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ABSTRACT 

This report presents the work developed during the academic internship required for obtaining the 

Master’s Degree in Data Science and Advanced Analytics. The internship took place in the area of Data 

& Analytics of the Department for Internal Audit of Caixa Geral de Depósitos (Portugal), from the 14th 

of September 2020 to the 13th of June 2021.  

The internship’s goal was the introduction of machine learning to the Department of Internal Audit. In 

particular, the implementation of three machine learning pipelines to aid in audit activities of the 

institution, which systematically analyze operations that stand out from the implemented alarm 

system. The alarm system triggers alerts when an event disobeys a predefined methodology. Each 

triggering event is reviewed and processed individually by the auditors, either by being classified as a 

confirmed error or as a false positive. Confirmed errors frequently lead to recommendations to rectify 

the operations, while false positives are closed without a recommendation. The alerts’ triggers are 

defined by sets of arguably general and manually implemented rules, resulting in high trigger 

frequencies and low precisions. Trigger frequency, precision, and cost of miss rate differ for each alert.  

Based on the alerts’ trigger history data, three types of alerts were selected for improvements. The 

deployment of machine learning pipelines with classification models optimized the triggers' specificity 

while maintaining high sensitivity, which reduced the number of daily events that have to be reviewed 

by the auditors. This optimization maximizes the efficiency and productivity of the general alarm 

system and decreases the auditors’ workload. 
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1. INTRODUCTION 

Banking institutions have worked with information systems and large volumes of data for several 

decades. However, the true value and profit of all these years’ worth of information have not been 

appreciated until quite recently. Although departments for information technology are part of the core 

of any big company, decentralized data science teams that work closely with specific departments are 

on the rise, as the applicability and profitableness of data science are still being researched and gaining 

collective attention. The internal audit function at CGD is among the departments mentioned above, 

and one such area with relatively unexplored potential in data science. 

 

Metaphorically, internal audit is the final gatekeeper of the bank’s defense, which makes the 

prevention of business anomalies and the recognition of risks by the auditors, key. Internal auditors 

evaluate corporate governance processes, i.e., risk management and compliance function, and 

traditionally work with sampling methods by extrapolating the results and treating eventual 

conclusions as issues. However, the real problem behind the issues might lie within the underlying and 

hidden data. Performing internal audit activities with the aid of business intelligence and data science 

can help to face these challenges.  

 

In this context, the subject of the present report focuses on an internship in the Data & Analytics area 

of the Department of Internal Audit at Banco Caixa Geral de Depósitos. The Data & Analytics area is a 

team that cooperates closely with the auditors at DAI, aiding several information technology services 

and working with the databases where the audit projects are stored, among others. 

 

The frequent mention of AI at CGD’s sessions for the professional development of their employees and 

the consistent promotion of futuristic and modern applications of data science methodologies have 

created a strong interest in the innovation and modernization of data-based processes. This interest 

built the foundation of the internship program.  

 

The primary objective of the internship was the introduction of machine learning to DAI, namely the 

optimization of the continuous audit process with ML pipelines. The responsibility of implementing the 

pioneer machine learning application in this area at DAI came with the privilege of autonomously 

processing each step of the ML workflow, from data gathering, preparing and processing, to model 

training, evaluation, deploying and monitoring. 

 

This report will focus on the implementation of three structurally identical machine learning pipelines 

that were deployed to the continuous audit process of DAI, which systematically analyzes operations 

that stand out from the implemented audit procedures, detected by the alarm system. The alarm 

system is composed of over a hundred different alerts that continuously monitor operations in the 

institution. The alerts trigger when an event disobeys a predefined methodology, and each triggering 

event is reviewed and processed individually by an auditor. The events are classified either as 

confirmed errors or as false positives, leading to recommendations to rectify the former. 

 

The alerts’ trigger frequency, precision and gravity of miss rate depend on the manually implemented 

rules that define the triggers. The triggers’ rules can be arguably general, and result in high trigger 

frequencies and low precisions. Daily, the auditors evaluate and classify the triggering events, 
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recommending rectifications to confirmed events and labelling the falsely triggered events as false 

positives. 

 

Based on data of events that were triggered and manually reviewed and labelled by the auditors, three 

alerts with the highest trigger frequencies and lowest precisions were selected for improvements. The 

internship project aimed to use classification models to reduce the daily samples of triggering events, 

by detecting and excluding false positives. Furthermore, the deployment of classification models 

aimed to maximize the specificity of the triggers, while maintaining a high sensitivity. Thus, the final 

objective of the project was the reduction the total number of daily events that have to be reviewed 

by the auditors and, hence, significantly maximize the alarm system’s efficiency. 

 

1.1. COMPANY OVERVIEW 

Caixa Geral de Depósitos is a Portuguese wholly state-owned banking corporation and the second 

largest bank in Portugal. Established in Lisbon in 1876, CGD is the largest Portuguese financial group, 

having a presence in twenty-three countries across four continents. In addition, CGD is nationally 

recognized with a leading position in the Portuguese retail market, with more than four million 

customers in Portugal and assets ranging higher than 100bn€. 

Currently, CGD is thoroughly present in almost all fields of the banking business, highlighting 

commercial banking, investment banking, brokerage, venture capital, real estate, asset management, 

specialized credit, and many more. 

 

1.2. THE TEAM AND ACTIVITIES 

The internship at CGD was developed within the Data & Analytics Team of the Department of Internal 

Audit. 

At CGD, the internal audit function is an objective and independent consulting and assurance activity, 

aiming to enrich and improve the institution's operations, individually and Group-wise. The main 

objective lies in aiding the CGD Group in successfully achieving its goals by assessing and optimizing 

the efficacy of several functions, such as governance processes and risk management. 

The Department of Internal Audit is subdivided into four areas: Methodology, Data & Analytics, Audit, 

and Strategy & Planning. 

The Data & Analytics area is a team that cooperates closely with DAI’s auditors. The principal activities 

focus on optimizing information systems to support the audit activity, providing technical support to 

employees at DAI, and implementing structuring digital projects.  
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1.3. INTERNSHIP GOALS 

The internship is part of the ‘Programa Geração Caixa’ program, an initiative of CGD that offers 

master’s students a year-long opportunity to be integrated into several areas of the institution, 

transforming their academic knowledge into professional experience.  

The internship project focused on DAI’s continuous audit process, which is composed of an alarm 

system that includes over a hundred different alerts. The alerts are constructed by sets of rules that 

work as retrieval systems to detect potential conspicuous activity in various sectors of the institution.  

Specific events trigger the alerts, which an auditor proceeds to review and evaluate as either confirmed 

errors or false positives. An example of such an alert is the identification of wrongfully deducted 

commissions or specific anomalies within the commercial sector of the bank. Each alert differs in terms 

of trigger frequency, precision and gravity of a miss rate. 

Three alerts from the alarm system were chosen for improvements, based on their high trigger 

frequencies and low precisions. ML pipelines were implemented for each of the chosen alerts, 

following analogue structures and deployment journeys. The pipelines enhance the alerts’ triggers by 

introducing binary classification models, which are trained with the manually labelled historical data 

from the events that triggered the alerts. The trained models operate over the daily events that are 

triggered by the alerts and aim to detect and exclude false positives. The models supplement the 

performance of the trigger, by maximizing their specificity and keeping the sensitivity as high as 

possible. Hence, the project aids the responsible auditors, who have to spend less time reviewing daily 

events. 

The workflow of the ML project includes data acquisition and understanding, data preparation and 

pre-processing, model training, validation, evaluation, and finally, the implementation of the 

functioning classification models and assurance of their periodic and automatic application on the 

implemented alarm system.  

This project was the pioneer application of machine learning to DAI. Apart from data understanding, 

the theoretical and technical components of this workflow were worked on autonomously. 

The fundamental goal of this project is the long-term optimization of the alarm system’s efficiency, 

and consequently, a productivity incrementation of the auditors that review the chosen alerts. 
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2. THEORETICAL FRAMEWORK 

This chapter presents a brief theoretical contextualization of some subjects that this report will 

mention, by describing essential key concepts to comprehend and recognize the underlying work.  

2.1. ARTIFICIAL INTELLIGENCE 

The term ‘Artificial Intelligence’ was co-coined by John McCarthy, who defined AI as “the science and 

engineering of making intelligent machines” (J. Mccarthy 2007). Other popular definitions of AI include 

"[the automation of] activities that we associate with human thinking, activities such as decision-

making, problem-solving, learning ..." (R. Bellman 1978), or "the art of creating machines that perform 

functions that require intelligence when performed by people” (Ray Kurzweil and Diane Jaroch 1990).  

In the mid-twentieth century, Alan Turing, widely considered one of the founding fathers of 

computational and artificial intelligence, proposed the Turing Test (A. M. Turing 1950), which suggests 

that the four premises of intelligent computational behavior are natural language processing, 

knowledge representation, automated reasoning, and machine learning.  

2.2. MACHINE LEARNING 

Tom M. Mitchell defined Machine Learning as “the study of computer algorithms that improve 

automatically through experience and by the use of data” and “a part of artificial intelligence” (T. M. 

Mitchell 1997). Another popular definition of machine learning is the ability to “adapt to new 

circumstances and to detect and extrapolate patterns” (S. J. Russell and P. Norvig 1995).  

The underlying assumption in machine learning is that known data can be used to extrapolate 

knowledge about unseen data, by using a fitted model. The fitting process follows different learning 

paradigms and algorithms, which depend on the model that is chosen. In summary, as an application 

of AI, machine learning encompasses computational methods that calibrate data to a model by 

minimizing a loss function, without or with only partial human assistance.  

The applications of machine learning are currently very diverse and interfere with many aspects of our 

daily lives. For example, personalized recommendations on streaming platforms or suggestions and 

advertisements on social media, or a solution to business problems such as customer churn prediction 

and credit risk assessment, share the main goal to predict or classify new information.  

Peter Norvig subdivides machine learning into three different learning paradigms (S. J. Russell and P. 

Norvig 1995). The critical difference is the algorithms' learning process and purpose. These “types of 

feedback that determine the three main types of learning” are: 

1. Supervised learning aims to “build a concise model of the distribution of class labels in terms 

of predictor features” (Kotsiantis 2007). This learning paradigm works with labelled data and 

algorithms that learn from input-output pairs and create a function that maps one to the other. 

Applications of supervised learning are classification and regression problems, which map 

qualitative and quantitative outputs to the inputs, respectively. There are several types of 

classification problems, however, this report will specify binary classification, which consists 

of predictive classification problems with two possible target classes. 
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2. Unsupervised learning is a learning paradigm that can be used with datasets that are neither 

labelled nor classified. The algorithms of this family aim to find patterns between the inputs, 

using similarity or dissimilarity measures, for example. Cluster analysis or segmentation is a 

type of unsupervised learning. 

 

3. Reinforcement learning is a training method that rewards from a sequence of actions, where 

the main goal is to find the balance between exploration and exploitation in the decided 

actions of intelligent agents. A reinforcement learning agent aims to comprehend and 

interpret its environment, to take actions based on trial and error. 

2.3. DATA MINING 

Data mining describes the process of “discovery of structures and patterns in large and complex data 

sets,” using methodologies such as statistical analysis and machine learning (Hand and Adams 2015). 

Thus, data mining is an application of machine learning (Kotsiantis 2007), as ML technologies are used 

to extrapolate patterns and information from data. 

The implementation journey of a machine learning model passes through several data mining phases, 

which the “Cross-industry Standard Process for Data Mining” conveniently summarizes (Wirth and 

Hipp 2000). The CRISP-DM describes a standardized framework for data mining tasks, following a 

standardized methodology. This process allows for the coherent and analogue replication of tasks, 

valid for the internship project at hand. Figure 1 depicts the steps of the CRISP-DM. 

 

Considering that the main project of this internship consists of the implementation journey of 

classification models, which are a type of supervised learning, the following chapters are specified this 

ML learning paradigm. 

Figure 1: CRISP-DM Model (Wirth and Hipp 2000) 
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2.3.1. Data pre-processing  

Data pre-processing consists of the dataset necessary operations to transform raw data into input to 

train the ML algorithms. The steps to pre-process data can be more time-consuming and challenging 

than data mining (Fayyad and Stolorz 1997) since their order and logic are flexible and subjective.  

Data pre-processing can be subdivided into two general tasks, namely “data preparation, compounded 

by integration, cleaning, normalization and transformation of data; and data reduction tasks; such as 

feature selection, instance selection [and] discretization” (García, Luengo, and Herrera 2015). This 

chapter detailly describes the usual order the data preparation steps follow.  

2.3.1.1. Data Integration  

Data integration describes the process of gathering, joining, and verifying data from various data 

sources, which can present several challenges, including conflicting data formats, feature 

redundancies, and logical inconsistencies. An exploratory data analysis identifies and addresses these 

challenges. 

Regarding the problem of redundancy in datasets, Zena M. Hira and Duncan F. Gillies (Hira and Gillies 

2015) state that “in machine learning as the dimensionality of the data rises, the amount of data 

required to provide a reliable analysis grows exponentially”, and Bellman (Bellman 1972) referred to 

this phenomenon as the “curse of dimensionality”. As a result, a dataset with redundant features is 

more extensive than necessary, resulting in higher modelling times and worse model performances 

(Limshuebchuey, Duangsoithong, and Windeatt 2015). However, two popular techniques (Hira and 

Gillies 2015) can overcome this challenge: feature extraction and feature selection. According to Terry 

Windeatt (Duangsoithong and Windeatt 2010), feature extraction transforms the original dataset by 

lowering the data dimensions, and the process of feature selection chooses an optimal set of features, 

with the aid of dependence measures, mutual information, or the chi-squared test. The step of feature 

selection is generally performed as the last step before the modelling process. 

2.3.1.2. Data Cleaning  

Data cleaning consists of identifying and treating logical inconsistencies in data, for instance, 

contradictory or impossible information. Missing data imputation and noise identification can be 

integrated into this step and require a deeper understanding of the data and human audit.  

Missing data imputation deals with incomplete or missing parts of the dataset. These challenges can 

occur for several reasons, such as issues with the databases or faulty user input. Whether and how the 

missing values are imputed depends on the variable’s interpretation and chosen algorithms. Generally, 

imputing missing values generates better results than leaving the values blank (García et al. 2015). 

Missing data imputation has a wide range of complexity. Simple methods include the imputation of 

missing values with the mean or mode of the variable. More complex methods include techniques such 

as the KNN imputer, which imputes missing values based on the mean (quantitative variables) or mode 

(qualitative variables) of a selected set of similar records. This technique follows the K-nearest 

neighbor algorithm, which is more detailly described in chapter 2.4.1. 

Noise identification describes the process of identifying observations with abnormally high or low 

values compared to the other observations of the same feature. These anomalies, also called outliers, 
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can occur due to incoherent values with the data distribution, as well as data errors. Thus, the 

methodology to remove noise relies on the data characteristics and data distribution. With normally 

distributed data, records can be removed with an exclusion threshold based on their deviation from 

the mean. If the data follows a log-normal distribution, the log-transformation can be used to 

normalize the data before the aforementioned operation. Alternatively, data anomalies from data that 

is not sufficiently normally distributed can be excluded when records fall outside the Inter-Quartile-

Range, which describes the middle 50% of descendingly ordered data.  (Ilyas and Chu 2019). 

2.3.1.3. Data Transformation  

Data transformation describes operations that enhance the informational value of the features. 

Feature engineering is the “practice of constructing suitable features from given features that lead to 

improved predictive performance” (Nargesian et al. 2017) and includes several operations that fall 

under the category of data transformation. For instance, binning quantitative data or binarizing 

qualitative data, and creating new features, are methods to adjust data types. 

The identification of informative attributes reduces the dataset to solely significant features. Feature 

selection is “primarily focused on removing non-informative or redundant predictors from the model”. 

The adequate feature selection method can be chosen depending on the nature of the problem and 

the data types of the features in question. Langley categorized feature selection methods into two 

broad groups: filter and wrapper methods (Talavera 2005). Filter methods are independent of the used 

algorithm, whereas wrapper methods use the algorithm as an evaluation metric.  

Dash and Liu (Dash’ and Liu 1997) propose dividing evaluation functions used for feature selection into 

five categories. The five categories are listed below, adjusted to binary classification problems. 

• Distance measures compare two features based on the difference between the two-class 

conditional probabilities.  

• Dependence measures describe the ability of a feature to predict the target variable. The 

occurrence of a term in a feature A is independent of the occurrence of a class of target 

variable B if 𝑃(𝐴𝐵) = 𝑃(𝐴)𝑃(𝐵). 

This report will mention the chi-squared test, which is a statistical hypothesis test for 

independence between variables. The chi-squared test measures the dependence between 

each feature and the target variable. Features independent of the target variable, guided by 

the chosen significance level, can be discarded from the dataset. The chi-squared test uses the 

following statistic, where 𝑂𝑖 and 𝐸𝑖  are the observed and expected frequency of the feature in 

question, and 𝑁 is the number of observations (Pearson 1900): 

Xc
2 =  ∑

(Oi − Ei)
2

Ei

N

i=1

 (1) 

 

• Information measures evaluate features based on the information gain that they offer to the 

ML model. A popular information measure is feature selection based on mutual information. 

This method measures how much information a feature and the target variable share, which 

is proportional to the extent of how much information the presence or absence of a feature 

contributes in predicting the target variable. In the following formula, 𝑝(𝑋,𝑌) is the joined 
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probability mass function of feature 𝑋 and target  𝑌, and 𝑝(𝑋) and 𝑝(𝑦) are the marginal 

probability mass functions of  𝑋 and 𝑌 (Cover and Thomas 2005): 

I(X;  Y) = ∑ ∑ p(X,Y)(x, y) log (
p(X,Y)(x, y)

p(X)(x) p(Y)(y)
)

 

x∈X

 

y∈Y

 (2) 

 

• Consistency measures select features that better define consistent logical decisions about the 

training data set (A. Arauzo-Azofra, J. M. Benitez, and J. L. Castro 2008). 

• Classifier Error Rate measures evaluate features based on their impact on the predictive ability 

of the algorithm. 

Models that are trained on datasets with skewed target class distributions deal with imbalanced 

learning. Imbalanced learning problems can be addressed in two ways (Chawla et al. 2002) assigning 

cost weights to the classes or with resampling methods. Resampling methods adjust the discrepancy 

between class frequencies of the target variable, either by oversampling the minority class or 

undersampling the majority class. 

One such technique is the synthetic minority oversampling technique, also referred to as SMOTE 

(Chawla et al. 2002), where “the minority class is over-sampled by taking each minority class sample 

and introducing synthetic examples along the line segments joining any/all of the k minority class 

nearest neighbors “. The authors describe the SMOTE algorithm along the following lines: 

• “Synthetic samples are generated in the following way: Take the difference between the 

feature vector (sample) under consideration and its nearest neighbour. Multiply this 

difference by a random number between 0 and 1, and add it to the feature vector under 

consideration. This causes the selection of a random point along the line segment between 

two specific features. This approach effectively forces the decision region of the minority class 

to become more general”. 

 

2.3.1.4. Data Normalization/Standardization  

Data normalization reformates the variables to range in a chosen interval, frequently of [0,1], whereas 

standardization transforms the data to a mean of 0 and a standard deviation of 1. Several possible 

scalers normalize data, the choice of which depends on the nature of the data, i.e., the presence of 

data anomalies.  

Data normalization or standardization are essential to avoid different data units, leading to bias in 

distance-based algorithms. After this data cleaning step, the variables have a similar weight and can 

be easily compared to the target variable. 

A standard normalization method is the MinMax Normalization, which rescales the values of the 

features to range in a specified interval. The following transformation is applied to an attribute 𝑥, 

which will range in the interval [𝐴, 𝐵]: 

 



9 
 

 𝑥´ =  
𝑥 − max(𝑥)

max(𝑥) − min(𝑥)
(𝐵 − 𝐴) + 𝐴 (3) 

 

Another popular standardization method is the z-score normalization, which provides a zero-mean and 

unit variance. In the formula below, 𝐴̅ and 𝜎𝐴 are the sample mean and standard deviation of attribute 

A: 

𝑥´ =  
𝑥 − 𝐴̅

𝜎𝐴
 (4) 

 

2.3.2. Modelling 

Modelling combines choosing, configuring, and evaluating a machine learning model that extracts 

patterns from data to solve a prediction or classification problem. The modelling assumptions and 

objectives of the problem are the primary factors that dictate the choice of the machine learning 

technique. 

As previously mentioned, the primary goal of ML models is to learn from data to predict or classify new 

information. However, if the model is built and validated with all available data, there is no data left 

to estimate the model’s behavior and performance on new and unseen data.  

This type of model training can lead to two problems: under- and overfitting. Underfitting occurs when 

the model is “poorly adjusted to the data, suffering from high error both in training and test (unseen) 

data,” while overfitting refers to models that are “too tightly adjusted to data offering high precision 

to known cases but behaving poorly with unseen data” (García et al. 2015). 

Since model validation is essential for building a supervised model, splitting the data into train, 

validation, and test sets are considered good practices. The model is trained with the training set, the 

parameters are tuned with the validation set, and the final estimation of the model’s performance on 

new instances is obtained with the test set. (Xu and Goodacre 2018) 

A popular method to construct an empirical performance estimation of a model is the cross-validation 

technique. Cross-validation is “one of the most widely used data resampling methods to estimate the 

true prediction error of models and to tune model parameters [and] to assess the generalization ability 

of predictive models and to prevent overfitting” (Berrar 2018).  

In his paper “Cross-validation” (Berrar 2018), Daniel Berrar explains k-fold cross-validation as the 

following: 

• “In k-fold cross-validation, the available learning set is partitioned into k disjoint subsets of 

approximately equal size. Here, “fold” refers to the number of resulting subsets. This 

partitioning is performed by randomly sampling cases from the learning set without 

replacement. The model is trained using k − 1 subsets, which, together, represent the training 

set. Then, the model is applied to the remaining subset, which is denoted as the validation set, 

and the performance is measured. This procedure is repeated until each of the k subsets has 

served as validation set. The average of the k performance measurements on the k validation 

sets is the cross-validated performance.” 
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Figure 2 illustrates 10-fold cross-validation. In the depicted case, nine subsets of the data are used as 

training data, while the fold left out is used to test the model. After each fold has served as the test 

sample, the average and standard deviation of the chosen evaluation measure’s values is used to 

estimate the model’s performance. 

 

2.3.3. Evaluation 

Model evaluation is the way of estimating the performance of a model based on different metrics and 

techniques, the choice of which depends on the data and objective of the problem. The model results 

can be assessed concerning the business problem and in light of different perspectives. The evaluation 

of the model also defines the potential and next steps of the project. 

For binary classification problems, which this report focuses on, a confusion matrix summarizes the 

results of a model. 

Different evaluation metrics weigh the values of the confusion matrix with different weights. 

Depending on the impact of model error, the metrics in the table below provide specific perspectives, 

ranging all in the interval of [0,1], where a higher value indicates better performance (Dalianis 2018). 

 

 

Figure 2: 10-fold cross-validation (Berrar 2018) 

Figure 3: Confusion matrix for binary classification (Chawla et al. 2002) 
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Evaluation metric Formula 

Sensitivity / Recall / True positive rate 𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Specificity / True negative rate 𝑇𝑁𝑅 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Miss rate / False negative rate 𝐹𝑁𝑅 =  
𝐹𝑁

𝐹𝑁 + 𝑇𝑃
 

Fall-out / False positive rate 𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑁 + 𝑇𝑃
 

Accuracy 𝐴 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Precision 𝑃 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑭𝜷 - Score 𝐹𝛽 = (1 + 𝛽2)
𝑃 ∗ 𝑅

𝛽2 ∗ 𝑃 + 𝑅
 

Table 1: Evaluation metrics for binary classification problems 

The accuracy measure indicates how many instances are correctly classified out of the total of results. 

As the arithmetic mean of the precision for both classes, accuracy is a good performance indicator for 

class-balanced datasets (Canbek et al. 2017). 

The measures of precision and recall are metrics that indicate the performance of retrieval systems 

composed of a positive and negative class. Precision measures the number of instances that are 

correctly retrieved out of all the retrieved instances of the model, and recall measures the number of 

positive instances that were retrieved out of all the positive instances in the dataset. Thus, a high 

precision indicates that the model retrieved mostly positive instances, whereas a high recall indicates 

that most positive instances were retrieved. Specificity measures the identification performance of 

instances that are not relevant.  

The 𝐹𝛽 – Score is defined as the weighted average of both the precision and recall scores, measuring 

“the effectiveness of retrieval with respect to a user who attaches 𝛽 times as much importance to 

recall as precision” (Blair 1979). The chosen value of 𝛽 defines the relevance and power of either 

precision or recall. With 𝛽 = 1, this measure refers to the F1-Score, the harmonic mean between 

precision and recall. With 𝛽 ∈ [0,1[, precision is valued higher than recall, and with 𝛽 > 1, recall is 

weighted more than precision. 

 

 



12 
 

2.4. CLASSIFICATION MODELS  

This chapter will focus on classification models that will be mentioned throughout this report. The 

models are specified in the perspective of binary classification problems, accordingly to the 

internship’s projects. Apart from their functionality and description, the learning algorithm of the 

models will also be described. 

2.4.1. K-Nearest-Neighbor 

The K-Nearest-Neighbor (KNN) is a non-parametric classification algorithm and method of instance-

based learning. The algorithm classifies new instances based on a majority vote of their immediate 

‘neighbors’ classes. The ‘neighborhood’ consists of the k most similar instances (Guo et al. 2003). The 

training algorithm of a KNN model is mainly guided by the decisive and manually predefined value of 

k. Optionally, weights can be assigned to each variable to introduce a difference in relevance between 

the information points. Models trained with many neighbors tend to disregard low-frequency classes, 

whereas models trained with few neighbors are more susceptible to outliers (Murphy 2015). 

The KNN classifier calculates the distances between the instance that is to be labelled, and each 

instance in the dataset, and provides a classification according to the classes of the k closest instances. 

The Euclidean distance is the most commonly used distance measure to identify an instance’s 

neighborhood (Murphy 2015). The Euclidian distance between two points  𝐴 = [𝑎0, 𝑎1, … , 𝑎𝑖] and 

 𝐵 = [𝑏0, 𝑏1, … , 𝑏𝑖], is the following: 

𝑑(𝐴, 𝐵) =  √∑(𝑎𝑖 − 𝑏𝑖)2

𝑁

𝑖=0

 (11) 

 

However, other metrics can be used. 

2.4.2. Logistic Regression 

Logistic regression is a parametric classification algorithm that represents regression analysis for binary 

classification. The goal is to determine the probabilities of each instance to belong to either class and 

assign a class accordingly.  

Logistic regression is composed of a linear combination y(x) of the inputs 𝑥𝑖, adding an intercept 

term/bias 𝜖, where 𝑁 is the number of instances of the dataset (Murphy 2015). 

y(x) =  ∑ 𝑤𝑖𝑥𝑖 + 𝜖

𝑁

𝑖=1

= 𝑤𝑇𝑥 + 𝜖 (5) 

 

The values of the coefficients  𝑤𝑖 can be obtained using the maximum-likelihood estimation 

probabilistic framework (Kuhn and Johnson 2013), which constitutes the training algorithm of the 

model. 
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The sigmoid or logistic function, also called the squashing function of logistic regression, maps the 

values or the linear combination between 0 and 1: 

𝑠𝑖𝑔𝑚(𝑤𝑇𝑥 + 𝜖)) =  
1

1 + 𝑒−(𝑤𝑇𝑥+𝜖)
 (6) 

 

The result of the sigmoid function can be interpreted with the Bernoulli distribution, a particular case 

of the binomial distribution with 𝑘 = 1. The Bernoulli distribution is the discrete probability 

distribution of a random variable that belongs to a class 𝑘 with probability 𝑝. The Dutch-Swiss 

mathematician and physicist Daniel Bernoulli (1700–1782) defined the probability mass function as 

the following: 

𝐵𝑒𝑟(𝑘, 𝑝) =  𝑝𝑘(1 − 𝑝)1−𝑘     𝑓𝑜𝑟  𝑘 ∈ {0,1} (7) 

 

Combining these steps generates the logistic regression: 

𝑝(𝑦|𝑤, 𝑥) = 𝐵𝑒𝑟(𝑦| 𝑠𝑖𝑔𝑚(𝑤𝑇𝑥 + 𝜖)) (8) 

 

2.4.3. Decision Trees 

Loh (Loh 2011) defines decision trees as “prediction models constructed by recursively partitioning a 

data set and fitting a simple model to each partition.”.  Tree-like structures, like Figure 4, can visually 

represent the resulting model. Each branch represents a binary partition, and the terminal 

nodes/leaves represent simple models which apply to that cell only. 

At each internal node in the tree, the input passes through a binary test. The outcome of the test 

defines the sub-branches for the partitioned input. After several of these partitions, a leaf node 

determines the output class and prediction for each instance. The splitting criteria of decision trees 

follow impurity functions, which measure the extent of class purity for the data subsets that the 

partitions generate. Generally, the split that decreases the impurity most, is chosen.  

Figure 4: Example of a decision tree classifier ( Loh 2011) 
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C4.5 (R. Quinlan, M. Kaufmann, and S. L. Salzberg 1994) is a commonly used classification tree 

algorithm that follows the abovementioned approach, using information entropy as its impurity 

function.  

CART (Rutkowski et al. 2014) uses 10-fold cross-validation, whereas the C4.5 method employs a 

heuristic formula to estimate error rates. The CART algorithm allows diverse types of data, both 

quantitative and qualitative. A majority vote determines the basic principle of classification for the tree 

leaves. 

2.4.4. Random Forest 

The Random Forest is an ensemble classifier, which consists of the multiple uses of decision trees. 

Opitz and Maclin define ensemble learning as “a set of individually trained classifiers […] whose 

predictions are combined when classifying novel instances […] often more accurate than any of the 

single classifiers in the ensemble” (Opitz and Maclin 1999). 

Breiman (Breiman 2001) defines decision trees as the following: 

• “A random forest is a classifier consisting of a collection of tree-structured classifiers 

{ℎ(𝑥, 𝛩𝑘 ), 𝑘 =  1, . . . } where the {𝛩𝑘} are independent identically distributed random vectors 

and each tree casts a unit vote for the most popular class at input 𝑥.” 

Random forests are relatively robust to outliers and noise and offer valuable insights into variable 

importance, correlation, and error estimates. 

2.4.5. Naïve Bayes Classifier 

The Naïve Bayes Classifier is a probabilistic classifier that relies on the Bayes Theorem, proposed by 

Thomas Bayes in 1702: 

𝑃(𝐴|𝐵)  =  
𝑃(𝐴) ∗ 𝑃(𝐵|𝐴)

𝑃(𝐵)
, 𝑃(𝐵) ≠ 0 (9) 

 

This classifier is based on the assumption that the data features are independent. This assumption 

named the classifier as ‘Naïve’ since it can rarely be verified. The Naïve Bayes classifier assigns the class 

probabilities to the instances, which are used as a classification prediction, as shown in the following 

equation, where 𝑦̂ denotes the predicted class of an instance 𝑋𝑘 , 𝑘 ∈ 0, … , 𝑝, and 𝑃(𝑥𝑘|𝑦𝑖) is given by 

Bayes Theorem. 

𝑦̂ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑖
 ∏ 𝑃(𝑥𝑘|𝑦𝑖)𝑃(𝑦𝑖)

𝑝

𝑘=1

 (10) 

 

2.4.6. Neural Networks 

Neural networks are a family of algorithms that mimic biological neural networks and learning 

processes. For example, Rosenblatt (Rosenblatt 1958) proposed the perceptron, a single-layer neural 



15 
 

network, as a binary classification algorithm. The perceptron is the simplest forward neural network 

and uses the threshold function as its activation function.  

 

 

 

  

 

 

 

 

 

 

 

 

This neural network consists of units that connect through links. The links have associated 

weights 𝑤𝑖𝑗  and biases 𝑏, which transmit information in between the units 𝑖 and 𝑗. The units receive 

inputs from the environment or other units and a non-linear activation function 𝜙(𝑥) transforms the 

received input into an output. The output is then transmitted to other units or the environment. 

Popular activation functions include the threshold or logistic functions (Du and Swamy 2014):  

 

𝑝(𝑦|𝑤, 𝑥) = 𝐵𝑒𝑟(𝑦| 𝑠𝑖𝑔𝑚(𝑤𝑇𝑥 + 𝜖)) (8) 

 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝜙(𝑥) = {
 1, 𝑥 ≥ 0
 0, 𝑥 < 0

 

 

(9) 

 

𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝜙(𝑥) =
𝑎

1 + 𝑒𝛽𝑥
 

 

(10) 

 

Traditionally, there are three types of units (Quinlan 1998): Units that receive information from the 

environment, units that receive and transmit information from and to other units, also called hidden 

units, and units that give the final result, that is, transmit information to the environment. 

The training algorithm of a single-layer perceptron consists of the adjustment of the link’s weights. 

While the initial weights are assigned randomly, each iteration slightly modifies their value, according 

to a learning rate 𝛼 and estimation error 𝑒̂. The estimation error is the absolute difference between 

the output of the neural network and the actual value from the training sample (Du and Swamy 2014). 

Figure 5: The Rosenblatt Perceptron (Rosenblatt 1958) 
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The training process ends when it reaches a maximal number of iterations or when the estimation 

error is sufficiently small. With multi-layer perceptrons, this process is called back-propagation.  
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3. TOOLS AND TECHNOLOGY 

One of the internship’s responsibilities was the choice of tools to conduct the ML project. Considering 

that the projects developed during the curricular component of the DSAA-DS Master’s program relied 

majorly on Python and its data science libraries, the tool of choice for collecting, processing, modelling, 

implementing and monitoring the ML models was also Python.  

However, given that the models’ training data is stored in MS ACCESS, while the models’ results are 

imported into SQL SERVER, the bridge between these platforms will also be part of this chapter. 

The main framework of the project that took place during the internship was Python (van Rossum 

1995). The decision to use Python as the tool of choice goes further than the previously explained 

familiarity with the language and libraries. The internship took place at a financial institution, which 

includes several security measures and restrictions regarding the installation of external programs.  

One of the programs that the Data & Analytics team at DAI was already familiar with is Python, namely 

the data science platform Anaconda (Anaconda Inc. 2020). In addition, the broad package 

management system conda facilitates access to several essential data science packages, which may 

not be installed individually on CGD's computers. 

The Python libraries that were used during the projects are summarized into the following four steps. 

1. Libraries to retrieve data from MS ACCESS 

2. Libraries for data preparation, pre-processing and model training  

3. Libraries for implementing the results to SQL SERVER 

4. Libraries to monitor the models’ performance 

 

Library Description and purpose Steps 

imbalanced-learn  
imbalanced-learn is a library that offers tools to 
deal with imbalanced datasets, such as the SMOTE 
technique 

2 

joblib 
joblib enables the possibility of saving and loading 
trained models from and to the environment 

2,3 

openpyxl 

Each time the models are applied to the daily 
sample of events of the alerts, openpyxl is used to 
export the percentage of reduced events to an Excel 
sheet.  

4 

pandas 
All the operations that include data manipulation 
of any kind were completed with pandas 

1,2,3,4 

plotly 
Plotly (Plotly Technologies Inc. 2015) is an 
interactive plotting library that offers graphic 
visualizations, which were essential to the decision-

2,4 
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making process in the modelling and validation 
steps of the project 

pyodbc 

The pyodbc library was used to retrieve tables from 
MS ACCESS, by connecting Python to the database 
where the alert’s data is stored, and using SQL to 
retrieve the desired information.  

1 

scikit-learn 

Data preparation and pre-processing steps, for 
instance, the imputation of missing values and the 
normalization of the variables, were conducted 
with Python’s scikit-learn (Pedregosa et al. 2011), 
an open-source library that includes a set of 
predictive data analysis and machine learning 
tools. 

2 

sqlalchemy 

As the ML models aim to reduce the sample of daily 
events, the library sqlalchemy was used to export 
the reduced event sample into a new SQL SERVER 
table.  

3 

Table 2: Python libraries used during the internship project 
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4. PROJECT DISCUSSION 

Internal Audit is the metaphorical final gatekeeper of the bank’s defense, which makes the prevention 

of business anomalies and the recognition of risks by the auditors, key. The function of internal audit 

evaluates corporate governance processes, i.e., risk management and compliance function. 

Traditionally, auditors work with sampling methods, by extrapolating the results and treating eventual 

conclusions as issues. However, the real issue of specific problems often lies within the underlying and 

hidden data. Performing internal audit activities with the aid of business intelligence and data science 

can help to face these challenges.  

The focal project of the internship was the introduction of AI methodologies to DAI, namely the 

implementation of machine learning pipelines to optimize processes that aid the activity of Internal 

Audit. The responsibility of implementing the pioneer machine learning pipeline in this area at DAI 

came with the liberty to autonomously accompany each step of the ML workflow. 

The project focused on the deployment of three machine learning pipelines, following a structurally 

identical workflow. The ML pipelines were applied to the continuous auditing process of DAI, which 

systematically analyzes operations that stand out from the implemented alarm system.  

The alarm system continuously monitors operations in the institution and triggers alerts when an event 

disobeys a predefined methodology. The auditors review and process the triggering events 

individually, classifying them either as confirmed errors or false positives. The alerts differ in terms of 

frequency, precision, and gravity of miss rate. The alerts’ triggers generally have low precisions and 

high frequencies, since they are constructed by sets of manually implemented rules that were designed 

for a high recall. 

Based on data from the historical triggering events and the labels that were assigned by the auditors, 

three alerts were selected for improvements, based on their high trigger frequencies and low 

precisions. The project aimed to improve the alerts’ triggers by detecting and excluding the false 

positives before the auditors proceed with the manual classification. The development of binary 

classification models that maximize the specificity of the triggers, by maintaining their sensitivity as 

high as possible, aimed to reduce the total number of events that have to be reviewed by the auditors 

and, hence, significantly maximize the efficiency and productivity of the general alarm system.  

Practically, these goals are accomplished by minimizing the trigger’s fall-out and maximizing the 

specificity. Therefore, these two metrics are going to be the focal performance indicators of the 

models. 

 

4.1. TIMELINE 

The internship at CGD took place for nine months, from the 14th of September 2020 to the 13th of June 

2021. The temporal structure of the internship’s programs and projects is visualized in Figure 6 (p. 20). 
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The leading project of the internship, namely the implementation of three analogue machine learning 

pipelines to DAI’s continuous audit process, had a total duration of six months, two months for the 

implementation and monitoring of each ML pipeline. The first four months of the internship focused 

on the introduction and acclimatization to DAI’s information system.  

As previously mentioned, the three implemented pipelines follow a similar and equivalent process of 

data gathering, processing, modelling, model implementation, and monitoring. Due to the non-

disclosure agreement that was signed with CGD, this chapter will not focus on the explicit 

characteristics of the three datasets. However, specific challenges encountered during one or more of 

the modelling processes will be pointed out, joined by the solution approaches. 

 

4.2. IMPLEMENTATION OF MACHINE LEARNING PIPELINES TO DAI’S ALARM SYSTEM 

The project that this report focuses on consists of three machine learning pipelines that were 

implemented to DAI’s continuous audit process, namely the alarm system. The three workflows follow 

the same structure, differing solely in details due to specific characteristics of the alerts’ data. The 

workflows' steps include data gathering and understanding, data preparing and processing, model 

choice and parameter tuning, model evaluation, implementation, and monitoring.  

This chapter will precisely describe the steps that compose the ML pipelines. 

4.2.1. Motivation 

The continuous audit process’ alarm system at DAI comprises about a hundred alerts, which are 

classified into broad categories, i.e., incorrectly deducted commission charges or diverse types of 

fraud. The alert’s trigger is according to sets of manually implemented rules. Any banking activity that 

does not fulfil the corresponding restrictions will trigger an alert and be reviewed by an auditor.  

The alerts differ in terms of frequency, precision, and gravity of the miss rate. For example, the 

frequency spectrum of the alerts ranges from multiple times daily, to weekly or even monthly. In 

addition, fraud-related alerts have lower trigger precisions than alerts from other categories, due to 

the high cost of the non-retrieval of potentially fraudulent events (miss rate). 

ML Pipeline 1 

(Alert A) 

ML Pipeline 3 

(Alert C) 

 

Sep Oct Nov Dec Jan Feb Mar Apr May 

2020 2021 

Jun 

ML Pipeline 2 

(Alert B) 

 

Introductory and initial phases 

Figure 6: Internship Timeline 
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The alarm system is designed to identify any conspicuous activity in the institution, which, in statistical 

terms, means that the alerts focal performance measure is the recall, that is, the percentage of 

confirmed errors that are detected.  

The motivation of this project was the usage of binary classification models to improve the precision 

of the triggers, by maintaining their recall as high as possible. The models learn from the historical 

triggering events and the auditors’ classifications and aim to improve the specificity of the triggers and 

maintain their sensitivity. Furthermore, the trigger tuning aims to lead to smaller event samples that 

have to be reviewed by the auditors and, hence, decrease their workload. 

4.2.2. Data Description 

Due to the non-disclosure agreement that was signed with CGD, this report will label the three chosen 

alerts as Alert A, Alert B, and Alert C. 

The alerts’ datasets are composed of the historical triggering events and the corresponding 

classifications by the auditors. The auditors’ classifications of the events are the variable that this 

project aims to predict, hence, the output of the binary classification models. 

The choice of the three alerts that were tuned was based on the three following factors, ordered by 

relevance: 

1. Trigger frequency/dataset size 

2. The gravity of the miss rate 

3. Trigger precision/specificity improvement potential 

The trigger frequency and precision are negatively correlated, which leads to a forced trade-off 

between dataset size and target class imbalance. The target class imbalance is a direct consequence 

of low trigger precision, due to the significant prevalence of false positives in the target data. Knowing 

that the ideal conditions for the performance of ML models are generally significant and balanced 

datasets (Fernández et al. 2018), these optimal conditions contradict themselves by the dataset 

characteristics mentioned above. 

The three chosen alerts are the leaders in trigger frequency and have an overall small risk for non-

retrieved positive instances. Alert A has, by far, the most extensive triggering event history, and hence 

the most information to be used in the model training process. Alert B has the second-largest triggering 

event history, and Alert C was chosen due to a recent high activity, which is an indicator of great 

potential for improvement. 

Regarding the events’ date ranges, the datasets’ first records start on 02-04-2018. 

Dataset structures 

The events that trigger the alerts are first temporarily stored in SQL views and afterwards imported to 

a platform that is available to the auditors. The auditors’ platform contains the historical triggering 

events and the classifications from the auditors, which compose the datasets that are used for model 

training. The SQL views contain small samples of recent events that have yet to be imported to the 

platform. The classification models are applied to the events from the SQL views, to reduce the sample 

of events that is imported to the auditors’ platform. 
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However, not all variables from the SQL views are imported into the auditors’ platform. Considering 

that the models are trained with the data from the auditors’ platform, however, applied to the events 

in the SQL views, the data structures have to be adjusted accordingly. This adjustment includes the 

unification of column selection, column order, and the data types that vary between these two 

platforms. 

The dataset structures for each alert and platform can be consulted in Table 3. 

Alert Number of events 
auditors’ platform 

Mutual 
columns 

Exclusively on the 
auditors’ platform 

Exclusively in 
the SQL view 

A ~ 11300 22 30 29 

C ~ 3300 25 30 24 

B ~ 3300  34 30 13 

Table 3: Data structures of the alerts’ datasets, both in the auditors’ platform and SQL views (as of August 
2021) 

The equalization of the data structures will be described in the subchapter about data integration. 

Data types 

Figure 7 depicts the data types of the alerts’ datasets from the auditors’ platform. The category ‘Other’ 

includes identification columns, alphabetic data such as comments and specific descriptions, or serial 

numbers composed of several variables. 

 

 

 

 

 

 

 

 

 

Target distribution 

The variable that the classification models aim to predict is the auditors’ classification of the triggering 

events. The events can either be classified as confirmed events or as false positives. The implemented 

ML models work as retrieval systems, where the confirmed events are labelled as the positive class, 

and the false positives are labelled as the negative class.  

5%

18%

9%

32%

36%

Alert A

Binary Continuous Date Discrete Nominal Other

23%

18%

15%

3%

15%

26%

Alert B

4%

24%

20%
36%

16%

Alert C

Figure 7: Data type percentages of the variables from Alerts A, B and C. The data is retrieved from the auditors’ 
platform, where the data from the triggering events is stored. 
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An initial analysis of the target variable revealed that the alerts’ triggers have low precisions, meaning 

that the majority of the events are closed as false positives. This property leads to skewed target class 

distributions. The ratios of the positive class vs. negative class of these imbalanced datasets are shown  

in Figure 8. 

 

The target class imbalances offer insights into the triggers' precisions, which are 2% for Alert A, 7% for 

Alert B, and 1% for Alert C. The models aim to maximize the precision of the triggers by maintaining 

their recall as high as possible, to reduce the dispensable workload of the auditors. In practical terms, 

these goals are accomplished by minimizing the models’ fall-out and maximizing the models’ 

specificity. Therefore, these two metrics are going to be the focal performance indicators of the 

models. 

4.2.2.1. Data preparation and preprocessing  

Before the data preparation and preprocessing steps that are described in the following sectors, the 

data from the auditors’ platform was split into training and test sets. The model training was completed 

with 85% of the data, while 15% of the data was used to provide a final performance estimation of the 

models on new information. There was no need to define a validation set, as the cross-validation 

technique was used to tune the hyperparameters of the models.  

The data from the SQL views was also used as an unlabeled test set, given that the events from this 

source are not yet classified. The only metric that can be used to estimate the model performance on 

this data sample, when compared to the results obtained by cross-validation, is the event exclusion 

rate of the models. This comparison provides an estimation of the model performance on recent 

events. 

Data Integration 

As shown in Table 3 (p. 22), the alerts’ data from the auditors’ platform includes 30 variables that are 

not part of the SQL views. Considering that the models are applied to the daily events from the SQL 

views, these columns are not of further use. 

The columns that exist exclusively in the SQL views and are not imported to the auditors’ platform 

must also be excluded, since the SQL views delete the event history after a specific time, and the 

information is not saved elsewhere.  

Figure 8: Distribution of the target variables of Alerts A, B and C. P stands for the positive class, i.e., confirmed 
errors, whereas N stands for the negative class, i.e., false positives. 
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Furthermore, several mutual columns have different data types in the auditors’ platform and SQL 

views. For instance, some numerical columns in the auditors’ platform are imported as objects to SQL. 

Therefore, the affected columns from the SQL views were converted to numerical data like in the 

auditors’ platform, to unify these contrasting datatypes. 

Data Cleaning 

As visualized by Figure 7 (p. 22), the majority of the alerts’ variables are qualitative. For the qualitative 

variables, the missing values were imputed with the category ‘Other’. Since the datasets were created 

by automated processes, the eventuality of data errors is improbable. This type of imputation has the 

advantage of not introducing potentially incorrect information to the dataset, in opposition to the KNN 

Imputer or the imputation of missing values with the mode of the data. Some missing values occur in 

variables containing ‘optional’ information, such as agreements between the institution and an entity. 

In this case, missing values merely indicate that such an agreement does not exist. Hence, a 

binarization with the missing values as the negative class is the most adequate imputation method. 

The quantitative variables in the alerts’ datasets mainly refer to monetary values, which limits their 

values to the numerical set 𝑄+. The quantitative variables’ distributions are strongly right-skewed, and 

the variables include missing data and abnormally high values. Hence, a log transformation was used 

to remove the original skewness of the data, which allowed for easier identification of potential data 

anomalies. The missing values in these quantitative variables can be interpreted as 0. Thus, missing 

values and values below the unit were imputed with the number 1, translating to a 0 after the log 

transformation.  

To exclude data anomalies, the z-scores were computed to detect potential outliers, using a threshold 

of three standard deviations. This method eliminated roughly 0.1% of the data. An example of these 

data cleaning operations can be seen in Figure 9, which represents the transformations mentioned 

above for a continuous variable from the dataset corresponding to Alert A. 

 

 

 

 

 

 

 

 

 
Figure 9: Histograms of a continuous variable from the dataset corresponding to Alert A.  (1) The data in its 
original distribution before outlier removal. (2) The data in its original distribution after outlier removal. (3) 
The data after a log transformation. (4) The data after a log transformation and outlier removal.  

(From left to right, top to bottom) 
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One of the project’s main challenges was the shifting distribution of the nominal variables’ categories. 

From this point on, this issue will be referred to as data dynamism.  

In addition to the challenge of relatively small datasets, some events in the datasets did not contribute 

much information to the classification of new events, because the categories of the qualitative data 

are under constant change. For instance, the first economic effects of the SARS-CoV-19 pandemic in 

2020 shifted the class distributions of certain nominal variables and were responsible for entirely new 

sets of categories.  

The effects of the data dynamism came to light when a trained classification model was applied to the 

events from the auditors’ platform (with cross validation), and to the unlabeled test set with events 

from the SQL views. The event exclusion rates were significantly different, and one possible 

explanation was that the data dynamism was the main cause for the mentioned model performance 

discrepancy. When the data from the auditors’ platform is split into training and validations sets during 

cross validation, these sets are formed arbitrarily, not following a chronological order like the recent 

events from the SQL views. Since the models are intended to be applied to exclusively recent events, 

the non-occurring patterns that the models would learn to generalize are often not of benefit.  

Figure 10 depicts the distribution of the ten most common categories of a nominal variable from the 

dataset corresponding to Alert A, for the last three years. The impact of the SARS-CoV-19 pandemic 

can easily be identified as an example of the changing category distributions, as can be verified with 

the number of triggered events and category occurrences. 

 

One method to overcome this challenge was a data selection process, which ensures that only relevant 

information is used to train the models. This process of data selection was conducted by trial and error 

and followed the following two approaches: 

 

 

Figure 10: The category distributions of the 10 most common categories of a nominal variable from the dataset 
corresponding to Alert A, from July 2018 to July 2021. The category legend is excluded from the figure to not 

disclose concrete information. 
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1. The creation of event recency intervals 

This approach is based on model performance comparisons between models that were trained 

with fixed event recency intervals. Datasets with events from the last 18, 12, 9, and 6 months 

were created and used to train classification models as a means to compare the corresponding 

performances. 

However, the target labels of the events are not distributed uniformly along with the dataset’s 

time windows. Thus, this approach had the disadvantage of unbalancing the dataset further, 

making the modelling process more challenging. To overcome this disadvantage, the data 

range restriction was adjusted to merely affect events from the negative class, keeping all 

positively labelled instances. The resulting measure counteracted the disadvantageous 

behaviors while solving the data dynamism and the skewed target class data. 

2. The exclusion of events with non-recent category values 

This approach analyzed the events and their categories of nominal variables individually. 

Events that did not include any ‘recent’ categories were excluded from the dataset. The 

recency interval and the choice of which nominal variables to analyze are customizable and 

manually adjusted for each alert. Analogically to the first approach, the performance 

comparison of classification models trained with the resulting datasets revealed the most 

effective recency interval.  

The data dynamism did not occur in every alert. Hence, this data cleaning step had to be concluded 

optionally for each alert, since the alerts’ behaviors are unpredictable and do not follow a specific 

pattern. 

Data Transformation 

As depictured in Figure 7 (p. 22), most variables of the event’s datasets are nominal. Since some 

machine learning models, such as the logistic regression classifier, can only interpret numerical data, 

the nominal variables were transformed into binary features corresponding to each category.  

Furthermore, the creation of new features reinforced the extraction of relevant information from the 

quantitative variables. For instance, if incorrectly deducted commissions trigger an alert, ordinal 

features were added beyond the expected and actual deduction value. These features described the 

difference between the expected and actual deduction values as lower, equal, or higher.  

Regarding the timestamp and date variables, the extraction of ordinal features also added new 

information to the datasets, for instance, the definition of the quarters of the year. In addition, for the 

alerts that include variables of ‘start’ and ‘finish’ dates regarding deposits, ordinal duration features 

were calculated and included in the datasets. 

The sets of features labelled as ‘Other’ in Figure 7 (p. 22) were mainly excluded from the dataset. 

However, some variables, such as serial numbers constructed as combinations of possibly important 

variables, were separated into distinct features and encoded as nominal, hence subsequently, binary 

variables. 

In response to the target class imbalance mentioned earlier in this chapter, the SMOTE oversampling 

algorithm (Douzas et al. 2019) was used to generate synthetic samples for the minority class. The 
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altered dataset was saved separately, as eventual performance improvements are only coming to light 

during the project's modelling stage. 

Data Normalization 

Quantitative variables that are measured at different scales do not contribute equally to a model fitting 

process, which can induce a bias. Therefore, the quantitative variables that were already subjected to 

the log transformation were squished between 0 and 1, matching the binary variables’ range. This 

transformation was possible due to the previous removal of outliers and the log transformation, which 

assimilated the quantitative variable’s distribution to a normal distribution. 

Feature selection 

As Table 3 (p. 22) indicates, the variables that do not exist mutually in the auditors’ database and the 

SQL views could not be used for the modelling process. Therefore, with this initial variable selection 

and the feature engineering described in the subsection above, the datasets were left with mainly 

binary features and less than a handful of quantitative features. 

Due to the great diversity of categories in the original nominal variables, the number of new binary 

features ranges over a thousand. However, low occurring categories most commonly do not result in 

significant binary features.  

Considering that the problem at hand is a classification predictive modelling problem with mostly 

categorical input variables, the chosen feature selection method is the chi-squared test. The chi-

squared test tested the significance of each binary feature individually, and the resulting p-values 

functioned as exclusion criteria to exclude features that did not show significant dependency with the 

target variable. The usual levels of significance of 1%, 5%, and 10% were used and compared as 

decision thresholds to determine which set of features resulted in the best model performance. 

Additionally, fixed-size sets of most significant features, such as 25, 50, 75, and 100 were also 

constructed and used for model comparison. 

The ANOVA test evaluated the significance of the quantitative features, testing whether the 

continuous variables and the target variables origin from the same distribution. The result indicated 

that all the quantitative variables were statistically significant and could be kept in the feature space. 

4.2.3. Model and Analysis 

Several machine learning algorithms for binary classification were applied to the processed data, and 

the resulting performances were compared. The comparison process for each algorithm followed two 

main steps: the dataset and algorithm choice. 

Dataset choice 

As the previous chapter about data pre-processing and feature engineering/selection explored, several 

different dataset variations were created and considered for the modelling process. These dataset 

variations included different approaches to overcome the data dynamism, decide about feature 

selection, and eventually apply an oversampling technique to overcome the target class imbalance. 

Finally, the different dataset variations were applied to each ML algorithm to compare the 

performances of the resulting models.  
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Regarding the oversampling technique, the three alerts followed a similar behavior. The synthetically 

altered datasets class did not result in better model performances when compared to the original 

dataset. 

As the subsection about applying the chi-squared test mentioned, the feature selection approaches 

showed different results for each alert. The choice of a fixed number of the most significant features 

by the chi-squared test resulted in higher performance indicators for Alerts A and C. The models of 

these two alerts were trained with the 50 and 100 most significant features, respectively. However, 

the model corresponding to Alert B performed better when trained with the features classified as 

significant by the chi-squared test, according to a p-value of 5%. 

Regarding the data dynamism, not all alerts’ datasets needed intervention. However, the model for 

Alert A showed a better performance when the training data was altered with an event recency 

interval. The applied interval excluded false positives that triggered more than nine months ago. This 

alteration resulted in a lower performance discrepancy between the validation and test sets.  

Choice of algorithm and hyperparameter tuning 

When choosing the best algorithm for a dataset, the dataset’s properties and characteristics must be 

considered. ML classifiers and estimators reach their maximum potential and optimal performance 

when trained and applied to datasets with the most advantageous properties, which can vary between 

the classifiers. 

The optimal ML classifiers for the alerts’ datasets are ideally relatively robust to the following three 

key dataset characteristics and challenges: 

1. Relatively small sample size 

2. Strongly skewed class distribution  

3. Substantial prevalence of binary features 

These peculiar dataset properties narrow down the pool of suitable ML algorithms. Furthermore, 

experiments with different algorithms have shown that the dataset size significantly impacted the 

performance of classification models. For instance, complex models such as neural networks generally 

perform better on large datasets (Althnian et al. 2021), and the K-Nearest-Neighbor and Support 

Vector Machines tend to achieve good results with imbalanced datasets (Sun, Wong, and Kamel 2009). 

Out of the ML algorithms described in chapter 2.3., the best performances were obtained by the 

Logistic Regression classifier, followed by the Decision Tree classifier. 

The hyperparameter tuning was conducted by an exhaustive search over specified parameter values 

for the estimators (Pedregosa et al. 2011). Additionally, a cross-validated grid search over a parameter 

grid indicated the optimal values of the parameters. 

Considering that the goal of the ML models was to optimize the precision of the triggers while 

maintaining their recall, and due to the target class imbalance, which turns accuracy scores unreliable, 

the grid-search was performed with the 𝐹𝛽-score as its evaluation function. The value of 𝛽 was defined 

proportionally to the target class imbalance of each alert, to create a balanced environment between 

the target class frequencies and the weights of each class in the modelling process.  
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The logistic regression and decision tree classifiers each have a parameter to weight the target classes 

according to the class distribution, called class_weight in Python’s machine learning library scikit-learn. 

Due to the target class imbalance mentioned several times throughout this report, this parameter was 

found to be the most influential in the model’s performances, as it penalizes the incorrect classification 

of a positively labelled instance according to the chosen class_weight value. A high value of this 

parameter solely improved the recall of the models, whereas a lower value benefited only the 

precision.  

Figure 11 graphically showcases the recall and specificity in function of the parameter class_weight for 

the logistic regression classifier. The dataset that was used to train the models for this visualization 

corresponds to Alert A. In this case, the restriction of an event recency interval of 9 months for 

negatively labelled instances smoothed the target class imbalance.  

The optimal value of the class_weight parameter depends on the intended output of the model. For 

instance, if an alert triggers multiple dozen times a day and the cost of a high miss rate is not alarmingly 

high, which is the case for Alert A, a significant improvement in trigger precision can be beneficial, even 

if the recall is slightly lower than initially.   

The values of recall and specificity in function of the parameter class_weight are negatively correlated. 

Finally, the threshold for the minimum required recall for each alert was set at 90%, taking into account 

the mean minus the standard deviation. In Figure 11, this threshold is obtained at a value of 

class_weight of 15. 

The chosen models for each alert followed the rule of a minimal recall value of 90%, taking into account 

the mean minus the standard deviation of the results from the cross-validation. The chosen values of 

the class_weight parameter for each alert highly depended on the skewness of the target class 

distribution. 

 

Figure 11: Recall / sensitivity (red) and specificity (blue) of the logistic regression classifier fitted to Alert A, in 
function of the parameter class_weight, ranging in the interval of [0,20]. 
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Model evaluation 

The cross-validation technique was the fundament of the hyperparameter tuning and dataset choice 

for the classifiers. The results presented a relatively robust estimation of the model performances on 

the validation sets, which were composed of data that had been pre-processed together with the 

training data, but not used for model training. Furthermore, this method allowed for an estimation of 

the under- or overfitting of the models. 

However, as the models intended to be applied to entirely unseen events, 15% of the events for each 

alert’s datasets were separated before the data processing and modelling steps, to construct an 

estimation of model performances on previously completely unseen data. This test set was pre-

processed analogically to the training data preparation, using the encoder instances that were fitted 

with the training sets. 

After model training, the test set was used to obtain a final model performance estimation of the 

classification of events that were retrieved from the same distribution as the training set. However, 

the data dynamism challenge that was described earlier includes the risk of new events not following 

the data distributions as the events in the training, validation, and test sets. This eventuality is severe 

because the project's focal point is the correct classification of the new events that trigger the alerts 

daily. 

The only possibility of creating a model performance estimation for the classification of recent events 

is the application of the models on the events from the SQL views. The events from this data source 

are recent and not classified yet. Thus, the only model performance indicator is the percentage of 

event decrease that is obtained by the model application.  

The comparison of the event elimination rates from the models’ applications on the SQL views, and 

the specificity of the models that was obtained with cross-validation and the test sets, was a good 

performance indicator. A coherent and similar rate indicates that the new events’ datasets 

approximately follow similar data distributions as the less recent events’ data, that is, the data that is 

used for model training. This conclusion is essential for a promising and effective model performance 

on new events. 

Table 4 indicates the recall and specificity of the models on the validation and test sets and the event 

reduction rates from model application to the sets from the SQL views. For comparison purposes, the 

models that originated these results were fitted to have a mean recall of 95%. 

Alert 
Validation set Test set SQL Views 

Recall Specificity Recall Specificity Event reduction 

A 0.956 +/- 0.042 0.676 +/- 0.035 0.973 0.635 0.671 

B 0.938 +/- 0.042 0.278 +/- 0.016 0.948 0.274 0.254 

C 0.968 +/- 0.067 0.377 +/- 0.059 0.909 0.385 0.449 

Table 4: Comparison between the values of the recall and specificity of the logistic regression models for Alerts 
A, B and C, on the validation (obtained by cross-validation) and test sets, both extracted from the auditors’ 

platform, and samples from the SQL views 
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Neither of the alerts indicated signs of overfitting, since the performance indicators were similar for 

the validation and test sets. Additionally, the event elimination rate from the model application on the 

SQL views was coherent with the expected results, leading to the assumption that the underlying risk 

was also equal to the estimations. However, the model performance of Alert B was severely lower than 

for the other two alerts, indicated by lower recall and specificity values.  

Model implementation and motorization 

As depicted in Figure 12, the models are trained and updated with new events daily. This daily update 

ensures that the data distributions between the training and new events are as similar as possible.  

The correct functioning and performance of the models are monitored by the exportation of the daily 

event exclusion rate, i.e., the percentage of detected false positives. In the event of anomalies 

concerning the model performance expectations, the models are re-evaluated. 

 

 

 

 

 

 

 

 

 

 

 

4.2.4. Results and Discussion 

As previously mentioned, the class_weight parameter of the logistic regression classifier was the most 

influential component in the models’ outcomes. Hence, three risk thresholds were used as guidelines 

for each alert to choose the optimal value for this parameter. The risk thresholds referred to the 

minimal required recall expected from the models and were set at around 95%, 90%, and 80%.  

The model performance estimations were obtained with cross-validation, and both the mean of 

standard deviations of the recall and specificity were taken into account. The models' performances in 

terms of recall and specificity can be consulted in Table 5, the highlighted cells of which indicate the 

final chosen class_weight parameter for each model. The choice of evaluation metrics is linked to the 

factors that were listed in chapter 4.2.2. 

Figure 12: The workflow of the model implementation and monitoring. The first two steps (left to right) were 
completed once, whereas the area that is shadowed in light green is executed daily, in the depictured order. 
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In practical terms, the specificity indicates the reduction of the trigger frequency, and the recall 

describes the security of the model. 

 

Alert Recall Specificity Class_weight 

A 

0.970 +/- 0.034 0.672 +/- 0.032 20 

0.956 +/- 0.042 0.676 +/- 0.035 15 

0.890 +/- 0.066 0.722+/- 0.030 10 

B 

 

0.951 +/- 0.032 0.236 +/- 0.022 40 

0.938 +/- 0.042 0.287 +/- 0.016 35 

0.833 +/- 0.074 0.521 +/- 0.034 25 

C 

0.968 +/- 0.067 0.377 +/- 0.059 80 

0.945 +/- 0.071 0.462 +/- 0.080 60 

0.912 +/- 0.107 0.526 +/- 0.076 50 

Table 5: Values of the mean and standard deviation of the recall and specificity of the logistic regression 
models for Alerts A, B and C, in function of the class_weight parameter. The cells highlighted in green indicate 

the models that were chosen to be implemented. 

The model choice for each alert depended on the individually assessed compromise between risk and 

benefit. Both the recall and specificity were severely higher for Alert A when compared to the other 

alerts. This difference can be explained by the lower target class imbalance and the larger data volumes 

used to train the model. Alert A triggers more frequently than the other two alerts.  

Figure 13 graphically visualizes an estimation of the alerts’ model performances, based on the data 

from the year 2020. The saturated colors indicate the events that were kept by the models, whereas 

the transparent areas represent excluded events for each class. 

 

Figure 13: The results of the implemented logistic regression models for Alerts A, B, and C, based on the alerts’ 
data from 2020. The saturated red and blue colors indicate the percentages of events from the positive and 
negative classes that were kept by the models, whereas the transparent areas visualize the percentages of 

excluded events.  



33 
 

The trade-off between risk and decreased workload in function of the class_weight parameter for Alert 

A is depicted in Figure 14. The decreased workload estimation is precisely proportional to the 

percentage of decreased events in Table 5 (p. 32).  

 

 

In this case, the value of class_weight = 15 satisfies the recall requirement of 95.6% (+/- 4.4%) while 

reducing the auditor’s workload by about 68%.  

A simulation on Alert A’s data from 2020 revealed that this decrease would approximately correspond 

to 514 hours of event treatment, assuming that the treatment of an event takes about ten minutes.  

4.2.5. Conclusions 

Under the assumption that the original trigger recall is equal to 1, the original triggers’ fall-outs were 

98%, 93%, and 99% for Alerts A, B, and C. After the implementation of the models, the fall-out of Alert 

A‘s trigger was improved from 98% to 33%, corresponding to an improvement of 65%. The trigger fall-

outs for Alert B and C were improved by 28% and 37%, respectively. This improvement came at the 

cost of a recall reduction of about 4%, 5%, and 3% for Alerts A, B, and C.  Hence, the goal of maintaining 

the recall as high as possible by minimizing the fall-out and maximizing the precision of the triggers 

was fulfilled, especially for Alert A. As expected, the model created for Alert A delivered the best 

results, due to easier conditions to construct the models, such as the three times larger sample size 

and a ten times lower target class imbalance. 

In retrospect, it was interesting to compare the model outcomes for the three alerts due to the 

similarities and differences between the event’s datasets. The similarities included a high target class 

imbalance, a prevalence of nominal and binary variables, and overall small sample sizes.  

Unforeseen challenges, such as the changing category frequencies of the nominal data, were detected 

and addressed manually. Regarding the data dynamism, it was interesting to conclude that not every 

alert’s data needed intervention. Solely Alert A’s data showed a significantly better model performance 

when the training data was altered with an event recency interval. The exclusion of false positives that 

Figure 14: Risk / miss rate vs. decreased workload / specificity of a logistic regression model for Alert A, in 
function of the class_weight parameter. The implemented model is indicated with the black vertical line. 



34 
 

triggered more than nine months ago resulted in a lower performance discrepancy between the 

validation and test sets. Hence, this operation ensured that the model was more robust to new 

information, and lowered the risk of overfitting. 

The mutual characteristics between the alerts gravitated towards similar modelling results, such as the 

choice of the best classification algorithm: the logistic regression classifier. Thus, the parameter 

responsible for the target classes’ weights in the modelling process had the highest impact on the 

compromise between recall and precision and ended up being the main parameter to tune. 

Furthermore, the flexibility of this parameter could be used to adjust the models to different risk 

scenarios, which reflect the cost of miss rate for each alert. 

Due to the data dynamism of the alerts, it was decided that the models are trained daily with the newly 

classified events, which are imported daily from the SQL views to the auditors’ platform. This periodic 

model update ensures that the models are constantly up to date with new characteristics in the data. 

However, due to the recent activity of the models, the possible effects of the data dynamism issue may 

not be noticeable yet, which asks for special attention to the future performance of the models.  

Finally, a feature importance measure obtained with the random forest algorithm offered an 

interesting insight into the most decisive variables/categories that yielded the most mutual 

information with the target variable and potential weight in the model's decision process. 

Furthermore, the gained information could be used to directly tune the manually implemented rules 

in the SQL views where the triggering events are saved, to exclude certain events from entering the 

database directly. 
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5. CONCLUSIONS 

Every data science project derives from a notion of improvement potential, and the incentive to create 

or optimize an existing system. The project that was described in this internship report is no exception 

and rose from this exact motivation.  In the project's initial phase, namely the evaluation of the 

business problem and its enhancement perspective, it was challenging to define and pinpoint concrete 

targets. However, the explicit goals followed along as the project guidelines were set and the data 

potential was brought to light. 

The project’s beginning was characterized by the uncertainty of how the alarm system at DAI could be 

improved. The analysis of the alarm system revealed each component's properties and characteristics, 

ultimately leading to the identification of alerts that yielded the most potential to be tuned. The alerts 

were interpreted as retrieval systems, which put the idea in motion to implement classification models 

to improve the precision of alerts’ triggers. 

The classification model for Alert A was the pioneer ML application to DAI. Fortunately, its successful 

implementation led to the decision to apply the same procedures to Alerts B and C, which also 

triggered frequently and not precisely. Due to the alerts’ similarities, the ML pipeline that was built for 

Alert A could easily be adapted to Alerts B, C, and other future projects.  

Even though individual data processing steps always have to be completed manually, the 

implementation process of new alerts was greatly facilitated. In addition, the ML pipelines decreased 

the auditor’s workload at a reasonable and predefined risk of not retrieving correctly triggered events.  

Despite the similarities between the three datasets, each ML pipeline brought on new challenges, 

which inspired distinct approaches. The principal challenges that were faced during the 

implementation processes were the choices between different data preprocessing and preparation 

alternatives. For instance, the data dynamism issue and the changing distributions of certain features 

demanded creative and flexible solutions. 

In conclusion, the implementation of the three ML workflows resulted in the successful optimization 

of DAI’s alarm system. The first ML pipeline for Alert A was implemented successfully, and the 

favorable outcome of the project led to the acknowledgement of ML applications on the other two 

alerts. Furthermore, the ML models were sequentially implemented, and the results have been 

meeting the model performance expectations and estimations, eliminating an average of 45% of daily 

events that trigger the three chosen alerts. It is essential to mention that no alerts with a high cost of 

miss rate, such as fraud-related alerts, were chosen to be tuned. The trade-off between precision and 

recall of the models induced an existent risk to the project’s implementation.  

The primary goal of decreasing the auditor’s workload was completed, as implementing the models 

for the three alerts resulted in a significant reduction of daily events.  

 

 



36 
 

5.1. CONNECTION TO THE MASTER PROGRAM 

As the name suggests, the master's program in DSAA-DS specializes in information technology and 

computer science for data science. The technical aspect of the program is very up-to-date to the global 

market, and the students acquire broad expertise in the vast majority of areas that compose the data 

science universe.   

From the beginning of the internship at CGD, my personal goal was to participate in a project that 

involved a data processing and modelling process, as I wanted to deepen my newly acquired skills and, 

at the same time, experience the differences between academic projects and professional challenges. 

Furthermore, without the technical background and knowledge that I acquired during the masters’ 

program, the ML pipelines would not have been implemented in DAI’s alarm system. Hence, my initial 

personal goal was undoubtedly achieved. 

The master's program, especially the data mining and machine learning courses, strongly focus on 

model construction and evaluation. Therefore, the skills and takeaways of the academic projects that 

were developed during those courses were directly applied to the internship projects.  

For instance, the correct structure of a machine learning pipeline, the individual steps of the CRISP-DM 

model, and the final critical and objective appraisement of ML models’ performances were all 

meticulously discussed in the course and applied to the internship’s projects. Furthermore, the 

mathematical understanding of the models’ mechanisms firmly guided the comparison between 

different classification algorithms. This knowledge was especially essential for the hyperparameter 

tuning of the models, and decision-making in the data processing stage, since each algorithm has 

different ideal data conditions. 

One of the main advantages of having been part of the pioneer ML project at DAI was the freedom of 

tool choice and implementation approach within the institutions’ regulations. Thus, the knowledge I 

acquired during the curricular year of the master program served as the leading guideline to the 

project. Since Python was the most frequently used language during the DSAA-DS courses, defining 

Python as the tool of choice was instant. The introduction to the data science platform Anaconda in 

the masters’ program was especially relevant, as this granted a fluency in Python’s data science 

libraries. Additionally, understanding the manipulation of SQL objects was essential to the internship’s 

projects and was possible due to the master’s program.  

Finally, on a more general note, the evaluation methods of some DSAA-DS courses, such as the 

performance in Kaggle competitions, strongly stimulated the desire to obtain the best results and learn 

endlessly and consistently. This eagerness and enthusiasm to constantly improve one’s performance 

was the guiding force to implementing the ML pipelines and is the key to excellence and a successful 

career start. 

 

5.2. INTERNSHIP EVALUATION 

The internship with the Data & Analytics Team at DAI was an overall positive experience. It was a 

privilege to individually implement and accompany an ML project from start to finish. All the steps of 

a classical machine learning pipeline, from the business understanding and data gathering to model 
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implementation and monitoring, were part of my responsibilities. Whereas the master program 

focused mainly on an ML pipeline's data processing and modelling steps, monitoring the practical 

model implementation and continuous evaluation steps was equally fascinating. 

The freedom of methodology and tool choice came with the responsibility to thoroughly investigate 

all options and make the best decisions for the business problem in question. The development of this 

internship report as my master’s thesis undoubtedly helped with the choices that were made during 

the project development, due to the large number of relevant references that were consulted to 

undermine the decisions.  

Furthermore, considering that this internship was my first professional experience, I found it important 

to humbly and carefully evaluate each possibility for the decisive choices that had to be made along 

with the project. Thus, I realized that the possibilities in ML are endless and that I still have a lot to 

learn and improve. 

Before I started this internship, I was eager to apply my newly acquired data science knowledge. This 

goal was accomplished, as I had the chance to experience how machine learning projects are 

implemented in a professional environment. 

 

5.3. LIMITATIONS 

Considering that the internship was completed at a financial institution, the security restrictions 

regarding the usage of specific tools can be regarded as an obstacle. For instance, specific Python 

libraries that are not part of the Anaconda data science platform could not be installed, and some steps 

of the project, especially the visualization of the results, had to be completed alternatively. Another 

difficulty that was encountered due to the security restrictions at CGD was the connection between 

MS Access and Python, which was used to import the events from the auditor’s database.  

An obstacle encountered on the path to further apply machine learning models to other alerts that 

compose DAI’s alarm system is the substantial class imbalance of the alert’s data. In most cases, the 

petite sample sizes of confirmed events do not yield enough information to use ML to boost the trigger 

precisions. Additionally, the dynamic data distributions and the approach of removing non-recent 

events from the datasets significantly reduced the training data that was used to fit the models. As a 

result, finding a performance balance between the data loss and the event’s recency was challenging. 

The datasets from the alerts that were chosen to be tuned are majorly composed of nominal data. 

Unfortunately, encoding nominal data can be incredibly challenging due to the curse of dimensionality. 

Most of the binary features resulting from the nominal variables' transformation into numerical data 

did not hold significant information to predict the target variable. This phenomenon occurred due to 

the high number of categories of the nominal variables, and hence, the binary variables’ skewed class 

distribution. Due to this detail, it was challenging to select the optimal set of features to tune the 

models and obtain results that correspond to ideal expectations. 

Finally, due to the temporal restrictions in a professional environment, it was not always possible to 

invest time to experiment with state-of-the-art algorithms and carefully examine the effects of each 

data processing step in the models' performances. This focus shift was different to an academic 
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environment, such as during the master’s program, where the academic aspect of algorithm 

comparison and evaluation is often the main focus point. 

 

5.4. LESSONS LEARNED 

Before this internship, my only experience with data science projects was through academic projects 

and theoretical lessons. This professional adventure indeed emphasized the differences between the 

academic and corporate worlds. Naturally, academic projects do not cover all potential issues that one 

could encounter with real-life data.  

One of the most remarkable differences between the usage of artificially created data that is meant to 

be used for machine learning experiments, and authentic data that is gathered from existing systems, 

is the unknown potential that the projects yield. For instance, there were no possible predictions about 

the projects’ outcomes before the first model’s performance results. Furthermore, considering that 

the auditors manually and individually classify the events, there was no guaranteed way of ensuring 

that the datasets included a recognizable pattern. Therefore, projects of this category have to be 

developed step by step, and the performance expectations of the models have to be created 

simultaneously as the project progresses. 

Contrary to academic projects that are developed for a single course and may not be looked at ever 

again, the code and ideas developed for a professional project are saved for other colleagues to consult 

and further develop. Hence, the importance of documentation and logical coherence of the decisions 

that are made are essential.  

 

5.5. FUTURE WORK 

Due to temporal restrictions and expectations, there is still much improvement potential for the 

models implemented during this internship, especially for Alert B. However, the sky is the limit in 

machine learning, and new methodologies are suggested and tested every day.  

Even though the outcome of this project was at least as good as expected, and the auditors’ workload 

was significantly reduced, the ratio between recall and precision, that is, the risk of non-retrieved 

confirmed errors and the ratio of correctly triggered events could still be optimized. Eventually, further 

optimization requires a deeper business understanding of the data. 

Furthermore, ML models could and will be applied to other alerts at DAI, since the implemented 

projects have been successful. Knowing that these projects were the pioneer machine learning 

implementations to the Department for Internal Audit at CGD, I am confident that many more 

applications to other databases are possible and would benefit the auditors. Fortunately, the interest 

in data science and machine learning is strong and growing with the omnipresence of AI in today’s 

world. 

Finally, I would like to emphasize that my internship at CGD was a great experience that undoubtedly 

opened many doors to my future data science career path. It was a great continuation of the curricular 

component of the master's program, and a great conclusion of the DSAA-DS degree. 
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