
DEPARTMENT OF
COMPUTER SCIENCE

JOÃO RAFAEL MIRA DE CARVALHO PACHECO

Master/BSc in Computer Science

COLLABORATION BETWEEN DEVELOPERS
AND DESIGNERS

MASTER IN COMPUTER SCIENCE

NOVA University Lisbon
February, 2022

DEPARTMENT OF
COMPUTER SCIENCE

COLLABORATION BETWEEN DEVELOPERS AND
DESIGNERS

JOÃO RAFAEL MIRA DE CARVALHO PACHECO

Master/BSc in Computer Science

Adviser: Miguel Goulão
Associate Professor, NOVA University Lisbon

Co-adviser: Stoyan Garbatov
Research & Development Engineer, OutSystems

Examination Committee

Chair: João Miguel da Costa Magalhães
Associate Professor, NOVA University Lisbon

Rapporteur: Jácome Cunha
Associate Professor, University of Porto

Adviser: Miguel Goulão
Associate Professor, NOVA University Lisbon

MASTER IN COMPUTER SCIENCE

NOVA University Lisbon
February, 2022

Collaboration Between Developers and Designers

Copyright © João Rafael Mira de Carvalho Pacheco, NOVA School of Science and Technol-

ogy, NOVA University Lisbon.

The NOVA School of Science and Technology and the NOVA University Lisbon have the

right, perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

This document was created with the (pdf/Xe/Lua)LATEX processor and the NOVAthesis template (v6.9.5) [52].

https://github.com/joaomlourenco/novathesis

Acknowledgements

Firstly I would like to thank my thesis adviser Miguel Goulão for giving me valuable

advice and for picking me, and giving me, the opportunity to work alongside him and

OutSystems. I joined FCT (now NOVA) only for my master’s and due to this plus the

pandemic, I never had the opportunity to meet many of the professors at the Univer-

sity including professor Goulão. I can safely say it was great “shot in the dark”, as the

professor’s down-to-earth approachable personality made it a joy to work with.

Secondly I would like to thank my OutSystems’ co-adviser Stoyan Garbatov. Your

guidance through the process and insight within OutSystems were fundamental. The

schedules we defined during our weekly meetings made sure I never slouched and your

words kept me motivated throughout the whole work. You forced me into situations that

I was not comfortable with such as (many, many) presentations and interviews but that

ultimately made me grow as a person and I can safely say I am much more comfortable

now. It was a joy to meet and work with you.

Finally I would like to thank my friends and family. This year has been rough on

all of us but your presence and kindness made this lockdown/stay-at-home 24/7 not

only bearable but some times very enjoyable. Special mention to the ones that kept me

company during many afternoons online and my parents for putting up with me.

iii

“Science isn’t about why, it’s about why not!” (Cave Johnson)

Abstract

Customer-facing applications are essential for businesses. Therefore, a good user experi-

ence is fundamental for their success in the market. Companies nowadays employ highly

specialized people in front-end development and User Experience (UX) & User Interface

(UI) design to achieve this goal. Their collaboration is critical, and raises some efficiency

challenges in the software industry. This work focuses and is applied on OutSystems, a

low-code platform that inherits these challenges.

While there are some code-generation plugins for popular design tools, these do

not generate code for low-code platforms. Therefore, the transformation process from

design to development is done 100% manually, which is highly inefficient. Our goal is to

accelerate this transformation process from a design model to a development model to

mitigate this inefficiency.

To do so, we developed an approach using model transformation techniques that auto-

mates part of the process. Namely, it automates the generation of application pages/screens

by composing the screen mockups in a design technology (such as Figma or Sketch) with

a library of reusable UI components to instantiate the design in a front-end technology

(such as OutSystems).

Our approach was validated by a professional team of front-end developers from an

established enterprise-grade low-code platform who applied and evaluated this work on

some of their past real projects. Preliminary results show an overall acceptance of the de-

veloped tool with a possible increase of 150% to 400% in the value that they can deliver

without investing more effort than they already do today. This mitigates a bottleneck

faced by development teams today. To increase the value, they could offer to customers

(e.g., by producing more application screens in the same period), they would need to

recruit new collaborators whose skill set is high on demand. This work delivers major ef-

ficiency improvements and lessens the severe lack of qualified professionals, by allowing

existing ones to produce more without investing further effort.

Keywords: Design To Code, OutSystems, Low-Code Platforms, Front-end Development,

Automation, Generation

v

Resumo

As aplicações são algo essencial para as empresas. Uma boa experiência de utilizador é

fundamental para o sucesso destas aplicações no mercado. Hoje em dia, para alcançar este

objetivo, as empresas empregam pessoas altamente especilaizadas em desenvolvimento

Front-End e de UX (User Experience) & UI (User Interface) design. A colaboração destas

equipas é crucial e de momento apresenta desafios de eficiência na indústria do software.

Este trabalho foca-se na OutSystems, uma plataforma low-code, que tem subjacente estas

ineficiências que estão presentes em toda a industria.

Embora atualmente existam alguns plugins de geração de código para as ferramentas

de design populares, estes não geram código para plataformas low-code. Portanto, o

processo de transformação de design para desenvolvimento é um processo 100% manual,

o que resulta em perdas de eficiência que serão refletidas no valor final entregue aos

clientes. O nosso objetivo é acelarar este processo de conversão de um modelo de design

para um modelo de desenvolvimento Front-End para mitigar esta ineficiência.

Para tal, desenvolvemos uma abordagem utilizando técnicas de transformação de mo-

delos que automatizam parte do processo. Nomeadamente, este automatiza a geração de

páginas/ecrãs de aplicações através da composição de mockups de ecrãs numa tecnologia

de design (como o Sketch) com uma biblioteca de componentes de UI reutilizáveis para

instanciar o design numa tecnologia Front-End (como a OutSystems).

A nossa abordagem foi validada por uma equipa profissional de desenvolvimento

Front-End de uma plataforma low-code de nível empresarial que aplicaram e avaliaram

o trabalho em projetos passados reais da equipa. Os resultados preliminares mostram

uma aceitação global da ferramenta desenvolvida, com um possível aumento entre 150%

a 400% no valor que conseguem oferecer.

Isto permite mitigar um ponto de fricção que as equipas de desenvolvimento encon-

tram de momento. Para aumentar o valor que a equipa consegue entregar aos clientes

(por exemplo, através da produção de mais ecrãs no mesmo período de tempo), estes

necessitariam de empregar novos colaboradores cujas habilidades têm elevada procura.

O nosso trabalho oferece uma alternativa mais económica para o aumento da eficiência e

ao mesmo tempo diminui o impacto da escassez de profissionais qualificados, ao permitir

vi

que os já existentes consigam produzir mais sem investimento adicional da sua parte.

Palavras-chave: Design To Code, OutSystems, Low-Code, Desenvolvimento de Front-

end, Automação, Geração

vii

Contents

List of Figures xi

List of Tables xiii

List of Algorithms xiv

1 Introduction 1

1.1 Description . 1

1.2 Motivations . 2

1.3 Objectives and Expected Results . 3

1.4 Document Structure . 4

2 Background And Context 5

2.1 OutSystems . 5

2.1.1 Company Overview . 5

2.1.2 OutSystems Applications . 5

2.1.3 Customer Success Department . 6

2.1.4 Live Style Guide . 6

2.1.5 Accelerator Packs . 8

2.1.6 Current Workflow of the Design and Development Stages 10

2.2 Design Tools . 13

2.3 Model Driven Engineering . 15

2.3.1 Model Transformation . 15

2.3.2 Models in my Work . 16

3 Related Work 21

3.1 Commercial Applications . 21

3.1.1 Currently in the Market . 21

3.1.2 Emerging Applications . 21

3.1.3 Plugins . 22

viii

3.2 Methods to Identify UI Elements . 22

3.3 Representation of User Interfaces . 24

4 Implementation 26

4.1 High-Level Solutions . 26

4.2 Low-Fidelity vs High-Fidelity . 27

4.2.1 High-Fidelity . 27

4.2.2 Low-Fidelity . 27

4.2.3 Ambiguity Challenge . 28

4.2.4 Conclusion . 28

4.3 Implementation Design Decisions . 29

4.4 Intermediate Representation Model . 29

4.5 Sketch To Intermediate Representation 32

4.5.1 Initial Process . 34

4.5.2 JSON Treatment . 35

4.5.3 Component Identification . 37

4.5.4 IRNode Creation . 38

4.5.5 Transformation Rules . 38

4.5.6 Variations . 46

4.5.7 Nested Layers . 46

4.5.8 Vertical Placement . 47

4.5.9 Horizontal Placement . 47

4.6 Intermediate Representation To OutSystems 49

4.6.1 JSON Treatment . 50

4.6.2 Component Instantiation . 50

4.6.3 Sub-Goal Validation . 52

4.7 Chapter Summary . 53

5 Results 54

6 Discussion 58

6.1 Transformation Process . 58

6.2 Design to Intermediate Representation Phase 58

6.2.1 5 Guidelines . 59

6.2.2 Template Versioning . 63

6.3 Intermediate Representation to OutSystems 63

7 Future Work 64

8 Conclusion 65

Bibliography 67

ix

Annexes

I Interview Questions 76

I.1 Designer Questions . 76

I.2 Developer Questions . 77

II MODELS 2021 Article 78

x

List of Figures

2.1 UI patterns from OutSystems’ Live Style Guide [79] 6

2.2 Frost’s Atomic Design methodology applied to OutSystems[77] 7

2.3 Representation of Frost’s Atomic Design methodology [29] 8

2.4 Quick overview of the Accelerator Pack service 9

2.5 “LSG OutSystems Applications Organization”[16] 10

2.6 Side by side view of a low-fidelity(left) mockup with an high-fidelity(right)

mockup of the same project . 11

2.7 Development Tool Chain . 13

2.8 InVision Inspect example . 14

2.9 The metamodel definition: relationships between metamodel and model [93] 15

2.10 UML class diagram showcasing the Layer class and derived classes 17

2.11 “Sketch Page Domain Meta-model”[16] . 18

2.12 OutSystems’ main 4 layers seen in Service Studio. 20

4.1 High level overview of my proposal . 26

4.2 Class diagrams for ButtonIcon, Columns, Card, Button, Checkbox compo-

nents. 30

4.3 Class diagrams for Counter, Dropdown, DropdownSearch, Group and Form

components. 31

4.4 Class diagram for Icon, Input, Pagination, Radio and Root components. . . 31

4.5 Class diagram for Search, UserAvatar, Table, Text and Switch components. 32

4.6 Zooming in the approach. 33

4.7 Operating Systems market share [94]. 33

4.8 Example of Symbols Page . 35

4.9 Transformation from Layer to my custom class Artboard 36

4.10 Example of a Page with 2 Artboards and auxiliary text and arrows 36

4.11 Class Diagram for the dictionary . 38

4.12 Class Diagram for the dictionary . 40

4.13 Class Diagram for the dictionary . 40

4.14 Snippet of Icons in the OutSystems UI template 45

xi

4.15 Example of the OverrideValues property . 46

4.16 Example tagging . 48

4.17 Example of the grouping step . 49

4.18 Summary of the process. 52

5.1 Example of not so successful generation . 56

5.2 Example of a successful screen generation 57

6.1 Example of a group not explicitly grouped. 60

6.2 Cards and Counters follow a 4 column structure. 60

6.3 Example of difficult to find designs. 60

6.4 Hidden text Layer under a group Layer. 61

6.5 Interconnection of Layer Instances and Master. 62

6.6 Card component created from scratch named after the Symbol Master . . . 62

xii

List of Tables

2.1 Mappings between Sketch and OutSystems 20

3.1 Related Work Summary: Academic Methods 25

4.1 Pros and cons of the High-Fidelity approach 27

4.2 Pros and cons of the Low-Fidelity approach 28

5.1 Precision and recall for our 6 projects . 55

5.2 TAM & NASA-TLX results . 55

5.3 Developer Feedback for the 6 projects . 56

xiii

List of Algorithms

1 Overview of the Intermediate Representation creation 39

2 Instantiation of the IRNodes to OutSystems 51

xiv

xv

1

Introduction

1.1 Description

The number of people using digital devices and digital applications has increased con-

siderably. According to a recent report posted by Statista, a German statistics portal, the

number of people who accessed the internet in 2020 was 4.66 billion[42]. Smartphone

usage from 2012 to 2019 has tripled to 3.2 billion with a prediction of 3.8 by the end

of 2021[67]. With a worldwide population estimate of 7.74 billion people[21], this rep-

resents 41% of the world population who has a smartphone. End-users expectations

when interacting with a digital application, such as its usability and performance are

also continuously growing [19]. Customer Experience (CX) is a significant factor in the

market and can set a product apart from the competition [69, 90, 22]. The concept of

Customer Experience includes many different aspects, one of them being Design. Gartner

has reported that more than two-thirds of companies now “compete primarily on the

basis of customer experience” [85].

Norman first coined the term User Experience (UX) in 1990[66], which refers to the

users’ experience when interacting with a product. In his book, he also proposed a

shift towards a more user-centered approach to focus more on the users’ needs when

developing a product. Since then, UX has been an integral part of designing products,

especially when designing applications, as it is a critical aspect in their reception.

Collaboration between people of diverse expertise and professional qualifications has

been a general necessity for every industry [44, 45] and the software development industry

is no exception. A research by Faraj and Sproull [25] has shown that the importance of

well coordinating different expertises can overtake, in relevance, the existence of these

expertises in the first place. A product’s quality and value often reflect the teamwork

between a combination of different roles. In 2016, Lindsjørn et al, investigated the relation

between teamwork quality and the quality of the product, focusing more on teams that

employed an agile development strategy. This research concluded that the quality of

teamwork plays a significant role, not only in terms of optimizing the team’s performance,

but also in increasing the quality of the product [50].

1

CHAPTER 1. INTRODUCTION

Today, developing software requires work and input by collaborators with distinct

profiles and skills. A particularly relevant collaboration is that between the UX/UI design

and front-end development practices. Designers design the entire system’s expected

behavior, look, and feel, while developers turn the designs into reality through a front-

end technology. One role cannot create the whole system at an enterprise-grade level.

UX and UI designers lack the technological knowledge developers possess, and, as stated

by Norman, regarded as the “father” of UX, developers/engineers are “trained to think

logically” and design interfaces for “people the way they would like them to be and not

for how they are,”[65] which often results in lackluster user experiences. This means the

collaboration between these areas is key to developing a successful product.

The translation from design to web or mobile technology is often done by Front-End

developers based on the designers’ UX and UI designs, more frequently after the UI

design is finished. Each team uses different tools dedicated to their fields as these tools

present many advantages for these professionals to exercise their work. To the best of

our knowledge, no current unified tool provides these kinds of advantages. This results

in developers having to translate from the design format into a front-end technology

manually by looking at each component or inspecting them with “Engineering handoff
tools” [37]. These methods are very time-consuming, no matter the developer’s expertise.

This work focuses on the OutSystems ecosystem, a low-code platform that shares these

inefficiencies in the collaboration between UX & UI designers and front-end developers.

An applied use case will be targeted at the Customer Success Department of OutSystems,

where currently developers compose these pages manually. These developers do this

by manually dragging and dropping the UI elements into the pages using their IDE

Service Studio while inspecting the designs’ properties to make both correspond as best

as possible. Any sort of mitigation of this inefficiency would increase the value produced

by these teams and any other with similar issues.

1.2 Motivations

There are inefficiencies with the collaboration between the design and the development

practices. One of these inefficiencies lies in the transformation of pages from design to

a web or mobile technology as it is often done manually by front-end developers. With

our work, we aim to mitigate this inefficiency. Automating this process will allow a better

return of investment, even if just partially automating it, as developers can dedicate their

time and focus to issues that better deserve their expertise. This will allow teams to create

more value for their customers without extra investment on their part.

Another motivator lies in the current and continuously growing relevancy of UX and

UI because of the people’s expectations being higher than ever. Companies have noticed

this continuous growth and have prioritized providing their customers a good user ex-

perience as it is a determinant factor in the market. Alongside the importance of the

UX and UI factors in the market, another big aspect is a company’s ability to react to

2

1.3. OBJECTIVES AND EXPECTED RESULTS

the continuously evolving market. Often referred to as “First Mover Advantage”[48],

companies that are among the first to react to changes in the market gain a significant

competitive advantage over their competition as businesses that come after. However,

the difficulty of hiring skilled professionals in Design and Front-End technologies makes

these a challenging point for companies. This current challenge makes the collaboration

between designers and developers even more important.

One of the more recent changes in the market is the surfacing of low-code platforms.

These platforms allow developers to be more efficient by providing more value with

the same or lower efforts on their part than the more traditional methods. They allow

people with different backgrounds that are not necessarily computer science to solve

business relevant problems (through applications they create), since they require lower

programming knowledge. These factors result in the current popularity these platforms

present today and will keep on gaining in the future [92, 98].

1.3 Objectives and Expected Results

This work proposes an approach, and consequently, a tool that implements it, that auto-

mates the creation of pages in a front-end technology through the composition of com-

mon reusable UI components. These are common components that are, as the name

suggests, reused throughout the whole application such as buttons, dropdown menus

and accordions. Composing custom patterns, which are patterns that are not included

in off-the-shelf UI component libraries, is out of the scope of this work. Its principal

focus is on providing a completely structured page by composing design artifacts with

the provided UI components.

In the case of OutSystems, this tool is going to be applied to the creation of Sample

Pages, which are fully structured and functional application pages in OutSystems (more

on this in the next chapter). It is expected that in the same time that the Front-End experts

have right now to create their set of Sample Pages (later more elaborated at section 2.1.6.2),

they will be able to create more and, in doing so, will deliver further value without

extra investment. It was also expected that this tool’s effectiveness would depend on the

projects’ complexity, as more complex works are bound to have more custom patterns that

we are not accounting for. To confirm this statement and test its overall performance, the

created tool was applied to several past real OutSystems projects with different degrees

of complexity, which was then evaluated by a professional team of OutSystems Front-End

experts. Ideally, by the end of the process, a Sample Page would be completely structured

for every screen design. The degree of automation will be conditioned by the volume of

custom patterns and how many components we can identify correctly.

Looking at a broader picture and outside of OutSystems scope, it is expected that this

work’s generic and technology-independent architecture can serve as a stepping stone

in developing automated services that provide the ability to compose structured pages

3

CHAPTER 1. INTRODUCTION

by the given design artifacts and UI components in a web or mobile technology different

from the ones tested here.

1.4 Document Structure

This chapter provided an introduction to the work. The remainder of the document is

structured as follows:

• Chapter 2 - Context and Background: This chapter aims to provide the relevant

context in the OutSystems Customer Success current workflow and show where the

work will be applied.

• Chapter 3 - Related Work: Here, we present relevant work that is related to this

thesis. We discuss their main contributions and reason on how they do not apply or

differ in our context.

• Chapter 4 - Approach: This chapter presents high-level solutions along with their

pros and cons, more in-depth views of the solution and challenges that are deep

rooted in approaches like mine.

• Chapter 5 - Results: This chapter presents the results gathered from our internal

testing where we calculate the Precision and Recall values of 6 real past OutSystems

projects and the feedback gathered from the Front-End Expert team over the same

6 projects.

• Chapter 6 - Discussion: This chapter presents an analysis of the results gathered

from the previous chapter as well as some points regarding the whole project.

• Chapter 7 - Conclusion: This chapter presents a final conclusion to this thesis

alongside some future work proposals.

4

2

Background And Context

2.1 OutSystems

To gather a deeper understanding of how OutSystems works, specifically their Customer

Success department, their established practices, and current workflow, we conducted

interviews with experts in their respective fields to complement our literature research.

To complement the knowledge about their platform and IDE Service Studio, OutSystems

provided tutorials, that gave an high-level overlook of their architecture [77].

2.1.1 Company Overview

OutSystems is a software company that focuses on improving the productivity and ef-

ficiency [70, 75, 76] of building digital applications while at the same time decreasing

the minimal requirements on technical background necessary for doing that. To this end,

OutSystems built a low-code development platform. The low-code approach allows devel-

opers to create and evolve digital systems without worrying much about low-level imple-

mentation details, resulting in increased agility and speed to achieve business goals [72].

This approach allows people from different backgrounds, from a wide range of computer

systems and IT knowledge, to develop their very own enterprise-grade applications. Out-

Systems has various teams and departments. This work will focus on their Customer

Success department.

2.1.2 OutSystems Applications

The OutSystems platform allows for multiple types of applications to be developed.

Traditional Web Applications are applications that focus their workload on the server-

side (rendering and logic operations) and synchronous data fetching.

Reactive Web Applications are applications that share logic between server-side and

client-side, support asynchronous data fetching and do the rendering client-side. These

applications follow more closely today’s technological frameworks such as React [36],

Vue [100] and Svelte [96] by allowing the creation of reactive components that adapt to

different screens.

5

CHAPTER 2. BACKGROUND AND CONTEXT

While the Traditional Web Applications and Reactive Web Applications are, as the

name implies, based on Web technologies, OutSystems also allows the creation of Mobile

Applications which compile to an Android or iOS application.

2.1.3 Customer Success Department

Customer Success is a department in OutSystems responsible, among other things, for

creating and delivering projects to their customers. This division has various services

they can provide. For this work, I will pay special attention to a kind of service this

division provides called Accelerator Packs, as these provide the customers with a Live

Style Guide.

2.1.4 Live Style Guide

Live Style Guides [74], or LSG, are OutSystems’ libraries of reusable UI components,

where all the guidelines regarding each project’s appearance and behavior are organized.

These are composed of all the commonly reusable UI elements (such as menus and buttons

and can be extended with custom patterns) and Sample Pages for a specific application.

An example of a subset of UI patterns in an LSG can be seen in Fig.2.1. The goal of LSGs

is to foster consistency, improve the developers’ overall efficiency and productivity when

constructing screens for their application while lowering the required skill set to do so,

and lower the page’s components’ maintenance cost.

Figure 2.1: UI patterns from OutSystems’ Live Style Guide [79]

Live Style Guides accomplish these goals by implementing a variation of the Atomic

Design methodology[28] proposed by Frost (Fig.2.2).

6

2.1. OUTSYSTEMS

Figure 2.2: Frost’s Atomic Design methodology applied to OutSystems[77]

Frost proposed a methodology to craft interface design systems that took Chemistry as

its major influence. He picked up the notions of Atom (the basis of all matter), Molecule

(groups of Atoms), and Organism (groups of Molecules) and translated them into the

world of User Interfaces, then added two more concepts: Templates and Pages. The Atoms

of User Interface, just like in Chemistry, are the basic building blocks that form them.

These can be buttons, inputs, labels, and other essential UI elements. These elements

cannot be broken down without losing their functionality, but they do not possess a

purpose just by themselves. The Molecules are simple groups of UI elements (Atoms)

that function together as a unit. Frost’s example is that of a search form, where it is

composed of three different UI Atoms: a label, an input field, and a search button. Now

this group of UI components has gained a purpose. The label describes what the user

needs to put in the input field, and the button submits the form. Organisms are more

complex groups of UI components that can be Atoms, Molecules, or other Organisms. An

example of these can be the headers and footers we see on the Web. These groups form a

standalone section of an interface. Templates serve as a model to be instanced by different

Pages. These are Templates for Pages that contain their entire structure through the use

of organisms and molecules, presenting no content such as images or text. We can draw

a comparison of these to low-fidelity mockups which are, in general, composed only of

functional components in their “bare” natural shape (no styling) and placeholders. Pages

present the final interface that users will see. These Pages are instances of the Templates

with actual representative content in place. This passage from Templates to Pages is

like what the Designers do when passing from low-fidelity mockups to high-fidelity.

7

CHAPTER 2. BACKGROUND AND CONTEXT

Figure 2.3 illustrates this methodology with an example.

Figure 2.3: Representation of Frost’s Atomic Design methodology [29]

Having access to a library with already entirely constructed reusable UI components

lowers the required skillset from the developing team and, at the same time, allows

these developers to achieve higher efficiency and productivity since they rarely have to

start from scratch. The ability to reuse these UI components throughout the application

promotes a higher level of consistency and low maintenance costs since the elements in

the application’s pages are instances of the source reusable UI component in the LSG.

One change applied to the source will reflect through the instances.

Sample Pages are fully functional pages created by the Customer Success team for the

customer. For each particular customer’s business and business model, these pages are

created and personalized. These pages are mostly structured by the reusable UI elements

in the LSG and then are populated with mock data to allow the customer to test the

system’s interactions while serving as a stepping stone for the customer to build on.

2.1.5 Accelerator Packs

Accelerator Packs are services provided by OutSystems to their customers. The goal of

these services is to help new customers build their first app. Figure 2.4 provides an

overview of the whole process.

These services provide perks to the customers, such as supplying them with the de-

signs, workshops to better understand the OutSystems platform and architecture so they

are able to take full advantage of them, and create the LSG.

8

2.1. OUTSYSTEMS

Figure 2.4: Quick overview of the Accelerator Pack service

The Customer Success department provides three different kinds of Accelerator Packs:

Basic, Standard and User Experience. These three packs differ in what they provide for

the customer. These differences are not relevant for this work since all three of these

Accelerator Packs provides the customer with an LSG at the end of the service.

These Accelerator Pack services result from collaborative work between designers and

developers and are divided into 2 phases: The design phase and the development phase.

These are single direction processes, which means once the design process is over and

the development begins, in general, there are no more changes to the design. There are

exceptions when a Developer has to discuss some design aspects with the designer, but

these occurrences are rare.

The Accelerator Pack service starts with a meeting between the customer’s representa-

tives and OutSystems design and front-end teams. This meeting’s goal is for the customer

to hand over any of its resources and brand guidelines, such as their logo, font, colors,

among others, to the design team. The customer and developer team discuss and agree

upon which Sample Pages the developer team will deliver by the end of the service.

After the meeting has ended, the design process begins. This process usually takes

two weeks and is divided into two significant steps: the UX and the UI Design phases.

The UX Design phase takes usually ten days. In this phase, the UX designer creates the

low-fidelity mockups and conducts usability testing as well.

Once the UX phase finishes, the UI designer picks up the created mockups and pro-

ceeds to transform them into high-Fidelity. The designer in charge has four days to create

these high-Fidelity mockups and the corresponding LSG.

Front-End developers pick up these high-Fidelity artifacts, and they usually have five

days to instantiate the Live Style Guide. They first begin by instantiating the reusable

UI elements in the OutSystems language. Once they have composed the elements, they

begin to construct the Sample Pages with the same elements created in the step before.

By the end of the service, there are 2 OutSystems applications delivered to the client

as can be seen in Figure 2.5: the Theme application and the LSG application [16]. The

Theme application contains all of the project’s styles and custom patterns. Since this

9

CHAPTER 2. BACKGROUND AND CONTEXT

application is solely focused on the theming of the final application, it does not affect this

work as styling and custom patterns are out of scope of this thesis.

The Live Style Guide application however, contains vital points for this work, namely,

the LSG module. This module includes a live demo of the client adapted OutSystems UI

widgets and custom patterns, as well as the created Sample Pages. This module, usually

contains 2 to 4 Sample Pages (2 for Web Applications, 4 for Mobile) of medium complexity.

As said in 1.3, it is not expected that this solution will help create every screen in the

application. However, as stated by the interviewed developers, even if they can deliver

one more Sample Page, it is a significant increase in the value they are providing to their

customers.

Figure 2.5: “LSG OutSystems Applications Organization”[16]

2.1.6 Current Workflow of the Design and Development Stages

To understand the current collaboration process, I interviewed experts in both Design

and Front-End practices at OutSystems. These 1 hour interviews were semi-structured,

as although I set out with prepared questions I was not restricted to these, which allowed

us to discover new topics that were missed or were completely unbeknownst to us. The

full list of questions I had structured can be found at Annex I.

2.1.6.1 Designers

The following information was gathered by interviewing three designers at OutSystems

that have experience in the Customer Success department. The questions made in the

first interview were more generic as the goal was to gather more information on their

workflow, while the following two helped solidify any assumptions and identify possible

risks.

10

2.1. OUTSYSTEMS

The interview started with a few professional background questions, so we could

better know our interviewees and properly frame their experience. This was followed by

more technical questions about their practices in the Customer Experience department,

including (the full interview questions are presented in section I.1 of the Annex):

• Do you receive any sort of mockups from clients? If so, in what format do they come

in and what do you do with them.

• Do you create the UI components from a reference point such as a template and if

so, how updated is it.

• How many Sample Pages do you design?

• What are the criteria used to pick the Sample Pages to design?

Designers define the look and feel of the entire system. They use Sketch[13] as their

design tool, and it is regularly one designer per phase throughout the entire design pro-

cess. The process starts with the creation of low-fidelity mockups (Fig 2.6). The creation

of these mockups is always done by utilizing elements defined in a template called the

OutSystems UI LSG Template, and designers tend to create a mockup for every screen

of the system. This template possesses all of the reusable UI components in their “bare”

natural state (no styling).

Figure 2.6: Side by side view of a low-fidelity(left) mockup with an high-fidelity(right)
mockup of the same project

After the ten days have passed, the designer in charge of the UX phase delivers the

created mockups to the designer in charge of creating the UI. This designer has three

days dedicated to the UI design (Fig 2.6), and the last day is solely dedicated to creating

the LSG. This new LSG has all of reusable UI components in their final iteration (i,e.

11

CHAPTER 2. BACKGROUND AND CONTEXT

colors/dimensions/any sort of styling property is set) and screen mockups. This model

follows an established practice that dictates that the pages should be made before the

LSG. Nevertheless, through the conducted interviews, I concluded that some designers

prefer to do both jobs(UI design and LSG) simultaneously to improve consistency and

productivity. These designers bootstrap their LSG while working concurrently on the

pages as it provides them with the perks of working with an atomic design methodology.

The established method presents a challenge for this work since the elements in the

pages are decoupled from the ones in the LSG. As such there is no guarantee a relation

between them can be established. This coupling is needed as I am trying to automate a

process, and I need to be able to correctly identify these elements so we can map them to

the OutSystems language.

After completing the UI phase, the designer uploads the LSG to inVision, a tool that

has a dedicated feature to help the handoff phase between design and development.

2.1.6.2 Developers

To get a deeper understanding of the front-end developers workflow at OutSystems, I

conducted interviews with two front-end experts at the Customer Success department.

Just like with the designers, the first developer interview was more for us to get an insight

of the whole workflow while the second was more focused on clarifying some details. Also

like the designers, the interviews started with a few professional background questions,

so we could better know our interviewees followed by more technical questions about

their practices in the department. These were as follows:(the full interview questions are

presented in section I.2 of the Annex):

• What do you receive from the design team?

• How do you collaborate with the design team?

• Do you create everything manually just by looking at the designs?

• What are your biggest challenges?

The front-end development process kicks off when the design step finishes. Their

work revolves around instantiating the design artifacts into a functioning system in Out-

Systems. As stated before, their first phase is instantiating the reusable UI elements in

OutSystems since these will be the stepping stones of the system and will facilitate the

next step. This work is done manually by observing and inspecting the design artifact

elements (that have been uploaded to inVision) or automated utilizing a tool created

by Bexiga [16, 17]. When these elements are completed, they begin the second phase:

constructing the Sample Pages.

This whole phase is separated into three major steps:

12

2.2. DESIGN TOOLS

1. Constructing the page’s structure by dragging and dropping the components cre-

ated in the previous step.

2. Assigning any necessary parameters such as variables or auxiliary structures so they

function correctly.

3. Making the pages more realistic by creating logic that bootstraps sample data.

The work presented in this dissertation will address the first activity, while also pro-

viding some validation for the second. The third activity is completely beyond the scope

of this dissertation although it presents a good future work opportunity.

The front-end developers use Service Studio, the official OutSystems IDE to exert

their work. At this point we have the complete development toolchain and it can be seen

in Figure 2.7.

Figure 2.7: Development Tool Chain

2.2 Design Tools

There are various design tools in the market, each with different purposes to help de-

signers create their works. These can be categorized as image editing tools, UX and UI

dedicated tools, or collaboration tools.

Adobe Photoshop[2], GIMP[31], and Paint.NET[51] are examples of image editing

tools. These tools’ goals are towards image manipulation and creation through different

mechanisms they provide. This set of tools does not apply in my context as they do not

support the design of interfaces, nor are dedicated tools for collaboration between groups.

13

CHAPTER 2. BACKGROUND AND CONTEXT

Sketch[13] and Figma[27] are two of the most well-known tools[83] in this category.

These tools are focused on supporting the User Experience and User Interfaces’ design

process and provide many advantages to designers to work more efficiently, such as pro-

viding them with pre-made assets or features like Sketch’s Symbols which are applications

of the Atomic Design method. This category contains applications that can be more fo-

cused on the side of the UX, such as Balsamiq[14] and Pidoco[86], or more focused on the

UI like Figma and Adobe XD[3].

Collaboration tools, or “Engineering handoff tools,”[37] specialize in assisting the

hand-off between the designers and developers through features such as file-sharing or

code inspection. These tools can be solely dedicated to this purpose, like Zeplin[101],

Avocode[6], and Sympli[97]. They function by importing designs from other design tools.

They can also be incorporated into a UX & UI dedicated design tool, which is the case of

Figma[68] and InVision[38].

At OutSystems, in the Customer Success department, the designers use Sketch as

their design tool of choice. When they finish the designs, they use InVision as their choice

of a collaboration tool to send the designs over to the development team. By entering

InVision’s “Inspect Mode” (Fig. 2.8), developers can click on any component they desire

and InVision will present them a CSS snippet with the component’s properties. Not only

that, but since the designs are imported from Sketch, it will mention if the component

corresponds to a Sketch Symbol and present its name (although through my research on

past projects the name did not always correspond properly).

Figure 2.8: InVision Inspect example

14

2.3. MODEL DRIVEN ENGINEERING

2.3 Model Driven Engineering

Model-Driven Engineering is a software development methodology that enables devel-

opment to be done at higher abstraction levels [5]. This methodology boasts many ad-

vantages in gains of productivity, maintainability, and portability [35], although many of

these advantages are currently being misused in industries because of a lack of knowl-

edge on applying an MDE methodology or even what MDE is [35]. MDE uses models to

describe systems. These models follow the three main criteria proposed by Stachowiak:

Mapping (there is an original object that is mapped to the object [54]), Reduction(the model

must represent a set of properties from the original but not all), and Pragmatism (the

model can replace the original for some purpose making it useful) [46, 54]. To define
the structure of a modeling language that models use [93], we turn to meta-models. This

language is referred to as the modeling language and can be defined as domain spe-

cific [23, 43, 55] or general-purpose [93] depending on its scope. Figure 2.9 illustrates the

relationships between these elements.

Figure 2.9: The metamodel definition: relationships between metamodel and model [93]

2.3.1 Model Transformation

Model Transformation is the process of automatically converting a source model into one

or more target models following an established set of transformation rules [59].

A possible classification of model transformations is dependent on the nature of the

source and the target model. When these coincide, we are in an endogenous transfor-

mation or rephrasing. Some examples are Optimization, Refactoring, Simplification and

Component Adaptation [46]. If the models are from different natures, we are presented

with an exogenous transformation or translation. These can be Synthesis, Reverse En-

gineering or Migration transformations [46]. My work’s core is a model transformation

process where we will transform our source model Sketch into our target model, the

OutSystems language.

15

CHAPTER 2. BACKGROUND AND CONTEXT

2.3.2 Models in my Work

This work has 2 models as it has been mentioned throughout the thesis: the Sketch

model and the OutSystems model. These models are the basis of this work, as we are

trying to transform our source Sketch model into the OutSystems target model, and so,

understanding them and their composition is key.

2.3.2.1 Sketch Model

Sketch is a digital design toolkit developed by Sketch. B.V[13]. Its primary focus is on

producing low and high-fidelity representations for user interfaces. Internally, Sketch is

composed of “Layers.” These Layers are the building blocks for creating designs in Sketch
[10]. Some of the layer types that are important for this work are the following:

• Group: These are composed of multiple layers. There are specialized kinds of this

layer type such as:

– Page: These are groups that represent a canvas of the document. A simplified

way of visualizing these pages would be referring to them as categories, i.e., a

Page called UI would contain every UI design.

– Artboard: These contain the designs of what would be the actual screens of

the system.

– Symbol Master: These are group layers that are frequently used around the

whole document. Any change applied to them is propagated in their instances.

[12]

– Symbol Instance: These are instances of the Symbol Master and inherit their

properties. However, these can alter some properties independent of the mas-

ter.[12]

• Text: Layer type that contains the text.

• Shape: The most common type of Layers in Sketch. They represent pre-made shapes

that are pre-built or created by the designer[11].

Layers have common properties that characterize their elements independently of

their class, and others more specific such as the text properties in a layer with Class Text.

The diagrams 2.10 and 2.11 showcase this model.

There are common properties that are shared between every layer. The most important

are:

• Name: Represents the name given by the designer.

• Class: Represents the kind of the layer (mentioned above).

16

2.3. MODEL DRIVEN ENGINEERING

Figure 2.10: UML class diagram showcasing the Layer class and derived classes

17

CHAPTER 2. BACKGROUND AND CONTEXT

Figure 2.11: “Sketch Page Domain Meta-model”[16]

18

2.3. MODEL DRIVEN ENGINEERING

• SymbolID: If the Class attribute is a Symbol Instance, then it will have a SymbolID

which corresponds to its Symbol Master.

• Frame: Defines the positions and dimensions of the layer relative to the parent layer.

2.3.2.2 OutSystems UI Template Sketch File Model

OutSystems’ UX designers use a template whenever doing low-Fidelity mockups. This

facilitates the mapping process later on, as it would not be possible to do so without

having some guarantees of the design mockups’ structure. This file was developed by

OutSystems’ UI team[17] and continuously gets updated in a way to match the evolution

of the OutSystems UI framework. During the research, some issues around the usage of

this file arose such as:

• Due to its continually evolving state, some designers are using different versions of

this file.

• Some designers do not use the template at all.

The current template’s structure is divided into the following Pages:

• Style: Represents the common styling properties such as typography, color, and

shadow. Styling related concerns are completely out of scope of this work, so while

this Page is highly useful to designers and developers, it is not for us.

• UI Patterns and Widgets: This page contains every UI pattern and widget in the

OutSystems UI kit. These are all Symbol Instances and show all the different states

of the components. This page is the one that shows different structuring throughout

different versions of the template.

• Layouts: The page shows the different layouts of the pages for the different possible

devices, such as a computer, tablet, mobile, and various screen sizes.

• Symbols: It contains every Symbol Master that’s going to be used in the design.

As mentioned before, one change in these symbols will propagate through their

instances.

2.3.2.3 OutSystems Model

The OutSystems platform employs a Visual Programming Language that abstracts an

underneath strongly typed language [91] that composes its four significant layers: pro-

cesses, interfaces, logic, and data [78]. These layers can be seen in their IDE Service

Studio (Figure 2.12).

In this work, we will focus on the interface layer since we are focusing on compos-

ing the UI’s structure and, as the name suggests, this layer is related to the UI of an

OutSystems project.

19

CHAPTER 2. BACKGROUND AND CONTEXT

Figure 2.12: OutSystems’ main 4 layers seen in Service Studio.

OutSystems’ applications are composed of various modules to help reusability and

maintainability. Each module is separated in its OML file. These files are proprietary

to OutSystems and contain the information of modules. To see this information, you

need a specialized tool created by OutSystems that extracts the information in these

OML files into XML format. There are four kinds of modules: application, service [78],

library [73], and extension [71]. The two kinds of modules I are interested in are the

library and application modules.

The library module is pretty much self-explanatory as its goal is to contain the foun-

dations of an application, such as its UI elements and Style Guides.

The application module contains the application itself. The application’s screens are

called Web Screens and are composed of various UI elements representing a hierarchical

structure. As we can see, this already presents some similarities to the Sketch model.

The mentioned UI elements can be separated into multiple categories, such as “widgets”

whose primary goal is for the user to interact with the system by inputting or submitting.

An example of these UI components are buttons and dropdown menus. To place these

elements in an OutSystems application, the user drags and drops them into the pages.

These are a few similarities and mappings we can already do from one model to the

other:

Sketch OutSystems

Internal Structure Hierarchical Structure of Layers Hierarchical Structure of Widgets

Application Screens Artboard Web Screen

Atomic Elements Symbols LSG Elements (UI Patterns)

Element Grouping Groups Containers or Web Blocks

Table 2.1: Mappings between Sketch and OutSystems

20

3

Related Work

The research on the automation of application creation from design inputs is relatively

novel compared to the other methods of automatic generation from model based code

generation [18, 30, 40, 57]. However, these past few years have shown some recent

advances in this field. This chapter will present some relevant work in design to code

translation, from state-of-the-art commercially available tools to more academic research.

3.1 Commercial Applications

3.1.1 Currently in the Market

There are several continuing efforts to minimize the gap between design and front-end

development by converting the design into code.

Some existing applications, such as Anima [4], Supernova [95], and Yotako [99], allow

users to provide their designs from multiple design tools such as Sketch [13] or Figma [27].

Most of these tools only export to a selection of traditional frameworks such as React or

HTML/CSS. Other applications like React Studio [53], PaintCode [87], and PageDraw [81]

are even more strict, as they require the design to be made in their built-in editor. This

restricts designers from using their dedicated design application of choice and clashes

with today’s industry practices in the design field as verified by Bexiga [16]. None of them

supports the generation of low-code artifacts.

While researching these tools, many were restricted to creating the same set of web

technologies, with React being shared in almost all of them. None allowed for the gen-

eration of low-code artifacts, solely focusing on the current more traditional front-end

technologies. Low-code platforms are a growing force in the market[92, 98] and just like

these traditional technologies, they would benefit from the existence of a tool like these.

3.1.2 Emerging Applications

New commercial applications dedicated to transforming design artifacts into code are

still emerging. An example of this is Modulz[60]. Modulz, by a startup of the same name,

21

CHAPTER 3. RELATED WORK

differs from other design tools such as Sketch[13] or Figma[27]. Both Sketch and Figma

are vector drawing tools, while Modulz is a dedicated UI and development tool, which

means that when designers are creating their designs, the application is automatically

generating code in the background. This auto-generation, as of right now, is only to React.

Although they have plans to support more web technologies in the future, they suffer

the same as the current market applications do by not supporting the low-code emerging

platforms.

3.1.3 Plugins

Sketch and Figma are two of the most commonly used vector design tools globally [82, 83].

None of these applications allow natively the possibility of exporting the designs into code

directly from the application. However, they allow expansion via plugins. Some of these

plugins can be community-driven or even company-driven. One such example is their

Code Generator plugin made by PaintCode [88]. This plugin allows the transformation

from design to code to Objective-C, C#, and Swift.

Similarly, in Figma, a code generator technique was implemented [41] to convert the

designs into React directly from the application. However, neither of these functionali-

ties are employed by the professional teams in OutSystems since these code generation

functionalities do not export to their low-code technology [17].

3.2 Methods to Identify UI Elements

One of the first and more well-known studies is Prefab. Done in 2010 by Dixon and

Fogarty [24], Prefab uses computer vision to capture a window in a screen, interprets it,

and recreates it in a new dummy window presented to the user. This dummy window is a

copy of the original with added HCI accessibility techniques like the Bubble Cursor [33].

The user interacts with this dummy window, and the actions of the user are reflected

in the original. Prefab relies on a predefined UI components model and assumes the

pixels that make a widget are similar or even identical across various applications. This

is not true in the current day and age as most applications have their styles and themes,

and one cannot make assumptions on how the interface will end up looking. One of the

limitations of this work is the relationship between components. Elements like a group

of radio buttons or elements hidden in tabs or menus do not behave properly.

While Prefab supported the identification of User Interface elements, more recent

approaches also support the direct transformation into code.

Nguyen et al. introduced in 2015 a novel proposal in the field of automatic application

generation, REMAUI [63]. Unlike Prefab, REMAUI uses an interface’s design as the input

to generate an application’s code, specifically from screenshots of the interface and does

not require the complete model to already be defined. To our knowledge, they were

the first to propose code generation through the UI design of applications’ interfaces.

22

3.2. METHODS TO IDENTIFY UI ELEMENTS

REMAUI uses a mixture of Optical Character Recognition with domain heuristics and

computer vision techniques to achieve higher accuracy results while managing to preserve

the structure of the application’s pages.

Pix2code [15], two years after REMAUI, is another approach to the generation of appli-

cations from images. Beltramelli’s model uses deep learning to generate an application’s

GUI in computer code based on a single input image. Unlike REMAUI, pix2code achieves

its goal with a combination of Convoluted Neural Networks techniques and Long Short-

Term Memory [32]. Beltramelli’s tool outputs code with a 77% accuracy ratio with the

original image for three platforms (iOS, Android, and web-based technologies). One of

the significant drawbacks is related to using deep neural networks since it needs to do a

lot of training to be better tuned. Nevertheless, his method managed to output code with

77% accuracy and managed to preserve the application’s hierarchical structure.

Sketch2Code [39] generates code based on hand-drawn sketches. Their approach

relies on methodologies that use sketch-based prototyping in the early phases of software

development, which does not happen in our context. Their tool’s results were highly

dependent on good lighting when taking a photograph of the hand-drawn sketch, as bad

lighting would bring in inaccurate results. They also managed to preserve the pages’

structure, but unlike the previous, they could not identify the styling.

In 2020, Bexiga developed a method to automate the reusable UI components’ styling

process by transforming these components from an artifact created in a design tool into

a low-code technology [16, 17]. Her goal was to mitigate another inefficiency in the

collaboration between designers and developers, which makes it the most related to

this work. Her work was also applied to the OutSystems ecosystem in the Customer

Success department. The method she developed is focused on the styling properties of

the reusable UI components. The developers’ work was done manually by inspecting the

designs and manually styling the components, and this tool allowed the automation of

this process to shorten the time required. Her tool achieved results ranging from 20% to

70% time-saved for front-end developers, which could correspond to 2-3 days of work.

Comparing her work to this one, I am also mitigating inefficiencies in the collaboration

between these teams, and I am too applying it to the OutSystems ecosystem, but we are

ultimately tackling distinct problems. Mine focuses on the composition of the reusable

components to create application pages which will be applied to the second phase of the

front-end development process, while hers applies to the first (these two phases were

discussed in 2.1.6.2). Both of the works also differ in terms of their final goals. Her

work is focused on shortening the time front-end developers spend on instantiating the

reusable components while mine is to enable the development of more Sample Pages by

the development team in the time they have now without extra investment.

These current approaches and others [34, 56] utilize images and hand-drawn sketches

as their input making them somewhat disconnected from current established practices

designers follow today. While people still use pen and paper to hand draw ideas during

brainstorming sessions [83] or for initial testing using paper prototyping [64] it does

23

CHAPTER 3. RELATED WORK

not go much further than this. These strategies are often employed to save money and

resources during the early stages of the development process. However, these strategies

are time-consuming and leave out essential details of the system such as looks, feedback,

overall feel, and other HCI essential elements such as Fitts Law which states that the

time to move to a target (in our case with a mouse or a finger in touch-based screens) is a

function between the distance to the target and its width [20]. To get the system’s feeling,

look, and interactions, designers turn to these specialized design tools to construct a

higher fidelity design that incorporates these elements. The table (3.1) summarizes this

section.

3.3 Representation of User Interfaces

There are various languages created to specifically represent user interfaces independently
of physical characteristics. These interfaces are called User Interface Description Language

(UIDL) and are usually XML-based languages. In this section, I will focus on three ex-

amples of these UIDL, although more exist[49, 84, 89], since my solution will require an

Intermediate Representation, that will technically be a UIDL.

User Interface Markup Language (UIML)[1] is a platform-independent language for

describing UI. It is XML-based and is divided into five sections: description (where the

components will be defined), structure(the structure of the UI), data (where is defined

the content of the components), style (place to define the styling of the components), and

events (section dedicated to defining the system events such as button presses). UIML

has all of this to allow its’ platform-independence nature, but some variations of UIML

such as UIML/GUI[1] allow for a more compact architecture at the cost of a dependence

(in this case, a graphical user interface). Due to its high level of abstraction, other UIDLs

(such as the ones I will speak here) are often referred to UIMLs instead of UIDLs.

Extensible Application Markup Language (XAML)[58] is an XML-based declarative

language created by Microsoft for their .NET applications. Since this language is the

basis of Microsoft’s .NET applications, it contains the structure of the User Interface

and embeds programming logic and styling. Every XAML tag corresponds to a .NET

component whose properties can be controlled through the tags’ properties.

XML User Interface Language (XUL)[26] was created by the Mozilla Foundation. It

is structured similarly to Web Pages. Like XAML, XUL can be extended with existing

standards and technologies such as CSS and JavaScript.

These presented UIDLs (and others) were all created with the goal of representing

UI in XML based representations and are specialized in frameworks. I will be needing a

similar representation to these that fits more in the lines of the artifacts created by Design

Tools and low-code front-end technologies. I could try to pick one of these and try to

adapt them into our needs but ultimately I decided to create my own. My representation

will differ from most UIDLs as it will be JSON-based instead of XML since I will be

working with JSON throughout the process and have everything already setup.

24

3.3. REPRESENTATION OF USER INTERFACES

Title Input Output Styling Structure Notes

Prefab[24] Screenshots Creates a
replica of the
input window
with enhance-
ments.

D D Requires full
model to be de-
fined and counts
on applications
looking similar.
Does not handle
relationships
between widgets.

REMAUI[63] Screenshots Mobile Tech-
nologies

D D Does not follow
current industry
practices.

pix2code[15] Screenshots Web & Mobile
Technologies

D D Does not follow
current industry
practices.

Sketch2Code[39] Hand-
Drawn
Sketches

Platform-
Independent UI
Representation

X D Does not follow
current industry
practices.

Extraction and
Classification of
User Interface
Components from
an Image[34]

Screenshots JSON file con-
taining the
structure of the
UI

D D Does not follow
current industry
practices. Styling
is very basic, lim-
ited to primary
colors.

Closing the gap
between designers
and developers in
a low code ecosys-
tem[17]

Design
Tools

Web Technolo-
gies

D X The work focused
on identifying the
styling properties
in the design ar-
tifacts provided
to automate the
styling process
done by front-end
professionals.

My Solution Design
Tools

Web Technolo-
gies

X D Styling is de-
pendent on the
components pro-
vided. It does
not interpret the
colors from the
given input.

Table 3.1: Related Work Summary: Academic Methods

25

4

Implementation

This chapter focuses on the approach I developed. It will showcase a high-level view of

the process, the decisions needed to be made along the way (with respective discussion

and reasonings) and conclude with a more in-depth view of the solution alongside some

of the more noteworthy steps, such as the creation of my Intermediate Representation.

4.1 High-Level Solutions

My work focuses on the transformation from the source model Sketch into the OutSys-

tems model. The solution takes as input a design file in Sketch that contains the pages of

the application and the components instantiated in OutSystems. It generates an OutSys-

tems application with fully structured screens and a report file containing user info such

as errors and patterns that were not converted. A representation of the basic concept can

be seen in Fig.4.1.

Figure 4.1: High level overview of my proposal

When composing a jigsaw puzzle, the player relies on the image given, usually in the

front of the box, to know where to place each piece to recreate the image. This solutions’

overall workflow can be seen in a similar light to mounting a puzzle. Each application

page in the Sketch file can be seen as a puzzle image, while the reusable LSG elements

are the puzzle pieces. The tool receives the application’s pages in Sketch to understand

the overall structure, the components that compose its structure, and its relationships.

26

4.2. LOW-FIDELITY VS HIGH-FIDELITY

Knowing each page’s structure, the tool uses the provided reusable LSG UI elements

to recreate the page in the OutSystems language by composing the pages using these

reusable elements.

Considering the insights gathered from the research and interviews carried out with

the design and developer teams (section 2.1.6 shows the information gathered from these

interviews), there were two possible solutions. These solutions are fundamentally similar

but differ in one important factor: which type of design artifacts it uses, high-fidelity or

low-fidelity. Each has its pros and cons as its structure differs.

4.2 Low-Fidelity vs High-Fidelity

4.2.1 High-Fidelity

Looking first at the high-fidelity approach, I propose using the high-fidelity mockups cre-

ated at the end of the UI phase to compose with the UI components already in OutSystems.

This solution has the advantages of creating fully structured pages, the Front-End team

would suffer no impacts to their workflow, and that the tool would be generating pages

closer to the final product since after these were done, the design process was considered

finished (besides a few exceptions). However, on the Design side of the process, there

would be required adjustments to their workflow, so they bootstrap the LSG while work-

ing on the pages to mitigate the decoupling issue mentioned in section 2.1.6.1. Table 4.1

shows a summary of this approach.

Pros Cons

Pages are completely structured.

Front-End developers would suffer no
impact to their current workflow.

Pages resemble more closely the final
product.

Adjustments to the current design work-
flow would be required.

Table 4.1: Pros and cons of the High-Fidelity approach

4.2.2 Low-Fidelity

Instead of using high-fidelity mockups, this approach proposed using the mockups cre-

ated during the UX phase where the page’s structure would already be complete while

missing all the styling such as colors, margins, paddings, etc. This option continues

producing completely structured Sample Pages, now both the Front-End and Design

workflows would suffer no impact, and we gain a new advantage of having a higher po-

tential of more Sample Pages since the low-fidelity mockups have a higher number of

pages than the high-fidelity. Here, we are also more safe from the decoupling issue since

27

CHAPTER 4. IMPLEMENTATION

the established practice during the construction of these designs dictates that the design-

ers should use the components in the template. The disadvantage of this approach is that

it is viable to ambiguity issues. Since this approach runs on a higher abstraction level, a

component in the low-fidelity mockup of a page could map to more than one entity in

the OutSystems language components due to variations, i.e., one button in low-fidelity

could have five variations. Table 4.2 shows a summary of this approach.

Pros Cons

Pages are completely structured.

Front-End developers & designers would
suffer no impact to their current work-
flow.

Low Fidelity mockups have more pages.

They are always based on a template.

Ambiguity risk - How do we differentiate
variations?

Table 4.2: Pros and cons of the Low-Fidelity approach

4.2.3 Ambiguity Challenge

To evaluate the ambiguity risk presented in the previous section, I checked 20 past Out-

Systems projects to see if the issue presented itself and, if so, how often. These projects

were divided equally into one of four complexity levels. This research found the risk

to be minimal as none of the projects possessed any ambiguity in their elements when

shifting from low-fidelity to high-fidelity, which coincides with information passed in the

interviews. What usually happens to handle variations is: either the template has already

a component per variation (for example being the button, there is a primary button com-

ponent, cancel button, and a loading button) or Sketch allows the designers to modify an

instance of the component while preserving the connection to the template (for example,

the primary button in the template is blue and the designer can turn the instance red

while preserving the connection to the original primary button).

4.2.4 Conclusion

After verifying that the ambiguity risk presented to be minimal, I decided to focus on

using the Lo-Fi mockups for my work while completely ruling out Hi-Fi. This decision

presented to be not ideal, as most projects do not preserve the UX design, or they simply

skipped that phase. I could not ignore the fact that the volume of projects with Hi-Fi

mockups was significantly larger. With this in mind, the final work ended supporting

both cases, with the caveat being that when using high-fidelity we have less guarantees

that the component identification will be as successful as when using low-fidelity.

28

4.3. IMPLEMENTATION DESIGN DECISIONS

4.3 Implementation Design Decisions

At this point, there were set a few other decisions that would shape the entire implemen-

tation process, the first being a set of requirements I believed to be essential for this work.

They were as follows:

• The tool should be as unintrusive as possible, to facilitate its adoption among UX/UI

designers, so as not to disrupt their workflow, while providing a significant head-

start for front-end developers, freeing their time.

– If any adjustments are needed, these should be minimal and not intrusive.

• The tool should be simple to use.

The other decision was how aggressive we should be with the automation process.

Here, I came up with two opposing approaches:

In the first approach, I would focus on Precision, by only instantiating the compo-

nents, and parts of them, when and where we are close to 100 % sure we are identifying

them correctly. The consequence of this approach is that we end up with fewer compo-

nents, and the resulting pages would be more incomplete with the upside of having a

significantly improved accuracy.

The second approach would focus on Recall by automating as much as possible, even

for ambiguous scenarios when we are no 100% sure of the appropriate process. This leads

to a higher risk of incorrectly instantiated components, forcing the development team to

reorganize or, in the extreme case, redo from scratch.

I decided and opted to focus on Precision with approach 1 since it causes fewer

overheads on the development team. I am focusing on automating and accelerating

part of their day-to-day workflow, and so purposely giving them extra work would be

against my philosophy, and so I decide it is better to deliver an incomplete result that they

can quickly complete with their expertise. We also diminish the possibility of potential

frustration from part of the development team due to errors in the transformations.

4.4 Intermediate Representation Model

I created my own model to bridge our source and target models to achieve a higher abstrac-

tion level. My model is mainly based on the Sketch model, with additional information

to support a correct mapping to OutSystems.

The base element is an IRNode, an abstract structure created by us to serve as the

nodes of my Intermediate Representation, which follows a tree-like structure. There will

be an IRNode per supported Sketch layer/OutSystems component, containing all the

information that is common in every component, such as:

29

CHAPTER 4. IMPLEMENTATION

• Type: Represents the type of the node. It can be a group, symbol, or root, determined

by the Class of the layer.

• InternalName: A string that represents the name of the component in the Live Style

Guide.

• Widget: A simplified version of InternalName. It allows to easily distinguish compo-

nents, i.e., an InternalName like 01.adaptable/component/Button Default/Primary

goes to Primary Button.

• DesignerName: The layer name, as chosen by the designer.

• RelativePosition: Contains the coordinates of the component in relation to the

parent component, its width and height.

• Children: A list containing the descendant layers. Useful for nested components.

• Visited: A Boolean value that exists to help calculate overlaps - if a component

overlaps with another in the x-axis - without duplicated counting.

I created support for 20 components of the OutSystems LSG. These components were

identified by the Front-End experts at OutSystems as the most relevant components. The

following Figures 4.2, 4.3, 4.4 and 4.5 showcase the class diagrams of the implemented

components.

Figure 4.2: Class diagrams for ButtonIcon, Columns, Card, Button, Checkbox compo-
nents.

Note that each component has Fields that are particular for that component and all of

them possess the 3 main methods:

30

4.4. INTERMEDIATE REPRESENTATION MODEL

Figure 4.3: Class diagrams for Counter, Dropdown, DropdownSearch, Group and Form
components.

Figure 4.4: Class diagram for Icon, Input, Pagination, Radio and Root components.

31

CHAPTER 4. IMPLEMENTATION

Figure 4.5: Class diagram for Search, UserAvatar, Table, Text and Switch components.

• Handle: Used in the first transformation from Sketch to my Intermediate Represen-

tation. Used to populate the Node with the required info from the Layer.

• The following 2 are for the second transformation, from Intermediate Representa-

tion to OutSystems:

– InstantiateWithContainer: Instantiate the component in given container.

– InstantiateWithPlaceholder: Instantiate in the given placeholder.

With the Intermediate Representation established, a more zoomed in approach can

be seen in Figure 4.6. This figure showcases the two big phases that my work follows.

The first major phase is a transformation from Sketch (source model) to my Interme-

diate Representation (target model). This phase will receive a Design artifact in Sketch

created by a designer in the design team, and create 1 file per screen mockup.

The second phase will be the composition phase, where the tool will receive the

screens in my Intermediate Representation (source model) and a library of reusable UI

components already instantiated and stylized in OutSystems by a developer, and compose

both together to deliver an OutSystems (target model) application with structured pages.

4.5 Sketch To Intermediate Representation

To handle the Sketch model, I will be proceeding with the unzipping method, where we

unzip the .sketch file and receive multiple JSON files to work with. Another possibility

would be to use Sketch’s Command Line Interface(CLI) [8] or Sketch’s API [7]. These

approaches rely on having an installation of Sketch to access as they come bundled with

32

4.5. SKETCH TO INTERMEDIATE REPRESENTATION

Figure 4.6: Zooming in the approach.

the CLI, which in turn requires the user to have the software and the hardware as Sketch

is only available on Apple computers at the time of writing. Since OS X only represents

16% of the market share, as seen in Figure 4.7, these approaches present themselves as

more restrictive than I would like.

Figure 4.7: Operating Systems market share [94].

33

CHAPTER 4. IMPLEMENTATION

On the other hand, the unzipping method works in almost, if not all operating systems

and so, I decided to adapt this approach.

4.5.1 Initial Process

To access and manipulate a Sketch file, we first need to unzip the file as documented in

the Sketch documentation [9]. By unzip the file, it results in three JSON files and three

folders. They are as follows:

• meta.json: Contains the metadata of the Sketch file such as a list of the Pages, Sketch

version and fonts used. For my work, I do not use this metadata file.

• document.json: Contains common data that is shared between all Pages, such as

shared styles. Not relevant to us as it partakes more in styling issues.

• user.json: Contains the user data for the Sketch file, like zoom level, dimensions, UI

metadata and if it has been uploaded to the Sketch Cloud. This file mostly contains

settings at the user level which is not relevant to us.

• pages folder: This folder contains a JSON per Page in the Sketch file. This folder

is the most relevant for us as the contents of the files within this folder contain the

internal structure of the pages in the project.

• images folder: The images folder is self explanatory, in it we can find all the bitmaps

that were used in the project at their original scales. Since I do not handle images,

we can ignore this folder.

• preview folder: This folder only contains an image of the last page edited.

After the unzipping process, now I needed to find the JSON files that correspond

to the Pages we want to work with. Namely, we are interested in the Pages that contain

the screen’s designs and the Symbol Page that contains all the Symbol Masters. Since we

cannot look at the file’s names to identify the Pages, as these are generally a string of

random characters, we need to look at the inner structure of the JSON files. Specifically,

we need to inspect the first Name property of the top-level Layer as it will match the name

given by the designer. The Page that contains the Symbol Masters is trivial to identify, as

this Page is always called (at the current version of the template) Symbols. The Page that

relates to the mockups, however, is not so simple. A designer creates this Page, and so

the page is susceptible to an arbitrary name. With this in mind, the Pages require to have

consistency in their names. Here, we look for pages containing the string “UX Design” or

“UI Design” in their names. If only one exists, I will use that Page. If both exist, I have a

priority method to prioritize the UX Design over the UI Design for reliability concerns,

as it is an established practice to use the template’s components to model this kind of

design, allowing us to identify the components with high precision (plus other reasons

mentioned in section 4.2).

34

4.5. SKETCH TO INTERMEDIATE REPRESENTATION

4.5.2 JSON Treatment

Now that we have correctly identified the JSON files to use, we needed to find a way to

manipulate them. These JSON files are composed of Layer objects and are full with a

large number of these objects. An example can be seen in Fig 4.8 which is the JSON corre-

sponding to the Symbol Master Page. A quick look at the image or by inspecting the scroll

bar on the right, it is possible to see how much information these files contain. Although

here we present a Page corresponding to a Symbols’ Page, the ones that correspond to the

UX or UI Design have similar lengths and complexity, if not more.

Figure 4.8: Example of Symbols Page

So to be able to manipulate these files easily I used a framework called JSON.NET [62].

This framework allows us to deserialize JSON objects into any given class, transforming

these JSON files into trees with nodes of a class of our choosing.

4.5.2.1 Selecting Attributes

An option would be to serialize the JSON objects into a class that represented the standard

Sketch Model. IDEs such as Visual Studio allow the easy creation of a class that models

a JSON file by pasting said JSON into the IDE and clicking a button. A problem with

this approach is that a Layer has an extensive list of attributes that are not necessary to

us (list can be viewed in Fig. 2.10). So, I created a new class called “Artboard,” where I

selected the attributes that I wanted to preserve. Using JSON.NET by simply naming our

properties the same way as the attributes in the JSON file will automatically correlate

and serialize those fields with the correct values. Diagram 4.9 shows this simplification

process.

The Pages, especially the ones related to the mockups, usually have more than just

the Artboards. Usually, the designer adds more to the designs to better identify by giving

35

CHAPTER 4. IMPLEMENTATION

Figure 4.9: Transformation from Layer to my custom class Artboard

the artboards a name over them or with arrows to represent the flow of the screens. An

example of both of these auxiliary artifacts can be seen in Figure 4.10. These elements

from the Pages are not part of the Artboard and are simply auxiliary, so we ignore and

skip them to solely keep the Artboards.

Figure 4.10: Example of a Page with 2 Artboards and auxiliary text and arrows

After this step is done, we have a tree per Artboard composed only by objects of my

custom class, with all the properties we need.

36

4.5. SKETCH TO INTERMEDIATE REPRESENTATION

From now on, all Layers of the process have this simplified model.

4.5.3 Component Identification

As we iterate through a tree corresponding to an Artboard, we need to identify the node

we are looking at with the highest precision and certainty we can. To do this, we have

three distinct possibilities.

The first possibility is exclusive to Symbol Instances. These Symbols have an attribute

called “SymbolID” that links back to the Symbol Master. With this link between Instance

and Master, we can quickly identify the component correctly by tracing back to the

Master, part of the OutSystems UI template. The only problem with this approach is

that it relies on the design team to use the Symbols as much as possible, which usually

does not happen. In some cases, designers can see fit to create the components from

scratch by hand since they are easier to create than to Instantiate (like the Card can be

easily replicated by just creating a Group composed by a white rectangular Layer, then

looking and searching for the Card Symbol) or that the instance would require some

heavy modifications that Sketch generally does not allow them to do.

The second possibility is to identify a component by its composition, for example,

identifying a blue underlined text Layer as a Link or a group with X number of input

fields and buttons as a Form. I discarded this approach as I cannot guarantee that I

am identifying these elements correctly. In the example given, that text Layer could be a

Link, or it could be some particular styling choice that the designer decided. This possible

ambiguity goes against my Precision first approach.

The third possibility is to look at the Layer’s name. This approach can be precarious

as Layer names are subjective to the designer. To adopt this approach, I would require

some guarantees to have a more consistent result. To this end, I have adopted a method

to identify Layers - all of them being in the Group class - by matching their names with

the ones from the Symbol Masters. I restrict this verification to the Group class as neither

the shape or text groups could be a UI Component. The Layers will be referred to as

Decoupled Components.

The implemented program identifies the UI components based on the first and third

approaches presented. These two approaches focus on tracing back to the components

in the OutSystems UI Template, either by SymbolId in the first approach or by matching

with their name in the case of the third one. This meant I needed to keep a reference of

components in the template, namely the ones present in the Symbols Page (2.3.2.2). One

possibility could be to store this information in a file (in JSON format, for example) that

would map an ID to the Symbol Master. The problem is that this template is volatile,

and there exist multiple versions of it already and will continue getting updated as time

goes on, which would require this file to get updated as well or even have one version per

template version. This would be highly impractical, and so I decided to build a structure

that would accomplish this same feat, but that would be built on runtime.

37

CHAPTER 4. IMPLEMENTATION

4.5.3.1 Auxiliary Dictionary

This structure took the form of a dictionary that runs over the Symbols Page at the start

of the program and adds entries, where the key is their ID, and the value is a structure

containing the necessary attributes. Fig 4.11 showcases the Class created to be the values

of my dictionary. We save the Name property from supporting the Decoupled Component

solution. We also save the Layers property, which are the sub-Layers of the item. These

are necessary when we need to instantiate components that do have any alteration.

Figure 4.11: Class Diagram for the dictionary

With this dictionary, Symbol Instances can find the corresponding Master easily by

looking up the ID which is the key, and Decoupled Components can find the correspon-

dent by name, using LINQ over the dictionary’s values.

4.5.4 IRNode Creation

Whenever an LSG UI component has been identified from a Layer, this Layer will be

transformed into an IRNode. The Layer can have different types, but here we only handle

3 types: SymbolInstance, Group and Text. Algorithm 1 showcases an overview of the

process.

4.5.5 Transformation Rules

From now until the end of this section, I will be showcasing the transformation rules

for each of the components. These rules were hard-coded into the tool itself instead of

utilizing a model transformation language. The rules that were created will be described

by text followed by an equation that represents it. These equations follow the following

format:

RuleName :
Lef tHandSide/Source

RightHandSide/T arget
(4.1)

Both the sides of the equation can be extended to showcase a more detailed represen-

tation.

38

4.5. SKETCH TO INTERMEDIATE REPRESENTATION

Algorithm 1 Overview of the Intermediate Representation creation
Data: An Artboard Layer with every sub-Layer already simplified
Result: A tree of IRNode
currentNode← newRoot(Artboard.Name) // Create the root node with the name of the screen

IRT ree←HandleLayer(Artboard, currentNode) // Start building at the root

writeJson(IRT ree)
Function HandleLayer(Artboard, currentNode):

for layer in Artboard.Layers do
class← layer.Class
switch class do

case SymbolInstance do
resultingSymbol← handleSymbol(layer)
currentNode.addChild(resultingSymbol)
if layer has sublayers then

HandleLayer(resultingSymbol, layer)
end

end
case Group do

handleGroup(layer) // Groups, Columns and Decoupled Components

end
case Text do

/* Text layers do not possess inner layers, so a simple add is enough */

current.AddChild(newT ext(layer))
end
case Default do

/* Other types of layer that we do not support */

end
end

end
return

A dot followed by a property name (for example .Name) relates to a specific property

of a model that we are transforming. Equation 4.2 represents a transformation from

the Name property in the Layer(Sketch) model into the DesignerName property in the

Intermediate Representation model.

RuleExample1 :
Layer.Name

IRNode.DesignerName
(4.2)

Some transformations can have the same Source and Target fields but can be done

through different means. This is where the (differentiator) schematic comes in. The

following equations 4.3 & 4.4 showcase this. Equation 4.3 showcases a transformation

from a Layer to an IRNode through the X value, while equation 4.4 does the same but

through the Y value.

39

CHAPTER 4. IMPLEMENTATION

RuleExample2 :
Layer(X)
IRNode

(4.3)

RuleExample3 :
Layer(Y)
IRNode

(4.4)

Every Layer is transformed into a IRNode based on their symbolID if they are of

class “symbolInstance” (4.5), based on their name if they are “group” (4.6) or a simple

conversion in the case of “text”(4.7).

Rule1 :
Layer(symbolID)

IRNode(symbolID)
(4.5)

Rule2 :
Layer(name)

IRNode(name)
(4.6)

Rule3 :
Layer

T ext
(4.7)

While this is true, what Rule1 does is that it fetches the Symbol’s original Name in

the template to be used as our “key” to identify the component. So in a way, I am always

using the Name property as the “selector”. The following flowcharts 4.12 & 4.13 showcase

these transformation flows, which would correspond to algorithm 1 handleGroup() &

handleSymbol().

Figure 4.12: Class Diagram for the dictionary

Figure 4.13: Class Diagram for the dictionary

Even though every component (excluding text since it does not need any identification)

is identified by these 2 ways (by symbolID or by name), each of the 20 implemented

components has their own transformation rules to match the component’s requirements.

Looking back at the class diagram for the Intermediate Representation represented in

Figures 4.2 to 4.5, we can see the nodes posses a method called “Handle”. This method

is called after the creation of an IRNode and is in charge of complementing it with the

necessary fields. In these next sections, I will present these transformations for the 20

components my work supports at the moment.

40

4.5. SKETCH TO INTERMEDIATE REPRESENTATION

4.5.5.1 General Transformation

There are properties that are common through every component. These properties belong

in the abstract class that can be seen in Figures 4.2 to 4.5. Most of these properties are

set on the constructor since most of them can be gathered from properties of the source

layer without difficulty.

The DesignerName property can be gathered from the Name property in the source

Layer. It is preserved and used later to name the component in OutSystems

RuleDesignerName :
Layer.Name

IRNode.DesignerName
(4.8)

The InternalName property is the component’s “real name” i,e. is the name that

the component possesses in the template. This value can be gathered from 1 of 2 ways

depending if the Layer is a “symbolInstance” or a “group”. These ways were already

showcase in the flowcharts 4.12 & 4.13.

RuleInternalName :
Dictionary.DictionaryItem.Name

IRNode.InternalName
(4.9)

The RelativePosition property, that contains the positioning of the Layer’s position

relative to its parent, can be easily gathered by converting the Layer’s Frame property

into it. The Frame property was already “cleaned” during the selecting attributes phase,

and now it is a one to one transformation.

RuleRelateP osition :
Layer.Frame

IRNode.RelativeP osition
(4.10)

The Type property relates to the Class of the Layer. As a recap, here we store if it’s an

Instance, a group, text or the root node. The only transformation here, is that I used an

Enum to store, so we preserve our 1 to 1 relation but instead of a string, it is stored as an

int.

RuleT ype :
Layer.Class

IRNode.T ype
(4.11)

The Children property holds all the sub-nodes of a particular node. This property,

initialized as empty, will grow as the sub-layers are transformed into IRNodes and added

into here.

RuleChildren :
Layer.Layers

IRNode.Children
(4.12)

The Widget property is a simplified name of the component, that helps my custom

JSON converter to deserialize abstract classes later on during the second phase (Intermedi-

ate Representation −→ OutSystems). This property is done hardcoded in the constructor

in every component except the button.

The specific component attributes are all done in the Handle method after the com-

ponent’s instantiation. These next sections will describe their transformations per com-

ponent.

41

CHAPTER 4. IMPLEMENTATION

4.5.5.2 Already Completed Widgets

Before going into specific Widgets, there are some that do not require any sort of extra

transformations and are already complete after their instantiation into IRNode. To not

create anything extra specifically for these components, they also call the Handle method

after their transformation to IRNodes, but all it does is handle their Widget property.

These components are: Dropdown, DropdownSearch, Form, Input, Pagination, Radio,

Root, Search, Switch and Table.

4.5.5.3 Button

The button only possesses 2 extra properties that need to be handled: size and label. The

label relates to the text that is presented inside a button, while the the size is, well, its

size.

To gather the label, we have to look at its OverrideValues to see if any text override

is present. If so, that represents the label 100% of the times. If not, a default “no text”

string will be the label, as one is required when instantiating in OutSystems.

RuleButtonLabel :
Layer.OverrideV alues

Button.Label
(4.13)

For the size, we gather it from the SymbolMaster’s Name that is now associated as

the InternalName field of the button. Through string manipulation we can gather not

only their size, but also what kind of button it is and we can already associate to the

Widget field. For example, from 07. Widgets/01. Buttons/Primary Button/Default we

can gather its size is Default and it is a Primary Button.

RuleButtonSize :
Button.InternalName

Button.Size
(4.14)

RuleButtonW idget :
Button.InternalName

Button.W idget
(4.15)

4.5.5.4 Button With Icon

Similar to the Button, the Button with icon component also possesses a Label property.

To gather its value, we conduct a similar rule presented at 4.13, changing the left-hand

side component of the transformation.

RuleButtonLabel :
Layer.OverrideV alues

ButtonW ithIcon.Label
(4.16)

This component differs from the previous for having an icon alongside the text in its

interior. For this, it needed 2 more fields: a string containing the name of the icon (Icon)

and a boolean to indicate if the icon is pointing to the right or on the left (only applicable

to arrow icons).

42

4.5. SKETCH TO INTERMEDIATE REPRESENTATION

For the alignment boolean, we can gather that information from the Node’s Internal-

Name property, if it contains Right or not.

RuleRight :
IRNode.InternalName
ButtonW ithIcon.Right

(4.17)

The Icon property follows the exact same procedure as the Label. It has a default

value of a right or left arrow (dependent on the alignment property) and then it checks

the original Layer’s OverrideValues in search for an override of the Icon in the Button.

RuleButtonIcon :
Layer.OverrideV alues

ButtonW ithIcon.Label
(4.18)

4.5.5.5 Card

The Card component is one of the most specialized ones. Like the previous component,

this component also needs a boolean to indicate if the content is supposed to be dis-

played vertically or horizontally. This boolean can be acquired by checking the Node’s

InternalName, as in if it contains the “Vertical” or not.

RuleV ertical :
IRNode.InternalName

Card.V ertical
(4.19)

The Card is one of those elements that are solely created to group other components

together. In this scenario, it’s content has to be treated differently depending if it was

implemented as a Group or as a SymbolInstance.

If it was a SymbolInstance, we need to give it its original internal components (i,e. the

internal components in the SymbolMaster) and then search for overrides in the Override-

Value property of the original Layer.

RuleCardContent :
Layer.OverrideV alues

Card.Content
(4.20)

If it was a Group, this issue is resolved, and we simply transform it without this extra

precaution.

4.5.5.6 Checkbox

This component searches the Layer’s OverrideValues in search for overrides to either it’s

Label (the text to the right of a checkbox) or the checkmark’s “box” (i,e. the box can be

squared or circular).

RuleCheckmarkLabel :
Layer.OverrideV alues(string)

Checkmark.Label
(4.21)

RuleCheckmarkBox :
Layer.OverrideV alues(symbolID)

Checkmark
(4.22)

43

CHAPTER 4. IMPLEMENTATION

4.5.5.7 Columns

The Columns is the only OutSystems Widget in this project that is created by me to ensure

structural integrity (later elaborated in section 4.5.9.2). This widget only contains 1 extra

integer field to hold how many columns the component will be divided into.

Since the Widget was already created by me, this IRNode’s name is already Column

X where X represents this value, so with string manipulation we can grab it and store it

more easily for the future.

RuleCheckmarkBox :
IRNode.InternalName

Column.NumberOf Columns
(4.23)

4.5.5.8 Counter

The Counter widget is very similar to the Card in terms of its “handling”.

It possesses a boolean called Vertical, to define if it is supposed to be oriented vertically

or horizontally by default. To gather this value, a simple search for the word “vertical” in

its InternalName suffices.

RuleCounterV ertical :
IRNode.InternalName

Counter.V ertical
(4.24)

Also like the Card, depending if it is instantiated as a Group or SymbolInstance, it

will differ the way the component is handled. If it is a Group, then it will be treated as a

group and its internal components will be treated as sub-nodes.

If it is a SymbolInstance however, it needs extra steps. Namely, we need to pick a copy

of the original SymbolMaster and override its contents with the overrides that come in

the Instance’s OverrideValues property. In this case, we pick a copy of the Master because

otherwise we would miss the non overridden components.

RuleCounteroverrideContent :
Layer.OverrideV alues

Counter.overrideContent
(4.25)

4.5.5.9 Group

The Group widget only has 1 property that is handled in the Handle method. This

property is Flex which is a boolean that represents if the group is a Flex Group or a

simple Group. Flex Groups are normal Groups but that will, in the future, possess

the CSS attribute “display:flex” to place their contents horizontally instead of vertically

stacked.

Similarly to the Columns, since Flex Groups are created by me (later elaborated in

section 4.5.9.2) and I always name their InternalName as as “Group Flex”, it is easy to

verify if they are Flex Groups or not.

RuleGroupFlex :
IRNode.InternalName

Group.Flex
(4.26)

44

4.5. SKETCH TO INTERMEDIATE REPRESENTATION

4.5.5.10 Icon

The Icon widget possesses 1 extra info: the Icon name. This is a string that contains

the Icon’s name that is present in the template that matches 1 to 1 with the ones in the

OutSystems library.

However, the name in the template is filled with filler that is there for organizational

concerns but that we do not need, as can be seen in Figure 4.14.

Figure 4.14: Snippet of Icons in the OutSystems UI template

By observing the image, we can see that these organizational parts are always prefixed

and that the icon’s “real” name is always after the final and that is what we save.

RuleIconIconName :
IRNode.InternalName

Icon.IconName
(4.27)

4.5.5.11 Text

For the Text widget, we save 2 extra properties: a string containing the correspondent

text to be displayed and a double containing the FontSize.

To get the text’s string we can look at the Layer’s attributedString._string value.

RuleT extString :
Layer.attributedString._string

T ext.String
(4.28)

To gather the FontSize we need to check the array of attributes that attributedString

possesses. The position we need to check is always the first one as it is the one that relays

the attributes of the font.

RuleT extFontSize :
Layer.attributedString.attributes[0].attributes.msa.attributes.size

T ext.FontSize
(4.29)

4.5.5.12 UserAvatar

The UserAvatar widget can be separated into 2 widets: an image placeholder and a text

that is usally the person’s name. Since the first component is an image, we ignore it as

later it will be replaced automatically with the initials of the name (E.g. SR for Sofia

Ribeiro).

For the person’s name however, the tool does support it’s instantiation. This compo-

nent differs from the rest as what we normally would do (search for override values) does

45

CHAPTER 4. IMPLEMENTATION

not apply. Here, the text belongs on a different sub-layer, and so we have to go search

for it and attribute it to the UserName property. I do this so it is associated with the

UserAvatar component and it is instantiated as a whole component.

RuleUserAvatarUserName :
Layer.Layers(text)

UserAvatar.UserName
(4.30)

4.5.6 Variations

Most Symbol Instances are not created as an exact copy of the Master. Designers usually

change a few parameters, such as colors or the presented text on a button. While I could

implement the Master and leave it be, I decided to implement these variations. These

variations are stored in the overrideValues property of the Symbol Instance, which is an

array of objects and can be seen in Fig 4.15. These objects contain two pairs of key values:

• OverrideName: A string composed of 2 major parts. Before the underscore is the

ID of the Layer to be overwritten and the after part is the type of overwriting. Look-

ing at the provided figure, the first object is referring to an overwrite of a symbol

(changing symbol X with symbol Y) while the other 2 are text transformations.

• Value: The value to be overridden by. In the case of a text transformation, it repre-

sents the new string. In the case of a Symbol transformation, it represents the new

Symbol’s ID.

Figure 4.15: Example of the OverrideValues property

4.5.7 Nested Layers

Some UI components have other nested components that can be either required or op-

tional. An example of a required nesting is the Card component, whose purpose is to

layout its inner components. By itself, it does not possess any purpose. An optional

nesting could be an Icon inside a Button component, where it can be added to present

the user with a more straightforward interpretation, but without it, the Button can still

fulfill its purpose.

46

4.5. SKETCH TO INTERMEDIATE REPRESENTATION

The concern of representing this nesting on my Intermediate Representation is trivial

as, just like in the Layers, this is represented by the descendants in the IRNode tree that

it creates.

4.5.8 Vertical Placement

When working with the Sketch Model, although the Layers possess the X & Y coordinates

in their Frame property, the Layers themselves are not ordered in the JSON files. The

tree of IRNode I am creating should already be ordered by the Y coordinate in order to

facilitate the instantiation later, as the construction in OutSystems is done from top to

bottom. This vertical alignment was easily accomplished by ordering the Layer.Layers in

the HandleLayer in the presented Algorithm 1 function before iterating through them.

4.5.9 Horizontal Placement

Horizontal placement however, was a bigger challenge. While at the start all I was doing

was creating a stack of components by instantiating them on top of each other by their

Y axis value, now I needed to do them side-by-side. This meant, I need to check if any

layers overlapped and then group them together somehow.

4.5.9.1 Overlapping Layers

Before starting to brainstorm ideas on how to create the algorithm to calculate the over-

laps and define the whole page layout, I decided to ask professors and in communities

if they knew any known algorithm that already does what I require, to not waste time

reinventing the wheel. Both sources came with the same response: they were not aware

of its existence.

The algorithm I developed has two major steps and it is executed before entering

the for loop seen in algorithm 1. This means that this algorithm will be applied on the

sub-Layers of the passed Layer parameter, getting them “ready” for the following loop.

The first step is called “tagging”, where the purpose is to identify for each component

who they overlap with. Figure 4.16 showcases how the nodes would be represented after

this “tagging” process.

The second step is the “grouping“ step. The idea behind this step is to create a new

group to hold all of the horizontally overlapped components so they can be prepared and

more easily identifiable for the instantiation in OutSystems. The idea is to remove the

overlapping Layers from their original parent Layer, create a new grouping Node, adding

the overlapping Layers to the newly created group. The final step is to add this group as

a Sub-layer of the original parent.

Looking at the example in Figure 4.16, A, B, C, D and E should be together in a group,

as these overlap with at least 1 other node. So these nodes would be taken out of the

root’s sub-nodes, and added as the sub-nodes from a newly created group node. This new

47

CHAPTER 4. IMPLEMENTATION

Figure 4.16: Example tagging

group node would be added back as a sub-node of root. This results in a structure seen in

Figure 4.17.

4.5.9.2 Columns vs Flex

When creating the Node to group these overlapped layers together we considered two

options: I could use Columns or a flex group. To understand when to use which, I went

to past OutSystems projects and tried to come up heuristics. These ended up being the

composition of the “groupings”. For example, a row of cards would be used with Columns,

while text with an input and a button a simple group would suffice.

The Columns widget has the advantage of automatically handling the behavior of

each of its columns whenever an event requires it (for example when a page/screen is

resized) at the cost of overall performance.

The Flex Group option relies on grouping the overlaps in a single container with the

inline style of “group:flex”. This property allows for its contents to be placed horizontally.

48

4.6. INTERMEDIATE REPRESENTATION TO OUTSYSTEMS

Figure 4.17: Example of the grouping step

This creates a better performance than the columns widget, but its behavior has to be

manually created by a developer. Not only that, but this approach creates inline styling,

which goes against a front-end practice the developers at OutSystems follow. So while

support for this approach exists, it is currently disabled.

4.6 Intermediate Representation To OutSystems

The second step of the implementation is the transformation from our Intermediate

Representation model to the OutSystems one. At the end of the previous step, we have

one JSON file per application screen. We will take advantage of OutSystems’ ModelAPI.

This API allows us to programmatically handle OutSystem’s model to create a multitude

49

CHAPTER 4. IMPLEMENTATION

of things such as applications, screens, components, styling, and so on. For this project,

we use it to programmatically create the screens and their respective components. Besides

our JSON files, we will also be receiving an OML file containing the already instantiated

LSG UI components. With this file, the ModelAPI allows us to use it in two ways: either

use it as a template and create our own as a replica or edit the one given.

A particularity that must be discussed about these OML files that impacts how I

approach them is how they are internally structured. These files have keys that are their

unique identifiers and are generated when they are created. Since these function as

identifiers, these keys are essential for the inner workings of OutSystems’ applications in

order for them to work correctly. Using the file as a template and creating a replica, these

keys are getting re-generated by us on runtime, and so our created OML file will have

different ones than the OML provided. Since I do not want to cause any disturbances that

would lead to extra work for the development team, I will be editing the provided OML

file instead, injecting in it my generated screens. This will ensure that the keys remain

the same, and so any internal logic that requires them will continue to work as intended.

4.6.1 JSON Treatment

Just like the first step of our process, this one will also start by manipulating JSON files.

While on the other one, I had to create our own class for JSON.NET deserializer to convert

the JSON objects into, here I had already created this element in the previous step: the

IRNode. A problem with this method appeared as I am now passing an abstract class

to the deserializer. This meant that when looking at a node, the deserializer could not

convert it automatically due to ambiguity issues.

To solve this issue, I implemented a custom converter that is passed to the deseri-

alizer to help solve these ambiguities. This converter looks at the Widget field in the

JSON objects, and based on it; it creates the appropriate IRNode. For instance, an object

with Widget Checkbox would deserialize to a Checkbox type IRNode. With this new

converter applied to the deserializer, JSON.NET will create a tree of IRNodes per JSON

file facilitating the process.

4.6.2 Component Instantiation

Having the JSON deserialized in a tree structure of IRNodes, the instantiation of the

components revolved around doing a depth-first traverse through it. Each tree represents

a screen in the application, and so it creates a new screen with the same name as that was

in the designs, which is stored in the Root node. OutSystems requires every screen to be

a part of a ScreenFlow, and so I create one named GeneratedScreens where I will insert

every screen the program makes.

Every screen in the OutSystems model has a Layout. These Layouts have different

placeholders to help the users place their components in certain places. Examples of

these placeholders are the MainContent (the center body of the page) and the footer (the

50

4.6. INTERMEDIATE REPRESENTATION TO OUTSYSTEMS

bottom of the page). Here, the program will place every component in the MainContent

as these Layouts can have different placeholders, but the MainContent placeholder is

constant.

Algorithm 2 showcases this process.

Algorithm 2 Instantiation of the IRNodes to OutSystems
Data: A tree structure of IRNodes
for screen in JSONf iles // Do for each of the of the jsons

do
treeOf Nodes←Deserialize(screenX.json)
/* create a screen using the root’s name */

screen← createScreen(listOf Nodes.root.name)
/* fetch the reference of where to place our components */

placeholder← screen.getMainContent()
for node in treeOf Nodes.root // start iterating through the nodes

do
/* Every element must be enclosed in a container */

container←new Container(placeholder)
node.InstantiateW ithContainer(container, node.Children)

end
end
/* Every IRNode has this method adapted to its needs */

Function InstantiateWithContainer(container, children):
instantiateComponent(container)
if component has children then

for node in children do
/* check if the node has placeholders to put content */

placeholder← node.getP laceholder()
if placeholder not null then

node.InstantiateW ithP laceholder(placeholder,node.children)
else

childContainer← newContainer(container)
node.InstantiatewithContainer(childContainer,)

end
end

end

To instantiate a component using the ModelAPI there are two major approaches. The

first one is using the native support that the API has for some components. For these

components, their instantiation is trivial and can be done with one single line of code

that follows the following structure.

var component = container.CreateWidget<Component Interface>()

This approach is restricted to only a few components that are a part of the OutSystems

library. Most of the rest have to be instantiated by reference.

To do so, the program generates a generic WebBlock and assigns that WebBlock’s

source block as the correct reference of the desired component. The provided OML file

51

CHAPTER 4. IMPLEMENTATION

already contains the required references to the complete OutSystems library, and through

that, we can get any UI component we require.

At the end of this process, we save the file with the structured application pages and

a report file is output in the same directory.

The output report file mentions which components were not recognized and which

were but are not supported yet. This identification is done by the Layer’s name and

position in the designs so Developers can easily search for them.

At this point my tool has finished the whole process and a summary of it can be seen

in Figure 4.18.

Figure 4.18: Summary of the process.

4.6.3 Sub-Goal Validation

When implementing support for the first set of the 20 components I also verified the

possibility of doing the secondary goal: instantiating part of the components, such as

assigning them necessary auxiliary variables. I decided to drop this goal and focus solely

on the primary as this one presented a bad return of investment. Although the ModelAPI

allows to instantiate the necessary variables and structures and assign them, I cannot

detect any interaction between components from the designs, so the concept of shared

variables disappears. This would lead me to a possible solution: creating a new variable

per component that requires it. Doing it this way would most certainly lead to excessive

variables per page, which would fall on the development team to clean the extra and

52

4.7. CHAPTER SUMMARY

assign the correct shared ones. This goes against my Precision focus, and so I decided to

drop this goal altogether.

4.7 Chapter Summary

In this chapter we began with a high-level view of the solution and discussed important

topics as we zoomed in on our approach. It went through all of the functional increments

that we took to implement our tool and most importantly, the decisions that we had to take.

These decisions were important to decide (what we thought were) the correct approaches

to lead the work, such as to focus on “precision” over “fullness” by only instantiating

what we are close to 100% certain that is correct, or to hard-coded the transformation

rules instead of using an MDL (full discussion of this topic on section 6.1).

A key point of this chapter was the Intermediate Represent and how I created it to

have a technology in the middle of the transformation independent of both models for

an higher abstraction and adaptability to different models from the ones we used.

Finally, the other major key of this chapter were the challenges that are present in a

work like this. Mainly, the challenges that are related to the phase that handles the design

side of the work. This “first phase” out of the two main phases that divide the tool(design

to intermediate, intermediate to front-end) is subjected to many variables that condition

our implementation since we have to account for them but also know when its “enough”.

These are mostly related to the heterogeneity of the design practice (how a designer can

build the designs in innumerous different ways).

53

5

Results

To evaluate the implementation, I measured the Precision and Recall statistics in 6 real

past projects from OutSystems using their formulas (5.1, 5.2) respectively. Although

these metrics are mostly used on classification problems, I adapted their concepts into

our work. Precision relates to the tool’s ability to identify a component correctly and

Recall relates to the percentage of components the tool is able to identify in the designs.

P recision =
trueP ositive

trueP ositive+ f alseP ositive
(5.1)

Recall =
trueP ositive

trueP ositive+ f alseNegative
(5.2)

To calculate the total amount of components in each project, our tool already passes

through every layer in the designs, so it was easily calculated. To count the True Positives,

False Positives and False Negatives (True Negatives do not exist in this type of work) that

are necessary to calculate the Precision and Recall statistics, these had to be manually

counted. In our case, True Positives relate to how many components we are correctly

identifying, False Positives are all the components we are identifying incorrectly and

the False Negatives are all the other components that are calculated by subtracting the

previous 2 from the total amount of components, since in our case True Negatives do not

exist.

Table 5.1 summarizes our results. We achieved a global precision of 99.6% and recall

of 80%. So, developers get a low number of misclassified components, mitigating the

potential rework effort fixing wrongly create components, and the tool creates around

80% of the components, which is rather good, considering it only uses the implemented

transformations for 20 out of the 87 OutSystems components.

At OutSystems there is a Customer Success team of experts composed of, at the time

of writing, 5 Front-End experts. This team is responsible for hand-crafting the Live Style

Guide by translating the design screens and components into the OutSystems language.

We sent this team our tool and the same six past projects to apply our tool and check

the results by inspecting every single generated screen to compare the results of their

work with the results obtained as the output of our tool. Since they are experts in this

area and we are automating part of what they do, their feedback is the most important.

54

Projects Comp TP FP FN Precision Recall

A 3310 2237 18 957 0.992 0.709
B 5876 4079 16 1057 0.997 0.820
C 1943 1378 2 382 0.999 0.803
D 4178 2994 17 713 0.995 0.829
E 569 434 5 102 0.989 0.819
F 1981 1634 5 266 0.997 0.865

Summary 17857 14317 63 3477 0.996 0.805

Table 5.1: Precision and recall for our 6 projects

Dev
ID

PU
(out of 7)

PEOU
(out of 7)

Mental Physical Temporal Performance Effort Frustration Raw
TLX

1 4 6 30 10 40 30 60 100 35
2 3 6 20 20 20 20 10 10 18.33

Table 5.2: TAM & NASA-TLX results

These past projects were created without having our tool in mind and so results will

reveal a significant variance. Alongside this package, I also sent a survey for the team to

fill. This survey had questions related to each project and some more general questions

based on TAM [47] and the NASA-TLX [61] frameworks. We got feedback from 2 of the 5

developers.

Table 5.2 shows the results gathered from the survey regarding the TAM and NASA-

TLX frameworks. Although these tests were created to be applied on an bigger sample,

we got results from 2 out of the 5 candidate surveyees and decided to include, even

if just for statistical reasons. Through them, I found that the tool’s perceived ease of

use (PEOU) is high (6 out 7), while its perceived usefulness (PU) has an average of 4

out 7. In terms of the overall workload, all of the NASA-TLX factors are low, except

for effort and frustration, which is expected due to the less effective projects causing

some extra effort. Nevertheless, they commented that after some more development

and minor improvements, it could very well be a staple in their future workflow. These

improvements were mostly focusing on styling issues (such as identifying styling classes

and applying them to the components) which fall out of scope of this work.

In terms of the 6 projects, the tool’s effectiveness was worse when applied to designs

where it was not only more challenging to identify the UI components correctly but also

in those with a higher level of complexity. This complexity could be due to several reasons

such as a higher presence of custom patterns or complex styling related techniques which

we cannot detect. An example of such case can be seen in Figure 5.1.

There are also theoretically, worst-case scenario projects where Developers would not

use the result created by the tool as nothing created could be used. Theoretically since

55

CHAPTER 5. RESULTS

(a) Screen Mockup (b) Generated Screen

Figure 5.1: Example of not so successful generation

we did not observe this occurrence in any of the projects. In these cases, developers can

quickly delete any generated screen by deleting the created Screen Flow, or simply ignore

it and use the fresh file that was used as input causing no significant time lost.

For projects where our tool was more effective, the Front-End team can save up to 8h

of the 16h they have (see table 5.3, project B). This is a 50% time reduction of the two

workdays they usually have to invest in creating these pages. Developers noted that they

expect they could deliver up to 400% more pages if they started working on top of the

output, as can be seen in projects B and C, where they could deliver 6 more pages on top

of the 2 they originally delivered. An example of a screen generated from one of these

projects (project B) can be seen in Figure 5.2.

Projects Time to create the set Extra Pages (delivered)

A 28h 1 (2)
B 8h 6 (2)
C 16h 6 (2)
D 20h 0 (3)
E 10h 2 (3)
F 24h 0 (2)

Table 5.3: Developer Feedback for the 6 projects

The results reflected somewhat what I already expected. Even on projects that take

the same or longer time to recreate the same pages (such as projects A and C) that were

delivered at the end of the service, the development team still looked at the other pages

that we generated automatically and found some pages that they could work on and at

the end deliver the double or more pages than they initially did.

56

(a) Screen Mockup (b) Generated Screen

Figure 5.2: Example of a successful screen generation

57

6

Discussion

Since this transformation process is divided into two main phases, this chapter will be

divided into two main sections corresponding to each of the phases to better group the

discussions with the appropriate phase and a final section discussing some of the results.

6.1 Transformation Process

Before going into a more in-depth discussion related to each of the two phases, first we

need to discuss something that covers both of them: how we implemented the transfor-

mations. We could have used model transformation language such as ATL or QVT, but

ultimately decided to work with the internal representation of the files in JSON, and hard

code our transformation rules. The focus of this work, was to validate our hypothesis and

answer the question: can we improve the design-development collaboration process, by partly
automating the generation of screen through the composition of reusable UI components with
design mockups? This validation meant, not only the implementation of the tool, but to

also test it with domain-experts (the potential future users of our work) and gather as

much of their feedback as possible and also gather feedback from this work’s group of

stakeholders. With all of this in mind, plus the time-restraint that comes coupled with

the work being developed as a Master’s thesis, we opted to be pragmatic and took these

decisions related to the transformation process.

6.2 Design to Intermediate Representation Phase

One of the most complex challenges in this phase is one that is embedded in this sort of

work: the subjectivity associated with the design process. Different designers do their

work differently, or even the same designer can do things differently in different works or

even in the same work. This heterogeneity leads the designs to be structurally different

in their internal representation, which makes automatic detection more difficult and less

accurate.

58

6.2. DESIGN TO INTERMEDIATE REPRESENTATION PHASE

6.2.1 5 Guidelines

I created five simple guidelines that mitigate the top challenges that affected this work

to combat this somewhat. These were created with the idea of being as unintrusive as

possible while still be highly effective, so they are more readily accepted into the design

process.

These were as follows:

• Group layers as much as possible.

• Name the design page as "UX Design"or "UI Design".

• Leave the design as clean as possible.

• Try to use the Symbols as much as possible.

• If a component made manually matches/is supposed to be an LSG component, like

a Card, name it the same as it is in the Symbols.

These next subsections will discuss these guidelines, their reasonings and the impact

they can have in creating designs more "ready"for approaches that rely on strategies

similar to the ones I used.

6.2.1.1 Guideline 1 - Grouping

Design tools such as Sketch allow for designers to group their layers in a group component.

This can be helpful to the designers while they are designing the mockups, it is even more

critical for processes like mine that focus on accurately identifying components through

their internal structure. While to a human looking at the designs, it is natural to create

a grouping association between elements, automatically, this concept is lost unless it is

explicitly created. Observing Figure 6.1, the highlighted area comes to us naturally as a

group, but observing with attention, one can see these components are not “grouped” in

the design tool, so that this concept will be lost.

Another thing that grouping affects is the concept of columns. By observing in Fig-

ure 6.2, looking at either the row of cards or the row of counters below, again naturally

to an expert developer and us, it is deduced we have four columns, one per element. This

comes naturally to us since we see four different grouping components side to side. If

this concept of grouping is lost, i.e., the counters were not grouped, the algorithm would

pick up the 12 elements (one number, one text, and one icon per counter) in a row and

deduce it needs 12 columns and will create an unexpected result.

6.2.1.2 Guideline 2 - Naming the Design Page

This one is relatively simple but can save approaches like this time and computational

power. Again, since the design process is very subjective, designers can call the Page to

59

CHAPTER 6. DISCUSSION

Figure 6.1: Example of a group not explicitly grouped.

Figure 6.2: Cards and Counters follow a 4 column structure.

create their designs whatever they want. This causes for works like this is the need to

figure out which Page contains the screen mockups. Observing Figure 6.3, one cannot

figure out which is the correct Page where the UX or UI design mockups are located.

Figure 6.3: Example of difficult to find designs.

In order to figure out which Page is the correct one with reliable precision, the pro-

gram would need to inspect every JSON file thoroughly and try to identify the mockups

60

6.2. DESIGN TO INTERMEDIATE REPRESENTATION PHASE

through some parameters. This guideline proposes to mark these screen mockup Pages

with a constant name such as "UX Design"or "UI Design,"which facilitates the correct

identification.

6.2.1.3 Guideline 3 - Cleaning the Design

During the design’s creation, designers usually experiment with different components

to see the appropriate component to place. What sometimes ends up happening is that

designers place a component over another, completely covering it. While for them and

the developer that receives the designs, since the component is hidden, it is the same as

if it did not exist, the fact is that it remains present in the design and, more importantly,

in the internal representation, which works like mine will pickup and instantiate is a

standard component. This guideline proposes that designers try to leave the designs with

only the visible components. Observing Fig 6.4, the highlighted text “Take control with a”

is hidden behind the Card. Visible or not, the tool will pick the layer up and instantiate

it like normal.

Figure 6.4: Hidden text Layer under a group Layer.

6.2.1.4 Guideline 4 - Use the Symbols

The fourth guideline relates to the use of Symbols or their counterpart in other design

tools. Namely, to use Symbols as much as possible during the design process, not only

for the benefits these naturally bring but also to keep the components’ relation with the

component in the templates, making identification somewhat trivial in tools like mine.

Figure 6.5 showcases this relation between an Instance and a Master.

6.2.1.5 Guideline 5 - Name Components created from scratch the same as in the LSG

A point that we identified during the research was that the use of Symbols is not always

the best for the designers. When using them, designers are very restricted in terms of

61

CHAPTER 6. DISCUSSION

(a) Layer Instance in a Design (b) Layer Reference (c) Layer Master in Template

Figure 6.5: Interconnection of Layer Instances and Master.

variations they can apply to Symbol Instances. While a simple text or icon swap is easily

done, more complex variations such as embedding another Symbol in an Instance are

impossible. Another reason designers choose to stay away from Symbols is time. Some

components can easily be remade from scratch, rather than a few clicks and searching

for the correct Symbol. An example was already provided in the thesis, but to reiterate: a

Card which is a group with a rectangular white background, can be easily recreated and

recreating it is faster than looking for the Symbol.

These reasons often lead designers to create the components from scratch instead of

using the Symbols. This guideline asks for the designer, when creating the layer from

scratch, to name it the same as it is in the template, as can be seen in Fig 6.6. This way, we

have a connection to components in the template, and we can more accurately identify

the component.

Figure 6.6: Card component created from scratch named after the Symbol Master

6.2.1.6 Designer Guideline Feedback

These five guidelines were discussed with the Design Lead over at OutSystems. The

biggest challenge the design team faces is time and so inserting more guidelines in their

work would prove difficult. However, it was said by the Lead that these guidelines were

62

6.3. INTERMEDIATE REPRESENTATION TO OUTSYSTEMS

unintrusive and could be very well incorporated into their work when developing designs

to use in works similar to this.

6.2.2 Template Versioning

Another concern that appears in the design process is the number of existing versions of

the template.. Different designers were shown to have different versions of the template,

some more updated than others. My work is loosely coupled with the version of the

template I used since, as seen in section 4.5.3.1, the template’s only purpose is to create

an auxiliary structure built on runtime to help identify the components in the mockups.

The only way this different versioning would negatively impact this work is if there would

be a radical change from one version to another, which would require some tweaking but

not much.

6.3 Intermediate Representation to OutSystems

There is not much to be said or discussed about this phase. Some parts of this phase’s

implementation, were reused from the first phase, since these were already readily setup.

Namely the process of handling the deserialization of the JSON files. One particular-

ity however, of this deserialization, was the need to create a custom converter to help

JSON.NET deserialize our abstract IRNodes into their respective component’s class.

This phase had by far less challenges, as most of them are related to the design, due

to the heterogeneity of the design process. Here, we were working with our own In-

termediate Representation as input, and these already went through the Design-related

challenges making this phase far easier. The few challenges that came during this phase

were mostly due to how recent OutSystem’s ModelAPI is. Since there was no official

documentation for the API at the time of working on this thesis, a significant time was

dedicated to trial and error testing and debugging alongside some questioning made to

the OutSystems experts in charge of the ModelAPI.

63

7

Future Work

When developing this work, several topics worth of being investigating arose.

The first of these would be to try and diminish some of the set restrictions we had to

do. Namely, it could be interesting to develop a way to diminish the required guidelines

we presented in the discussion chapter at 6.2.1. Even considering I set up those guidelines

as not intrusive as I could and, even after having discussions with the Design lead, it still

presents an excellent opportunity to evolve this work to cut some of those necessities off
or even all of them.

A possible future work appeared when investigating the current development work-

flow that was discussed in section 2.1.6.2. While this work accelerated their first step, we

deemed the second step as a not good investment since the interactions between compo-

nents are not present in the designs. It could be interesting to investigate an approach

that tries to infer these interactions. Besides these two, there remains the third step which

I did not approach with my work: bootstrapping the logic to populate the page with

sample data. During our interviews, this process was identified as a time-consuming

process in the development phase, so accelerating it would be a great opportunity.

Another possibility is the option mentioned above to adapt this work to other design

and front-end technologies. Here we instantiated the hypothesis and applied it to the

Sketch design tool and the OutSystems low-code technology, but the work’s core is not

restricted to this pair. It would be interesting to see it adapted to other technologies such

as Figma, another of the top Design Tools, and some other low-code technology.

Finally, it would be interesting to pick up our presented approaches and try to de-

velop a hybrid approach leveraging the tool users’ expertise to accomplish more complete

pages while preserving high accuracy. Here I focused on preserving accuracy rather than

completeness, which left pages with missing components. Implementing a hybrid ap-

proach that focuses on Precision and Recall could produce even better results. Whenever

the program would find a component where it would not be sure to instantiate or not,

it could ask for the user’s input and continue to do so at eternum or, after some interac-

tions, it could train and evolve to make these decisions by itself when it hit a threshold

of certainty.

64

8

Conclusion

Our goal was to mitigate an existing gap in the collaboration between designers and front-

end developers. This is vital for a great User Experience, which is a crucial factor in today’s

market and to cope with the current scarcity of available individuals with this expertise

in the market. We implemented a solution that partially automates the generation of

structured application screens in a LowCode technology - work done manually today - by

taking advantage of a design technology’s structure and a library of LowCode reusable

UI components.

The results gathered from an OutSystems professional front-end development team

suggest our tool may improve the value these teams can deliver to their customers. De-

pending on the complexity of the projects that the tool is being applied to, the team

reported increases between 150%-400% in application screens created with a similar ef-

fort. In addition, by automating part of the composition process, we freed up time for

these front-end professionals that they can redirect to other topics. In the worst case

scenario, where none of the generated screens are useful, the cost of applying the tool is

nearly negligible. The developer can always choose to ignore the generated output and

start the screens from scratch, as they normally would, costing them a couple of minutes

assuming they were not working in parallel or running it in the background.

Our approach was based on unidirectional model transformations using an interme-

diate representation between our source and target models, which created a broader

abstraction scope and allowed for an easier way to adapt to technologies different from

those we used. Not only that, but the fact that this representation is a tree structure built

by abstract nodes makes the tool easier to be evolved and extended to support more UI

components.

The biggest challenge we encountered when implementing our solution was the het-

erogeneity of how UX and UI designers work. There are differences from one designer to

another, but there are also notable inconsistencies in the approaches followed by a single

designer for a particular project. These have severe implications on any approach that fol-

lows a similar path to mine as it impacts the tool’s ability to accurately identify the used

UI components, thus impacting the portion of designs the tool can convert automatically.

65

CHAPTER 8. CONCLUSION

When developing this work, several topics worth of being investigating arose. The

first of these would be to try and diminish some of the set restrictions we had to do.

Namely, it could be interesting to develop a way to diminish the required guidelines we

presented in the discussion chapter at 6.2.1. Even considering I set up those guidelines

as not intrusive as I could and, even after having discussions with the Head of Design

Practice, it still presents an excellent opportunity to evolve this work to cut some of those

necessities off or even all of them.

A possible future work appeared when investigating the current development work-

flow that was discussed in section 2.1.6.2. While this work accelerated their first step, we

deemed the second step as a not good investment since the interactions between compo-

nents are not present in the designs. It could be interesting to investigate an approach

that tries to infer these interactions. Besides these two, there remains the third step which

I did not approach with my work: bootstrapping the logic to populate the page with

sample data. During our interviews, this process was identified as a time-consuming

process in the development phase, so accelerating it would be a great opportunity.

Another possibility is the option mentioned above to adapt this work to other design

and front-end technologies. Here we instantiated the hypothesis and applied it to the

Sketch design tool and the OutSystems Low-Code technology, but the work’s core is not

restricted to this pair. It would be interesting to see it adapted to other technologies such

as Figma, another of the top Design Tools, and some other Low-Code technology.

Finally, it would be interesting to pick up our presented approaches and try to de-

velop a hybrid approach leveraging the tool users’ expertise to accomplish more complete

pages while preserving high accuracy. Here I focused on preserving accuracy rather than

completeness, which left pages with missing components. Implementing a hybrid ap-

proach that focuses on Precision and Recall could produce even better results. Whenever

the program would find a component where it would not be sure to instantiate or not,

it could ask for the user’s input and continue to do so at eternum or, after some interac-

tions, it could train and evolve to make these decisions by itself when it hit a threshold

of certainty.

This work motivated us to write an article, which has been accepted and published, for

the LowCode 2021 workshop in the MODELS ACM/IEEE 24th International Conference

on Model Driven Engineering Languages and Systems, entitled “Improving Collaboration

Efficiency Between UX/UI Designers and Developers in a Low-Code Platform” [80]. The

submitted article can be seen in the Annex II.

66

Bibliography

[1] M. Abrams et al. “UIML: an appliance-independent XML user interface language”.

In: Computer Networks 31.11 (1999-05), pp. 1695–1708. issn: 13891286. doi: 10

.1016/S1389-1286(99)00044-4 (cit. on p. 24).

[2] Adobe. Adobe Photoshop. Photoshop. 2021. url: https://www.photoshop.com

(visited on 2021-02-19) (cit. on p. 13).

[3] Adobe XD | Ferramenta de colaboração e design de UI/UX rápida e avançada. Adobe.

url: https://www.adobe.com/br/products/xd.html (visited on 2021-02-19)

(cit. on p. 14).

[4] Anima. Anima | Design to development platform. url: https://www.animaapp.com/

(visited on 2021-02-10) (cit. on p. 21).

[5] C. Atkinson and T. Kuhne. “Model-driven development: a metamodeling foun-

dation”. In: IEEE Software 20.5 (2003-09), pp. 36–41. issn: 0740-7459. doi:

10.1109/MS.2003.1231149 (cit. on p. 15).

[6] Avocode App - Collaborate on Design Files with Anyone. Avocode. url: https:

//avocode.com/ (visited on 2021-02-19) (cit. on p. 14).

[7] S. B.V. API Reference. Sketch Developers. url: https://developer.sketch.com/

reference/api/ (visited on 2021-08-04) (cit. on p. 32).

[8] S. B.V. Command-line interface. Sketch Developers. url: https://developer.

sketch.com/cli/ (visited on 2021-08-04) (cit. on p. 32).

[9] S. B.V. File format. Sketch Developers. 2021. url: https://developer.sketch.

com/file-format/ (visited on 2021-02-09) (cit. on p. 34).

[10] S. B.V. Layer Basics. Sketch. url: https://www.sketch.com/docs/layer-basics/

(visited on 2021-02-16) (cit. on p. 16).

[11] S. B.V. Shapes. Sketch. url: https://www.sketch.com/docs/shapes/ (visited on

2021-02-18) (cit. on p. 16).

[12] S. B.V. Symbols. Sketch. url: https://www.sketch.com/docs/symbols/ (visited

on 2021-02-18) (cit. on p. 16).

67

https://doi.org/10.1016/S1389-1286(99)00044-4
https://doi.org/10.1016/S1389-1286(99)00044-4
https://www.photoshop.com
https://www.adobe.com/br/products/xd.html
https://www.animaapp.com/
https://doi.org/10.1109/MS.2003.1231149
https://avocode.com/
https://avocode.com/
https://developer.sketch.com/reference/api/
https://developer.sketch.com/reference/api/
https://developer.sketch.com/cli/
https://developer.sketch.com/cli/
https://developer.sketch.com/file-format/
https://developer.sketch.com/file-format/
https://www.sketch.com/docs/layer-basics/
https://www.sketch.com/docs/shapes/
https://www.sketch.com/docs/symbols/

BIBLIOGRAPHY

[13] S. B.V. The digital design toolkit. Sketch. url: https://www.sketch.com/ (visited

on 2021-02-18) (cit. on pp. 11, 14, 16, 21, 22).

[14] Balsamiq. Rapid, Effective and Fun Wireframing Software | Balsamiq. url: https:

//balsamiq.com/ (visited on 2021-02-19) (cit. on p. 14).

[15] T. Beltramelli. “pix2code: Generating Code from a Graphical User Interface

Screenshot”. In: arXiv:1705.07962 [cs] (2017-09-19). arXiv: 1705.07962. url:

http://arxiv.org/abs/1705.07962 (visited on 2021-01-18) (cit. on pp. 23, 25).

[16] M. Bexiga. “Closing the Gap Between Designers and Developers in a Low-Code

Ecosystem”. Master’s Thesis. NOVA School of Science & Technology, 2021 (cit. on

pp. 9, 10, 12, 18, 21, 23).

[17] M. Bexiga, S. Garbatov, and J. C. Seco. “Closing the gap between designers and

developers in a low code ecosystem”. In: Proceedings of the 23rd ACM/IEEE Interna-
tional Conference on Model Driven Engineering Languages and Systems: Companion
Proceedings. MODELS ’20. New York, NY, USA: Association for Computing Ma-

chinery, 2020-10-16, pp. 1–10. isbn: 978-1-4503-8135-2. doi: 10.1145/3417990

.3420195 (cit. on pp. 12, 19, 22, 23, 25).

[18] F. Budinsky et al. “Automatic Code Generation from Design Patterns”. In: IBM
Systems Journal (1996), pp. 151–171 (cit. on p. 21).

[19] C. Candeias. 6 Steps to Improve User Experience: Embracing Your End-Users. 2020-

01-30. url: https://www.outsystems.com/blog/posts/improve-user-experience/

(visited on 2021-07-02) (cit. on p. 1).

[20] J. M. Carroll. HCI Models, Theories, and Frameworks: Toward a Multidisciplinary
Science. Google-Books-ID: gGyEOjkdpbYC. Elsevier, 2003-05-21. 579 pp. isbn:

978-0-08-049141-7 (cit. on p. 24).

[21] U. Census. Population Clock: World. 2021. url: https://www.census.gov/

popclock/world (visited on 2021-02-08) (cit. on p. 1).

[22] D. Data. New Research from Dimension Data Reveals Uncomfortable CX Truths.
2017-04-04. url: https://www.prnewswire.com/news-releases/new-research-

from- dimension- data- reveals- uncomfortable- cx- truths- 300433878.html

(visited on 2021-02-08) (cit. on p. 1).

[23] A. van Deursen, P. Klint, and J. Visser. “Domain-specific languages: an annotated

bibliography”. In: ACM SIGPLAN Notices 35.6 (2000-06-01), pp. 26–36. issn:

0362-1340. doi: 10.1145/352029.352035 (cit. on p. 15).

[24] M. Dixon and J. Fogarty. “Prefab: Implementing Advanced Behaviors Using

Pixelbased Reverse Engineering of Interface Structure”. In: In Proceedings of the
ACM Conference on Human Factors in Computing Systems. 2010 (cit. on pp. 22, 25).

68

https://www.sketch.com/
https://balsamiq.com/
https://balsamiq.com/
https://arxiv.org/abs/1705.07962
http://arxiv.org/abs/1705.07962
https://doi.org/10.1145/3417990.3420195
https://doi.org/10.1145/3417990.3420195
https://www.outsystems.com/blog/posts/improve-user-experience/
https://www.census.gov/popclock/world
https://www.census.gov/popclock/world
https://www.prnewswire.com/news-releases/new-research-from-dimension-data-reveals-uncomfortable-cx-truths-300433878.html
https://www.prnewswire.com/news-releases/new-research-from-dimension-data-reveals-uncomfortable-cx-truths-300433878.html
https://doi.org/10.1145/352029.352035

BIBLIOGRAPHY

[25] S. Faraj and L. Sproull. “Coordinating Expertise in Software Development Teams”.

In: Management Science 46 (2000-12-01), pp. 1554–1568. doi: 10.1287/mnsc.46

.12.1554.12072 (cit. on p. 1).

[26] K. C. Feldt. Programming Firefox: Building Rich Internet Applications with XUL. 1st

edition. O’Reilly Media, 2007-04-25. 513 pp. (cit. on p. 24).

[27] Figma. Figma: the collaborative interface design tool. Figma. url: https://www.

figma.com/ (visited on 2021-02-18) (cit. on pp. 14, 21, 22).

[28] B. Frost. Atomic Design. Google-Books-ID: 1e92vgAACAAJ. Brad Frost Web,

2016-12-05. 193 pp. isbn: 978-0-9982966-0-9 (cit. on p. 6).

[29] B. Frost. Atomic Design Methodology | Atomic Design by Brad Frost. url: https:

//atomicdesign.bradfrost.com/chapter-2/ (visited on 2021-02-18) (cit. on p. 8).

[30] K. Z. Gajos, D. S. Weld, and J. O. Wobbrock. “Automatically generating person-

alized user interfaces with Supple”. In: Artificial Intelligence 174.12 (2010-08),

pp. 910–950. issn: 00043702. doi: 10.1016/j.artint.2010.05.005 (cit. on

p. 21).

[31] GIMP. GIMP. url: https://www.gimp.org/ (visited on 2021-02-19) (cit. on

p. 13).

[32] K. Greff et al. “LSTM: A Search Space Odyssey”. In: IEEE Transactions on Neural
Networks and Learning Systems 28.10 (2017-10). Conference Name: IEEE Trans-

actions on Neural Networks and Learning Systems, pp. 2222–2232. issn: 2162-

2388. doi: 10.1109/TNNLS.2016.2582924 (cit. on p. 23).

[33] T. Grossman and R. Balakrishnan. “The bubble cursor: enhancing target acqui-

sition by dynamic resizing of the cursor’s activation area”. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. CHI ’05. New York,

NY, USA: Association for Computing Machinery, 2005-04-02, pp. 281–290. isbn:

978-1-58113-998-3. doi: 10.1145/1054972.1055012 (cit. on p. 22).

[34] S. Hassan et al. “Extraction and Classification of User Interface Components from

an Image”. In: International Journal of Pure and Applied Mathematics 118 (), p. 16.

issn: 1314-3395 (cit. on pp. 23, 25).

[35] J. Hutchinson et al. “Empirical assessment of MDE in industry”. In: Proceeding of
the 33rd international conference on Software engineering - ICSE ’11. Proceeding of

the 33rd international conference. Waikiki, Honolulu, HI, USA: ACM Press, 2011,

p. 471. isbn: 978-1-4503-0445-0. doi: 10.1145/1985793.1985858 (cit. on p. 15).

[36] F. Inc. React – A JavaScript library for building user interfaces. 2021. url: https:

//reactjs.org/ (visited on 2021-09-02) (cit. on p. 5).

[37] I. Inc. Design-to-code | Design Defined | InVision. Design-to-code | Design Defined

| InVision. url: https://www.invisionapp.com/design-defined/design-to-

code/ (visited on 2021-02-11) (cit. on pp. 2, 14).

69

https://doi.org/10.1287/mnsc.46.12.1554.12072
https://doi.org/10.1287/mnsc.46.12.1554.12072
https://www.figma.com/
https://www.figma.com/
https://atomicdesign.bradfrost.com/chapter-2/
https://atomicdesign.bradfrost.com/chapter-2/
https://doi.org/10.1016/j.artint.2010.05.005
https://www.gimp.org/
https://doi.org/10.1109/TNNLS.2016.2582924
https://doi.org/10.1145/1054972.1055012
https://doi.org/10.1145/1985793.1985858
https://reactjs.org/
https://reactjs.org/
https://www.invisionapp.com/design-defined/design-to-code/
https://www.invisionapp.com/design-defined/design-to-code/

BIBLIOGRAPHY

[38] InVision Inspect. InVision. url: https://www.invisionapp.com/feature/inspect

(visited on 2021-02-19) (cit. on p. 14).

[39] V. Jain et al. “Sketch2Code: Transformation of Sketches to UI in Real-time Using

Deep Neural Network”. In: arXiv:1910.08930 [cs, eess] (2019-10-20). arXiv: 1910

.08930. url: http://arxiv.org/abs/1910.08930 (visited on 2021-01-18) (cit. on

pp. 23, 25).

[40] J. Jelinek and P. Slavik. “GUI generation from annotated source code”. In: Proceed-
ings of the 3rd annual conference on Task models and diagrams. TAMODIA ’04. New

York, NY, USA: Association for Computing Machinery, 2004-11-15, pp. 129–136.

isbn: 978-1-59593-000-2. doi: 10.1145/1045446.1045470 (cit. on p. 21).

[41] K. Jiang. Introducing: Figma to React. Figma. 2018-04-26. url: https://www.

figma.com/blog/introducing-figma-to-react/ (visited on 2021-02-16) (cit. on

p. 22).

[42] J. Johnson. Internet users in the world 2020. Statista. 2021-01-27. url: https://

www.statista.com/statistics/617136/digital-population-worldwide/ (visited

on 2021-02-08) (cit. on p. 1).

[43] S. Kelly and J.-p. Tolvanen. 1 Visual domain-specific modelling: Benefits and experi-
ences of using metaCASE tools (cit. on p. 15).

[44] S. W. J. Kozlowski and D. R. Ilgen. “Enhancing the effectiveness of work groups

and teams”. In: Psychological Science Suppl. S (2006), pp. 77–124 (cit. on p. 1).

[45] K. Kristensen and B. Kijl. “Collaborative Performance: Addressing the ROI of

Collaboration”. In: International Journal of e-Collaboration 6.1 (2010-01), pp. 53–

69. issn: 1548-3673, 1548-3681. doi: 10.4018/jec.2010091104 (cit. on p. 1).

[46] T. Kühne. “Matters of (Meta-) Modeling”. In: Software & Systems Modeling 5.4

(2006-11-22), pp. 369–385. issn: 1619-1366, 1619-1374. doi: 10.1007/s10270-0

06-0017-9 (cit. on p. 15).

[47] Y. Lee, K. A. Kozar, and K. R. Larsen. “The Technology Acceptance Model: Past,

Present, and Future”. In: Communications of the Association for Information Systems
12 (2003). issn: 15293181. doi: 10.17705/1CAIS.01250 (cit. on p. 55).

[48] M. B. Lieberman and D. B. Montgomery. “First-mover advantages”. In: Strategic
Management Journal 9 (S1 1988), pp. 41–58. issn: 1097-0266. doi: https://doi.

org/10.1002/smj.4250090706 (cit. on p. 3).

[49] Q. Limbourg et al. “USIXML: A Language Supporting Multi-path Development

of User Interfaces”. In: Engineering Human Computer Interaction and Interactive
Systems. Ed. by R. Bastide, P. Palanque, and J. Roth. Lecture Notes in Computer

Science. Berlin, Heidelberg: Springer, 2005, pp. 200–220. isbn: 978-3-540-31961-

0. doi: 10.1007/11431879_12 (cit. on p. 24).

70

https://www.invisionapp.com/feature/inspect
https://arxiv.org/abs/1910.08930
https://arxiv.org/abs/1910.08930
http://arxiv.org/abs/1910.08930
https://doi.org/10.1145/1045446.1045470
https://www.figma.com/blog/introducing-figma-to-react/
https://www.figma.com/blog/introducing-figma-to-react/
https://www.statista.com/statistics/617136/digital-population-worldwide/
https://www.statista.com/statistics/617136/digital-population-worldwide/
https://doi.org/10.4018/jec.2010091104
https://doi.org/10.1007/s10270-006-0017-9
https://doi.org/10.1007/s10270-006-0017-9
https://doi.org/10.17705/1CAIS.01250
https://doi.org/https://doi.org/10.1002/smj.4250090706
https://doi.org/https://doi.org/10.1002/smj.4250090706
https://doi.org/10.1007/11431879_12

BIBLIOGRAPHY

[50] Y. Lindsjørn et al. “Teamwork quality and project success in software develop-

ment: A survey of agile development teams”. In: Journal of Systems and Software
122 (2016-12-01), pp. 274–286. issn: 0164-1212. doi: 10.1016/j.jss.2016.09

.028 (cit. on p. 1).

[51] d. LLC. Paint.NET - Free Software for Digital Photo Editing. url: https://www.

getpaint.net/index.html (visited on 2021-02-19) (cit. on p. 13).

[52] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University

Lisbon. 2021. url: https : / / github . com / joaomlourenco / novathesis / raw /

master/template.pdf (cit. on p. ii).

[53] N. Ltd. React Studio. url: https://reactstudio.com/ (visited on 2021-02-10)

(cit. on p. 21).

[54] J. Ludewig. “Models in software engineering ? an introduction”. In: Software and
Systems Modeling 2.1 (2003-03-01), pp. 5–14. issn: 1619-1366, 1619-1374. doi:

10.1007/s10270-003-0020-3. (Visited on 2020-11-20) (cit. on p. 15).

[55] J. Luoma, S. Kelly, and J.-p. Tolvanen. “Defining Domain-Specific Modeling Lan-

guages: Collected Experiences”. In: In Proceedings of the 4th OOPSLA Workshop
on Domain-Specific Modeling (DSM04. 2004 (cit. on p. 15).

[56] M. Macik. “Automatic User Interface Generation”. PhD thesis. 2016-06-29. doi:

10.13140/RG.2.2.23963.26401 (cit. on p. 23).

[57] M. Macık. “Automatic user interface generation”. PhD thesis. PhD thesis, Faculty

of Electrical Engineering, Czech Technical University, 2016 (cit. on p. 21).

[58] L. A. MacVittie. XAML in a Nutshell. Google-Books-ID: v03elGOy9ogC. "O’Reilly

Media, Inc.", 2006. 302 pp. isbn: 978-0-596-52673-3 (cit. on p. 24).

[59] T. Mens and P. Van Gorp. “A Taxonomy of Model Transformation”. In: Electronic
Notes in Theoretical Computer Science. Proceedings of the International Workshop

on Graph and Model Transformation (GraMoT 2005) 152 (2006-03-27), pp. 125–

142. issn: 1571-0661. doi: 10.1016/j.entcs.2005.10.021 (cit. on p. 15).

[60] Modulz. Modulz. url: https://modulz-website.now.sh/ (visited on 2021-02-10)

(cit. on p. 21).

[61] NASA. TLX @ NASA Ames - Home. url: https://humansystems.arc.nasa.gov/

groups/tlx/ (visited on 2021-07-05) (cit. on p. 55).

[62] Newtonsoft. Json.NET - Newtonsoft. url: https://www.newtonsoft.com/json

(visited on 2021-02-04) (cit. on p. 35).

[63] T. A. Nguyen and C. Csallner. “Reverse Engineering Mobile Application User

Interfaces with REMAUI (T)”. In: 2015 30th IEEE/ACM International Conference
on Automated Software Engineering (ASE). 2015 30th IEEE/ACM International

Conference on Automated Software Engineering (ASE). 2015-11, pp. 248–259.

doi: 10.1109/ASE.2015.32 (cit. on pp. 22, 25).

71

https://doi.org/10.1016/j.jss.2016.09.028
https://doi.org/10.1016/j.jss.2016.09.028
https://www.getpaint.net/index.html
https://www.getpaint.net/index.html
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf
https://reactstudio.com/
https://doi.org/10.1007/s10270-003-0020-3
https://doi.org/10.13140/RG.2.2.23963.26401
https://doi.org/10.1016/j.entcs.2005.10.021
https://modulz-website.now.sh/
https://humansystems.arc.nasa.gov/groups/tlx/
https://humansystems.arc.nasa.gov/groups/tlx/
https://www.newtonsoft.com/json
https://doi.org/10.1109/ASE.2015.32

BIBLIOGRAPHY

[64] J. Nielsen. Paper Prototyping: Getting User Data Before You Code. Nielsen Norman

Group. url: https://www.nngroup.com/articles/paper-prototyping/ (visited

on 2021-02-16) (cit. on p. 23).

[65] D. Norman. The Design of Everyday Things: Revised and Expanded Edition. Revised

edition. New York, New York: Basic Books, 2013-11-05. 368 pp. isbn: 978-0-465-

05065-9 (cit. on p. 2).

[66] D. A. Norman. The Design of Everyday Things. Google-Books-ID: b09jQgAACAAJ.

Doubleday, 1990. 257 pp. isbn: 978-0-385-26774-8 (cit. on p. 1).

[67] S. O’Dea. Smartphone users 2020. Statista. 2020-12-10. url: https : / / www .

statista.com/statistics/330695/number-of-smartphone-users-worldwide/

(visited on 2021-02-08) (cit. on p. 1).

[68] Optimize design files for developer handoff. Figma. url: https://help.figma.com/

hc/en- us/articles/360040521453- Optimize- design- files- for- developer-

handoff (visited on 2021-02-19) (cit. on p. 14).

[69] Oracle. Seventy-Seven Percent Of Consumers Feel Inefficient Customer Service Ex-
periences Detract From Their Quality of Life. 2018-04-10. url: https : / / www .

prnewswire.com/news-releases/seventy-seven-percent-of-consumers-feel-

inefficient-customer-service-experiences-detract-from-their-quality-

of-life-300626778.html (visited on 2021-02-08) (cit. on p. 1).

[70] OutSystems. Banco Santander Consumer Portugal Adopts OutSystems as Their Dig-
ital Transformation Platform. url: https://www.outsystems.com/case-studies/

santander-consumer-digital-transformation/ (visited on 2021-02-19) (cit. on

p. 5).

[71] OutSystems. Extensions. OutSystems. 2018-07-26. url: https : / / success .

outsystems.com/Documentation/11/Extensibility_and_Integration/Extend_

Logic_with_Your_Own_Code/Extensions (visited on 2021-02-18) (cit. on p. 20).

[72] OutSystems. Hospital Management System Deploys in Weeks, Not Years. url: https:

//www.outsystems.com/case-studies/hospital-management-system/ (visited on

2021-02-19) (cit. on p. 5).

[73] OutSystems. Libraries. OutSystems. 2019-07-26. url: https://success.outsystems.

com / Documentation / 11 / Developing _ an _ Application / Reuse _ and _ Refactor /

Libraries (visited on 2021-02-18) (cit. on p. 20).

[74] OutSystems. Live Style Guide Homepage. url: https://outsystemsui.outsystems.

com/WebStyleGuidePreview/Homepage.aspx (visited on 2021-02-18) (cit. on p. 6).

[75] OutSystems. Logitech Legacy Modernization Speeds Products to Market With Out-
Systems. url: https://www.outsystems.com/case-studies/fast-development/

(visited on 2021-02-19) (cit. on p. 5).

72

https://www.nngroup.com/articles/paper-prototyping/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://help.figma.com/hc/en-us/articles/360040521453-Optimize-design-files-for-developer-handoff
https://help.figma.com/hc/en-us/articles/360040521453-Optimize-design-files-for-developer-handoff
https://help.figma.com/hc/en-us/articles/360040521453-Optimize-design-files-for-developer-handoff
https://www.prnewswire.com/news-releases/seventy-seven-percent-of-consumers-feel-inefficient-customer-service-experiences-detract-from-their-quality-of-life-300626778.html
https://www.prnewswire.com/news-releases/seventy-seven-percent-of-consumers-feel-inefficient-customer-service-experiences-detract-from-their-quality-of-life-300626778.html
https://www.prnewswire.com/news-releases/seventy-seven-percent-of-consumers-feel-inefficient-customer-service-experiences-detract-from-their-quality-of-life-300626778.html
https://www.prnewswire.com/news-releases/seventy-seven-percent-of-consumers-feel-inefficient-customer-service-experiences-detract-from-their-quality-of-life-300626778.html
https://www.outsystems.com/case-studies/santander-consumer-digital-transformation/
https://www.outsystems.com/case-studies/santander-consumer-digital-transformation/
https://success.outsystems.com/Documentation/11/Extensibility_and_Integration/Extend_Logic_with_Your_Own_Code/Extensions
https://success.outsystems.com/Documentation/11/Extensibility_and_Integration/Extend_Logic_with_Your_Own_Code/Extensions
https://success.outsystems.com/Documentation/11/Extensibility_and_Integration/Extend_Logic_with_Your_Own_Code/Extensions
https://www.outsystems.com/case-studies/hospital-management-system/
https://www.outsystems.com/case-studies/hospital-management-system/
https://success.outsystems.com/Documentation/11/Developing_an_Application/Reuse_and_Refactor/Libraries
https://success.outsystems.com/Documentation/11/Developing_an_Application/Reuse_and_Refactor/Libraries
https://success.outsystems.com/Documentation/11/Developing_an_Application/Reuse_and_Refactor/Libraries
https://outsystemsui.outsystems.com/WebStyleGuidePreview/Homepage.aspx
https://outsystemsui.outsystems.com/WebStyleGuidePreview/Homepage.aspx
https://www.outsystems.com/case-studies/fast-development/

BIBLIOGRAPHY

[76] OutSystems. Mazda to Save Over $57M on Legacy Migration with OutSystems. url:

https://www.outsystems.com/case-studies/mazda-legacy-migration-to-save-

millions/ (visited on 2021-02-19) (cit. on p. 5).

[77] OutSystems. OutSystems UI Framework: Past, Present, and Future. url: https:

//www.outsystems.com/blog/posts/ui-framework-future/ (visited on 2021-02-

16) (cit. on pp. 5, 7).

[78] OutSystems. Service Studio Overview. OutSystems. 2019-03-07. url: https:

/ / success . outsystems . com / Documentation / 11 / Getting _ started / Service _

Studio_Overview (visited on 2021-02-18) (cit. on pp. 19, 20).

[79] OutSystems. UIPatterns | Live Style Guide. 2021. url: https://outsystemsui.

outsystems.com/WebStyleGuidePreview/UIPatterns.aspx (visited on 2021-02-

16) (cit. on p. 6).

[80] J. Pacheco, S. Garbatov, and M. Goulão. “Improving Collaboration Efficiency Be-

tween UX/UI Designers and Developers in a Low-Code Platform”. In: Proceedings
of the 24rd ACM/IEEE International Conference on Model Driven Engineering Lan-
guages and Systems: Companion Proceedings. MODELS ’21, TBD. doi: 978-1-6654

-2484-4 (cit. on p. 66).

[81] Pagedraw. Pagedraw/pagedraw. original-date: 2019-01-12T20:13:39Z. 2021-02-11.

url: https://github.com/Pagedraw/pagedraw (visited on 2021-02-11) (cit. on

p. 21).

[82] T. Palmer. 2019 Design Tools Survey Results. url: https://uxtools.co/survey-2

019/ (visited on 2021-02-16) (cit. on p. 22).

[83] T. Palmer. 2020 Tools Survey Results. 2020-12-01. url: https://uxtools.co/

survey-2020/ (visited on 2021-02-10) (cit. on pp. 14, 22, 23).

[84] F. Paterno’, C. Santoro, and L. D. Spano. “MARIA: A universal, declarative, mul-

tiple abstraction-level language for service-oriented applications in ubiquitous

environments”. In: ACM Transactions on Computer-Human Interaction 16.4 (2009-

11-27), 19:1–19:30. issn: 1073-0516. doi: 10.1145/1614390.1614394 (cit. on

p. 24).

[85] C. Pemberton. Key Findings From the Customer Experience Survey. Gartner. 2018-

03-16. url: https://www.gartner.com/en/marketing/insights/articles/key-

findings-from-the-gartner-customer-experience-survey (visited on 2021-07-

02) (cit. on p. 1).

[86] Pidoco - The Rapid Prototyping Tool. Pidoco. url: https://pidoco.com/en (visited

on 2021-02-19) (cit. on p. 14).

[87] PixelCut. PaintCode - Turn your drawings into Objective-C or Swift drawing code.

2021. url: https://www.paintcodeapp.com/ (visited on 2021-02-10) (cit. on

p. 21).

73

https://www.outsystems.com/case-studies/mazda-legacy-migration-to-save-millions/
https://www.outsystems.com/case-studies/mazda-legacy-migration-to-save-millions/
https://www.outsystems.com/blog/posts/ui-framework-future/
https://www.outsystems.com/blog/posts/ui-framework-future/
https://success.outsystems.com/Documentation/11/Getting_started/Service_Studio_Overview
https://success.outsystems.com/Documentation/11/Getting_started/Service_Studio_Overview
https://success.outsystems.com/Documentation/11/Getting_started/Service_Studio_Overview
https://outsystemsui.outsystems.com/WebStyleGuidePreview/UIPatterns.aspx
https://outsystemsui.outsystems.com/WebStyleGuidePreview/UIPatterns.aspx
https://doi.org/978-1-6654-2484-4
https://doi.org/978-1-6654-2484-4
https://github.com/Pagedraw/pagedraw
https://uxtools.co/survey-2019/
https://uxtools.co/survey-2019/
https://uxtools.co/survey-2020/
https://uxtools.co/survey-2020/
https://doi.org/10.1145/1614390.1614394
https://www.gartner.com/en/marketing/insights/articles/key-findings-from-the-gartner-customer-experience-survey
https://www.gartner.com/en/marketing/insights/articles/key-findings-from-the-gartner-customer-experience-survey
https://pidoco.com/en
https://www.paintcodeapp.com/

BIBLIOGRAPHY

[88] PixelCut. PaintCode Plugin for Sketch. 2021. url: https://www.paintcodeapp.

com/sketch (visited on 2021-02-16) (cit. on p. 22).

[89] A. Puerta and J. Eisenstein. “XIML: A Universal Language for User Interfaces”.

In: (2002-02-09) (cit. on p. 24).

[90] T. Puthiyamadam and J. Reyes. Experience is everything: Here’s how to get it right.
PwC. 2017-02-08. url: https://www.pwc.com/us/en/zz-test/assets/pwc-

consumer-intelligence-series-customer-experience.pdf (visited on 2021-02-

08) (cit. on p. 1).

[91] Reuse and Refactor. OutSystems. 2018-07-26. url: https://success.outsystems.

com/Documentation/11/Developing_an_Application/Reuse_and_Refactor (vis-

ited on 2021-02-09) (cit. on p. 19).

[92] C. Richardson. New Development Platforms Emerge For Customer-Facing Applica-
tions. 2014-06-09. url: https://www.forrester.com/report/New+Development+

Platforms+Emerge+For+CustomerFacing+Applications/-/E-RES113411 (visited

on 2021-02-18) (cit. on pp. 3, 21).

[93] A. Rodrigues da Silva. “Model-driven engineering: A survey supported by the

unified conceptual model”. In: Computer Languages, Systems & Structures 43 (2015-

10-01), pp. 139–155. issn: 1477-8424. doi: 10.1016/j.cl.2015.06.001 (cit. on

p. 15).

[94] StatCounter. Desktop Operating System Market Share Worldwide. StatCounter

Global Stats. url: https://gs.statcounter.com/os-market-share/desktop/

worldwide (visited on 2021-08-04) (cit. on p. 33).

[95] S. Studio. Supernova. Supernova. url: https://supernova.io/ (visited on 2021-

02-10) (cit. on p. 21).

[96] . Svelte • Cybernetically enhanced web apps. url: https://svelte.dev/ (visited on

2021-09-02) (cit. on p. 5).

[97] Sympli. Design Collaboration, Version Control & Handoff. Sympli. url: https:

//sympli.io (visited on 2021-02-19) (cit. on p. 14).

[98] M. Woo. “The Rise of No/Low Code Software Development—No Experience

Needed?” In: Engineering (Beijing, China) 6.9 (2020-09), pp. 960–961. issn: 2095-

8099. doi: 10.1016/j.eng.2020.07.007 (cit. on pp. 3, 21).

[99] Yotako. Seamless transition from design to code. url: https://www.yotako.io/

(visited on 2021-02-10) (cit. on p. 21).

[100] E. You. Vue.js. 2021. url: https://vuejs.org/ (visited on 2021-09-02) (cit. on

p. 5).

[101] Zeplin. Zeplin. Zeplin. url: https://zeplin.io/ (visited on 2021-02-19) (cit. on

p. 14).

74

https://www.paintcodeapp.com/sketch
https://www.paintcodeapp.com/sketch
https://www.pwc.com/us/en/zz-test/assets/pwc-consumer-intelligence-series-customer-experience.pdf
https://www.pwc.com/us/en/zz-test/assets/pwc-consumer-intelligence-series-customer-experience.pdf
https://success.outsystems.com/Documentation/11/Developing_an_Application/Reuse_and_Refactor
https://success.outsystems.com/Documentation/11/Developing_an_Application/Reuse_and_Refactor
https://www.forrester.com/report/New+Development+Platforms+Emerge+For+CustomerFacing+Applications/-/E-RES113411
https://www.forrester.com/report/New+Development+Platforms+Emerge+For+CustomerFacing+Applications/-/E-RES113411
https://doi.org/10.1016/j.cl.2015.06.001
https://gs.statcounter.com/os-market-share/desktop/worldwide
https://gs.statcounter.com/os-market-share/desktop/worldwide
https://supernova.io/
https://svelte.dev/
https://sympli.io
https://sympli.io
https://doi.org/10.1016/j.eng.2020.07.007
https://www.yotako.io/
https://vuejs.org/
https://zeplin.io/

BIBLIOGRAPHY

This document was created with the (pdf/Xe/Lua)LATEX processor and the NOVAthesis template (v6.9.5) [1]. 12cc90221730b8ba41bb3b1f8b517acd

[1] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University Lisbon. 2021. URL: https://github.com/joaomlourenco/novathesis/raw/master/template.pdf(cit. on p. 75).

75

https://github.com/joaomlourenco/novathesis
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf

I

Interview Questions

I.1 Designer Questions

• Do you receive any mockups from the client?

– Yes:

∗ What do you do with them? Do you start from scratch or do you modify

them?

∗ Do they also come in Sketch?

• The UI elements you create, do you do them from a reference point?

– Yes:

∗ Do you copy them from a repository or template?

∗ Is there any "main model"?

∗ How often is it updated?

– No:

∗ Would you be against the creation of one?

∗ How disruptive would it be?

• What do you deliver to the front-end team?

• How many Sample Pages do you design?

• Can you walk me through the process of creating Sample Pages, as detailed as you

can?

• What is the frequency of "custom"elements you create for a project?

• Is there any restriction you keep in mind during your work due to the design part?

• Suppose you wanted to create a custom component, how disruptive would it be if

you had to add a field to the element marking it as custom?

• What is the thing that you’d find most disruptive/what you don’t want to happen?

76

I .2. DEVELOPER QUESTIONS

I.2 Developer Questions

• What do you receive from the design team?

• How many people are assigned per project?

– If more than one:

∗ How do you separate the roles?

• What/How is your workflow?

• What are your biggest challenges?

• Can you describe to me, to the smallest detail, the process of creating Sample Pages?

• The fact that you are restricted to 2 or 4 pages per project is it due to the complexity

of the pages in account to the time you have?

• What are your criteria to choose the Sample Pages to make?

• Do you manually make everything just by looking at the designs?

– Yes:

∗ Are there any patterns/practices that help you identify the components in

the pages?

• In this tool that I’m investigating, what would you say is essential or that you hope

it accomplishes. What are the concerns you have and what is the worst thing that

could happen?

77

II

MODELS 2021 Article

78

Improving Collaboration Efficiency Between UX/UI
Designers and Developers in a Low-Code Platform

João Pacheco
NOVA School of Science and Technology

Portugal
jr.pacheco@campus.fct.unl.pt

Stoyan Garbatov
OutSystems

Portugal
stoyan.garbatov@outsystems.com

Miguel Goulão
NOVA School of Science and Technology,

NOVA LINCS
Portugal

mgoul@fct.unl.pt

Abstract—Customer-facing applications are essential for busi-
nesses. Therefore, a good user experience is fundamental for
their success in the market. Companies employ highly specialized
people in front-end development and User Experience (UX) &
User Interface (UI) design to achieve this goal. Their collabora-
tion is critical and raises some efficiency challenges, particularly
in Low-Code platforms, such as OutSystems. UX/UI designers
typically use specialized tools with their underlying metamodels.
OutSystems developers use an integrated development environ-
ment with the underlying OutSystems metamodel. While there
are some code-generation plugins for popular design tools, these
do not generate code for Low-Code platforms.

The current transformation process from design to develop-
ment is done 100% manually, resulting in a loss of efficiency. Our
goal is to accelerate this transformation process from a design
model to a development model to mitigate this inefficiency.

To do so, we developed an approach using model transforma-
tions to automate part of the process. Namely, it automates the
generation of application pages/screens by composing the screen
mockups in a design technology (such as Figma or Sketch) with
a library of reusable UI components to instantiate the design in
a front-end technology (such as OutSystems).

Our approach was validated by a professional team of front-
end developers from an established enterprise-grade Low-Code
platform who applied and evaluated this work on some of their
past real projects. Preliminary results show an overall acceptance
of the developed tool with a possible increase of 150% to 400%
in the number of pages/screens that they can deliver with the
same effort.

This approach allows mitigating a bottleneck faced by the
development team. To increase the value they could offer to
customers (e.g., by producing more application screens in the
same time frame), they would need to recruit new collaborators
whose skill set is high on demand. Our work offers a more
economical alternative to increase their productivity.

Index Terms—Design To Code, OutSystems, Low-Code Plat-
forms, Front-end Development, Automation, Generation

I. INTRODUCTION

The number of people using digital devices and applications
has increased considerably [1], [2]. Smartphone usage has
tripled from 2012 to 2019 to 3.2 billion with a prediction of
3.8 billion users by 2021 [3]. End-users expectations when
interacting with a digital application, such as its usability
and performance are also continuously growing [4]. Customer
Experience (CX) is a significant factor in the market and can
set a product apart from the competition [5]–[7]. The concept
of Customer Experience includes many different aspects, one

of them being Design. Gartner has reported that more than
two-thirds of companies now “compete primarily on the basis
of customer experience” [8].

Collaboration between people of diverse expertise and pro-
fessional qualifications has been a general necessity for every
industry [9], [10] and the software development industry is no
exception. A research by Faraj and Sproull [11] has shown
that the importance of coordinating well different expertises
can overtake, in relevance, the existence of these expertises in
the first place. A product’s quality and value often reflect the
teamwork between a combination of different roles. In 2016,
Lindsjørn et al, investigated the relation between teamwork
quality and the quality of the product, focusing more on
teams that employed an agile development strategy, through a
survey. This research concluded that the quality of teamwork
plays a significant role, not only in terms of optimizing the
team’s performance, but also in increasing the quality of the
product [12].

Developing software requires work and input by collab-
orators with distinct profiles and skills. A particularly rel-
evant collaboration is that between the UX/UI design and
front-end development practices. Designers design the entire
system’s expected behavior, look, and feel while developers
turn the designs into reality through a front-end technology.
One role cannot create the entire system at an enterprise-
grade level. This means the collaboration between these areas
is key to developing a successful product. UX/UI designers
use specialized tools such as Sketch [13], or Figma [14]
to create High- and Low-Fidelity prototypes of the products
they are designing. Such tools are feature-rich and produce
prototypes which can be seen as instantiations of their un-
derlying metamodel. Some of these tools even offer code
generation functionalities through plugins such as Anima [15].
Front-end developers take as input the prototypes from UX/UI
designers and implement those prototypes with an Integrated
Development Environment (IDE) which is usually specialized
to their technology and needs. In the case of a Low-Code
platform such as OutSystems, front-end developers have to
manually translate the prototypes from the design format to
the front-end technology by looking at each component or
inspecting them with “Engineering hand-off tools” [16]. These
methods are very time-consuming, no matter the developer’s

expertise.
This work focuses on the OutSystems ecosystem, a Low-

Code platform that shares these inefficiencies in the collabora-
tion between UX & UI designers and front-end developers. An
applied use case will be targeted at the Customer Success De-
partment of OutSystems, where front-end developers compose
these pages manually. These developers manually compose the
UI elements into the pages using their IDE while inspecting
the designs’ properties to make both correspond as best as
possible. This manual process is very inefficient and error-
prone, no matter the expertise of the developer.

Our approach uses an horizontal exogenous unidirectional
model transformation [17] from a source model, in Sketch,
to a target model, in OutSystems. We use an independent
intermediate model as a bridge from the source to the target
model, splitting our transformation into 2: Sketch to Interme-
diate Model and then Intermediate to OutSystems. This makes
it so in the future, we can support other technologies such as
Figma.

II. RELATED WORK

The research on the automation of application creation
from design inputs is relatively novel compared to the other
methods of automatic generation from model based code
generation [18]–[21]. However, these past few years have
shown some advances in this field.

A. Current & emerging solutions in the market

There are several continuing efforts to minimize the gap
between design and front-end development by converting
the design into code. Some existing applications, such as
Anima [15], Supernova [22], and Yotako [23], allow users
to provide their designs from multiple design tools such as
Sketch [13] or Figma [14]. Most of these tools only export
to a selection of code intensive frameworks such as React
or HTML/CSS. Other applications like React Studio [24],
PaintCode [25], and PageDraw [26] are even more strict, as
they require the design to be made in their built-in editor.
These restrictions would prevent designers from using their
dedicated design application of choice and clash with today’s
industry practices in the design field [27]. None of them
supports the generation of Low-Code artifacts. Even upcoming
tools such as Modulz [28] with state-of-the-art techniques
to automatically generate code in the background, as the
designers draw the designs, share this limitation.

B. Plugins

Sketch and Figma are among the most commonly used
vector design tools globally [29], [30]. None of them has native
support for exporting the designs into code. However, both can
be extended via plugins [31], [32].

Unfortunately, neither of these functionalities are suitable
for OutSystems since these code generation functionalities do
not export to their Low-Code technology [33].

C. Methods to identify UI elements

There are several methods for supporting design-to-code au-
tomatic generation. They often use computer vision [34]–[37],
or optical character recognition [38] to identify the patterns in
the designs. Some of these methods also use neural networks
and require much training to increase their viability. These
approaches use images and hand-drawn sketches as input,
making them somewhat disconnected from current established
practices designers follow. While people still use pen and
paper to hand draw ideas during brainstorming sessions [30]
or initial testing using paper prototyping [39], it does not
go much further. They often employed these strategies to
save money and resources during the early stages of the
development process. However, these strategies are time-
consuming and leave out essential details of the system such
as looks, feedback, overall feel, and other Human-Computer
Interaction (HCI) essential elements [40]. Designers turn to
these specialized design tools to construct a higher fidelity
design incorporating these elements to get the system’s feeling,
look, and interactions. Bexiga et al. developed a method and a
tool to automate the reusable UI components’ styling process
by transforming these components from an artifact created in
a design tool into a Low-Code technology [27], [33]. This
mitigated another inefficiency in the collaboration between
designers and developers, making it the most related to our
work. Their work was also applied to the OutSystems ecosys-
tem. The tool achieved a time-save ranging from 2-3 days out
of the 5 days front-end developers have to do their work. Our
work, focuses on the composition of the reusable components
to create application pages, while theirs applies to the styling
of these components. We are also expecting different kinds of
results. Bexiga’s work is focused on shortening the time front-
end developers spend on instantiating the reusable components
while our goal is to support an increased efficiency of the
front-end teams in developing Sample Pages, allowing them
to deliver more sample pages with the same effort.

D. Representation of User Interfaces

User interfaces can be specified with User Interface De-
scription Languages (UIDLs), which are usually XML-based.
User Interface Markup Language (UIML) [41] is a platform-
independent language for describing UI. Due to its high level
of abstraction, other UIDLs, such as those discussed here, are
often referred to as UIMLs instead of UIDLs.

Extensible Application Markup Language (XAML) [42] is
an XML-based declarative language created by Microsoft for
their .NET applications. Since this language is the basis of
Microsoft’s .NET applications, it contains the User Interface
structure and embeds programming logic and styling. Every
XAML tag corresponds to a .NET component whose proper-
ties can be controlled through the tags’ properties.

The Mozilla Foundation created XML User Interface Lan-
guage (XUL) [43]. It is structured similarly to Web Pages.
Like XAML, XUL can be extended with existing standards
and technologies such as CSS and JavaScript.

These presented UIDLs (and others) were all created with
the goal of representing UI in XML based representations
and are specialized in frameworks. We will be needing a
similar representation to these that fits more in the lines of
the artifacts created by Design Tools and Low-Code front-end
technologies. We could try to pick one of these and try to
adapt them into our needs but ultimately we decided to create
our own. Our representation will differ from most UIDLs as it
will be JSON-based instead of XML since we will be working
with JSON throughout the process and have everything already
setup.

III. APPROACH

A. Initial Concerns

Before implementing the approach, we set out a couple of
guidelines we believe are essential for such an approach. These
were as follows:

• The tool should be as unintrusive as possible, to facilitate
its adoption among UX/UI designers, so as not to disrupt
their workflow, while providing a significant head-start
for front-end developers, freeing their time.

– If any adjustments are needed, these should be min-
imal and not intrusive.

• The tool should be simple to use.
We also opted to not utilize any model transformation

language and instead we will be working with their internal
representations which come in the form of JSON files. This
means our transformations will be based on rules that are hard-
coded into the tool. We made this decision in order to be more
pragmatic as this work is being made for a thesis with a time
restraint.

Another concern is how aggressive we should be with the
automation process, so we considered two alternatives:

A first approach would be to focus on Precision by only
instantiating the components, and parts of them, when we
are close to 100 % sure we are doing it correctly. The
consequence of this is we end up with fewer components
and more incomplete final results, but with greatly improved
accuracy.

A second approach would be to focus on Recall as we
automate as much as possible, even for ambiguous scenarios
when we are not 100% sure of the appropriate process. This
leads to a higher risk of incorrectly instantiated components,
forcing the development team to reorganize or even redo from
scratch.

We opted to focus on Precision with approach 1 since it
causes less overhead on the development team and anything
we do not create, they can easily do with their expertise.

B. High Level Overview

Our approach will be divided into 2 phases. The first
phase is to transform the given Sketch file, namely the screen
mockups it possesses, into an Intermediate Representation.
The second phase is to pick these Intermediate Representation
screens, and transform them into OutSystems screens, by

composing them with a library of reusable UI components
already previously instantiated in OutSystems called Live
Style Guide. This will result in an OutSystems application
with structured pages also known as Sample Pages. The pages
are fully functional screens created by the Customer Success
team for the customer. For each particular customer’s business
and business model, these pages are created and personalized.
These pages are structured mainly by the reusable UI elements
in the LSG and then are populated with mock data to allow
the customer to test the system’s interactions while serving as
a stepping stone for the customer to build on. A representation
of the process can be seen in Figure 1.

Fig. 1. High level overview of our solution

OutSystems employs these Live Style Guides, containing
reusable UI components (such as buttons and menus) and
Sample Pages for a specific application. Their goal is to foster
consistency, improve the developers’ overall efficiency and
productivity when constructing screens for their application
while lowering the required skill set to do so, and reduce the
page’s components’ maintenance cost. They accomplish this
by implementing a variation of the Atomic Design methodol-
ogy proposed by Frost [44].

To better understand the ins and outs of these teams’
workflows, we interviewed five members of the Customer
Success department, namely two front-end experts and three
designers, to complement what information we had from
Bexiga’s work [27]. This department is responsible for creating
and delivering projects to OutSystems’ clients. In addition,
they provide various services, or “Packs”. In this paper, we
are particularly interested in the “Accelerator Packs.” These
“Packs” help new clients get started on their first application
as the department provides them with a LSG. The flow in
these services is usually divided into three main phases: Kick-
Off meeting, Design, Development.

We are interested in the transition between the Design and
the Development phases. At the end of the Design phase, all of
the design for the application screens and components is often
finished, and it is passed to the developer to instantiate them in
the OutSystems language manually. Unfortunately, there are no

tools or mechanisms that help the front-end developer convert
these designs. These designs are always made in Sketch, and
the translation process is usually done in 5 days.

Another essential piece of information gathered from these
interviews is that two different design artifacts are created in
the Design phase as this phase can be divided into two sub-
phases. In the first sub-phase, also known as the UX phase,
the designer creates the UX design of tentatively every screen
in the application (Low-Fidelity mockups) by composing the
screens with components from a template called OutSystems
UI LSG Template, and it usually takes ten days.

After these ten days end, the second sub-phase, the UI
design phase, begins. The UI designer takes the Low-Fidelity
mockups and transforms them into High-Fidelity mockups.
In this phase, it is an established practice first to create the
screens and then the LSG. This leads to the possibility of the
components in the screens being decoupled, which makes it
harder to identify these components as their direct connection
to the source component in the template is lost.

Considering these insights, there are two possible solutions
of which type of design artifacts to use: High-Fidelity or Low-
Fidelity. Conceptually, we set out to focus on using the Low-
Fidelity mockups as the input design artifact of choice as it is
more “safe” from decoupled elements since its an established
practice to use the components in the template, but ultimately,
we support the use of both.

Finally, in the Development phase, the assigned Developer
takes these High-Fidelity mockups and instantiates them. This
is a 100% manual process that takes the course in 5 days -
3 dedicated to the library’s construction and 2 for creating
Sample Pages. The Sample Page creation process can be
divided into three big steps:

1) Structure: Developers create the structure of the page by
dragging and dropping the components onto the page.

2) Instantiation: Developers instantiate the components by
assigning any necessary parameters, such as variables
and auxiliary structures.

3) Data: Developers create logic that bootstraps sample do-
main data to populate the page and match the customer’s
business model.

We took step 1 as our primary goal for our work while
checking the possibility of doing step 2, even if just partially.

C. Models in our Work
Before we discuss the implementation and the more in-depth

details of the model transformations in our work, we will first
discuss our source and target models.

1) Sketch Model: Sketch is a digital design toolkit [13].
Its primary focus is on producing Low and High-Fidelity rep-
resentations for user interfaces. Internally, Sketch is composed
of “Layers.” These Layers are the building blocks for creating
designs in Sketch [45]. The main Layer types are:

• Group: These are composed of multiple layers. There
are specialized kinds of this layer type such as:

– Pages: These are groups that represent a canvas of
the document. A simplified way of visualizing these

pages would be referring to them as categories, i.e.,
a Page called UI would contain every UI design.

– Artboard: These contain the designs of what would
be the actual screens of the system.

– Symbol Master: These are group layers that are
frequently used around the whole document. As
mentioned above, any change applied to them is
propagated in their instances [46].

– Symbol Instance: These are instances of the Symbol
Master and inherit their properties. However, these
can alter properties independent of the master [46].

• Text: Layer type that contains textual information.
• Shape: The most common type of Layers in Sketch. They

represent pre-made shapes that are pre-built or created by
the designer[47].

Layers have properties that characterize their elements.
Important ones to mention are:

• Name: Represents the name given by the designer.
• Class: Represents the layer (mentioned above).
• SymbolID: If the Class attribute is a SymbolInstance,

then it will have a SymbolID which corresponds to its
Symbol Master

• Frame: Defines the positions and dimensions of the layer
relative to the parent layer.

• Layers: List composed of sub-layers.

2) OutSystems UI Template Sketch File Model: OutSys-
tems’ UX designers use a template called OutSystems UI
whenever doing Low-Fidelity mockups. This facilitates the
mapping process later on, as it would not be possible to do
so without guaranteeing the design mockups’ structure. This
file was developed by OutSystems’ UI team [33] and is con-
tinuously updated to match the evolution of the OutSystems
UI framework. During our research, an issue around the usage
of this file arose, due to its continually evolving state: some
designers are using different versions of this file. We will
require the design team to utilize the same updated template
file for our work to function, as our prototype is hardwired to
the current version (at the time of writing this article) of the
template. Not doing so could show some inaccuracies or odd
behaviors.

The template’s structure is divided into the following Pages:

• Style: Represents the common styling properties such as
typography, color, and shadow. This page is ignored in
our automatic process as we do not want to hard-wire
this styling information into the generated components.
Instead, this page will be used by the Developer in the
future to create the necessary CSS classes to allow for
more modularity and easier maintenance.

• UI Patterns and Widgets: This page contains every UI
pattern and widget and their respective state (on, off,
primary, secondary, loading, and so on) and device (web,
mobile, tablet) variations in the OutSystems UI kit. This
is another page that we do not use as there is no link
from the designs to this page. The purpose of it, is to

help the Developer create the variations of the widgets in
OutSystems.

• Layouts: The page shows the different layouts of the
pages for the different possible devices, such as a desktop,
tablet, mobile, and screen sizes. This will be used by the
developer to create the respective ”main layout” which
we will use to place our components.

• Symbols: It contains every Symbol Master that’s going
to be instantiated in the designs. This page is important
for us as we will use it as our ground-truth to correctly
identify the components.

3) Intermediate Representation Model: We created our own
model to bridge our source and target models to achieve a
higher abstraction level. Our model is mostly based on the
Sketch model, with additional information to support a correct
mapping to OutSystems.

The base element is an IRNode, an abstract structure created
by us to serve as the nodes of our Intermediate Representation,
which follows a tree-like structure. There will be an IRNode
per supported Sketch layer containing all the information that
is common in every component, such as:

• Type: Represents the type of the node. It can be a group,
symbol, or root, determined by the Class of the layer.

• InternalName: A string that represents the name of the
component in the Live Style Guide.

• Widget: A simplified version of InternalName. It al-
lows to easily distinguish components, i.e., an Inter-
nalName like 01.adaptable/component/Button
Default/Primary goes to Primary Button.

• DesignerName: The layer name, as chosen by the de-
signer.

• RelativePosition: Contains the coordinates of the com-
ponent in relation to the parent component, its width and
height.

• Children: A list containing the descendant layers. Useful
for nested components.

• Visited: An auxiliary Boolean to help against duplicates.
Besides these common attributes, every component has spe-

cific attributes, such as the number of columns in a Columns
widget or the font size in a Text component. Fig 2 shows a
fragment of this model including three different components.

Fig. 2. Fragment of the intermediate representation model

4) OutSystems Model: The OutSystems platform employs
a Visual Programming Language that abstracts an underneath

strongly typed language [48] that composes its four significant
layers: processes, interfaces, logic, and data [49]. In our work,
we will focus on the interface layer since we are focusing
on composing the UI’s structure and, as the name suggests,
this layer is related to the UI of an OutSystems project.
OutSystems’ applications are composed of various modules to
help reusability and maintainability. Each module is separated
in its Service Studio Document (OML) file. These files are
proprietary to OutSystems and contain the information of
modules. To see this information, you need a specialized tool
created by OutSystems that extracts the information in these
OML files into Extensible Markup Language (XML) format.
There are four kinds of modules: application, service [49],
library [50], and extension [51]. The application’s screens are
called Web Screens and are composed of various UI elements
representing a hierarchical structure. These UI elements can be
separated into multiple categories, such as “widgets,” whose
primary goal is for the user to interact with the system by
inputting or submitting. An example of these UI components
are buttons and dropdown menus. OutSystems also has Web-
Blocks which are reusable groups of various UI components
often created due to it being common in various screens. With
these WebBlocks, users can take advantage of the benefits in
Atomic Design.

Table I maps Sketch elements to the OutSystems model.

Sketch OutSystems

Internal Structure Hierarchical Structure of Layers Hierarchical Structure of Widgets

Application Screens Artboard Web Screen

Atomic Elements Symbols LSG Elements (UI Patterns)

Element Grouping Groups Containers or Web Blocks

TABLE I
MAPPINGS BETWEEN SKETCH AND OUTSYSTEMS

D. Sketch to Intermediate Representation

The first challenge was identifying the components in a
Sketch artboard. The design practice is inherently heteroge-
neous, meaning different designers build their designs differ-
ently. The same designer can do things differently in different
designs, or even in the same one. Our tool’s effectiveness is
heavily dependent on how these were instantiated, constraining
our ability to identify the components accurately.

With a few exceptions (e.g. links and forms), the Out-
Systems UI Sketch template has the components in the
OutSystems library set up as Symbols. Designers can select
the Symbol and paste it into a design, creating a Symbol
Instance. These Symbol Instance layers have an ID that allows
tracing them to the Symbol Master, letting us know what
this layer is referencing regardless of whatever modifications
a designer does. However, when modifying these instances,
designers have some restrictions. For example, changing text
in a Symbol is allowed, but nesting components, e.g., adding
a Button in a Card, is not allowed. Designers can either create
this nested component from scratch or decouple the Symbol
Instance so it turns into a group layer (we would do this to

the Card), preserving everything the component has except the
reference to the Master Symbol. Then we can nest the other
component. In our implementation, when we discover a group,
we always check if it is a decoupled component by its name,
which is preserved when decoupling components.

1) Preparation Phase: To access and manipulate a Sketch
file, we need to unzip the file [52]. This results in various
folders (Fig. 3) , where one of them contains every artboard
in the Sketch document in a JSON format. Firstly we need to
locate the JSON that corresponds to the designs. For this to
work, the pages’ name needs to be constant, defined and used
across any project that will use this tool, so we can precisely
identify the page to be used. We are looking for the ones that
correspond to the UX Design (Low-Fidelity mockups) and the
UI Design (high-fidelity mockups). If only one exists, then we
will use that page. If both exist, we have a priority method to
prioritize the UX Design for reliability concerns, as it is an
established practice to use the template’s components to model
this kind of design which allows us to identify the components
with high precision.

Fig. 3. Example of the structure of a Sketch file after unzipping

2) Layer Treatment & Identification: Once found, we go
through every sub-layer that is of class artboard as these
will be our application screens. Each of these artboard
layers contains many attributes that are not relevant for our
model transformation. For each layer and respective sublayers,
we do a “cleanup” by removing everything except for the set
of attributes we need.

With these “simplified” artboards, we do a depth-first traver-
sal of their layers and sublayers. Thanks to the class attribute
on these layers, we can check what each layer represents. If
it is a symbolInstance, we take its symbolID field and
use an auxiliary structure to identify its corresponding element.
Things get more complicated if it is a group layer. With the
help of an auxiliary structure we can see if it is a decoupled
component or a simple group by checking the layer’s name.
If the designer changes the name of a decoupled component,
we can no longer guarantee a connection between this layer
and its reference.

3) Intermediate Representation Node: Regardless of its
class (group or symbolInstance), the layer will be
handled and used to create an IRNode, the base element of
our Intermediate Representation. This representation follows a
tree-like structure composed of IRNodes. Every element, be it
a Symbol layer that will map to an OutSystems element or a
text layer, will have its node class extending the abstract base
class as each component will require different treatment. For
example, a Button will have its class with the required proper-

Fig. 4. Text representation in Sketch.

Fig. 5. Text representation in Intermediate Representation.

ties and processes to be implemented correctly in OutSystems.
This makes it easier to add support for more components.

We currently support 20 components of the OutSystems
LSG. These were identified by Front-End experts at OutSys-
tems as the most relevant components.

Observing Figures 4 & 5, we can compare the structure
of an artboard in the Sketch model and our Intermediate
Representation. Some significant takeaways are:

1) The code snippets show a simple conversion of a Button
component.

2) Different components have different properties. For ex-
ample, label in buttons, as seen in figure 5 does not
appear in the other component nodes.

3) Only necessary attributes for structuring purposes were
kept.

Our second most significant challenge was handling hor-
izontal placement and representing it in our Representation.
The OutSystems language provides users two different ways
to place UI components horizontally. The first one is using a
simple container with the display: flex CSS property.
The second way is to use the Columns widget. The Columns
widget creates x number of placeholders for the user to put
the content they wish to display and automatically handles the
spacing between columns at the cost of some performance. We
developed an algorithm that identifies which elements overlap
horizontally and groups them in either a Columns node or a
group flex node, depending on the group’s components.

The output of this process is a JSON file per application
screen in our Intermediate Representation model.

E. Intermediate Representation to OutSystems

We use OutSystems’ ModelAPI to create and modify Out-
Systems applications programmatically to create the applica-
tion’s screens. With this API, we will reference the elements
already customized and instantiated by the Front-End devel-
oper that come in an OML file. OutSystems files have keys
that are generated and are essential in the inner structure of
these OML files. These keys have already been created and
reside in the given OML file, so we only edit the source file by
injecting the generated Screens into it, preserving these keys.

We create a Screen Flow (how OutSystems groups applica-
tion screens) called GeneratedSamplePages, where we
will store every Web Screen that we create for each JSON
file created. After creating a Web Screen, our tool does a
depth-first analysis of our Intermediate Representation. After
serializing these components from the JSON, we generate
a Container widget for each node to encapsulate them and
then instantiate the node. Each node has its specific way of
instantiating, but they fall in 3 major groups:

1) ModelAPI provides direct support for basic widgets (e.g.
Buttons, Dropdowns), making instantiation trivial.

2) More advanced widgets such as the Card or Columns,
require fetching the widget through references.

3) Group widgets can have two variations that vastly
change how they work:

• We instantiate a container for simple groups and
instantiate subnodes together in said Container.

• Flex groups require horizontal placement, so we
create a Container encapsulating all the components
in the group with the property display: flex;
each component then has a container for itself.

In the end, an OML file will be output with the respective
application with the screens fully structured and preserving
sensitive internal data such as the keys mentioned above, and
a report file will mark any issues found and helpful information
for the developers to solve such problems.

The main challenges in this part of the project derived from
the early stage in which the ModelAPI is. As it is still in
development, there is no documentation and accessing some
properties is still not as straightforward as one would wish. We
implemented a way to have inline styling with fixed widths and
heights to look closer to the original designs. Still, ultimately
we had to take them out as it would not allow for a responsive
behavior as is their goal and would give them more work.

Figure 6 showcases a more in-depth and complete overview
of our approach.

F. Sub-Goal Validation

When implementing support for the first set of the 20
components, we also checked the possibility of doing the
secondary goal: instantiating part of the components, such as
assigning them necessary auxiliary variables. We decided to
drop this goal and focus solely on the primary as this one
presented a bad return on investment. Although the ModelAPI
allows instantiating the necessary variables and structures and

Fig. 6. Diagram of the developed approach.

assigning them, we cannot detect any interaction between com-
ponents from the designs, so the concept of shared variables
disappears. For example, clicking a button to add 1 to the
number present on a text box. These components share a
variable that is being modified by the button and presented
by the text field.

This would lead us to only one possible solution: creating
a new variable per component that requires it. Doing it this
way would most certainly lead to excessive variables per page,
which would fall on the development team to clean the extra
and assign the correct shared ones. This goes against our
Precision focus, and so we decided to drop this goal altogether.

IV. PRELIMINARY RESULTS

To evaluate our implementation, we measured the Precision
and Recall statistics in 6 real past projects from OutSystems
using their formulas (1, 2) respectively. Although these metrics
are used on classification problems, we adapted their concepts
into our work. Precision relates to the tool’s ability to identify
and instantiate a component correctly and Recall relates to
how many components in the designs our tool covers.

Precision =
truePositive

truePositive+ falsePositive
(1)

Recall =
truePositive

truePositive+ falseNegative
(2)

To calculate the total number of components in each project,
our tool already passes through every layer in the designs, so
it was easily calculated. To count the True Positives, False
Positives and False Negatives (True Negatives do not exist in
this type of work) that are necessary to calculate the Precision
and Recall statistics, these had to be manually counted. In our
case, True Positives relate to how many components we are
correctly identifying, False Positives are all the components
we are identifying incorrectly and the False Negatives are all
the other components that are calculated by subtracting the
previous 2 from the total amount of components, since in our
case True Negatives do not exist.

Table II summarizes our results. We achieved a global
precision of 99.6% and recall of 80%. So, developers get a low
number of misclassified components, mitigating the potential
rework effort fixing wrongly create components.

Projects Comp TP FP FN Precision Recall

A 3310 2237 18 957 0.992 0.709
B 5876 4079 16 1057 0.997 0.820
C 1943 1378 2 382 0.999 0.803
D 4178 2994 17 713 0.995 0.829
E 569 434 5 102 0.989 0.819
F 1981 1634 5 266 0.997 0.865

Summary 17857 14317 63 3477 0.996 0.805

TABLE II
PRECISION AND RECALL FOR OUR 6 PROJECTS

At OutSystems there is a Customer Success department
composed of 5 Front-End experts. This team is responsible for
hand-crafting the Live Style Guide by translating the design
screens and components into the OutSystems language. We
sent this team our tool and the same six past projects to
apply our tool and check the results by inspecting every single
generated screen to compare the results of their work with
the results obtained as the output of our tool. Since they are
experts in this area and we are automating part of what they
do, their feedback is the most important. These past projects
were created without having our tool in mind and so results
will reveal a significant variance. At the time of writing this
paper, we got feedback from 2 of the 5 developers.

Our tool’s effectiveness was worse when applied to designs
where it was not only more challenging to identify the UI
components correctly but also in those with a higher level of
complexity. This complexity could be due to several reasons
such as a higher presence of custom patterns or complex
styling related techniques which we cannot detect. In these
worst-case scenario projects, Developers would not use the
result created by the tool as on average it would take more
time than they usually have to implement the same set of
pages originally delivered. To be clear, this adopt/not adopt
the generated design is a fast decision to take.

For projects where our tool was more effective, the Front-
End team can save up to 8h of the 16h they have (see table III).
This is a 56% time reduction of the two workdays they usually
have to invest in creating these pages. Developers noted that
they expect they could deliver up to 400% more pages if they
started working on top of the output, as can be seen in projects
B and C, where they could deliver 6 more pages on top of the
2 they originally delivered.

The developers commented that after some more develop-
ment and minor improvements, it could very well be a staple
in their future workflow. These improvements were mostly
focusing on styling issues (such as identifying styling classes
and applying them to the components) which fall out of scope
of this work.

Projects Time to create the set
(originally 16h) Extra Pages (originally delivered)

A 28h 1 (2)
B 8h 6 (2)
C 16h 6 (2)
D 20h 0 (3)
E 10h 2 (3)
F 24h 0 (2)

TABLE III
DEVELOPER FEEDBACK FOR THE 6 PROJECTS

V. CONCLUSION

Our goal was to mitigate an existing gap in the collaboration
between designers and front-end developers. This is vital for
a great User Experience, which is a crucial factor in today’s
market and to cope with the current scarcity of available indi-
viduals with this expertise in the market. We implemented a
solution that automates the generation of structured application
screens in a Low-Code technology - work done manually today
- by taking advantage of a design technology’s structure and
a library of Low-Code reusable UI components.

The results gathered from an OutSystems professional front-
end development team suggest our tool may improve the
value these teams can deliver to their customers. Depending
on the complexity of the projects that the tool is being
applied to, the team reported increases between 150%-400% in
application screens created with a similar effort. In addition, by
automating part of the composition process, we freed up time
these professionals had to dedicate to this process and redirect
most of their attention to topics requiring more knowledge
and expertise. In the worst case scenario, where none of
the generated screens are useful, the cost of applying the
tool is nearly negligible. The developer can always choose to
ignore the generated output and start the screens from scratch,
as they normally would, costing them a couple of minutes
assuming they were not working in parallel or running it in
the background.

Our approach was based on unidirectional model trans-
formations using an intermediate representation between our
source and target models, which created a broader abstraction
scope and allowed for an easier way to adapt to technologies
different from those we used. Not only that, but the fact that
this representation is a tree structure built by abstract nodes
makes the tool easier to be evolved and extended to support
more UI components.

The biggest challenge we encountered when implementing
our solution was the heterogeneity of how UX and UI design-
ers work. There are differences from one designer to another,
but there are also notable inconsistencies in the approaches
followed by a single designer for a particular project. These
have severe implications on the tool’s ability to accurately
identify the used UI components, thus impacting the portion
of designs the tool can convert automatically.

As future work, we will minimize the already light con-
straints we have in the design arrangement to be even less

intrusive in the design process. Another step is to extend
this work to other design and front-end technologies. Since
we mostly worked with JSON manipulation, another interest-
ing investigation would be to apply a model transformation
language to this approach. Finally, we plan to leverage the
expertise of the tool users to increase recall while preserving
precision in the transformation process.

ACKNOWLEDGMENT

This work has been funded by OutSystems Research and
Development and is part of the collaboration between Out-
Systems and NOVA LINCS (UIDB/04516/2020).

We thank the OutSystems Advanced Development team and
the Design team at Customer Success who provided insights
about their practices and helped evaluate the tool.

REFERENCES

[1] J. Johnson, Internet users in the world 2020, en, Jan.
2021. [Online]. Available: https : / /www.statista . com/
statistics/617136/digital-population-worldwide/ (visited
on 02/08/2021).

[2] U. Census, Population Clock: World, 2021. [Online].
Available: https : / / www. census . gov / popclock / world
(visited on 02/08/2021).

[3] S. O’Dea, Smartphone users 2020, en, Dec. 2020.
[Online]. Available: https://www.statista.com/statistics/
330695 / number - of - smartphone - users - worldwide/
(visited on 02/08/2021).

[4] C. Candeias, 6 Steps to Improve User Experience:
Embracing Your End-Users, en, Jan. 2020. [Online].
Available: https : / / www. outsystems . com / blog / posts /
improve-user-experience/ (visited on 07/02/2021).

[5] Oracle, Seventy-Seven Percent Of Consumers Feel In-
efficient Customer Service Experiences Detract From
Their Quality of Life, en, Apr. 2018. [Online]. Available:
https://www.prnewswire.com/news- releases/seventy-
seven-percent-of-consumers-feel-inefficient-customer-
service-experiences-detract-from-their-quality-of-life-
300626778.html (visited on 02/08/2021).

[6] T. Puthiyamadam and J. Reyes, Experience is every-
thing: Here’s how to get it right, en us, Feb. 2017.
[Online]. Available: https://www.pwc.com/us/en/zz-
test/assets/pwc-consumer-intelligence-series-customer-
experience.pdf (visited on 02/08/2021).

[7] D. Data, New Research from Dimension Data Reveals
Uncomfortable CX Truths, en, Apr. 2017. [Online].
Available: https : / / www . prnewswire . com / news -
releases/new- research- from- dimension- data- reveals-
uncomfortable- cx- truths- 300433878.html (visited on
02/08/2021).

[8] C. Pemberton, Key Findings From the Customer Expe-
rience Survey, en, Mar. 2018. [Online]. Available: https:
//www.gartner.com/en/marketing/insights/articles/key-
findings-from-the-gartner-customer-experience-survey
(visited on 07/02/2021).

[9] S. W. J. Kozlowski and D. R. Ilgen, “Enhancing the
effectiveness of work groups and teams,” Psychological
Science Suppl. S, pp. 77–124, 2006.

[10] K. Kristensen and B. Kijl, “Collaborative Performance:
Addressing the ROI of Collaboration,” en, International
Journal of e-Collaboration, vol. 6, no. 1, pp. 53–69, Jan.
2010, ISSN: 1548-3673, 1548-3681. DOI: 10.4018/jec.
2010091104.

[11] S. Faraj and L. Sproull, “Coordinating Expertise in
Software Development Teams,” Management Science,
vol. 46, pp. 1554–1568, Dec. 2000. DOI: 10.1287/mnsc.
46.12.1554.12072.

[12] Y. Lindsjørn, D. I. K. Sjøberg, T. Dingsøyr, G. R.
Bergersen, and T. Dybå, “Teamwork quality and project
success in software development: A survey of agile de-
velopment teams,” en, Journal of Systems and Software,
vol. 122, pp. 274–286, Dec. 2016, ISSN: 0164-1212.
DOI: 10.1016/j.jss.2016.09.028.

[13] S. B.V, The digital design toolkit, en. [Online]. Avail-
able: https://www.sketch.com/ (visited on 02/18/2021).

[14] Figma, Figma: The collaborative interface design tool.
en-US. [Online]. Available: https : / /www.figma .com/
(visited on 02/18/2021).

[15] Anima, Anima — Design to development platform. [On-
line]. Available: https://www.animaapp.com/ (visited on
02/10/2021).

[16] I. Inc, Design-to-code — Design Defined — InVision,
en-US. [Online]. Available: https: / /www.invisionapp.
com / design - defined / design - to - code/ (visited on
02/11/2021).

[17] T. Mens and P. Van Gorp, “A Taxonomy of Model
Transformation,” en, Electronic Notes in Theoreti-
cal Computer Science, Proceedings of the Interna-
tional Workshop on Graph and Model Transformation
(GraMoT 2005), vol. 152, pp. 125–142, Mar. 2006,
ISSN: 1571-0661. DOI: 10.1016/j.entcs.2005.10.021.

[18] F. Budinsky, M. Finnie, P. Yu, and J. Vlissides, “Au-
tomatic Code Generation from Design Patterns,” IBM
Systems Journal, pp. 151–171, 1996.

[19] K. Z. Gajos, D. S. Weld, and J. O. Wobbrock, “Auto-
matically generating personalized user interfaces with
Supple,” en, Artificial Intelligence, vol. 174, no. 12-
13, pp. 910–950, Aug. 2010, ISSN: 00043702. DOI:
10.1016/j.artint.2010.05.005.

[20] J. Jelinek and P. Slavik, “GUI generation from annotated
source code,” in Proceedings of the 3rd annual confer-
ence on Task models and diagrams, ser. TAMODIA ’04,
New York, NY, USA: Association for Computing Ma-
chinery, Nov. 2004, pp. 129–136, ISBN: 978-1-59593-
000-2. DOI: 10.1145/1045446.1045470.

[21] M. Macık, “Automatic user interface generation,” PhD
Thesis, PhD thesis, Faculty of Electrical Engineering,
Czech Technical University, 2016.

[22] S. Studio, Supernova, en. [Online]. Available: https://
supernova.io/ (visited on 02/10/2021).

[23] Yotako, Seamless transition from design to code. [On-
line]. Available: https : / / www. yotako . io/ (visited on
02/10/2021).

[24] N. Ltd, React Studio. [Online]. Available: https : / /
reactstudio.com/ (visited on 02/10/2021).

[25] PixelCut, PaintCode - Turn your drawings into
Objective-C or Swift drawing code, 2021. [Online].
Available: https://www.paintcodeapp.com/ (visited on
02/10/2021).

[26] Pagedraw, Pagedraw/pagedraw, original-date: 2019-01-
12T20:13:39Z, Feb. 2021. [Online]. Available: https :
/ / github . com / Pagedraw / pagedraw (visited on
02/11/2021).

[27] M. Bexiga, “Closing the Gap Between Designers and
Developers in a Low-Code Ecosystem,” M.S. thesis,
NOVA School of Science & Technology, 2021.

[28] Modulz, Modulz, en. [Online]. Available: https : / /
modulz-website.now.sh/ (visited on 02/10/2021).

[29] T. Palmer, 2019 Design Tools Survey Results, en. [On-
line]. Available: https://uxtools.co/survey-2019/ (visited
on 02/16/2021).

[30] ——, 2020 Tools Survey Results, en, Dec. 2020. [On-
line]. Available: https://uxtools.co/survey-2020/ (visited
on 02/10/2021).

[31] PixelCut, PaintCode Plugin for Sketch, en, 2021. [On-
line]. Available: https://www.paintcodeapp.com/sketch
(visited on 02/16/2021).

[32] K. Jiang, Introducing: Figma to React, en-US, Apr.
2018. [Online]. Available: https://www.figma.com/blog/
introducing-figma-to-react/ (visited on 02/16/2021).

[33] M. Bexiga, S. Garbatov, and J. C. Seco, “Closing the
gap between designers and developers in a low code
ecosystem,” in Proceedings of the 23rd ACM/IEEE
International Conference on Model Driven Engineer-
ing Languages and Systems: Companion Proceedings,
ser. MODELS ’20, New York, NY, USA: Association
for Computing Machinery, Oct. 2020, pp. 1–10, ISBN:
978-1-4503-8135-2. DOI: 10.1145/3417990.3420195.

[34] M. Dixon and J. Fogarty, “Prefab: Implementing Ad-
vanced Behaviors Using Pixelbased Reverse Engineer-
ing of Interface Structure,” in In Proceedings of the
ACM Conference on Human Factors in Computing
Systems, 2010.

[35] T. Beltramelli, “Pix2code: Generating Code
from a Graphical User Interface Screenshot,”
arXiv:1705.07962 [cs], Sep. 2017, arXiv: 1705.07962.
[Online]. Available: http : / / arxiv.org /abs /1705 .07962
(visited on 01/18/2021).

[36] V. Jain, P. Agrawal, S. Banga, R. Kapoor, and S.
Gulyani, “Sketch2Code: Transformation of Sketches
to UI in Real-time Using Deep Neural Network,”
arXiv:1910.08930 [cs, eess], Oct. 2019, arXiv:
1910.08930. [Online]. Available: http://arxiv.org/abs/
1910.08930 (visited on 01/18/2021).

[37] S. Hassan, M. Arya, U. Bhardwaj, and S. Kole, “Extrac-
tion and Classification of User Interface Components

from an Image,” en, International Journal of Pure and
Applied Mathematics, vol. 118, p. 16, ISSN: 1314-3395.

[38] T. A. Nguyen and C. Csallner, “Reverse Engineering
Mobile Application User Interfaces with REMAUI (T),”
in 2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE), Nov. 2015,
pp. 248–259. DOI: 10.1109/ASE.2015.32.

[39] J. Nielsen, Paper Prototyping: Getting User Data Be-
fore You Code, en. [Online]. Available: https: / /www.
nngroup . com / articles / paper - prototyping/ (visited on
02/16/2021).

[40] J. M. Carroll, HCI Models, Theories, and Frameworks:
Toward a Multidisciplinary Science, en. Elsevier, May
2003, Google-Books-ID: gGyEOjkdpbYC, ISBN: 978-
0-08-049141-7.

[41] M. Abrams, C. Phanouriou, A. L. Batongbacal, S. M.
Williams, and J. E. Shuster, “UIML: An appliance-
independent XML user interface language,” en, Com-
puter Networks, vol. 31, no. 11-16, pp. 1695–1708, May
1999, ISSN: 13891286. DOI: 10.1016/S1389-1286(99)
00044-4.

[42] L. A. MacVittie, XAML in a Nutshell, en. ”O’Reilly
Media, Inc.”, 2006, Google-Books-ID: v03elGOy9ogC,
ISBN: 978-0-596-52673-3.

[43] K. C. Feldt, Programming Firefox: Building Rich In-
ternet Applications with XUL, English, 1st edition.
O’Reilly Media, Apr. 2007.

[44] B. Frost, Atomic Design, en. Brad Frost Web, Dec.
2016, Google-Books-ID: 1e92vgAACAAJ, ISBN: 978-
0-9982966-0-9.

[45] S. B.V, Layer Basics, en. [Online]. Available: https :
/ / www . sketch . com / docs / layer - basics/ (visited on
02/16/2021).

[46] ——, Symbols, en. [Online]. Available: https: / /www.
sketch.com/docs/symbols/ (visited on 02/18/2021).

[47] ——, Shapes, en. [Online]. Available: https : / / www.
sketch.com/docs/shapes/ (visited on 02/18/2021).

[48] Reuse and Refactor, en, Jul. 2018. [Online]. Available:
https : / / success . outsystems . com / Documentation / 11 /
Developing an Application / Reuse and Refactor (vis-
ited on 02/09/2021).

[49] OutSystems, Service Studio Overview, en, Mar. 2019.
[Online]. Available: https : / / success . outsystems . com /
Documentation / 11 / Getting started / Service Studio
Overview (visited on 02/18/2021).

[50] ——, Libraries, en, Jul. 2019. [Online]. Available:
https : / / success . outsystems . com / Documentation /
11 / Developing an Application / Reuse and Refactor /
Libraries (visited on 02/18/2021).

[51] ——, Extensions, en, Jul. 2018. [Online]. Available:
https : / / success . outsystems . com / Documentation /
11 / Extensibility and Integration / Extend Logic with
Your Own Code/Extensions (visited on 02/18/2021).

[52] S. B.V, File format, en, 2021. [Online]. Available:
https : / /developer. sketch .com/file - format/ (visited on
02/09/2021).

Jo
ão

Pa
ch

ec
o

CO
LL

A
BO

RA
TI

O
N

BE
T

W
EE

N
D

EV
EL

O
PE

RS
A

N
D

D
ES

IG
N

ER
S

20
22

	Front Matter
	Cover
	Front Page
	Copyright
	Dedicatory
	Acknowledgements
	Quote
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	List of Algorithms

	1 Introduction
	1.1 Description
	1.2 Motivations
	1.3 Objectives and Expected Results
	1.4 Document Structure

	2 Background And Context
	2.1 OutSystems
	2.1.1 Company Overview
	2.1.2 OutSystems Applications
	2.1.3 Customer Success Department
	2.1.4 Live Style Guide
	2.1.5 Accelerator Packs
	2.1.6 Current Workflow of the Design and Development Stages

	2.2 Design Tools
	2.3 Model Driven Engineering
	2.3.1 Model Transformation
	2.3.2 Models in my Work

	3 Related Work
	3.1 Commercial Applications
	3.1.1 Currently in the Market
	3.1.2 Emerging Applications
	3.1.3 Plugins

	3.2 Methods to Identify UI Elements
	3.3 Representation of User Interfaces

	4 Implementation
	4.1 High-Level Solutions
	4.2 Low-Fidelity vs High-Fidelity
	4.2.1 High-Fidelity
	4.2.2 Low-Fidelity
	4.2.3 Ambiguity Challenge
	4.2.4 Conclusion

	4.3 Implementation Design Decisions
	4.4 Intermediate Representation Model
	4.5 Sketch To Intermediate Representation
	4.5.1 Initial Process
	4.5.2 JSON Treatment
	4.5.3 Component Identification
	4.5.4 IRNode Creation
	4.5.5 Transformation Rules
	4.5.6 Variations
	4.5.7 Nested Layers
	4.5.8 Vertical Placement
	4.5.9 Horizontal Placement

	4.6 Intermediate Representation To OutSystems
	4.6.1 JSON Treatment
	4.6.2 Component Instantiation
	4.6.3 Sub-Goal Validation

	4.7 Chapter Summary

	5 Results
	6 Discussion
	6.1 Transformation Process
	6.2 Design to Intermediate Representation Phase
	6.2.1 5 Guidelines
	6.2.2 Template Versioning

	6.3 Intermediate Representation to OutSystems

	7 Future Work
	8 Conclusion
	Bibliography
	I Interview Questions
	I.1 Designer Questions
	I.2 Developer Questions

	II MODELS 2021 Article
	Back Matter
	Back Cover
	Spine

