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Abstract

We prove a version of the Riesz-Thorin interpolation theorem for some types of weighted

variable Lebesgue spaces. In order to do this we use the theory developed by Calderón in

his 1964 article, together with some Banach function space theory.

Using our version of the Riesz-Thorin theorem, we prove a version of the Stechkin

inequality for weighted variable Lebesgue spaces, allowing us to define algebras of Fourier

multipliers arising from functions of bounded variation.

After analyzing the invertibility of Fourier convolution operators with piecewise con-

tinuous symbols, we shift our attention to slowly oscillating Fourier multipliers, finishing

with a proof that the image in the Calkin algebra of the algebra of convolution type

operators with slowly oscillating data is commutative.

Keywords: Weighted variable Lebesgue spaces, Fourier multipliers, Interpolation, Func-

tions of bounded variation, Slowly oscillating functions, Algebras of convolution type

operators, Compactness of commutators
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Resumo

Provamos uma versão do teorema de interpolação de Riesz-Thorin para alguns tipos de

espaços de Lebesgue com expoente variável e peso. De forma a atingir este objectivo,

usamos a teoria desenvolvida por Calderón no seu artigo de 1964.

Usando a versão do teorema de Riesz-Thorin obtida, provamos uma versão da de-

sigualdade de Stechkin para espaços de Lebesgue com expoente variável e peso. Isto

permite-nos definir álgebras de multiplicadores de Fourier associados a funções de varia-

ção limitada.

Após analisada a invertibilidade dos operadores de convolução com símbolos contí-

nuos por troços, deslocamos a nossa atenção para multiplicadores de Fourier fracamente

oscilantes. Terminamos com a prova de que a imagem na álgebra de Calkin da álgebra de

operadores tipo convolução com dados fracamente oscilantes é comutativa.

Palavras-chave: Espaços de Lebesgue com expoente variável e peso, Multiplicadores de

Fourier, Interpolação, Funções de variação limitada, Funções fracamente oscilantes, Álge-

bras de operadores tipo convolução, Compacidade de comutadores
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1
Introduction

Some of the key spaces in functional analysis are the Lebesgue spaces Lp. Given a real

number p ≥ 1, the Lp space on R is the set of complex-valued measurable functions f

defined on the real line such that the p-norm

‖f ‖Lp :=
(∫

R

|f (x)|pdx
)1/p

is finite.

One natural generalization of these spaces is obtained by adding a weight. This is a

measurable function w : R→ [0,+∞] such that 0 < w(x) < +∞ almost everywhere. The

new space Lp(w) is then the set of all measurable functions f :R→C such that the norm

‖f ‖Lp(w) :=
(∫

R

|f (x)w(x)|pdx
)1/p

is finite.

We will work in weighted variable Lebesgue spaces. These are a further generalization

of Lebesgue spaces. We replace the constant p by a measurable function p(x) :R→]1,∞[.

Although we cannot just replace p by p(x) outside of the integral, we can define the Lp(·)(w)

norm by

‖f ‖Lp(·)(w) := inf

λ > 0 :
∫
R

∣∣∣∣∣f (x)w(x)
λ

∣∣∣∣∣p(x)

dx ≤ 1

 .
Under certain conditions on the weight, this is a Banach space.

Our main objects of study will be multiplication operators aI , which multiply some

function by a bounded measurable function a, and Fourier convolution operatorsW 0
b , where

b is a suitable function, sometimes called symbol. These operators act on a function g by

W 0
b (g) := F−1bFg.

1



CHAPTER 1. INTRODUCTION

Here F is the Fourier transform, defined for functions f ∈ L1(R) by

(Ff )(x) :=
∫
R

f (t)eitxdt, x ∈R,

and F−1 is its inverse, defined by

(F−1g)(t) :=
1

2π

∫
R

g(x)e−itxdx, t ∈R.

Fourier multipliers are precisely the functions b ∈ L∞(R) that give rise to bounded

operators W 0
b . Here L∞(R) is the set of complex-valued functions that are bounded on

R. The set Mp(·),w of Fourier multipliers for a fixed Lp(·)(w) is a Banach algebra, with the

norm given by

‖b‖Mp(·),w
:=

∥∥∥W 0
b

∥∥∥
B(Lp(·)(w))

,

where B(Lp(·)(w)) is the algebra of bounded linear operators in Lp(·)(w).

We will study properties of Fourier convolution operatorsW 0
b with b in several classes

of symbols. Let C(
.
R) be the set of all continuous functions f on R with equal limits

at −∞ and +∞, P C(R) the set of piecewise continuous functions, SO� the set of slowly

oscillating functions, and P SO� the set of piecewise slowly oscillating functions. These

concepts will be rigorously defined later.

If S is one of the aforementioned spaces, let Sp(·),w be the corresponding algebra of

Fourier multipliers. The definition of Sp(·),w varies according to the space S, but it is

generally the closure of some set with respect to the Fourier multiplier norm ‖·‖Mp(·),w

defined above.

Define the following algebras of operators:

Cp(·),w : = algB(Lp(·)(w)){aI,W
0
b : a ∈ C(

.
R), b ∈ Cp(·),w(

.
R)},

SOp(·),w : = algB(Lp(·)(w)){aI,W
0
b : a ∈ SO�, b ∈ SO�p(·),w},

PSOp(·),w : = algB(Lp(·)(w)){aI,W
0
b : a ∈ P SO�, b ∈ P SO�p(·),w}.

These are the smallest closed subalgebras of B(Lp(·)(w)) that contain the operators indi-

cated between brackets.

A compact operator is one that takes bounded sets to sets with compact closure. The

set K(V ) of all compact operators on a given Banach space V is a closed ideal. This allows

us to define the Calkin algebra as

Bπ(V ) := B(V )
�K(V ).

A Fredholm operator is then an operator F ∈B(V ) such that F+K(V ) is invertible in Bπ(V ).

After proving that the ideal of compact operators is a subset of each of the above

algebras, we can define more quotient algebras. If Xp(·),w ∈ {Cp(·),w,SOp(·),w,PSOp(·),w},
define

Xπ := Xp(·),w�
K(Lp(·)(w)).

2



A criterion for Fredholmness of an arbitrary operator D ∈PSOp,w, in the case of con-

stant exponent p ∈]1,∞[ and so-called Muckenhoupt weight w, was obtained in [26] and

[27]. The proof is based on Allan’s local principle [1]. The latter result gives criteria for in-

vertibility of an element of an algebra, if the algebra contains a suitable large commutative

subalgebra.

The aim of this thesis is to begin studying the algebra PSOp(·),w, with log-Hölder

continuous exponents and suitable power weights

w(x) = |x − i|λ∞
m∏
j=1

|x − xj |λj , x ∈R.

We take the first steps in adapting the method followed in [26] and [27] to find a Fredholm

criterion for PSOp(·),w.

The thesis is organized as follows.

Chapter 2 is dedicated to some preliminaries. We define algebras over a field and quo-
tient algebras. We then give the definitions needed for the statement of the local principle
developed by Israel Gohberg and Nahum Krupnik in their 1973 paper [18]. This result

will later allow us to say precisely when certain operators are invertible. We recall some

basic concepts in operator theory, namely those of bounded and compact operators, along

with some results. After presenting the concept of a piecewise continuous function, we

repeat Roland Duduchava’s proof that each piecewise continuous function can be approx-

imated by a piecewise constant function. The set of functions of bounded variation, which

will be an important concept in the following chapters, is also introduced. We finish this

chapter with some basic facts about the convolution of two functions.

In Chapter 3, after first giving an intuitive explanation of interpolation and the origi-

nal interpolation theorem by Marcel Riesz and Olof Thorin, we start a foray into Alberto

Calderon’s interpolation theory, developed in his 1964 paper [9]. We then finally define

the basic spaces in this thesis, the weighted variable Lebesgue spaces. We then apply some

of Calderon’s results to obtain an analogue of the Riesz-Thorin interpolation theorem for

weighted variable Lebesgue spaces. We conclude the chapter with a theorem on interpo-

lation of compactness in the setting of weighted variable Lebesgue spaces, analogous to

the Krasnosel’skii interpolation theorem. It seems that both interpolation theorems were

not stated explicitly in the literature.

In Chapter 4, we define Fourier convolution operators and Fourier multipliers on weighted

variable Lebesgue spaces. We introduce the classical Stechkin inequality, which states that

every function of bounded variation is a Fourier multiplier on the standard Lebesgue

spaces. We then devote a section of this chapter to obtain a new generalization of this

result to weighted variable Lebesgue spaces. This generalization allows us to define the

algebra of piecewise continuous Fourier multipliers and obtain new results about invert-

ibility of Fourier convolution operators with piecewise continuous symbols on weighted

variable Lebesgue spaces.

3



CHAPTER 1. INTRODUCTION

In Chapter 5, using the results of the previous chapters, we find a description of

the algebra Cp(·),w(
.
R) of continuous Fourier multipliers. We then study three diferent

algebras of convolution type operators, Cp(·),w ⊂ SOp(·),w ⊂ PSOp(·),w, with continuous,

slowly oscillating and piecewise slowly oscillating symbols, respectively. We show that

the ideal of compact operators K(Lp(·)(w)) is contained in the algebra Cp(·),w. The main

result of this chapter says that the commutators aW 0(b)−W 0(b)aI are compact for all a ∈
SO� and b ∈ SOp(·),w. These results imply that the quotient algebras SOπp(·),w ⊂ PSOπp(·),w
are well defined and that the algebra SOπp(·),w is a commutative subalgebra of the algebra

PSOπp(·),w. If, in the future, a description of the maximal ideal space of SOπp(·),w is obtained,

this would allow the use of the Allan local principle to study invertibility in the algebra

PSOπp(·),w.

4
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2
Preliminaries

2.1 Algebras

2.1.1 Basic Concepts

An algebra A over a field K ∈ {R,C} is a vector space over K, equipped with an addi-

tional binary operation (which we will denote by juxtaposition), satisfying the following

properties:

• (ab)c = a(bc);

• (a+ b)c = ac+ bc, a(b+ c) = ab+ ac;

• (λa)b = a(λb) = λ(ab)

for all a,b,c ∈A, λ ∈K.

If K =R, we will call the algebra real, and complex otherwise. We will call an algebra

A commutative if it satisfies

ab = ba, a,b ∈A,

and unital if it has a unit: an element e ∈A such that

ea = ae = a, a ∈A.

An element a ∈A is said to be invertible if there exists b ∈A such that

ab = ba = e.

An algebra Abecomes a Banach algebra if in addition, we define a norm ‖·‖ on A that

makes the underlying vector space complete and satisfies

• ‖ab‖ ≤ ‖a‖‖b‖ for each a,b ∈A;

5



CHAPTER 2. PRELIMINARIES

• ‖e‖ = 1, if A is unital.

Let Abe a Banach algebra and B be a subset of A. We denote by closAB the closure of

B with respect to the norm of A. If B is an algebra, then B= closAB becomes a Banach

subalgebra of A.

Furthermore, for a subset E ⊂A, we denote by algAE the smallest closed subalgebra

of A that contains E, i.e., the intersection of all closed subalgebras of A containing E.

Equivalently,

algAE = closA


∑
j

γj
∏
k

ajk : γj ∈C, ajk ∈ E

 .
Here the sum and the (ordered) product are finite.

The following simple result can be found in many textbooks on Banach algebras.

Theorem 2.1.1. Let Abe a Banach algebra with identity e. If u ∈A satisfies ‖u‖ < 1, then the
element e −u is invertible with the inverse

(e −u)−1 =
∞∑
n=0

un.

Proof. Note that
∑∞
n=0‖un‖ ≤

∑∞
n=0‖u‖

n. The latter is a geometric series, which is conver-

gent since ‖u‖ < 1. This implies that the series
∑∞
n=0‖un‖ is absolutely convergent, hence

the series
∑∞
n=0u

n is convergent by completeness of A. Denote by vN =
∑N
n=0u

n the partial

sums of this series. Then

(e −u)vN = vN (e −u) =
N∑
n=0

un −
N∑
n=0

un+1 = e −uN+1,

Since
∥∥∥uN+1

∥∥∥ ≤ ‖u‖N+1 → 0 as N → ∞, the above identity implies that
∑∞
n=0u

n is the

inverse of e −u.

2.1.2 Quotient Algebras

Let Abe an algebra over a field K ∈ {R,C}. A subset I ⊂A is called a right ideal if

• λa ∈ I ;

• a+ b ∈ I ;

• ac ∈ I

for all a,b ∈ I, c ∈A, λ ∈K. By replacing ac with ca, we would define a left ideal. A subset

that is both a left and right ideal is called a two-sided ideal.

Given a two sided-ideal I of an algebra A, we can define an equivalence relation ∼ on

Aas

a ∼ b if and only if a− b ∈ I.

6



2.1. ALGEBRAS

The equivalence class of an element a ∈A is given by

aπ = a+ I = {a+ i : i ∈ I}.

The set of equivalence classes is then an algebra over K, denoted by A
�I , with operations

defined by

• aπ + bπ = (a+ b)π;

• aπbπ = (ab)π;

• λaπ = (λa)π.

The algebra A
�I is called the quotient algebra of Aover I .

Theorem 2.1.2 ([16, Chap. 1, §2, Theorem 3]). If A is a Banach algebra and I is a closed
ideal, we can define a norm on A

�I by∥∥∥aπ∥∥∥A
�I

= inf{‖a+ i‖A : i ∈ I}.

This turns A�I into a Banach algebra.

2.1.3 Gohberg and Krupnik Local Principle

The Gohberg and Krupnik local principle was developed by Israel Gohberg and Nahum

Krupnik in their article "On a Local Principle and Algebras Generated by Toeplitz Matri-

ces", published in Russian in 1973. In this section we will cite results from its English

translation [18]. The same results are also available in [17, Chap. 5].

Given a unital Banach algebra A, we will call a subset M ⊂Aa localizing class if

• 0 <M;

• for any f1, f2 ∈M there exists an element f ∈M such that fjf = f fj = f , j = 1,2.

Two elements a,b ∈Aare said to be M-equivalent, and we write a M∼ b if

inf
g∈M
‖(a− b)g‖ = inf

g∈M
‖g(a− b)‖ = 0.

The following two lemmas are stated in [13, p. 21] without proof.

Lemma 2.1.3. Let Abe a unital Banach algebra and M a localizing class. Suppose that

sup
g∈M
‖g‖ = K <∞.

If a1
M∼ b1, a2

M∼ b2 and λ1,λ2 ∈K then

λ1a1 +λ2a2
M∼ λ1b1 +λ2b2.

7



CHAPTER 2. PRELIMINARIES

Proof. Fix ε > 0. If λ1 = λ2 = 0 the result is obvious. Suppose otherwise and take g1, g2 ∈M
such that

‖(a1 − b1)g1‖, ‖(a2 − b2)g2‖ <
ε

K(|λ1|+ |λ2|)
.

By definition of localizing class, there exists g3 ∈ M such that gjg3 = g3gj = g3, j = 1,2.

Then

‖(λ1a1 +λ2a2 −λ1b1 −λ2b2)g3‖ = ‖λ1(a1 − b1)g3 +λ2(a2 − b2)g3‖

= ‖λ1(a1 − b1)g1g3 +λ2(a2 − b2)g2g3‖

≤ |λ1| ‖(a1 − b1)g1g3‖+ |λ2| ‖(a2 − b2)g2g3‖

≤ ‖g3‖ (|λ1| ‖(a1 − b1)g1‖+ |λ2| ‖(a2 − b2)g2‖)

< K(|λ1|+ |λ2|)
ε

K(|λ1|+ |λ2|)
= ε.

This proves that

inf
g∈M
‖(λ1a1 +λ2a2 −λ1b1 −λ2b2)g‖ = 0,

and the proof of the other equality is analogous.

Lemma 2.1.4. Let Abe a unital Banach algebra and M a localizing class. Suppose that

sup
g∈M
‖g‖ = K <∞.

If (an)n∈N and (bn)n∈N are sequences in Awith limits a and b, respectively, such that an
M∼ bn

for all n ∈N, then a M∼ b.

Proof. Fix ε > 0. For each n ∈N, take gn ∈M such that

‖(an − bn)gn‖ <
ε

2K + 1
.

By definition of the limit, there exist N1,N2 ∈N such that

∀n ≥N1, ‖a− an‖ <
ε

2K + 1
, ∀n ≥N2, ‖b − bn‖ <

ε
2K + 1

.

Take N = max{N1,N2}. Then

‖(a− b)gN ‖ = ‖agN − bgN ‖ = ‖agN + aNgN − aNgN + bNgN − bNgN − bgN ‖

= ‖(a− aN )gN − (b − bN )gN + (aN − bN )gN ‖

≤ ‖(a− aN )gN ‖+ ‖(b − bN )gN ‖+ ‖(aN − bN )gN ‖

≤ ‖a− aN ‖ ‖gN ‖+ ‖b − bN ‖ ‖gN ‖+ ‖(aN − bN )gN ‖

<
2εK

2K + 1
+

ε
2K + 1

= ε.

This proves that

inf
g∈M
‖(a− b)g‖ = 0,

and the proof of the other equality is analogous.

8



2.1. ALGEBRAS

An element a ∈ A is said to be M-invertible if there exists b ∈ A and g ∈M such that

bag = gab = g.

Lemma 2.1.5 ([18, Lemma 1.1]). Let Abe a Banach algebra with identity e andM a localizing
class. If a,b ∈Aare such that a M∼ b, then a is M-invertible if and only if b is M-invertible.

Proof. Suppose that a is M-invertible. Then there exist c ∈A, f ∈M such that

caf = f .

Note that c , 0, otherwise f = 0 ∈M. Since a M∼ b, there exists g ∈M such that

‖(a− b)g‖ < ‖c‖−1.

Since M is a localizing class, there exists h ∈M such that

f h = gh = h.

Using the previous equalities, we deduce that

cbh = cah− c(a− b)h

= caf h− c(a− b)gh

= f h− c(a− b)gh

= h− c(a− b)gh.

Defining u = c(a− b)g, we have

cbh = (e −u)h.

Since ‖u‖ < 1, the element e−u is invertible by Theorem 2.1.1. Defining d = (e−u)−1c, we

obtain dbh = h. The proof of the equality hbd = h is analogous.

let X be an index set. A collection (Mx)x∈X of localizing classes is said to be covering if

for each choice of elements ax ∈Mx, one can select a finite number of elements ax1
, . . . axn

such that ax1
+ . . .+ axn is invertible.

Theorem 2.1.6 ([18, Theorem 1.1]). Let A be a Banach algebra with identity e and X an
index set. Let (Mx)x∈X be a covering collection of localizing classes and a ∈A that satisfies the
property:

for every x ∈ X there exists ax ∈A such that a
Mx∼ ax.

If a commutes with every element of
⋃
x∈XMx, then it is invertible in A if and only if each ax

is Mx-invertible for every x ∈ X.

Proof. If a is invertible in A, a is evidentlyMx-invertible for each x ∈ X. Since a
Mx∼ ax, each

ax is also Mx-invertible by Lemma 2.1.5. Now suppose that each ax is Mx-invertible and

let us prove that a is invertible. By Lemma 2.1.5, a is Mx invertible for each x ∈ X. This

9



CHAPTER 2. PRELIMINARIES

means that there exist bx ∈ A, fx ∈Mx such that bxafx = fx. Since (Mx)x∈X is a covering

collection, we can choose fx1
, . . . , fxm such that

∑m
j=1 fxj is invertible in A. Now define

s :=
m∑
j=1

bxj fxj .

Using the hypothesis that a commutes with every element of
⋃
x∈XMx, we obtain

sa =
m∑
j=1

bxj fxja =
m∑
j=1

bxjafxj =
m∑
j=1

fxj .

This implies that  m∑
j=1

fxj


−1

sa = e.

In a similar manner we can prove that

a

 m∑
j=1

fxj


−1

s = e,

hence a is invertible as desired.

2.2 Operator Theory

2.2.1 Bounded Operators

Let V and W be normed vector spaces over K ∈ {R,C}. A (not necessarily linear) operator

A : V →W is said to be bounded if there exists a real number K such that

‖Av‖W ≤ K‖v‖V

for all v ∈ V .

The set of bounded linear operators A : V → W , denoted by B(V ,W ), is a normed

vector space if equipped with the operator norm

‖A‖B(V ,W ) := inf{K ≥ 0 : ‖Av‖W ≤ K‖v‖V for all v ∈ V }.

If W is a Banach space, so is B(V ,W ).

If V =W , the set of bounded linear operators is a Banach algebra (with multiplication

given by composition of operators) which we denote by B(V ).

2.2.2 Compact Operators

Let V and W be Banach spaces over K ∈ {R,C}. A linear operator T : V →W is said to be

compact if, for any bounded sequence (xn) in V , the sequence (T xn) admits a convergent

subsequence.

The set of compact operators from V to W will be denoted by K(V ,W ). If V =W , we

abbreviate it to K(V ).

10



2.2. OPERATOR THEORY

Theorem 2.2.1 ([34, Theorem 7.2]). Any operator T ∈K(V ,W ) is bounded.

Proof. Assume T is compact but not bounded. Then for each n ∈N there exists xn ∈ V
such that

‖xn‖ = 1 and ‖T xn‖ ≥ n.

The sequence (xn) is bounded, hence by compactness of T there exists a convergent

subsequence (T xnk ). But this sequence cannot simultaneously be convergent and satisfy∥∥∥T xnk∥∥∥ ≥ nk . Contradiction, so T must be bounded.

Theorem 2.2.2 ([34, Theorem 7.9]). If (Tn) is a sequence of compact operators convergent to
an operator T , then T is also compact.

Proof. Let (xn) be a bounded sequence in V . Since T1 is compact, there exists a subse-

quence (xn1,k
)k∈N such that the sequence (T1xn1,k

) converges. Now the sequence (xn1,k
)k∈N

is also bounded, hence by compactness of T2 it has a subsequence (xn2,k
)k∈N such that the

sequence (T2xn2,k
)k∈N is convergent. In addition, (T1xn2,k

) converges since it is a subse-

quence of the convergent sequence (T1xn1,k
). Repeating this process, we obtain for each

j ∈N a subsequence (xnj,k )k∈N such that for every r ≤ j the sequence (Trxnj,k )k∈N converges.

Defining nk = nk,k , we obtain a single sequence (xnk )k∈N such that for each fixed s ∈N,

the sequence (Tsxnk ) is convergent. Let us show that the sequence (T xnk ) is Cauchy. Fix

ε > 0. The sequence (xnk )k∈N is bounded, thus there exists M > 0 such that∥∥∥xnk∥∥∥ ≤M for all k ∈N.

Because T is the limit of the Tn, there exists L ≥ 1 such that

‖TL − T ‖ <
ε

3M
.

Furthermore, since the sequence (TLxnk ) is convergent, there exists S ≥ 1 such that for

each r, s ≥ S, ∥∥∥TLxnr − TLxns∥∥∥ < ε3 .
Finally we can deduce for r, s ≥ S,∥∥∥T xnr − T xns∥∥∥ ≤ ∥∥∥T xnr − TLxnr∥∥∥+

∥∥∥TLxnr − TLxns∥∥∥+
∥∥∥TLxns − T xns∥∥∥

< ‖TL − T ‖
∥∥∥xnr∥∥∥+

ε
3

+ ‖TL − T ‖
∥∥∥xns∥∥∥

<
ε

3M
M +

ε
3

+
ε

3M
M = ε.

Note that W is complete, hence the sequence (T xsk )k∈N is a convergent subsequence of

(T xn)n∈N. We conclude that T is a compact operator.

Theorem 2.2.3 ([34, Theorem 7.3]). The set K(V ) is a closed two-sided ideal of B(V ).

11
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Proof. Let α,β ∈K and S,T ∈K(V ). Take a bounded sequence (xn). Since S is compact,

there exists a subsequence (xnk ) such that (Sxnk ) converges. Now by compactness of T ,

there exists a subsequence (xnkr ) of (xnk ) such that the sequence T xnkr ) converges. Now we

can conclude that the sequence (αSxnkr +βT xnkr ) is convergent, hence αS +βT is compact.

Now assume only one of S,T ∈B(V ) is compact and let us prove that T S is compact.

Take a bounded sequence (xn). In the case that S is compact, there exists a subsequence

(xnk ) such that (Sxnk ) converges. Now T is bounded, so the sequence (T Sxnk ) converges as

well, hence T S is compact. In the case that S is bounded but not compact, the sequence

(Sxn) is bounded. Since T is compact, there exists a subsequence (Sxnk ) such that (T Sxnk )

converges and we conclude that T S is compact.

The fact that K(V ) is closed follows from the previous theorem.

This result allows us to define the Calkin algebra Bπ(V ) as

Bπ(V ) := B(V )
�K(V ),

the quotient of the algebra of bounded operators by the ideal of compact operators. Since

V is a Banach space and K(V ) is a closed ideal, we can use Theorem 2.1.2 to deduce that

Bπ(V ) is a Banach algebra.

2.3 Piecewise Continuous Functions and Functions of Bounded

Variation

2.3.1 Piecewise Continuous Functions

Let P C(R) denote the set of functions a :R→C such that the limits

a(+∞) := lim
t→+∞

a(t), a(−∞) := lim
t→−∞

a(t)

and

a(x+ 0) := lim
t→x+

a(t), a(x − 0) := lim
t→x−

a(t)

exist and are finite at each point of R.

Lemma 2.3.1 ([13, Lemma 2.9]). The set P C(R) is a Banach algebra with respect to the L∞(R)

norm.

A function a ∈ L∞(R) is called piecewise constant if there exist constants λk ∈ C and a

partition of the real line −∞ = t0 < t1 < . . . < tn = +∞ such that a(t) =
∑n−1
k=0λkχk(t), where

χk(t) = χ]tk ,tk+1[. The function can take any value at the points tk .

Lemma 2.3.2 ([13, Lemma 2.9]). The set of piecewise constant functions is dense in P C(R).

12



2.3. PIECEWISE CONTINUOUS FUNCTIONS AND FUNCTIONS OF BOUNDED

VARIATION

Proof. We will prove that each function in P C(R) can be approximated by a piecewise

constant function. Let a ∈ P C(R) and fix n ∈N. By definition of P C(R), for each t ∈ R
there exists a neighbourhood Ut of t such that

|a(t − 0)− a(x)| < 1
2n

for all x ∈Ut ∩ ]−∞, t[

and

|a(t + 0)− a(x)| < 1
2n

for all x ∈Ut ∩ ]t,+∞[.

For t =∞, there exists a neighbourhood U∞ of the form ]−∞, c[∪ ]d,+∞[ such that

|a(+∞)− a(x)| < 1
2n

for all x ∈]d,+∞[

and

|a(−∞)− a(x)| < 1
2n

for all x ∈]−∞, c[.

By compactness of
.
R, there exist a finite number of neighbourhoodsUt0 ,Ut1 , . . . ,Utm , t0 =

∞, such that
.
R =

⋃m
j=0Utj . By taking set differences, we can assume that these neighbour-

hoods are disjoint, then define a function an by

an(t) =



a(tj − 0), t ∈Utj ∩ ]−∞, tj [ for some j ≥ 1,

a(tj + 0), t ∈Utj ∩ ]tj ,+∞[ for some j ≥ 1,

a(+∞), t ∈]d,+∞[,

a(−∞), t ∈]−∞, c[,

t ∈R.

Finally, we assume that the function an at each discontinuity point is defined to be con-

tinuous from the left.

This function is piecewise constant, and note that for almost every t ∈R the following

holds for some j,

|an(t)− a(t)| = |a(tj ± 0)− a(t)| < 1
2n
,

hence

‖an − a‖∞ ≤
1

2n
<

1
n
.

2.3.2 Functions of Bounded Variation

We will say that a function a : R→ C has bounded variation if its total variation, defined

by

V (a) := sup

 n∑
k=1

|a(xk)− a(xk−1)| : −∞ < x0 < x1 < . . . < xn < +∞,n ∈N


is finite.

We denote the set of functions with bounded variation by BV (R).

13
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Lemma 2.3.3 ([13, Lemma 2.10]). Let a ∈ BV (R). Then there exists a sequence (an)n∈N of
piecewise constant functions such that

lim
n→∞
‖a− an‖∞ = 0 and V (an) ≤ V (a) for each n ∈N.

Proof. Define the functions an as Lemma 2.3.2. These functions are piecewise constant

and limn→∞‖an − a‖∞ = 0. Furthermore, by simple computation we deduce that

V (an) =
m∑
j=1

(
|a(tj − 0)− a(tj−1 + 0)|+ |a(tj+1 + 0)− a(tj − 0)|

)
≤ V (a),

where tm+1 = t0 =∞ and a(∞± 0) = a(±∞).

Lemma 2.3.4. The set BV (R) of functions with bounded variation is contained in P C(R).

Proof. Let a :R→C be a function of bounded variation. By [15, Theorem 3.27a], the real

and imaginary parts of a are also of bounded variation. By [15, Theorem 3.27b], they can

be written as

Rea = a1 − a2, Ima = a3 − a4,

where a1, a2, a3, a4 are bounded and increasing functions. Because these functions are

bounded, they have finite limits at −∞,+∞, and because they are increasing, they have

finite one-sided limits at every point of R. We conclude that a ∈ P C(R).

2.4 Convolution

In the following, the support of a function f , denoted suppf is defined as

suppf = {x ∈R : f (x) , 0}.

The set C∞c (R) is the set of infinitely differentiable functions of compact support.

Given functions f ∈ L1(R) and g ∈ Lp(R) for some 1 ≤ p ≤∞, the convolution of f and

g is a function denoted by f ∗ g and defined by

(f ∗ g)(x) :=
∫
R

f (x − y)g(y)dy, x ∈R.

The function f ∗ g is well-defined almost everywhere and f ∗ g ∈ Lp(R) [7, Theorem 4.15].

Denote by Cc(R) the set of functions R→ C with compact support. If f ∈ Cc(R) and

g ∈ L1
loc(R), then the convolution f ∗ g is always well-defined and furthermore, f ∗ g is

continuous [7, Proposition 4.19].

For future use, we mention some properties of the convolution operation.

Theorem 2.4.1 ([7, Proposition 4.18]). Let f ∈ L1(R), g ∈ Lp(R) with 1 ≤ p ≤∞. Then

supp(f ∗ g) ⊂ suppf + suppg.

14



2.4. CONVOLUTION

Denote by Ck(R) the set of functions f : R→ C that are k-times differentiable, with

all derivatives continuous.

Theorem 2.4.2 ([7, Proposition 4.20]). Let f ∈ Ck(R) with k ≥ 1 and g ∈ L1
loc(R). Then

f ∗ g ∈ Ck(R) and
(f ∗ g)(n) = (f (n) ∗ g), n ≤ k,

where the superscript (n) denotes the n-th derivative.

A sequence of mollifiers is a sequence of non-negative functions ρδ on R such that

ρδ ∈ C∞c (R), suppρδ ⊂ [−δ,δ] ,
∫
R

ρδ = 1.

Theorem 2.4.3 ([7, Proposition 4.21]). Let f ∈ C(R) and (ρδ) be a sequence of mollifiers.
Then as δ→ 0, the sequence (ρδ ∗ f ) converges uniformly to f on compact subsets of R.

15
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3
Interpolation in Weighted Variable

Lebesgue Spaces

3.1 Interpolation

The general idea behind interpolation is this: we’re interested in proving the boundedness

of a certain operator T defined on a Banach space X. We find spaces X0 and X1 such that

X is ”between”, in a sense that will be made precise later, the spaces X0 and X1. We

prove the boundedness of T on these spaces and conclude, by means of an interpolation

theorem, that T is bounded on X also.

One of the first interpolation theorems was proven by Marcel Riesz in 1927 and

improved by his student Olof Thorin in 1938.

Theorem 3.1.1 ([4, Chap. 4, Theorem 2.2]). Suppose 1 ≤ p0,p1,q0,q1 ≤ ∞ and 0 ≤ θ ≤ 1.
Define

1
p

=
1−θ
p0

+
θ
p1
,

1
q

=
1−θ
q0

+
θ
q1
.

Let T be a linear operator defined on Lp0(R) +Lp1(R). Suppose that T ∈B(Lpi (R),Lqi (R)), i =

0,1. Then T is bounded as an operator from Lp(R) to Lq(R). In addition, its B(Lp(R),Lq(R))

norm satisfies

‖T ‖B(Lp(R),Lq(R)) ≤ ‖T ‖1−θB(Lp0 (R),Lq0 (R))‖T ‖
θ
B(Lp1 (R),Lq1 (R)).

In his 1964 paper [9], Alberto Calderón generalized this theorem to more abstract

spaces. We will use his results to prove a version of the Riesz-Thorin theorem for weighted

variable Lebesgue spaces, to be defined later.
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LEBESGUE SPACES

3.1.1 Intermediate Spaces

We will call a pair of complex Banach spaces (B0,B1) a compatible couple if they are contin-
uously embedded in some complex topological vector space V . This means that there exist

continuous injections fi : Bi → V , i = 0,1.

Denote the norm in Bi by ‖·‖i , i = 0,1. We introduce the norm ‖·‖B0∩B1
, defined on

B0 ∩B1 by

‖x‖B0∩B1
= max{‖x‖0,‖x‖1}.

On the set B0 +B1 = {y + z : y ∈ B0, z ∈ B1}, we define the norm

‖x‖B0+B1
= inf{‖y‖0 + ‖z‖1 : x = y + z, y ∈ B0, z ∈ B1}.

Both B0 ∩B1 and B0 +B1 are Banach spaces with their respective norms (see [31, p. 9] or

[4, p. 97, Theorem 1.3]).

If (B0,B1) is a compatible couple, a Banach space X is said to be an intermediate space
between B0 and B1 if we have the following continuous inclusions

B0 ∩B1 ↪→ X ↪→ B0 +B1.

Given two compatible couples (X0,X1), (Y0,Y1), a linear operator T : X0 +X1→ Y0 +Y1

is said to be admissible if for each i = 0,1 the restriction of T to Xi takes values in Yi and,

in addition, is bounded from Xi to Yi .

3.1.2 Lower Calderón Space

Given a compatible couple B = (B0,B1) we consider the set F(B0,B1) of functions

f : Ω→ B0 +B1,

where Ω is the closure of the strip

Ω = {z ∈C : 0 < Re(z) < 1},

that satisfy:

• f is continuous and bounded with respect to the norm of B0 +B1 in Ω;

• f is analytic in Ω;

• f (it) ∈ B0 is B0-continuous and tends to zero as |t| →∞;

• f (1 + it) ∈ B1 is B1-continuous and tends to zero as |t| →∞.

With the norm

‖f ‖F= max
{

sup
t
‖f (it)‖0, sup

t
‖f (1 + it)‖1

}
,

F(B0,B1) becomes a Banach space [31, p. 217].
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For a given 0 ≤ θ ≤ 1, the lower Calderón space, denoted by [B0,B1]θ, is the subset of

B0 +B1 defined by

[B0,B1]θ = {x : x = f (θ) for some f ∈F(B0,B1)}.

This set becomes a Banach space continuously embedded in B0 +B1 if we introduce the

norm

‖x‖[B0,B1]θ
= inf{‖f ‖F : f (θ) = x}

[31, p. 221].

Calderón proved the following interpolation theorem (see [9, p. 115, par. 4] for the

statement and [9, p. 129, par. 24] for the proof):

Theorem 3.1.2. Let 0 ≤ θ ≤ 1 and T be an admissible operator for the couples (B0,B1) and
(C0,C1). Then the restriction of T to [B0,B1]θ takes values in [C0,C1]θ and verifies

‖T ‖B([B0,B1]θ ,[C0,C1]θ) ≤ ‖T ‖1−θB(B0,C0)‖T ‖
θ
B(B1,C1).

3.1.3 Upper Calderón Space

Similarly to above, we define the set F(B0,B1) of functions f : Ω→ B0 +B1 that satisfy:

• ‖f (z)‖B0+B1
≤ c(1 + |z|);

• f (z) is continuous in Ω;

• f (z) is analytic in Ω;

• f (it1)− f (it2) ∈ B0 and f (1 + it1)− f (1 + it2) ∈ B1 for any t1 < t2;

• max
{

sup
t1,t2

∥∥∥∥∥f (it2)− f (it1)
t2 − t1

∥∥∥∥∥
0
,sup
t1,t2

∥∥∥∥∥f (1 + it2)− f (1 + t1)
t2 − t1

∥∥∥∥∥
1

}
= ‖f ‖F<∞.

With the norm defined above, Fmodulo the constant functions becomes a Banach space

[9, p. 130, par. 25].

Given 0 < θ < 1, the upper Calderón space, denoted by [B0,B1]θ, is the subset of B0 +B1

defined by

[B0,B1]θ =
{
x : x =

df

dz
(θ) for some f ∈F(B0,B1)

}
.

With the norm

‖x‖[B0,B1]θ = inf
{
‖f ‖F :

df

dz
(θ) = x

}
,

the set [B0,B1]θ becomes a Banach space continuously embedded in B0 + B1 [9, p. 130,

par. 26].

Note that the inclusion [B0,B1]θ ⊂ [B0,B1]θ always holds [5, p. 93, Theorem 4.3.1].
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LEBESGUE SPACES

3.1.4 Banach Lattices

In his original paper, Calderón defined the concept of a Banach lattice on an arbitrary

measure space [9, p. 122, par. 13.1], but we will restrict our attention to R with the

Lebesgue measure.

Consider the class M of complex valued, measurable, finite a.e. functions defined on

R. As usual, we identify functions which are equal almost everywhere. We call a subclass

X of measurable functions a Banach lattice if X is a Banach space that satisfies

f ∈ X and |g(x)| ≤ |f (x)| a.e. implies g ∈ X and ‖g‖X ≤ ‖f ‖X .

Any positive integrable function µ(x) on R gives rise to a metric

dµ(f ,g) =
∫
R

µ(x)
|f (x)− g(x)|

1 + |f (x)− g(x)|
dx,

where f ,g are measurable functions on R.

With this metric, the space M of measurable functions on R becomes a complete met-

ric vector space (with the topology independent of the choice of µ) [8, p. 4, Theorem 1.2.1]

in which X is continuously embedded [31, p. 41, Theorem 1].

3.1.5 Calderón Product

Let X0,X1 be two Banach lattices on R. By the above discussion, they can be continuously

embedded in the space Mof measurable functions on R and thus (X0,X1) is a compatible

couple. Fix 0 < θ < 1. The Calderón product X1−θ
0 Xθ1 is the class of functions f ∈M such

that

|f (x)| ≤ λ|g(x)|1−θ |h(x)|θ

for some λ > 0 and g ∈ X0,h ∈ X1 with ‖g‖X0
,‖h‖X1

≤ 1. The norm in X1−θ
0 Xθ1 is the

infimum of all λ for which the above inequality holds. With this norm X1−θ
0 Xθ1 becomes

a Banach lattice [9, p. 123]. In general we have X1−θ
0 Xθ1 ⊂ [X0,X1]θ [9, p. 125].

3.1.6 Sufficient Condition for Equality of Calderón Spaces

Theorem 3.1.3 ([9, p. 125]). Let 0 < θ < 1 and X0,X1 be Banach lattices on R. If X0 is
reflexive, then

[X0,X1]θ = X1−θ
0 Xθ1 = [X0,X1]θ

and the norms of these spaces coincide.

3.2 Banach Function Spaces

In the following M denotes the set of Lebesgue measurable functions on R, χE denotes

the characteristic function of a measurable set E, and |E| denotes the Lebesgue measure

of E.
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Given a norm ‖·‖ defined on M, the set

X = {f ∈M : ‖f ‖ <∞},

where we identify functions differing only on a set of measure zero, is a Banach function
space ([12, p. 72]) if the following properties are satisfied

• ‖f ‖ = ‖ |f | ‖;
• |g | ≤ |f | a.e. implies ‖g‖ ≤ ‖f ‖;
• |fn| ↑ f a.e. implies ‖fn‖ ↑ ‖f ‖;
• |E| <∞ implies ‖χE‖ <∞;

• |E| <∞ implies
∫
E
|f (x)|dx ≤ CE‖f ‖,

for all f ,g ∈ M, {fn}∞n=1 ⊂ M, a ∈ R and measurable subsets E ⊂ R. The constant CE
may depend on E and X but not on f . With this norm X is a Banach space [4, Chap. 1,

Theorem 1.6].

3.2.1 Associate Space

Given a Banach function space X, its associate space X∗ is the set of functions g ∈M such

that

‖g‖X∗ = sup
{∫

R

|f (x)g(x)|dx : f ∈M,‖f ‖X ≤ 1
}
<∞.

This turns out to be a Banach function space itself [4, Chap. 1, Theorem 2.2].

The following concept is useful in order to describe the associate space. We will say

a Banach function space X has absolutely continuous norm if for every f ∈ X we have∥∥∥f χEn∥∥∥X → 0 for every sequence {En}∞n=1 with χEn → 0.

Theorem 3.2.1 ([4, Chap. 1, Corollary 4.3]). Let X be a Banach function space. Its Banach
space dualX ′ is isometrically isomorphic to the associate spaceX∗ if and only ifX has absolutely
continuous norm.

3.2.2 Weighted Banach Function Spaces

Given a Banach function spaceX, defineXloc as the set of all functions f such that f χE ∈ X
for every measurable set E ⊂R with finite measure.

A measurable function w : R → [0,+∞] such that 0 < w(x) < ∞ a.e. on R, will be

called a weight. Given a weight w, define a norm by

‖f ‖w := ‖f w‖X , f ∈M, (3.1)

and the set X(w) by

X(w) := {f ∈M : f w ∈ X}.

Lemma 3.2.2 ([25, Lemma 2.4 and Corollary 2.9]). If a weight w satisfies w ∈ Xloc, 1/w ∈
X∗loc, then X(w) is a Banach function space with the norm ‖·‖w. In addition, if X is reflexive
then X(w) is also reflexive.
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3.3 Variable Lebesgue Spaces

Let p :R→ ]1,+∞[ be a measurable function. We consider the set Lp(·)(R) of measurable

complex-valued functions f defined on R such that the quantity

Φp(·)(f /λ) =
∫
R

∣∣∣∣∣f (x)
λ

∣∣∣∣∣p(x)

dx

is finite for some λ > 0 depending on f . This is a vector space [12, Theorem 2.15] and it

becomes a Banach space [12, Theorem 2.71] with the norm

‖f ‖p(·) = inf{λ > 0 : Φp(·)(f /λ) ≤ 1}.

If p is constant, this is the standard Lebesgue space Lp(R).

Define

p− := ess inf
x∈R

p(x), p+ := esssup
x∈R

p(x).

We will only consider exponents p that satisfy

1 < p− ≤ p+ <∞. (3.2)

In this case, Lp(·)(R) is a separable [12, Theorem 2.78] and reflexive [12, Corollary 2.81]

space.

The dual space of Lp(·)(R) is isomorphic (with equivalent norms) to Lp
′(·)(R) [12, Theo-

rem 2.80], where p′ is defined by

1
p(x)

+
1

p′(x)
= 1, x ∈R.

Note that Lp(·)(R) is a Banach function space [12, Section 2.10.3].

3.3.1 Weighted Variable Lebesgue Spaces

Let p be as in above and w be a weight. The space Lp(·)(w) is the set of all measurable

complex-valued functions f onR such thatwf ∈ Lp(·)(R), equipped with the natural norm

‖f ‖Lp(·)(w) := ‖wf ‖p(·).

From the definition of the norm and definition (3.1) we see that, under the hypotheses

of Lemma 3.2.2, Lp(·)(w) is a Banach function space.

Theorem 3.3.1. Let p be an exponent such that 1 < p−,p+ < ∞ and w a weight such that
w ∈ Lp(·)

loc (R) and 1/w ∈ Lp
′(·)

loc (R). Then Lp(·)(w) is a reflexive Banach function space.

Proof. The condition on the exponent p guarantees that Lp(·)(R) is reflexive. Lp(·)(R) has

absolutely continuous norm by [12, p. 73], thus by Theorem 3.2.1 its associate space is iso-

morphic to the dual space (Lp(·)(R))′, which in turn is isomorphic to Lp
′(·)(R). We’ve

proven that the associate space
(
Lp(·)(R)

)∗
of Lp(·)(R) is isomorphic to Lp

′(·)(R), hence
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χE/w ∈
(
Lp(·)(R)

)∗
for all measurable sets E ⊂ R with finite measure. This means that

1/w ∈
(
Lp(·)(R)

)∗
loc

, so we can now use Theorem 3.2.2 and the hypotheses on the weight w

to conclude that Lp(·)(w) is reflexive.

Theorem 3.3.2. Let p be a variable exponent such that 1 < p−,p+ < ∞ and w be a weight
satisfying w ∈ Lp(·)

loc (R) and 1/w ∈ Lp
′(·)

loc (R), where

1
p(x)

+
1

p′(x)
= 1, x ∈R.

Then the associate space of Lp(·)(w) is isomorphic to Lp
′(·)(1/w).

Proof. Apply [25, Lemma 2.4], keeping in mind that the associate space of Lp(·)(R) is

isomorphic to Lp
′(·)(R).

3.4 Interpolation in Weighted Variable Lebesgue Spaces

Theorem 3.3.1 gives us conditions under which Lp(·)(w) is reflexive. This allows us to use

Theorem 3.1.3 and deduce the following result:

Theorem 3.4.1. Let 0 < θ < 1. For i = 0,1, let pi be variable exponents satisfying 1 <

(pi)−, (pi)+ <∞ and wi be weights satisfying wi ∈ L
pi (·)
loc (R) and 1/w ∈ Lp

′
i (·)

loc (R). Then[
Lp0(·)(w0),Lp1(·)(w1)

]
θ

= Lp0(·)(w0)1−θLp1(·)(w1)θ =
[
Lp0(·)(w0),Lp1(·)(w1)

]θ
,

with equal norms.

3.4.1 Calderón Product of Weighted Variable Lebesgue Spaces

Theorem 3.4.2. Let 0 < θ < 1. For i = 0,1, let pi be variable exponents satisfying 1 <

(pi)−, (pi)+ < ∞ and wi be weights satisfying wi ∈ L
pi (·)
loc (R) and 1/wi ∈ L

p′i (·)
loc (R). Then the

Calderón product of the spaces Lp0(·)(w0) and Lp1(·)(w1) satisfies

(Lp0(·)(w0))1−θ(Lp1(·)(w1))θ = Lpθ(·)(wθ)

with norm equivalence

‖f ‖(Lp0(·)(w0))1−θ(Lp1(·)(w1))θ ≤ ‖f ‖Lpθ (·)(wθ) ≤ 21/(pθ)−‖f ‖(Lp0(·)(w0))1−θ(Lp1(·)(w1))θ , (3.3)

where
1

pθ(x)
=

1−θ
p0(x)

+
θ

p1(x)
and wθ(x) = w0(x)1−θw1(x)θ , x ∈R.

Proof. The idea of the proof is borrowed from [32, Example 3, pp. 179-180].

Let f ∈ (Lp0(·)(w0))1−θ(Lp1(·)(w1))θ satisfy ‖f ‖(Lp0(·)(w0))1−θ(Lp1(·)(w1))θ < λ.

By definition of the norm in the Calderón product we have
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|f (x)| ≤ λ|f0(x)|1−θ |f1(x)|θ a.e.

for some f0 ∈ Lp0(·)(w0), f1 ∈ Lp1(·)(w1) with respective norms bounded by 1. This implies∫
R

|f0(x)w0(x)|p0(x)dx,

∫
R

|f1(x)w1(x)|p1(x)dx ≤ 1.

We have (
|f (x)|wθ(x)

λ

)pθ(x)

≤ (|f0(x)|1−θ |f1(x)|θwθ(x))pθ(x)

= (|f0(x)w0(x)|1−θ |f1(x)w1(x)|θ)pθ(x)

=
[
(|f0(x)w0(x)|p0(x))

1−θ
p0(x) (|f1(x)w1(x)|p1(x))

θ
p1(x)

]pθ(x)

≤ (g(x)
1−θ
p0(x) + θ

p1(x) )pθ(x) = g(x),

where g(x) = max{|f0(x)w0(x)|p0(x), |f1(x),w1(x)|p1(x)}.

We have pθ(x) ≥ (pθ)− and so 2−
pθ (x)
(pθ )− ≤ 1

2 . We can now estimate the norm of f in

Lpθ(·)(wθ):

∫
R

∣∣∣∣∣f (x)wθ(x)

21/(pθ)−λ

∣∣∣∣∣pθ(x)

dx ≤ 1
2

∫ ∣∣∣∣∣f (x)wθ(x)
λ

∣∣∣∣∣pθ(x)

dx

≤ 1
2

∫
R

g(x)dx ≤ 1
2

∫
R

|f0(x)w0(x)|p0(x)dx+
1
2

∫
R

|f1(x)w1(x)|p1(x)dx

≤ 1
2

+
1
2

= 1.

This shows that f ∈ Lpθ(·)(wθ) and

‖f ‖Lpθ (·)(wθ) ≤ 21/(pθ)−‖f ‖(Lp0(·)(w0))1−θ(Lp1(·)(w1))θ . (3.4)

On the other hand, if f ∈ Lpθ(·)(wθ) and ‖f ‖Lpθ (·)(wθ) > 0 (the case of the zero norm is

trivial) then ∫
R

∣∣∣∣∣∣ f (x)wθ(x)
‖f ‖Lpθ (·)(wθ)

∣∣∣∣∣∣pθ(x)

dx ≤ 1.

Define

hi(x) :=

 |f (x)|wθ(x)
‖f ‖Lpθ (·)(wθ)


pθ (x)
pi (x) 1

wi(x)
, i = 0,1, x ∈R.

An easy calculation shows that

|f (x)| = ‖f ‖Lpθ (·)(wθ)(h0(x))1−θ(h1(x))θ , x ∈R. (3.5)

By hypothesis and from the definition of hi , we have for i = 0,1,∫
R

(hi(x)wi(x))pi (x)dx =
∫
R

 |f (x)|wθ(x)
‖f ‖Lpθ (·)(wθ)

pθ(x)

dx ≤ 1.
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Thus, taking in account the definition of the norm in Lpi (·)(wi) we see that

‖hi‖Lpi (·)(wi ) ≤ 1, i = 0,1. (3.6)

From (3.5) and (3.6) we conclude that f ∈ (Lp0(·)(w0))1−θ(Lp1(·)(w1))θ and

‖f ‖(Lp0(·)(w0))1−θ(Lp1(·)(w1))θ ≤ ‖f ‖Lpθ (·)(wθ). (3.7)

Combining inequalities (3.4) and (3.7), we immediately arrive at (3.3).

3.4.2 Riesz-Thorin Interpolation Theorem for Weighted Variable
Lebesgue Spaces

Combining the previous results, we arrive at the following version of the Riesz-Thorin

theorem for weighted variable Lebesgue spaces

Theorem 3.4.3. Let 0 < θ < 1. For i = 0,1, let pi be variable exponents satisfying 1 <

(pi)−, (pi)+ <∞ and wi be weights satisfying wi ∈ L
pi (·)
loc (R) and 1/wi ∈ L

p′i (·)
loc (R). Let

T : Lp0(·)(w0) +Lp1(·)(w1)→ Lp0(·)(w0) +Lp1(·)(w1)

be an admissible operator. Then the restriction of T to Lpθ(·)(wθ) takes values in Lpθ(·)(wθ) and

‖T ‖B(Lpθ (·)(wθ)) ≤ 21/(pθ)−‖T ‖1−θ
B(Lp0(·)(w0))‖T ‖

θ
B(Lp1(·)(w1)),

where
1

pθ(x)
=

1−θ
p0(x)

+
θ

p1(x)
and wθ(x) = w0(x)1−θw1(x)θ , x ∈R.

Proof. Setting both couples equal to (Lp0(·)(w0),Lp1(·)(w1)) in Theorem 3.1.2, we have that

the restriction of T to
[
Lp0(·)(w0),Lp1(·)(w1)

]
θ

takes values in the same space and the in-

equality

‖T f ‖[Lp0(·)(w0),Lp1(·)(w1)]θ
≤ ‖T ‖1−θ

B(Lp0(·)(w0))‖T ‖
θ
B(Lp1(·)(w1))‖f ‖[Lp0(·)(w0),Lp1(·)(w1)]θ

(3.8)

holds for every f ∈
[
Lp0(·)(w0),Lp1(·)(w1)

]
θ

. By Theorem 3.4.1 we have

Lp0(·)(w0)1−θLp1(·)(w1)θ =
[
Lp0(·)(w0),Lp1(·)(w1)

]
θ

and

‖f ‖Lp0(·)(w0)1−θLp1(·)(w1)θ = ‖f ‖[Lp0(·)(w0),Lp1(·)(w1)]θ
(3.9)

for every f ∈
[
Lp0(·)(w0),Lp1(·)(w1)

]
θ

. Theorem 3.4.2 then gives us

Lpθ(·)(wθ) =
[
Lp0(·)(w0),Lp1(·)(w1)

]
θ
,

together with the equivalence

‖f ‖Lpθ (·)(wθ) ≤ 21/(pθ)−‖f ‖(Lp0(·)(w0))1−θ(Lp1(·)(w1))θ , (3.10)
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‖f ‖(Lp0(·)(w0))1−θ(Lp1(·)(w1))θ ≤ ‖f ‖Lpθ (·)(wθ). (3.11)

To establish the desired inequality, note that

1

21/(pθ)−
‖T f ‖Lpθ (·)(wθ) ≤ ‖T f ‖(Lp0(·)(w0))1−θ(Lp1(·)(w1))θ = ‖T f ‖[Lp0(·)(w0),Lp1(·)(w1)]θ

≤ ‖T ‖1−θ
B(Lp0(·)(w0))‖T ‖

θ
B(Lp1(·)(w1))‖f ‖[Lp0(·)(w0),Lp1(·)(w1)]θ

= ‖T ‖1−θ
B(Lp0(·)(w0))‖T ‖

θ
B(Lp1(·)(w1))‖f ‖(Lp0(·)(w0))1−θ(Lp1(·)(w1))θ

≤ ‖T ‖1−θ
B(Lp0(·)(w0))‖T ‖

θ
B(Lp1(·)(w1))‖f ‖Lpθ (·)(wθ),

where we used, in order, inequality (3.10), equality of norms as in (3.9), inequality (3.8),

equality of norms again and finally inequality (3.11). We obtain the desired result by

taking suprema over all f ∈ Lpθ(·)(wθ) with unit norm.

3.4.3 Interpolation of Compactness in Weighted Variable Lebesgue Spaces

To conclude this chapter, we will study a different kind of interpolation. Given a compact

operator defined on some Banach spaces B0 and B1, we want to deduce compactness of

the operator on some intermediate space. It turns out we will only need compactness on

one of the spaces.

The first theorem of this type was proven by Mark Krasnoesel’skii for standard Lebesgue

spaces.

Theorem 3.4.4 ([30, Theorem 3.10]). Suppose 1 ≤ p0,p1,q0 ≤∞, 1 ≤ q1 <∞ and 0 ≤ θ ≤ 1.
Define

1
p

=
1−θ
p0

+
θ
p1
,

1
q

=
1−θ
q0

+
θ
q1
.

Let T be a linear operator defined on Lp0(R) +Lp1(R). Suppose that T ∈B(Lp0(R),Lq0(R)) and
is compact as an operator from Lp1(R) to Lq1(R). Then T is compact as an operator from Lp(R)

to Lq(R).

It is an open problem whether Krasnoesel’skii’s theorem applies to the spaces defined

by Calderón. This question has an affirmative answer in the case of weighted variable

Lebesgue spaces.

To that end, note that the Fatou property mentioned in [10, Theorem 3.2] is the third

axiom of Banach function spaces as in Section 3.2. We obtain the following result.

Theorem 3.4.5 ([10, Theorem 3.2]). Let 0 < θ < 1. Let (B0,B1) and (C0,C1) be two compatible
couples of Banach function spaces and let T : B0 +B1→ C0 +C1 be an admissible operator such
that the restriction of T to B0 is compact from the space B0 to the space C0. Then the restriction
of T to [B0,B1]θ is a compact operator from the space [B0,B1]θ to the space [C0,C1]θ.

We can now apply the previous result to weighted variable Lebesgue spaces.
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Theorem 3.4.6. Let 0 < θ < 1. For i = 0,1, let pi be a variable exponent satisfying 1 <

(pi)−, (pi)+ <∞ and wi be a weight satisfying wi ∈ L
pi (·)
loc (R) and 1/w ∈ Lp

′
i (·)

loc (R). Let

T : Lp0(·)(w0) +Lp1(·)(w1)→ Lp0(·)(w0) +Lp1(·)(w1)

be an admissible operator. Suppose that the restriction of T to Lp0(·)(w0) is a compact operator.
Then the restriction of T to Lpθ(·)(pθ) is also a compact operator, where

1
pθ(x)

=
1−θ
p0(x)

+
θ

p1(x)
and wθ(x) = w0(x)1−θw1(x)θ , x ∈R.

Proof. From Theorem 3.4.1 we know that the lower Calderón space of the spaces Lp0(·)(w0)

and Lp1(·)(w1) coincides with the Calderón product of the same spaces. Theorem 3.4.2

now asserts that

Lp0(·)(w0)1−θLp1(·)(w1)θ = Lpθ(·)(wθ).

Hence from Theorem 3.4.5 we conclude that the operator T : Lpθ(·)(wθ) → Lpθ(·)(wθ) is

compact.
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4
Piecewise Continuous Fourier Multipliers

on Weighted Variable Lebesgue Spaces

4.1 Fourier Convolution Operators on L2(R)

For f ∈ L1(R), we define the Fourier transform of f by

(Ff )(x) :=
∫
R

f (t)eitxdt, x ∈R.

Theorem 4.1.1 ([2, Theorem 11.82]). If f ∈ L1(R)∩L2(R) then Ff ∈ L2(R) and

‖Ff ‖L2 =
√

2π‖f ‖L2 .

Since F is bounded and L1(R)∩L2(R) is dense in L2(R), the Fourier transform extends

by continuity to a bounded linear operator F : L2(R)→ L2(R).

The inverse of F is defined by

(F−1g)(t) :=
1

2π

∫
R

g(x)e−itxdx, t ∈R.

Given a function a ∈ L∞(R), we can define an operator W 0
a on L2(R) by

W 0
a (f ) := F−1aFf .

Lars Hörmander proved that every function a ∈ L∞(R) gives rise to a bounded operator

W 0
a .

Theorem 4.1.2 ([20, Theorem 1.5]). Let a ∈ L∞(R). Then the operator W 0
a , as defined above,

is bounded on L2(R). Furthermore its norm satisfies∥∥∥W 0
a

∥∥∥
B(L2(R))

= ‖a‖∞. (4.1)
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4.2 Fourier Multipliers

It is natural to ask whether we can define the operators W 0
a for spaces other than L2(R).

A function a ∈ L∞(R) is said to be a Fourier multiplier on Lp(·)(w) if the map

f 7→ F−1aFf

maps L2(R)∩Lp(·)(w) into Lp(·)(w) and satisfies

sup
f ∈L2(R)∩Lp(·)(w)

‖F−1aFf ‖Lp(·)(w)

‖f ‖Lp(·)(w)
<∞.

Since L2(R) ∩ Lp(·)(w) is dense in Lp(·)(w) (because the set of bounded functions with

compact support is dense in both spaces [25, Lemma 2.12]), we can extend this map by

continuity to the whole of Lp(·)(w), denoting this extension by W 0
a . Let Mp(·),w denote the

set of Fourier multipliers on Lp(·)(w).

If a,b ∈ Mp(·),w and c ∈ C, the operator W 0
a satisfies W 0

a+b = W 0
a +W 0

b , W 0
ab = W 0

aW
0
b

and W 0
c = cI . This implies that Mp(·),w is an algebra, and we can turn it into a normed

algebra by defining

‖a‖Mp(·),w
=

∥∥∥W 0
a

∥∥∥
B(Lp(·)(w))

.

It is interesting to ask what are the Fourier multipliers on a given space Lp(·)(w). Hör-

mander proved that the Fourier multipliers on L2(R) are precisely the bounded functions.

The Fourier multipliers on L1(R) are also fully characterized (see [19, Theorem 2.5.8]),

but we have only sufficient conditions for Lp(R) with 1 < p <∞. One of these conditions

is the classical Stechkin inequality, which states that any function of bounded variation is

a Fourier multiplier for Lp(R), 1 < p <∞.

Theorem 4.2.1 ([13, Theorem 2.11]). Let p ∈ ]1,+∞[. If the function a has finite total
variation V (a), then the operator W 0

a is bounded on Lp(R) and satisfies∥∥∥W 0
a

∥∥∥
B(Lp)

≤ K [‖a‖∞ +V (a)] ,

where K is a positive constant independent of a.

Despite bearing his name, this result wasn’t obtained by Sergey Stechkin in this form.

He proved a similar result for an analogous operator on the unit circle.

Our goal in this chapter is to give a version of this theorem for weighted variable

Lebesgue spaces Lp(·)(w).

4.3 Stechkin Inequality for Weighted Variable Lebesgue Spaces

4.3.1 Preliminary Definitions

For every f ∈ C∞c (R), define the Cauchy singular integral operator S by the principal value

integral

(Sf )(x) :=
1
πi

lim
ε→0

∫
R\]x−ε,x+ε[

f (τ)
τ − x

dτ, x ∈R,
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where C∞c (R) is the set of all infinitely differentiable functions f : R→ C with compact

support.

It’s not obvious that this principal value integral exists even for relatively regular

functions. Nonetheless, the Cauchy singular operator is well defined and bounded on

Lp(R) for every 1 < p <∞ [4, Chap. 3, Theorem 4.9].

We can in fact relate the Cauchy singular integral operator to the concepts in the

previous section.

For every λ ∈R, define the function eλ by

eλ(x) := eiλx, x ∈R.

Lemma 4.3.1 ([13, Lemma 1.35]). Let u ∈ L2(R), c ∈R and define

v(t) := e−c(t)[S(ecu)](t) =
1
πi

lim
ε→0

∫
R\]t−ε,t+ε[

eic(x−t)

x − t
u(x) dx.

Then the Fourier transform Fv exists and is given by

Fv(t) = −sgn(t − c)Fu(t),

where sgn t = −1 if t ≤ 0 and sgn t = 1 if t > 0.

Taking c = 0, this theorem says that the function −sgn(t) is a Fourier multiplier corre-

sponding to the Cauchy singular integral operator. We can write this fact as

W 0
−sgn = S.

This means we can consider the operators W 0
a arising from Fourier multipliers as gener-

alizations of the Cauchy singular integral operator.

We will solely use power weights: functions of the form

w(x) = |x − i|λ∞
m∏
j=1

|x − xj |λj , x ∈R, (4.2)

where i is the imaginary unit and x1 < . . . < xm, λ1, . . . ,λm,λ∞ ∈R.

These weights were studied by Boris Khvedelidze, who proved the boundedness of

the Cauchy singular operator on Lp(·)(w), with p constant and w a power weight (see [17,

Chap. 1, Theorem 5.1] for the proof).

It is possible to generalize this result to certain variable exponents p, called log-Hölder
continuous.

Given a function p :R→ [1,+∞[, we say that p is locally log-Hölder continuous if

|p(x)− p(y)| ≤ C0

− log(|x − y|)
(4.3)

for some constant C0 > 0 and for all x,y ∈R with |x − y| < 1/2.
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We say that p is log-Hölder continuous at infinity if

|p(x)− p∞| ≤
C∞

log(e+ |x|)
(4.4)

for some constants p∞ ≥ 1,C∞ > 0 and for all x ∈R.

We will denote by LH the set of all functions p : R → [1,+∞[ that are log-Hölder

continuous locally and at infinity, and by LH ∗ the set of all functions p ∈ LH such that

there exist constants L,K > 0 such that∣∣∣∣∣1x − 1
y

∣∣∣∣∣ ≤ 1
2

and |x|, |y| > L

implies

|p(x)− p(y)| ≤ K

− log
(∣∣∣∣1
x −

1
y

∣∣∣∣) . (4.5)

Note that this condition implies condition (4.4). In particular, there exists

p(∞) := lim
t→∞

p(t).

4.3.2 Preliminary Results

We will need several preliminary results in order to prove the Stechkin inequality for

Lp(·)(w) spaces.

Theorem 4.3.2 ([29, Theorem A]). Let p be a variable exponent satisfying 1 < p−,p+ < ∞,
p ∈ LH ∗ and w be a power weight as in (4.2). The Cauchy singular integral operator is bounded
on Lp(·)(w) if and only if

0 <
1

p(xj )
+λj < 1 for j = 1, . . . ,m, 0 <

1
p(∞)

+λ∞ +
m∑
j=1

λj < 1.

We will denote by CW p(·) the set of power weights that satisfy the inequalities of

Theorem 4.3.2.

Theorem 4.3.3. Let p ∈ LH ∗ be a variable exponent satisfying 1 < p−,p+ <∞ and w ∈ CW p(·)

be a weight. Then Lp(·)(w) is a reflexive Banach function space.

Proof. Since w ∈ CW p(·), the Cauchy singular integral operator S is bounded on Lp(·)(w)

by Theorem 4.3.2. Then [25, Theorem 1.3] asserts that the weight w belongs to the class

Ap(·)(R). This means that

sup
−∞<a<b<∞

1
b − a

∥∥∥χ]a,b[

∥∥∥
Lp(·)(w)

∥∥∥χ]a,b[

∥∥∥
Lp′ (·)(1/w)

<∞, (4.6)

where
1
p(x)

+
1

p′(x)
= 1, x ∈R.
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From condition (4.6), we can see that the norm of any characteristic function of a bounded

interval is finite in both Lp(·)(w) and Lp
′(·)(1/w). This implies that w ∈ Lp(·)

loc (R) and 1/w ∈
L
p′(·)
loc (R). From Lemma 3.3.1, we deduce that Lp(·)(w) is a reflexive Banach function space.

Theorem 4.3.4. Let p ∈ LH ∗ be a variable exponent satisfying 1 < p−,p+ <∞ and w ∈ CW p(·)

be a weight. Then the norm of a ∈Mp(·),w satisfies

‖a‖∞ ≤ ‖a‖Mp(·),w
.

The constant 1 on the right-hand side is optimal.

Proof. From the previous Theorem, we know that Lp(·)(w) is a Banach function space.

This property allows to use [24, Lemma 3.3] to conclude that Lp(·)(w) satisfies the doubling
property, that is, there exist constants τ > 1,Cτ > 0 such that for all R > 0 and y ∈R,∥∥∥χ]y−τR,y+τR[

∥∥∥
Lp(·)(w)∥∥∥χ]y−R,y+R[

∥∥∥
Lp(·)(w)

≤ Cτ .

This implies that Lp(·)(w) satisfies the weak doubling property, which means that there

exists a constant λ > 1 such that

liminf
R→∞

inf
y∈R

∥∥∥χ]y−λR,y+λR[

∥∥∥
Lp(·)(w)∥∥∥χ]y−R,y+R[

∥∥∥
Lp(·)(w)

 <∞.
We then directly obtain the desired result using [24, Theorem 1.3], together with inequal-

ity (1.2) of the same article.

Corollary 4.3.5 (adapted from the proof of [21, Corollary 1]). Let p ∈ LH ∗ be a variable
exponent satisfying 1 < p−,p+ < ∞ and w ∈ CW p(·) be a weight. Then Mp(·),w is a Banach
algebra.

Proof. Let (an) be a Cauchy sequence in Mp(·),w. By definition of the Mp(·),w norm, this

means that
(
W 0
an

)
is a Cauchy sequence in B(Lp(·)(w)). Additionally, by Theorem 4.3.4,

the following holds for each n,m ∈N:

‖an − am‖∞ ≤ ‖an − am‖Mp(·),w
.

This implies that (an) is a Cauchy sequence in L∞(R). Since the latter space is complete,

the sequence (an) converges in the L∞(R) norm to a function a ∈ L∞(R). Because (an) is a

bounded sequence, the quantity k := supn∈N‖an‖∞ is finite.

Now fix f ∈ C∞c (R) and notice that, denoting the Fourier transform by F, we have

|an(x)Ff (x)e−itx| ≤ kF|f |(x)
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for each n ∈N and x ∈ R. Since kF|f | is integrable, this allows the use of the dominated

convergence theorem [2, Theorem 3.31] to deduce that

(W 0
anf )(t) =

1
2π

∫
R

an(x)Ff (x)e−itxdx→ 1
2π

∫
R

a(x)Ff (x)e−itxdx = (W 0
a f )(t)

for almost every t ∈R.

Since the sequence (an) is bounded in Mp(·),w, we have

M := sup
n∈N

∥∥∥W 0
an

∥∥∥
B(Lp(·)(w)) <∞ and sup

n∈N

∥∥∥W 0
anf

∥∥∥
Lp(·)(w)

≤M‖f ‖Lp(·)(w).

We know from Theorem 4.3.3 that Lp(·)(w) is a Banach function space. Applying [4,

Chap. 1, Lemma 1.5(ii)] to the a.e.-convergent sequence (W 0
an), we get∥∥∥W 0

a f
∥∥∥
Lp(·)(w)

≤ liminf
n→∞

∥∥∥W 0
anf

∥∥∥
Lp(·)(w)

≤ liminf
n→∞

∥∥∥W 0
an

∥∥∥
B(Lp(·)(w))‖f ‖Lp(·)(w),

for each f ∈ C∞c (R). Now [25, Lemma 2.12(a)] asserts that C∞c (R) is dense in Lp(·)(w), and

it follows from the previous inequality that W 0
a ∈B

(
Lp(·)(w)

)
, which by definition means

that a ∈Mp(·),w. This shows that if an ∈Mp(·),w and ‖an − a‖∞→ 0, then a ∈Mp(·),w and

‖a‖Mp(·),w
≤ liminf

n→∞
‖an‖Mp(·),w

.

For each k ∈N, apply the previous inequality to ak − a and ak − an to obtain

‖ak − a‖Mp(·),w
≤ liminf

n→∞
‖ak − an‖Mp(·),w

, k ∈N.

Fix ε > 0. Since (an) is Cauchy in Mp(·),w, there exists N ∈N such that n,m > N implies

‖ak − an‖Mp(·),w
< ε

2 . From the previous inequality, we deduce that ‖ak − a‖Mp(·),w
< ε. We

conclude that

‖ak − a‖Mp(·),w
→ 0,

thus Mp(·),w is complete.

We can first prove the boundedness of the operator W 0
a when a is a characteristic

function.

Lemma 4.3.6. Let p ∈ LH ∗ be a variable exponent satisfying 1 < p−,p+ < +∞ and w ∈ CW p(·)

be a weight. Denote by χ the characteristic function of an interval ]c,+∞[, c ∈R. Then W 0
χ is

bounded on Lp(·)(w) and its norm satisfies∥∥∥W 0
χ

∥∥∥
B(Lp(·)(w))

≤ 1
2

(
1 + ‖S‖B(Lp(·)(w))

)
.

Proof. Taking a(t) = sgn(t − c) and v defined as in Lemma 4.3.1 we have

Fv(t) = −sgn(t − c)Fu(t) = −a(t)Fu(t),

or equivalently

v = −F−1aFu = −W 0
a u.
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Therefore

W 0
a u(t) = −v(t) = −e−c(t)[S(ecu)](t).

Now notice that χ can be written as

χ(t) =
1
2

[1 + a(t)] ,

hence we have for u ∈ Lp(·)(w)∩L2(R),

W 0
χu(t) =

1
2

[u(t)− e−c(t)(S(ecu))(t)] .

Applying norms, keeping in mind that |ec(t)| = 1, we see that∥∥∥W 0
χ

∥∥∥
B(Lp(·)(w))

≤ 1
2

(
1 + ‖S‖B(Lp(·)(w))

)
.

We will need the following lemma in order to apply interpolation theory:

Lemma 4.3.7 ([33, Corollary 2.3]). If p is an exponent such that 1 < p−,p+ <∞, let

θp := min{1, 2/p+, 2− 2/p−}.

Then for all θ ∈ ]0,θp[, the exponent p0 defined by

1
p(x)

=
1−θ
p0(x)

+
θ
2

(4.7)

satisfies 1 < (p0)−, (p0)+ <∞.

Lemma 4.3.8. In the conditions of the previous Lemma, if p belongs to the class LH ∗ then so
does p0.

Proof. Let p ∈ LH ∗ and p0 defined as in above. Then

p0(x) =
2(1−θ)p(x)

2−θp(x)

Taking into account the definition of θp in Lemma 4.3.7, we have

2−θp(x) ≥ 2−θp+ > 0.

This gives us the estimate

|p0(x)− p0(y)| =
∣∣∣∣∣ 4(1−θ)(p(x)− p(y))
(2−θp(x))(2−θp(y))

∣∣∣∣∣ ≤ 4(1−θ)
(2−θp+)2 |p(x)− p(y)|.

From this we can see that conditions (4.3) and (4.5) hold for p0. We conclude that p0 ∈
LH ∗.

Lemma 4.3.9. Let p ∈ LH ∗ be a variable exponent satisfying 1 < p−,p+ <∞ and w be a power
weight. Take θp as in Lemma 4.3.7. If the Cauchy singular operator S is bounded on Lp(·)(w),
it is also bounded on Lp0(·)(w1/(1−θ)) for some θ ∈ ]0,θp[ and p0 defined as in (4.7).
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Proof. The weight w is of the form

w(x) = |x − i|λ∞
m∏
j=1

|x − xj |λj , x ∈R,

with −∞ < x1 < . . . < xm < +∞ and λ1, . . . ,λm,λ∞ ∈R. Then

w(x)1/(1−θ) = |x − i|λ∞/(1−θ)
m∏
j=1

|x − xj |λj /(1−θ), x ∈R.

Since S is bounded on Lp(·)(w), by Theorem 4.3.2 the exponents satisfy

0 <
1

p(xj )
+λj < 1, j = 1, . . . ,m, 0 <

1
p(∞)

+λ∞ +
m∑
j=1

λj < 1.

By the same Theorem, we want to prove that

0 <
1

p0(xj )
+

λj
1−θ

< 1, j = 1, . . . ,m, 0 <
1

p0(∞)
+
λ∞

1−θ
+

m∑
j=1

λj
1−θ

< 1

for some θ ∈ ]0,θp[ and p0 defined as in (4.7).

It is easy to see that these inequalities are equivalent to

θ
2
<

1
p(xj )

+λj < 1− θ
2
, j = 1, . . . ,m,

θ
2
<

1
p(xj )

+λ∞ +
m∑
j=1

λj < 1− θ
2
. (4.8)

Inequalities (4.8) are satisfied if we choose θ such that

0 < θ <min
{
θp,2cj ,2(1− cj )

}
, j = 1, . . . ,m, 0 < θ <min

{
θp,2c∞,2(1− c∞)

}
,

where

cj =
1

p(xj )
+λj , j = 1, . . . ,m, c∞ =

1
p(∞)

+λ∞ +
m∑
j=1

λj .

In view of Theorem 4.3.2, the operator S is bounded on the space Lp0(·)(w1/(1−θ)).

4.3.3 Proof of the Stechkin Inequality for Weighted Variable Lebesgue
Spaces

Theorem 4.3.10. Let p ∈ LH ∗ be a variable exponent satisfying 1 < p−,p+ <∞ andw ∈ CW p(·)

be a weight. If a :R→C has finite total variation V (a), then a ∈Mp(·),w and

‖a‖Mp(·),w
≤ ‖S‖B(Lp(·)(w)) [‖a‖∞ +V (a)] ,

where S is the Cauchy singular integral operator.
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Proof. Suppose a is a piecewise constant function. Then there exist constants λk ∈ C and

a partition of the real line −∞ = t0 < t1 < . . . < tn = +∞ such that a(t) =
∑n−1
k=0λkχk(t), where

χk(t) = χ]tk ,tk+1[. Rewrite a in the form

a(t) = b1 +
n∑
k=2

(bk − bk−1)χk(t),

where χk is now the characteristic function of the interval ]ck ,+∞[.

Lemma 4.3.1 tells us that S =W 0
−sgn, and by Theorem 4.3.4 we have

1 = ‖−sgn‖∞ ≤ ‖−sgn‖Mp(·),w
=

∥∥∥W 0
−sgn

∥∥∥
B(Lp(·)(w))

= ‖S‖B(Lp(·)(w)).

We estimate the norm of W 0
a using Lemma 4.3.6 and the previous inequality

∥∥∥W 0
a

∥∥∥
B(Lp(·)(w))

≤
∥∥∥∥W 0

b1

∥∥∥∥
B(Lp(·)(w))

+
n∑
k=2

∥∥∥∥W 0
(bk−bk−1)χk

∥∥∥∥
B(Lp(·)(w))

≤ |b1|+
n∑
k=2

∥∥∥∥W 0
bk−bk−1

∥∥∥∥
B(Lp(·)(w))

∥∥∥W 0
χk

∥∥∥
B(Lp(·)(w))

≤ |b1|+
1
2

n∑
k=2

|bk − bk−1|
(
1 + ‖S‖B(Lp(·)(w))

)
≤ |b1|+

n∑
k=2

|bk − bk−1| ‖S‖B(Lp(·)(w))

≤ ‖S‖B(Lp(·)(w)) [‖a‖∞ +V (a)] . (4.9)

Now suppose a is any function of bounded variation. By Lemma 2.3.3, there exists a

sequence (an) of piecewise constant functions such that

‖an − a‖∞→ 0 and V (an) ≤ V (a). (4.10)

By Lemma 4.3.9, there exists some θ ∈ ]0,1[ such that the Cauchy singular operator S is

bounded on Lp0(·)(w0), where p0 and w0 are defined by

1
p(x)

=
1−θ
p0(x)

+
θ
2
, w0(x) = w(x)1/(1−θ), x ∈R.

If we define w1(x) = 1 for all x ∈R, the following decomposition holds:

w(x) = w0(x)1−θw1(x)θ , x ∈R.

By Lemma 4.3.7, p0 satisfies 1 < (p0)−, (p0)+ <∞. We have the following chain of inequali-

ties, where we use Theorem 3.4.3, inequality (4.9), Theorem 4.1.2 and the inequality in
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(4.10).∥∥∥W 0
an −W

0
am

∥∥∥
B(Lp(·)(w))

=
∥∥∥W 0

an−am

∥∥∥
B(Lp(·)(w))

≤ 21/p−
∥∥∥W 0

an−am

∥∥∥1−θ
B(Lp0(·)(w0))

∥∥∥W 0
an−am

∥∥∥θ
B(L2)

≤ 21/p−‖an − am‖θ∞‖S‖1−θB(Lp0(·)(w0)) [‖an − am‖∞ +V (an − am)]1−θ

≤ 21/p−‖an − am‖θ∞‖S‖1−θB(Lp0(·)(w0)) [‖an − am‖∞ +V (an) +V (am)]1−θ

≤ 21/p−‖an − am‖θ∞‖S‖1−θB(Lp0(·)(w0)) [‖an − a‖∞ + 2V (a)]1−θ .

From this inequality and the L∞ convergence in (4.10) it follows that the sequence

(W 0
an) is Cauchy, hence by completeness of B(Lp(·)(w)) it is convergent to an operator

A ∈B(Lp(·)(w)). Using again Theorem 4.1.2, we have∥∥∥W 0
an −W

0
a

∥∥∥
B(L2)

=
∥∥∥W 0

an−a
∥∥∥
B(L2)

= ‖an − a‖∞→ 0.

Uniqueness of the limit then allows us to conclude Au = W 0
a u for u ∈ L2(R) ∩ Lp(·)(w).

Since this set is dense in Lp(·)(w), we conclude that A =W 0
a .

From inequality (4.9), together with the property V (an) ≤ V (a) we deduce∥∥∥W 0
an

∥∥∥
B(Lp(·)(w))

≤ ‖S‖B(Lp(·)(w)) [‖an‖∞ +V (a)] .

Passing to the limit as n→∞ we have the desired inequality.

4.4 Algebra of Piecewise Continuous Fourier Multipliers on

Lp(·)(w)

Given a variable exponent p ∈ LH ∗ satisfying 1 < p−,p+ < ∞ and a weight w ∈ CW p(·),

define the algebra

P Cp(·),w := closMp(·),w BV (R).

To be clear, P Cp(·),w is the closure of the set of functions with bounded variation with

respect to the Fourier multiplier norm

‖a‖Mp(·),w
=

∥∥∥W 0
a

∥∥∥
B(Lp(·)(w))

.

This algebra is well defined by Theorem 4.3.10.

Theorem 4.4.1. Let p ∈ LH ∗ be a variable exponent satisfying 1 < p−,p+ <∞, and w ∈ CW p(·)

be a weight. Then P Cp(·),w is a commutative, unital Banach algebra. Furthermore, P Cp(·),w is
a subset of P C(R).

Proof. The function f (x) := 1 is the identity, with ‖f ‖Mp(·),w
= ‖I‖B(Lp(·)(w)) = 1. The algebra

P Cp(·),w is commutative, since it is an algebra of complex-valued functions with the usual

product.
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To prove that P Cp(·),w is a Banach algebra, note that

‖ab‖Mp(·),w
=

∥∥∥W 0
ab

∥∥∥
B(Lp(·)(w))

=
∥∥∥W 0

aW
0
b

∥∥∥
B(Lp(·)(w))

≤
∥∥∥W 0

a

∥∥∥
B(Lp(·)(w))

∥∥∥W 0
b

∥∥∥
B(Lp(·)(w))

= ‖a‖Mp(·),w
‖b‖Mp(·),w

.

By Lemma 2.3.4, BV (R) ⊂ P C(R) and P C(R) is complete with respect to the L∞ norm.

Using this and Theorem 4.3.4 we can conclude

P Cp(·),w = closMp(·),w BV (R) ⊂ clos∞BV (R) ⊂ clos∞ P C(R) = P C(R).

Examining the proof of Theorem 4.3.10, we get the following result:

Theorem 4.4.2. Let p ∈ LH ∗ be a variable exponent satisfying 1 < p−,p+ <∞ and w ∈ CW p(·)

be a weight. Then the algebra P Cp(·),w is the closure of the algebra of piecewise constant
functions with respect to the norm ‖·‖Mp(·),w

.

Proof. Let a be a function of bounded variation. By Theorem 4.3.10, we know that the

operator W 0
a is bounded. In addition, Lemma 2.3.3 gives us a sequence (an) of piecewise

constant functions such that

‖an − a‖∞→ 0 and V (an) ≤ V (a). (4.11)

By Lemma 4.3.9, there exists some θ ∈ ]0,1[ such that the Cauchy singular operator S is

bounded on Lp0(·)(w0), where p0 and w0 are defined by

1
p(x)

=
1−θ
p0(x)

+
θ
2
, w0(x) = w(x)1/(1−θ), x ∈R.

If we define w1(x) = 1 for all x ∈R, the following decomposition holds

w(x) = w0(x)1−θw1(x)θ , x ∈R.

By Lemma 4.3.7, p0 satisfies 1 < (p0)−, (p0)+ <∞. Then, using Theorem 3.4.3, inequality

(4.9) and Theorem 4.1.2, we get

‖an − a‖Mp(·),w
=

∥∥∥W 0
an−a

∥∥∥
B(Lp(·)(w))

≤ 21/p−
∥∥∥W 0

an−a
∥∥∥θ
B(L2)

∥∥∥W 0
an−a

∥∥∥1−θ
B(Lp0(·)(w0))

≤ 21/p−‖an − a‖θ∞‖S‖1−θB(Lp0(·)(w0)) [‖an − a‖∞ +V (an − a)]1−θ

≤ 21/p−‖an − a‖θ∞‖S‖1−θB(Lp0(·)(w0)) [‖an − a‖∞ +V (an) +V (a)]1−θ

≤ 21/p−‖an − a‖θ∞‖S‖1−θB(Lp0(·)(w0)) [‖an − a‖∞ + 2V (a)]1−θ .

From this inequality and the L∞(R) convergence in (4.11), it follows that the sequence

(an) is convergent in the Mp(·),w norm to the function a.

This proves that BV (R) = closMp(·),w {f : R→ C : f is piecewise constant}. Taking the

closure in both sides we get the desired result.
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4.4.1 Invertibility of Convolution Operators with Piecewise Continuous
Symbols

We proceed to investigate invertibility in the algebra P Cp(·),w.

The following fact is used in [13] without proof.

Lemma 4.4.3. Let a ∈ P C(R). Then

ess inf
t∈R

|a(t)| > 0

if and only if
a(+∞) , 0, a(−∞) , 0 and a(x − 0) , 0, a(x+ 0) , 0

for all x ∈R.

Proof. To prove the direct implication, suppose a(y + 0) = 0 for some y ∈R and take r ∈R
such that

r ≤ |a(t)| a.e.

Assume that r > 0, then there exists δ > 0 such that

|a(t)| < r when t ∈ ]y,y + δ[,

by definition of right sided limit. Since the interval ]y,y + δ[ has positive measure, this is

a contradiction. We conclude that r ≤ 0, hence

ess inf
t∈R

|a(t)| = 0.

The three other proofs are analogous.

To prove the opposite implication, let D be the set of points of discontinuity of a and

assume that

inf
t∈R\D

|a(t)| = 0.

Then for each n ∈N, there exists tn ∈R \D such that |a(tn)| < 1/n, which implies

lim
n→∞
|a(tn)| = 0.

This is a contradiction since a is continuous onR\D and a(x) = a(x±0) , 0 for all x ∈
.
R\D.

Now notice that the set of points of discontinuity of a P C(R) function is countable [6,

Chap. 2, Theorem 3], thus it has measure zero. We conclude that

0 < inf
t∈R\D

|a(t)| ≤ ess inf
t∈R\D

|a(t)| = essinf
t∈R

|a(t)|.

Theorem 4.4.4. Let p ∈ LH ∗ be a variable exponent satisfying 1 < p−,p+ <∞ and w ∈ CW p(·)

be a weight. If a ∈ P Cp(·),w is such that

ess inf
t∈R

|a(t)| > 0,

then 1/a ∈ P Cp(·),w.
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Proof. For every x ∈R, let

M−x := {χ]c,x[ : c < x}, M+
x := {χ]x,d[ : x < d}.

For x =∞, let

M−∞ := {χ]−∞,−c[ : c ∈R}, M+
∞ := {χ]d,+∞[ : d ∈R}.

Take f1 = χ]c1,x[, f2 = χ]c2,x[ ∈ M+
x . Defining c3 = min{c1, c2} and f = χ]c3,x[ we have

f f1 = f f2 = f . This provesM−x is a localizing class and the other three cases are analogous.

For every x ∈
.
R, choose functions χ−x ∈M−x , χ+

x ∈M+
x . The respective intervals form

an open covering of
.
R, and by compactness there exist a finite number of functions

χ−x1
, . . . ,χ−xn ,χ

+
x1
, . . .χ+

xn such that

g(t) =
n∑
k=1

[
χ−xk (t) +χ+

xk (t)
]
≥ 1.

Then g is evidently of bounded variation and we have

N∑
k=1

∣∣∣∣∣ 1
g(yk)

− 1
g(yk−1)

∣∣∣∣∣ =
N∑
k=1

∣∣∣∣∣g(yk)− g(yk−1)
g(yk)g(yk−1)

∣∣∣∣∣ ≤ N∑
k=1

∣∣∣g(yk)− g(yk−1)
∣∣∣ ≤ V (g) <∞,

for any N ∈N and −∞ < y0 < . . . < yN < +∞, hence 1/g is also of bounded variation. By

the Stechkin inequality, 1/g is in P Cp(·),w. We conclude that (M±x )
x∈

.
R

is a covering system

of localizing classes in P Cp(·),w.

Take a ∈ P Cp(·),w. By Theorem 4.4.2, there exists a sequence of piecewise constant

functions (an)n∈N convergent to a in P Cp(·),w. Each an is piecewise constant, thus of the

form

an =
N∑
k=1

bkχ]ck ,ck+1[,

where bk ∈C and −∞ = c1 < c2 < . . . < cN+1 = +∞. If x ∈ ]cj , cj+1[, then an(x+0) = an(x) = bj ,

hence

[an − an(x+ 0)]χ]x,cj+1[ =

 N∑
k=1

bkχ]ck ,ck+1[ − bj

χ]x,cj+1[ =


N∑
k=1
k,j

bkχ]ck ,ck+1[ + bj
(
χ]cj ,cj+1[ − 1

)χ]x,cj+1[ = 0.

This proves an
M+
x∼ an(x+ 0) for each x ∈R and n ∈N.

Now notice that for any characteristic function χ,

‖χ‖Mp(·),w
≤ ‖S‖B(Lp(·)(w))(‖χ‖∞ +V (χ)) = 3‖S‖B(Lp(·)(w)),

by Theorem 4.3.10 and calculation of the total variation V (χ) of any characteristic func-

tion. This allows us to use Lemma 2.1.4 to conclude that a
M+
x∼ a(x + 0). The other three

cases can be proved analogously. Using the hypothesis and Lemma 4.4.3 we deduce

a(x ± 0), a(+∞), a(−∞) , 0,
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hence these constants are invertible in the algebra P Cp(·),w. Since (M±x )
x∈

.
R

is a covering

system of localizing classes, we can use Theorem 2.1.6 to conclude that 1/a is in P Cp(·),w.

The following theorem generalizes a result [13, Theorem 2.18], proven by Roland

Duduchava for standard Lebesgue spaces.

Theorem 4.4.5. Let p ∈ LH ∗ be a variable exponent satisfying 1 < p−,p+ <∞ and w ∈ CW p(·)

be a weight. If a ∈ P Cp(·),w, the operator W 0
a is invertible in B(Lp(·)(w)) if and only if

ess inf
t∈R

|a(t)| > 0.

Proof. Suppose that the essential infimum is positive. Then, by the previous proposition,

we have that 1/a ∈ P Cp(·),w. Then

W 0
aW

0
1/a =W 0

1/aW
0
a =W 0

1 = I,

hence W 0
1/a is the inverse of W 0

a .

Now suppose ess inf
t∈R

|a(t)| = 0. For each x ∈
.
R, consider the sets M0−

x , M0+
x formed by

the operators W 0
g with g ∈M+

x ,M
−
x , respectively. Then (M0±

x )
x∈

.
R

is a covering system of

localizing classes and

W 0
a
M0±
x∼ W 0

a(x±0) = a(x ± 0)I.

Here we use the convention that a(∞± 0) = a(±∞) (cf. the proof of Lemma 2.3.3). By

hypothesis and Lemma 4.4.3 there exists some x0 ∈
.
R such that a(x0+0) = 0 or a(x0−0) = 0.

Then

W 0
a
M0±
x∼ 0

and by Theorem 2.1.6 the operator W 0
a cannot be invertible.

42



C
h
a
p
t
e
r

5
Algebras of Convolution Type Operators

and Their Images in the Calkin Algebra

5.1 Algebra of Continuous Fourier Multipliers

Let p ∈ LH ∗ be a variable exponent satisfying 1 < p−,p+ <∞ and w ∈ CW p(·) be a weight.

Recall that LH ∗ is the set of functions p : R→ [1,+∞[ that satisfy conditions (4.3), (4.4)

and (4.5) and that CW p(·) is the set of power weights that satisfy the inequalities of Theo-

rem 4.3.2.

We are then in the conditions of Theorem 4.3.10, which allows us to define the algebra

Cp(·),w(
.
R) := closMp(·),w

(
C(

.
R)∩BV (R)

)
,

where C(
.
R) is the set of continuous functions f :R→C such that the limits lim

t→+∞
f (t) and

lim
t→−∞

f (t) are equal and finite.

Define the Schwartz space S(R) as the set of infinitely differentiable functions f :R→
C that satisfy

sup
x∈R
|xnf (m)(x)| <∞

for all n,m ∈N0. The interested reader can consult properties of this space in, for example,

[19, Section 2.2].

Lemma 5.1.1. Let ϕ ∈ C∞c (R) be a non-negative even function that satisfies∫
R

ϕ(x)dx = 1.

For each δ > 0, define ϕδ by

ϕδ(x) := δ−1ϕ(x/δ), x ∈R.
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If p(·) ∈ LH ∗ satisfies 1 < p−,p+ <∞ and w ∈ CW p(·), then for every a ∈Mp(·),w and δ > 0,

‖a ∗ϕδ‖Mp(·),w
≤ ‖a‖Mp(·),w

.

Proof. For each a ∈Mp(·),w, define

‖a‖M0
p(·),w

:= sup


∥∥∥F−1aFf

∥∥∥
Lp(·)(w)

‖f ‖Lp(·)(w)
: f ∈ S(R)∩Lp(·)(w) \ {0}

 .
According to the proof of Theorem 4.3.4, the space Lp(·)(w) satisfies the hypothesis of

[24, Theorem 1.3]. In the proof of the latter theorem, it is shown that for every δ > 0 and

f ∈ S(R)∩Lp(·)(w), ∥∥∥F−1(a ∗ϕδ)Ff
∥∥∥
Lp(·)(w)

≤ ‖a‖M0
p(·),w
‖f ‖Lp(·)(w).

Taking suprema, this implies that

‖a ∗ϕδ‖M0
p(·),w
≤ ‖a‖M0

p(·),w
. (5.1)

The space Lp(·)(w) is separable under our hypothesis that p+ <∞. Then Lp(·)(w) has abso-

lutely continuous norm (as in the definition of Section 3.2.2) by [4, Chap.1, Corollary 5.6].

Using [24, Theorem 2.3], we deduce that Lp(·)(w) has the bounded L2-approximation prop-
erty. This means that for every function u ∈ L2(R) ∩ Lp(·)(w), there exists a sequence

(un)n∈N ⊂ C∞c (R) such that

lim
n→∞
‖u −un‖L2 = 0, limsup

n→∞
‖un‖Lp(·)(w) ≤ ‖u‖Lp(·)(w).

This property allows us to use [24, Theorem 6.1], together with inequality (5.1), to con-

clude that

‖a ∗ϕδ‖Mp(·),w
≤ ‖a‖Mp(·),w

.

Denote by C0(R) the set of continuous functions f :R→C such that

f (+∞) = f (−∞) = 0.

Our version of the Riesz-Thorin theorem for weighted variable Lebesgue spaces (The-

orem 3.4.3) allows us to follow ideas of Hörmander from his proof of [20, Theorem 1.16]

to prove the following result. The case of w = 1 and more general variable exponents was

proved in [23, Theorem 3.1 b)].

Theorem 5.1.2. Let p ∈ LH ∗ be a variable exponent satisfying 1 < p−,p+ <∞ and w ∈ CW p(·)

be a weight. Then
C0(R)∩BV (R) ⊂ closMp(·),w C

∞
c (R).

Proof. Let a ∈ C0(R)∩BV (R) and fix ε > 0. By Lemma 4.3.9, there exists some θ ∈ ]0,1[

such that the Cauchy singular operator S is bounded on Lp0(·)(w0), where p0 and w0 are

defined by
1
p(x)

=
1−θ
p0(x)

+
θ
2
, w0(x) = w(x)1/(1−θ), x ∈R. (5.2)
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If we define w1(x) = 1 for all x ∈R, the following decomposition holds

w(x) = w0(x)1−θw1(x)θ , x ∈R. (5.3)

By Lemma 4.3.7, p0 satisfies 1 < (p0)−, (p0)+ <∞. For each n ∈N, define the function ψn
as

ψn(x) =


1, |x| ≤ n

n+ 1− |x|, n < |x| < n+ 1

0, |x| ≥ n+ 1.

It is evident that these functions have compact support. Furthermore we have, for each

n ∈N, ∥∥∥ψn∥∥∥∞ +V (ψn) = 3.

By Theorem 4.3.10, we have∥∥∥ψn∥∥∥Mp0(·),w0
≤ ‖S‖B(Lp0(·)(w0))

[∥∥∥ψn∥∥∥∞ +V (ψn)
]

= 3‖S‖B(Lp0(·)(w0)) =: k0.

Define an := aψn. Then an ∈ C0(R) has compact support and

lim
n→∞
‖a− an‖∞ = 0. (5.4)

Using Theorem 4.3.10 again, we deduce the inequalities

‖a− an‖Mp0(·),w0
=

∥∥∥a(1−ψn)
∥∥∥
Mp0(·),w0

≤ ‖a‖Mp0(·),w0

(
1 +

∥∥∥ψn∥∥∥Mp0(·),w0

)
≤ (1 + k0)‖a‖Mp0(·),w0

≤ k0(1 + k0) [‖a‖∞ +V (a)] (5.5)

and

‖an‖Mp0(·),w0
≤

∥∥∥ψn∥∥∥Mp0(·),w0
‖a‖Mp0(·),w0

≤ k0‖a‖Mp0(·),w0
≤ (k0)2 [‖a‖∞ +V (a)] . (5.6)

Now using Theorem 3.4.3 (with the decompositions in (5.2) and (5.3)), Theorem 4.1.2

and inequality (5.5), we obtain

‖a− an‖Mp(·),w
=

∥∥∥W 0
a−an

∥∥∥
B(Lp(·)(w))

≤ 21/p−
∥∥∥W 0

a−an

∥∥∥θ
B(L2)

∥∥∥W 0
a−an

∥∥∥1−θ
B(Lp0(·)(w0))

= 21/p−‖a− an‖θ∞‖a− an‖1−θMp0(·),w0

≤ 21/p−k1−θ
0 (1 + k0)1−θ‖a− an‖θ∞ [‖a‖∞ +V (a)]1−θ .

This inequality and equality (5.4) imply that

lim
n→∞
‖a− an‖Mp(·),w

= 0,

so there exists n0 ∈N such that ∥∥∥a− an0

∥∥∥
Mp(·),w

<
ε
2
. (5.7)
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Let ϕ be defined by

ϕ(x) :=

Ke
1/(x2−1), |x| < 1,

0, |x| ≥ 1,

where K =
(∫ 1
−1 e

1/(x2−1)dx
)−1

. Then ϕ is in the conditions of Lemma 5.1.1 and the follow-

ing holds for all δ > 0, where the sequence (ϕδ) is defined in the same Lemma:∥∥∥an0
∗ϕδ

∥∥∥
Mp0(·),w0

≤
∥∥∥an0

∥∥∥
Mp0(·),w0

. (5.8)

Now Theorems 2.4.1 and 2.4.2 tell us that an0
∗ϕδ ∈ C∞c (R). Theorem 2.4.3 implies that

lim
δ→0

∥∥∥an0
∗ϕδ − an0

∥∥∥∞ = 0. (5.9)

Using Theorem 3.4.3 (with the decompositions in (5.2) and (5.3)) and Theorem 4.1.2, we

obtain ∥∥∥an0
∗ϕδ − an0

∥∥∥
Mp(·),w

=
∥∥∥∥W 0

an0 ∗ϕδ−an0

∥∥∥∥
B(Lp(·)(w))

≤ 21/p−
∥∥∥∥W 0

an0 ∗ϕδ−an0

∥∥∥∥θ
B(L2)

∥∥∥∥W 0
an0 ∗ϕδ−an0

∥∥∥∥1−θ

B(Lp0(·)(w0))

= 21/p−
∥∥∥an0
∗ϕδ − an0

∥∥∥θ∞∥∥∥an0
∗ϕδ − an0

∥∥∥1−θ
Mp0(·),w0

. (5.10)

Now using the triangle inequality, (5.8) and (5.6), we have∥∥∥an0
∗ϕδ − an0

∥∥∥
Mp0(·),w0

≤
∥∥∥an0
∗ϕδ

∥∥∥
Mp0(·),w0

+
∥∥∥an0

∥∥∥
Mp0(·),w0

≤ 2
∥∥∥an0

∥∥∥
Mp0(·),w0

≤ 2(k0)2 [‖a‖∞ +V (a)] .

Combining this with (5.10), we conclude∥∥∥an0
∗ϕδ − an0

∥∥∥
Mp(·),w

≤ 21−θ+1/p−k
2(1−θ)
0

∥∥∥an0
∗ϕδ − an0

∥∥∥θ∞ [‖a‖∞ +V (a)]1−θ ,

which, together with equality (5.9), implies that there exists δ0 > 0 such that∥∥∥an0
∗ϕδ0

− an0

∥∥∥
Mp0(·),w0

<
ε
2
. (5.11)

From (5.7) and (5.11) it follows that for each ε > 0 there exists a function an0
∗ϕδ0

∈ C∞c (R)

such that ∥∥∥a− an0
∗ϕδ0

∥∥∥
Mp(·),w

< ε,

which means that a ∈ closMp(·),w C
∞
c (R).

Theorem 5.1.3 (adapted from [23, Theorem 1.1]). Let p ∈ LH ∗ be a variable exponent
satisfying 1 < p−,p+ <∞ and w ∈ CW p(·) be a weight. Then

Cp(·),w(
.
R) = closMp(·),w (C+C∞c (R)) ,

where C+C∞c (R) is the set of functions of the form f = λ+ c, where λ ∈C and c ∈ C∞c (R).
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Proof. Any function f ∈ C∞c (R) satisfies

f (+∞) = f (−∞) = 0,

hence C+C∞c (R) ⊂ C(
.
R). Furthermore, any function C+C∞c (R) has bounded variation,

so we infer that

C+C∞c (R) ⊂ C(
.
R)∩BV (R).

Now

closMp(·),w (C+C∞c (R)) ⊂ closMp(·),w

(
C(

.
R)∩BV (R)

)
= Cp(·),w(

.
R).

To prove the opposite inclusion, take a ∈ Cp(·),w(
.
R) and fix ε > 0. By definition of Cp(·),w(

.
R),

there exists b ∈ C(
.
R)∩BV (R) such that

‖a− b‖Mp(·),w
<
ε
2
.

Evidently b − b(+∞) ∈ C0(R)∩ BV (R), so by Theorem 5.1.2 there exists c ∈ C∞c (R) such

that

‖b − b(+∞)− c‖Mp(·),w
<
ε
2
.

From these inequalities it follows that

‖a− (b(+∞) + c)‖Mp(·),w
< ε.

Since b(+∞) + c ∈C+C∞c (R), this implies that a ∈ closMp(·),w (C+C∞c (R)) .

5.2 Slowly Oscillating Fourier Multipliers

5.2.1 Algebra SO� of Slowly Oscillating Functions

Given a set E ⊂
.
R and a function f :

.
R→R in L∞(R), define the oscillation of f over E by

osc(f ,E) := esssup
s,t∈E

|f (s)− f (t)|.

We’ll say a function f ∈ L∞(R) is slowly oscillating at a point λ ∈R if for some r ∈ ]0,1[, we

have

lim
x→0+

osc(f ,λ+ ([−x,−rx]∪ [rx,x])) = 0.

The function f is said to be slowly oscillating at infinity if for some r ∈ ]0,1[,

lim
x→+∞

osc(f , [−x,−rx]∪ [rx,x]) = 0

For every λ ∈
.
R, denote by SOλ the subalgebra of L∞(R) defined by

SOλ :=
{
f ∈ C(

.
R \ {λ})∩L∞(R) : f is slowly oscillating at λ

}
.

Let SO� be the smallest Banach subalgebra of L∞(R) that contains all the algebras

SOλ for λ ∈
.
R.

The algebras SOλ and SO� were defined in [3] in the case of the unit circle and in [28]

in the case of the real line.
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5.2.2 Algebra SO�p(·),w of Slowly Oscillating Fourier Multipliers

For every λ ∈
.
R, denote by SO3

λ the algebra

SO3
λ :=

{
a ∈ SOλ ∩C3(R \ {λ}) : lim

x→λ
(Dkλa)(x) = 0, k = 1,2,3

}
,

where C3(R \ {λ}) is the set of three times differentiable functions on R \ {λ} and Dλ is the

operator defined by (Dλa)(x) = (x −λ) dadx (x) if λ ∈R and (D∞a)(x) = x dadx (x).

Define a norm in SO3
λ by

‖a‖SO3
λ

:=
3∑
k=0

1
k!

∥∥∥Dkλa∥∥∥∞.
To formulate sufficient conditions guaranteeing that a function in SO3

λ is a Fourier

multiplier on a Banach function space X(R), we will need the notion of the Hardy-

Littlewood maximal operator. This operator is defined by

(Mf )(x) := sup
]a,b[3x

1
b − a

∫ b

a
|f (y)|dy, f ∈ L1

loc(R).

This operator is sublinear, which means that

M(f + g)(x) ≤ (Mf )(x) + (Mg)(x), f ,g ∈ L1
loc(R), x ∈R,

and it is bounded on Lp when 1 < p ≤ +∞.

Theorem 5.2.1 ([22, Theorem 2.5]). Let X(R) be a separable Banach function space such that
the Hardy-Littlewood maximal operator is bounded on X(R) and on its associate space X∗(R).
If λ ∈

.
R and a ∈ SO3

λ, then the convolution operator W 0
a is bounded on the space X(R) and∥∥∥W 0

a

∥∥∥
B(X(R))

≤ K‖a‖SO3
λ
,

where K > 0 depends only on X(R).

We know precisely when the Hardy-Littlewood maximal operator is bounded on

Lp(·)(w) if p ∈ LH .

Theorem 5.2.2 ([11, Theorem 1.1]). Let p ∈ LH . Then the Hardy-Littlewood maximal opera-
tor is bounded on Lp(·)(w) if and only if the weight w satisfies

sup
−∞<a<b<∞

1
b − a

∥∥∥χ]a,b[

∥∥∥
Lp(·)(w)

∥∥∥χ]a,b[

∥∥∥
Lp′ (·)(w−1)

<∞, (5.12)

where
1
p(x)

+
1

p′(x)
= 1, x ∈R.

The set of weights satisfying the above condition is denoted by Ap(·)(R).

The following theorem states that every function in SO3
λ for some λ ∈

.
R is a Fourier

multiplier on the weighted variable Lebesgue space Lp(·)(w).
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Theorem 5.2.3. Let p ∈ LH ∗ be a variable exponent satisfying 1 < p−,p+ <∞ and w ∈ CW p(·)

be a weight. If λ ∈
.
R and a ∈ SO3

λ, then a ∈Mp(·),w and

‖a‖Mp(·),w
≤ K‖a‖SO3

λ
,

where K is a positive constant independent of a.

Proof. Since w ∈ CW p(·), the Cauchy singular integral operator S is bounded on Lp(·)(w)

by Theorem 4.3.2. Then [25, Theorem 1.3] asserts that the weight w belongs to the class

Ap(·)(R). This means that

sup
−∞<a<b<∞

1
b − a

∥∥∥χ]a,b[

∥∥∥
Lp(·)(w)

∥∥∥χ]a,b[

∥∥∥
Lp′ (·)(w−1)

<∞, (5.13)

where
1
p(x)

+
1

p′(x)
= 1, x ∈R.

Substituting p′ for p and 1/w for w in condition (5.13) (noting that (p′)′ = p), we obtain

1/w ∈Ap′(·)(R). We have proved that

w ∈Ap(·)(R) and 1/w ∈Ap′(·)(R).

By Theorem 5.2.2 we deduce that the operatorM is bounded both on Lp(·)(w) and Lp
′(·)(1/w).

Now Theorem 3.3.2 tells us that the associate space of Lp(·)(w) is isomorphic to Lp
′(·)(1/w),

henceM is bounded both on Lp(·)(w) and on its associate space. Then Theorem 5.2.1 gives

us the desired result.

The last result allows us to define SOλ,p(·),w as

SOλ,p(·),w := closMp(·),w SO
3
λ.

Furthermore, we denote by SO�p(·),w the smallest Banach subalgebra of Mp(·),w that con-

tains all the algebras SOλ,p(·),w for λ ∈
.
R. The functions in SO�p(·),w are called slowly

oscillating Fourier multipliers.

Theorem 5.2.4. Let p ∈ LH ∗ be a variable exponent satisfying 1 < p−,p+ <∞ and w ∈ CW p(·).
Then

Cp(·),w(
.
R) ⊂ SO�p(·),w.

Proof. Fix a ∈C+C∞c (R). Then a = α+ c, where α ∈C and c ∈ C∞c (R). Since c has compact

support, it vanishes for large enough x and we have

osc(a, [−x,−x/2]∪ [x/2,x]) = esssup
s,t∈[−x,−x/2]∪[x/2,x]

|a(s)− a(t)| = esssup
s,t∈[−x,−x/2]∪[x/2,x]

|α −α| = 0,

hence a ∈ SO∞ by definition. Again because c has compact support, for large enough x its

derivative vanishes and we have

(D∞a)(x) = x
dc
dx

(x) = 0.
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This proves that limx→∞(D∞a)(x) = 0, and analogously that

lim
x→∞

(D2
∞a)(x) = lim

x→∞
(D3
∞a)(x) = 0.

Hence a ∈ SO3
∞We have proved thatC+C∞c (R) ⊂ SO3

∞, and by Theorem 5.1.3 we conclude

that

Cp(·),w(
.
R) = closMp(·),w (C+C∞c (R)) ⊂ closMp(·),w SO

3
∞ = SO∞,p(·),w ⊂ SO�p(·),w.

5.3 Algebra SOp(·),w of Convolution Type Operators with Slowly

Oscillating Data

Now consider the algebra

Cp(·),w := algB(Lp(·)(w)){aI,W
0
b : a ∈ C(

.
R), b ∈ Cp(·),w(

.
R)}.

This is the smallest closed subalgebra of B(Lp(·)(w)) that contains the operators aI of

multiplication by functions a ∈ C(
.
R) and the operators W 0

b with b ∈ Cp(·),w(
.
R).

Similarly, define the algebra SOp(·),w as

SOp(·),w := algB(Lp(·)(w)){aI,W
0
b : a ∈ SO�, b ∈ SO�p(·),w}.

The algebras Cp(·),w and SOp(·),w are called the algebras of convolution type operators

with continuous and slowly oscillating data, respectively.

5.3.1 Algebras of Convolution Type Operators with Continuous and Slowly
Oscillating Data Contain the Ideal of Compact Operators

Theorem 5.3.1. Let p ∈ LH ∗ be a variable exponent satisfying 1 < p−,p+ <∞ and w ∈ CW p(·)

be a weight. Then
K(Lp(·)(w)) ⊂ Cp(·),w ⊂ SOp(·),w.

Proof. Since w ∈ CW p(·), the Cauchy singular integral operator S is bounded on Lp(·)(w)

by Theorem 4.3.2. Then [25, Theorem 1.3] asserts that the weight w belongs to the class

Ap(·)(R). This means that

sup
−∞<a<b<∞

1
b − a

∥∥∥χ]a,b[

∥∥∥
Lp(·)(w)

∥∥∥χ]a,b[

∥∥∥
Lp′ (·)(w−1)

<∞, (5.14)

where
1
p(x)

+
1

p′(x)
= 1, x ∈R.

Substituting p′ for p and 1/w for w in condition (5.13) (noting that (p′)′ = p), we obtain

1/w ∈Ap′(·)(R). We have proved that

w ∈Ap(·)(R) and 1/w ∈Ap′(·)(R).
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By Theorem 5.2.2 we deduce that the Hardy-Littlewood maximal operator is bounded

both on Lp(·)(w) and Lp
′(·)(1/w). Now Theorem 3.3.2 tells us that the associate space

of Lp(·)(w) is isomorphic to Lp
′(·)(1/w), hence the Hardy-Littlewood maximal operator is

bounded both on Lp(·)(w) and on its associate space and we can use [14, Theorem 1.1] to

conclude that

K(Lp(·)(w)) ⊂ algB(Lp(·)(w)){aI,W
0
b : a ∈ C(

.
R), b ∈ Cp(·),w(

.
R)} = Cp(·),w.

Now let us prove that C(
.
R) ⊂ SO∞. Note that any function a ∈ C(

.
R) is continuous on

the compact set
.
R, hence it is bounded. Let us prove that

lim
x→∞

osc(a, [−x,−x/2]∪ [x/2,x]) = 0.

Fix ε > 0. Denote by a(∞) the finite limits lim
t→+∞

a(t) = lim
t→−∞

a(t). By definition there exist

constants N and M such that

|a(x)− a(∞)| < ε
4

for all x < N or x >M.

Take K = 2max{|M |, |N |}, then for x > K and s, t ∈ [−x,−x/2]∪ [x/2,x] we have

|a(s)− a(t)| = |a(s)− a(∞) + a(∞)− a(t)| ≤ |a(s)− a(∞)|+ |a(t)− a(∞)| < ε
4

+
ε
4

=
ε
2
.

This proves that

osc(a, [−x,−x/2]∪ [x/2,x]) ≤ ε
2
< ε,

hence a ∈ SO∞.

Since C(
.
R) ⊂ SO∞ ⊂ SO� and Cp(·),w(

.
R) ⊂ SO�p(·),w by Theorem 5.2.4, we conclude that

Cp(·),w ⊂ SOp(·),w.

This result ensures that the quotient algebras

Cπp(·),w : = Cp(·),w�
K(Lp(·)(w)),

SOπp(·),w : = SOp(·),w�
K(Lp(·)(w)),

are well defined and that Cπp(·),w ⊂ SOπp(·),w.

5.3.2 Commutativity of the Image of SOp(·),w in the Calkin Algebra

From [28, Theorem 4.6] we extract the following result.

Theorem 5.3.2. Let 1 < p < +∞ be a constant exponent. If a ∈ SO� and b ∈ SO�p, then the
commutator aW 0

b −W
0
b aI is compact on the standard Lebesgue space Lp(R).

Now we are in a position to prove the main result of this chapter.

Theorem 5.3.3. Let p ∈ LH ∗ be a variable exponent satisfying 1 < p−,p+ <∞ and w ∈ CW p(·)

be a weight. Let a ∈ SO� and b ∈ SO�p(·),w. Then the commutator aW 0
b −W

0
b aI is compact as

an operator Lp(·)(w)→ Lp(·)(w).
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Proof. First of all, we use Theorem 4.3.7 to obtain the decomposition

1
p(x)

=
1−θ
p0(x)

+
θ
2
, w(x) = w0(x)1−θw1(x)θ ,

where 0 < θ < 1, w0(x) = w(x)1/(1−θ), w1(x) = 1 and p0 ∈ LH ∗ satisfies 1 < (p0)−, (p0)+ <∞.

By definition of the algebra SO�p(·),w, there exists a sequence (bn), where each bn is of the

form

bn =
k∑
i=1

m∏
j=1

bij ,

with bij ∈
⋃
λ∈

.
R
SO3

λ, such that

‖bn − b‖Mp(·),w
=

∥∥∥∥W 0
bn
−W 0

b

∥∥∥∥
B(Lp(·)(w))

→ 0.

Note that the set
⋃
λ∈

.
R
SO3

λ is independent of the exponent p, which implies that

the functions bn are in SO�2,w. By the previous theorem, the operators aW 0
bn
−W 0

bn
aI

are compact as operators L2(R)→ L2(R), thus by Theorem 3.4.6 they are also compact

as operators Lp(·)(w)→ Lp(·)(w). This sequence is convergent in the Mp(·),w norm to the

operator aW 0
b −W

0aI , which is compact as a consequence of Theorem 2.2.2.

Theorem 5.3.4. Let p ∈ LH ∗ be a variable exponent satisfying 1 < p−,p+ <∞ and w ∈ CW p(·)

be a weight. Then the quotient algebra

SOπp(·),w = SOp(·),w�
K(Lp(·)(w))

is commutative.

Proof. TakeR+K(Lp(·)(w)), T+K(Lp(·)(w)) ∈ SOπp(·),w. ThenR,T are limits (in the B
(
Lp(·)(w)

)
norm) of finite sums of finite products of elements of the set {aI,W 0

b : a ∈ SO�, b ∈ SO�p(·),w}.
Since limits, sums and products of commuting elements also commute, we can assume R

and T are elements of the latter set. If R = a1I,T = a2I,a1, a2 ∈ SO� then

RT = a1Ia2I = (a1a2)I = a2Ia1I = TR.

If R =W 0
b1
,T =W 0

b2
,b1,b2 ∈ SO�p(·),w then

RT =W 0
b1
W 0
b2

=W 0
b1b2

=W 0
b2
W 0
b1

= TR.

Now if R = aI,T = W 0
b , a ∈ SO

�,b ∈ SO�p(·),w, by Theorem 5.3.3 we have RT − TR ∈
K(Lp(·)(w)), which is equivalent to

RT +K(Lp(·)(w)) = TR+K(Lp(·)(w))

in the quotient algebra.

Together with the inclusion Cπp(·),w ⊂ SOπp(·),w, this result implies the following corol-

lary.
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Corollary 5.3.5. Let p ∈ LH ∗ be a variable exponent satisfying 1 < p−,p+ <∞ and w ∈ CW p(·)

be a weight. Then the quotient algebra

Cπp(·),w := Cp(·),w/K(p(·)(w))

is commutative.

5.4 Algebra PSOπp(·),w and its Commutative Subalgebra SOπp(·),w

Given a variable exponent p ∈ LH ∗ satisfying 1 < p−,p+ <∞ and a weight w ∈ CW p(·), re-

call that the algebra P Cp(·),w is defined as the closure of the set of functions with bounded

variation with respect to the Fourier multiplier norm

‖a‖Mp(·),w
=

∥∥∥W 0
a

∥∥∥
B(Lp(·)(w))

.

This algebra is well defined by Theorem 4.3.10.

Denote by P SO� the smallest Banach subalgebra of L∞(R) generated by the algebras

SO� and P C(R). The latter algebra is defined in Section 2.3.1.

Now we define the algebra of piecewise slowly oscillating Fourier multipliers as

P SO�p(·),w := algMp(·),w

{
P Cp(·),w,SO

�
p(·),w

}
.

Consider as well the algebra PSOp(·),w of convolution type operators with piecewise

slowly oscillating data defined by

PSOp(·),w := algB(Lp(·)(w)){aI,W
0
b : a ∈ P SO�, b ∈ P SO�p(·),w},

and the quotient algebra PSOπp(·),w defined by

PSOπp(·),w = PSOp(·),w�
K(Lp(·)(w)).

It is evident that SO�p(·),w ⊂ P SO
�
p(·),w, and by Theorem 5.3.1 we have K(Lp(·)(w)) ⊂

SOp(·),w. These two facts imply that

K(Lp(·)(w)) ⊂ SOp(·),w ⊂PSOp(·),w,

hence the quotient algebras are well defined and

SOπp(·),w ⊂PSOπp(·),w.

Using this inclusion and Theorem 5.3.4, we obtain the following result.

Theorem 5.4.1. Let p ∈ LH ∗ be a variable exponent satisfying 1 < p−,p+ <∞ and w ∈ CW p(·)

be a weight. Then SOπp(·),w is a commutative subalgebra of PSOπp(·),w.

We believe that this result will serve as an important step in the further study of

invertibility in the algebra PSOπp(·),w by means of the Allan local principle [1] analogously

to [26], [27], [28], where the invertibility problem in the algebra PSOπp,w was solved for

constant p ∈]1,∞[ and so-called Muckenhoupt weights w. The further study will require

a description of the maximal ideal space (see, e.g., [16] for the definition of this concept)

of the commutative Banach algebra SOπp(·),w, which is still not available.
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