
DEPARTMENT OF
COMPUTER SCIENCE

GUILHERME ANTÓNIO DUARTE FONSECA

Bachelor in Computer Science and Engineering

ON FORGETTING RELATIONS
IN RELATIONAL DATABASES

MASTER IN COMPUTER SCIENCE AND ENGINEERING

NOVA University Lisbon
November, 2021

DEPARTMENT OF
COMPUTER SCIENCE

ON FORGETTING RELATIONS
IN RELATIONAL DATABASES

GUILHERME ANTÓNIO DUARTE FONSECA

Bachelor in Computer Science and Engineering

Adviser: João Alexandre Carvalho Pinheiro Leite
Associate Professor, NOVA University Lisbon

Co-adviser: Ricardo João Rodrigues Gonçalves
Assistant Professor, NOVA University Lisbon

Examination Committee

Chair: Bernardo Parente Coutinho Fernandes Toninho
Assistant Professor, NOVA University Lisbon

Rapporteur: Vitor Manuel Beires Pinto Nogueira
Assistant Professor, University of Évora

Member: Ricardo João Rodrigues Gonçalves
Assistant Professor, NOVA University Lisbon

MASTER IN COMPUTER SCIENCE AND ENGINEERING

NOVA University Lisbon
November, 2021

On Forgetting Relations in Relational Databases

Copyright © Guilherme António Duarte Fonseca, NOVA School of Science and Technol-

ogy, NOVA University Lisbon.

The NOVA School of Science and Technology and the NOVA University Lisbon have the

right, perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

This document was created with the (pdf/Xe/Lua)LATEX processor and the NOVAthesis template (v6.9.4).

https://github.com/joaomlourenco/novathesis

To my mother, who always encouraged me
to have a curious mind and a kind heart.

Acknowledgements

First of all, I would like to express my most sincere gratitude to my advisors Prof. João

Leite, Prof. Ricardo Gonçalves and Prof. Matthias Knorr. I am very grateful to them for

taking me in at the beginning of 2019 and for being an invaluable source of help and

inspiration ever since. I thank them for their teachings and mentorship over these years.

I would also like to leave a word of appreciation to all my Professors at FCT NOVA

and TU Delft. Thank you for everything you taught me and for your patience.

In addition, I want to thank all colleagues and friends with whom I shared this amaz-

ing five-year journey. Particularly, my acknowledgements go to João Santos, Miguel

Cardoso and Paulo Mimoso for the unforgettable memories and fruitful discussions, for

every “bit” of help and, above all, for the comradeship and the laughs. I am very glad

that our paths have crossed each other.

I would like to thank my family for all their love, support and encouragement. In

special, my deepest thanks go to my mother, for teaching me to work hard and to value

life; to my sister, for being the best friend I could have asked for; para o meu avô, por ser o

meu grande companheiro de estudo (e de histórias) durante estes cinco anos (bem haja!);

para a minha avó, pelo carinho e pelo apoio incansável; and to my late father, Marco, who

I wished was still here to read his name on this dissertation. Thank you all for bringing

out the best in me.

Finally, I thank God for all the opportunities I have been granted in life.

This work was supported by FCT project FORGET (PTDC/CCI-INF/32219/2017).

vii

“Without forgetting it is quite impossible to live at all.”
(Friedrich Nietzsche)

Abstract

Although not usually acknowledged as such, forgetting is a crucial aspect of human rea-

soning. It allows us to deal with large amounts of information, pushing irrelevant details

out of our consciousness so that we can focus on the essential knowledge. Motivated

by its beneficial effect on the human brain, this operation has been emulated in many

formalisms in the field of Knowledge Representation and Reasoning, where several ap-

proaches to forgetting have been proposed. In common, these support computer systems

dealing with inaccurate or excessive information without negatively affecting the remain-

ing knowledge. More recently, the General Data Protection Regulation’s ‘right to be

forgotten’ has given additional impetus to the study of this operation.

Surprisingly, forgetting has not yet been studied in relational databases, the most

widespread technology for knowledge representation. This is a serious drawback that

needs to be addressed, considering the prominence of databases in our society and the

relevance of the operation in numerous knowledge processing tasks.

In this dissertation, we take the first steps to tackle this need, proposing a theoreti-

cal investigation of forgetting relations in relational databases. We start by introducing

an alternative formalisation of the relational model, which includes a novel notion of

equivalence between databases. Afterwards, we look further into the problem of forget-

ting. We formally define the general concept of a relation forgetting operator and present

concrete operators, each aligned with a distinct view on the operation and thus with its

unique features. Moreover, we illustrate the operators with examples inspired by realistic

situations. Finally, we evaluate them. For that, we formalise in the form of properties

the requirements that guided the definition of the operators and prove that they satisfy

desirable properties. Ultimately, with this work, we motivate the importance of forgetting

in relational databases and lay the foundations for its study.

Keywords: forgetting, relational databases, relational model, General Data Protection

Regulation, right to be forgotten

xi

Resumo

Embora nem sempre reconhecido como tal, o esquecimento é um aspeto crucial do racio-

cínio humano, pois permite-nos lidar com grandes quantidades de informação, ajudando-

nos a concentrar no conhecimento essencial. Motivada pelo seu efeito benéfico no cérebro

humano, esta operação tem sido emulada em diversos formalismos na área da Represen-

tação do Conhecimento e Raciocínio, onde várias abordagens ao esquecimento têm sido

propostas. Em comum, estas apoiam sistemas informáticos a lidar com informação impre-

cisa ou excessiva sem afetar negativamente o restante conhecimento. Mais recentemente,

o ‘direito ao esquecimento’ do Regulamento Geral sobre a Proteção de Dados deu um

impulso extra ao estudo desta operação.

Surpreendentemente, o esquecimento ainda não foi estudado em bases de dados re-

lacionais, a tecnologia mais utilizada para representação de conhecimento. Este é um

grave inconveniente a resolver, tendo em conta a proeminência das bases de dados na

nossa sociedade e a relevância da operação em inúmeras tarefas de processamento de

conhecimento.

Nesta dissertação, damos os primeiros passos no sentido de fazer frente a esta ne-

cessidade, propondo uma investigação teórica do esquecimento de relações em bases de

dados relacionais. Começamos por introduzir uma formalização alternativa do modelo

relacional, que inclui uma nova noção de equivalência entre bases de dados. Posteri-

ormente, analisamos mais aprofundadamente o problema do esquecimento. Definimos

formalmente o conceito geral de um operador de esquecimento de relações e apresenta-

mos operadores concretos, cada um alinhado com uma visão distinta sobre a operação

e, portanto, com as suas características únicas. Ademais, ilustramos os operadores com

exemplos inspirados em situações reais. Finalmente, avaliamo-los. Para isso, formaliza-

mos sob a forma de propriedades os requisitos que orientaram a definição dos operadores

e provamos que estes satisfazem propriedades desejáveis. Em última análise, com este

trabalho, motivamos a importância do esquecimento em bases de dados relacionais e

estabelecemos as bases para o seu estudo.

Palavras-chave: esquecimento, bases de dados relacionais, modelo relational, Regula-

mento Geral sobre a Proteção de Dados, direito ao esquecimento

xiii

xiv

Contents

List of Definitions xvii

List of Algorithms xix

1 Introduction 1

1.1 Context and Motivation . 1

1.2 Problem Statement and Main Contributions 6

1.3 Document Structure . 7

2 Related Work 9

2.1 Forgetting in Propositional Logic . 9

2.2 Forgetting in Predicate Logic . 11

2.2.1 Forgetting Facts . 11

2.2.2 Forgetting Relations/Predicates 13

2.2.3 Forgetting Individuals . 14

2.3 Forgetting in Description Logics . 15

2.4 Forgetting in Answer Set Programming 17

2.5 GDPR and Data Encryption . 20

2.6 Schema Evolution . 22

3 A Model for Relational Databases 25

3.1 Relation . 25

3.2 Functional Dependency . 28

3.3 Database . 30

3.4 Database Query . 31

3.5 Database Equivalence . 31

4 Forgetting Relations in Relational Databases 41

4.1 Motivating Example . 41

4.2 Relation Forgetting . 44

xv

4.3 Non-Transitive Forgetting . 45

4.4 Transitive Forgetting . 46

4.5 Refining Transitive Forgetting . 53

5 Analysis and Evaluation 63

5.1 Relation Forgetting Operators . 63

5.2 Relation Forgetting Properties . 66

5.3 Summary and Discussion . 85

6 Conclusions 91

6.1 Future Work . 93

Bibliography 97

xvi

List of Definitions

3.1 Definition (Attribute Domain) . 26

3.2 Definition (Relation Schema) . 26

3.3 Definition (Relation Instance) . 26

3.4 Definition (Relation) . 27

3.5 Definition (Inclusion between Relations) 27

3.6 Definition (Equivalence between Relations) 27

3.7 Definition (Functional Dependency Satisfaction) 28

3.8 Definition (Closure of a set of Functional Dependencies) 28

3.9 Definition (Transitivity Rule) . 28

3.10 Definition (Equivalence between FD Sets) 28

3.11 Definition (Projection of a Set of Functional Dependencies in a Relation

Schema) . 29

3.12 Definition (Exclusive Projection of a Set of Functional Dependencies in a

Relation Schema) . 29

3.13 Definition (Relational Database) . 30

3.14 Definition (Schema of the Relations in a Database) 30

3.15 Definition (Database Schema) . 30

3.16 Definition (Instance of a Database Schema) 30

3.17 Definition (Query) . 31

3.18 Definition (Conjunctive Relational Algebra Query [AIR99]) 31

3.19 Definition (Derivability with respect to Q between Database Schemas) . 32

3.20 Definition (Derivability with respect to Q between Databases) 34

3.21 Definition (Equivalence with respect to Q between Databases) 36

4.1 Definition (Relation Forgetting Operator) 45

4.2 Definition (Non-comparability between Relations) 47

4.3 Definition (Non-total Intersecting Superset) 48

4.4 Definition (δ-Exclusion of a Set of Functional Dependencies) 51

5.1 Definition (Persistence (P)) . 67

xvii

5.2 Definition (Weakening (W)) . 68

5.3 Definition (Irrelevance (I)) . 70

5.4 Definition (Equivalence up to δ between Databases) 70

5.5 Definition (No Transitivity (NT)) . 71

5.6 Definition (Strong Preservation of Functional Dependencies (SPFD)) . 72

5.7 Definition (weak Preservation of Functional Dependencies (wPFD)) . . 73

5.8 Definition (ψ-Irrelevance (ψ-I)) . 74

5.9 Definition (Transitivity with Deletion (T−)) 75

5.10 Definition (Transitivity with Addition (T+)) 76

5.11 Definition (No Recovery of Forgotten Tuples (NRT)) 78

xviii

List of Algorithms

1 Computation of FRr . 29

2 Non-transitive relation forgetting operator fnt 46

3 Computation of the δ-exclusion of a set of FDs 51

4 Transitive relation forgetting operator ft 52

5 Transitive relation forgetting operator ft− 56

6 Transitive relation forgetting operator ft+ 61

xix

1

Introduction

In this first chapter, we motivate the process of forgetting both in the broader context

of human reasoning and in the narrower scope of computer science. Subsequently, we

define the problem we propose to address in this dissertation and highlight its main

contributions. We conclude with an outline of the document structure.

1.1 Context and Motivation

In the human brain, forgetting is the spontaneous process in which less accessed infor-

mation gradually fades into the background. This operation can be seen as a function

over time since it is directly impacted by the frequency with which we actively recall a

specific event or information we ought to remember. In fact, whenever we cease to en-

gage with some particular knowledge for long periods, or even when similar, more recent

learnt information interferes with our ability to recollect the original, it is only natural

that those memories start to vanish from our consciousness. However, forgetting what

once was known does not directly imply that such knowledge ceases to completely exist

(i.e., it is forgotten forever). In the same way that, once in the background, information

can be permanently removed (even if at different rates), it is also evident that, through

the opposite process, it can be eventually remembered, reemerging vividly into the first

plan. This proceeding may happen, for instance, through recall by association with other

knowledge [Ebb85].

It happens that, to this notion of forgetting, it is generally attributed a negative conno-

tation, strictly related to the involuntary loss of important knowledge over time. Nonethe-

less, from a cognitive perspective, the process of forgetting is a crucial aspect of human

reasoning. It is the constant juggling of memories, from the background to the first plan

and vice versa, allied to the ability to permanently forget, that helps humans deal with

an excess of information, allowing us to abstract away from the irrelevant and focus on

the knowledge that really matters when performing a certain task. Moreover, forgetting

enables us to accommodate new information without the constant interference of older

(perhaps contradictory or worse) knowledge.

1

CHAPTER 1. INTRODUCTION

Because of its negative implications, even though the concept of forgetting has been

thoroughly studied in the cognitive and social sciences for long (with works such as [Ebb85]

from the field of Psychology), it is undeniable that, until more recently, this operation

did not receive due attention within the community of Computer Science [EK19]. This is

especially striking in the discipline of Knowledge Representation and Reasoning (KRR),

an important area of Artificial Intelligence (AI) which not only studies how information

can be symbolically represented by computer systems but also how it can be manipu-

lated in an automated way by reasoning programs so that it is possible to derive implicit

knowledge [BL04].

More recently, with the increasing acknowledgement of the relevance of this operation

in the field of KRR, consequence, to a great extent, of the information revolution, the last

decades have seen an uprising in the investigation of forgetting in many formalisms of

knowledge representation. Among them, forgetting has been studied in propositional

logic, predicate logic (i.e., first order logic), description logics and non-monotonic logic

(for instance, in Answer Set Programming (ASP)).

Naturally, this spike of interest stems from the capacity of this procedure to handle

irrelevant or inaccurate information, proven by the beneficial effect that forgetting has

on the human mind. Nonetheless, even if the purpose of the operation is essentially the

same in both domains, contrary to what happens in the human brain, where this process

is mainly unintentional, forgetting in KRR is always intentional. In practice, this means

that the act of forgetting is deliberately triggered in order to solve a particular problem

or answer a specific need. In that respect, forgetting can be extremely helpful in many

situations. For example, with the ever-growing necessity of dealing with large amounts

of information, this procedure can be intentionally used to simplify the knowledge ac-

quired from a certain world by excluding irrelevant details. Similarly, forgetting can be

applied to improve the declarativity of a knowledge base (KB)1, eliminating auxiliary

concepts that have no particular meaning in the world under consideration and tempo-

rary elements that are no longer necessary. In addition, with the increasing concern about

data protection and privacy, recognised in the recent General Data Protection Regulation

(GDPR)2, this operation can also be employed to deal with data collected unlawfully or

to implement the GDPR’s ‘right to be forgotten’. In that regard, the European Parliament

and the Council of the European Union (EU) emitted on the 26th of April 2016 the Regu-

lation (EU) 679/2016, known as the GDPR, which recognises the right to erasure (or ‘the

right to be forgotten’)3. Under this right, European citizens can request organisations for

their personal information to be forgotten (i.e., removed from the internet or any business

processes) under certain conditions.

1In a logic-based formalism, a knowledge base corresponds to a set of formulas, each denoting a state-
ment about a particular world.

2https://gdpr-info.eu
3The ‘right to be forgotten’, corresponding to Article 17, can be found at https://gdpr-info.

eu/art-17-gdpr/. Additionally, an explanatory version is available at https://gdpr-info.eu/issues/
right-to-be-forgotten/.

2

https://gdpr-info.eu
https://gdpr-info.eu/art-17-gdpr/
https://gdpr-info.eu/art-17-gdpr/
https://gdpr-info.eu/issues/right-to-be-forgotten/
https://gdpr-info.eu/issues/right-to-be-forgotten/

1.1. CONTEXT AND MOTIVATION

With that said, even though a goal of forgetting from a KRR perspective is to ex-

clude information from a knowledge base, this procedure is not limited to knowledge

removal, as there is more to it than the simple omission of information. On the other

hand, forgetting is strongly related to other knowledge representation concepts like irrel-
evance and equivalence, which further justify its importance in a broad range of reasoning

tasks [LR94]. Therefore, before we can continue discussing this operation in KRR, it is

essential to establish as of now, even if informally, a definition that captures its main

ideas in order to better distinguish it from other reasoning techniques.

To that end, it is important to consider that there are, in fact, two major interpretations

regarding the operation of forgetting in the literature. The first, distinguished as type 1,

focuses on eliminating certain parts of the vocabulary used to represent the knowledge

base, while preserving as much information as possible. The second, known as type 2,

looks at forgetting through a different standpoint. It attempts at directly changing the

KB so that the knowledge to be forgotten can no longer be inferred. In the context of

KRR, the first view on forgetting is generally more predominant, whereas the second has

received less attention4.

For this reason, in this dissertation, we focus on forgetting operations of type 1. In that

case, perhaps a more intuitive definition of this type of forgetting can be found in [Lei17]

for Answer Set Programming, and can be generalised to other knowledge representation

formalisms. Intuitively, forgetting is an operation that allows the removal, from a knowl-

edge base, of a piece of information no longer deemed relevant in such a way that both

direct and indirect relationships between the remaining knowledge are preserved.

To illustrate this definition, let us consider a simple example, still in ASP5.

Example 1.1. Consider the following ASP knowledge base (or program)

KB = {a← c. c← b. d← not e. b← .}.

The program KB has three rules, which can be read as “if c is true then a must be true”,

“if b is true then c must be true”, “d is true unless e is true”, and the fact b. If we wish

to forget variable c from the program KB, denoting the result as f orget(KB,c), then we

have to keep the rule d ← not e and the fact b, as hinted by the definition above since

they are independent of variable c. What is more, the logical consequence a← b, which

is indirectly present in the program KB through c, and can be read as “if b is true then

a must be true”, should be preserved. With that in mind, the result of the operation

f orget(KB,c) can be the program

KB′ = {a← b. d← not e. b← .},

which ensures the removal of variable c and leaves the logical consequences (both direct

and indirect) between the remaining variables intact. In that respect, note that KB′ was

4In fact, type 2 forgetting is more aligned with the area of Belief Change [EK19].
5A more detailed view on forgetting in answer set programs is given in Section 2.4.

3

CHAPTER 1. INTRODUCTION

not obtained by merely removing c, nor removing the rules with c. In order to preserve

indirect relationships, we had to construct a new rule a← b.

As can be seen in the example, just like in the cognitive view, forgetting in KRR is

generally done in such a way that its consequences on the knowledge that remains are

minimal. That is, the operation usually seeks to preserve all the relationships among

the information that persists, even those that were dependent on what was forgotten.

Clearly, this explicit intention in preserving the overall meaning of the KB distinguishes

forgetting from a mere remove operation, where knowledge is simply discarded without

any consideration for the repercussions that its deletion might have on the remainder.

However, despite the simplicity of the example above, forgetting is usually a difficult

task. As a matter of fact, although there exist definitive solutions to this problem in

some formalisms (as is the case, e.g., of propositional logic and predicate logic), it still

remains largely an open problem in many others (such as, e.g., in some description

logics and ASP). There are several reasons we can pinpoint to justify the complexity

of this operation. For instance, sometimes it happens that the elements in a KB are so

tightly coupled that it is impossible to remove some of them without severely affecting

the connections therein. Furthermore, one other reason that can be attributed to this

difficulty is related to the fact that, while the result of forgetting can be expressed at a

syntactic level, as depicted in Example 1.1, it can also be characterised at the semantic
level. In particular, the latter focuses on the models (i.e., the interpretations6) that the

KB should have after the operation. This brings additional challenges in the sense that

sometimes it is impossible to express syntactically in the language of the original KB the

result of semantic forgetting (in fact, this problem may even be undecidable) [EK19]. A

third reason, which in reality is more aligned with the difficulties in ASP, is due to the

fact that, in specific situations, it is not possible to maintain certain desirable properties,

generally related to some notion of equivalence between the original and resulting KBs,

upon the result of forgetting [Gon+20]. In those circumstances, it is necessary to settle

for other, probably less desired results.

As such, in spite of the informal definition presented, for the formalisms where the

problem of forgetting has not yet been completely solved, there is no single formal defi-

nition for this concept, much less a unique operator of forgetting. This happens because,

in these cases, the operation is generally contemplated in light of distinct perspectives,

each prompted by a specific set of applications and their requirements. Therefore, al-

though they are based on a common intuition, the different approaches end up specifying

disparate characteristics, a direct result of the particular tasks they were designed to

accomplish.

In that respect, forgetting has proved to be a pivotal operation in numerous fields of

6An interpretation corresponds to the assignment of one value true or f alse to each variable. Generally,
we view interpretations as the set of variables that were assigned true.

4

1.1. CONTEXT AND MOTIVATION

AI, where its applications are manifold. For instance, this operation can be used to opti-

mise the efficiency of reasoning systems, made possible by the suppression of irrelevant,

redundant or even inconsistent knowledge [EK19; LLM03; Wan+08]; restructure and

decompose a knowledge base into smaller parts (e.g., Wang et al. [Wan+08] picture a sce-

nario where the contents of a large knowledge base about Medicine, describing a myriad

of diseases and treatments, have to be split into smaller parts with respect to specialties

such as Oncology and Odontology so that, by discarding the unrelated concepts, it is easier

to use specific portions of the KB); optimisation of query answering by distilling from

a KB only what is relevant to the query [Del14; LLM03]; knowledge update and belief

revision [BZ05; LLM03]; planning, reasoning about action and cognitive robotics (e.g.,

the work by Lin and Reiter in [LR94] was motivated by the need for an autonomous robot

to forget about her past actions without negatively impacting the future ones); conflict

resolution [ZF06], among many others.

Forgetting has thus been extensively studied in numerous knowledge representation

formalisms, with important use cases and applications, as witnessed by the examples

above. Nevertheless, after all these investigations, it is surprising to see that the most

widespread technology for knowledge representation – relational databases – has not yet

been the subject of research on this topic. In effect, in the context of relational databases,

forgetting could as well be a valuable tool, serving similar purposes as those discussed for

the other formalisms. For example, it could be useful to simplify the state of a database by

removing auxiliary or temporary tables that are no longer necessary or were incorrectly

defined. At the same time, it would preserve the relationships among the remaining data

that were established by the forgotten tables. Ultimately, this could lead to improvements

in the database performance, which would translate into the optimisation of query an-

swering and speed-up data processing, without compromising the overall meaning of the

data. In the same way, forgetting could be used to handle physical storage limitations

and to restructure or summarise parts of the database in order to merge or reuse them

in other systems. In addition, it could also be employed to deal with the GDPR and to

implement its ‘right to be forgotten’.

The latter, in fact, is a particularly relevant application for forgetting in relational

databases, considering that organisations mostly rely on them as their de facto data stor-

age systems and that there is a growing interest in properly addressing data protection

and privacy issues. Certainly, even though organisations currently resort to techniques

such as pseudonymisation or anonymisation7, a forgetting operation in relational databases

7Data pseudonymisation (for example, by replacing personally identifiable information with artifi-
cial identifiers) can be a way of complying with the GDPR. According to the Regulation, it should
be applied in every system that processes user information, so that no data can be attributed to a spe-
cific data subject without the use of additional information, which should be kept separately (see Arti-
cle 4(5) at https://gdpr-info.eu/art-4-gdpr/). This implies that pseudonymisation does not safeguard
against later re-identification of the individual the data describes. Conversely, data anonymisation (e.g,
by means of generalisation, such that personally identifiable values are replaced with more generic ones),
when correctly employed, prevents both direct and indirect identification. By definition, anonymisation
is irreversible. Notably, since anonymised data is decoupled from any personal information, it can no

5

https://gdpr-info.eu/art-4-gdpr/

CHAPTER 1. INTRODUCTION

in line with forgetting in KRR could be an additional solution to meet the GDPR’s de-

mands at a practical level.

1.2 Problem Statement and Main Contributions

In view of the points just raised, in this dissertation we propose an investigation on forget-

ting in the context of relational databases where, unlike other knowledge representation

formalisms, no attention has been devoted to this problem.

More specifically, the primary goals of this dissertation are to develop a theory of

forgetting relations (i.e., tables) in relational databases and to define concrete operators

for forgetting relations that address requirements of the ‘right to be forgotten’ and thus

facilitate its implementation in practical systems. To that end, in addition to the implica-

tions of forgetting as a procedure to strictly deal with excessive, imprecise or no longer

useful information, we will have to take into account the ramifications of dealing with

data no longer allowed to be held due to legal and privacy concerns.

In order to achieve these goals, we start by identifying requirements for forgetting

both in the GDPR and the existing academic literature on forgetting. Only then can we

formalise operators that implement forgetting both at the level of the schema and the

data of the database, while satisfying relevant subsets of the requirements compiled.

With that said, the main contributions of this dissertation are the following:

1. An alternative formalisation of the relational model specifically tailored to address

the problem of forgetting in relational databases;

2. A novel notion of equivalence between databases based on the comparison of the

databases’ ability to represent information;

3. The concept of forgetting in relational databases, including the formalisation of the

general notion of a relation forgetting operator;

4. The definition of four concrete operators of relation forgetting, each aligned with

a different view on the operation, which in turn was motivated by a specific set of

requirements found in pragmatic use cases;

5. The formalisation in the form of properties interesting requirements for forgetting

found in real-world scenarios, the GDPR and the related literature, including the

ones that motivated our operators;

6. An analysis and analytical evaluation of the operators with respect to the properties

defined, proving that, besides being correctly defined, the operators obey desirable

sets of such properties.

longer be considered personal data and does not fall within the scope of the GDPR (see Recital 26 at
https://gdpr-info.eu/recitals/no-26/).

6

https://gdpr-info.eu/recitals/no-26

1.3. DOCUMENT STRUCTURE

1.3 Document Structure

The remainder of this dissertation is structured as follows:

Chapter 2 – Related Work: In this chapter, we start by overviewing the literature on the

operation of forgetting for different knowledge representation formalisms. Namely,

we focus on propositional logic, predicate logic, description logics and Answer Set

Programming. Afterwards, we discuss existing methods to deal with the GDPR’s

‘right to be forgotten’ in relational databases and comment on the relationship

between the field of schema evolution and the operation of forgetting.

Chapter 3 – A Model for Relational Databases: In this chapter, we define the main con-

cepts that will be used to formalise our theory of forgetting relations in relational

databases.

Chapter 4 – Forgetting Relations in Relational Databases: In this chapter, we investi-

gate the operation of forgetting relations in relational databases. We start by present-

ing a practical example that justifies the need for forgetting relations and motivates

different approaches to do so. Subsequently, we formally present the definition of a

relation forgetting operator. Then, we introduce several operators of forgetting and

illustrate them with a few examples. To do so, we divide the study of the operators

in light of two primary interpretations of the operation.

Chapter 5 – Analysis and Evaluation: In this chapter, we analyse our operators of for-

getting. In the first part, we prove that the operators are well defined, i.e., they are

in accordance with the notion of a relation forgetting operator introduced in the

previous chapter. In the second part, we evaluate analytically the operators. To that

end, we introduce several formal properties, each corresponding to a self-contained

requirement for forgetting that guided the definition of the operators, and show

which properties are satisfied by which operators. Finally, in the last part, we reflect

on the work covered in this dissertation, summarise the main results and propose

enhancements to our operators.

Chapter 6 – Conclusions: In this chapter, we conclude the dissertation by presenting a

general overview of the main contributions and suggesting directions for future

developments of our theory.

7

2

Related Work

The operation of forgetting has been studied in different logic-based formalisms within

the Knowledge Representation and Reasoning community. Notably, one characteristic

is common to the motivations of such work: reasoning should focus on the important

knowledge. With that in mind, the first part of this chapter has the purpose of outlining

the different approaches to forgetting discussed in the literature for various knowledge

representation formalisms. First, we will focus on propositional logic and predicate logic,

where we assume the reader has familiarity with these formalisms. Next, we discuss

forgetting in description logics and non-monotonic logic (particularly Answer Set Pro-

gramming). Finally, we step away from forgetting in KRR and move to the domain of

relational databases, where we start by focusing on data encryption as a technique to

deal with the GDPR’s ‘right to be forgotten’, comparing it with a desirable operator of

forgetting; and conclude with a brief overview on schema evolution and how it relates to

forgetting.

2.1 Forgetting in Propositional Logic

The operation of forgetting in propositional logic goes back to the seminal work of George

Boole in [Boo54]. In this work, Boole addressed the exclusion of middle terms (or variable
elimination) as a way of omitting undefined or irrelevant variables from propositional

formulas. Specifically, the result of forgetting a variable from any given formula φ is

obtained by replacing in φ the variable to be forgotten with ⊤ = true, and with ⊥ =

f alse (i.e., its possible valuations), and joining the resulting formulas with the logical

disjunction operator (∨). To show this procedure, in the example below, we assume a

knowledge base KB where set of formulas were combined into a single formula φ with

the operator of logical conjunction (∧).

Example 2.1 (cf. [EK19]). Consider the knowledge base KB = {φ}, where

φ = (red_wine∨white_wine)∧ (f ish→ white_wine)∧ (beef → red_wine).

9

CHAPTER 2. RELATED WORK

This knowledge base describes knowledge about wine and foods. More specifically, the

first formula in φ means “either white wine or red wine should be drunk”, the second

formula means “fish must be accompanied by white wine”, and the last “beef must be

accompanied by red wine”. Imagine we want to forget about f ish in KB. Then, by the

definition above, the resulting knowledge base would be (with red_wine, white_wine,

f ish and beef abbreviated to r, w, f and b, respectively)

KB′ = {[(r ∨w)∧ (⊤→ w)∧ (b→ r)]∨ [(r ∨w)∧ (⊥→ w)∧ (b→ r)]}

= {[(r ∨w)∧w∧ (b→ r)]∨ [(r ∨w)∧ (b→ r)]}

= {(r ∨w)∧ (b→ r)},

where “=” means logical equivalence.

This notion can be extended to knowledge bases consisting of finite (or even infinite)

sets of formulas [EK19]. In that case, a new knowledge base KB′ results from forgetting

a variable in the original knowledge base KB. This is done by replacing, for all possible

pairs of formulas, the variable to be forgotten with true in the first formula, and f alse in

the second, and joining both results. More formally, and assuming that we want to forget

variable p from KB, then KB′ = f orget(KB,p) = {φ+
p ∨ψ−p | φ,ψ ∈ KB}, where φ+

p is φ with

p replaced by ⊤, and ψ−p corresponds to ψ with p replaced by ⊥.

Even though the aforementioned definition happens at the syntactic level, forgetting

in propositional logic can also be characterised semantically. For such characterisation,

the key idea is that the models of KB and KB′ agree on every variable except possibly

on the variable to be forgotten. In particular, this can be done by choosing whether or

not to keep the original signature (a.k.a. vocabulary), which brings us to two distinct

definitions regarding the models of KB′. The first (1) corresponds to keeping the original

signature and adding to the set of original models all the models that can be obtained

by considering the variable to be forgotten as true and as f alse (i.e., by removing and

adding the variable to be forgotten from each original model). The second approach

(2) considers as the new signature of KB′ the signature of KB except the variable to be

forgotten, eliminating its occurrence from all the original models [EK19].

Example 2.2 (cf. [EK19]). Consider the knowledge base KB from Example 2.1, constructed

on signature Σ. The set of all models of KB over Σ, denoted by ModΣ(KB) corresponds to

the set {{r}, {w}, {r, w}, {b, r}, {b, r, w}, {f, w}, {f, w, r}, {f, b, w, r}}. The semantic result of

forgetting about f in KB is given by

(1) ModΣ(f orget(KB,f)) =Mod(KB)∪ {{f , r}, {f ,b, r}},

(2) ModΣ\{f }(f orget(KB,f)) = {{r}, {w}, {r,w}, {b,r}, {b,r,w}},

where (1) and (2) correspond to the respective alternatives.

The definition of forgetting can be further extended to a set of variables by iter-

ative application of the operator f orget(KB,p). In that case, it holds that the result

10

2.2. FORGETTING IN PREDICATE LOGIC

obtained is independent of the order in which the iteration is processed (a property

known as order independence) [LR94]. Moreover, Lin and Reiter show that this defini-

tion of forgetting obeys a set of other interesting properties. For instance, at the se-

mantic level, the operator f orget preserves all models of KB (over-approximation), and

all consequences not mentioning any forgotten variable are kept (consequence invari-
ance). It follows that, if a variable to be forgotten p does not occur in a formula φ ∈ KB,

then we can leave the formula untouched. More formally, for such cases we have that

f orget(KB,p) = f orget(KB\{φ},p)∪ {φ}) [EK19].

Furthermore, there are alternative definitions to forgetting that explore specific for-

mula arrangements in knowledge bases. For example, the work in [Del14] deals with

KBs in clausal form (or conjunctive normal form), meaning that all formulas φ are dis-

junctions of literals which, in their turn, can be variables p or their negations ¬p. The

result of forgetting according to this definition is logically equivalent to that of the Boole

definition.

Whereas the operations above aim at forgetting a variable (or set of variables) from a

knowledge base, the work by Lang et al. [LLM03] proposes an operation to forget literals,

distinguishing any atom p from its negation ¬p. This means that, unlike those definitions,

when forgetting about a literal, it may happen that the resulting knowledge base still men-

tions the variable, although only in the form of the literal contrary to the one forgotten.

Literal forgetting can, as well, be extended to multiple literals by simple iteration, where

the order in which they are forgotten does not matter. Moreover, forgetting a variable

with the operator f orget is equivalent to forgetting both its positive and negative literal

forms through literal forgetting.

Finally, note that all the forgetting operations mentioned previously can be, indeed,

categorised as type 1 with respect to the classification of forgetting presented in the

Introduction. This is so because there is an explicit intention in reducing the signature

of the KB, rather than changing the KB per se by removing specific formulas so that they

are no longer inferable.

2.2 Forgetting in Predicate Logic

Similarly to propositional logic, forgetting was thoroughly contemplated in predicate

logic (first-order logic (FOL)), both at the level of facts (e.g., forget that John is a student),

as well as relations/predicates (forget the relation student) and individuals (forget John).

In this section, we briefly comment on forgetting these concepts.

2.2.1 Forgetting Facts

When it comes to the operation of forgetting facts p = P (t), where t = t1, ..., tk is a tuple of

terms, a first approach could be to consider the definition of forgetting in propositional

logic as a special case, such that each variable p corresponds to a 0-ary predicate P .

11

CHAPTER 2. RELATED WORK

However, this approach will only work for very specific cases. In the presence of

existential (∃) and/or universal (∀) quantification, t may be accessed indirectly in the

valuation of atoms over P , and thus syntactically substituting P (t) by true resp. f alse

will not guarantee the expected semantic result. To exemplify this situation consider the

formula φ = ∀x.P (x). If we wish to forget P (a) from φ by replacing it with true resp. f alse,

it happens that the resulting formula will yield no semantic differences with respect to

the original since P (a) does not occur in φ. In this case, the expected result of forgetting

P (a) in φ would be having models in which P (x) is true for all elements x different from

a, while the value of P should remain open for variable a [EK19].

Therefore, in order to deal with quantifiers, it is necessary to introduce a syntac-

tic transformation to φ, changing it into a logically equivalent formula, as described

in [LR94]. This can be straightforwardly done by replacing every occurrence of the form

P (t′) in φ by [t′ = t∧P (t)]∨[t′ , t∧P (t′)], where t′ = t is a shorthand for t′1 = t1∧ ...∧t′k = tk .

We denote the result of this transformation by φ[p].

Now, assuming a knowledge base KB = {φ} and a variable-free fact p = P (t), the

definition of forgetting p in KB is given by f orget(KB,p) = {φ+
p ∨φ−p }, where φ+

p (resp. φ−p)

corresponds to the result of replacing p by ⊤ = true (resp. ⊥ = f alse) in φ[p] [LR94].

Example 2.3 ([LR94]). Consider the knowledge base KB = {φ}, where

φ = student(John)∨ student(Joe)∨ teacher(John).

Suppose we want to forget about fact p = student(John). First, we transform φ into

φ[student(John)], obtaining

φ[student(John)] = [(John = John∧ student(John))∨ (John , John∧ student(John))]

∨ [(Joe = John∧ student(John))∨ (Joe , John∧ student(Joe))]

∨ teacher(John).

Then,

f orget(KB,student(John)) = {φ+
student(John) ∨φ

−
student(John)}

= {([(⊤∧⊤)∨ (⊥∧⊤)]∨ [(⊥∧⊤)∨ (⊤∧ student(Joe))]∨ teacher(John))

∨ ([(⊤∧⊥)∨ (⊥∧⊥)]∨ [(⊥∧⊥)∨ (⊤∧ student(Joe))]∨ teacher(John))}

= {⊤∨ (student(Joe)∨ teacher(John))}

= {⊤}.

Instead, if we consider φ = ∃x.student(x), then forgetting student(John) from KB results

in

φ[student(John)] = ∃x.[x = John∧ student(John)]∨ [x , John∧ student(x)]

f orget(KB,student(John)) = {∃x.[x = John∧⊤]∨ [x , John∧ student(x)]

∨∃x.[x = John∧⊥]∨ [x , John∧ student(x)]}

= {⊤}.

12

2.2. FORGETTING IN PREDICATE LOGIC

Finally, if φ = ∀x.student(x) and we still want to forget about student(John) in KB, then

the result is

φ[student(John)] = ∀x.[x = John∧ student(John)]∨ [x , John∧ student(x)]

f orget(KB,student(John)) = {∀x.[x = John∧⊤]∨ [x , John∧ student(x)]

∨∀x.[x = John∧⊥]∨ [x , John∧ student(x)]}

= {∀x.[x , John→ student(x)]∨∀x.[x , John∧ student(x)]}

= {∀x.[x , John→ student(x)]}.

Note that this is precisely the scenario mentioned at the beginning of this section: without

the transformation of φ into φ[p] before substituting p by true resp. f alse, it would not

be possible to obtain the discussed result.

Moreover, analogously to the propositional case, Lin and Reiter show that this defi-

nition of forgetting can be extended to multiple atoms by applying an iterative process.

Again, the order of the atoms is irrelevant to the final result (i.e., the f orget operator

commutes).

Regarding the semantic characterisation of this operator, the principle is that the

models of the result of forgetting fully agree with the original models except possibly on

the truth assignment of the atoms to be forgotten.

In addition to the property order independence, the operator holds, for instance, the

property over-approximation (all original models are kept although new ones can be

added), which implies that the result of forgetting is weaker than the original knowl-

edge base. Furthermore, the result of forgetting about a sequence of atoms always exists

and does not affect other sentences “irrelevant” to those atoms [LR94].

2.2.2 Forgetting Relations/Predicates

In what concerns the operation of forgetting relations, it can be semantically characterised

in a similar way to the previous case: the models of the knowledge base after forgetting a

relation P agree on everything with the original models except possibly for the valuation

of P [LR94].

Furthermore, Lin and Reiter introduce a syntactic definition of forgetting captur-

ing the characterisation above. However, this definition is presented in second-order

logic (SOL) in order to use quantification over relation symbols: given a knowledge base

KB = {φ} and a relation variable R with the same arity as P , we have f orget(KB,P) =

{∃R.φ(P /R)}, where φ(P /R) is the result of replacing every occurrence of P in φ by R.

Example 2.4 ([LR94]). Consider the knowledge base

KB = student(John)∨ student(Joe)∨ teacher(John).

The result of forgetting about P = student in KB according to the syntactic definition

above is

13

CHAPTER 2. RELATED WORK

f orget(KB,student) = {∃R.R(John)∨R(Joe)∨ teacher(John)},

which is equivalent to ⊤ since there exists a model in which R(John) is true.

Alternatively, if KB = {(student(John)∨ student(Joe))∧ teacher(John)}, then by forget-

ting student we obtain

f orget(KB,student) = {∃R.(R(John)∨R(Joe))∨ teacher(John)}

= {teacher(John)}.

In the example above, the result of forgetting relation student in both knowledge bases

is first-order definable. However, as noted by Lin and Reiter, this is not always the case.

Thus, in those situations, the question becomes whether it is possible to transform the

resulting SOL formula into an equivalent FOL formula. Notably, Doherty et al. [DLS01]

show in which conditions second-order quantifiers can be eliminated, making it possible

to express forgetting in FOL.

Lastly, the operation f orget can also be extended to a sequence of predicates, being

that the resulting knowledge base is independent of the order in which the predicates are

forgotten. As a matter of fact, similar properties to the ones of forgetting about a fact hold

as well when it comes to forgetting relations (e.g., order independence, over-approximation
and a form of irrelevance) [LR94].

2.2.3 Forgetting Individuals

As for the operation of forgetting individuals (which are represented by constant symbols

in first-order formulas), a definition is proposed in [Del14] as follows. For a knowledge

base KB = {φ} and a constant symbol c, f orget(KB,c) = (KB\KBc)∪ {∃x.
∧
φ∈KBc φ[c/x]},

where KBc denotes the set of all sentences in KB where c occurs, x is a variable not

appearing in KB and φ[c/x] is the result of replacing c by x in φ. Regarding this defini-

tion, all consequences of KB not mentioning c are kept, while no new consequences are

introduced [Del14].

An illustration of this notion is given by the following example.

Example 2.5 ([EK19]). Consider the knowledge base

KB = {student(John)∨ student(Joe)∨ teacher(John)}.

The result of forgetting about John in KB is

f orget(KB,John) = {∃x.student(x)∨ student(Joe)∨ teacher(x)}.

As observed in [EK19], this operation of forgetting can be seen as a process of anonymi-
sation in the sense that it is no longer possible to discern which individual has certain

properties. In fact, at a first glance, one could try to replace c with a fresh constant sym-

bol, instead of the construct above. However, by following this approach, it will become

easier to identify which forgetting operations about individuals were previously done in

the knowledge base, which is not always desirable.

14

2.3. FORGETTING IN DESCRIPTION LOGICS

2.3 Forgetting in Description Logics

Description logics (DLs) are a family of knowledge representation formalisms that amount

to FOL fragments capable of effective reasoning. These languages are expressed in a re-

stricted yet convenient syntax that differs from the FOL syntax and are equipped with

a precise formal semantics. Moreover, contrary to FOL, DLs are usually decidable (i.e.,

guarantee termination in finite time both for positive and negative answers) [Baa+03].

A DL signature consists of individuals (constants), concepts (classes that denote sets of

individuals) and roles (binary relations on individuals). Furthermore, a DL knowledge

base KB comprises a TBox T (terminological box) and an ABox A (assertional box) such

that KB = ⟨T ,A⟩. The TBox describes knowledge about concepts and roles. Concretely, it

is composed of a set of inclusion axioms of the forms C ⊑ D (concept inclusion) and R ⊑ S
(role inclusion)1, where C andD are concept expressions, and R and S are role expressions.

On the other hand, the ABox is a set of assertions of the forms A(a) (concept membership)

and P (a,b) (role membership), where a and b are individuals, A is a concept and P is a

role. Intuitively, an ABox specifies properties of individuals occurring in the application

domain.

Description languages are inherently characterised by the constructors they provide.

These constructors define in a precise way the allowed concept (and sometimes role) ex-

pressions within the language. Accordingly, different languages have different expressive

powers and reasoning complexities such that, the more expressive the language is, the

harder the reasoning. Overall, this tradeoff makes DLs suitable for a wide range of ap-

plications and reasoning tasks [Baa+03]. For instance, description logics can be used to

express conceptual models of a database, integrate several data sources, or even formulate

queries.

Additionally, DLs are particularly useful for writing ontologies. These, in turn, can

be used to facilitate access to data repositories [Xia+18]. Not surprisingly, the World

Wide Web Consortium2 recommends that languages for describing ontologies in the Web

should be based on DLs. One such language is OWL23, a variant of the description logic

SROIQ(D). However, perhaps the most known DL, which also happens to be the smallest

propositionally closed description logic is ALC (attributive language with complement).

Even so, in this section, we zoom in on the literature of forgetting for the DL-Lite family

of description logics, whose languages are particularly attractive due to their expressive

power while still having polynomial time reasoning algorithms in the worst case [Cal+07].

In specific, we turn our attention to the simplest language of this family, DL-Litecore.

Example 2.6 (cf. [Wan+08]). Consider the following DL-Litecore knowledge base KB =

⟨T ,A⟩, which describes a simple library domain, followed by the FOL translation for each

1In fact, some (less expressive) languages do not support role inclusions in their TBoxes.
2The World Wide Wide Consortium (W3C) is an international community that develops standards for

the Web in order to ensure its proper long-term growth (see https://www.w3.org).
3https://www.w3.org/TR/owl2-overview/

15

https://www.w3.org
https://www.w3.org/TR/owl2-overview/

CHAPTER 2. RELATED WORK

axiom respectively assertion.

DL-Litecore KB FOL translation

T ∃OnLoanT o ⊑ LibItem ∀x(∃y.OnLoanT o(x,y)→ LibItem(x))

∃OnLoanT o− ⊑Member ∀x(∃y.OnLoanT o(y,x)→Member(x))

Member ⊑ P erson ∀x(Member(x)→ P erson(x))

V isitor ⊑ P erson ∀x(V isitor(x)→ P erson(x))

V isitor ⊑ ¬Member ∀x(V isitor(x)→¬Member(x))

A LibItem(SWP rinter) LibItem(SWP rinter)

onLoanT o(DLHandBook, Jack) onLoanT o(DLHandBook, Jack)

In this example, the concept LibItem denotes library items, while the role onLoanT o

denotes the loan relationship between library items and people. Note that the existential

quantification constructor (∃) used in the first axiom allows one to describe the domain

of the role. Conversely, in the second axiom, it is the use of the inverse role constructor

(−), in addition to the ∃ constructor, that allows for the specification of the role range.

Finally, not every P erson is a Member or a V isitor, and a V isitor is not a Member.

Given the need to modify, reuse, decompose and combine different ontologies, the

study of the forgetting in DLs has been gaining increasing preponderance, as these pro-

ceedings typically require omission of terms or attention restriction to a particular set of

concepts, roles and individuals while preserving all the logical consequences between the

remaining [Wan+08]. In fact, these are regarded as quite complex tasks considering that

concepts in ontologies (as well as their corresponding relationships) are generally highly

coupled. This requires sophisticated methods and operations to deal with the problem.

To this end, several approaches to forgetting concept or role symbols either from T or

from KB = ⟨T ,A⟩ obeying useful properties have been widely discussed [EK19].

For instance, Wang et al. [Wan+08] focused on forgetting concepts in the DL-Lite

family of description logics. The authors start by providing a semantic (i.e., model-

based) definition of forgetting from TBoxes. Intuitively, a TBox T ′ that results from

forgetting about a concept A in a TBox T should not contain any occurrence of A, be

weaker than T and give the same answer to any query for which A is irrelevant. This idea

is captured through a semantic characterisation supported by the notion of similarity

between models, generalising the approach for classical logic (see Sections 2.1 and 2.2).

More specifically, the concept A must not be on the signature of T ′, and the models of T
and T ′ must agree on everything except possibly A. This definition implies that the result

of forgetting about A in T is unique. In addition, similarly to what we saw earlier for

predicate logic and FOL, the definition can be extended to a set of concepts by applying

an iterative process, where the order is irrelevant to the final result.

Further in their work, Wang et al. show that T ′ can always be obtained from T
through syntax-based transformations. For that, the authors introduce a set of algorithms

that compute the result of forgetting for different languages of DL-Lite. These algorithms

have important properties: they run in polynomial time and are sound and complete,

16

2.4. FORGETTING IN ANSWER SET PROGRAMMING

guaranteeing that the result of forgetting about concepts always exists. In specific, if we

wished to forget a concept A from a DL-Litecore TBox T , first we would (1) remove axiom

A ⊑ A from T if it is present; then (2) if axiom A ⊑ ¬A is in T , we remove each axiom

A ⊑ C or B ⊑ ¬A from T , and replace each axiom B ⊑ A in T by B ⊑ ¬B (here C is a

concept expression and B is a concept expression not negated (¬)); (3) replace each axiom

B ⊑ ¬A in T by A ⊑ ¬B; (4) for each exiom Bi ⊑ A (1 ≤ i ≤m) in T and each axiom A ⊑ Cj
(1 ≤ j ≤ n) in T , we add the axiom Bi ⊑ Cj to T if it is not already there; and finally (5)

remove every axiom containing A in T .

Example 2.7 (cf. [Wan+08]). Consider the TBox T in Example 2.6. If we wish to forget

about the concept Member in T because, e.g., the library now wants to allow nonmem-

bers to borrow items but still wishes to prevent visitors from doing so, then by apply-

ing the algorithm steps: (1) and (2) are skipped since the axioms Member ⊑ Member
and Member ⊑ ¬Member are not in T ; (3) the axiom V isitor ⊑ ¬Member is replaced by

Member ⊑ ¬V isitor; (4) the axioms ∃OnLoanT o− ⊑ P erson and ∃OnLoanT o− ⊑ ¬V isitor
are added to T ; (5) the axioms ∃OnLoanT o− ⊑Member, Member ⊑ P erson andMember ⊑
¬V isitor are removed from T ; we would obtain the TBox T ′ with the axioms

∃OnLoanT o ⊑ LibItem, ∃OnLoanT o− ⊑ P erson,

∃OnLoanT o− ⊑ ¬V isitor, V isitor ⊑ P erson.

As for the definition of forgetting about concepts in DL-Lite ABoxes, it is not always

possible to express syntactically in the language of the ABox the semantic result [Wan+08]:

consider, for instance, a DL-Litecore knowledge base KB with a TBox T = {V isitor ⊑
¬Member} and an ABox A = {V isitor(anna)}. To forget about the concept V isitor in

A, we have to remove the assertion V isitor(anna). However, from T we can conclude

¬Member(anna), but by definition this cannot be expressed in the language of the ABox.

This implies that the information about anna not being a member would also be lost when

forgetting about the concept V isitor.

Generally, this happens to other DLs as well, not only for ABoxes but also for TBoxes,

which makes forgetting in knowledge bases a difficult challenge (in fact, for some lan-

guages, the existence of forgetting a concept is undecidable). Nonetheless, there are

some ways of overcoming this issue. For instance, one can extend the language, or even

introduce extra vocabulary [EK19].

Having said that, the study of forgetting in DLs remains largely an open problem. For

further details on the landscape, the interested reader can resort to [EK19].

2.4 Forgetting in Answer Set Programming

We now focus on forgetting in non-monotonic logic and specifically on Answer Set Pro-

gramming, a logic programming formalism designed to easily represent and efficiently

solve complex combinatorial problems in different domains [SW18]. As such, given the

17

CHAPTER 2. RELATED WORK

richness of ASP constructors for declarative knowledge representation allied to the exis-

tence of highly efficient solvers for program evaluation, this formalism has recently been

gaining increasing popularity both in academia and industry [EK19].

The growing interest in ASP has lead to the study of several reasoning operations

within the paradigm, some of which already discussed in other formalisms. However,

when it comes to forgetting in ASP, similarly to what happens with DLs, this operation

presents complex challenges, albeit due to distinct reasons. First, some of these chal-

lenges can be exactly attributed to the non-monotonic nature of ASP where, contrary to a

monotonic formalism (e.g., any of the logics discussed previously), learning a new fraction

of knowledge can mean a reduction on the set of what is known. In that regard, assume

as an example (c.f. [EK19]) the following ASP program

KB = {student(sam). single(x)← student(x), not married(x).},

where the first rule represents the fact “sam is a student” and the second rule means

“if a student is not known to be married, then s/he must be single”. Note that the de-
fault negation (not) in the second rule allows to express incomplete information, which

consequently enables us to conclude that by default (i.e., lack of evidence on the con-

trary) sam must be single. Therefore, this program has a unique answer set (i.e., a so-

lution4) M = {student(sam), single(sam)}. However, if we add the fact married(sam) to

program KB (e.g., because we learn that sam is in fact married), we can no longer con-

clude that sam is single, and thus the answer set for the augmented program would be

M ′ = {student(sam), married(sam)}.
Because of this behaviour, non-monotonic formalisms are viewed as adequate repre-

sentations of common sense reasoning since, in the real world, humans are frequently

required to deal with uncertain and incomplete information and often change their con-

victions about the world. Note that this is not possible to represent with monotonic

formalisms (e.g., classical logic) since any extension to a knowledge base cannot change

what was originally inferred [BL04]. Nevertheless, with the convenience of ASP as a way

of emulating human reasoning due to its non-monotonic characteristics also comes the

difficulty of defining appropriate notions of forgetting in the language.

Furthermore, one other reason that poses said difficulties is the fact that the syntax

of the rules that constitute any program matter in such a way that, even if two programs

KB and KB′ have the same answer sets, the result of extending both with the same set

of rules may lead to different answer sets for the augmented programs [LPV01]. Eiter

and Kern-Isberner [EK19] give an intuitive example that shows exactly this. Suppose

that KB = {pub ← thirsty, not sunday.} and KB′ = {pub ← thirsty, weekend.}. In this

case, both KB and KB′ have the same answer set M = ∅. However, if we add the fact

thirsty to both programs, then the answer set for the augmented KB would be {pub}

4Informally, answer sets are minimal (classical) models such that all atoms are justified by some rule.

18

2.4. FORGETTING IN ANSWER SET PROGRAMMING

while the answer set for KB′ would not change. On the contrary, when two programs

remain equivalent after any extension, we say that they are strongly equivalent5.

In view of these challenges, it is still difficult to reach a common ground when it comes

to forgetting atoms in answer set programs, and contrarily to what happens in classical

logic, it cannot be pinpointed to a unique definition. In fact, the study of forgetting in

ASP is still an active field of research, where several operators (or classes of operators6)

and desirable properties remain under discussion [EK19]. Among the many operators,

some focus on syntactic rule transformations, while others view forgetting as a semantic

operation [GKL16a; Lei17]. Moreover, in what concerns the proposed properties, these

often motivate new operators and approaches to forgetting. Notably, some properties

share intricate relationships with others like, e.g., incompatibility, implication or even

equivalence [GKL16a]. Regardless, among these properties, strong persistence [KA14],

which is closely related to strong equivalence of programs, is particularly interesting,

as it seems to best encode what is expected from forgetting in ASP [Lei17]. Intuitively,

strong persistence ensures that the result of forgetting an atom from a program does not

affect the existing relations between the atoms not to be forgotten. More formally, an

operator f orget obeys strong persistence if for any program KB, atom to be forgotten p

and program KB′ not involving p, it holds that

ModΣ\{p}(KB∪KB′) =Mod(f orget(KB,p)∪KB′),

where f orget(KB,p) denotes the result of forgetting p from KB, and ModΣ(KB) denotes

the answers sets of KB over the signature Σ. Although desirable, this property is not

always possible to guarantee when forgetting a set of atoms from a program, as those

atoms may play such a decisive role in the program that one cannot simply forget them

and still expect that the relations between the remaining stay intact [GKL16b; Gon+20].

The authors showed exactly this with the following example. Consider the knowledge

base

KB = {a← p. b← q. p← not q. q← not p.}.

It is not possible to forget both atoms p and q from KB and, at the same time, preserve

the original semantic relations between a and b, since no program over atoms {a,b} would

have the same answer sets of the original program (over signature Σ\{p,q}) when both are

extended by a third program over atoms {a,b}. In those cases, one can resort to operators

specifically defined for when strong persistence is not achievable [Gon+17; Gon+20]. The

choice of ideal operator, however, turns out to be highly dependent on the application

domain.

At last, given the complex panorama of forgetting in ASP, the work [GKL16a] makes

extensive efforts towards unifying it. For that, the authors examine in detail the literature,

5Strong equivalence in ASP corresponds to logical equivalence in classical logic.
6Both concrete operators and classes of operators have been proposed in the literature. For simplicity,

we adopt the term operator to refer to one and the other.

19

CHAPTER 2. RELATED WORK

which includes existing operators, properties and algorithms/implementations, and show

results that go well beyond it.

2.5 GDPR and Data Encryption

With the recent GDPR and the ever-growing concerns about data privacy, not only in

the EU but also around the world, it is not surprising that several systems, tools and

procedures have been proposed as a way to protect users’ personal data (e.g., by reducing

or preventing unnecessary processing or by imposing data confidentiality) while still

ensuring as much system functionality as possible [VBO03]. Among them, we can name

encryption techniques, which will be the object of reflection in this section given their

recurrent discussion in the literature and the existence of several widely known system

implementations. In particular, we focus on how relational data encryption can be seen in

light of the aforesaid Regulation and how it differs from our interpretation of a desirable

forgetting operator for relational databases.

In that respect, according to the GDPR, applying encryption techniques to user data

in such a way that it can no longer be attributed to a specific individual is regarded as

pseudonymisation7. In practice, companies are highly advised to implement these techni-

cal measures in the conception of their systems and applications8. Still, pseudonymising

users’ data in order to protect their privacy may convey a false sense of security both for

the organisation and the data subject, since the process can be easily nullified with access

to additional information (for instance held by a third party, or posteriorly collected by

the organisation in question), or even reverted with the corresponding decryption key.

For these reasons, pseudonymisation does not conform with the right to erasure (or ‘right

to be forgotten’).

Alternatively, data anonymisation can be a way of circumventing said right as long as

adequate mechanisms are applied9. In practice, anonymisation can be achieved by means

of encryption when the key used to decrypt the data is deleted (or, to the same effect, given

to the data subject). Furthermore, by ensuring that the right data is irreversibly altered,

in such a way that the link with the user it describes is completely erased, organisations

guarantee full compliance with the GDPR. As a matter of fact, when the data can no

longer be associated with its corresponding data subject (i.e., it is effectively anonymous),

then it simply ceases to belong to the user10.

Therefore, and without delving into further details regarding the Regulation nor

the technical specifications of these methods, we can attribute to data encryption an

important role when it comes to de-identify a data subject.

7See Article 4(5) at https://gdpr-info.eu/art-4-gdpr/.
8See Article 32(1)(a) at https://gdpr-info.eu/art-32-gdpr/, Article 25(1) at https://gdpr-info.eu/

art-25-gdpr/ and Recital 28 at https://gdpr-info.eu/recitals/no-28/.
9See https://gdpr-info.eu/issues/right-to-be-forgotten/.

10See Recital 26 at https://gdpr-info.eu/recitals/no-26/.

20

https://gdpr-info.eu/art-4-gdpr/
https://gdpr-info.eu/art-32-gdpr/
https://gdpr-info.eu/art-25-gdpr/
https://gdpr-info.eu/art-25-gdpr/
https://gdpr-info.eu/recitals/no-28/
https://gdpr-info.eu/issues/right-to-be-forgotten/
https://gdpr-info.eu/recitals/no-26/

2.5. GDPR AND DATA ENCRYPTION

In the context of relational databases, this is done by encrypting specific values in

a database table (in particular, personally identifiable information such as citizen card

number, social security number, full name, or any other natural identifiers, as well as

attributes such as age, gender, ethnicity, job title, postal code, etc.). What is more, other

sensitive information that at first may not explicitly identify a particular user can still be

prompt to inference attacks and thus should receive the same treatment (e.g., medical

conditions and interventions, education, religion, among others) [NS10]. By encrypting

some of the data instead of deleting it, it is possible to avoid null values and, in most

cases, not completely impair data processing for marketing (or other) purposes.

Following these lines, systems such as CryptDB [Pop+11] and Cipherbase [Ara+13]

have shown the feasibility of these practices, protecting confidential data from malicious

actors or curious administrators while supporting query answering and other critical

database system functionalities over the encrypted data. Moreover, these systems allow

selection among different degrees of encryption, which enables organisations to handpick

the attributes they deem relevant to encrypt at each level. Interestingly, CryptDB is also

able to chain encryption keys to user passwords so that only users can decrypt their data.

However, whereas the latter feature is in line with what is expected from the process

of anonymisation as far as the GDPR is concerned, the former falls short on the definition

since the data is not truly irreversibly altered (i.e., the decryption key destroyed or given

to the user). Additionally, depending on the level of encryption chosen, it may still

be possible to derive insights on some attributes, which can eventually result in the re-

identification of an individual. As a result, encryption alone is generally no silver bullet.

Thus, to overcome these issues, in some cases, other techniques for anonymisation

are possible on top of the data encryption process. These, in fact, may be even more

convenient and in compliance with the GDPR. For instance, some user attribute values

can be generalised instead of encrypted (e.g., date of birth can be converted to year of birth,

and heights of individuals changed to more generic categories). This brings additional

advantages in the sense that more data may be considered for analysis [Eyu+18].

Nonetheless, after applying these methods, organisations still have to guarantee with

absolute certainties that the data cannot be traced in any way back to the user, which

usually is not an easy task to do. As we saw, attributes that at first may not be considered

personally identifiable, when combined, can still give unwanted cues on who its subject

is [NS10]. In fact, to guarantee the level of confidentiality expected to conform with the

right to be forgotten, a large set of attributes have to be either irreversibly anonymised

or transformed into very broad categories, implying that less and less information is

actually valuable. Consequently, this leads to useless storage space in a database, which

only affects the scalability of applications and hinders processing and analytical times.

Additionally, along the same lines of what was discussed at the end of Section 2.2,

in general, the process of anonymisation makes clear allusions to what operations were

done in the past. This, in turn, might not be always desirable, or even legal. For example,

what if an organisation has to forget a specific table in a database due to judicial reasons

21

CHAPTER 2. RELATED WORK

(e.g., because said information was unlawfully collected or allows for complete disclosure

of a large set of individuals)? In that case, simply anonymizing the data is not possible.

Perhaps, at first, a viable solution would be erasing all the data and delete the database

table. This action, on the other hand, might damage on cascade the processing of other

legitimately collected information that may serve important purposes and should not be

affected. For example, data used for reasons of public interest, such as public health as

well as scientific and statistical research purposes should be held irrespectively of the

right to be forgotten11.

Given these reasons, a forgetting operator for relational databases in the vein as what

is proposed in the literature for other knowledge representation formalisms is of high

interest, not necessarily as a replacement for data encryption but rather as an auxiliary

tool. This way, it is possible to remove (read forget) information in such a manner that

indirect relationships between other data are minimally affected, as we will see with a

practical example in Section 4.1.

2.6 Schema Evolution

Database systems are responsible for collecting and managing large amounts of infor-

mation. Given the complexity of this task, it is essential to start the development of a

database using appropriate design and modeling techniques. Only this way it is possible

to faithfully represent in a database the different concepts found in a specific knowledge

domain. When it comes to the design process, one important step is to outline the database
schema, which describes how the data is structured in the database.

Even though it does not happen very frequently [SKS11], most database schemas

undergo several changes during their lifetime, either because there is an explicit need to

accommodate new application requirements, due to performance reasons, or simply to fix

previous mistakes [ALP91; Rod92]. These changes include inter alia adding, removing or

renaming database tables, adding new attributes to tables, or even renaming and deleting

existing ones. As such, it is highly desirable that database systems provide the necessary

manipulation tools to address said needs.

In that sense, schema evolution (or schema change) refers to the ability of a database

system to deal with modifications imposed to deployed schemas [RB06]. However, sup-

port for schema evolution is a challenging task since it presupposes accurate and efficient

propagation of schema changes to the data, queries, views as well as other dependent

schemas and applications [HTR11].

Considering that schema evolution during the operational phase is an intricate prob-

lem that, when incorrectly employed, might lead to serious consequences regarding the

integrity of the data [ALP91; CMZ09; Sjø93], several techniques, systems and tools have

been proposed in the literature to assist database systems support this operation [ALP91;

11See Article 17(3) at https://gdpr-info.eu/art-17-gdpr/.

22

https://gdpr-info.eu/art-17-gdpr/

2.6. SCHEMA EVOLUTION

HTR11; RB06; Rod92]. One such example is to be found in the work of Curino et

al. [CMZ09]. The authors present a system to automate the database schema evolution

process, which is capable of rewriting queries and updates. That way, the authors are able

to safeguard data integrity and minimise system downtimes while supporting schema

upgrades.

As we will see in the next chapters, forgetting in relational databases (e.g., to comply

with the GDPR’s ‘right to be forgotten’) may imply schema changes as well. In those

cases, a theoretical formalisation of forgetting operators as proposed in this dissertation,

will help organisations understand which changes should be applied to their databases

at the level of the schema and subsequently the data and queries. Only then can or-

ganisations leverage systems supporting schema evolution capabilities to facilitate the

implementation of the defined changes while minimally affecting their daily operations.

23

3

A Model for Relational Databases

The relational data model was proposed by E. F. Codd in 1970 [Cod70]. This model

provides a simple and intuitive yet powerful way to represent information. For these

reasons, it is nowadays widely used as the principal data model for data-processing ap-

plications [SKS11].

Still, in order to facilitate the development of our theory of forgetting, we require a

model for relational databases that is more closely aligned with our needs. Therefore,

in this chapter, we revisit the relational model and introduce a new formalisation that

is specifically tailored to deal with the problem of forgetting in relational databases.

Ultimately, this means that in some cases we simplify some of the concepts that are

known in the database literature, while in others we extend them. Nevertheless, whenever

convenient, we merely adapt them to our notation and terminology.

More concretely, in the first sections, we present the building blocks that constitute

the relational model, namely the concept of a relation, an integrity constraint (focusing

especially on functional dependencies), a relational database and a database query. Fi-

nally, in the last section, we introduce a novel definition of equivalence between relational

databases, which addresses some of the shortcomings found for similar notions in the

literature.

3.1 Relation

In the relational model, information is represented in relations. A relation can be viewed

as a table, where a row represents a tuple, and a column represents an attribute. Therefore,

we can use the terms tuple and attribute to refer to a row, respectively a column, in a table.

For instance, the table in Figure 3.1 is a visual representation of the relation customer,

which stores information about the customers of a particular service. This relation has

the attributes ID, Name and Y earOf Birth, corresponding to the columns of the table,

and one of its tuples is (1, Anna, 1990), which corresponds to the first row. Each row

describes the relationship among the values for the respective attributes. E.g., regarding

the previous tuple, the customer with ID 1 is named Anna and was born in 1990.

25

CHAPTER 3. A MODEL FOR RELATIONAL DATABASES

customer

ID Name YearOfBirth

1 Anna 1990
2 David 1971
3 John 1990
4 Mary 1987

Figure 3.1: The customer relation.

A relation consists of a name, a schema and an instance. In what follows we introduce

each concept individually. To that end, let us start by defining the domain of an attribute,

which corresponds to the set of permitted values the attribute can take.

Definition 3.1 (Attribute Domain). The domain of an attribute A, denoted by dom(A), is

a non-empty countable set of atomic elements.

Going back to our relation customer in Figure 3.1, the domain of the attributes ID and

Y earOf Birth is the set of all positive integers, while the domain of the attribute Name is

the set of all possible strings.

Moreover, from here on, we will assume a fixed signature, that is, a finite set A of

attributes. Further, we also assume a total fixed order for the attributes in A.

Let us now define the schema of a relation.

Definition 3.2 (Relation Schema). The schema of a relation is a finite and ordered set of

attributes (A1,A2, ...,An), where each attribute Ai , with 1 ≤ i ≤ n, is in A. It corresponds

to the logical design of the relation.

We draw attention to two details regarding this definition. First, it does not allow for

multiple occurrences of the same attribute in a relation schema. Secondly, each attribute

Ai in a schema is assigned its own domain dom(Ai).

Furthermore, we define the arity of a relation as the number of attributes in its schema.

For example, the schema of the customer relation in Figure 3.1 is (ID,Name,Y earOf Birth)

and therefore its arity is three. This implies that each tuple in the relation must have

three values. In any case, these values are restricted by the respective attribute domains.

In order to talk about the set of tuples that represents the contents of a relation at a

given instant in time, we use the term relation instance.

Definition 3.3 (Relation Instance). The instance of a relation is a finite subset of the

Cartesian product of its attribute domains, i.e., dom(A1)× dom(A2)× ...× dom(An), where

(A1,A2, ...,An) corresponds to the schema of the relation.

In this dissertation, we do not consider instances with null values.

As usual, if we want to mention the value of a specific attribute A for a tuple t, we use

the notation t[A]. In addition, if A = (A1,A2, ...,An) is an ordered set of attributes, then

26

3.1. RELATION

t[A] denotes (t[A1], t[A2], ..., t[An]). For instance, if t corresponds to the first tuple in the

relation shown in Figure 3.1, then t[ID] = 1, t[Name] = Anna and, for A = (ID,Name), we

have t[A] = (1,Anna).

We can now formally define a relation.

Definition 3.4 (Relation). A relation r is a triple (n(r), s(r), i(r)), where n(r) stands for the

relation name, s(r) denotes the schema of the relation and i(r) its instance1.

We denote by RA be the set of all relations over A, i.e., the set of relations whose schema

is contained in A.

In general, the order in which the tuples appear in a relation instance is irrelevant,

since it corresponds to a set. However, sometimes we will want to impose an artificial

order upon the instances of the relations and, for that, we need to be able to uniquely

identify each tuple. To this end, we will assume that the schema of every relation has

an extra attribute RowId, whose domain is the positive integers. That being said, we

will leave the RowId always hidden and, unless otherwise stated, will not consider nor

represent it in any operation with relations.

In the following we introduce the concepts of inclusion and equivalence between rela-
tions.

Definition 3.5 (Inclusion between Relations). Let r, r ′ ∈RA. We say that r is included in

r ′, denoted by r ⊑ r ′, if they have the same schema and each tuple in the instance of r is

also in the instance of r ′, i.e., s(r) = s(r ′) and i(r) ⊆ i(r ′).

Definition 3.6 (Equivalence between Relations). Let r, r ′ ∈RA. We say that r is equivalent
to r ′, denoted by r ≡ r ′, if r ⊑ r ′ and r ′ ⊑ r.

Example 3.1. Consider the relation employee represented by the following table and the

relation customer depicted in Figure 3.1.

employee

ID Name YearOfBirth

1 Anna 1990

3 John 1990

Since s(employee) = s(customer) and i(employee) ⊆ i(customer), then employee ⊑ customer.
On the other hand, i(customer) ⊈ i(employee). Therefore, employee is included in customer

but the relations are not equivalent.

1In the following chapters, whenever it is clear from the context to which term we refer, we use “relation”
and “relation instance” interchangeably.

27

CHAPTER 3. A MODEL FOR RELATIONAL DATABASES

3.2 Functional Dependency

In order to correctly model the world under consideration, it is often necessary that

relation instances conform with a set of rules and properties. For instance, we might want

to impose that customers, which are distinguished by their ID, cannot have more than

one name and year of birth. These rules are declared in the form of integrity constraints.
Particularly, in this work, we focus on an expressive type of constraints named functional
dependencies (FDs for short). FDs are represented by formulas X → Y , where X and Y

are sets of attributes in A2. Given a relation r and a functional dependency X→ Y with

X and Y being in the schema of r, we say that r satisfies X → Y when, for all tuples in

the instance of r, the combination of values in X uniquely determines the combination

of values in Y . In that case, we say that X functionally determines Y in r. We define this

notion more formally below.

Definition 3.7 (Functional Dependency Satisfaction). Let r be a relation over A and X,Y

two sets of attributes in the schema of r. We say that r satisfies the functional dependency
X→ Y , if for all pairs of tuples t1, t2 ∈ i(r) we have that t1[X] = t2[X] implies t1[Y] = t2[Y].

Example 3.2. Consider the relation customer in Figure 3.1. It is easy to see that it satisfies

the functional dependency ID→Name, since each value in ID occurs only once in the in-

stance of the relation. On the contrary, the functional dependency Y earOf Birth→Name

is not be satisfied by customer, given that for t1 = (1,Anna,1990) and t2 = (3, John,1990),

we have t1[Y earOf Birth] = t2[Y earOf Birth] = 1990 but not t1[Name] = t2[Name].

We denote by FA the set of all functional dependencies over A.

In the next definition we present the notion of closure of a set of FDs, which is widely

known in the literature.

Definition 3.8 (Closure of a set of Functional Dependencies). Let F ⊆ FA, the closure of
F, denoted by F+, corresponds to the set of all FDs in FA that must be satisfied by any

relation that satisfies the FDs in F. We say that those FDs are logically implied by F.

Usually, this set can be inferred by applying repeatedly a set of rules, the well-known

Armstrong’s axioms [Arm74], which are sound and complete [Mai83]. In particular, in this

dissertation, we will often take advantage of the transitivity rule as defined below.

Definition 3.9 (Transitivity Rule). Let X,Y and Z be sets of FDs in A. If X → Y holds

and Y → Z holds, then X→ Z also holds.

What is more, the notion of closure of a set of FDs allows us to establish an idea of

equivalence between sets of FDs, which can be defined as follows.

Definition 3.10 (Equivalence between FD Sets). Let F,F′ ⊆ FA. We say that F and F′ are

equivalent, denoted by F ≡ F′, if they imply the same set of FDs, i.e., if F+ = F′+.
2We follow a usual convention and abbreviate the representation of sets of attributes in FDs to sequences

of their elements. For instance, the functional dependency {A,B} → {C} would be written A,B→ C.

28

3.2. FUNCTIONAL DEPENDENCY

We now introduce some other concepts that will be useful to manipulate sets of FDs.

Definition 3.11 (Projection of a Set of Functional Dependencies in a Relation Schema).

Given a relation r ∈ RA and a set of functional dependencies F ⊆ FA, the projection of
F on s(r), which we denote Fr , is the set of all functional dependencies in F+ that only

include attributes of s(r).

This notion allows us to talk about the FDs that are relevant for a specific relation.

However, given a set of relations, sometimes we may want to exclusively mention the FDs

that are only relevant for a particular relation. In other words, we may want to talk about

those that are projected on its schema, but not on the schema of any other relation in the

set. Such intuition is captured by the following definition.

Definition 3.12 (Exclusive Projection of a Set of Functional Dependencies in a Relation

Schema). Given a relation r ∈ RA, a set of relations R ⊆ RA and a set of functional

dependencies F ⊆ FA, the set of FDs in F that are projected on the schema of r, but

not on the schema of some relation in R \ {r} = {r1, ..., rn}, is denoted by FRr , and equal to

Fr \ (Fr1 ∪ ...∪Frn).

A procedure to compute this result is given by Algorithm 1. It starts by creating a

new variable F′ and initialising it as the empty set. This variable will store all the FDs

in F+ (computed in line 2) that are projected exclusively on the schema of r. To that end,

the algorithm iterates over all FDs in F+ whose attributes in the right and left-hand side

belong to s(r) (lines 3 and 4), and verifies if they also belong to the schema of any other

relation in R. If that is not the case, then it adds the respective FD to F′ (lines 10 and 11).

Algorithm 1: Computation of FRr
input :Triple (F,R,r) such that F ⊆ FA,R ⊆RA and r ∈RA
output :Set of FDs resulting from compute-FRr (F, R, r)

1 F′←∅;
2 compute the closure of F, denoted F+, using procedure in [SKS11];
3 foreach X→ Y ∈ F+ do
4 if X ∪Y ⊆ s(r) then
5 projected← false;

/* check if all attributes in X→ Y belong to the schema of a relation in

R \ {r}. */

6 foreach r ′ ∈ R \ {r} do
7 if X ∪Y ⊆ s(r ′) then
8 projected← true;
9 break;

10 if not projected then
11 F′← F′ ∪ {X→ Y };

12 return F′;

29

CHAPTER 3. A MODEL FOR RELATIONAL DATABASES

3.3 Database

A relational database, or database for short, is a collection of relations and FDs, such that

the relations satisfy the closure of the FDs. In this context, we assume that all relations in

a database have a unique name.

Definition 3.13 (Relational Database). A relational database D over A is a pair (R,F),

where R is an ordered set of relations over A and F a set of FDs over A, such that the

relations in R satisfy the FDs in F+.

Notice that expressing FDs in a database in this way differs from what is usual in the

literature, where FDs are specified for each relation individually.

Furthermore, as means to refer to the set of relations and the set of FDs of a database

D = (R,F), we denote RD = R and FD = F. Also, we denote by DA the set of all databases
over A.

Considering that a database describes the information of a particular world, it is only

natural that the data stored in its relations are related to each other. Therefore, for any

database D ∈ DA, we adopt the unique-role assumption [SKS11], which states that each

attribute has a unique meaning in the database. Put differently, the same attributes in

different schemas of the relations in RD have always the same meaning (and consequently

the same domain).

Definition 3.14 (Schema of the Relations in a Database). Given a databaseD = ((r1, ..., rn),F) ∈
DA, the schema of the relations in D, denoted by s(RD), is the tuple s(RD) = (s(r1), ..., s(rn)).

The schema of the relations in a database describes how the data is structured in the

database. Intuitively, it is the tuple obtained by applying s(r) to all relations r ∈ RD with

respect to the order of RD .

Additionally, we will often want to talk about the schema of the database, which is a

different concept from the schema of the relations in a database, as it also considers the

FDs that belong to the database.

Definition 3.15 (Database Schema). Given a database D ∈ DA, the database schema (ab-

breviated dbs) of D, denoted by S(D), is the pair (Σ,F), such that Σ = s(RD) is a tuple of

relation schemas over A and F = FD is a set of FDs over A.

For the case above, we say that D is an instance of the dbs (Σ,F).

Definition 3.16 (Instance of a Database Schema). Given a database D ∈ DA and a dbs

S = (Σ,F) over A, we say that D is an instance of S if s(RD) = Σ and FD = F.

Finally, we denote by D(S) the set of all instances of S. Or, in other words, the set of all
databases whose schema is S.

30

3.4. DATABASE QUERY

3.4 Database Query

To retrieve information from a relational database (i.e., query a database) we resort to

relational query languages (or query languages for short). These languages define a set

of operations that operate upon the relations of a database with a given schema, and

output a relation with a fixed schema. The operations can then be combined to construct

expressions that represent desired queries [SKS11]. In essence, a query can also be viewed

as a function. To define it in that way, we first introduce some notation.

Let σ be a relation schema over A, we denote by R(σ) the set of relations in RA whose
schema is σ , i.e., R(σ) = {r ∈RA | s(r) = σ }.

We are now ready to define a query as a function.

Definition 3.17 (Query). Let S be a dbs over A. A query on S is a function q : D(S)→R(σ),

where σ ⊆A, which takes as input a database with schema S and outputs a relation with

schema σ . Given D ∈D(S), we call q(D) the answer to the query q.

One such query language, which will be used frequently in this document, is the

relational algebra. We consider the relational algebra operators as they were defined

in [SKS11], namely the operators of selection (σ), projection (Π), set difference (−), Cartesian
product (×) and natural join (▷◁). Furthermore, we will also consider a particular sublan-

guage of the relational algebra, which can be obtained by restricting the queries in this

language to the conjunctive queries. These can be defined as follows.

Definition 3.18 (Conjunctive Relational Algebra Query [AIR99]). A conjunctive query in

the relational algebra corresponds to any query written exclusively with the operators of

selection, projection and natural join, or combinations among them.

3.5 Database Equivalence

In this section, we present a novel definition of database equivalence. To do so, we first

lay out the concepts of derivability between database schemas as well as derivability between
databases. While the former is based on the ability of a database schema to represent the

information that can be stored on another schema through a collection of queries, the

second compares two specific instances of said schemas, evaluating whether one database

can emulate exactly the contents of the other via the same set of queries that guarantees

derivability between the respective schemas.

These notions will be used throughout this work, as they are relevant for the study

of transformations at the level of the schema of the database and therefore particularly

meaningful in the context of forgetting.

In particular, our definition of derivability between database schemas is based on

the concept of “weak inclusion between databases” formally proposed by Ausiello et

al. [ABM80] and whose roots go back to the work of Codd in [Cod72], namely with the

31

CHAPTER 3. A MODEL FOR RELATIONAL DATABASES

notions of “derivability and query-equivalence between instances of databases”3. In fact,

the terms used by Codd motivate the ones employed herein.

Moreover, similarly to what is done by Ausiello et al., we parameterise the concepts

to be introduced with a query language Q. Thus, by definition, derivability (and conse-

quently equivalence) between databases will be dependent on the chosen query language.

Ultimately, this means that they may hold for more expressive query languages, but not

for specific subsets of those languages.

Definition 3.19 (Derivability with respect to Q between Database Schemas). Let S =

((σ1, ...,σn),F) and S ′ be two dbs over A and Q a query language. We say that S is derivable
from S ′ with respect to Q (abbreviated Q-derivable and denoted S ⩽Q S

′) if there is a tuple

q̄ = (q1, ...,qn) of queries in Q such that, for every databaseD ∈D(S), there exists a database

D ′ ∈D(S ′) where, for each relation ri ∈ RD , we have ri ⊑ qi(D ′), for 1 ≤ i ≤ n.

Regarding the definition above, we will often write S ⩽Q S
′ by q̄ to indicate the tuple

of queries that establishes derivability between S and S ′.

Intuitively, a dbs S is Q-derivable from a dbs S ′ if, for every instance of S, there is

an instance of S ′ from which we can extract at least the same information by means of

queries in the language Q. This means that, if a dbs is Q-derivable from another, then the

latter can always represent the information that is stored in the former. Notice that, for

this to be possible, the relation schemas resulting from the queries on S ′ must match the

ones of the relations in S.

The following example illustrates Q-derivability between database schemas.

Example 3.3. Assume that Q corresponds to the conjunctive queries in the relational

algebra. Furthermore, consider two database schemas S = (Σ,F) and S ′ = (Σ′ ,F′) such that

• Σ = ((ID,Name,Y earOf Birth)),

• Σ′ = ((ID,Name), (ID,Y earOf Birth)), and

• F = F′ = {ID→Name,Y earOf Birth}.

First, note that any instance of S has a single relation r1 whose schema corresponds to

(ID,Name,Y earOf Birth). Likewise, any instance of S ′ has two relations r ′1 and r ′2 such

that s(r ′1) = (ID,Name) and s(r ′2) = (ID,Y earOf Birth). Now, consider the queries

• q1 = r ′1 ▷◁ r
′
2,

• q′1 = ΠID,Name(r1), and

• q′2 = ΠID,Y earOf Birth(r1).

3There is extensive work in the literature for derivability and equivalence between database schemas,
given the relevance of the topic in the areas of database design, schema evolution, schema integration and
schema normalisation, to name a few. For a more comprehensive overview on the subject, the interested
reader may refer to [AIR99; Atz+82; Hul84].

32

3.5. DATABASE EQUIVALENCE

Then, it is true that S ⩽Q S
′ by q̄ = (q1) and S ′ ⩽Q S by q̄′ = (q′1,q

′
2).

For instance, if r1 corresponds to the relation customer from Figure 3.1 (note that it

has the same schema as r1), then r ′1 and r ′2 could be the relations

r ′1

ID Name

1 Anna

2 David

3 John

4 Mary

r ′2

ID YearOfBirth

1 1990

2 1971

3 1990

4 1987

and we would have r1 ⊑ r ′1 ▷◁ r
′
2. In fact, for every instance of r1, we would always be

able to find an instance of r ′1 and r ′2 such that their natural join satisfies this condition. In

practice, we just have to project r1 on the schema of r ′1 and r ′2.

Regarding derivability in the other direction, if the instances of r ′1 and r ′2 had the

same values for the attribute ID, then we could find r1 by joining both relations. Yet, this

strategy would not work if the values for ID did not coincide completely, as the natural

join would lead to loss of information. For instance, consider the following tables, which

represent relations r ′1 and r ′2.

r ′1

ID Name

1 Anna

4 Mary

r ′2

ID YearOfBirth

1 1990

3 1990

In this case, a relation r1 from which we could extract at least the same information as r ′1
and r ′2 would be the relation represented by the following table.

r1

ID Name YearOfBirth

1 Anna 1990

3 ∗ 1990

4 Mary ∗

To deduce this r1, we could simply fill its instance with all the values of r ′1 and r ′2. However,

since in these circumstances r1 would always have more information than the relations

r ′1 and r ′2 combined, and null values are not allowed in our relations, then we would need

to replace the ∗ with any values from the domain of the attributes that would respect the

FDs. This way, we can obtain at least all the information in r ′1 and r ′2 from r1 by using the

queries q′1 and q′2, respectively.

Regarding the example above, notice that these results are only true because the

constraints imposed by the FDs in the instances of both schemas are the same. For

33

CHAPTER 3. A MODEL FOR RELATIONAL DATABASES

example, if F′ did not have any FD, then we would have instances of S ′ where the relations

had tuples with multiple occurrences of the same ID. This, of course, would not be

possible for the instances of S due to the FDs. Therefore, S ′ ⩽Q S would cease to be true,

as it would exist at least one instance of S ′ that we could not represent with an instance

of S. Anyway, removing the FDs in F′ would not have any affect in the Q-derivability

in the opposing direction, i.e., S ⩽Q S ′ because if S is Q-derivable from S ′ then, by

deleting some of the constraints in S ′, we will only get more allowed instances and thus

Q-derivability will still hold. In general, this example shows the importance of the role

that the FDs play in the notion of Q-derivability between database schemas.

Having described Q-derivability between database schemas, we are now ready to

extend this definition for databases.

Definition 3.20 (Derivability with respect to Q between Databases). Let D = ((r1, ..., rn),F)

and D ′ be two databases over A and Q a query language. We say that D is derivable from
D ′ with respect to Q (abbreviated Q-derivable and denoted D ⩽Q D

′) if there exists a tuple

q̄ = (q1, ...,qn) of queries in Q such that

• S(D) ⩽Q S(D ′) by q̄; and

• ri ≡ qi(D ′), for each 1 ≤ j ≤ n.

The definition above implies that the condition for Q-derivability between databases

is satisfied when there is derivability in the same direction between the schemas of those

databases and the tuple of queries (within query language Q) that guarantees it also

allows to retrieve exactly each relation of the first database in the other database. Simply

put, there must be a transformation to the relations in the second database thats leads to

each relation in the first.

In reality, this last condition alone corresponds to the idea of derivability informally

introduced by Codd for the relational algebra [Cod72] and later formalised by Ausiello et

al. under the notion of “strong inclusion between database instances” [ABM80], which,

to the best of our knowledge, is the only work in the literature that formally defines the

concept of derivability (and consequently equivalence) between databases. However, as

the following example shows, we argue that these notions are too broad to correctly cap-

ture the intuition behind Q-derivability from a database to another, hence our alternative

definition.

Example 3.4. Assume that Q is the conjunctive queries in the relational algebra. Further-

more, consider a database D with a single relation employee, which is represented by the

table below.

34

3.5. DATABASE EQUIVALENCE

employee

ID Name YearOfBirth

1 Anna 1990

3 John 1985

Additionally, consider a second database D ′ with one relation employee′, obtained by

swapping the names and years of birth of the employees Anna and John in the relation

above.

employee′

ID Name YearOfBirth

1 John 1990

3 Anna 1985

Then, for the query

q = σ(ID=1∧Name=“Anna′′∧Y earOf Birth=1990)∨(ID=3∧Name=“John′′∧Y earOf Birth=1985)

(ΠID(employee′) ▷◁ΠName(employee′) ▷◁ΠY earOf Birth(employee′))

we have employee ≡ q(D ′). That is, if we project each attribute of the relation employee′,

creating three relations with a single attribute, join them (note that this will result in

a tuple for every possible combination of the values) and select the tuples of employee,

we obtain exactly that relation. In a similar way we could also derive employee′ from

employee.

A notion of Q-derivability between databases based exclusively on the second con-

dition in Definition 3.20 would imply that the databases D and D ′ from the previous

example are Q-derivable from each other, which would not be desirable at all, given the

instance of the relation in each database. Thus, by requiring that the tuple of queries that

guarantees Q-derivability has to do it for all possible instances of the relations (although

for inclusion instead of equivalence), we are adding some “structure” to the notion of

Q-derivability between databases that does not exist in the definition of Ausiello et al.

This, in turn, avoids that databases such as D and D ′ from the example are derivable

from each other (note that the query q would not work for all instances of employee; e.g.,

it would not work for any instance with a tuple whose ID is different from 1 and 3).

In fact, this example clearly demonstrates the value of imposing Q-derivability be-

tween the schemas of the databases in the definition of Q-derivability between databases,

considering that it conveniently limits the set of allowed queries that satisfy the second

condition of the definition. Moreover, the reason why the definition for database schemas

requires inclusion for each relation while the one for databases requires equivalence,

has to do with the fact that we do not want to immediately rule out Q-derivability for

databases with schemas such as S and S ′ from Example 3.3 (in particular, for the second

direction discussed, i.e., S ′ ⩽Q S).

35

CHAPTER 3. A MODEL FOR RELATIONAL DATABASES

On another subject, note that the proposed definition for Q-derivability between

databases presupposes that for every query (written in the language Q) on the schema

of the derivable database, there is a corresponding query (obtained via a transformation

within the same language) on the schema of the database from which it derives that yields

exactly the same answer.

We shall call the function that maps each query on the first schema to a query on the

second a query mapping.

Proposition 3.1. Let D and D ′ be two databases over A and Q a query language. Then,

D ⩽Q D
′ implies that there is a query mapping f : Q→Q such that for all queries q ∈Q,

we have q(D) ≡ f (q)(D ′).

Proof. If D ⩽Q D ′ holds then there exists a tuple of queries q̄ on the schema of D ′ that

transforms D ′ into any relation of D. Hence, the query mapping f can be obtained by

composing q̄ with each query q.

Whenever two databases are derivable from each other (with respect to a query lan-

guage), we say that they are equivalent with respect to that language.

Definition 3.21 (Equivalence with respect to Q between Databases). Let D and D ′ be two

databases over A and Q a query language. We say that D and D ′ are equivalent with respect
to Q (abbreviated Q-equivalent and denoted D ≡Q D ′) if D ⩽Q D

′ and D ′ ⩽Q D.

In practice, equivalence between databases guarantees that the answer to any query

on the schema of one database can be obtained via a query on the schema of the other

and vice versa, for a fixed query language. In that regard, note as well that equivalence

between databases requires derivability between the corresponding database schemas in

both directions.

At last, we remark that this definition is “semantic” in the sense that it is based on

the idea that both databases should embody exactly the same data, rather than imposing

some sort of logical/structural equality between their schemas. As such, in general, it

also has the advantage of allowing for the comparison of databases that were designed

and/or evolved independently.

In what follows, we show that the relation we have defined is indeed an equivalence

relation.

Proposition 3.2. The notion of Q-equivalence between databases is an equivalence rela-

tion, i.e., it satisfies the properties of reflexivity, symmetry and transitivity.

Proof. Let Q be a query language. To prove reflexivity, then we must show thatD ≡Q D for

every D = (R,F) ∈DA. By the definition of Q-equivalence between databases, this implies

showing Q-derivability in both directions, i.e., D ⩽Q D and D ⩽Q D. Yet, considering

that both expressions are equal, it suffices to prove only one of them. To that end, let

R = (r1, ..., rn). Then, by the definition of Q-derivability between databases, we must show

that

36

3.5. DATABASE EQUIVALENCE

(a) S((R,F)) ⩽Q S((R,F)) by some tuple of queries q̄ = (q1, ...,qn);

(b) ri ≡ qi((R,F)) for each 1 ≤ i ≤ n.

Observe that, since the relation sets are equal in both databases, we just need to show

that if q̄ is the tuple of identity queries for each relation in R, i.e., qi((R,F)) = ri , then (a)

and (b) are true.

For (b) the result is straightforward: for very relation ri in R, we need ri ≡ qi((R,F′)) to

be true. Given that qi((R,F)) = ri , then we have ri ≡ ri , which is clearly true.

Before showing that (a) is also true, recall that every instance of a database schema

has the same relation schemas (and consequently the same number of relations). Now, let

S = S((R,F)) and S ′ = S((R,F)). Then, to prove (a), we must show that for every instance

D1 = ((r ′1, ..., r
′
n),F) of S, there is an instance D2 of S ′ such that for every relation r ′i we have

r ′i ⊑ qi(D2). However, taking into account that qi is always the identity query for a relation

in RD2
, then, instead, for each relation in r ′i we must have r ′i ≡ qi(D2). Furthermore, since

the relation schemas of S and S ′ are equal, then this is only true if every relation set in

an instance of S is also in an instance of S ′. In order to demonstrate this, first, recall that

the relation sets in the instances of both database schemas must satisfy the closure of the

respective set of FDs. Thus, since the closure of the set of FDs in S and S ′ is equal, then

the allowed instances for both database schemas are exactly the same, and therefore the

last “if” condition is trivially satisfied (i.e, any relation set in an instance of S is also in an

instance of S ′). This, at last, proves that (a) is indeed true and that Q-derivability between

databases holds the property of reflexivity.

In order to prove symmetry, we must show that for any pair of databasesD andD ′ over

A, then D ≡Q D ′ implies D ′ ≡Q D. By the definition of Q-derivability between databases,

we have that D ≡Q D ′ implies D ⩽Q D
′ and D ′ ⩽Q D, and that D ′ ≡Q D implies D ′ ⩽Q D

and D ⩽Q D ′. Thus, we have to prove that, together, D ⩽Q D ′ and D ′ ⩽Q D imply

D ′ ⩽Q D and D ⩽Q D ′. This is clearly true, as the expressions for Q-derivability are

exactly the same. Therefore, Q-equivalence between databases satisfies the property of

symmetry.

Finally, for transitivity, we must show that for any additional database D ′′ ∈DA, then

D ≡Q D ′ and D ′ ≡Q D ′′ imply D ≡Q D ′′. First, let us transform the expressions of Q-

equivalence into expressions of Q-derivability. Therefore, we must show that D ⩽Q D ′,

D ′ ⩽Q D, D ′ ⩽Q D ′′ and D ′′ ⩽Q D ′ imply D ⩽Q D ′′ and D ′′ ⩽Q D. Let us start by

focusing on D ⩽Q D
′′. If D ⩽Q D

′ is true, then it must exist a tuple of queries q̄ such that

S(D) ⩽Q S(D ′) by q̄ and, for each relation r ∈ RD , we have r ≡ q(D ′) for some q ∈ q̄. This

means that q̄ allows us to obtain all relations of D in D ′, and that for every instance of

S(D) we can extract all its information in an instance of S(D ′) with q̄. Furthermore, if

D ′ ⩽Q D ′′, then it also exists a tuple of queries q̄′ such that S(D ′) ⩽Q S(D ′′) by q̄′ and,

for each relation r ′ ∈ RD ′ , we have r ′ ≡ q′(D ′′), where q′ ∈ q̄′. Again, this implies that all

relations of D ′ can be obtained in D ′′, and that for every instance of S(D ′) there is an

instance of S(D ′′) from which we can extract at least the same information using q̄′. Now,

37

CHAPTER 3. A MODEL FOR RELATIONAL DATABASES

to derive D ⩽Q D
′′, then it must exist a third tuple of queries q̄′′ such that S(D) ⩽Q S(D ′′)

by q̄′′ and, for each relation r ∈ RD , we have r ≡ q′′(D ′′) for some q′′ ∈ q̄′′. Thus, since if

D ⩽Q D
′ is true we can get all relations of D in D ′ using q̄, and if D ′ ⩽Q D

′′ is true we

can do it for all relations of D ′ using D ′′, then it is also true that if q̄′′ is the composition

of q̄′ with q̄, we can obtain all relations of D in D ′′. In addition, the tuple of queries

q̄′′ also guarantees that for every instance of S(D) there is an instance of S(D ′′) with at

least the same information, as it transforms any instance of S(D) into one of S(D ′) and

subsequently S(D ′′). Thus, D ⩽Q D
′ and D ′ ⩽Q D

′′ imply D ⩽Q D
′′.

A similar reasoning can be applied to derive D ′′ ⩽Q D from D ′′ ⩽Q D
′ and D ′ ⩽Q D.

Therefore, we proved that Q-equivalence has the property of transitivity, completing the

proof for the proposition.

To conclude this chapter, we demonstrate two important results that are a conse-

quence of our definition of Q-derivability between databases and will be particularly

useful in the remainder of this dissertation.

The first follows from the observation that if two databases have the same relation

sets and the closure of their FDs is comparable (one is either a subset or superset of the

other), then we can always claim a direction for Q-derivability. In fact, the database that is

more constrained is Q-derivable from the other, since it has less possible instances for its

schema (note that Q-derivability between databases depends on Q-derivability between

the respective schemas, whose instances are constrained by the FDs; additionally, the

more imposing the FDs are, the fewer possible instances there are for the schema).

Proposition 3.3. Let (R,F) and (R,F′) be two databases over A such that F′+ ⊆ F+. Then,

(R,F) ⩽Q (R,F′) is true.

Proof. The proof for this proposition is very similar to the one for reflexivity in Proposi-

tion 3.2. Considering that the relation sets in both databases are equal, then we can still

assume q̄ to be the tuple of identity queries. Hence, the proof for the second condition

follows directly from there. Regarding the proof for Q-derivability between the database

schemas, recall that since the relation schemas are equal, then we just need to show that

every relation set in an instance of S = S((R,F)) is also in an instance of S ′ = S((R,F′)). For

that, note that all relation sets in an instance of a database schema must satisfy the closure

of the set of FDs of the schema. Furthermore, if the relation sets satisfy the closure of a

set of FDs, then they also satisfy any subset of it. In this case, we have that the closure of

the FDs in S ′ is at most as constrained as the closure of the FDs in S, i.e., F′+ ⊆ F+. This

implies that any relation set in an instance of S can also be in an instance of S ′, given

that the relations in S are either more constrained than those in S ′ or equally constrained

(never less constrained). Therefore S ⩽Q S
′ holds and (R,F) ⩽Q (R,F′) is indeed true.

The next result is based on the observation that adding a set of relations to a database

does not break any relationships of Q-derivability with the databases that derive from it.

In other words, one can say that all the databases that are Q-derivable from a particular

38

3.5. DATABASE EQUIVALENCE

database D, remain to be Q-derivable from it even if a new set of relations is added to D.

This is due to the fact that the new relations do not influence the queries that guarantee

Q-derivability.

Proposition 3.4 (Monotonicity of Derivability with respect to Q between Databases). Let

(R,F) and (R′ ,F′) be two databases over A. Then, (R,F) ⩽Q (R′ ,F′) implies (R,F) ⩽Q

(R′ ∪R′′ ,F′), for any R′′ ⊆RA.

Proof. Let R = (r1, ..., rn). For (R,F) ⩽Q (R′ ,F′) to be true then it must exist a tuple of

queries q̄ = (q1, ...,qn) on the schema of database (R′ ,F′) that satisfies the conditions for

Q-derivability. Since any query in q̄ corresponds to a collection of operations on a subset

of the relations in (R′ ,F′), then it is easy to see that adding an arbitrary set of relations

R′′ ∈RA to R′ will not change the queries in q̄ nor their answers. In truth, we can still say

that q̄ is defined for the schemas of the same relations in the new dbs S((R′ ∪R′′ ,F)). As a

consequence, (R,F) ⩽Q (R′ ,F′) implies (R,F) ⩽Q (R′ ∪R′′ ,F′).

In the remaining of this work we shall fix Q to be conjunctive queries in the relational

algebra, and thus drop the symbol Q from the notation of Q-derivability (now derivability)

between database schemas as well as Q-derivability and Q-equivalence (now respectively

derivability and equivalence) between databases.

The advantage of this language is that it allows us to be expressive enough so that

there exist equivalent databases, but not expressive to the point that (almost) all of them

are equivalent to each other. Furthermore, the conjunctive queries use the operators that

enable us to write the majority of the queries in real-world applications.

39

4

Forgetting Relations in Relational Databases

Having presented the problem, overviewed related literature and introduced the concepts

that serve as the basis for the work developed in this dissertation, we are now ready

to discuss our proposed solution. To that end, we start by exploring a pragmatic use

case, motivating the need for a theory of forgetting relations in relational databases that

takes into account non-overlapping requirements for forgetting. Afterwards, we present

the general definition of an operator of relation forgetting and discuss two different

profiles of forgetting, corresponding to non-transitive and transitive forgetting. For each

category, we present a concrete operator. Finally, we conclude the chapter by introducing

two additional operators for transitive forgetting that are built upon the first to satisfy

a requirement that is often indispensable: no information that was forgotten can be

recovered. In between, we illustrate the operators using several intuitive examples.

4.1 Motivating Example

We now revisit the problem stated in the Introduction and consider the points discussed

in Section 2.5 regarding the need to define forgetting operators for relational databases

that comply with the ‘right to be forgotten’ and address situations in which data anonymi-

sation is not possible (e.g., due to legal reasons), or undesirable (e.g., because it negatively

affects processing of other legitimate information).

For that, consider Figure 4.1. The relations depicted in this figure correspond to a very

simplified version of part of an insurance company database. The first relation, customer,

which is exactly the same as the relation represented in Figure 3.1 from the previous

chapter, stores information about the customers of the company. As we saw, this relation

has the attributes ID, which uniquely identifies each customer, Name and Y earOf Birth.

Furthermore, the relation serious_disease indicates the serious diseases of the customers.

As such, it has the attributes ID and Disease. At last, the relation increased_cost, which

has the attributes Disease and Amount, gives information on the amount of money that

should be added to the price of a particular health insurance plan, for each disease1.

1The values in these relations were picked at random for the purpose of this illustrative example.

41

CHAPTER 4. FORGETTING RELATIONS IN RELATIONAL DATABASES

customer

ID Name YearOfBirth

1 Anna 1990
2 David 1971
3 John 1990
4 Mary 1987

serious_disease

ID Disease

1 Breast Cancer
2 Type 2 Diabetes
2 Prostate Cancer
3 Lung Cancer

increased_cost

Disease Amount

HIV/AIDS 600
Breast Cancer 500

Type 2 Diabetes 500
Lung Cancer 650

Prostate Cancer 550

Figure 4.1: Part of the relations of an insurance company database.

Regarding the relation customer, in addition to the fact that each customer is identi-

fied by the value on the column ID, we assume that they have a single name and year

of birth. As for the relation increased_cost, we assume that every value for the attribute

Disease can only be associated with at most a single value for the attributeAmount. There-

fore, the database has the functional dependencies

F = {ID→Name,Y earOf Birth

Disease→ Amount}.

Now, assume that a court has ordered that insurance companies can no longer collect,

store and process information about their customers’ diseases, provided that they have

been overcome or mitigated2.

Supposing that the contents of the relation serious_disease were collected in previous

years, in order to comply with the court orders, the company of this example decides to

withdraw all information in it. Therefore, as discussed in Section 2.5, a first approach

could be to simply erase relation serious_disease. This way, the company cannot associate

anymore the customers to their diseases. In that case, the resulting database is given by

Figure 4.2.

customer

ID Name YearOfBirth

1 Anna 1990
2 David 1971
3 John 1990
4 Mary 1987

increased_cost

Disease Amount

HIV/AIDS 600
Breast Cancer 500

Type 2 Diabetes 500
Lung Cancer 650

Prostate Cancer 550

Figure 4.2: Relations of the insurance company database resulting from removing the
relation serious_disease from the original set.

2This situation is far from unrealistic. For instance, in October 2021, the Portuguese Parliament has
approved a bill to punish discrimination in access to credit or insurance against people who have overcome
or mitigated serious diseases or disabilities, giving Portuguese citizens the ‘right to be forgotten’.

42

4.1. MOTIVATING EXAMPLE

However, with this approach, the company would also potentially lose valuable infor-

mation about the prices of the plans practiced in the past for certain customers, consid-

ering that the indirect relationship between the attributes ID and Amount is lost. In a

scenario where it would be impractical or even infeasible to gather that data any other

way (e.g., by revisiting old contracts or asking customers directly), the company would

certainly want to preserve this relationship.

In order to solve this issue, before erasing the relation serious_disease, the database

administrator could apply the natural join operator3 to the relations serious_disease and

increased_cost, and then project the result on the attributes ID and Amount, removing

the attribute Disease. This process results in a new relation that can be added to the

database under any unused name (anyway, for future reference that the relation was in

fact the result of some operation between serious_disease and increased_cost, we will

assume it was named disease-increased_cost). Finally, the administrator could safely

remove the relation serious_disease from the database. The set of relations resulting

from this proceeding are shown in Figure 4.3.

customer

ID Name YearOfBirth

1 Anna 1990
2 David 1971
3 John 1990
4 Mary 1987

disease-increased_cost

ID Amount

1 500
2 500
2 550
3 650

increased_cost

Disease Amount

HIV/AIDS 600
Breast Cancer 500

Type 2 Diabetes 500
Lung Cancer 650

Prostate Cancer 550

Figure 4.3: Relations of the insurance company database resulting from removing the rela-
tion serious_disease from the original set and adding the relation disease-increased_cost
to it.

Regarding the FDs, since ID→ Amount is not in F and cannot be inferred by the ones

that are (i.e., it does not belong to the closure of F), we can conclude that the relations in

the new set satisfy F.

In reality, both the first approach of simply removing relation serious_disease and the

procedure we have just explained can be considered very simple operators of forgetting.

Evidently, the latter alternative has the advantage of preserving the indirect (transitive)

relationship between the attributes ID (of relation serious_disease) and Amount (of rela-

tion increased_cost) while forgetting about relation serious_disease. From that perspec-

tive, we can say that we forgot serious_disease while keeping transitive information with

respect to increased_cost.

Nevertheless, as desirable as the result of this operator might sound, it is still pos-

sible to indirectly associate some customers with their diseases, even if there is no rela-

tion that does so directly. For example, we know from the relation increased_cost, that

3The natural join operator combines relations by merging pairs of rows, one from each relation, that
have equal values on common attributes, into a single row.

43

CHAPTER 4. FORGETTING RELATIONS IN RELATIONAL DATABASES

the only disease that has an increased cost of 650 is Lung Cancer. Thus, since the cus-

tomer with ID 3 participates with amount 650 in the new relation disease-increased_cost,

we know for sure that the tuple (3, Lung Cancer) was in the instance of the forgotten

relation serious_disease (of course, assuming that its schema is still known after for-

getting the relation). Analogously, we can infer that (2, Prostate Cancer) was also in

the instance of serious_disease, considering that Prostate Cancer is the only value that

participates with amount 550 in increased_cost and that the tuple (2, 550) belongs to

disease-increased_cost.

In this case, to obey the court orders without having to remove more relations than

the strictly needed, the company would need a “smarter” forgetting operator that could

understand which tuples are possible to infer about the relation that was forgotten and act

accordingly. For instance, in our example, the operator could automatically eliminate the

tuples (2, 550) and (3, 650) from the new relation disease-increased_cost, since without

these tuples it will no longer be possible to recover any of the customer’s diseases. Note

that, in these circumstances, this would be the best case scenario for the company of the

example, which has to find a balance between keeping as much information as possible

about older insurance plans and doing so without recovering what was forgotten.

As we will see later in the chapter, in other settings, a more viable alternative would

be to add specific tuples to the new relation, instead of removing the problematic ones.

This would be especially relevant in the cases where removing at least one tuple would

invalidate the usefulness of the whole relation. Obviously, the tuples to be added have to

be chosen in such a way that it would still not be possible to retrieve any of the original

ones.

So far we have shown that there are different alternatives to forget a relation in a

database. In fact, we argue that there is no single one size-fits-all operator of forgetting,

but rather a large set of operators, each with its own unique characteristics, and therefore

more suitable than the others for certain applications. With that in mind, in the next sec-

tion, we will discuss in more detail what exactly a forgetting operator is. Subsequently, we

will propose concrete operators of forgetting for the different approaches considered until

now, and will show with some new examples that these operators are indeed adjustable

and generalisable to any input database (and relation to be forgotten), independently of

its set of relations and FDs.

4.2 Relation Forgetting

To address the problem of forgetting relations in the relational model, we start by for-

mally introducing the notion of a relation forgetting operator. Then, we explore different

perspectives on forgetting, some of which are motivated by the previous example. In

between, we define operators that are aligned with each of these perspectives. In any case,

before continuing, we draw attention to the fact that in this dissertation we will focus

solely on forgetting about a single relation.

44

4.3. NON-TRANSITIVE FORGETTING

Intuitively, the main idea of forgetting about a relation in a database is that the result-

ing database does not include the relation to be forgotten. Moreover, when it comes to its

set of FDs, we also want the resulting database to be at most as constrained as the original

one, given that a relation was deleted. Following these principles, a relation forgetting
operator is defined as a function that given an initial database D, a relation to be forgotten

δ and a relation ψ, returns a unique database resulting from forgetting about δ in D (i.e.,

where δ is absent from it) while possibly keeping transitive information with some of the

attributes in ψ.

Definition 4.1 (Relation Forgetting Operator). Given a database (R,F) and two relations

δ and ψ, a relation forgetting operator is a function f : DA×RA× (RA∪{∅})→DA such that

f((R,F),δ,ψ) = (R′ ,F′) is a database where δ < R′ and F′+ ⊆ F+. We call f((R,F),δ,ψ) the

result of forgetting about δ in (R,F) while preserving transitive information with respect to ψ.

In the definition above we remain as general as possible, imposing only the minimum

conditions a relation forgetting operator must satisfy. This way, our definition can accom-

modate different views on forgetting, in similar fashion to what is done in the related

literature and in specific on forgetting in ASP. Indeed, this definition still allows for a

myriad of possible operators, some of which more adequate than others, depending on

the requirements of the application at hand.

Also, it is worth noting that the relation ψ in the definition might not be given as

input in an operator (that is, it can be the empty set). This is particularly relevant for

the cases where we want to forget without transitivity and thus are only interested in the

first two arguments of the operator. That being said, we will first focus on this type of

forgetting. In fact, from here on, we shall call it non-transitive forgetting.

4.3 Non-Transitive Forgetting

As we saw in the example in Section 4.1, non-transitive forgetting is particularly useful

when we want (or are obliged) to simply remove the relation to be forgotten from the

database.

Moreover, in those cases, we would expect the operators that fit in this category of

forgetting to preserve all information in the remaining relations. Likewise, we want

them not to add any extra data to the database. Thus, ideally, the original and resulting

databases are equivalent up to the relation to be forgotten δ. Only this way we guarantee

that, for any query on the schema of the original database without this relation, there is a

corresponding query on the schema of the resulting database, and vice versa.

As for the way FDs should be handled by these operators, intuitively, in these condi-

tions, we would expect them to keep under equivalence at least all the FDs in the original

set that are projected on the schema of some relation in the database besides relation δ.

In addition, we also wish to preserve those that are not projected on the schema of any

45

CHAPTER 4. FORGETTING RELATIONS IN RELATIONAL DATABASES

relation, as they are unrelated to δ. Basically, we want the closure of the initial and final

sets of FDs to be equivalent up to the ones exclusively projected on the schema of δ. In

some cases, leaving the FDs as they are is enough to guarantee this.

Finally, an operator that fulfils these requirements is given by Algorithm 2.

Algorithm 2: Non-transitive relation forgetting operator fnt
input :Triple (D,δ,ψ) such that D = (R,F) ∈DA,δ ∈RA and ψ ∈RA ∪ {∅}
output :Database resulting from fnt(D,δ,ψ)

1 R′← R \ {δ};
2 return (R′ ,F);

The operator fnt generates the result of forgetting by simply removing the relation

to be forgotten from R. Therefore, the resulting database is the closest possible to the

original one.

In that respect, it is important to acknowledge that the definition of non-transitive

forgetting does not imply that all operators should manipulate R in the exact same way. In

fact, it is absolutely acceptable for non-transitive operators to carry out transformations

at the level of the schema of the database. As long as all information in R\{δ} is preserved

and none is added, that would still fit in our definition of non-transitive forgetting.

In addition, note that the result of the operator fnt is independent of the relation ψ.

This should always be the case for non-transitive forgetting in general.

Going back to the illustrative example used in Section 4.1, the result of applying the

operator fnt to forget δ = serious_disease in the database shown in Figure 4.1 is precisely

the database in Figure 4.2 with the original set of FDs. Again, ψ could be any relation or

even the empty set.

However, as already discussed, non-transitive forgetting has an obvious disadvantage

in that it does not preserve indirect relationships that are exclusively guaranteed by the

relation to be forgotten. For this reason, in alternative to non-transitive forgetting, in the

next section we introduce transitive forgetting. Unlike its counterpart, transitive forgetting

seeks to preserve the indirect relationships that are originally assured by the relation to

be forgotten.

4.4 Transitive Forgetting

We now turn our attention to transitive forgetting. As we saw in Section 4.1, the key

idea of this type of forgetting is to preserve some of the information in the natural join

between the relation to be forgotten δ and another relation in the database ψ, i.e., δ ▷◁ ψ,

that would otherwise be lost using a non-transitive operator4.

4In this dissertation we focus on preserving indirect (transitive) information with respect to a single
relation.

46

4.4. TRANSITIVE FORGETTING

Yet, before doing so, we have to make sure some conditions are met. First, we are only

interested in transitivity between relations such that neither of the schemas is included

in the other5, as this allows us to ignore the cases where there certainly are no indirect

relationships to keep among different attributes. Naturally, this is valid both for s(δ)

being a superset of s(ψ) (i.e., containing all of its attributes) and vice versa. When two

relations satisfy this condition we call them non-comparable.

Definition 4.2 (Non-comparability between Relations). Let r and r ′ be two relations over

A. We say that r and r ′ are non-comparable, denoted by r ≁ r ′, if s(r) ⊈ s(r ′) and s(r ′) ⊈ s(r).

Moreover, another requirement for transitive forgetting is that the schemas of the

relations δ and ψ are non-disjoint, i.e., s(δ)∩ s(ψ) , ∅. If that was not the case, then there

would not be any relationships between the attributes in these relations, and therefore no

transitive information to preserve. In that regard, when two non-comparable relations r

and r ′ have non-disjoint schemas, we denote it by r ∤ r ′.
Looking back at the relations δ = serious_disease and ψ = increased_cost, which mo-

tivated transitive forgetting in the database represented in Figure 4.1, it is apparent

that these relations are non-comparable. Taking into account that s(serious_disease) =

(ID,Disease) and s(increased_cost) = (Disease,Amount), there is exactly one attribute in

each relation that does not belong to the other. Moreover, it is also obvious that the

schemas of these relations are non-disjoint, since s(serious_disease)∩ s(increased_cost) =

Disease. For these reasons, we have serious_disease ∤ increased_cost.

All things considered, if at least one of these conditions was not true, i.e., δ ∤ ψ did

not hold (for instance, because δ was equal to ψ or had the same schema), then we would

expect any transitive operator to simply remove δ from the set of relations that compose

the database, without undertaking any kind of transitivity, akin to non-transitive opera-

tors. Of course, similarly to the latter, it would still be reasonable for transitive operators

to transform the remaining relations, provided that no information is lost. Additionally,

if ψ is not in the database (or, to the same effect, corresponds to the empty set), then we

would also expect transitive operators not to perform any transitive operation.

Now that the conditions for transitivity are laid out, we can finally discuss the relation

resulting from the natural join between δ and ψ. Henceforth, we shall call it the transitive
relation.

Regarding this relation, we want the common attributes (i.e., the ones that are non-

disjoint) for δ and ψ to be removed from it, else one would not truly forget about δ.

For instance, returning to the database in Figure 4.3, the transitive relation disease-

increased_cost, does not have the attribute Disease, which was in δ = serious_disease,

because it also belonged to ψ = increased_cost.

5Note that this can happen because we do not impose any restrictions on the schemas of the relations
that are part of a database.

47

CHAPTER 4. FORGETTING RELATIONS IN RELATIONAL DATABASES

Furthermore, since we would expect operators to keep the information of ψ in the

resulting database, and given that that ψ may have any arity, oftentimes we may want to

omit some (but not all) of its attributes from the transitive relation. As such, we must

accept as the result of the transitivity a relation that does not mention all the disjoint

attributes of ψ in its schema. In fact, this is also the case for the attributes in δ given that,

ultimately, the goal is to forget about this relation. To discuss this subject in more detail,

consider the following example.

Example 4.1. Consider once again the relations in Figure 4.1. Now, assume that, for

instance, the relation increased_cost, which corresponds to the relation to keep transi-

tive information with serious_disease further on in the example, had a third attribute

Discount, corresponding to a percentage that will be deduced from the final price of the

insurance plan. In that case, s(increased_cost) = (Disease,Amount,Discount), and thus

the transitive relation disease-increased_cost could have one of the schemas (ID,Amount),

(ID,Discount) or (ID,Amount,Discount).

Regarding the example above, the choice for the schema of the transitive relation

would obviously fall on the database owner/administrator, as it depends on the situation

itself. A similar reasoning would also apply in case the relation serious_disease had

higher arity as well.

In short, if we designate by θ the attributes that will be projected out of δ ▷◁ ψ, denoted

(δ ▷◁ ψ)∥θ, then we can have θ ⊇ s(δ)∩ s(ψ). Even so, in order to guarantee that there is, in

fact, transitivity between δ and ψ, we have to make sure that θ ⊉ s(δ) and that θ ⊉ s(ψ).

In other words, θ must be a non-total intersecting superset of (s(δ), s(ψ)), which is formally

defined as follows.

Definition 4.3 (Non-total Intersecting Superset). Let s be a set and (s1..., sn), with 1 < n,

a tuple of sets. We say that s is a non-total intersecting superset of (s1..., sn), denoted by

s ⊇∩ (s1, ..., sn), if

• s ⊇ s1 ∩ ...∩ sn; and

• s ⊉ si for each 1 ≤ i ≤ n.

We highlight the importance of ensuring that the transitivity is only done when the

relations δ and ψ are non-comparable: if either s(δ) or s(ψ) were a superset of the other,

then it would not exist a non-total intersecting superset for these two relation schemas.

Proposition 4.1. Given two relations r and r ′ over A, if they are not non-comparable, i.e.,

if r ≁ r ′ is not true, then there is no set of attributes s ⊆A such that s ⊇∩ (s(r), s(r ′)).

Proof. Assume that r ≁ r ′ does not hold. Then, at least one of the conditions in the

definition of non-comparability does not hold, i.e., we have s(r) ⊆ s(r ′), s(r ′) ⊆ s(r) or both.

Without loss of generality, suppose that s(r) ⊆ s(r ′). Now, if s is any set of attributes that

48

4.4. TRANSITIVE FORGETTING

satisfies the first condition of Definition 4.3, i.e., s ⊇ s(r)∩ s(r ′), then, because s(r) ⊆ s(r ′),
it is also true that s ⊇ s(r). This, in turn, contradicts the second condition of the definition.

Therefore, s cannot be a non-total intersecting superset of (s(r), s(r ′)).

Having discussed how transitive operators should handle the transitive relation, we

now turn our attention to the FDs that should be in any database resulting from transitive

forgetting. Perhaps, in this case, the first intuition could be to adopt what is done for

non-transitive forgetting. This way, the operators would preserve under equivalence at

least all the FDs in the original set that are not exclusively projected on the schema of the

relation to be forgotten (for instance because they are projected on the schema of some

other relation) as well as those that can be implied by transitivity through the ones that

are only projected on its schema. Besides, this also means that the operators would keep

in the resulting database the FDs that are completely independent of the attributes in the

relation to be forgotten.

Nevertheless, pursuing this idea could lead to the non-satisfaction of some of the

preserved FDs by the transitive relation. The next example illustrates this situation.

Example 4.2. Consider a database DB ∈DA with the relations δ,ψ and r shown below and

the set of functional dependencies {A→ B ; A→ C ; B→D ; D→ E}.

δ

A B C

a1 b1 c1

a2 b1 c2

a3 b1 c3

ψ

C D

c1 d1

c1 d2

c2 d1

r

D E

d1 e1

d2 e2

d3 e3

If the result of forgetting about δ in DB with respect to ψ is a database with the relations

ψ, r and φ, where φ corresponds to the transitive relation and has schema (A,B,D) then,

by following how FDs are handled by non-transitive operators, we would expect at least

the functional dependencies {B→D ; A→D ; D→ E} to be preserved under equivalence

in the resulting database. The reasoning behind this is that B→ D is not projected on

the schema of any relation in the original database; A → D is obtained by transitivity

using A→ B (only projected on s(δ) in the original database) and B→ D; and D → E is

projected on s(r) (and is independent of the attributes in δ). In reality, one could also

argue that the functional dependency A→ B must be in the resulting database, taking

into account that although it is projected exclusively on the schema of δ in DB, it is now

projected on the schema of the new relation φ. Regarding the functional dependency

A→ C, since it is projected on s(δ) but not on the schema of any other relation in the

original or resulting databases, non-transitive operators would not necessarily require its

preservation.

Either way, if we look more closely at the relation φ, which is shown below, it is clear

that it does not satisfy the functional dependencies B→ D and A→ D, as the first and

49

CHAPTER 4. FORGETTING RELATIONS IN RELATIONAL DATABASES

second tuples have the same values for the attributes A and B, but different values for the

attribute D.

φ

A B D

a1 b1 d1

a1 b1 d2

a2 b1 d1

An important conclusion we can draw from the previous example is that even FDs

in the original set that are not projected on the schema of a single relation may not be

satisfied by the transitive one. Thus, since we are only interested in operators that are well

defined (i.e., that output databases), we must strengthen the conditions of non-transitive

forgetting for the FDs we want to preserve in the result of transitive forgetting. Ultimately,

we need to find a balance between keeping as many of the original FDs as possible in the

resulting database and ensuring that the relations satisfy those FDs. Perhaps the most

obvious choice would be to not only do not consider for equivalence the FDs that are

exclusively projected on the relation to be forgotten, but also those that depend on the

attributes of said relation, regardless of the relation schemas where they are projected on.

Returning to Example 4.2, this would mean that both B → D and A → D would

not be taken into account for equivalence between the original and resulting sets of

FDs, since attributes A and B belong to the schema of δ. Therefore, these FDs could be

safely removed from the result of forgetting. Still on the same example, we would also

ignore the functional dependency A→ B even if it was projected on the schema of some

other relation, which does not happen in the case of non-transitive forgetting. This, at

last, is extremely relevant, since without one (or, in this case, both) of the functional

dependencies A → B and B → D, we guarantee that A → D does not take part in the

equivalence condition in any way, given that it would be impossible to infer it by means

of transitivity.

To further justify the need to impose this more conservative condition upon the result

of transitive forgetting, note that the FDs that may lead to a set not being satisfied by

the transitive relation, may not only be projected on the schema of δ, but on the schema

of some other relation(s) in the database (in addition to, as we saw earlier, not being

projected at all). The following example shows exactly this situation.

Example 4.3. Suppose the database DB in Example 4.2 had two additional relations r1
and r2 over A, such that s(r1) = (A,F) and s(r2) = (F,D), and the functional dependencies

A→ F and F→ D. In this case, the FDs are projected on the schemas of the relations r1
and r2, respectively, and by transitivity we can infer the functional dependency A→D.

Regarding the example above, neither of the FDs is projected on the schema of δ, yet

we must remove one of them to avoid deriving A→ D. In this case, it would be A→ F,

since attribute A belongs to s(δ).

50

4.4. TRANSITIVE FORGETTING

In summary, the goal for transitive forgetting is that the operators keep under equiva-

lence at least all the FDs of the original set that do not mention the attributes that belong

to the relation to be forgotten δ. Intuitively, this means that we are weakening the equiva-

lence required for non-transitive forgetting in such a way that only the FDs which do not

have attributes in δ are considered for equivalence. Of course, this does not imply that

all the other FDs must be deleted. In reality, they can also be kept the resulting database,

as long as their closure is satisfied by the relation set.

To talk about the FDs that do not refer to the attributes in δ, in the next definition we

introduce the concept of δ-exclusion of a set of FDs.

Definition 4.4 (δ-Exclusion of a Set of Functional Dependencies). Let F be a set of FDs

over A and δ a relation over A. The δ-exclusion of F, denoted by F∥δ, corresponds to the

set of all FDs in F+ that do not include attributes of δ, i.e., F∥δ = {X→ Y ∈ F+ | X ∩ s(δ) =

∅∧Y ∩ s(δ) = ∅}.

In general, the notion of δ-exclusion of a set of FDs F cannot be computed by removing

from F+ the FDs that are projected on δ, i.e. Fδ, since, by definition, this set only contains

FDs such that all its attributes belong to s(δ). Naturally, this is not the case for the

definition of F∥δ, as it excludes from F+ any FD that has at least one attribute of δ, be it

on the left or right-hand side. With that in mind, we introduce a procedure to compute

F∥δ, which is given by Algorithm 3.

Algorithm 3: Computation of the δ-exclusion of a set of FDs
input :Pair (F,δ) such that F ⊆ FA and δ ∈RA
output :Set of FDs resulting from compute-δ-exclusion(F, δ)

1 compute the closure of F, denoted F+, using procedure in [SKS11] and initialise
F′← F+;

2 foreach X→ Y ∈ F′ do
3 if X ∩ s(δ) , ∅ or Y ∩ s(δ) , ∅ then
4 F′← F′ \ {X→ Y };

5 return F′;

Having discussed the desirable set of relations and FDs in the result of transitive

forgetting, we can finally introduce our first operator for this type of forgetting. It is

given by Algorithm 4 and is named ft.

The principal idea of the operator ft is that it preserves transitive relationships be-

tween some of the attributes in the relation to be forgotten δ and those of another relation

ψ in the database, provided that the conditions for transitivity we have been discussing

are satisfied. This means that, in those cases, we guarantee that all the queries on the

schema of the initial database that are based on the projection of a set of attributes with-

out those in θ over the natural join between δ and ψ have always a corresponding query

on the database resulting from forgetting about δ.

51

CHAPTER 4. FORGETTING RELATIONS IN RELATIONAL DATABASES

Algorithm 4: Transitive relation forgetting operator ft
input :Triple (D,δ,ψ) such that D = (R,F) ∈DA,δ ∈RA and ψ ∈RA ∪ {∅}
output :Database resulting from ft(D,δ,ψ)

1 R′← R \ {δ};
2 F′← F;

/* conditions for transitivity */

3 if δ,ψ ∈ R and δ ∤ ψ then
4 θ← s(δ)∩ s(ψ);
5 R′← R′ ∪ {(δ ▷◁ ψ)∥θ};
6 F′←compute-δ-exclusion(F, δ);

7 return (R′ ,F′);

More precisely, the operator starts by removing the relation to be forgotten δ from the

original set of relations R, assigning the resulting relation set to R′. Then, it assigns the

initial set of FDs to F′. Subsequently, in line 3, it verifies the conditions for transitivity, i.e.,

whether δ and ψ belong to the relation set of the initial database, are non-comparable and

their schemas are non-disjoint. If that is the case, then the operator computes θ, which cor-

responds to the attributes that will be projected out of the new transitive relation, which

in turn is computed in line 5 by joining the relations δ and ψ. For this concrete operator,

θ is simply the intersection of the schemas of the previous relations. This means that the

schema of the transitive relation will have all the remaining attributes in the union of the

schemas of δ and ψ, i.e, its schema will be s(δ)∪ s(ψ) \ (s(δ)∩ s(ψ)). For instance, if we

look at the setting in Example 4.1, then θ would be the singleton with attribute Disease,

and the schema of the transitive relation would be (ID,Amount,Discount). Continuing

with the explanation of the operator, after adding the new relation to R′, it assigns to the

variable F′ the result of the δ-exclusion of F, which is obtained using Algorithm 3. Finally,

the operator concludes by returning the database (R′ ,F′).

Unsurprisingly, the application of the operator ft to forget relation δ = serious_disease

while keeping transitive information with respect to ψ = increased_cost in the motivating

example in Figure 4.1, leads precisely to the relations in Figure 4.3.

Furthermore, it is clear that, similarly to what was discussed at the time, for some

instances of δ and ψ, the operator ft has the inconvenience of allowing the recovery of

at least some of the tuples in the instance of the relation that was (apparently) forgotten.

This happens because the operator always preserves all transitive information between

δ and ψ (except, of course, that of the attributes in the intersection of the respective

schemas). Thus, with the knowledge that the operator works in this way, one can some-

times deliberately “guess” some of the tuples in δ.

Therefore, even though the operator can be useful when recovery of forgotten tuples is

not problematic (e.g., in those cases where we want to simplify the database by removing

some auxiliary relation while preserving transitive information), the reality is that, in

specific situations, it might be highly undesirable. Hence, to overcome this drawback of

52

4.5. REFINING TRANSITIVE FORGETTING

the operator ft, in the next section we present two transitive forgetting operators that are

built upon it but, contrarily to ft, do not allow intentional recovery of the tuples in δ, even

when it is known which operator was used to obtain the result of forgetting.

4.5 Refining Transitive Forgetting

As suggested before, we are mainly interested in transitive operators that do not allow de-

liberate recovery of forgotten tuples through the transitive relation added to the database.

However, to define such operators, it is necessary to understand what it means to recover

forgotten tuples and when it is, or it is not, possible to do it.

Intuitively, one way of guaranteeing that there is no recovery of forgotten tuples is

to ensure that it exists an alternative to each tuple in the relation to be forgotten δ that,

when exchanged with the original, leads to exactly the same database resulting from this

operation. Following this principle, it will not be possible to infer any of the tuples that

are in the instance of the relation, even if one knows which operator was used.

That is exactly the concept behind the operator ft− , which is given by Algorithm 56.

Concretely, the operator verifies whether for each tuple t in the instance of δ, there is an

alternative tuple t∗ such that, if we exchange these tuples in i(δ), the result of the operator

remains the same. For ft− in particular, this means that the transitive relation is equal

for both alternatives. Furthermore, in case t has no such alternative tuple t∗, then it is

simply not considered for transitivity (as a matter of fact, we can view the “empty tuple”

as its alternative). Regarding this construction, it is crucial that the modified relation δ

with t∗ instead of t still satisfies the FDs in the database, namely those projected on s(δ).

With this strategy, even if we know the operator that computed the result of forgetting,

we cannot retrieve any of the tuples that were in the relation that was forgotten, as there

is at least an alternative to each tuple.

To get a better understanding of the intuition behind the algorithm before we analyse

it more thoroughly, let us consider the following example.

Example 4.4. Recall the insurance company database, whose relations are shown in Fig-

ure 4.1. As we saw, in this setting we want to forget about relation serious_disease while

keeping transitive information with respect to the relation increased_cost. Hence, in

our notation, we have δ = serious_disease and ψ = increased_cost. Thus, the transitive

relation resulting from joining δ and ψ, and projecting the result on the attributes that

are not in both schemas, corresponds to the relation disease-increased_cost illustrated in

Figure 4.3 (recall that this is precisely the transitive relation we would get from applying

the operator ft). To make it easier to follow the example, consider the next tables, which

represent the three relations (from left to right, we have relation δ, relation ψ and the

transitive relation).

6To ease the reading of the algorithm, we abuse notation and say that a tuple t belongs to a relation r
(t ∈ r) or is removed from it (r \ {t}), when t ∈ i(r) or i(r) \ {t}, respectively. Furthermore, given an ordered set
of attributes θ = (θ1, ...,θn) and a tuple t = (t1, ..., tn), we use θ = t as a shorthand for θ1 = t1 ∧ ...∧θn = tn.

53

CHAPTER 4. FORGETTING RELATIONS IN RELATIONAL DATABASES

serious_disease

ID Disease

1 Breast Cancer

2 Type 2 Diabetes

2 Prostate Cancer

3 Lung Cancer

increased_cost

Disease Amount

HIV/AIDS 600

Breast Cancer 500

Type 2 Diabetes 500

Lung Cancer 650

Prostate Cancer 550

disease-increased_cost

ID Amount

1 500

2 500

2 550

3 650

In this example, the first tuple in serious_disease, i.e., (1, Breast Cancer) will be joined

with the tuple (Breast Cancer, 500) in increased_cost, resulting in the tuple (1, 500) in

disease-increased_cost. Therefore, to make sure that having (1, 500) in the transitive

relation will not allow us to infer (1, Breast Cancer), we need to find an alternative to

this last tuple that, when joined with the tuples in increased_cost, would as well lead

to (1, 500) in the transitive relation. The first thing we can notice by looking at this

case in particular is that any alternative tuple of (1, Breast Cancer) that would lead to

the same result in the transitive relation, must have value 1 for attribute ID. Secondly,

regarding the value for attribute Disease, it is evident that it cannot be equal to Breast

Cancer (as the tuple and its alternative must be different). However, it has to participate

in increased_cost with exactly the same value of Amount as Breast Cancer (i.e., 500),

otherwise, the tuple resulting from the join operation will not be (1, 500). Thus, in this

setting, the only possible alternative tuple to (1, Breast Cancer) would be (1, Type 2

Diabetes). In fact, note that this tuple can only be a valid alternative because, e.g., the

functional dependency Disease→ ID does not exist in the database, given that (2, Type

2 Diabetes) is already in the instance of serious_disease. Regarding this last tuple, it is

also easy to see that its alternative would be (2, Breast Cancer). As for the next tuple

in the instance of serious_disease, i.e. (2, Prostate Cancer), since there is no value of

attribute Disease that participates with value 550 for Amount in increased_cost, then it

does not have any alternative, and therefore would not be considered by the operator ft−

for transitivity. A similar reasoning applies for the last tuple. All in all, the goal of the

operator is to find all tuples in serious_disease that have valid alternatives.

Taking into account the last example, we can draw some general conclusions about

an alternative tuple t∗ for each tuple t in i(δ). The first such conclusion is that they

must have the same value for all the attributes of δ that appear in the transitive relation,

so that we can arrive at the same result in this relation. As usual, let us denote by θ

the attributes that will be projected out of the transitive relation (e.g., for the example

above we have θ = {Disease}). Then, this means that we want t and t∗ to have equal

values for the attributes s(δ) \ θ. Note that, in turn, this implies that the remaining

attributes must be different for t∗ and t, since we want t∗ , t. In fact, we can also come to a

verdict regarding the values for these attributes, which brings us to our second and final

conclusion. Observe that, to ensure that we indeed get the same result in the transitive

54

4.5. REFINING TRANSITIVE FORGETTING

relation, it is essential that the values for these attributes in t and t∗ participate in ψ with

exactly the same values for the attributes of ψ that are in the transitive relation (i.e., those

of s(ψ) \ θ). Only this way we guarantee that, regardless of whether i(δ) has t or t∗, the

transitive relation is precisely the same. In reality, the only thing that changes is the

“path” taken to reach it.

We are now ready to analyse the operator in more detail. First of all, we draw attention

to the fact that it extends ft, and therefore some of the principles presented therein for

any transitive operator in general still apply. For instance, the operator also starts by

removing δ from the initial set of relations, assigning the result to R′. Subsequently, it

assigns the original set of FDs to variable F′. In line 3, the operator verifies the conditions

for transitivity. Similarly to ft, we want δ and ψ to be non-comparable relations in the

initial database whose schemas are non-disjoint. If these requirements are met, then the

operator computes the attributes that will be projected out of the transitive relation and

assigns them to variable θ. From this point on, ft− has a different behaviour than the

operator ft, given that their ultimate goal is completely different. Whereas ft computes

the transitive relation by directly joining δ and ψ, the new operator ft− only considers for

transitivity the tuples in δ that would not lead to their retrieval through the transitive

relation (i.e., because they have a valid alternative tuple).

To that end, the operator starts by creating a new relation δ∗, which is initialised with

the same name and schema as δ but without any tuples. The purpose of this relation is

to store the tuples in i(δ) that have an alternative and, for that reason, can be considered

for transitivity. Thus, from line 6 to line 13, the operator iterates over all tuples t in the

instance of δ, verifying whether they are suitable or not to be added to δ∗ (which is done

line 13). The first such verification (line 7) checks if the values for θ in t are also in ψ.

If they are not, then this tuple is not relevant for transitivity anyway, and thus we may

proceed to the next tuple, discarding the current one. In case the values are in ψ, then

the operator searches if it exists a tuple t∗ that can be the alternative for t (line 9). The

domain for the values of t∗ is straightforward: the values for s(δ) \ θ must be in δ and

those for θ in ψ. Next, through line 9 to 12, the operator imposes four conditions on t∗.

The first, still in line 9, is that this tuple must be different from t. Moreover, the second

and the third, in lines 10 a 11, correspond to the conclusions one and two, respectively,

drawn from the preceding paragraph. Finally, the last condition is related to the FDs.

Taking into consideration that we want δ to still satisfy the FDs of the original database

in case t is replaced with t∗, then we need to be extra careful with the values of t∗. In

practice, to guarantee that the modified δ does not infringe any functional dependency

X → Y , then a first, perhaps more naive approach could be to force t and t∗ to have the

exact same values for the attributes X and Y (whenever they are in the schema of δ). It

is obvious that this way the new δ would still satisfy all relevant FDs. However, there

are two situations in particular where this conditions is unnecessarily strong. The first

is when the attributes X and Y are a subset of θ. Considering that the domain for the

values of t∗ in the attributes θ comes from the tuples in ψ, and that this relation already

55

CHAPTER 4. FORGETTING RELATIONS IN RELATIONAL DATABASES

satisfies the FDs projected on its schema, then we do not need to worry about these FDs.

The second situation where we do not have to impose the equality between t and t∗ is

when it does not exist another tuple t′ in the instance of δ whose values for the attributes

in X \θ coincide with those of t. Since t and t∗ will have the same values for the attributes

in s(δ) \ θ (due to the equality in line 10), then they will also have the same values for

X \θ, and given that no tuple in the relation has those same values for these attributes,

then any functional dependency X→ Y will not fail in δ if we exchange t for t∗. We will

come back to this discussion in the next chapter.

Finally, having iterated over all tuples in i(δ) and added the ones that have a valid

alternative to the instance of δ∗, the operator joins δ∗ with ψ and projects from the result

the attributes in θ (line 14). Afterwards, it adds the resulting transitive relation to R′. Be-

fore terminating by returning the database (R′ ,F′), the operator computes the δ-exclusion

of F (Algorithm 3), assigning the resulting set of FDs to F′.

Algorithm 5: Transitive relation forgetting operator ft−
input :Triple (D,δ,ψ) such that D = (R,F) ∈DA,δ ∈RA and ψ ∈RA ∪ {∅}
output :Database resulting from ft−(D,δ,ψ)

1 R′← R \ {δ};
2 F′← F;

/* conditions for transitivity */

3 if δ,ψ ∈ R and δ ∤ ψ then
4 θ← s(δ)∩ s(ψ);
5 δ∗← (n(δ), s(δ),∅);
6 foreach t ∈ δ do
7 if t[θ] <Πθ(ψ) then
8 continue;

9 if ∃t∗ ∈Πs(δ)\θ(δ)×Πθ(ψ) s.t. t , t∗ and
10 t[s(δ) \θ] = t∗[s(δ) \θ] and
11 Πs(ψ)\θ(σθ=t[θ](ψ)) = Πs(ψ)\θ(σθ=t∗[θ](ψ)) and
12 ∀X→ Y ∈ F+ s.t. X ∪Y ⊈ θ and ∃t′ ∈ δ \ {t} s.t. t′[X \θ] = t[X \θ] then

t[X ∪Y] = t∗[X ∪Y] then
13 δ∗← (n(δ∗), s(δ∗), i(δ∗)∪ t);

14 R′← R′ ∪ {(δ∗ ▷◁ ψ)∥θ};
15 F′←compute-δ-exclusion(F, δ);

16 return (R′ ,F′);

All things considered, although ft− may not preserve all transitive information be-

tween δ and ψ, it still guarantees that the information that is kept in the transitive re-

lation cannot lead to the inference of the tuples in δ. For that, it may only use a subset

of the tuples in δ for transitivity. What happens in this case is that the instance of the

transitive relation outputted by ft− is always contained in the one in the result of the

operator ft, hence its name. This means that, sometimes, we can still partially answer to

some of the queries that use the natural join between δ and ψ projected on the schema of

56

4.5. REFINING TRANSITIVE FORGETTING

the transitive relation, with the certainty that no forgotten tuples can be recovered.

In that respect, we highlight the fact that the operator gives special attention to the

FDs that are projected on the schema of δ, even though it ends up removing all of them

from the database (as we saw in the last section, this is done to guarantee that the relation

set satisfies the FDs in the database resulting from the transitive operation). The reason

for this is that usually databases model real-world scenarios and, although the FDs may

be explicitly deleted from the original database, oftentimes they can still be deduced.

In order to conclude the exposition of ft− , let us consider a slightly more complex

example to show the application of the operator.

Example 4.5. Consider a database DB ∈DA with the relations δ and ψ shown below and

the set of functional dependencies F = {B→ A ; D→ E}.

δ

A B C

a1 b1 c1

a2 b2 c3

ψ

B C D

b1 c1 d1

b1 c1 d2

b1 c2 d1

b1 c2 d2

b1 c3 d3

b2 c3 d3

Then, by applying the operator ft− to forget about δ with respect to ψ, the only tuple of δ

that will be used for transitivity is (a1, b1, c1). In fact, the alternative for this tuple would

be (a1, b1, c2), since they have the same values for A = s(δ) \θ, and both (b1, c1) and (b1,

c2) participate with the same values forD = s(ψ)\θ in ψ (which are d1 and d2). Regarding

the only FD in F+ that is projected on s(δ), i.e., B→ A, it forces the tuples to have equal

values for B and A, which is clearly the case.

Regarding the tuple (a2, b2, c3) in δ, although (b1, c3) participates with the same value

as (b2, c3) in ψ (which corresponds to d3), because of the functional dependency B→ A,

the tuple (a2, b1, c3) is not a valid alternative to (a2, b2, c3), given that their values for B

are not the same. Thus, the result of ft−(DB,δ,ψ) is the database ((ψ,φ), {D→ E}+), where

φ is the transitive relation represented by the next table.

φ

A D

a1 d1

a1 d2

In retrospective, the operator ft would output the transitive relation φ′. In this case, just

by looking at φ′ and ψ, it is easy to see that (a2, b1, c3) was a tuple of δ. This implies that,

in this example, ft would allow the recovery of tuples that were supposedly forgotten.

57

CHAPTER 4. FORGETTING RELATIONS IN RELATIONAL DATABASES

φ′

A D

a1 d1

a1 d2

a2 d3

In any case, as was hinted at the end of Section 4.1, in some circumstances, losing

some of the information in the transitive relation, no matter how minimal, can be highly

undesirable. For instance, consider the next example.

Example 4.6. Consider the relations f ood_allergy and prohibited_f ood depicted by the

following tables.

f ood_allergy

EmployeeID Allergen

1 lactose

2 gluten

3 nuts

4 peanut

prohibited_food

Allergen Food

additives cake

gluten cake

gluten pasta

lactose cake

nuts cake

In this example, we are interested in forgetting about the relation f ood_allergy, while

preserving transitive information with respect to the relation prohibited_f ood, so that

we can still have data about the foods that each employee is not supposed to eat, even if

all the information about their allergies is deleted.

The transitive relation f ood_allergy-prohibited_f ood obtained by joining the rela-

tions above and projecting the result on the attributes EmployeeID and Food is illustrated

below (note that this would be the transitive relation in the result of the first transitive

operator ft, or equivalently the relation obtained by asking each employee individually

the foods that they cannot eat).

f ood_allergy-prohibited_f ood

Allergen Food

1 cake

2 cake

2 pasta

3 cake

It is obvious that just by looking at this relation and at prohibited_f ood, it is possible

to infer that the tuple (2, gluten) was in relation f ood_allergy, since gluten is the only

allergen that participates with the values cake and pasta in prohibited_f ood.

58

4.5. REFINING TRANSITIVE FORGETTING

As we have been discussing in this section, the operator ft− would allow us to forget

f ood_allergy while keeping transitive information wrt prohibited_f ood without it being

possible to retrieve any of the tuples in the original relation, if such was the intended.

However, for this case in particular, that would obviously mean losing some of the tuples

in the transitive relation shown in the example. In particular, we would lose tuples

(2, cake) and (2, pasta), given that the tuple (2, gluten) from f ood_allergy does not

have an alternative that satisfies the conditions imposed by the operator (observe that

the alternative for (1, lactose) could be either (1, additives) and (1, nuts); for (3, nuts)

could be one of (3, additives) and (3, lactose); and that (4, peanut) would not even be

considered for transitivity in the first place, since the allergen peanut does not appear in

prohibited_f ood).

In the context of the example, one could argue that without all the original data about

the foods that the employees are not supposed to eat, the transitive relation simply loses

all its value. Therefore, to overcome this issue while still avoiding recovery of forgotten

tuples, we present our last operator ft+ , which is given by Algorithm 67.

If we consider δ to be the relation we want to forget, ψ the one we want to preserve

transitive information with respect to, and θ the attributes that will be projected out of

the natural join between δ and ψ, then the operator ft+ guarantees that all information in

(δ ▷◁ ψ)∥θ is preserved without it being possible to recover the tuples that were forgotten

in case there are no FDs with attributes of both s(δ) \ θ and θ in the original database.

Furthermore, if it does not exist at least two tuples in ψ with different values for the

attributes that are in θ (i.e., two tuples in the projection of θ in ψ), then the operator does

not compute the transitive relation, since in those circumstances it would also lead to

the recovery of forgotten tuples. Whereas the condition for the FDs allows us to greatly

simplify the problem, the limitation for transitivity is a necessary requirement due to the

very nature of the problem and will become clear later.

The idea behind the operator ft+ is very similar to the one behind ft− in that we want

to guarantee that every tuple t in the instance of δ has an alternative such that, if we

exchange it with t in i(δ), we will get the exactly the same database (and consequently

transitive relation) in the result of forgetting. On the other hand, the approach to achieve

this result is considerably different. Contrarily to ft− , the operator ft+ exclusively looks at

the relation ψ to verify whether it is suitable for transitivity without recovery of forgotten

tuples. Intuitively, for ψ to be a valid relation, for each combination of values for the

attributes θ (or, in other words, for each tuple t in the projection of θ in ψ), it must exist a

set of tuples T (where t does not belong to) that participates with exactly the same values

for the attributes in s(ψ)\θ. If that is the case, then, since every tuple in δ will be joined on

the attributes of θ upon transitivity with ψ, we assure that for each such tuple there are

at least two different “paths” to reach the same values of s(ψ)\θ in the transitive relation,

7We use the same notation as in Algorithm 5. In addition, given an ordered set of attributes θ = (θ1, ...,θn)
and set of tuples T = {t1,, tm}, where ti is equal to (ti1, ..., t

i
n), we use T = θ to denote (θ1 = t11 ∧ ...∧ θn =

t1n)∨ ...∨ (θ1 = tm1 ∧ ...∧θn = tmn).

59

CHAPTER 4. FORGETTING RELATIONS IN RELATIONAL DATABASES

and therefore its result can be equal to (δ ▷◁ ψ)∥θ. For instance, let us look again at the

relations in Example 4.6. In this setting we have δ = f ood_allergy, ψ = prohibited_f ood

and θ is the singleton with attribute Allergen. Regarding the relation prohibited_f ood,

it is clear that the allergens additives, lactose and nuts participate with the same values

for the attribute Food = s(ψ) \ θ, which means that they are viable alternatives to each

other. Thus, for any employee participating with one (or multiple) of them in the relation

f ood_allergy, we guarantee that it exists an alternative tuple that would lead to the same

transitive relation. This, in turn, implies that we cannot infer the real ones.

Nevertheless, if ψ is not a valid relation, which is in fact the case for prohibited_f ood

in the example, since the allergen gluten is the only one that participates with both values

cake and pasta for the attribute Food, then the operator searches for a minimal subset

of tuples that can be added to ψ in order to ensure that all of the original ones have an

alternative. For this reason, the values for the new tuples have to be restricted to the

values of θ and s(ψ) \ θ existing in ψ. Let us denote by ψ′ the relation resulting from

the addition of those tuples to ψ. Then, in practice, the operator is successively testing a

subset of all the possible tuples that can be added to ψ (starting from the minimal set to

the maximal one) until it finds a relation ψ′ that satisfies the conditions discussed, and for

that reason, can be joined with δ to output the transitive relation (notice that the relation

ψ′ chosen is always independent of δ). To make sure that the operator is determinist for

any input (and thus it can be a function of forgetting), we impose a lexicographic order

to the non-comparable sets (note that it could be any order, as long as it was always the

same).

Now, regarding the algorithm to compute the operator ft+ , similarly to ft− , it extends

ft, which means that it also shares some characteristics with the latter. In particular, these

include the initialisation of the variables R′ and F′ (lines 1 and 2), the verification of the

conditions for transitivity (line 3) and, in case those are satisfied, the computation of θ

(line 4) and the δ-exclusion of the original set of FDs F (line 17). All of the remaining

operations correspond to the ones discussed in detail immediately above. In line 5, the

operator computes the set of all relevant tuples that can be added to ψ, and stores them

in relation r. These do not include the ones in ψ and, as we saw, are constrained to the

values of θ and s(ψ) \ θ that appear in ψ. Furthermore, in line 6, the power set of the

instance of r is computed, and in line 7 it is ordered following the aforementioned rules.

From lines 8 to 18 the operator searches for a set of tuples i (starting with the empty set),

that can be added to the instance of ψ to make it valid for transitivity without recovery of

forgotten tuples (we denote this new relation by ψ′). For that to happen, then each tuple

t in the projection of θ in ψ′ must have an alternative set of tuples T \ {t} that participates

with exactly the same values for s(ψ′) \θ. In specific, this condition is checked in line 12.

Finally, once a valid ψ′ is found, it is joined with δ and the attributes of θ are removed

from the result (observe that, in the limit, the relation ψ′ with all the tuples in r will be

valid for transitivity, as long as r has at least one tuple).

We emphasise the fact that, by the definition of the operator, the transitive relation

60

4.5. REFINING TRANSITIVE FORGETTING

Algorithm 6: Transitive relation forgetting operator ft+
input :Triple (D,δ,ψ) such that D = (R,F) ∈DA,δ ∈RA and ψ ∈RA ∪ {∅}
output :Database resulting from ft+(D,δ,ψ)

1 R′← R \ {δ};
2 F′← F;

/* conditions for transitivity */

3 if δ,ψ ∈ R and δ ∤ ψ then
4 θ← s(δ)∩ s(ψ);
5 r←Πθ(ψ)×Πs(ψ)\θ(ψ)−ψ;
6 pset← 2i(r) with tuples in each set ordered by RowId
7 ordered_pset← pset ordered from minimal to maximal set, with non

comparable sets ordered lexicographically starting with the tuples with
lowest RowId.

8 foreach i ∈ ordered_pset do
9 ψ′← (n(ψ), s(ψ), i(ψ)∪ i);

10 valid_ψ′← true;
11 foreach t ∈Πθ(ψ′) do
12 if ∄T ⊆Πθ(ψ′) \ {t} s.t. Πs(ψ′)\θ(σθ=t(ψ′)) = Πs(ψ′)\θ(σθ=T (ψ′)) then
13 valid_ψ′← false;
14 break;

15 if valid_ψ′ then
16 R′← R′ ∪ {(δ ▷◁ ψ′)∥θ};
17 F′←compute-δ-exclusion(F, δ);
18 break;

19 return (R′ ,F′);

in its output will always have at least as many tuples as (δ ▷◁ ψ)∥θ. Evidently, in certain

situations, this implies that some of the information that is in the transitive relation was

not originally in the database. However, it is exactly that information that allows us not

to recover any of the tuples in the instance of δ. Anyway, despite its obvious advantages

in some settings, notice that the operator ft+ would not deal adequately with the example

of the insurance company discussed at the beginning of the chapter (see Figure 4.1),

considering that, to avoid retrieval of tuples, it would add incorrect amounts to some of

the customers.

When it comes to the FDs, recall that since the relation ψ′ will not be added to the

result of forgetting, we do not have to worry about their satisfaction by ψ′. As for the FDs

in the transitive relation, we need to be extra careful with those between the attributes

of s(δ) \θ and the ones of s(ψ) \θ, given that the FDs exclusively with attributes of one

of these sets are already guaranteed to be satisfied, either because of δ (in the first case)

or ψ (in the second), as the values for these attributes are restricted to the ones in the

respective relations. Thus, by following the more conservative approach of applying the

δ-exclusion to the initial set of FDs, we assure that the transitive relation does not infringe

61

CHAPTER 4. FORGETTING RELATIONS IN RELATIONAL DATABASES

any FD.

Let us return to Example 4.6, where ft+ is indeed useful. Taking into account that the

relation ψ = prohibited_f ood is not valid for transitivity, given that the allergen gluten is

the only participating with both values cake and pasta in prohibited_f ood, the operator

would create a new temporary relation prohibited_f ood′, which would have the tuples

of the original plus a minimal set of tuples that, together with the first, would guarantee

transitivity without recovery of information. In this case, it could be any one of the tuples

(additives, pasta), (lactose, pasta) and (gluten, pasta), but due to the fixed order imposed

by the operator, it would end up choosing the first. Now, notice that all allergens in

prohibited_f ood′ have an alternative: additives and lactose participate with cake and

pasta, and gluten and nuts with cake. Therefore, even though the relation resulting from

the transitive operation between f ood_allergy and prohibited_f ood′ would remain the

same as in the example, by knowing that ft+ operates this way, we would not be able to

infer the exact tuples that were in the instance of f ood_allergy after it is forgotten.

Finally, to show why ft+ requires at least two tuples in the projection of θ in ψ to

compute the transitive relation, consider the relations shown in Figure 4.4. For these

instances, if the operator outputted a transitive relation with the tuple (a1, d1), then it

would obviously lead to the recovery of all the information in δ, since there are no values

for the attributes θ = {B,C} that can be added to ψ to serve as alternative for (b1, c1).

δ

A B C

a1 b1 c1

ψ

B C D

b1 c1 d1

Figure 4.4: Arbitrary relations δ and ψ, each with a single tuple.

Having introduced our forgetting operators, in the next chapter we will carefully

analyse them and discuss their properties.

62

5

Analysis and Evaluation

In the previous chapter we formally defined the notion of a forgetting operator and

introduced four operators, each aligned with a distinct view on forgetting and thus with

its own unique features and possible applications. These, in turn, were showcased using

different examples and use cases.

In this chapter we analyse more thoroughly our operators of forgetting. To this end,

we start by showing that all the operators are well defined, i.e., that they are indeed

operators of forgetting. Afterwards, we formalise in the form of properties some of the

intuitions that guided us through the definition of each of the four operators and evaluate

them against those properties (with special attention to the ones that each operator was

intuitively motivated by). In specific, we prove analytically which operators satisfy which

properties and, when that is not the case, provide counterexamples to show the opposite.

Furthermore, we prove certain relationships between some of the properties. Finally, we

finish with a summary and discussion of the main results, showing that the operators

obey desirable sets of the defined properties.

5.1 Relation Forgetting Operators

In this section we prove that our operators are correct. Therefore, for each operator

individually, we show that (1) it has the correct domain and codomain; (2) the relation

to be forgotten does not belong to the relation set in any possible resulting database; and

(3) the closure of the FDs in any database in the output of the operator is a subset of the

closure of the initial set (or, put differently, the new database is less constrained than the

initial one).

Proposition 5.1. fnt is a relation forgetting operator.

Proof. Let fnt(D,δ,ψ) = (R′ ,F′) for any D = (R,F) ∈DA,δ ∈RA and ψ ∈RA∪{∅}. For fnt to

be a relation forgetting operator then following statements must hold:

(1) fnt is a function with domain DA ×RA × (RA ∪ {∅}) and codomain DA;

(2) δ < R′;

63

CHAPTER 5. ANALYSIS AND EVALUATION

(3) F′+ ⊆ F+.

Starting with statement (1), the domain of fnt is DA ×RA × (RA ∪ {∅}) by definition. To

prove that the codomain of the operator is DA, then we must show that, for any database

in the output, its set of relations satisfies the closure of the FDs. This can be proved as

follows. Since (R,F) ∈DA, then the relations in R satisfy the FDs in F+, which means that

any subset of R also satisfies F+. Now, given that by definition fnt(D,δ,ψ) = (R\{δ},F) and

that R \ {δ} satisfies F+, then fnt(D,δ,ψ) is a database, i.e., fnt(D,δ,ψ) ∈DA.

Statements (2) and (3) follow directly from the fact that fnt(D,δ,ψ) = (R\{δ},F) and, in

addition for the last statement, that the Armstrong’s axioms, which are used to compute

the closure, are sound and complete.

Proposition 5.2. ft is a relation forgetting operator.

Proof. Let ft(D,δ,ψ) = (R′ ,F′) for any D = (R,F) ∈ DA,δ ∈RA and ψ ∈RA ∪ {∅}. For ft to

be a relation forgetting operator then following statements must hold:

(1) ft is a function with domain DA ×RA × (RA ∪ {∅}) and codomain DA;

(2) δ < R′;

(3) F′+ ⊆ F+.

Let us start with the first statement. The domain of ft is DA×RA×(RA∪{∅}) by definition.

To prove that the codomain of the operator is DA, then we must show that, for any

database in the output, its set of relations satisfies the closure of its FDs. To this end,

note that, by the definition of ft, the resulting database is either equal to (R \ {δ},F) or

(R\{δ}∪{(δ ▷◁ ψ)∥θ},F∥δ), where θ = s(δ)∩s(ψ). Regarding the first database, it was already

shown to belong to DA in the proof for Proposition 5.1. So, we focus on the second. In

this case, considering that R\{δ} satisfies F+ from the previous result, then it also satisfies

any subset of F+. In particular, it satisfies F∥δ. Therefore, we just have to prove that the

relation resulting from the join operation (i.e., the transitive relation) also satisfies all

FDs in F∥δ that are projected on its schema. Recall that the schema of this relation has

only attributes of δ and ψ. Thus, since, by definition, F∥δ has no FDs with attributes of

δ, then the only FDs that might be projected on schema of the new relation are (a subset

of) the ones that are also projected on the schema of ψ (bear in mind that all the FDs

that could be projected on the schema of the transitive relation besides these would have

attributes of δ). Because ψ ∈ R \ {δ}, then it satisfies all the FDs of F∥δ that are projected

on its schema and, by Theorem 1 in [CBN20], it follows that the transitive relation, which

results from a join operation using ψ, also does. For these reasons, D ′ ∈DA.

It is straightforward to see that statements (2) and (3) hold, considering that D ′ is

either equal to (R \ {δ},F) or (R \ {δ} ∪ {δ ▷◁ ψ}∥θ},F∥δ) and, in addition for the last state-

ment, note that the Armstrong’s axioms, which are used to compute the closure in the

δ-exclusion of F, are sound complete, and that F∥δ is a subset of F+ by definition.

64

5.1. RELATION FORGETTING OPERATORS

Proposition 5.3. ft− is a relation forgetting operator.

Proof. Let ft−(D,δ,ψ) = (R′ ,F′) for any D = (R,F) ∈DA,δ ∈RA and ψ ∈RA∪{∅}. For ft− to

be a relation forgetting operator then following statements must hold:

(1) ft− is a function with domain DA ×RA × (RA ∪ {∅}) and codomain DA;

(2) δ < R′;

(3) F′+ ⊆ F+.

Starting with (1), the domain of ft− is DA×RA× (RA∪{∅}) by definition. In order to prove

that the codomain of the operator is DA, then we must show that, for any database in

the output, its set of relations satisfies the closure of the FDs. To that end, observe that,

by the definition of the operator, the resulting database is either equal to (R \ {δ},F) or

(R \ {δ} ∪ {(δ∗ ▷◁ ψ)∥θ},F∥δ), where δ∗ ⊑ δ and θ = s(δ)∩ s(ψ) by construction. Considering

that the first database was already shown to belong to DA in the proof for Proposition 5.1,

we focus on the second. In this case, since R \ {δ} satisfies F+ from the previous result,

then it also satisfies any subset of it, in particular F∥δ. This means that we just need

to prove that the relation resulting from the join operation between δ∗ and ψ (i.e., the

transitive relation) satisfies the FDs in F∥δ that are projected on its schema. Recall that,

by the definition of the operator (Algorithm 5, lines 5 and 13), we have s(δ∗) = s(δ), and

therefore the schema of the transitive relation only has attributes of δ and ψ. Thus, given

that F∥δ does not have FDs with attributes of δ, the only FDs that might be projected on

the schema of the new relation are either the ones that are also projected on the schema

of ψ or a subset of those (bear in mind that all the remaining FDs that could be projected

on the schema of this relation would have attributes of δ). Because ψ ∈ R \ {δ}, it satisfies

the FDs of F∥δ that are projected on its schema. Therefore, it follows from Theorem 1

in [CBN20] that the new relation also does, since it results from a join operation using ψ.

Thus, D ′ ∈DA.

Concerning statements (2) and (3), it is easy to see that they hold, given thatD ′ is either

equal to (R\{δ},F) or (R\{δ}∪{δ∗ ▷◁ ψ}∥θ},F∥δ) and, in addition for the last statement, note

that the Armstrong’s axioms, which are used to compute the closure in the δ-exclusion of

F, are sound complete, and that F∥δ is a subset of F+ by definition.

Proposition 5.4. ft+ is a relation forgetting operator.

Proof. Let ft+(D,δ,ψ) = (R′ ,F′) for any D = (R,F) ∈DA,δ ∈RA and ψ ∈RA∪{∅}. For ft+ to

be a relation forgetting operator then following statements must hold:

(1) ft+ is a function with domain DA ×RA × (RA ∪ {∅}) and codomain DA;

(2) δ < R′;

(3) F′+ ⊆ F+.

65

CHAPTER 5. ANALYSIS AND EVALUATION

Regarding statement (1), the domain of ft+ is DA×RA× (RA∪{∅}) by definition. To prove

that the codomain of the operator is DA, then we must show that, for any database in the

output, its set of relations satisfies the closure of the FDs. Therefore, consider the two

possible databases in the output of the operator, (R \ {δ},F) and (R \ {δ} ∪ {(δ ▷◁ ψ′)∥θ},F∥δ),

where ψ ⊑ ψ′ ⊑ (Πθ(ψ) ×Πs(ψ)\θ(ψ)) and θ = s(δ) ∩ s(ψ) by construction. Taking into

account that (R\{δ},F) was already shown to belong to DA in the proof for Proposition 5.1,

we focus exclusively on the second database. In this case, since R\{δ} satisfies F+ from the

previous result, then it is true that it also satisfies any subset of it, in particular F∥δ. Thus,

we just need to prove that the relation resulting from the natural join between δ and ψ′

(i.e., the transitive relation) satisfies the FDs in F∥δ that are projected on its schema. Recall

that, by the definition of the operator (Algorithm 6, line 9), we have s(ψ) = s(ψ′), which

implies that the schema of the transitive relation only has attributes of δ and ψ. Therefore,

given that F∥δ has no FDs with attributes of δ, the only FDs that might be projected on the

schema of the new relation are either the ones projected on the schema of ψ or a subset

of those (bear in mind that all the remaining FDs that could be projected on the schema

of this relation would have attributes of δ). In fact, if we look closely at the schema of the

transitive relation, it only has the attributes s(ψ)\θ of ψ. Hence, it suffices to focus on the

proof for the satisfaction of the FDs that are projected on these attributes. Furthermore,

note that, by the definition of the algorithm to compute ft+ (lines 5–9), all combinations

of values in ψ′ for the attributes s(ψ) \ θ are already in ψ, i.e., Πs(ψ′)\θ(ψ′) ⊑ Πs(ψ)\θ(ψ).

This means that, since ψ satisfies the FDs in F∥δ that only have attributes of s(ψ)\θ (given

that ψ ∈ R \ {δ}, which was shown to satisfy F∥δ), then ψ′ also does. Consequently, by

Theorem 1 in [CBN20], the transitive relation must also satisfy those FDs, since it is the

result of a join operation using ψ′. Thus, D ′ ∈DA.

It is straightforward to see that statements (2) and (3) hold, considering that D ′ is

either equal to (R \ {δ},F) or (R \ {δ} ∪ {δ ▷◁ ψ′}∥θ},F∥δ) and, in addition for the last state-

ment, note that the Armstrong’s axioms, which are used to compute the closure in the

δ-exclusion of F, are sound complete, and that F∥δ is a subset of F+ by definition.

5.2 Relation Forgetting Properties

In Chapter 4, we introduced the definition of a relation forgetting operator and com-

mented on the fact that, because it was such a general definition, it purposely allowed

for countless operators. For that reason, throughout that chapter, we discussed in an

informal way desired characteristics the result of forgetting should have for specific situa-

tions, in order to narrow the scope of the definition to useful operators, which were later

presented.

Despite that, we still lack a more formal method to evaluate the various operators.

Therefore, in this section, we will revisit the intuitions that lead to each operator and, as

a means to better distinguish between the different alternatives to forgetting relations,

we will introduce a variety of properties. In turn, each of these properties imposes an

66

5.2. RELATION FORGETTING PROPERTIES

additional set of restrictions to the definition of an operator and, consequently, has its

usefulness in a particular range of applications. Furthermore, as we saw in the last last

chapter, it is the combination of different properties that motivates distinct operators

of forgetting. Again, this means that there is no one-size-fits-all approach to forgetting

and, ultimately, the choice of operator to use in each situation will depend on the set of

properties considered most relevant in the case under discussion.

On that premisse, we start by introducing two properties that impose semantic re-

strictions based on the definition of derivability between databases upon the result of

forgetting.

The first property is named Persistence and was informally presented in the context

of both non-transitive and transitive operators. It focuses on the fact that forgetting

about a relation δ in a database should not affect the information stored in the remaining

relations (i.e., that information should persist after forgetting). In other words, we would

expect the result of forgetting to preserve the answer to any queries (on the schema of

the original database) that do not mention the relation to be forgotten. Going back to

the notion of derivability between databases, this is achieved when the original database

without relation δ is derivable from the new database.

Definition 5.1 (Persistence (P)). A relation forgetting operator f satisfies Persistence if,

for each D = (R,F) ∈DA,δ ∈RA and ψ ∈RA ∪ {∅}, we have (R \ {δ},F) ⩽ f(D,δ,ψ).

Satisfying (P) can thus mean the addition of any set of relations to the new database,

as long as, according to the definition of an operator, the relation to be forgotten is not

included in it. Furthermore, it also allows for any transformation that changes the schema

of the remaining relations provided that it does not lead to any loss of information in

the database. For these reasons, one can think of this property as a lower bound for the

information contained in the database resulting from forgetting. Naturally, we would

expect any desirable operator to satisfy (P), which is indeed the case for our operators.

Proposition 5.5. fnt, ft, ft− and ft+ satisfy (P).

Proof. We start with the first operator. To prove that fnt satisfies (P), let D = (R,F), δ

and ψ be as in the definition of the property. Then, by the definition of fnt, we have

fnt(D,δ,ψ) = (R \ {δ},F) and thus we must show that (R \ {δ},F) ⩽ (R \ {δ},F). This, in turn,

is a consequence of Proposition 3.2. Therefore, fnt satisfies (P).

In the case of ft, we must prove that for D = (R,F), δ and ψ as above, it is true that

(R\ {δ},F) ⩽ ft(D,δ,ψ). By definition, ft(D,δ,ψ) can output one of the databases (R\ {δ},F)

and (R\{δ}∪{(δ ▷◁ ψ)∥θ},F∥δ), where θ = s(δ)∩s(ψ), and thus we must show that (R\{δ},F) is

derivable from both, i.e., (R\ {δ},F) ⩽ (R\ {δ},F) and (R\ {δ},F) ⩽ (R\ {δ}∪ {(δ ▷◁ ψ)∥θ},F∥δ).

The proof for the first expression is a consequence of Proposition 3.2. Regarding the

second derivability, note that by Proposition 3.3 we have (R \ {δ},F) ⩽ (R \ {δ},F∥δ) since

(F∥δ)+ ⊆ F+ by the definition of F∥δ. Thus, using Proposition 3.4, we can conclude that

(R \ {δ},F) ⩽ (R \ {δ} ∪ {(δ ▷◁ ψ)∥θ},F∥δ). Therefore, ft satisfies (P).

67

CHAPTER 5. ANALYSIS AND EVALUATION

Let D = (R,F), δ and ψ be as above. To prove that ft− satisfies (P), then we must show

that for any database in the output of the operator, we have (R \ {δ},F) ⩽ ft−(D,δ,ψ). By

definition, ft−(D,δ,ψ) is either equal to (R\{δ},F) or (R\{δ}∪{(δ∗ ▷◁ ψ)∥θ},F∥δ), where δ∗ ⊑ δ
and θ = s(δ)∩s(ψ). Thus, we must show that (R\{δ},F) ⩽ (R\{δ},F) and (R\{δ},F) ⩽ (R\{δ}∪
{(δ∗ ▷◁ ψ)∥θ},F∥δ). The first expression is a consequence of Proposition 3.2, and therefore

true. So we focus on the second. By Proposition 3.3, we have (R \ {δ},F) ⩽ (R \ {δ},F∥δ)

since (F∥δ)+ ⊆ F+ by the definition of F∥δ. Thus, using Proposition 3.4, we can conclude

that (R \ {δ},F) ⩽ (R \ {δ} ∪ {(δ∗ ▷◁ ψ)∥θ},F∥δ), which proves that ft− satisfies (P).

For the same domains of D = (R,F), δ and ψ as above, we now prove that ft+ satisfies

(P). To that end, observe that, by the definition of the operator, ft+(D,δ,ψ) is either equal

to (R \ {δ},F) or (R \ {δ} ∪ {(δ ▷◁ ψ′)∥θ},F∥δ), where ψ ⊑ ψ′ and θ = s(δ)∩ s(ψ). Therefore we

must show that (R \ {δ},F) is derivable from both databases, i.e., (R \ {δ},F) ⩽ (R \ {δ},F)

and (R \ {δ},F) ⩽ (R \ {δ} ∪ {(δ ▷◁ ψ′)∥θ},F∥δ). Considering that the first expression is a

consequence of Proposition 3.2, we focus on the second. By Proposition 3.3 we have (R \
{δ},F) ⩽ (R\{δ},F∥δ) since (F∥δ)+ ⊆ F+ by the definition of F∥δ. Thus, using Proposition 3.4,

we can conclude that (R \ {δ},F) ⩽ (R \ {δ} ∪ {(δ ▷◁ ψ′)∥θ},F∥δ). Therefore, ft+ satisfies (P),

which finishes the proof for the proposition.

Inversely, the next property, which we name Weakening, enforces an upper bound. In

this case, we may expect a database resulting from an operation of relation forgetting to

carry no more information than what it is possible to retrieve from the original database.

This suggests that any answer to a query on the schema of the new database should not

hold information that is not accessible through a query on the initial one. Hence, one can

say that forgetting may weaken the database.

Definition 5.2 (Weakening (W)). A relation forgetting operator f satisfies Weakening if,

for each for each D ∈DA,δ ∈RA and ψ ∈RA ∪ {∅}, we have f(D,δ,ψ) ⩽D.

The only operator satisfying (W), however, is fnt.

Proposition 5.6. fnt satisfies (W), but ft, ft− and ft+ do not.

Proof. We start by proving that fnt satisfies (W). To that end, let D = (R,F) ∈DA,δ ∈RA

and ψ ∈RA ∪ {∅}. Since by the definition of fnt we have fnt(D,δ,ψ) = (R \ {δ},F), then we

must show that (R \ {δ},F) ⩽ (R,F). This can be done using the results in Proposition 3.2

and Proposition 3.4 as follows. First, consider that, as a consequence of Proposition 3.2,

we have (R\{δ},F) ⩽ (R\{δ},F). Then, by Proposition 3.4, we can derive (R\{δ},F) ⩽ (R,F).

Therefore, fnt satisfies (W).

To prove that ft does not satisfy (W), consider a databaseD with the relations customer,

disease and increased_cost as shown in Figure 4.1 and the functional dependencies

F = {ID→Name,Y earOf Birth ; Disease→ Amount}.

68

5.2. RELATION FORGETTING PROPERTIES

The result of ft(D,disease, increased_cost), corresponds to the database D ′ with the rela-

tions customer, disease and disease-increased_cost as shown in Figure 4.3 and without

any FD (note that all FDs in the original set have attributes of δ = disease and therefore

F∥disease = ∅). Let us assume that ft satisfies (W). For this to be true, then any database

in the output of the operator must be derivable from the original database. In particular,

D ′ ⩽D must be true. For that, there must exist a tuple of queries q̄ in our language such

that S(D ′) ⩽ S(D) by q̄ and, for any relation r in D ′, we have r ≡ q(D), with q ∈ q̄. Let

us look at the relation customer in both databases. Since the instance for this relation is

equal in both, and the attributes Name and Y earOf Birth are not in any other relation,

then, for this relation in D ′, q must be the identity query for customer in D, or any query

equivalent to it. However, given that the instances of S = S(D) are more constrained than

those of S ′ = S(D ′), as the latter does not have any FD, then it is straightforward that, for

example for an instance of customer in a database in D(S ′) with two distinct values of

Name for the same value ID, there is no query q that can represent that information in

an instance of D(S) while guaranteeing customer ≡ q(D) for the instances of the relations

in D and D ′ shown in Figures 4.1 and 4.3, respectively, since ID → Name is in D and

consequently in any instance of S. This implies that S(D ′) ⩽ S(D) by q̄ is not true, which

contradicts the fact that ft satisfies (W).

To prove that the operators ft− and ft+ do not satisfy (W), we can use exactly the same

database D as the proof above, considering that, for this input database, relation δ and

relation ψ, the output of the operators ft− and ft+ only differs from the one of ft in the

instance of disease-increased_cost. Thus, employing the same strategy as before, we can

reach a contradiction that ft− and ft+ satisfy (W).

The result above allows us to conclude that the intuition behind (W) enforcing a de-

sirable upper bound on the information contained in a database resulting from forgetting

is not correct for all the cases, as our operators of transitive forgetting do not satisfy this

property. In fact, as shown in the proof, this is due to the FDs in the result of the opera-

tors being less imposing than the original, given that, at least for ft, it is straightforward

that all the information in any database in its output can be obtained by a query on the

schema of the original database. Therefore, since derivability between databases requires

derivability between the respective schemas, because of how the transitive operators han-

dle the FDs in case the conditions for transitivity are satisfied, in some circumstances it

is impossible to guarantee derivability from the schema of the original database to the

schema of the new database, whose instances can now accommodate more information.

In truth, even though we have taken a more conservative approach when it comes to the

manipulation of the FDs by the transitive operators, as examples 4.2 and 4.3 show, in

some situations this manipulation is indeed necessary to guarantee that the relations in

the databases in the output of the operators satisfy the FDs. This implies that (W) is too

strong for transitive forgetting in general.

Furthermore, there are other, more general, properties that guided the definition of

69

CHAPTER 5. ANALYSIS AND EVALUATION

our operators. For instance, when forgetting about a relation δ that does not belong

to the original database D, we would expect the database to be left unchanged under

equivalence. The following property expresses this notion of forgetting being irrelevant

to δ < RD .

Definition 5.3 (Irrelevance (I)). A relation forgetting operator f satisfies Irrelevance if, for

each D ∈DA and ψ ∈RA ∪ {∅}, if δ < RD , then f(D,δ,ψ) ≡D.

Once more, (I) admits transformations at the level of the database schema, as long as

the original and resulting databases stay equivalent.

Proposition 5.7. fnt, ft, ft− and ft+ satisfy (I).

Proof. We start by showing that fnt satisfies (I). For that, let D = (R,F) ∈ DA, δ ∈RA \R
andψ ∈RA∪{∅}. By the definition of fnt we have fnt(D,δ,ψ) = (R\{δ},F), and thus we must

prove that (R\ {δ},F) ≡ (R,F). However, since we have R\ {δ} = R, this equivalence implies

(R,F) ≡ (R,F), which is clearly true by Proposition 3.2 (equivalence between databases

holds the property of reflexivity). Therefore, we can conclude that fnt obeys (I).

We now look at the remaining operators concurrently. Let D = (R,F), δ and ψ be

as above. For ft, ft− and ft+ to satisfy (I), then we must prove that ft(D,δ,ψ) ≡ (R,F),

ft−(D,δ,ψ) ≡ (R,F) and ft+(D,δ,ψ) ≡ (R,F), respectively, for the defined domains. Before

looking at the equivalences, observe that, for δ < R the result of the three operators is

always the database (R \ {δ},F), which is obviously equal to (R,F) since, again, δ is not

in R. Thus, all we have to prove is that (R,F) ≡ (R,F). This result is a consequence of

Proposition 3.2. Hence, it is true that the transitive operators ft, ft− and ft+ satisfy (I).

Anyhow, we are usually interested in forgetting about a relation that is part of the

database. For that, we saw that there are two main alternatives, corresponding to non-

transitive and transitive forgetting. We now focus on the first.

Recall from the introduction of non-transitive forgetting at the start of Section 4.3,

the importance of guaranteeing that these operators output databases that are equivalent

to the initial database up to the relation to be forgotten δ. This way, we can make sure

that they preserve all information in the original database without δ and, as importantly,

do not add information to new database that was not already there. However, it is still

the fact that we wrap this idea under our notion of database equivalence that enables

operators to change the schema of the remaining relations in the database. In order to

help us introduce a property of forgetting that describes exactly this, we start by formally

defining the concept of equivalence up to δ between databases.

Definition 5.4 (Equivalence up to δ between Databases). Let D = (R,F) and D ′ = (R′ ,F′)

be two databases over A and δ a relation over A. We say that D and D ′ are equivalent up
to δ (or δ-equivalent for short), denoted by D ≡δ D ′, if (R \ {δ},F) ≡ (R′ \ {δ},F′).

70

5.2. RELATION FORGETTING PROPERTIES

As the name suggests, the notion of δ-equivalence between databases is weaker than

simple equivalence, given that it relaxes the conditions imposed on the latter by not

considering relation δ on both sides.

By itself, δ-equivalence between databases captures the essence behind non-transitive

forgetting. In this case, we want the database resulting from forgetting about a relation δ

to be δ-equivalent to the original database. In that respect, notice that, by the definition of

an operator of relation forgetting, δ cannot belong to the new database. Overall, the fact

that this condition on the result of forgetting is set under a notion of semantic equivalence

makes non-transitive forgetting accommodate more than just simple “delete” or “remove”

operators.

Definition 5.5 (No Transitivity (NT)). A relation forgetting operator f satisfies No Transtiv-
ity if, for each D ∈DA,δ ∈RA and ψ ∈RA ∪ {∅}, we have f(D,δ,ψ) ≡δ D.

An operator that obeys (NT) guarantees that, for any query on the schema of the orig-

inal database that does not mention the relation to be forgotten, there is a corresponding

query on the schema of the resulting database that gives exactly the same answer. This is

also true for the other way around.

Furthermore, we can show that satisfying (NT) implies satisfying all the properties

introduced so far, i.e., (P), (W) and (I)1.

Proposition 5.8. (NT) implies (P), (W) and (I).

Proof. Let f(D,δ,ψ) = (R′ ,F′) for any relation forgetting operator f, D = (R,F) ∈ DA, δ ∈
RA and ψ ∈ RA ∪ {∅}. If (NT) holds then we have (R′ ,F′) ≡δ (R,F). By definition of

δ-equivalence, this can be written as (R′ \ {δ},F′) ≡ (R \ {δ},F). In turn, this equivalence

implies derivability in both directions, i.e., (R′ \ {δ},F′) ⩽ (R \ {δ},F) and (R \ {δ},F) ⩽

(R′ \ {δ},F′). Regarding the latter expression, since by the definition of an operator of

forgetting δ < R′, we obtain (R \ {δ},F) ⩽ (R′ ,F′), which is exactly the definition of (P).

To prove (W), we focus instead on the first expression of derivability, i.e., (R′\{δ},F′) ⩽
(R \ {δ},F). Because δ < R′ by the definition of an operator of forgetting, this implies

(R′ ,F′) ⩽ (R \ {δ},F). Thus, by Proposition 3.4, it follows immediately that (R′ ,F′) ⩽ (R,F),

which corresponds to the definition of (W).

Finally, in the case of (I), we go back to the equivalence (R′ \ {δ},F′) ≡ (R \ {δ},F). For

the same reason as before, this can be written as (R′ ,F′) ≡ (R \ {δ},F). Furthermore, for

δ < R, which corresponds to the domain for which δ is defined in (I), this equivalence is

equal to (R′ ,F′) ≡ (R,F), which leads us to the definition of the property.

Having derived (P), (W) and (I) from (NT), we proved the proposition.

1To simplify, from now on, whenever it is clear from the context, we use “(X)”, where (X) is any property,
as a shortcut for “satisfying (X)”. Therefore, when we write “(X) implies the property (Y)” we mean that
every operator that satisfies (X) also satisfies (Y).

71

CHAPTER 5. ANALYSIS AND EVALUATION

Even though we have been doing so informally, from here on, we shall call any oper-

ator that satisfies (NT) a non-transitive operator. Accordingly, from the four operators

introduced, only fnt satisfies this property.

Proposition 5.9. fnt satisfies (NT), but ft, ft− and ft+ do not.

Proof. We start by proving that fnt satisfies (NT). For that, let D = (R,F) ∈ DA,δ ∈ RA

and ψ ∈RA ∪ {∅}. Now, we must show that fnt(D,δ,ψ) ≡δ D. Since fnt(D,δ,ψ) = (R \ {δ},F)

by the definition of the operator, we can rewrite the δ-equivalence as (R \ {δ},F) ≡δ (R,F),

which implies (R \ {δ},F) ≡ (R \ {δ},F). This, in turn, is true by Proposition 3.2. Thus, fnt
satisfies (NT).

To prove that the operators ft, ft− and ft+ do not satisfy (NT) consider a database D

such that RD = (δ,ψ), where δ and ψ correspond to the relations represented by the tables

right below, and FD = {A→ B ; B→ C}.

δ

A B

a1 b1

ψ

B C

b1 c1

b2 c1

Then, for the three operators, the result of forgetting about δ with respect to ψ in database

D is the database D ′ such that RD ′ = (ψ,φ), where φ is the transitive relation depicted by

the table below, and FD ′ = ∅.

φ

A C

a1 c1

We can easily see that D and D ′ are not equivalent up to δ, given that RD ′ \{δ} has relation

with the value a1 for attribute A, but RD \ {δ} does not even have a relation with attribute

A. This implies that ft, ft− and ft+ do not satisfy (NT).

Note, however, that (NT) alone does not enforce sufficiently strong restrictions to

the set of FDs we want to preserve in the result of non-transitive forgetting. In fact, in

Section 4.3, we expressed our desire for the set of FDs in the database resulting from the

application of this type of operators to be equivalent to the initial set up to the FDs solely

projected on the schema of δ. This idea leads us to the property of Strong Preservation of
Funcional Dependencies, as shown below.

Definition 5.6 (Strong Preservation of Functional Dependencies (SPFD)). A relation

forgetting operator f satisfies Strong Preservation of Functional Dependencies if, for each

D = (R,F) ∈ DA, δ ∈ RA and ψ ∈ RA ∪ {∅} with f(D,δ,ψ) = (R′ ,F′), we have F′+ \ (F′)R
′

δ ≡
F+ \FRδ .

72

5.2. RELATION FORGETTING PROPERTIES

The property (SPFD) establishes a minimum set of FDs in the result of forgetting,

whose closure is now constrained between the original set with and without the FDs that

are only projected on s(δ), i.e., F+ \FRδ and F+, respectively. Recall that the upper limit is

given by the definition of an operator of forgetting.

For this reason, (SPFD) still gives operators some freedom to manipulate the original

set of FDs. Nonetheless, as extensively discussed in Section 4.4, this property can some-

times be too strong for transitive forgetting, in the sense that it would not allow us to

define correct operators.

Proposition 5.10. fnt satisfies (SPFD), but ft, ft− and ft+ do not.

Proof. To prove that fnt satisfies (SPFD), let fnt(D,δ,ψ) = (R′ ,F′) for any D = (R,F), δ and

ψ as in the definition of the property. Now, we must show that F′+ \ (F′)R
′

δ ≡ F
+ \ FRδ . By

the definition of fnt, we have (R′ ,F′) = (R \ {δ},F), and therefore we can rewrite the last

equivalence as F+ \ FR\{δ}δ ≡ F+ \ FRδ . Since FR\{δ}δ is equal to FRδ by definition, then the

equivalence is true and the property holds.

For the negative results, consider the databases D = ((δ,ψ), {A → B ; B → C}) and

D ′ = ((ψ,φ),∅) in the proof for Proposition 5.9 (recall that D ′ is the database resulting

from forgetting about δ with respect to ψ in D using any of the operators ft, ft− and ft+).

In this case, we have B→ C ∈ F+
D \ (FD)RDδ , but since FD ′ = ∅, then B→ C < F+

D ′ \ (FD ′)
RD′
δ .

Therefore, ft, ft− and ft+ do not satisfy (SPFD).

On that note, we now shift the focus to transitive forgetting, and introduce a prop-

erty that characterises how transitive operators should manipulate the set of FDs in the

database. In light of the previous property, we name it weak Preservation of Functional
Dependencies.

Definition 5.7 (weak Preservation of Functional Dependencies (wPFD)). A relation

forgetting operator f satisfies weak Preservation of Functional Dependencies if, for each

D = (R,F) ∈DA, δ ∈RA and ψ ∈RA ∪ {∅} with f(D,δ,ψ) = (R′ ,F′), we have that F′∥δ ≡ F∥δ.

As expected from the discussion in Section 4.4 concerning the FDs in the result of

transitive forgetting, (wPFD) weakens the equivalence enforced by (SPFD) in the sense

that less FDs are potentially considered for equivalence. In practice, this property cap-

tures the intuition that operators should keep under equivalence at least all the FDs that

do not refer to the attributes in the relation to be forgotten. That is, for an operator to

satisfy (wPFD), it has to guarantee that the closure of the FDs in the resulting database

is equivalent to the closure of the initial set, up to the ones that have attributes of δ.

Still, even though the condition imposed by (wPFD) in the result of forgetting is

different from the one enforced by (SPFD), some non-transitive operators that satisfy the

latter can still obey (wPFD). That is exactly the case for fnt. In addition, all transitive

operators also satisfy (wPFD).

Proposition 5.11. fnt, ft, ft− and ft+ satisfy (wPFD).

73

CHAPTER 5. ANALYSIS AND EVALUATION

Proof. The fact that fnt satisfies (wPFD) follows directly from the observations that, by

the definition of the operator, we have Ffnt(D,δ,ψ) = F for any D = (R,F), δ and ψ in the

domains defined in the property, and the Armstrong’s axioms, which are used to compute

F+ in the δ-exclusion of F, are sound and complete.

We now prove this result simultaneously for the transitive operators. Let D = (R,F), δ

andψ be as above. To prove that ft, ft− and ft+ satisfy (wPFD), we must show that F′∥δ ≡ F∥δ
for any possible F′ in the database resulting from forgetting about δ with respect to ψ in

D. By direct observation, we can see that F′ can either be equal to F or F∥δ for the three

operators. Considering that the result for F was already shown to be true in the proof for

fnt, then we focus on the second set of FDs. Thus, we must show that F∥δ ≡ F∥δ. Again, it

is clear that these sets are indeed equivalent, given that the Armstrong’s axioms, which

are used to compute the closure of F in the δ-exclusion of F, are sound complete. Thereby,

ft, ft− and ft+ satisfy (wPFD).

Regarding the set of relations in the result of transitive forgetting, recall that right

at the beginning of Section 4.4, we specified the conditions for when a new transitive

relation resulting from forgetting about δ with respect to a relation ψ should be added to

the database. More precisely, we discussed that it should only happen in case ψ belongs

to the initial set of relations, and δ and ψ are non-comparable and their schemas non-

disjoint, i.e., δ ∤ ψ. Otherwise, we would expect transitive operators to just remove δ from

the database.

The next property formalises this requirement. We name it ψ-Irrelevance, as the

operators that satisfy it are irrelevant to any ψ ∈RA that does not obey at least one of the

aforementioned conditions.

Definition 5.8 (ψ-Irrelevance (ψ-I)). A relation forgetting operator f satisfiesψ-Irrelevance
if, for each D ∈DA and δ ∈RA, if ψ < RD or δ ∤ ψ is not true, then f(D,δ,ψ) ≡δ D.

Note that this property is very similar to (NT). In fact, (ψ-I) simply restricts the

domains for which (NT) is defined, so that δ-equivalence is only required for the exact

values where transitivity is not desirable. Therefore, any operator that satisfies (NT)

obeys (ψ-I) as well.

Proposition 5.12. (NT) implies (ψ-I).

Proof. Let f be any relation forgetting operator. For f to satisfy (NT), then for each D ∈
DA,δ ∈ RA and ψ ∈ RA ∪ {∅}, we have f(D,δ,ψ) ≡δ D. Considering that (ψ-I) is just

a special case of (NT), in the sense that it simply restricts the domains of δ and ψ for

which the δ-equivalence is defined, then it is straightforward that if f satisfies (NT) it also

satisfies (ψ-I).

Proposition 5.13. fnt, ft, ft− and ft+ satisfy (ψ-I).

74

5.2. RELATION FORGETTING PROPERTIES

Proof. The fact that fnt satisfies (ψ-I) is a corollary of Propositions 5.9 and 5.12.

In the case of the transitive operators, let D = (R,F), δ and ψ be as in the definition

of (ψ-I). To prove that ft, ft− and ft+ satisfy this property, we must show that if ψ < R or

δ ∤ ψ is not true, then ft(D,δ,ψ) ≡δ D, ft−(D,δ,ψ) ≡δ D and ft+(D,δ,ψ) ≡δ D, respectively.

Observe that, since the conditions for transitivity are not satisfied, the three operators

always output the database (R\{δ},F), and thus it suffices to prove that (R\{δ},F) ≡δ (R,F).

By the definition of δ-equivalence, this implies (R \ {δ},F) ≡ (R \ {δ},F), which is true by

Proposition 3.2. Therefore, ft, ft− and ft+ hold (ψ-I).

Contrarily to (ψ-I), whenever the requirements for transitivity between δ and ψ

are fulfilled, we want our transitive operators to add the new transitive relation to the

database. The next two properties, (T−) and (T+), capture the idea of transitive forgetting.

The first property guarantees that there is transitivity even if only a subset of the tuples

in the instance of (δ ▷◁ ψ)∥θ, where θ is a non-total intersecting superset of (s(δ), s(ψ)), is

preserved. On the other hand, the second is similar, but for a superset. The distinction

between these two properties is extremely important. As we saw in Section 4.5, in some

cases, it is either by avoiding some tuples in the instance of (δ ▷◁ ψ)∥θ, or adding tuples to

it, that we can preserve the indirect relationship between some of the disjoint attributes

in δ and ψ without it being possible to use this information to deliberately retrieve any

of the forgotten tuples.

Definition 5.9 (Transitivity with Deletion (T−)). A relation forgetting operator f satisfies

Transitivity with (possible) Deletion if, for each D = (R,F) ∈ DA and δ,ψ ∈ R with δ ∤ ψ,

there exists φ ∈ Rf(D,δ,ψ) \R such that φ ⊑ (δ ▷◁ ψ)∥θ for some θ ⊇∩ (s(δ), s(ψ)).

Proposition 5.14. ft and ft− satisfy (T−), but fnt and ft+ do not.

Proof. We start by proving that ft satisfies (T−). For that, let D = (R,F) ∈ DA, δ ∈ R
and ψ ∈ R. If δ ∤ ψ holds, then by the definition of the operator, we have ft(D,δ,ψ) =

(R \ {δ} ∪ {(δ ▷◁ ψ)∥θ∗},F∥δ), where θ∗ = s(δ) ∩ s(ψ). Therefore, Rft(D,δ,ψ) \ R is equal to

(R \ {δ} ∪ {(δ ▷◁ ψ)∥θ∗}) \R, which in turn is equal to (δ ▷◁ ψ)∥θ∗ . Now, consider θ∗. Our goal

is to prove that it is a non-total intersection superset of (s(δ), s(ψ)), i.e., θ∗ ⊇∩ (s(δ), s(ψ)).

For that, θ∗ ⊇ s(δ) ∩ s(ψ), θ∗ ⊉ s(δ) and θ∗ ⊉ s(ψ) must be true. Since θ∗ = s(δ) ∩ s(ψ),

then it is also true that θ∗ ⊇ s(δ)∩ s(ψ). Additionally, given that δ ∤ ψ implies s(δ) ⊈ s(ψ)

(and s(ψ) ⊈ s(δ)), then it also implies s(δ) , s(ψ). Thus, θ∗ = s(δ)∩ s(ψ) , s(δ) , s(ψ), and

we obtain θ∗ ⊉ s(δ) and θ∗ ⊉ s(ψ), which finally shows that θ∗ ⊇∩ (s(δ), s(ψ)). Then, for

θ = θ∗, we have (δ ▷◁ ψ)∥θ∗ ≡ (δ ▷◁ ψ)∥θ∗ , as both relations have exactly the same schema

and instance. This in turn implies that (δ ▷◁ ψ)∥θ∗ ⊑ (δ ▷◁ ψ)∥θ∗ . So, ft satisfies (T−).

In order to prove that ft− satisfies (T−), let D = (R,F), δ and ψ be as above. By the

definition of the operator, for δ ∤ ψ, we have ft−(D,δ,ψ) = (R\{δ}∪{(δ∗ ▷◁ ψ)∥θ∗},F∥δ), where

δ∗ ⊑ δ and θ∗ = s(δ) ∩ s(ψ). Thus, Rft− (D,δ,ψ) \ R is equal to (R \ {δ} ∪ {(δ∗ ▷◁ ψ)∥θ∗}) \ R,

which can be simplified to (δ∗ ▷◁ ψ)∥θ∗ . For the same reasons as in the proof above, we

can conclude that θ∗ ⊇∩ (s(δ), s(ψ)) for δ ∤ ψ. Therefore, for θ∗ = θ, we must prove that

75

CHAPTER 5. ANALYSIS AND EVALUATION

(δ∗ ▷◁ ψ)∥θ∗ ⊑ (δ ▷◁ ψ)∥θ∗ is true. Considering that δ∗ ⊑ δ implies s(δ∗) = s(δ) and i(δ∗) ⊆ i(δ),

and that the operator ▷◁ is monotonic (Proposition 4.2.2 in [AHV95]), the expression

(δ∗ ▷◁ ψ)∥θ∗ ⊑ (δ ▷◁ ψ)∥θ∗ must be true.

Regarding the negative results, let us start by proving that fnt does not satisfy (T−).

By the definition of the operator, we have fnt(D,δ,ψ) = (R \ {δ},F) for any D = (R,F) ∈DA,

δ ∈ R and ψ ∈ R. Since Rfnt(D,δ,ψ) \R = (R \ {δ}) \R = ∅, then it is obvious that (T−) is not

satisfied by fnt.

Finally, for ft+ , consider a database D = (R,F) such that R = (δ,ψ), where δ and ψ

correspond to the relations depicted by the tables below, and F = {A→ B ; B→ C}.

δ

A B

a1 b1

ψ

B C

b1 c1

b2 c2

The result of ft+(D,δ,ψ) is equal to the database ((ψ,φ∗),∅), where φ∗ corresponds to the

transitive relation and is represented by the table below.

φ∗

A C

a1 c1

a1 c2

Thus, Rft+ (D,δ,ψ)\R = φ∗. For (δ ▷◁ ψ)∥θ to have the same schema as φ∗, then θ = s(δ)∩s(ψ) =

{B} and, in that case, (δ ▷◁ ψ)∥{B} corresponds to the relation shown in the next table.

(δ ▷◁ ψ){B}

A C

a1 c1

It is easy to see i(δ∗) ⊆ i(δ ▷◁ ψ{B}) is not true. This implies that φ∗ ⊑ (δ ▷◁ ψ)∥{B} does not

hold. Since there is no other relation in Rft+ (D,δ,ψ) \R besides φ∗, we proved that ft+ does

not satisfy (T−).

Definition 5.10 (Transitivity with Addition (T+)). A relation forgetting operator f satisfies

Transitivity with (possible) Addition if, for each D = (R,F) ∈ DA and δ,ψ ∈ R with δ ∤ ψ,

there exists φ ∈ Rf(D,δ,ψ) \R such that (δ ▷◁ ψ)∥θ ⊑ φ for some θ ⊇∩ (s(δ), s(ψ)), if Πθ(ψ) has

at least two tuples.

Particularly for (T+), note that we restrict the desirability of the transitive relation to

the cases where the projection of θ in ψ has at least two tuples, which goes in line with

the argument made upon the introduction of ft+ . In practice, this restriction does not

weigh much importance in real-world scenarios, where we would already expect relations

to have a large set of tuples.

76

5.2. RELATION FORGETTING PROPERTIES

Proposition 5.15. ft and ft+ satisfy (T+), but fnt and ft− do not.

Proof. To prove that ft satisfies (T+), let D = (R,F) ∈ DA, δ ∈ R and ψ ∈ R. If δ ∤ ψ holds,

then by the definition of the operator, we have ft(D,δ,ψ) = (R\{δ}∪{(δ ▷◁ ψ)∥θ∗},F∥δ), where

θ∗ = s(δ) ∩ s(ψ). As shown in the proof for Proposition 5.14, Rft(D,δ,ψ) \ R = (δ ▷◁ ψ)∥θ∗

and θ∗ ⊇∩ (s(δ), s(ψ)) for δ ∤ ψ. Therefore, we can assume that θ = θ∗. In that case,

(δ ▷◁ ψ)∥θ∗ ≡ (δ ▷◁ ψ)∥θ∗ , as both relations have exactly the same schema and instance. This

implies that (δ ▷◁ ψ)∥θ∗ ⊑ (δ ▷◁ ψ)∥θ∗ , independently of the number of tuples in Πθ∗(ψ).

Thus, we proved that ft satisfies (T+).

In the case of ft+ , let D = (R,F), δ and ψ be as above. Thus, if δ ∤ ψ holds, then by the

definition of the operator, we have ft+(D,δ,ψ) = (R \ {δ} ∪ {(δ ▷◁ ψ′)∥θ∗},F∥δ), where ψ ⊑ ψ′

and θ∗ = s(δ)∩ s(ψ), if there are at least two tuples in Πθ∗(ψ) (i.e., ∃t, t′ ∈Πθ(ψ) s.t. t , t′).

Observe that this must be true because, if there are at least two tuples in Πθ∗(ψ), then by

the way that ψ′ is defined (line 9 of Algorithm 6), for some i in line 8 (potentially the last),

the conditions in line 12 will not be satisfied for all tuples (since r, in line 5, is equal to

all combinations of values between Πθ∗(ψ) and Πs(ψ)\θ∗(ψ) that are not in ψ). Therefore,

Rft+ (D,δ,ψ) \R is equal to (R \ {δ} ∪ {(δ ▷◁ ψ′)∥θ∗}) \R, which in turn is equal to (δ ▷◁ ψ′)∥θ∗ .

Furthermore, given that θ∗ = s(δ)∩ s(ψ) ⊇∩ (s(δ), s(ψ)) for δ ∤ ψ by the proof above, we an

assume θ = θ∗. Thus, we must prove that (δ ▷◁ ψ)∥θ∗ ⊑ (δ ▷◁ ψ′)∥θ∗ . Since ψ ⊑ ψ′ is true by

the definition of the operator and implies i(ψ) ⊆ i(ψ′), then taking into account that ▷◁ is

monotonic (Proposition 4.2.2 in [AHV95]), the expression (δ ▷◁ ψ)∥θ∗ ⊑ (δ ▷◁ ψ′)∥θ∗ must be

true. This proves that ft+ satisfies (T+).

We now prove that fnt does not satisfy (T+). By the definition of the operator, we

have fnt(D,δ,ψ) = (R \ {δ},F), for any D = (R,F) ∈ DA, δ ∈ R and ψ ∈ R. Then, since

Rfnt(D,δ,ψ) \R = (R \ {δ}) \R = ∅, it is straightforward that (T+) is not satisfied by fnt.

At last, to show that ft− does not satisfy (T+), letD = (R,F), δ and ψ be as above. By the

definition of the operator, for δ ∤ ψ, we have ft−(D,δ,ψ) = (R\{δ}∪{(δ∗ ▷◁ ψ)∥θ∗},F∥δ), where

δ∗ ⊑ δ and θ∗ = s(δ)∩ s(ψ). Therefore, as was shown in the proof for Proposition 5.14,

Rft− (D,δ,ψ) \ R = (δ∗ ▷◁ ψ)∥θ∗ and θ∗ ⊇∩ (s(δ), s(ψ)) for δ ∤ ψ. Now, since δ∗ ⊑ δ implies

i(δ∗) ⊆ i(δ), then by Proposition 4.4.2 in [AHV95], we have (δ∗ ▷◁ ψ)∥θ∗ ⊑ (δ ▷◁ ψ)∥θ∗ . So,

even if θ = θ∗, we cannot satisfy the condition for (T+). Considering that there are no

other relations in Rft− (D,δ,ψ) \R apart from (δ∗ ▷◁ ψ)∥θ∗ , we can conclude that ft− does not

obey (T+).

To conclude the exposition and analysis of the characteristics that motivated our

operators of forgetting, we turn our attention to perhaps one of the most crucial properties

when it comes to forgetting relations.

As we have been mentioning throughout this dissertation, we are primarily interested

in operators that do not allow intentional recovery of tuples which belonged to the relation

that was forgotten. In Section 4.5, we elaborated on this intuition and stated that we can

only ensure that no tuple in that relation can be inferred after the operation when, for

77

CHAPTER 5. ANALYSIS AND EVALUATION

each such tuple, there is at least an alternative tuple (or set of tuples) that leads to exactly

the same result.

More concretely, let us consider a database D ∈ DA and a relation to be forgotten

δ ∈ RD . Then, for each tuple t ∈ i(δ), it must exist a relation δ′ with the same schema

as δ such that t < i(δ′) and the result of forgetting about δ′ in D ′, where D ′ is obtained

by exchanging δ for δ′ in RD , is equal to the result of forgetting about δ in D, both at

the level of the relations as well as the FDs2. In this way, given the relation ψ and the

result of forgetting, even if we know the operator that was used to compute it, we cannot

distinguish which relation δ or δ′ was in its input, and thus cannot conclude if t was

forgotten.

Any relation forgetting operator satisfying these conditions obeys No Recovery of For-
gotten Tuples. Nevertheless, before presenting this property, we introduce notation to

describe exchange of relations in a set. For that, let R be a relation set over A that in-

cludes relation r, and r ′ any relation over A. Then, the expression Rr←r ′ is used as a

shorthand for R \ {r} ∪ {r ′}.

Definition 5.11 (No Recovery of Forgotten Tuples (NRT)). A relation forgetting operator

f satisfies No Recovery of Forgotten Tuples if, for all (R,F) ∈DA,δ ∈ R,ψ ∈RA ∪ {∅} and for

each t ∈ i(δ), there exists a relation δ′ < R such that t < i(δ′) and s(δ′) = s(δ) for which

f((Rδ←δ′ ,F),δ′ ,ψ) = f((R,F),δ,ψ).

Before we go any further, note the importance of restricting the definition of (NRT) to

the cases where δ belongs to R. If this was not done, then for the occasions where δ is not

in R, we would be comparing the result of forgetting about this relation with the result

of forgetting about δ′ in a database where it belongs to. Evidently, in such situations, we

would expect the results not to be equal and therefore the property not to be satisfied.

Still regarding the definition of (NRT), we point out the fact that this property can

be expressed in an alternative way. To that end, first notice that for each δ, if we looked

at all the alternative relations to δ, in the sense that the result of forgetting about them

is the same as δ, and if there was a tuple common to all these alternatives, then we

could conclude that this tuple had to be in the relation to be forgotten. Obviously, this

would immediately imply recovery of forgotten tuples. To avoid this, there can be no

tuple that belongs to all alternatives to δ, i.e., the intersection of the instances of all these

alternatives must be empty.

Proposition 5.16. Let f be a relation forgetting operator. Then, f satisfies (NRT) if and

only if, for all (R,F),δ and ψ as in Definition 5.11, and ∆ = {δ′ < R \ {δ} | s(δ′) = s(δ) and

f((Rδ←δ′ ,F),δ′ ,ψ) = f((R,F),δ,ψ)}, the intersection of the instances of all relations in ∆ is

equal to the empty set, i.e.,
⋂
δ′∈∆ i(δ

′) = ∅.

2Note that all constraints imposed upon δ also apply for δ′ . For instance, δ′ must satisfy the same FDs
as δ regarding the original set FD . Or, in other words, D′ must belong to DA. In addition, by enforcing
s(δ) = s(δ′), we also guarantee that the domains of the attributes in both relations are the same.

78

5.2. RELATION FORGETTING PROPERTIES

Proof. We prove the implication in both directions. First, if (NRT) holds, then for each

tuple in δ, there is at least a relation δ′ satisfying the conditions imposed in ∆ which does

not have that tuple in its instance. Therefore, since δ is also in ∆, the intersection of the

instances of all relations in ∆ must be equal to the empty set.

On the other hand, if the intersection of the instances of all relations in ∆ is equal

to the empty set, then for each tuple in the instance of any relation in ∆, it must exist a

different relation also in ∆ that does not have that tuple in its instance. Since δ belongs

to ∆, then this is true for all tuples in δ and thus (NRT) must hold.

Even though Definition 5.11 expresses (NRT) in a “dynamic” way (i.e., with respect

to each tuple in the instance of δ), we just showed that it conveys precisely the same idea

as the alternative characterisation given in Proposition 5.16.

Moreover, note that although the relevance of (NRT) was specifically brought up in

the context of transitive forgetting, and that non-transitive operators do not introduce

any (transitive) information in the database, (NT) does not imply (NRT) as, perhaps,

could be assumed. The reason for this is that the result of the operators that satisfy (NT)

does not necessarily have to be independent of δ.

Proposition 5.17. (NT) does not imply (NRT).

Proof. Consider a relation forgetting operator f such that, for any D = (R,F) ∈DA, δ ∈DA

and ψ ∈DA, we have f(D,δ,ψ) = (R\ {δ},F) if a specific tuple t belongs to the instance of δ

and f(D,δ,ψ) = (R \ {δ},F+) otherwise. To be more specific, let us assume that t = (a1, b1).

In order to prove that the operator is well defined we can resort to the proof for

Proposition 5.1, which would be very similar to this one. Thus, we start by proving instead

that f satisfies (NT). To that end, we must show that f(D,δ,ψ) ≡δ D for any database in

the output, i.e., (R \ {δ},F) ≡δ D and (R \ {δ},F+) ≡δ D. Regarding the first database,

note that the δ-equivalence can be written as (R \ {δ},F) ≡δ (R,F), which by definition

implies (R \ {δ},F) ≡ (R \ {δ},F). This, in turn, is true by Proposition 3.2. Regarding

the second database, we must prove that (R \ {δ},F+) ≡δ (R,F), which is equivalent to

(R \ {δ},F+) ≡ (R \ {δ},F), is true. Now, since (R \ {δ},F) ≡ (R \ {δ},F) is true, then it implies

(R \ {δ},F) ⩽ (R \ {δ},F), and since F+ = F+ is also true, then by Proposition 3.3 we have

(R \ {δ},F) ⩽ (R \ {δ},F+) and (R \ {δ},F+) ⩽ (R \ {δ},F). This in turn implies (R \ {δ},F+) ≡
(R \ {δ},F), proving that f satisfies (NT).

Now, consider a database D = ((δ,ψ), {A→ B ; B→ C}), where δ and ψ correspond to

the relations shown below.

δ

A B

a1 b1

ψ

B C

b1 c1

It is easy to see that there is no relation δ′ with the same schema as δ and without the

tuple (a1, b1) that would give the same result as f(D,δ,ψ) = ((ψ),FD) when exchanged

79

CHAPTER 5. ANALYSIS AND EVALUATION

in D with δ, since for any δ′ without (a1, b1), we would have A→ C ∈ Ff(D ′ ,δ′ ,ψ), where

D ′ = ((RD)δ←δ′ ,FD). Yet, A→ C < Ff(D,δ,ψ). Therefore, (NT) does not imply (NRT).

However, fnt in particular still obeys (NRT), given that it imposes an equality between

the original and resulting database that is, by construction, independent of δ. Most

importantly, although the transitive operator ft does not satisfy (NRT), the operators ft−

and ft+ satisfy it, even though the latter only does for a restricted domain.

Accordingly, in the next proposition, we show that fnt and ft− satisfy (NRT) for any

(R,F), δ and ψ in the domains defined in the property, and that ft and ft+ do not. After-

wards, we prove that if no FDs with attributes of both s(δ) \θ and θ are in F+, where θ is

the intersection of the schemas of δ and ψ, then ft+ also satisfies (NRT).

Proposition 5.18. fnt and ft− satisfy (NRT), but ft and ft+ do not.

Proof. To prove that fnt satisfies (NRT) we will use the alternative characterisation of this

property given by Proposition 5.16. Let (R,F) ∈ DA, δ ∈ R, ψ ∈ RA ∪ {∅} and ∆ = {δ′ <
R \ {δ} | s(δ′) = s(δ)∧ fnt((Rδ←δ′ ,F),δ′ ,ψ) = fnt((R,F),δ,ψ)}. By definition of the operator,

fnt((R,F),δ,ψ) = (R \ {δ},F). Furthermore, for any δ′ ∈RA, we have fnt((Rδ←δ′ ,F),δ′ ,ψ) =

fnt((R \ {δ} ∪ {δ′},F),δ′ ,ψ), which again by definition is equal to (R \ {δ,δ′},F). Therefore,

∆ can be simplified to {δ′ < R \ {δ} | s(δ′) = s(δ)∧ (R \ {δ,δ′},F) = (R \ {δ},F)}. Now, if we

consider any relation δ′ ∈ RA \ (R \ {δ}) such that s(δ′) = s(δ), then it is straightforward

to see that the equality (R \ {δ,δ′},F) = (R \ {δ},F) is true because, taken into account that

δ′ < R \ {δ}, then R \ {δ} = (R \ {δ}) \ {δ′} = R \ {δ,δ′}. This means that δ′ ∈ ∆, independently

of its instance. As such, for i(δ′) = ∅, the intersection of the instances of all relations in ∆

can only be the empty set. So, fnt satisfies (NRT).

For the operator ft− , we must show that it satisfies (NRT) both when the conditions

for transitivity are satisfied and when they are not. Let (R,F), δ and ψ be as above. Then,

if the conditions for transitivity are not satisfied, i.e., ψ < R or δ ∤ ψ does not hold (note

that by the definition of (NRT) δ must be in R), we have ft−((R,F),δ,ψ) = (R \ {δ},F).

Similarly to the proof for the operator fnt, for any δ′ ∈ RA such that s(δ) = s(δ′), we

have ft−((Rδ←δ′ ,F),δ′ ,ψ) = (R \ {δ,δ′},F) since the conditions for transitivity are also not

satisfied for δ′ as its schema is equal to the one of δ (thus, either δ′ ∤ ψ is not true if δ ∤ ψ
is not or ψ < R in the first place). Now, assuming the characterisation of (NRT) given

by Proposition 5.16, if we consider any δ′ that does not belong to R \ {δ}, then, as we

showed above, it is always true that ft−((Rδ←δ′ ,F),δ′ ,ψ) is equal to ft−((R,F),δ,ψ), since

(R\{δ,δ′},F) = (R\{δ},F). Therefore, for ∆ as in the proposition, we have δ′ ∈ ∆, regardless

of the instance of δ′. Using the same strategy as the proof for fnt, if i(δ′) = ∅, then the

intersection of the instances of all relations in ∆ must be the empty set as well.

On the other hand, in case the conditions for transitivity are satisfied, i.e., ψ ∈ R and

δ ∤ ψ, then, using the definition of (NRT), we must show that for each t ∈ i(δ), there exists

a relation δ′ < R such t < δ′, s(δ) = s(δ′) and ft−((Rδ←δ′ ,F),δ′ ,ψ) = ft−((R,F),δ,ψ). To that

end, observe that, by the definition of the operator in the case of transitivity, we have

80

5.2. RELATION FORGETTING PROPERTIES

ft−((R,F),δ,ψ) = (R \ {δ} ∪ {(δ∗ ▷◁ ψ)∥θ},F∥δ), where θ = s(δ)∩ s(ψ), and therefore we want

the result of ft−((Rδ←δ′ ,F),δ′ ,ψ) to be the same database. Thus, in order to show that for

each t ∈ i(δ), there is always a relation δ′ satisfying all these requirements, we split the

proof in two parts:

(1) we assume that i(δ′) = i(δ∗) if t < i(δ∗);

(2) we assume that i(δ′) = i(δ∗) \ {t} ∪ {t∗}, where t∗ corresponds to the alternative to t

(line 9 of Algorithm 5), if t ∈ i(δ∗).

For both cases we must show that

(a) (Rδ←δ′ ,F), where Rδ←δ′ corresponds to R \ {δ} ∪ {δ′}, is a database, i.e., the relation

set satisfies F+; and

(b) ft−((Rδ←δ′ ,F∥δ),δ′ ,ψ) = (R \ {δ} ∪ {(δ∗ ▷◁ ψ)∥θ},F).

Let us start with case (1). To prove (a), it suffices to show that δ′ satisfies the FDs in Fδ′ ,

as the other relations in the set are the same as those in the database received as input for

the operator. Since s(δ) = s(δ′), then Fδ′ = Fδ. Thus, given that δ satisfies Fδ (otherwise

(R,F) would not be a valid input for the operator, given that δ ∈ R), then any subset of its

instance also does. In particular, i(δ′) satisfies Fδ = Fδ′ , considering that i(δ′) = i(δ∗) and

i(δ∗) is a subset of i(δ) by the construction of the operator (line 13).

Now, to show that (b) also holds, observe first that δ∗ is obtained by applying a test

to each tuple in i(δ) (line 6 of Algorithm 5). Thus, since i(δ∗) ⊆ i(δ) by construction, we

must prove that all tuples in i(δ∗) also pass the same test and therefore are in δ∗ of δ∗, i.e.

δ∗∗ (note that the conditions for transitivity are also satisfied by δ∗ since it has the same

schema as δ). To that end, let us assume that there is a tuple t∗ ∈ i(δ∗) that does not pass

the test. In that case, it does not exist a tuple t∗∗ ∈Πs(δ∗)\θ(δ∗)×Πθ(ψ) such that

(i) t∗ , t∗∗ and

(ii) t∗[s(δ∗) \θ] = t∗∗[s(δ∗) \θ] and

(iii) Πs(ψ)\θ(σθ=t∗[θ](ψ)) = Πs(ψ)\θ(σθ=t∗∗[θ](ψ)) and

(iv) for all X → Y ∈ F+ such that X ∪ Y ⊈ θ and ∃t′ ∈ i(δ∗) \ {t∗} s.t. t′[X \ θ] = t[X \ θ]

then t∗[X ∪Y] = t∗∗[X ∪Y].

However, for t∗ to be in i(δ∗), then it must exist a tuple t† ∈Πs(δ∗)\θ(δ∗)×Πθ(ψ) that satisfies

at least the conditions (i), (ii) and (iii) for t∗, as they do not depend on i(δ∗) (note that the

condition (ii) guarantees that t† is in the correct domain, i.e. t† ∈Πs(δ∗)\θ(δ∗)×Πθ(ψ), since

ψ is fixed). In addition, since i(δ∗) ⊆ i(δ), then i(δ∗)\{t∗} ⊆ i(δ)\{t∗}. Thus, if the antecedent

of the implication for the condition (iv) is true for t∗ in δ∗, then it is also true for t∗ in δ

(considering that if t′ belongs to i(δ∗) \ {t∗} then it also belongs to i(δ) \ {t∗}). Therefore,

t∗[X ∪Y] = t†[X ∪Y] must be true, otherwise t∗ would not be in δ∗. Thus, t∗ must pass the

81

CHAPTER 5. ANALYSIS AND EVALUATION

test. As such, since there is no tuple in δ∗ that does not pass the test, we have δ∗ = δ∗∗, and

consequently, for i(δ′) = i(δ∗), we have ft−((Rδ←δ′ ,F),δ′ ,ψ) = (R \ {δ} ∪ {(δ∗∗ ▷◁ ψ)∥θ},F∥δ) =

(R \ {δ} ∪ {(δ∗ ▷◁ ψ)∥θ},F∥δ), which proves (b).

Regarding case (2), to prove (a), we just need to show that adding t∗ to i(δ∗) \ {t} does

not infringe any FD, since we already proved for (1) that i(δ∗) satisfies F+ (and therefore

any subset of it also satisfies). To that end, let us assume that it infringes. Then, it exists

a functional dependency X→ Y ∈ F+ such that, for some t† ∈ i(δ∗), we have t∗[X] = t†[X]

and t∗[Y] , t†[Y] (note that if it failed for another tuple other than t∗, then i(δ∗) would

not satisfy F+). However, since t ∈ i(δ∗) and t∗ is the alternative to t, then the condition in

line 12 of Algorithm 5 must hold for any FD in F+. In particular, it must hold for X→ Y .

Thus, given that the condition holds, the implication must be true. As such, if we rewrite

the implication into a disjuction, then for X→ Y , at least one of the following statements

must be true.

(I) X ∪Y ⊆ θ;

(II) ∄t′ ∈ i(δ) \ {t} s.t. t′[X \θ] = t[X \θ];

(III) t[X ∪Y] = t∗[X ∪Y].

Regarding (I), it cannot be true because if X → Y fails for i(δ∗) \ {t} ∪ t∗, then it would

also fail for ψ, considering that θ ⊆ s(ψ), t∗[θ] ∈ Πθ(ψ) and t†[θ] ∈ Πθ(ψ) (note that if

t†[θ] <Πθ, then t† could not be in i(δ∗), as it would have failed the test of line 7). But since

ψ ∈ R and R satisfies F+, then ψ also satisfies F+ and thus X→ Y cannot fail in ψ. Before

analysing (II), recall that, since t∗ is an alternative to t, then t[s(δ)\θ] = t∗[s(δ)\θ] (because

of line 10), which implies t[X \θ] = t∗[X \θ]. Thus, we can rewrite (II) as ∄t′ ∈ i(δ) \ {t} s.t.

t′[X \θ] = t∗[X \θ]. Now, it is obvious that this cannot be true, considering that if it was,

then t†[X \θ] and t∗[X \θ] could not be equal, and therefore t†[X] = t∗[X] would be false

and X→ Y not fail. Finally, (III) is also false, otherwise X→ Y would fail in i(δ∗), which

was already proved above that it does not. Since none of the statements is true, then

X→ Y does not satisfy the condition in line 12, which means we derived a contradiction.

Thus, we can conclude that no such functional dependency X→ Y can exist in F+, which

implies that (a) is true.

To prove that (b) also holds for case (2), then we just need to show that if i(δ′) =

i(δ∗) \ {t} ∪ {t∗}, the result of (δ′ ▷◁ ψ)∥θ is equal to (δ∗ ▷◁ ψ)∥θ (recall that δ′ < R and, since

s(δ′) = s(δ′) the conditions for transitivity are satisfied, otherwise they would not be for δ).

To that end, we start by proving that all tuples in i(δ′) pass the test for (δ′)∗ (line 6). Since

the tuples in i(δ∗) were already proved to pass this test and t[s(δ) \θ] = t∗[s(δ) \θ] is true,

given that t∗ is an alternative to t, then if we replace t with t∗ in i(δ∗), all tuples would

still pass the test, as the conditions in lines 9, 10 and 11 are independent of i(δ∗) and, for

the condition in line 12, we would have t∗ in i(δ∗) such that t[X \θ] = t∗[X \θ], making the

condition exactly the same. Therefore, we can conclude that all tuples in i(δ′) also pass

the test. Thus, since t and t∗ have exactly the same values for s(δ′) \θ and their values for

82

5.2. RELATION FORGETTING PROPERTIES

the attributes in θ participate exactly with the same values in ψ for the attributes s(ψ)\θ,

then taking into account that i(δ′) = i(δ∗) \ {t} ∪ {t∗} and the schema of (δ′ ▷◁ ψ)∥θ has the

attributes s(δ) \θ and s(ψ) \θ, the result of (δ′ ▷◁ ψ)∥θ is equal to (δ∗ ▷◁ ψ)∥θ. At last, this

proves that ft− satisfies (NRT).

We now show the negative results. Starting with ft, to prove that it does not satisfy

(NRT), consider the database D = ((δ,ψ), {A→ B ; B→ C}), where δ and ψ correspond to

the relations shown below.

δ

A B

a1 b1

ψ

B C

b1 c1

The result of ft(D,δ,ψ) would be the database ((ψ,φ),∅) where φ corresponds to the

transitive relation represented by the next table.

φ

B C

a1 c1

It is obvious that in this case, it does not exist a relation δ′ with the same schema as δ and

without the tuple (a1, b1) that would give the same result as f(D,δ,ψ) = ((ψ),FD) when

replaced in D over δ, since for the transitive relation to have the tuple (a1, c1), then δ′

would need to have the tuple (a1, b1), as it is the only tuple that can be joined with ψ to

achieve the same result as in φ. Hence, ft does not obey (NRT).

Finally, to prove that ft+ does not satisfy (NRT), consider the database DB = (R,F) in

Example 4.5 with R = (δ,ψ) and F = {B→ A ; D→ E}.

δ

A B C

a1 b1 c1

a2 b2 c3

ψ

B C D

b1 c1 d1

b1 c1 d2

b1 c2 d1

b1 c2 d2

b1 c3 d3

b2 c3 d3

Since δ ∈ R, ψ ∈ R, δ ∤ ψ and ψ′ with i(ψ′) = i(ψ) is valid for transitivity, the result of

forgetting about δ with respect to ψ in DB is equal to the database ((ψ,φ), {D → E}+),

where φ corresponds to the transitive relation represented by the next table.

83

CHAPTER 5. ANALYSIS AND EVALUATION

φ

A D

a1 d1

a1 d2

a2 d3

In this case, there is no relation δ′ such that s(δ′) = s(δ) and t = (a2, b2, c3) < i(δ′) for

which ft+((Rδ←δ′ ,F),δ′ ,ψ) outputs that exact transitive relation, since for φ to have the

tuple (a2, d3), then i(δ′) would need to have the tuple (a2, b1, c3), which would not be

possible because of the functional dependency A→ B, as either (a1, b1, c1) or (a1, b1, c2)

must be in i(δ′) for (a1, d1) and (a1, d2) to be in φ. Hence, ft+ does not satisfy (NRT),

which finishes the proof for the proposition.

Proposition 5.19. If no FDs with attributes of both s(δ) \ θ and θ are in F+, where θ =

s(δ)∩ s(ψ), then ft+ satisfies (NRT).

Proof. We divide the proof in two parts. In the first, we show that ft satisfies (NRT) in

case the conditions for transitivity are not satisfied. Subsequently, we do it for when they

are. Let (R,F), δ and ψ be as in the definition of the property.

If the conditions for transitivity are not satisfied, i.e., eitherψ < R or δ ∤ ψ does not hold

(recall that δ must be in R by de definition of (NRT)), we have ft+((R,F),δ,ψ) = (R \ {δ},F).

And thus, similarly to the proof for fnt in Proposition 5.18, for any δ′ ∈RA such that s(δ′) =

s(δ), we have ft+((Rδ←δ′ ,F),δ′ ,ψ) = (R\{δ,δ′},F) since that the conditions for transitivity are

also not satisfied for δ′ as its schema is equal to the one of δ (thus, either δ′ ∤ ψ is not true

if δ ∤ ψ is not or ψ < R in the first place). Assuming the characterisation of (NRT) given

by Proposition 5.16, if we consider any δ′ that does not belong to R \ {δ}, then it is always

true that ft+((Rδ←δ′ ,F),δ′ ,ψ) is equal to ft+((R,F),δ,ψ), since (R \ {δ,δ′},F) = (R \ {δ},F).

Therefore, for ∆ = {δ′ < R \ {δ} | s(δ′) = s(δ) and ft+((Rδ←δ′ ,F),δ′ ,ψ) = ft+((R,F),δ,ψ)}, we

have δ′ ∈ ∆, regardless of the instance of δ′. Using the same strategy as the proof for fnt,

if i(δ′) = ∅, then the intersection of the instances of all relations in ∆ must be the empty

set as well.

Now, if the conditions for transitivity are satisfied, there are two alternative databases

in the result of the operator. The first one, which corresponds to the cases where ψ′ is not

valid for all i ∈ ordered_pset (line 8 of Algorithm 6), is equal to (R \ {δ},F). Since in these

cases the result is independent of the instance of δ, then even if i(δ) = ∅, we would have

the same database. Thus, for a relation δ′ < R such that s(δ′) = s(δ) and i(δ′) = ∅, the result

of ft+((Rδ←δ′ ,F),δ′ ,ψ) would be equal to (R \ {δ,δ′},F), which in turn is equal to (R \ {δ},F)

(note that if δ ∤ ψ holds then δ′ ∤ ψ also holds, and that ψ is fixed, thus if ψ′ is not valid

for R, it is also not valid for Rδ←δ′). Given that δ′ does not have any tuple, then it satisfies

the conditions in the definition of the property for any δ.

In all the remaining cases that there is transitivity, we have ft+((R,F),δ,ψ)} = (R \ {δ} ∪
{(δ ▷◁ ψ′)∥θ},F∥δ), where ψ ⊑ ψ′ ⊑ (Πθ(ψ) ×Πs(ψ)\θ(ψ)) and θ = s(δ) ∩ s(ψ). Therefore,

84

5.3. SUMMARY AND DISCUSSION

we must prove that, for such cases, for any t ∈ i(δ), there exists a relation δ′ such that

t < δ′, s(δ) = s(δ′) and ft+((Rδ←δ′ ,F),δ′ ,ψ) = ft+((R,F),δ,ψ)}. Thus, since the schemas

of δ and δ′ are the same and ψ is fixed, the result of ft+((Rδ←δ′ ,F∥δ),δ′ ,ψ) is equal to

(R \ {δ,δ′} ∪ {(δ′ ▷◁ ψ′)∥θ},F∥δ). Taking into account that δ′ < R, we have R \ {δ,δ′} = R \ {δ},
which implies that we just need to prove the equality (δ′ ▷◁ ψ′)∥θ = (δ ▷◁ ψ′)∥θ. To that

end, note that the schema of the relation resulting from both operations has the attributes

s(δ′) \ θ = s(δ) \ θ and s(ψ′) \ θ. Therefore, let us assume that i(δ′) = i(δ) \ {t} ∪ T . Then,

for the equality to be true, t[s(δ′) \θ] and t′[s(δ′) \θ] must be equal for all t′ ∈ T , t[θ] and

t′[θ] be different for all t′ ∈ T , so that t < T , and t[θ] and T [θ], where T [θ] = {t′[θ] | t′ ∈ T },
must participate with exactly the same values of s(ψ′) \ θ in ψ′. Considering that ψ′ is

valid (otherwise the resulting database would not have the transitive relation), then it

is guaranteed that for each tuple t1 in Πθ(ψ′), it exists a set of tuples T2 in Πθ(ψ′), s.t.

t1 < T2, that participates with the same values for the attributes in s(ψ′) \ θ (line 12 of

Algorithm 6). Thus, if t[θ] = t1, then we have T2 = T [θ]. This allows us to conclude that

(δ′ ▷◁ ψ′)∥θ = (δ ▷◁ ψ′)∥θ. Now, we prove that for i(δ′) = i(δ) \ {t} ∪ T , the pair (Rδ←δ′ ,F) is a

database, i.e., Rδ←δ′ satisfies F+ (note that we did not have to prove this for the last cases,

since we always assumed i(δ′) to be the empty set). For that, we just need to show that δ′

satisfies the FDs in Fδ′ , as the other relations in Rδ←δ′ are the same as those in R, which

satisfies F+. Observe that the only FDs that can be in Fδ′ are those that have either

(I) only attributes of s(δ) \θ, or

(II) only attributes of θ, or

(III) attributes of both s(δ) \θ and θ.

Regarding (I), since t[s(δ) \θ] = t′[s(δ) \θ] for all t′ ∈ T , then if no such FD fails for δ,

it cannot fail for δ′ as well. When it comes to (II), since the values for θ in any tuple in

i(δ′) are either in a tuple of ψ or are not in T [θ], as all values in T [θ] are also in ψ, then

considering that ψ satisfies F+, no FD exclusively with the attributes of θ can fail for δ′

(otherwise it would have failed for δ). Finally, for (III), we already assume that no such

FD exists in F+.

Having proved that (NRT) is satisfied for all the cases, we proved the proposition.

5.3 Summary and Discussion

In the previous section, we evaluated analytically our operators of forgetting with respect

to the formal properties that were introduced. In this final section, we zoom out on the

main content of the dissertation and summarise the key results in order to briefly discuss

the most essential points. These include some insights on the operators of forgetting and

their properties, as well as their applicability to practical situations and limitations.

Therefore, the purpose of this section is to present an overview of all the work on

forgetting carried out in this dissertation, with the ultimate goal of providing a guide

85

CHAPTER 5. ANALYSIS AND EVALUATION

that helps users decide which operators are most appropriate to use in their databases,

depending on their needs and requirements. To facilitate the discussion, we present the

main results regarding the satisfaction of the properties by the operators in Table 5.1.

Table 5.1: Satisfaction of the properties by the relation forgetting operators. For each
operator f and property (X), “✓” means that the operator satisfies the property, while “×”
means that it does not.

(P) (W) (I) (NT) (SPFD) (wPFD) (ψ-I) (T−) (T+) (NRT)

fnt ✓ ✓ ✓ ✓ ✓ ✓ ✓ × × ✓
ft ✓ × ✓ × × ✓ ✓ ✓ ✓ ×
ft− ✓ × ✓ × × ✓ ✓ ✓ × ✓
ft+ ✓ × ✓ × × ✓ ✓ × ✓ ✓∗

∗Holds under the conditions of Proposition 5.19.

In general, we can divide relation forgetting into two main categories, each aligned

with a different view on the operation. The first corresponds to non-transitive forgetting

and can be characterised by the property (NT), which imposes equivalence up to the

relation to be forgotten between the initial database and the database resulting from

the operation. Non-transitive forgetting is especially useful in situations where we want

to remove a relation from a database while possibly changing the configuration of the

remaining relations, as it guarantees that no extra information is lost and that the new

schema is at least as expressive as the initial one under the notion of derivability. On the

other hand, this type of forgetting has the disadvantage of leading to the loss of indirect

relationships among different attributes in the database that are exclusively guaranteed by

the relation to be forgotten. This is due to the fact that (NT) does not permit information

from this relation that is not originally in the database to be added to it.

To allow for such kind of forgetting, we have explicitly defined the simple non-

transitive forgetting operator fnt.

The second category, which corresponds to transitive forgetting, is primarily charac-

terised by the properties (T−) and (T+) together with (P). The idea of transitive forgetting

is to add to the database a relation that captures the indirect relationship between the

attributes of the relation to be forgotten and those of another relation, before the former

is removed, while assuring that the remaining information in the database is kept under

equivalence after forgetting. This means that similarly to the non-transitive approach,

transitive forgetting accepts transformations at the level of the schema of the database,

as long as no additional data is deleted. This, in fact, is guaranteed by the property (P),

which turns out to be implied by (NT) (Proposition 5.8).

To some extent, one could think of transitive forgetting as a way to improve non-

transitive operators, since it addresses their limitations regarding the preservation of

specific indirect relationships that are originally secured by the relation to be forgotten.

However, although that is true to a certain degree, both profiles of forgetting have ap-

plicability. It is the context and the setting where they are to be used that dictates how

86

5.3. SUMMARY AND DISCUSSION

suitable each approach is. In the end, the choice between non-transitive and transitive

forgetting is tied to whether or not it is desirable and allowed (e.g., by a court of law) to

keep said indirect relationships. This, in turn, depends directly on the information that

is to be forgotten.

The operators of transitive forgetting introduced in this document are ft, ft− and ft+ .

Beyond (NT), (T−), (T+) and (P), there are other properties that, even though they are

not strong enough to characterise a type of relation forgetting, should not be neglected,

as they cover edge cases and therefore help guarantee the desirable behaviour of the

operators. For instance, (I) ensures that in case the relation to be forgotten does not

belong to the database, all relations remain unchanged under equivalence. Furthermore,

(ψ-I) guarantees that if the conditions for transitivity concerning the relation we want

to forget with respect to are not satisfied, then the transitive operation is not executed.

These properties are satisfied by all the operators, which further justifies their relevance.

Even so, we only need to mention them in the context of transitive forgetting, considering

that (NT) implies both (I) and (ψ-I) (Propositions 5.8 and 5.12).

Regarding (W), it enforces an upper bound on the result of forgetting, which was

shown to be too strong for transitive operators. Therefore, since it is implied by (NT)

(Proposition 5.8) and only relevant for non-transitive forgetting, in general we can omit

this property.

The properties (SPFD) and (wPFD) impose a minimal set of FDs in the database re-

sulting from forgetting. The first was formalised by taking into account the requirements

for non-transitive operators while the latter for the transitive ones.

Finally, (NRT) guarantees that it is impossible to deliberately recover any of the tuples

that were in the relation that was forgotten, even if it is known which operator was used

to compute forgetting. For this reason, (NRT) plays a pivotal role in forgetting relations.

Notably, among the most obvious “absurd” operators that do not satisfy this property, we

have those that:

• change the name of the relation to be forgotten;

• add to the relation to be forgotten an arbitrary number of attributes and/or tuples,

independently of their values;

• change the values of the relation to be forgotten using a correspondence of one-to-

one with respect to the initial ones (e.g., deterministic encryption).

Depending on the application, operators that do not obey (NRT) may not be suitable

for relation forgetting. In particular, this is the case of ft.

Ultimately, in light of all of the above, in situations where (NRT) is indispensable, in

addition to it, we would expect desirable operators to satisfy one of the following sets of

properties:

• (NT) and (SPFD);

87

CHAPTER 5. ANALYSIS AND EVALUATION

• (P), either (T−) or (T+), (I), (ψ-I) and (wPFD).

The first set is satisfied by the operator fnt. Conversely, the second one, which includes

the properties that characterise transitive forgetting, is satisfied by the operator ft− . In

reality, if we restrict the domain of (NRT) to the databases that meet the condition re-

garding the FDs discussed in Section 4.5 when introducing ft+ , then this operator also

satisfies the second set. Note that this is still a large enough subset of databases in DA

where the operator can be relevant.

Thus, for these databases, there is a clear trade-off between ft− and ft+ . Whereas the

first operator may lead to missing information in the transitive relation, the second may

add information to the database that was not previously there. Again, this means that

the choice of ideal operator is up to the user, who has to evaluate the requisites of the

application at hand.

So, the only operator introduced that does not satisfy one of these sets of properties is

ft, as it does not obey (NRT) and also happens to satisfy both (T−) and (T+). Nevertheless,

this operator is the most adequate to deal with situations where (NRT) is not a require-

ment for forgetting and we want to preserve some of the indirect relationships that are

guaranteed by the relation to be forgotten. This is the case, for example, in circumstances

where it is necessary to simplify the database by removing some auxiliary relation.

Still, it is evident that there is room for improvement when it comes to transitive

forgetting. For instance, it is important to study:

• operators that satisfy (NRT) and (T+) for all databases in DA (i.e., extend ft+);

• operators that handle FDs more flexibly while still satisfying (wPFD), considering

that the approach taken for ft− and ft+ can sometimes be too conservative;

• operators that create transitive relations whose schemas are not only obtained by

projecting out the attributes in common for the relation to be forgotten and the

one to forget with respect to, provided that these schemas still meet the conditions

discussed in Section 4.4.

• methods to compare operators that satisfy either the same or a similar set of proper-

ties.

Regarding this last topic, a plausible starting point could be to assess the computa-

tional complexity of the operators.

All in all, we can conclude that there is no perfect operator for forgetting relations,

and that the choice of the best operator is directly connected to the context where it is

to be applied. In summary, this translates into the following. If a transitive relation is

not wanted, then fnt should be the operator of choice. On the contrary, if a transitive

relation is desired, then the decision rests on whether (NRT) is required or not. In the

88

5.3. SUMMARY AND DISCUSSION

affirmative case, one of the operators ft− or ft+ should be used. If not, then ft would be the

most appropriate option.

In any case, once the ideal operator is picked, in order to ease the implementation of

the proposed changes in the schema of deployed databases, users can leverage the meth-

ods and tools developed in the context of schema evolution (cf. Section 2.6). However,

this does not obviate the need for actual implementations of the operators, considering

that not only do they propose changes at the level of the schema, but they also define

how exactly the data in the database should evolve in the face of those changes. The

importance of these implementations is particularly noticeable for the operators ft− and

ft+ , as they manipulate the instances of the relations in a non-trivial way. Therefore, it is

essential to develop custom tools that complement those designed for schema evolution

in order to automate the application of the operators in databases. In the next chapter,

after the conclusions, we will return to this topic in the context of future work.

89

6

Conclusions

In this dissertation, we studied the problem of forgetting relations in relational databases

from a theoretical standpoint. This study was motivated by the desire to investigate this

operation at a more practical level, such as the one of a database, in order to, e.g., facilitate

the implementation of the GDPR’s ‘right to be forgotten’.

To that end, we started this investigation in Chapter 2, where we overviewed the lit-

erature on the operation of forgetting for different knowledge representation formalisms

and explored in more depth the practical details of the ‘right to be forgotten’, examining

some of the methods currently used to deal with its demands and commenting on their

drawbacks. This review allowed us to identify fundamental requirements an operator of

forgetting in databases should abide by, which were later formalised in Chapter 5.

Afterwards, we moved into the domain of relational databases and, in Chapter 3,

proposed an alternative formalisation of the relational model, which has the advantage

of being better suited to deal with the problem of forgetting than previous formalisations.

In addition, we introduced a novel notion of derivability between databases, extending

the work of Ausiello et al. [ABM80] and Codd [Cod72] by imposing an extra condition

on the ability of both databases to represent information. This notion was later used to

define equivalence between databases. The importance of both concepts was witnessed

upon the formalisation of the properties of forgetting in Chapter 5, where it was often

necessary to compare the content of databases before and after forgetting in a formal way.

In Chapter 4, we looked further into the problem of forgetting relations. We defined

the concept of a relation forgetting operator, which was intentionally left as simple and

unambiguous as possible to avoid dismissing potential desirable operators early on. Fur-

thermore, having defined the general notion of an operator, we introduced four concrete

operators that compute forgetting by means of syntactic manipulations to the original

database. Each of these was motivated by a specific set of requirements found in the con-

text of the work carried out in Chapter 2 and illustrated by a running example, which in

turn was inspired by a real-world scenario. Moreover, in a first contact with the operators,

we showed through some more examples that each has its own unique characteristics and

therefore may be more or less adequate than the others for a particular set of applications.

91

CHAPTER 6. CONCLUSIONS

This was later corroborated in our extensive analysis in Chapter 5. For this reason, we

split the exposition of the operators into what we identified as the two main views on

the operation of forgetting in relational databases, which we called non-transitive and

transitive forgetting.

Remarkably, one of the most important similarities between both approaches is that

they require that no information in the database other than that exclusively in the rela-

tion to be forgotten should be lost with the operation. In fact, this intuition was later

formalised by the property (P). Concerning their differences, what really sets these cat-

egories apart is the fact that non-transitive forgetting comprises the operators that do

not add to the database a relation that preserves the indirect relationships between the

attributes in the relation to be forgotten and those of another relation, whereas transitive

forgetting does. As such, the later is more in line with forgetting in other knowledge

representation formalisms, where indirect relationships are ought to be preserved after

forgetting (cf. Example 1.1).

While introducing transitive forgetting, we discussed the exact conditions under

which this operation is desirable and the schema that the new relation, dubbed the transi-

tive relation, could take on. We then presented our first operator for this category, which

was shown to have a severe drawback in that, in some circumstances, it would allow

intentional recovery of some of the tuples in the relation that was forgotten. This obser-

vation led us to the introduction of two additional transitive operators, ft− and ft+ , which,

in most cases, avoid recovery of forgotten tuples by guaranteeing that for each tuple in

the relation to be forgotten there is at least an alternative one that, when replaced with

the original, leads to exactly the same database after forgetting. In turn, this implies that

even if it is known which operator was used to compute forgetting, it will not be possible

to infer any of the forgotten tuples. This idea ended up being formalised in the property

(NRT).

Furthermore, we later proved that the operator ft− satisfies (NRT) for any database.

It does so by identifying the tuples in the relation to be forgotten that cannot be used

to compute the transitive relation. The operator ft+ , on the other hand, only satisfies

(NRT) if a specific set of FDs does not belong to the database. In those cases, the operator

achieves this result by considering for transitivity tuples that do not actually exist in the

relation we want to forget with respect to.

Defining transitive operators that satisfy (NRT) turned out to be more intricate than

anticipated, especially in the case of ft+ , where a similar approach to the one for ft−

would not be desirable. In part, this complexity was due to the FDs, which add further

constraints to the possible alternatives of each tuple. This forced us to slightly simplify

the problem for ft+ , which corresponds to one of the limitations of this work.

In chapter 5, we analysed extensively our operators of forgetting. First, we demon-

strated that they are indeed operators of forgetting according to the general notion intro-

duced in the previous chapter. Then, we materialised in the form of formal properties

the intuitions and requirements that guided the definition of the operators and evaluated

92

6.1. FUTURE WORK

them analytically with respect to those properties, proving that, in general, the operators

function in the expected manner. In addition, we demonstrated some relationships be-

tween the properties defined. Specifically, we proved that (NT), which corresponds to the

property that best characterises non-transitive forgetting, implies important properties

for forgetting in general. Perhaps surprisingly, we also showed that despite the apparent

simplicity of non-transitive forgetting, the operators fitting in this category do not satisfy

(NRT) by default. Overall, this evaluation led to a broad set of theoretical results, which

were carefully summarised and discussed in the last part of the chapter. In particular,

we stressed the importance of (P) and (NRT) as essential conditions for operators of

relation forgetting that deal with legal and data privacy concerns, and highlighted the

duality between the operators ft− and ft+ , which makes them suitable for different sets

of applications. This reflection prompted the proposal of further enhancements to our

operators. At last, we argued that there is no canonical solution to forgetting relations in

databases and that the choice of the best operator is tied to the application in mind.

All things considered, we conclude that the theoretical investigation of forgetting re-

lations done in this dissertation, which includes the operators and the properties defined,

not only motivates the importance of the operation of forgetting in relational databases

but also demonstrates its feasibility in this context. As such, we believe that the work

developed in this document lays the foundations for a more comprehensive study of for-

getting in relational databases. To this end, in the next section, we suggest directions for

future research.

6.1 Future Work

Although the first steps towards a complete theory of forgetting in relational databases

have been taken, we recognise that much remains to be done. In particular, we draw

attention to the following avenues for future developments:

Further refinement of the operators: In the discussion of the operators and their prop-

erties in Section 5.3, we suggested improvements to our operators as a means to

address some of their limitations. Of those mentioned, we emphasise the impor-

tance of investigating ways for ft+ to satisfy (NRT) for any database, regardless of

its FDs.

In addition, it would also be interesting to study alternative strategies that guarantee

(NRT) for transitive operators, other than those employed by ft− and ft+ .

Finally, we reckon it would be worthwhile to develop operators that are more flex-

ible with respect to the schema of the transitive relation and the way FDs are han-

dled.

Computational complexity: The computational complexity of the defined operators was

not assessed in this dissertation. However, given its importance to, e.g., compare

93

CHAPTER 6. CONCLUSIONS

operators that satisfy the same or a similar set of properties, it should be considered

in future research.

Operator implementation and experimental evaluation: Even though we have shown

through the proof of the properties that the operators have the expected semantics,

given the theoretical nature of our study and its intended practical applications,

it is particularly relevant to implement prototypes for the operators defined and

to empirically validate them with case studies inspired by real-world scenarios.

We believe that these experiments will bring interesting insights regarding the

efficiency and the overhead imposed by the operators, which will propel ways to

optimise and further improve them. Ultimately, this line of research will lead to

the development of robust tools that automate the process of forgetting in practical

systems.

Generalisation of the definition of a relation forgetting operator: Contrary to what usu-

ally happens for other knowledge representation formalisms, in general, some of

our forgetting operators cannot be iterated, since the order chosen may influence

the final result (i.e., for some operators, we cannot guarantee what is commonly

referred to as order independence). This is the case, for example, with transitive for-

getting, given that the outcome of the operators always depends on two relations.

This means that once an iteration is performed, the relation that was forgotten can-

not be used in subsequent operations either as δ or as ψ, in the terminology used in

the definition of an operator (Def. 4.1), otherwise it will not produce the expected

result. To solve this problem, a more general definition for forgetting relations is

highly desirable. Initially, a first step could be to extend the current definition to

multiple relations ψ and adapt the operators and properties accordingly. Neverthe-

less, at first glance, this would still not be sufficient to ensure that all the operators

commute. Therefore, a more practical solution could be to extend δ as well and

introduce some mechanism that allows establishing mappings for transitivity be-

tween the sets δ and ψ. Anyway, future research along these lines must consider the

implications that this generalisation of the operators may have on the recovery of

forgotten tuples.

Extensions to (NRT): Regarding (NRT), although operators that satisfy this property

do not allow the recovery of the exact tuples that were in the relation that was

forgotten, under some circumstances, it is still possible to infer some of the values

of each tuple beyond those in the transitive relation. In fact, in the worst case, it

may be possible to infer all but one value of each original tuple. For this reason, a

particularly relevant direction for future work is to formalise properties that extend

(NRT) by imposing more constraints on the values of the alternative tuples, as well

as to define operators that satisfy those properties.

94

6.1. FUTURE WORK

Furthermore, an interesting follow-up to this research would be to further gener-

alise the operators to take as input a minimum number of alternative tuples to avoid

recovery of the original.

Attribute Forgetting: A study on forgetting attributes similar to the one conducted for

relations in this dissertation is an important direction for future research. For that,

we propose two possible alternatives. The first is to forget an attribute from a single

relation, following both the non-transitive and the transitive approaches. On the

other hand, the second is to do it for the whole database. In the case of the latter,

it seems reasonable to assume that it would be easier to define transitive operators

than for the first alternative, considering that without the forgotten attribute in

the resulting database, recovery of tuples would no longer be possible. This also

suggests that transitive relations resulting from attribute forgetting should not have

the attribute in their schema.

After formalising this type of forgetting for a single attribute, it would be worth

generalising the operation to support forgetting a set of attributes, in the same vein

as what is proposed in this section for forgetting relations.

At last, it would be relevant to compare attribute forgetting operators with relation

forgetting operators. Depending on how the first are defined, it may also not be

possible to guarantee order equivalence for transitive forgetting, which implies that

forgetting a relation with our operators may not be equivalent to iteratively forget

every attribute in a relation.

Query adaptation: The study of how queries should evolve in the face of forgetting is a

subject that deserves attention in future investigations. In specific, it would be con-

venient to develop methods that leverage the definition of the operators to establish

accurate transformations for the adaptation of queries after forgetting. A possible

starting point for this investigation could be to assess the suitability of the tools

that propagate schema changes to queries and updates developed in the context of

schema evolution (cf. Section 2.6).

Forgetting in relational databases extended with intensional models: To facilitate, for

example, interoperability, relational databases are generally equipped with richer

conceptual models that further describe the data, their relationships, constraints

and semantics (i.e., their intensional meaning). As such, formalising the concept of

forgetting for relational databases extended with these models is an area of research

that deserves special consideration. In particular, we point towards future work

that considers the following intensional models:

• Entity-Relationship (E-R) Model: The study of forgetting in the E-R model

should cover forgetting the basic concepts such as entity sets, relationship

sets (both binary and non-binary) and attributes, as well as the extended E-R

95

CHAPTER 6. CONCLUSIONS

features, viz. specialisation, generalisation, aggregation, etc. It is possible,

however, that the latter may pose extra difficulties due to the added expressiv-

ity. In any case, defining proper notions of forgetting in the E-R model could

be a challenging task, given that the model lacks precise semantics and formal

ways to automatically validate the defined transformations.

• Ontologies expressed in description logics: Since the study of forgetting

in DLs is still an active field of research (especially for the most expressive

DLs), an interesting starting point for this investigation could be to under-

stand whether the operators proposed in the literature are aligned with the

requirements for forgetting discussed in this dissertation. In particular, those

of the ‘right to be forgotten’. After that, a possible direction could be to exam-

ine how forgetting concepts and roles in ontology axioms can be mapped to

the database schema so that both the ontology and the schema are consistent.

Overall, the study of forgetting for different configurations of relational databases

constitutes an important research topic, which can bring interesting insights and

ideas on how the data, schema and ontology should evolve as the result of the

operation. Therefore, investigations in this direction are highly encouraged.

96

Bibliography

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-

Wesley, 1995. isbn: 0-201-53771-0. url: http://webdam.inria.fr/Alice/

(cit. on pp. 76, 77).

[AIR99] J. Albert, Y. E. Ioannidis, and R. Ramakrishnan. “Equivalence of Keyed Rela-

tional Schemas by Conjunctive Queries”. In: J. Comput. Syst. Sci. 58.3 (1999),

pp. 512–534. doi: 10.1006/jcss.1999.1628. url: https://doi.org/10.100

6/jcss.1999.1628 (cit. on pp. 31, 32).

[ALP91] J. Andany, M. Léonard, and C. Palisser. “Management Of Schema Evolution

In Databases”. In: 17th International Conference on Very Large Data Bases,
September 3-6, 1991, Barcelona, Catalonia, Spain, Proceedings. Ed. by G. M.

Lohman, A. Sernadas, and R. Camps. Morgan Kaufmann, 1991, pp. 161–170.

url: http://www.vldb.org/conf/1991/P161.PDF (cit. on p. 22).

[Ara+13] A. Arasu et al. “Orthogonal Security with Cipherbase”. In: CIDR 2013, Sixth
Biennial Conference on Innovative Data Systems Research, Asilomar, CA, USA,
January 6-9, 2013, Online Proceedings. www.cidrdb.org, 2013. url: http:

//cidrdb.org/cidr2013/Papers/CIDR13%5C_Paper33.pdf (cit. on p. 21).

[Arm74] W. W. Armstrong. “Dependency Structures of Data Base Relationships”. In:

Information Processing, Proceedings of the 6th IFIP Congress 1974, Stockholm,
Sweden, August 5-10, 1974. Ed. by J. L. Rosenfeld. North-Holland, 1974,

pp. 580–583 (cit. on p. 28).

[Atz+82] P. Atzeni et al. “Inclusion and Equivalence between Relational Database

Schemata”. In: Theor. Comput. Sci. 19 (1982), pp. 267–285. doi: 10.1016/03

04-3975(82)90038-X. url: https://doi.org/10.1016/0304-3975(82)90038-

X (cit. on p. 32).

[ABM80] G. Ausiello, C. Batini, and M. Moscarini. “Conceptual Relations between

Databases Transformed under Join and Projection”. In: Mathematical Founda-
tions of Computer Science 1980 (MFCS’80), Proceedings of the 9th Symposium,
Rydzyna, Poland, September 1-5, 1980. Ed. by P. Dembinski. Vol. 88. Lecture

97

http://webdam.inria.fr/Alice/
https://doi.org/10.1006/jcss.1999.1628
https://doi.org/10.1006/jcss.1999.1628
https://doi.org/10.1006/jcss.1999.1628
http://www.vldb.org/conf/1991/P161.PDF
http://cidrdb.org/cidr2013/Papers/CIDR13%5C_Paper33.pdf
http://cidrdb.org/cidr2013/Papers/CIDR13%5C_Paper33.pdf
https://doi.org/10.1016/0304-3975(82)90038-X
https://doi.org/10.1016/0304-3975(82)90038-X
https://doi.org/10.1016/0304-3975(82)90038-X
https://doi.org/10.1016/0304-3975(82)90038-X

BIBLIOGRAPHY

Notes in Computer Science. Springer, 1980, pp. 123–136. doi: 10.1007/BFb0

022499. url: https://doi.org/10.1007/BFb0022499 (cit. on pp. 31, 34, 91).

[Baa+03] F. Baader et al., eds. The Description Logic Handbook: Theory, Implementation,
and Applications. Cambridge University Press, 2003. isbn: 0-521-78176-0

(cit. on p. 15).

[BZ05] C. Baral and Y. Zhang. “Knowledge updates: Semantics and complexity

issues”. In: Artif. Intell. 164.1-2 (2005), pp. 209–243. doi: 10.1016/j.artint.

2005.01.005. url: https://doi.org/10.1016/j.artint.2005.01.005 (cit.

on p. 5).

[Boo54] G. Boole. An investigation of the laws of thought on which are founded the
mathematical theories of logic and probabilities. Walton and Maberly, 1854 (cit.

on p. 9).

[BL04] R. J. Brachman and H. J. Levesque. Knowledge Representation and Reasoning.

Elsevier, 2004. isbn: 978-1-55860-932-7. url: http://www.elsevier.com/

wps/find/bookdescription.cws%5C_home/702602/description (cit. on pp. 2,

18).

[Cal+07] D. Calvanese et al. “Tractable Reasoning and Efficient Query Answering in

Description Logics: The DL-Lite Family”. In: J. Autom. Reason. 39.3 (2007),

pp. 385–429. doi: 10.1007/s10817-007-9078-x. url: https://doi.org/10

.1007/s10817-007-9078-x (cit. on p. 15).

[Cod70] E. F. Codd. “A Relational Model of Data for Large Shared Data Banks”. In:

Commun. ACM 13.6 (1970), pp. 377–387. doi: 10.1145/362384.362685. url:

http://doi.acm.org/10.1145/362384.362685 (cit. on p. 25).

[Cod72] E. F. Codd. “Further Normalization of the Data Base Relational Model”. In:

Data base systems 6 (1972), pp. 33–64 (cit. on pp. 31, 34, 91).

[CBN20] U. Comignani, L. Berti-Équille, and N. Novelli. “Discovering Multi-Table

Functional Dependencies Without Full Join Computation”. In: CoRR abs/2012.06237

(2020). arXiv: 2012.06237. url: https://arxiv.org/abs/2012.06237 (cit. on

pp. 64–66).

[CMZ09] C. Curino, H. J. Moon, and C. Zaniolo. “Automating Database Schema Evo-

lution in Information System Upgrades”. In: Proceedings of the 2nd ACM
Workshop on Hot Topics in Software Upgrades, HotSWUp 2009, Orlando, FL,
USA, October 25, 2009. Ed. by T. Dumitras, I. Neamtiu, and E. Tilevich. ACM,

2009. doi: 10.1145/1656437.1656444. url: https://doi.org/10.1145/1656

437.1656444 (cit. on pp. 22, 23).

98

https://doi.org/10.1007/BFb0022499
https://doi.org/10.1007/BFb0022499
https://doi.org/10.1007/BFb0022499
https://doi.org/10.1016/j.artint.2005.01.005
https://doi.org/10.1016/j.artint.2005.01.005
https://doi.org/10.1016/j.artint.2005.01.005
http://www.elsevier.com/wps/find/bookdescription.cws%5C_home/702602/description
http://www.elsevier.com/wps/find/bookdescription.cws%5C_home/702602/description
https://doi.org/10.1007/s10817-007-9078-x
https://doi.org/10.1007/s10817-007-9078-x
https://doi.org/10.1007/s10817-007-9078-x
https://doi.org/10.1145/362384.362685
http://doi.acm.org/10.1145/362384.362685
https://arxiv.org/abs/2012.06237
https://arxiv.org/abs/2012.06237
https://doi.org/10.1145/1656437.1656444
https://doi.org/10.1145/1656437.1656444
https://doi.org/10.1145/1656437.1656444

BIBLIOGRAPHY

[Del14] J. P. Delgrande. “Towards a Knowledge Level Analysis of Forgetting”. In:

Principles of Knowledge Representation and Reasoning: Proceedings of the Four-
teenth International Conference, KR 2014, Vienna, Austria, July 20-24, 2014.

Ed. by C. Baral, G. D. Giacomo, and T. Eiter. AAAI Press, 2014. url: http:

//www.aaai.org/ocs/index.php/KR/KR14/paper/view/7979 (cit. on pp. 5, 11,

14).

[DLS01] P. Doherty, W. Lukaszewicz, and A. Szalas. “Computing Strongest Necessary

and Weakest Sufficient Conditions of First-Order Formulas”. In: Proceedings
of the Seventeenth International Joint Conference on Artificial Intelligence, IJCAI
2001, Seattle, Washington, USA, August 4-10, 2001. Ed. by B. Nebel. Morgan

Kaufmann, 2001, pp. 145–154 (cit. on p. 14).

[Ebb85] H. Ebbinghaus. Über das gedächtnis: untersuchungen zur experimentellen psy-
chologie. Duncker & Humblot, 1885 (cit. on pp. 1, 2).

[EK19] T. Eiter and G. Kern-Isberner. “A Brief Survey on Forgetting from a Knowl-

edge Representation and Reasoning Perspective”. In: Künstliche Intell. 33.1

(2019), pp. 9–33. doi: 10.1007/s13218-018-0564-6. url: https://doi.org/

10.1007/s13218-018-0564-6 (cit. on pp. 2–5, 9–12, 14, 16–19).

[Eyu+18] C. Eyupoglu et al. “An Efficient Big Data Anonymization Algorithm Based

on Chaos and Perturbation Techniques”. In: Entropy 20.5 (2018), p. 373. doi:

10.3390/e20050373. url: https://doi.org/10.3390/e20050373 (cit. on

p. 21).

[GKL16a] R. Gonçalves, M. Knorr, and J. Leite. “The Ultimate Guide to Forgetting in

Answer Set Programming”. In: Principles of Knowledge Representation and
Reasoning: Proceedings of the Fifteenth International Conference, KR 2016, Cape
Town, South Africa, April 25-29, 2016. Ed. by C. Baral, J. P. Delgrande, and

F. Wolter. AAAI Press, 2016, pp. 135–144. url: http://www.aaai.org/ocs/

index.php/KR/KR16/paper/view/12849 (cit. on p. 19).

[GKL16b] R. Gonçalves, M. Knorr, and J. Leite. “You Can’t Always Forget What You

Want: On the Limits of Forgetting in Answer Set Programming”. In: ECAI
2016 - 22nd European Conference on Artificial Intelligence, 29 August-2 Septem-
ber 2016, The Hague, The Netherlands - Including Prestigious Applications of
Artificial Intelligence (PAIS 2016). Ed. by G. A. Kaminka et al. Vol. 285. Fron-

tiers in Artificial Intelligence and Applications. IOS Press, 2016, pp. 957–965.

doi: 10.3233/978-1-61499-672-9-957. url: https://doi.org/10.3233/978

-1-61499-672-9-957 (cit. on p. 19).

[Gon+17] R. Gonçalves et al. “When You Must Forget: beyond strong persistence when

forgetting in answer set programming”. In: CoRR abs/1707.05152 (2017).

arXiv: 1707.05152. url: http://arxiv.org/abs/1707.05152 (cit. on p. 19).

99

http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/7979
http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/7979
https://doi.org/10.1007/s13218-018-0564-6
https://doi.org/10.1007/s13218-018-0564-6
https://doi.org/10.1007/s13218-018-0564-6
https://doi.org/10.3390/e20050373
https://doi.org/10.3390/e20050373
http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12849
http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12849
https://doi.org/10.3233/978-1-61499-672-9-957
https://doi.org/10.3233/978-1-61499-672-9-957
https://doi.org/10.3233/978-1-61499-672-9-957
https://arxiv.org/abs/1707.05152
http://arxiv.org/abs/1707.05152

BIBLIOGRAPHY

[Gon+20] R. Gonçalves et al. “On the limits of forgetting in Answer Set Programming”.

In: Artif. Intell. 286 (2020), p. 103307. doi: 10.1016/j.artint.2020.103307.

url: https://doi.org/10.1016/j.artint.2020.103307 (cit. on pp. 4, 19).

[HTR11] M. Hartung, J. F. Terwilliger, and E. Rahm. “Recent Advances in Schema and

Ontology Evolution”. In: Schema Matching and Mapping. Ed. by Z. Bellahsene,

A. Bonifati, and E. Rahm. Data-Centric Systems and Applications. Springer,

2011, pp. 149–190. doi: 10.1007/978- 3- 642- 16518- 4_6. url: https:

//doi.org/10.1007/978-3-642-16518-4%5C_6 (cit. on pp. 22, 23).

[Hul84] R. Hull. “Relative Information Capacity of Simple Relational Database Schemata”.

In: Proceedings of the Third ACM SIGACT-SIGMOD Symposium on Principles
of Database Systems, April 2-4, 1984, Waterloo, Ontario, Canada. Ed. by D. J.

Rosenkrantz and R. Fagin. ACM, 1984, pp. 97–109. doi: 10.1145/588011.58

8027. url: https://doi.org/10.1145/588011.588027 (cit. on p. 32).

[KA14] M. Knorr and J. J. Alferes. “Preserving Strong Equivalence while Forgetting”.

In: Logics in Artificial Intelligence - 14th European Conference, JELIA 2014,
Funchal, Madeira, Portugal, September 24-26, 2014. Proceedings. Ed. by E.

Fermé and J. Leite. Vol. 8761. Lecture Notes in Computer Science. Springer,

2014, pp. 412–425. doi: 10.1007/978-3-319-11558-0_29. url: https:

//doi.org/10.1007/978-3-319-11558-0%5C_29 (cit. on p. 19).

[LLM03] J. Lang, P. Liberatore, and P. Marquis. “Propositional Independence: Formula-

Variable Independence and Forgetting”. In: J. Artif. Intell. Res. 18 (2003),

pp. 391–443. doi: 10.1613/jair.1113. url: https://doi.org/10.1613

/jair.1113 (cit. on pp. 5, 11).

[Lei17] J. Leite. “A Bird’s-Eye View of Forgetting in Answer-Set Programming”. In:

Logic Programming and Nonmonotonic Reasoning - 14th International Confer-
ence, LPNMR 2017, Espoo, Finland, July 3-6, 2017, Proceedings. Ed. by M.

Balduccini and T. Janhunen. Vol. 10377. Lecture Notes in Computer Science.

Springer, 2017, pp. 10–22. doi: 10.1007/978- 3- 319- 61660- 5_2. url:

https://doi.org/10.1007/978-3-319-61660-5%5C_2 (cit. on pp. 3, 19).

[LPV01] V. Lifschitz, D. Pearce, and A. Valverde. “Strongly equivalent logic programs”.

In: ACM Trans. Comput. Log. 2.4 (2001), pp. 526–541. doi: 10.1145/383779

.383783. url: https://doi.org/10.1145/383779.383783 (cit. on p. 18).

[LR94] F. Lin and R. Reiter. “Forget it!” In: Proceedings of AAAI Fall Symposium on
Relevance. 1994, pp. 154–159 (cit. on pp. 3, 5, 11–14).

[Mai83] D. Maier. The Theory of Relational Databases. Computer Science Press, 1983.

isbn: 0-914894-42-0. url: http : / / web . cecs . pdx . edu / %5C % 7Emaier /

TheoryBook/TRD.html (cit. on p. 28).

100

https://doi.org/10.1016/j.artint.2020.103307
https://doi.org/10.1016/j.artint.2020.103307
https://doi.org/10.1007/978-3-642-16518-4_6
https://doi.org/10.1007/978-3-642-16518-4%5C_6
https://doi.org/10.1007/978-3-642-16518-4%5C_6
https://doi.org/10.1145/588011.588027
https://doi.org/10.1145/588011.588027
https://doi.org/10.1145/588011.588027
https://doi.org/10.1007/978-3-319-11558-0_29
https://doi.org/10.1007/978-3-319-11558-0%5C_29
https://doi.org/10.1007/978-3-319-11558-0%5C_29
https://doi.org/10.1613/jair.1113
https://doi.org/10.1613/jair.1113
https://doi.org/10.1613/jair.1113
https://doi.org/10.1007/978-3-319-61660-5_2
https://doi.org/10.1007/978-3-319-61660-5%5C_2
https://doi.org/10.1145/383779.383783
https://doi.org/10.1145/383779.383783
https://doi.org/10.1145/383779.383783
http://web.cecs.pdx.edu/%5C%7Emaier/TheoryBook/TRD.html
http://web.cecs.pdx.edu/%5C%7Emaier/TheoryBook/TRD.html

BIBLIOGRAPHY

[NS10] A. Narayanan and V. Shmatikov. “Myths and fallacies of "personally identi-

fiable information"”. In: Commun. ACM 53.6 (2010), pp. 24–26. doi: 10.11

45/1743546.1743558. url: http://doi.acm.org/10.1145/1743546.1743558

(cit. on p. 21).

[Pop+11] R. A. Popa et al. “CryptDB: protecting confidentiality with encrypted query

processing”. In: Proceedings of the 23rd ACM Symposium on Operating Systems
Principles 2011, SOSP 2011, Cascais, Portugal, October 23-26, 2011. Ed. by

T. Wobber and P. Druschel. ACM, 2011, pp. 85–100. doi: 10.1145/2043556

.2043566. url: https://doi.org/10.1145/2043556.2043566 (cit. on p. 21).

[RB06] E. Rahm and P. A. Bernstein. “An online bibliography on schema evolution”.

In: SIGMOD Rec. 35.4 (2006), pp. 30–31. doi: 10.1145/1228268.1228273.

url: https://doi.org/10.1145/1228268.1228273 (cit. on pp. 22, 23).

[Rod92] J. F. Roddick. “Schema Evolution in Database Systems - An Annotated Bibli-

ography”. In: SIGMOD Rec. 21.4 (1992), pp. 35–40. doi: 10.1145/141818.14

1826. url: https://doi.org/10.1145/141818.141826 (cit. on pp. 22, 23).

[SW18] T. Schaub and S. Woltran. “Answer set programming unleashed!” In: Kün-
stliche Intell. 32.2-3 (2018), pp. 105–108. doi: 10.1007/s13218-018-0550-z.

url: https://doi.org/10.1007/s13218-018-0550-z (cit. on p. 17).

[SKS11] A. Silberschatz, H. F. Korth, and S. Sudarshan. Database System Concepts,
Sixth Edition. McGraw-Hill Book Company, 2011. isbn: 978-0-07-352332-3.

url: https://www.db-book.com/db6/index.html (cit. on pp. 22, 25, 29–31,

51).

[Sjø93] D. Sjøberg. “Quantifying schema evolution”. In: Inf. Softw. Technol. 35.1

(1993), pp. 35–44. doi: 10 . 1016 / 0950 - 5849(93) 90027 - Z. url: https :

//doi.org/10.1016/0950-5849(93)90027-Z (cit. on p. 22).

[VBO03] G. Van Blarkom, J. J. Borking, and J. E. Olk. “Handbook of privacy and

privacy-enhancing technologies”. In: Privacy Incorporated Software Agent
(PISA) Consortium, The Hague (2003) (cit. on p. 20).

[Wan+08] Z. Wang et al. “Forgetting Concepts in DL-Lite”. In: The Semantic Web: Re-
search and Applications, 5th European Semantic Web Conference, ESWC 2008,
Tenerife, Canary Islands, Spain, June 1-5, 2008, Proceedings. Ed. by S. Bech-

hofer et al. Vol. 5021. Lecture Notes in Computer Science. Springer, 2008,

pp. 245–257. doi: 10.1007/978-3-540-68234-9_20. url: https://doi.

org/10.1007/978-3-540-68234-9%5C_20 (cit. on pp. 5, 15–17).

[Xia+18] G. Xiao et al. “Ontology-Based Data Access: A Survey”. In: Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI
2018, July 13-19, 2018, Stockholm, Sweden. Ed. by J. Lang. ijcai.org, 2018,

pp. 5511–5519. doi: 10.24963/ijcai.2018/777. url: https://doi.org/10

.24963/ijcai.2018/777 (cit. on p. 15).

101

https://doi.org/10.1145/1743546.1743558
https://doi.org/10.1145/1743546.1743558
http://doi.acm.org/10.1145/1743546.1743558
https://doi.org/10.1145/2043556.2043566
https://doi.org/10.1145/2043556.2043566
https://doi.org/10.1145/2043556.2043566
https://doi.org/10.1145/1228268.1228273
https://doi.org/10.1145/1228268.1228273
https://doi.org/10.1145/141818.141826
https://doi.org/10.1145/141818.141826
https://doi.org/10.1145/141818.141826
https://doi.org/10.1007/s13218-018-0550-z
https://doi.org/10.1007/s13218-018-0550-z
https://www.db-book.com/db6/index.html
https://doi.org/10.1016/0950-5849(93)90027-Z
https://doi.org/10.1016/0950-5849(93)90027-Z
https://doi.org/10.1016/0950-5849(93)90027-Z
https://doi.org/10.1007/978-3-540-68234-9_20
https://doi.org/10.1007/978-3-540-68234-9%5C_20
https://doi.org/10.1007/978-3-540-68234-9%5C_20
https://doi.org/10.24963/ijcai.2018/777
https://doi.org/10.24963/ijcai.2018/777
https://doi.org/10.24963/ijcai.2018/777

BIBLIOGRAPHY

[ZF06] Y. Zhang and N. Y. Foo. “Solving logic program conflict through strong and

weak forgettings”. In: Artif. Intell. 170.8-9 (2006), pp. 739–778. doi: 10.101

6/j.artint.2006.02.002. url: https://doi.org/10.1016/j.artint.2006.0

2.002 (cit. on p. 5).

This document was created with the (pdf/Xe/Lua)LATEX processor and the NOVAthesis template (v6.9.4).

102

https://doi.org/10.1016/j.artint.2006.02.002
https://doi.org/10.1016/j.artint.2006.02.002
https://doi.org/10.1016/j.artint.2006.02.002
https://doi.org/10.1016/j.artint.2006.02.002
https://github.com/joaomlourenco/novathesis

	Front Matter
	Cover
	Front Page
	Copyright
	Dedicatory
	Acknowledgements
	Quote
	Abstract
	Resumo
	Contents
	List of Algorithms

	1 Introduction
	1.1 Context and Motivation
	1.2 Problem Statement and Main Contributions
	1.3 Document Structure

	2 Related Work
	2.1 Forgetting in Propositional Logic
	2.2 Forgetting in Predicate Logic
	2.2.1 Forgetting Facts
	2.2.2 Forgetting Relations/Predicates
	2.2.3 Forgetting Individuals

	2.3 Forgetting in Description Logics
	2.4 Forgetting in Answer Set Programming
	2.5 GDPR and Data Encryption
	2.6 Schema Evolution

	3 A Model for Relational Databases
	3.1 Relation
	3.2 Functional Dependency
	3.3 Database
	3.4 Database Query
	3.5 Database Equivalence

	4 Forgetting Relations in Relational Databases
	4.1 Motivating Example
	4.2 Relation Forgetting
	4.3 Non-Transitive Forgetting
	4.4 Transitive Forgetting
	4.5 Refining Transitive Forgetting

	5 Analysis and Evaluation
	5.1 Relation Forgetting Operators
	5.2 Relation Forgetting Properties
	5.3 Summary and Discussion

	6 Conclusions
	6.1 Future Work

	Bibliography
	Back Matter
	Back Cover

