regions in the time-series domain that map to specific symbols.

Algorithm 4 details how these break-points are computed in TripMD, assuming the

input is an one-dimensional time-series of trips recordings.

Algorithm 4: Variable SAX break-points computation
Input: T : List of one-dimensional time-series
Output: {bi}1≤i≤6: VSAX break-points for T

1 Function ComputeVsaxBreakpoints(T ):
2 joinedT ←∅
3 foreach time-series ts of T do joinedT ← joinedT ∪ ts
4 b1←−∞
5 b2← Percentile(T ,5)
6 b3← Percentile(T ,15)
7 b4← Percentile(T ,85)
8 b5← Percentile(T ,95)
9 b6← +∞

10 return {b1,b2,b3,b4,b5,b6}

In the original SAX representation [44], break-points are defined so that all regions

have equal probability under a Gaussian distribution. However, VSAX uses specific

percentiles of the time-series’ values to define five regions, namely the 5th, 15th, 85th

and 95th percentiles. In general, a driver spends less time performing maneuvers than

he does not performing any maneuver and, thus, defining break-points that evenly

distribute time-series’ values among the regions does not lead to good results in the

maneuver detection task. Additionally, since the percentiles are computed over all the

trips, any two windows with the same symbol will be guaranteed to be in the same

domain region. This is another change compared to SAX, where the break-points are

computed independently for each window.

Finally, for multi-dimensional time-series, VSAX can be applied separately to each

one-dimensional time-series and then concatenate the resulting symbols in a tuple. For

instance, a subsequence of a two-dimensional time-series would be mapped to a tuple

of two symbols, one for each dimension. Note however that in the multi-dimensional

case, the pruning phase is applied in all the dimensions at the same time. In other

words, two consecutive subsequences are only merged if they have the same symbols

in all the dimensions. Thus, in this case, each VSAX symbol corresponds to a single

variable-length multi-dimensional subsequence of the original time-series.

5.3.1.2 Motif search

The motif search is an iterative process that extracts the motifs of all possible sizes

from a VSAX sequence. It was inspired by the motif detection algorithm proposed by

Tanaka et al. [66]. At each iteration, it discovers all the motifs with a certain number

of VSAX symbols (the pattern size) and then moves to next iteration by increasing

the pattern size by one. The minimum pattern size is a parameter of the method and
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the iteration stops when no more motifs with the current pattern size can be found.

Algorithm 5 lists the main steps to discover the motif associated with a pattern word,

if it exists.

Algorithm 5: Motif discovery from a word pattern
Input: pattern: pattern word

R ∈ R+: Motif radius
Ww: sequence of VSAX words of size w
T : List of multidimensional time-series representing the trips’ recordings

Output: (mcenter ,mmembers): center and members of the final motif, it they exist

1 Function GetMotif(pattern,R,Ww,T ):
2 mcandidates← all subsequences with the word pattern
3 D←matrix of the DTW distances of all subsequence pairs of mcandidates
4 countmax← 0
5 mmean←∞
6 mcenter ←∅
7 mmembers←∅
8 foreach candidate c of mcandidates do
9 cmembers← {s ∈mcandidates | distance(c, s) ≤ R∧ c, s do not overlap}

10 countnew← |cmembers |
11 if countnew > countmax then
12 countmax← countnew
13 mmean←Mean distance between cmembers and c
14 mcenter ← c
15 mmembers← cmembers
16 else if countnew = countmax then
17 cmean←Mean distance between cmembers and c
18 if cmean > mmean then
19 countmax← countnew
20 mmean← cmean
21 mcenter ← c
22 mmembers← cmembers
23 return (mcenter ,mmembers)

To further illustrate the algorithm, Figure 5.2 provides a concrete example. In this

case, the pattern word is BC and the motif radius R = 4. Initially, we extract all the

subsequences with that same pattern to make the pool of the motif’s center candidates

ccandidates. In the example, ccandidates has 3 subsequences.

From ccandidates, we compute the matrix of DTW distances for all the candidates

(D), which allows us to extract the motif members of a center candidate.

Then, we loop through all subsequences in ccandidates and get the corresponding

motif members, mcandidates, assuming that the subsequence c is the center of the motif.

Concretely, for a given center candidate c, all the non-overlapping candidates that

are within R from the initial candidate are extracted and stored in cmembers (line 9 of

Algorithm 5).

The final motif is defined to be the set of subsequences with the most members

(mmembers), and the motif’s center is the original candidate that generated that set of

members (mcenter ). If no set of more than one member is found, then the motif for that
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specific pattern does not exist and bothmmembers andmcenter are empty. In the example,

the final motif exists and has the first subsequence as its center and the remaining two

subsequences as its members.

Figure 5.2: Simple example of the motif search process for a single pattern word BC.

5.3.2 Motif summarization

In a previous work [103], we proposed a new dimensionality reduction method to

summarize and explore the outputs of any motif detection algorithm. The method,

called DTW-SOM, is a vanilla Self-Organizing Map [104] with some adaptions to work

with time-series motifs. It receives a list of variable-length multi-dimensional motifs

and produces a clustering of the motifs’ centers and a visualization of the results that

is space-efficient.

TripMD leverages the DTW-SOM algorithm to group all the motifs found by the

motif search process and to provide a visual summary of the most relevant motifs in

the trips under analysis. By summarizing the extracted motifs, the user can quickly

analyze the main patterns that are extracted and can better interpret the maneuvers

being performed.

However, there is an important step before applying this method. DTW-SOM

includes two initialization routines, a random initialization, in which the DTW-SOM

network is initialized with a random sample of the motifs, and an anchor initialization,

in which the user provides the set of motifs to used for initialization. Since previous

experiments indicated that the anchor initialization was more stable than the random

initialization [103], TripMD uses the anchor initialization. This means that it has to
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include a motif pruning step (Algorithm 6) that computes the most relevant motifs,

which are used as the anchors.

Algorithm 6: Motif pruning
Input: M: list of motifs

R ∈ R+: Motif radius
Output: P : Pruned list of motifs, ordered by MDL score, from lowest to highest

1 scores←∅
2 foreach motif m of M do
3 mdlm←MdlScore(m)
4 scores← scores∪ {mdlm}
5 M∗← Sort(M,by = scores)
6 P ← {M∗[1]}
7 foreach motif m of M∗ do
8 distances←∅
9 foreach motif p of P do

10 d← DTW distance between the centers of p and m
11 distances← distances∪ {d}
12 if d ≤ 2R ∀d ∈ distances then
13 P ← P ∪ {m}

The pruning routine used in TripMD (Algorithm 6) is based on the definition of k-

motifs and the non-overlapping requirement discussed in Section 5.2. Given a natural

ordering of all the extracted motifs, the k-motif is the highest ranking motif whose

center has a distance higher than 2R to each of the j-motifs’ centers, for 1 ≤ j ≤ k − 1.

Thus, the first pruned motif is the first element of the sorted list of motifs (M∗[1]).

Then, the next subsequence motif to be added to the list of pruned motifs P is the first

motif in the sorted list M∗ that has a distance higher than 2R to the motif in P . And so

forth for the remaining motifs in M∗.

In TripMD (line 5 of Algorithm 6), the ordering is defined by the MDL cost pro-

posed by Tanaka et al. [66]. This score is based on the Minimum Description Length

(MDL) principle [76] which states that the "best model to describe a set of data is the
model which minimizes the description length of the entire data set" [66]. In other words,

by using the MDL principle, we are ranking the motifs based on their capacity to com-

press the original time-series data. In this case, the lower the MDL score, the more

relevant the motif is. After pruning, the lowest-scored motifs (P ) are used to initialize

the DTW-SOM and all the motifs are fed into the algorithm.

TripMD also imposes a constrain on the distance computation of DTW-SOM. The

original SOM algorithm [104] uses the Euclidean distance as its distance metric. How-

ever, because DTW-SOM needs to work with variable-length subsequences, it uses the

DTW distance instead.

As presented in Section 5.2, DTW allows a more flexible comparison of two subse-

quences by finding the optimal time mapping between them. This flexible mapping

is also called time warping. If no constraint is provided, DTW searches are possible
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mappings between the two subsequences to find the one with the lowest distance. Al-

ternatively, DTW can limit the maximum time wrapping allowed. In this case, DTW

cannot map two time-steps that are farther in time than the maximum warping win-

dow. Thus, because the search is constrained, the final mapping will be sub-optimal,

and the resulting distance will be higher or equal to the one obtained with an uncon-

strained version of DTW.

5.3.3 Parameter analysis

So far, TripMD seems to have some parameters that a user needs to set beforehand.

VSAX has the default letter size, the motif search has the radius R to define the motifs

and the minimum pattern size that initializes the search, and DTW-SOM has the

number of training epochs and the maximum warping window. However, TripMD has

default values for these parameters, namely:

• Default letter size: 1 second

• Minimum pattern size: 3 VSAX letters

• Motif radius: 0.5th percentile of the distance between all pairs of 3 second sub-

sequences

• Number of epochs for DTW-SOM: 20

• Maximum warping for DTW-SOM: VSAX’s default letter size (or 1 second)

Using the default parameters, the only parameter that the user must provide is

the frequency in Hertz of the input time-series, which is trivial. If the user has some

particularity in his dataset that makes the default parameters unreasonable, there’s

always the possibility of overriding the defaults provided by the TripMD.

To better understand how these parameters influence our method, we use a small

toy example and test it against varying parameter values. We build a toy example by

picking two right turns from a real driver and concatenating them with some random

noise. The noise was obtained using an uniform distribution U (−0.005,0.005). Thus,

we obtain the lateral and longitudinal acceleration of a small trip with two right turns

connected by random noise.

Since the data has a frequency of 5 Hz, the default settings of TripMD lead to a

default letter size of 5 and a minimum pattern size of 3. We set the default motif

radius to 0.0684 as this was the value estimated by our method using all the trips of

the driver from which we picked the two right turns of the toy example. With these

default parameters, we run the motif extraction component of TripMD and obtained

two motifs. Figure 5.3 shows one of the motifs extracted, which includes the two

subsequences of the original right turns, confirming that the default parameters work

well for the toy example.
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Figure 5.3: Motif extracted from the toy example using the default parameters. It
includes the lateral and longitudinal acceleration values of the entire toy example.
The two subsequences that belong to the motif are identified by the shaded area.

In TripMD, the default letter size controls the degree of detail used to define driv-

ing patterns. This parameter sets the size of the sliding windows used in the VSAX

discretization. Thus, if the parameter is too large, the sliding windows will be too large

as well, and TripMD will lose the detail necessary to identify relevant maneuvers. On

the other hand, if the parameter is too small, the sliding windows will be too short as

well, and TripMD will be too sensitive to noise. We define the default value to be one

second because in the dataset we had available one second was the right duration to

identify simple changes in acceleration that are related to actual maneuvers. However,

this should be further tested in other datasets.

Figure 5.4 shows the motifs extracted from the toy example using two default letter

sizes, one small (size 2) and one large (size 7). As explained in the previous paragraph,

when the window size is small, the motif extracted is also small, and we can never

extract the entire turn maneuvers. When the window size is large, the motif extracted

expands beyond the subsequences associated with the turns.

The minimum pattern size corresponds to the minimum number of VSAX letters

used to build motifs. Setting the default to three letters means that all the motifs

will correspond to subsequences with two changes in acceleration. For instance, a

simple turn maneuver should include two changes in the lateral acceleration: from

zero to absolute high and back again to zero. Three letters are the minimum number

of changes to have a meaningful maneuver.

If the minimum pattern size is set to a lower value, TripMD will still extract motifs

with more letters. However, the search will take longer to finish. On the other hand, if

the minimum pattern size is higher than three, TripMD will not find simple maneuvers

such as a right turn or a brake.

As an example, Figure 5.5 shows two motifs extracted with a minimum pattern

size 1. Both motifs are parts of the initial motif extracted with the default parameters.

Because the motif search algorithms needs to search through these smaller sized motifs,
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Figure 5.4: Motifs extracted from the toy example with varying default letter sizes.
The subsequences that belong to the motifs are identified by the shaded area.

the computation takes longer and does not arrive at any extra meaningful maneuvers.

The motif radius parameter, R, limits the subsequences that are considered to be

a motif. Even if two subsequences have the same pattern word, they will only belong

to the same motif if their DTW distance is lower than R. Thus, if R is too small, very

few motifs will be found. And if R is too large, clearly different subsequences will be

added to the same motif, which will result in poor results.

When estimating this parameter, we assume that motifs are rare and that most

pairs of subsequences in a trip will not be the same maneuver. Thus, we use a small

percentile on the distribution of the distance between random pairs of subsequences

to guarantee that we use a R large enough to find motifs without the risk of grouping

different maneuvers in the same motif.

Going back to the toy example, if the radius is set to value lower than 0.04, no

motifs are extracted. However, setting R higher or equal to 0.05 allows us to extract

the motif with the two turn maneuvers. The difference, however, between using a

radius of 0.05 and a radius of 0.07 is the extra patterns that are extracted when one

increases R. As an example, Figure 5.6 shows a motif extracted with a motif radius of

0.1.

The final two parameters are related to the DTW-SOM method. The number of
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Figure 5.5: Motifs extracted from the toy example using a minimum pattern size 1.
One of the motifs corresponds to a pattern size of 1 and the other corresponds to a
pattern size of 2. The subsequences that belong to the motifs are identified by the
shaded area.

Figure 5.6: Motif extracted from the toy example using a motif radius of 0.1. The
subsequences that belong to the motif are identified by the shaded area.

epochs sets the number of training iterations for the SOM. The higher the number of

epochs, the longer the model will train (and the longer the full run of TripMD will be).

However, if the number of epochs is too small, the final summary of the motifs will

be poor. Since we are using the anchor initialization, we don’t need as many epochs

for the SOM training to converge. From our experiments, the default of 20 epochs is
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sufficient for a proper summarization.

As for the maximum warping, it limits the time-warping allowed in the DTW

distance computation. If we decrease this parameter, the maximum warping window is

small, and the distance between the two subsequences will be closer to their Euclidean

distance. Alternatively, if we allow for more warping, the clustering of the motifs will

be more flexible and allow more misaligned sequences to be grouped in the same SOM

unit.

There are two reasons for limiting the warping window. Firstly, since we are re-

ducing the search for an optimal mapping, the computation is faster. Secondly, if the

warping window is not constrained, motifs with a higher degree of time misalignment

will be grouped in the same SOM unit, and the final motif summarization will be

distorted.

5.4 Evaluation and discussion

To evaluate TripMD, we use the UAH-DriveSet [26], a publicly available naturalistic

driving dataset including recorded trips from six different drivers that traveled in

two specific routes in Madrid, Spain. The authors asked the volunteers to drive in

these two routes mimicking three different driving behaviors - normal, aggressive and

drowsy. Using their DriveSafe app [27, 28], the authors collected raw data from the

accelerometer, GPS and camera of a smartphone mounted in the car and processed

these signals to enrich the final dataset.

In the first experiment, we pick a single driver and explore in detail the outputs

obtained from TripMD. Particularly, we do an exploratory analysis of the motifs ex-

tracted by TripMD and showcase the visualizations provided by our system.

In the second experiment, we focus on the task of identifying driving behaviors. We

apply TripMD to the entire UAH-DriveSet. Then, using the known driving behaviors

of all but one driver, we assign behavior scores to each motif cluster. Finally, we

use those cluster behavior scores and the motifs extracted from the left-out driver to

predict the behavior of each of that driver’s trip.

In both experiments, we use the two-dimensional time-series of the lateral and lon-

gitudinal acceleration recordings. The recordings are already aligned with the correct

car axis and denoised with a Kalman filter, which means we can use them directly. The

data has a frequency of 10Hz, however, in order to speed computation and further

reduce noise, we down-sample the time-series to a 5HZ frequency. Additionally, we

use all the default parameters for TripMD as we found that they work well for this

dataset.

The code to reproduce all the experiments can be consulted in our repository 1.

1https://github.com/misilva73/tripMD
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5.4.1 Analyzing a single driver with TripMD

To showcase how our system can be used to explore the driving behavior of a single

person, we run TripMD on the seven trips performed by one of the drivers in the UAH-

DriveSet. This driver completed four trips in the secondary road route (two normal,

one aggressive and one drowsy) and three trips in the motorway route (one for each

driving behavior).

The motif detection component found 281 motifs and, from these, 17 motifs were

used to initialized the DTW-SOM model. These 17 motifs were the result of the prun-

ing step presented in Section 5.3. The DTW-SOM model was initialized with a 5X5

grid since it is the smallest square grid that can contain the 17 pruned motifs. Then

the 281 motifs were assigned to each DTW-SOM unit in the grid. DTW-SOM builds an

optimal assignment by reducing the DTW distance between the units and their motif’s

centers. DTW-SOM also provides a visualization of the clusters in a two-dimensional

grid (or network) that conserves the local similarity of the data. This means that two

neighboring clusters in the two-dimensional network are similar.

Figure 5.7 shows the first visualizations provided by TripMD for the driver. It

contains the lateral and longitudinal acceleration of each DTW-SOM unit, placed in

the two-dimensional network. A unit here is a multi-dimensional subsequence that

represents the cluster in a particular part of the DTW-SOM grid and thus this plot

provides a summary of the main driving patterns extracted from the driver.

From this first chart, we can already see that TripMD is able of identifying a rich

set of driving patterns, with lengths ranging from 1.5 to 3 seconds. It includes simple

maneuvers, such as unit 22 that relates with a simple left turn without changes in

longitudinal acceleration, and more complex maneuvers, for instance, unit 0 that

corresponds to a right turn with acceleration.

Additionally, the grid maintains some local similarity, with adjacent units showing

more similar acceleration patterns than units that are not adjacent. As an example,

the neighboring units 15, 16, 20, and 21 all have similar driving patterns, with a clear

brake maneuver and a slightly positive lateral acceleration.

Figure 5.8 contains two additional visualizations provided by TripMD for the driver.

These plots are classical ways of visualizing a SOM network and represent different

information about each of the clusters arranged in the two-dimensional network. In

both charts, the arrangement of the units in the two-dimensional grid is consistent to

Figure 5.7.

The first chart is called U-Matrix and it shows how similar each unit is to its direct

neighbors in the two-dimensional network, where the brighter the color, the closer

a unit is to its neighbor. This visualization is helpful to understand where are the

major groups of clusters within the network. For instance, the upper-right corner has

a clearly defined groups of four cluster that are very similar, which corresponds to the

units 15, 16, 20 and 21 with the brake maneuver discussed above.
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Figure 5.7: Lateral and longitudinal acceleration of the DTW-SOM’s units. They were
obtained by applying TripMD to the trips of a single driver from the UAH-DriveSet.
Units are placed in the DTW-SOM two-dimensional grid.

The second chart is called Winner Matrix and it provides information about the

cluster size of each unit. Particularly, it displays the exact number of motifs in each

cluster on top of corresponding unit. This plot can be used to gauge how relevant each

driving pattern is. For instance, unit 24 in the lower right corner contains no motifs,

which means that this pattern is not needed to summarize the driver’s behavior.

Besides these default TripMD plots, Figure 5.9 contains information about the

distribution of each driving behavior in the clusters extracted by our system. For each

driving behavior, we compute the number of motif subsequences from the trips with

that behavior that belong to each DTW-SOM cluster. Then, we divide each cluster

count by the total number of motif subsequences for all the driver’s trips that belong

to that cluster to achieve the rate presented in the plots. So, for instance, 80% of the

motif subsequences associated to motifs that belong to the cluster 4 come from trips

with a drowsy behavior.
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Figure 5.8: U-matrix and Winner Matrix of the DTW-SOM. The model was trained on
the motifs extracted from the trips of a single driver from the UAH-DriveSet.

Figure 5.9: Driving behavior rates for each DTW-SOM unit. For each unit, it shows the
percentage of motif subsequences that come from each driving behavior.

Interestingly, we can see that the three driving behaviors have very different dis-

tributions of their motif subsequences among the clusters. Clusters 11 and 17 have

a clear majority of subsequences from normal trips and these clusters relate to a "no

maneuver"pattern and a soft brake, respectively.

The aggressive trips cover a higher variety of patterns, with 7 clusters showing

a clear majority of subsequences from these trips. This increase in representation is

expected as more motif subsequences will be extracted from trips where the driver

performs more maneuvers. Most of these 7 clusters contain sharp acceleration patterns,

which is usually associated with aggressive driving. Examples are the right turn with

a pronounced brake in unit 20, the brake-acceleration pattern in unit 6 and the quick

acceleration in unit 1. These sharp acceleration maneuvers without lateral movements

are specially telling as they are associated with tailgating behavior, which in turn is a

classical aggressive driving behavior.
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Finally, the clusters with higher rates of subsequences coming from drowsy trips

are located in the lower row of the DTW-SOM grid, excluding unit 24. Units 14 and

18 contain a drift pattern, which is made of two consecutive lateral movements in

opposing sides. It is very interesting to see these patterns here as they are usually

present in cases where a tired driver lets the car deviate from a lane and then quickly

recovers with a sharp turn.

5.4.2 Identifying driving behavior with TripMD

From the first experiment, we see that TripMD can summarize the trips from a single

driver so that different driving behaviors can be identified. However, to further test

our system, we focus on a harder task, namely, identifying the driving behavior of an

unknown driver from a set of drivers whose behavior we know.

To accomplish this, we apply TripMD to the entire UAH-DriveSet and retrieve the

main driving patterns of all those trips. Then, using the known driving behavior of five

drivers (the training drivers), we derive scores for all the trips of the remaining driver

(the testing driver). This testing driver was the same used in the first experiment. For

each trip of the testing driver, a single score is computed for each of the three behaviors

- normal, aggressive and drowsy. To compute the score for a specific testing trip and a

given behavior b, we use the following process:

1. For each DWT-SOM cluster ci :

a) Compute the rate rbi = nbi
ni

, where nbi is the number of subsequences in cluster

ci that belong to training trips of the behavior b and ni is the total number

of subsequences in cluster ci that belong to training trips.

b) Compute n̂i , which is the number of motif subsequences in cluster ci that

belong to testing trip.

c) Derive the behavior score of cluster ci as sbi = rbi × n̂i .

2. Compute the trip’s behavior score as sb =
∑k
i=1 s

b
i , where k is the number of DWT-

SOM clusters.

After computing the three behavior scores for a testing trip, its predicted behavior

is simply the behavior with the highest score. Finally, we compare the predicted

behavior of each testing driver’s trips with the real behavior performed in those trips.

Table 5.1 summarizes the results.

The testing driver contains seven trips and, from these, TripMD assigns the correct

behavior to all but one trip. The trip where the predicted behavior does not match the

real behavior is the drowsy trip of the secondary road.

To further illustrate these results, Figure 5.10 shows the behavior rates of the DTW-

SOM clusters for the training drivers and the testing driver. Here we can observe that
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Table 5.1: Behavior scores for each testing trip. The score of the predicted behavior for
each trip is highlighted in bold. The column named Behavior contains the real behavior
of the trip.

Route Behavior
Aggressive

score
Drowsy

score
Normal

score

Motorway Normal 94.1 78.3 95.5
Secondary Normal 35.5 41.1 43.3
Secondary Normal 47.0 35.9 48.1

Motorway Aggressive 103.1 72.6 96.3
Secondary Aggressive 91.0 52.2 77.8

Motorway Drowsy 97.5 137.9 120.6
Secondary Drowsy 69.7 81.9 82.4

Figure 5.10: Behavior rates for the DTW-SOM units. For each unit, it shows the per-
centage of motif subsequences that come from each driving behavior. The three plots
at the top contain the rates of the training trips while the three plots at the bottom
contain the rates of the testing trips.

the behavior distributions of the training drivers are close to behavior distributions of

the testing driver. For instance, units 14 has a high normal behavior rate in both sets
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of trips, units 13, 25 and 32 have similarly high aggressive behavior rates and units 2,

8 and 21 have high drowsy behavior rates for both the testing and training drivers.

Going back to the scores in Table 5.1, we note that the trips with the normal

behavior and the drowsy trip on the secondary road route have two predicted behaviors

with very close scores, which may indicate that TripMD is not consistently catching

these particular behaviors well.

To further explore this issue, we use a resampling method to measure the stability

of the computed scores. Concretely, we apply random sampling with replacement

to the list of motifs extracted by TripMD and update the DTW-SOM clusters. The

DTW-SOM is not retrained, and thus its units do not change. Instead, only the group

of motifs assigned to each cluster are sampled. Since we take a sample of the same size

as the original list of motifs, some motifs are repeated multiple times while others are

never sampled.

With the new sampled motifs, we then apply the same procedure to compute the

behavior score of all the trips performed by the testing driver. This sampling method

can be repeated many times and, for each sample, we get a new estimation of each

trip’s behavior scores. Figure 5.11 shows the average behavior scores and their standard

deviations for the testing driver’s trips obtained after 1000 samples.

Figure 5.11: Summary statistics of the each testing trip’s behavior scores obtained with
1000 samples with replacement. The points encode the average scores while the errors
bars encode the standard deviation.

As expected, in the drowsy trip of the secondary road, the distribution of the

scores for the normal and drowsy behavior are very close. Similarly, some scores for

the normal trips in both the secondary and motorway routes overlap, which agrees

with the initial assessment that TripMD is not strong at identifying the trips with the
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normal behaviors and the drowsy trip on the secondary road.

On the other hand, the aggressive trips and the drowsy trip on the motorway have

the correct behavior score more consistently higher than the remaining behavior scores.

Thus, in these cases, TripMD is identifying successfully the underlying behavior of the

driver.

5.5 Conclusion

In this paper, we propose a system called TripMD, which identifies the main driv-

ing patterns from sensor recordings such as acceleration and velocity. Compared to

previous work, our system not only extracts the time-series patterns present in trips

recordings but is also capable of summarizing those patterns in a space-efficient visu-

alization. This feature is highlighted in our first experiment, where we demonstrate

that TripMD can discover a wide range of driving patterns from the trips performed

by a single driver of the UAH-DriveSet dataset. We also conclude that the three driv-

ing behaviors marked in the dataset (normal, aggressive and drowsy) have distinct

distributions among the extracted driving patterns, which can be used to determine

the driving behavior of a driver from the behaviors of other drivers.

Even though the results seem promising, there are still areas of improvement.

Firstly, because of the Variable SAX discretization, the motif detection algorithm used

in TripMD is not an exact algorithm. This means that we cannot guarantee to extract

all the variable-length motifs. There are some new motif detection algorithms that

claim to be exact, however, we could not find one that was capable of extracting motifs

with member’s subsequences of difference sizes. Thus, investigating exact motif detec-

tion algorithms that work with variable-length motifs could be an interesting line for

improvement.

Additionally, we should further test TripMD with more datasets and different tasks,

such as understanding whether TripMD can be used to distinguish between drivers

with prior accidents from drivers without accidents and to inform car insurance pric-

ing models. Testing TripMD with different datasets would also be helpful to further

validate and fine-tune the default parameters of the system such as the default letter

size. Another part that could be further tested with other datasets is the choice of

percentiles for the VSAX representation.
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6.1 Goals and motivation

In the last two decades, telematics’ technology and usage have steadily increased, with

applications ranging from early detection of car malfunctions to fuel consumption

optimization becoming ever more popularized.

Car insurance, in particular, is one of the fields that has been most impacted by

telematics, after the introduction of UBI policies. These insurance schemes use driv-

ing data to assess the driving of each client and to provide a more accurate pricing.

Practitioners agree that UBI can be beneficial for insurers and customers. However,

these benefits can only materialize if insurers can measure driving behavior and per-

formance accurately and reliably. Therefore, in this work, we explore how we can

leverage telematics data to provide insights into driving behavior.

It is important to note that identifying driving behavior from telematics data is

relevant for other applications besides insurance. For instance, car manufacturers

can use this technology to uncover which factors are associated with accidents and

improve their car’s safety systems. Policymakers can use the same strategy to improve

regulation and make roads safer. Large transportation fleets can also use telematics to

understand how driving behavior affects fuel consumption and optimize it.

When analyzing driving behavior, a common approach is to analyze maneuvers.

Maneuvers are the logical blocks of driving and, thus, identifying maneuvers and de-

termining how drivers perform them provides a unique perspective into their driving

behavior. However, extracting maneuvers from high-frequency telematics data such

as acceleration and velocity is not straightforward.

Current literature on this topic can be broken down into two diverging method-

ologies, namely, the fixed thresholds strategy[12, 13, 14, 15], and the rolling windows

strategy[16, 17, 18, 19, 20, 21, 22, 23, 24].

As the name suggests, the fixed thresholds strategy involves using thresholds on

acceleration and/or other inertial measurements to define the start and the end of

each specific maneuver. This strategy has the benefit of being simple, easy to interpret,

and very computationally efficient. Yet, it requires fine-tuning and expert judgment

to implement in a given application. Added to this, small changes in the specific

thresholds or the underlying data can lead to huge impacts to the final results and,

hence, the methods based on the fixed thresholds strategy are not very adaptable and

require a lot of "manual"work to implement.

On the other hand, the rolling windows strategy takes an entirely different ap-

proach. First, trips are broken into fixed-sized time windows that can have some level

of overlap. Secondly, a detection method is used in each window to identify each

maneuver is being performed (if any). Here, the window size and the level of overlap

need to be set beforehand and these parameters can have a massive impact on the final

results. The window size, in particular, is known to heavily influence how well ma-

neuver can be detected and different maneuvers may require different window sizes.
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Consequently, a disadvantage of this type of method is the inflexibility of the window

size and overlap parameters.

Another issue with the rolling windows strategy is the need for labels. It is known

from the time-series mining community that using unsupervised learning approaches

in following windows leads to meaningless results Keogh and Lin [25]. Thus, we either

use rule-based detection, which inherits the problems of the fixed-threshold strategy,

or we used supervised learning models, which require labeled data and hence a lot of

manual data collection work.

For these reasons, there was a clear opportunity to investigate more flexible meth-

ods that can detect maneuvers in high-frequency telematics data without the need

for large datasets of labeled maneuvers. Interestingly, the community looking at this

problem was not yet leveraging the fact that detecting maneuvers from telematics data

is essentially a time-series mining task and, as such, taking advantage of the large body

of research already done by the time-series mining community.

6.2 Work overview

Our work aimed to answer three specific questions. Firstly, we wished to explore time-

series data mining techniques and tailor them to the task of detecting maneuvers from

acceleration data. In other words, we wanted to validate whether we could leverage

tools from the time-series data mining community to build an adaptable method

capable of detecting maneuvers from acceleration data without the need for labels.

Thus, the initial part of our work was dedicated to answering this question (Chap-

ter 3), where we looked into the use of time-series motif detection. In short, time-

series motifs are over-represented subsequences in a time series [65]. We hypothesized

that over-represented segments of time-series built from acceleration recordings were

highly connected to maneuvers and thus we aimed to explore the relationship between

the most relevant motifs of a trip and the maneuvers performed during that trip.

To achieve this, we implemented a slightly modified version of a well-known mo-

tif detection algorithm (the EMD algorithm by Tanaka et al. [66]) and tested it in a

naturalistic driving dataset with trip recordings from six different drivers and two

specific routes in Madrid, Spain (the UAH-DriveSet by Romera et al. [26]). Firstly, we

tried to identify acceleration and braking maneuvers from the time-series of longitu-

dinal acceleration, Secondly, we applied the same approach to the lateral acceleration

time-series and sought to detect turning maneuvers.

After a systematic exploration of the resulting motifs, we found that the EMD

algorithm was capable of extracting both simple and more complex maneuvers, thus

proving that motif discovery can be used as a flexible strategy to detect maneuvers in

telematics data without the use of labeled data.

We also concluded that the number of motifs extracted from the trip recordings

was so large that doing a manual exploration was unfeasible. This led us to our second
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research question, namely, how we could summarize the motifs extracted (which in

the case of our use-case represent maneuvers) in a space-efficient visualization?

To address this question, we proposed DTW-SOM (Section 5), a new version of the

SOM (a well-known feature reduction and visualization algorithm). In short, DTW-

SOM is a vanilla Self-Organizing Map with three main differences, namely (1) the

use of the Dynamic Time Warping distance instead of the Euclidean distance, (2) the

adoption of two new network initialization routines (a random sample initialization

and an anchor initialization) and (3) the adjustment of the Adaptation phase of the

training to work with variable-length time-series sequences.

To test DTW-SOM, we used a synthetic dataset and two real time-series datasets

from the UCR Time Series Classification Archive [94]. In other words, we used DTW-

SOM in three different datasets, not related to telematics or maneuvers. Therefore,

even though we create DTW-SOM with the maneuver detection task in mind, this

method is more general and can be helpful to explore motifs extracted from many

different domains. In all the datasets tested, we found DTW-SOM to be capable of

extracting relevant information from a set of motifs and display it in a visualization

that is space-efficient.

Finally, the last part of the work was dedicated to improving motif detection and

summarization in order to answer the third research question, i.e, whether we could

use the maneuvers extracted from telematics data to get insights into the driving

behavior of a single driver. We had some requirements for the final system, namely:

• Detecting variable-length motifs.

• Working with multi-dimensional time-series.

• Providing a segmentation of the motifs into groups meaningful for the maneuver

detection and analysis tasks.

The result was a new method called TripMD (Chapter 5). This method is a motif

extraction and exploration system, tailored for the task of analyzing maneuvers and

driving behaviors. TripMD not only extracts but also summarizes the main motifs

of the provided trips and allows for an easy investigation of the maneuvers being

performed.

It is important to note that, besides combining and adapting previous methods

in a new system fitted for the task at hand, TripMD includes two novel pieces of

work. The first is the motif summarization method from Chapter 4, DTW-SOM. DTW-

SOM is what allows TripMD to group and summarize the motifs extracted from the

trips. The second is VSAX (Chapter 5), a new representation method which adapts

the classical SAX representation from [44] to work with variable-length patterns. This

new representation is what allows TripMD to capture maneuvers of variable lengths.
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Using the same naturalist driving dataset, the UAH-DriveSet, we did two distinct

experiments (Chapter 5) to assess whether the outputs produced by TripMD could be

used to extract insights into driving behavior.

In the first experiment, we focused on a single driver and explored the results

obtained by processing all the trips produced by that driver. Since each trip has a

specific behavior associated with it (i.e., normal, aggressive, and drowsy), we were able

to map those behaviors to the maneuvers extracted with TripMD.

There, we noticed that TripMD identified a rich set of driving patterns, ranging

from 1.5 to 3 seconds. The outputs included simple maneuvers (e.g., left turns with

constant forward acceleration) and more complex maneuvers (e.g. forward accelerat-

ing turns).

More interestingly, we also observed that the three driving behaviors present in

the data had very distinct distributions among the extracted driving patterns. For

instance, the normal trips had a majority of presence in the motifs associated with soft

maneuvers such as the "no maneuver"pattern and the soft brake.

On the other hand, the subsequences from aggressive trips showed a large represen-

tation on the motifs linked to sharp acceleration patterns, for example, right turns with

a pronounced brake or the brake-acceleration maneuver (i.e. a rapid brake followed

by a sharp acceleration). These sharp acceleration maneuvers are especially telling

as they are associated with tailgating behavior, which in turn is a known aggressive

driving behavior.

As for the drowsy trips, they were more present in the motifs showing a drift

pattern, which is made of two consecutive lateral movements in opposing sides. It was

very interesting to see these patterns here as they are usually present in cases where

a tired driver lets the car deviate from a lane and then quickly recovers with a sharp

turn.

Therefore, we were able to conclude from our first experiment that TripMD is ca-

pable of summarizing the trips from a single driver so that different driving behaviors

can be identified. Next, to further evaluate TripMD, we focused on a more difficult

task, i.e, identifying the driving behavior of an unknown driver from a set of known

drivers.

To achieve this, we applied TripMD to the entire UAH-DriveSet and extracted its

driving patterns. Then, we used the patterns of five of the six drivers to compute scores

of each of the three driving behaviors (normal, aggressive, and drowsy). Then, we pre-

dicted the behavior of each trip of the remaining driver by comparing the distribution

of the trips among the motifs and their corresponding behavior scores.

After comparing the predicted behavior with the real behavior of each trip, we

noticed that TriMD was successfully identifying the driving behavior of the aggressive

trips and one of the drowsy trips. On the other hand, in the normal trips and the other

drowsy trip, TripMD is not as consistent at identifying the underlying behavior.
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These results are very promising since they indicate that motifs extracted from

time-series of telematics recordings do hold meaningful information for the task of

identifying driving behavior. Even though the results are positive, there are still areas

of improvement, which we will explore in the next section.

6.3 Limitations and future work

One of the main limitations of this work relates to the lack of public datasets. It is ex-

tremely rare to find publicly available data with high-frequency telematics recordings

plus information about driving behavior. As such, for the entire work, we only used a

single dataset to test. Without a doubt, using a single dataset led to some bias in our

conclusions.

Therefore, one possible approach to further develop this work would be to apply

TripMD to other datasets. On one hand, testing TripMD with different datasets would

further validate and fine-tune the default parameters of the system.

On the other hand, different datasets would allow us to better understand how ro-

bust TripMD is at identifying driving behaviors. In our analysis, TripMD was very re-

liable at identifying the aggressive trips and not so reliable for the normal and drowsy

trips. However, due to the nature of the analysis, the actual trips included in the data

are a major factor in the conclusions. Thus, varying the data would provide more data

points and, thus, an more accurate view of the performance of our system.

Another limitation of this work, and, in particular, TripMD, is the low scalability.

This is an area that we did not focus on because we only wanted to prove the validity of

motif detection for analyzing driving behavior. Nevertheless, when running TripMD

on the UAH-dataset, we noticed that the motif detection component of the system

would take a lot of time and computational resources. This means that TripMD would

not be feasible for very large datasets.

Motif detection is not a computationally light task. Essentially, it requires a com-

parison of all possible pairs of subsequences and, when we add the option of variable

length subsequences, the number of possible pairs of subsequences explodes. A lot

of effort has been put into designing efficient motif detection algorithms. However,

none of the more efficient algorithms we found in the literature were suited for the

task of maneuver detection. In this setup, another line of research would be to either

improve the efficiency of TripMD or start from another motif detection algorithm (that

is already more efficient) and adapt it to the task of maneuver detection.

Another shortcoming of TripMD is that it is not an exact algorithm. In order words,

because of the Variable SAX discretization, we cannot guarantee to extract all the

variable-length motifs. Some new motif detection algorithms claim to be exact, how-

ever, we could not find one that was capable of extracting motifs with truly variable

lengths. Thus, investigating exact motif detection algorithms that work with variable-

length motifs could be an interesting line for improvement.
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Lastly, even though this would not address a particular limitation of our work, an

interesting area of future research would be to utilize TripMD, and motif detection

more generally, in different tasks. As an example, one could investigate whether

motif detection can be used to distinguish between drivers with prior accidents and

drivers without accidents, which in turn could be used to inform pricing models for

car insurance.
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