
 
 

1 
 

 

 

 

 

 

 

                Edmundo Tulcanaza 

     jtulcana@uni-muenster.de 

 

 

    A thesis submitted in fulfilment of the requirements for the award of  

           the Degree of Master of Science (Geospatial Technologies) 

  

           Dissertation supervised by:  Dr. Torsten Prinz  

Co-supervisors:    Dr. Hanna Meyer  

Dr. Joaquín Torres 

  

 

 

              Institut für Geoinformatik der Universität Münster 

                                          February 2022 

 

 

         Applicability of multispectral Sentinel data                                                                                    

             for mineral exploration by use of   

     remote sensing and geospatial technologies 


      A case study in Northern Chile 

  
  

 



 
 

2 
 

 

 

DECLARATION  

 

 

 

I declare that this thesis entitled, “Applicability of multispectral Sentinel data                                                                                  

for mineral exploration by use of remote sensing and geospatial technologies

A case study in Northern Chile”, is a summary of my own investigation, exception made of 

public information which has been cited in the references. The thesis has not been accepted 

for any degree and is not concurrently submitted in candidature of any other degree.  

 

Signature:      

 

Name:  Edmundo Tulcanaza 

 

Place:  Münster, Germany 

 

Date:  24th February 2022 

 

 

 

 

 

 



 
 

3 
 

 

 

 

 

                                         ACKNOWLEDGMENT  

 

 

Firstly, I want to deeply thank my supervisor, Dr. Torsten Prinz, for his valuable 

supervision and guidance. I would like to thank him for helping me in focusing the topic 

selected for this thesis, for provide me software information for remote sensing 

applications, and for always assisting me in keeping my energy and encouragement in 

pursuit of my goal. I would like also to thank my Co-supervisors, Dr. Hanna Meyer and 

Dr. Joaquín Torres. Dr. Meyer for call my attention when it was need it, and Dr. Torres for 

his always willingness to help me in the face of any technical obstacle in the context of my 

thesis. 

 

I would also like to offer my deepest gratitude to every professor of the Emeritus 

Mundus program to whom I had the privilege to know through the series of course-

work I attended in the context of the Geospatial Technologies program. I would like to 

represent this acknowledgment in Dr. Marco Painho for his support, assistance, and 

permanent guidance no matter where we are. Furthermore, I would like to thank the 

authority of Institute for Geoinformatics (IFGI) and Westfälische Wilhelms-Universität 

Münster (WWU) for providing me with the resources and facilities to complete this 

work. Finally, I want to express my heartfelt appreciation and thanks to my families, 

colleagues, and friends for supporting me in completing this project. My virtual 

presence among them has been solely motivated in the pursuit of my goal. 

  

 



 
 

4 
 

 

 

 

ABSTRACT 

 

 

The objective of this MSc thesis is to prove that the Sentinel-2 satellite has the same 

capabilities for mineral exploration than another satellite considered the “reference 

technology” by the minerals industry. Since there have been an extensive use and 

applications of the Landsat-8 satellite for mineral exploration, this satellite is considered 

in this case the “reference technology”. 

 

To prove the capability of the Sentinel-2, a sequence of key applications applied on the 

Landsat-8 satellite for mineral exploration have been carried out using the Sentinel-2 on 

a specific mine site. Mine site for this investigation is the Escondida mine in northern 

Chile. Through several remote sensing applications such as band combinations, band 

ratios, PCA analyses, and pixel´s classification both satellites, Landsat-8 and Sentinel-

2 have been tested on Escondida and results have been obtained and discussed. 

 

As a conclusion of this analysis, the capability of Sentinel-2 for mineral exploration has 

been proved, potential improvements have been identified and limitations in its 

prospective use have been indicated. 
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          Edmundo Tulcanaza 

 

 1  Introduction 

 

As the title of this document implies, the central objective of this thesis is to evaluate the 

applicability of the sensor Sentinel-2 for mineral exploration. To confirm that Sentinel-2 

satellite is completely applicable for mineral exploration, it is necessary to confront it against 

another one which completely delivers a proven remote sensing technology in mineral 

exploration. Having selected this “reference technology”, Sentinel-2 should replicate the 

current methodology offered by this “reference technology” at a similar or better level of 

competence. At present, Landsat-8 is the satellite that has been used extensively in mineral 

exploration across the world in many arid and non-arid regions, with efficiency, and 

remarkable success. Due to the successful history of Landsat-8´s applications in mineral 

exploration, including some applications in Chile (N. Ott et al, 2006; J-C Kim et al, 2014; N. 

Biswajit et al, 2019), Landsat 8 will be considered the “reference technology”. 

 

Remote sensing today and its association with land imaginary techniques allow the 

visualization of large land spaces where special features of the earth crust can be visualized 
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             for mineral exploration by use of   

     remote sensing and geospatial technologies 
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and parameterized. In the face of the opportunities offered by the Chilean ground, the efforts 

in using remote sensing for mineral exploration have not been too explicit to profit from the 

multiple features, patterns, and footprints of the Chilean mineralized soil. Contrary to other 

parts of the world, on which remote sensing applications have been applied to the search of 

hidden objects such as art works (F. Monna et al, 2014), mineral deposits (N. Ott et al, 2006), 

and others, there have been only a few applications of remote sensing along the mineralized 

Chilean belts (C. Borie et al, 2019; F. Sabins, 1999;). A research paper has been written on 

remote sensing on the Escondida mine (N. Ott et al, 2006) which is the largest copper-

molybdenum mine in the world. 

 

Mineral exploration is a capital intensive and complex activity. Finding an orebody take 

distinctive types of material resources, time, and monies. This is the reason why remote 

sensing is becoming a tool to provide crucial information at a very low cost.    

 

Today, mineral exploration is a very dynamic area in the mineral industries. It is very dynamic 

because the present world´s intention of changing the energy sources (from fossil oriented to 

electro-mobility oriented) will depend largely on finding more minerals and metals (copper, 

lithium, nickel, cobalt, and others for manufacturing large batteries stocks). The pace at which 

these minerals and metals are found, at present, is not sufficient to match their requirements 

in the future.     

 

In Chile, the largest world´s copper producer, as well as in other mining countries, mineral 

exploration has been at one of its lowest levels in years and remote sensing has not been very 

much used. This has been one of the motivations in choosing this topic. For implementing this 

investigation, a review of papers and technical documentation on the basic definitions of 

remote sensing have been revised and summarized in the Appendix citing their authors 

identification and/or original publications link.  

 

Following, I will briefly characterize the geological nature of the Escondida district, looking 

into the geological nature of this deposit which has been subjected to a hydrothermally altered 
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process generating an assemblage of different mineralized family units in accord with the 

various phases of the deposit´s source.  

 

A work flow of this thesis will be implemented below to conduct similar tasks for both 

satellites. Work flow will include implementation of band composition, band ratios, PCA 

analysis, spectral indices, and pixels classification along with results, comments, and 

discussions.  

 

Through this juxtaposition of Landsat-8 and Sentinel-2 performances, it is my opinion that 

the latter is completely capable to perform the same type of activities for mineral exploration 

than the former. 

 

2.  Methods and Materials 

 

2.1  Study area 

 

Escondida mine, as a porphyry copper-molybdenum deposit subjected to hydrothermal 

alteration, has developed in different alteration phases among them 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1:  Escondida Location in Northern Chile, Antofagasta region, South America, 
 

                 

 

The mine                      The region                   The continent 

                      

24°16′10″S 69°04′14″O                   Antofagasta, Chile                        South America                      

  

                 

http://tools.wmflabs.org/geohack/geohack.php?language=es&pagename=Minera_Escondida&params=-24.269444444444_N_-69.070555555556_E_type:landmark
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The Escondida mine is located in a arid area in Northern Chile, Figure 1. It belongs to the 

copper belt that runs along the country where most of the huge Chilean copper deposits are 

located along one of the most important geological fault of the country: the West Fault 

(Domeyko Cordillera).  

The Escondida´s mineralization and alteration was developed in three separated stages of 

geological activity: the first was a pervasive and fracture controlled alteration including an 

inner potassic and an outer propylitic zones. The second phase is a chlorite-sericite-quartz 

alteration zone. Finally, the third phase is constituted by a rhyolite intrusion and an advanced 

argillic alteration distributed in accord with the main fault zones, and by the contacts between 

the rhyolites and other intruded rocks. Alteration is defined by pyrophyllite, alunite and 

quartz, and abundant high sulphidation assemblages (PorterGeo Database, 2021). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Important for this investigation is the blue-dashed line in the left map indicating the aura where  

the argillic alteration (final alteration phase) is concentrated on the present surface 

 

 

Figure 2. Escondida Geological map as an interpreted solid geology of the Escondida Districtct,  

Northern Chile, based on outcrop mapping from J.P. Richards and others (2001), modified by  

M. Hervé and others (2012). Deposit outlines by A. Pizarro and others (2015) in accord with  

Porter GeoEscondida, 2021. 

.  

 

                           (PorterGeo Database, 2021) 
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2.2  Data acquisition 

 

To conduct the task of assessing the applicability of the Sentinel-2 spacecraft in mineral 

exploration activities, the “reference technology” to look upon will be the normal sequential 

activities followed by Landsat-8 for the normal activities in mineral exploration. 

First activities and materials preparation.  

Among the first activities to develop were: 

▪ Opening accounts for the acquisition of land cover (Escondida district) images at: 

 

o USGS Global Visualization Viewer, and at the 

 

o Europe's Copernicus programme.  

Images of the Escondida district were obtained for Landsat- 8 (2016-03-3) and Sentinel-2 

(2016-03-5). During March there are few clouds in the district´s sky. Actually, images with 

less than 10% of clouds were chosen.  

 

▪ Selecting geology and mineralogy maps of La Escondida district.  

 

▪ Setting the “reference technology”. This technology will be set up by using data reported in 

the paper “GIS Analyses and Favorability Mapping of Optimized Satellite Data in Northern 

Chile to improve exploration for mineral copper deposits”. (Norbert Ott et al, 2006). 

 

▪ Preparing the systems to be used for the analysis of both Landsat-8 and Sentinel-2 through    

Pre-Processing that assures to have reflectance values at a Top of Atmosphere (TOA) level 

for both satellites including geometric, atmospheric, and radiometric corrections. In the case 

of Lamdsat-8, selection was Level 1C similar to the characteristics of Sentinel- 2 selection 

Level 2A. 

 

▪ GIS Software: ArcGIS Pro version 2.8.0 and QGIS 3.16.3 were used. 
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2.3  Methodology workflow 
 

 

In accord with various references indicated in the Bibliography, most of the applications in 

mineral exploration using remote sensing are based on the following techniques:  

band composition, band ratios, PCA, spectral indices and classification. 

After the application of each of the techniques, results and a discussion will be done. 

 

 

 

 

 

 

 

         

 

 

 

 

 

The bases for the application of these techniques are presented in the Appendix. 
 

▪ band compositions were used for a first visualization of the whole Escondida district, the 

purpose being to see the capability of geological discrimination of both satellites. Three 

different imaginary scenes were used 

▪ PCA analysis was used to distinguish more in detail the geological structure of the 

mineralization assemblage in one of the well-established hydrothermal altered zone. This 

technique is not only used to maximize variabilities in some few independent components 

and to reduce data dimensionality but it is also used to contrast the characterization between 

neighbor bands to better mark discrimination between their mineralization units.  

                     TOPIC SELECTION 

          DATA ACQUISITION 

            PRE PROCESSING 

                BAND        
        COMPOSITION 

                  PCA      
A          ANALYSIS 

 

B                BAND 
                 RATIOS 

R               

S           SPECTRAL 
              INDICES 

                 PIXEL   
      CLASSIFICATION        

                                                                          RESULTS AND DISCUSSIONS 

                                                                                    CONCLUSIONS 

Figure 3. Workflow started with Topic Selection, Data Acquisition, and Pre Processing 

procedures and following with five remote sensing techniques. In each case results are discussed 

for final conclusions at the end. 

 

 

                           (PorterGeo Database, 2021) 
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▪ band ratios are math formulae, expressed as a division operation where the numerator is 

normally of band with the smaller reflectance value and the denominator is the band with 

the higher reflectance value. The use of a band ratio is to enhance the difference between 

band-color to mark their separation. 

▪ spectral indices are specific combinations of spectral reflectance of two or more 

wavelengths with the purpose of identifying an object of interest. 

▪ Classification is the process for grouping of pixel indicating similar nature.  
 

Based on these techniques, the juxtaposition of Landsat-8 and Sentinel-2 will be examined. 

 

3. Results and Discussion 

 

3.1  Band Composition 

 

 

The first visualization of Escondida will be assuming a natural or true color composite which 

is an image displaying a combination of visible red, green and blue bands to the 

corresponding red, green and blue channels on the computer. In both cases the RGB set is 

red-green-blue (4-3-2).  

 

A composite band is the combination of three image bands into one picture by displaying each 

band as either red, green or blue color. On the other hand, a false color image is a 

representation of a multi-spectral image produced using bands other than visible red, green 

and blue as the red, green and blue components of an image display. False color composites 

allow us to visualize wavelengths that the human eye cannot see (i.e. near-infrared). In 

Escondida, I used three compositions RGB because of their reference in literature (A. El 

Atillah, 2019).  

 

Visualizations of images provided by both satellites, at a large scale, are very coincident. 

Colors differ somehow presumably because of the different wavelengths ranges between both 

satellites or because of the time difference between the two images. However, in both, the 

present pits are well shown and roads and terrain topography are similarly sufficiently viewed.   

Following, the three band combinations will be shown below. 
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a. SWIR 2   RED   BLUE        (7 4 2) for Landsat 8 ; (12  4  2) for Sentinel-2  

b. SWIR 1 SWIR 2 RED       (6 7 4) for Landsat 8 ; (11 12 4) for Sentinel 2  

c. SWIR 2 SWIR 1 BLUE       (7 6 2) for Landsat 8;  (12 11 2) for Sentinel 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The set of bands 7-4-2 (RGB) in the Landsat-8 image and the set 12-4-2 in the Sentinel-2 

image discriminate the study area in two large portions. The portion to the left (red color), in 

both images, characterized by B7 and B12 respectively appear to show mostly the presence 

of clay minerals such as sericite, chlorite, biotite, k-felspar, montmorillonite, and others which 

absorb radiation much more than they reflect it. Band B4 in both images, to the right, relate 

more to vegetation which is not of interest in this case. However, its reflectance is similar to 

bands    wavelength range  

              (m) 

bands        wavelength range  

                   (m) 

B 4           0.636 – 0.673 B 4        0.646 – 0.685 
B 3           0.533 – 0.590 B 3        0.537 – 0.582   

B 2           0.452 -  0.512 B 2        0.439 – 0.535 

S           Sentinel 2 /2016 03 05                                                                                                                                   L Landsat 8  /2016 03 03 

Figure 4. Band composition of natural color of the Escondida district. Landsat-8 image 

(03-3-2016) and Sentinel-2 (05-3-2016). Wavelength ranges (m) are indicated.   

.  

 

                           (PorterGeo Database, 2021) 
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that of iron oxide minerals (D. F. Ducart, 2016). B2, blue, in both images (right portion), 

appears to show more iron oxides specimens (magnetite, hematite, pyrite) which absorbs 

energy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the case of Figure 5, delineation of geological structures given by Landsat-8 and Sentinel- 

2 is not the same affecting the scale of visualization but the pattern of these structures along 

bands   wavelength range    

            (m) 

bands         wavelength range  

                  (m) 

B 7        2.201 – 2.294  B 12          2.072 – 2.312 
B 4        0.636 -  0.673 B 4          0.646 -  0.685   

B 2        0.452 -  0.512 B 2          0.439 – 0.535 

S   Sentinel 2 /2016 03 05 

                 B12 4 2                                                                                                                                   

L Landsat 8  /2016 03 03   

                B7 4 2 

Figure 5. Band composition SWIR2, Red, Blue of the Escondida district. Landsat-8 image 

(03-3-2016) and Sentinel-2 (05-3-2016) for geological interpretation.  Wavelength ranges 

(m) are indicated.   

.  

 

                           (PorterGeo Database, 2021) 
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L  

                
 

with their colors appear very similar in such a way that the geological characterization is 

unmistakably the same. 

 
.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                   

 

   

bands    wavelength range (m) bands wavelength range (m) 
B 6           1.567 – 1.651 B 11        1.539 – 1.681  
B 7           2.201 – 2.294  B 12        2.072 – 2.312 
B 4           0.636 -  0.673 B 4        0.646 -  0.685   

S   Sentinel 2 /2016 03 05 

                 B11 12 4                                                                                                                                   

S   Landsat 8 /2016 03 03 

                 B6 7 4                                                                                                                                   
b 

Figure 6. Band composition SWIR2, Red, Blue of the Escondida district. Landsat-8 image (03-

3-2016) and Sentinel-2 (05-3-2016) for structural geology interpretation. Wavelength ranges 

(m) are indicated.   

.  

 

                           (PorterGeo Database, 2021) 
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In the Escondida district there are at least five major faults one of them being the West 

Fault that runs all along Northern Chile where the major copper deposits are located (ie, 

Chuquicamata, Radomiro Tomic, and others). At Escondida, the West fault runs tangential 

to the mineralized occurrences. 

 

In the Landsat-8 image, Figure 6, spectral bands 6 and 7 as well as in Sentinel-2 image, 

spectral bands 11 and 12, utilize parts of the Short Wave Infra-Red (SWIR) bands which, 

in this case, are very useful to identify rocks and soil structures. Band set 6-7-4 (RGB) in 

Landsat-8 as well as band set 11-12-4 in Sentinel-2 serve to recognize some of the key 

structural faults in the study area. Finally, a pair of additional bands set were applied 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

               

           

 
 

Bands        wavelength range  

                   (m) 

bands         wavelength range  

                 (m) 
B 7           2.201 – 2.294 B 12        2.072 – 2.312 
B 6           1.567 – 1.651 B 11        1.539 – 1.681  

B 2           0.452 -  0.512 B 2        0.439 – 0.535 

S   Sentinel 2 /2016 03 05 

                 B 12 11 2                                                                                                                                   

L Landsat 8  /2016 03 03   

                B 762 

Figure 7. Band composition SWIR2, SWIR1, Blue of the Escondida district. Landsat-

8 image (03-3-2016) and Sentinel-2 (05-3-2016) for macro-geological unit definition 

and interpretation. Wavelength ranges (m) are indicated.   

.  

 

                           (PorterGeo Database, 2021) 
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Figure 7 shows, in both cases, a darker stripe towards the north of the Escondida mine. To 

the south of the image, mineralization exhibits a much higher reflectance than the north 

portion indicating a significant presence of clay minerals such as, presumably, , alunite, 

illite and others. 

 

As Figures 4, 5, 6, and 7 showed, the images of both Landsat-8 and Sentinel-2 are very 

similar.to each other. Some of the features represented on the image gotten with one of these 

space-craft are somehow replicated in the image of the other. So, in addition to show that 

both are complementary to each other, a remote sensing technique such as the band 

composition show the capability of Sentinel-2 to perform at least at the same level than the 

Landsat-8                   

 
 
3.2  Principal Component Analysis (PCA) 

 
The PCA analysis, as viewed in the Appendix, is a statistical method that allows the 

reduction of available data in a system, in our case a remote sensing data, without loss of the 

intrinsic characteristics of the original data. Data reduction is achieved through the 

quantification of the covariance matrix, first, the correlation matrix later, and, finally, 

through the eigenvectors- eigenvalues matrix. 

 

In this present case, PCA will be used to approach (1) visualization of the mine site and (2) 

corroboration of mineral specimen identification. 

 

GIS software, normally, provides the eigenvector-eigenvalues matrix with the explained 

variance. This explained variance encloses the maximum variability portion of the system 

reached by every component. 

  

Table 1 shows the eigenvalues matrix using the first seven bands of the Landsat-8 satellite 

along with their explained variance. Figures 8, 9, y 10 show the images of each of the first 

three components. These contain the maximum variabilities of the system.   

 

 

 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 

B1 -0.2613  0.3017  0.4627 -0.1834  0.5153 -0.3189 -0.4749 

B2 -0.2917  0.3598  0.3840  0.1211  0.0891  0.2366  0.7478 

B3 -0.3561  0.3642  0.1069  0.0603 -0.5913  0.4388 -0.4278 

B4 -0.4095  0.2665 -0.3577  0.0819 -0.2979 -0.7132  0.1701 

B5 -0.4147  0.0860 -0.6559 -0.0490  0.4947  0.3746 -0.0518 

B6 -0.4811 -0.5042  0.2536  0.6652  0.0833  0.0069  0.0202 

B7 -0.3852 -0.5603  0.0662 -0.7045 -0.1905 -0.0225  0.0010 

    Table 1.  Principal Components Matrix with Eigenvalue Loadings Landsat-8 on the 

     Escondida district 
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Table 2 shows that the first component, PC1, encloses 87.37% of the total variability; the 

second PC2 supplied 10.66%: the PC3 reported 0.90% of the total variability. The other PC 

are insignificant. The first three PCs sum up 98.93%.  

 

 

 

Below is the visualization of the first three components in the case of Landsat-8 on the 

Escondida district. It is interesting to notice above that, in this case, the first three components 

are the most important. The four remaining ones are insignificant. 

  

 

 

 

 

Figure 8a shows the first component (PC1) which is the one encloses the maximum 

variability of the system. The second component (PC2) exhibits some absorption of 

energy towards the left of the figure. The third component (PC3) shows a greater level 

of energy absorption to the left of a figure indicating that presumably iron oxides 

specimens may be deposited towards that side.    

In an effort to try to identify some of the mineral specimens in the Escondida district, it will 

be interesting to look into some characteristics of the spectral signatures of some typical 

specimens.  Figure 9 shows some typical spectral signatures of minerals. 

Eigenvalues Explained variance  Cumulative variance 
0.019948 87.360727 87.360727 

0.002434 10.661100 98.021835 

0.000206   0.905322 98.927157 

0.000145   0.637734 99.564891 

8.356152 E-05   0.365942 99.830934 

1.314794 E-05   0.057579 99.988413 

7.645636   0.011586 100. 

Table 2    Eigenvalues and explained variance PCA Landsat-8 – Escondida district  

Figure 8. Visualizations of the first three Components in the PCA analysis on the Escondida 

district using Landsat 8. (a) first component; (b) second component; (c) third component.  

a b c 
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Fig. 9 (A) Laboratory spectra of epidote, calcite, muscovite, kaolinite, chlorite and 

alunite. (B) Laboratory spectra of limonite, jarosite, hematite and goethite (Clark et 

al., 1993) mentioned by A. B. Pour (2015) 

 
  

 

As noted in Figure 9, the spectral signatures of different elements are viewed along the 

complete wavelength space in a general continuous displacement but, from time to time, 

they produce a sort of “jumps” to lower (or to higher) and then to higher (or to lower) values 

or vice-versa. For instance, in Figure 9 (A) muscovite, kaolinite, and alunite decay around 

wavelength 1.4-1.6 m; they also decay around 2.1-2.3 m. In Landsat-8 it means that these 

three specimens, decay along the wavelength neighborhoods in accord to band 6 and band 

7. In the same fashion, in Figure 9 (B) specimens such as limonite, jarosite, hematite, and 

goethite decay around 0.5– 0.65 m and 0.80-0.90 m and also in the interval 0.85-0.88 m  

and 1.6–1.7 m. These intervals´ neighborhoods correspond to band 2 and band 4, and band 

5 and band 6. On the other hand, Figure 10 describes the spectral signatures of olivine and 

pyroxene specimens as well as plagioclase feldspar at a level of laboratory. In this case, 

decays are produced in the wavelength intervals 1.1 and 2.5 m .  

The relevance of the eigenvalues and their sign – positive/negative - is for being the factor 

which impact the original DN values of an image to get a new DN associated with the bands 

of each Principal Component (PC) to obtain an image for this PC at each of the pixels.  

In regard to this, Gupta, R.P et al (2013) refer to “…. a method called “feature oriented 

principal components selection” (FPCS). In this, they selectively used only those spectral 

bands for PC analysis which would have relevance for particular mineral discrimination 

and identification. They tested its effectiveness in detecting spectral anomalies due to ferric 

iron oxide minerals.” He adds “This technique has been applied by many workers for 

mapping alteration minerals using PCA”. 
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Table 3    Summary relations of distinctive wavelength intervals of the electromagnetic 

spectrum associated with the presence of hydrothermal altered mineral specimens.  

Figure 10.  Reflectance and wavelength (m) for olivine, pyroxene, and plagioclase 

feldspar minerals (B. Horgan et al, 2014).  

 

  
 

 

 

Table 1, which has numerical data associated with the different Landsat-8 bands should give 

us some insights regarding mineral identification. As a matter of fact, some other workers 

have showed (W.P. Loughlin, 1991) that in altered hydrothermal deposits it is more 

interesting to look for the differences in patterns affecting the whole eigenvector-eigenvalue 

matrix than to focus on the first three principal components. Several applications have been 

conducted using the same argument (A. Crosta et al, 1989; W.P. Loughlin, 1991; D.Aydal 

et al, 2007; A. Crosta et al, 2003), that is, to look for contrasting enhancements in the 

eigevector-eigenvalue matrix to improve the presence of specific objects in the scene: the 

purpose being to stand out the brightness difference between pixels and their backgrounds.  

     Band     

   contrast 

  Wavelength range  

              (m) 

Comment 

 (B. Horgan, 2014) 

B2               

B4               

0.452      0.512  

0.636      0.673 

goethite, hematite, magnetite,…. 

Figure 10 (b) 

B5               

B6               

0.851      0.879 

1.567      1.651 

goethite, hematite, magnetite,…. 

Figure 10 (b) 

olivine, pyroxenes, others (Le Hung Trinh, 
2016.). Also B. Horgan et al, 2014. 

B6                

B7                

1.567      1.651 

2.107      2.294 

alunite, illite, kaolinite, chlorite 

Figure 10 (a)  

https://www.tandfonline.com/doi/full/10.1016/j.jtusci.2014.11.008
https://www.tandfonline.com/doi/full/10.1016/j.jtusci.2014.11.008
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Figure 11.  Principal Components Landsat-8 showing the eigenvalues distribution 

along the seven bands. Major discrepancies (high and low values from one band to 

its neighbors) in pixel brightness are concentrated in components 4, 5, and 6. 

Landsat-8.  

To consider the eigenvector-eigenvalues of the PCA matrix for visualization purposes it is 

essential to recognize both the “high/low broken wavelength interval” and their magnitudes.  

In Figure 11 it can be noticed that the greater discrepancies between contrasting eigenvalue 

loadings along the seven bands are in components 4 (bands 5-6-7), 5 (bands 3-4-5-6), and 6 

(2-3-4-5-6). Component 2 includes values very similar to each other (Table 1); component 

3 (Figure 12) shows also some brightness discrepancies but at a level of magnitudes much 

lower than the 4, 5, and 6 components.  
  

  

  

 

 

Because the level of contrasting eigenvalue data is sufficiently representative of the PCA 

dealing with Landsat 8, they will be used for visualization of the image captured by this 

satellite.  

The same exercise has been done to analyze the Sentinel 2 data.  

 

 

The explained variance has been concentrated, in practice, only in the first component 

which shows very similar values for all the band set. 
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 PC1 PC2 PC3 PC4 PC5 PC6 PC7 

B1  0.3151  0.6376 -0.0127 -0.1591  0.0584 -0.0924  0.6312 

B2  0.3147  0.6272 -0.0410  0.1701 -0.0116  0.0908 -0.6372 

B3  0.3176 -0.1406  0.2955 -0.4648 -0.6820 -0.2548  0.0967 

B4  0.3171 -0.1463  0.1561  0.0165  0.1079 -0.4875 -0.0149 

B5  0.3167 -0.1491  0.2171  0.0714  0.2211 -0.2426 -0.1006 

B6  0.3163 -0.1524  0.1828  0.0560  0.3411  0.0299 -0.1548 

B7  0.3167 -0.1514  0.1491 -0.0641 -0.5571  0.6774 -0.0185 

Table 4.  Principal Components Matrix with Eigenvalue Loadings Sentinel 2 on 

the Escondida district 
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Comments on Figure 13 are similar to those regarding Figure 8. Insufficient for any 

type of minerals identification. 

To determine the most convenient components to visualize the Escondida on the basis 

of Sentinel-2, the same procedure employed in the case of Landsat-8 will be applied. 

 

 

 

 

 

Eigenvalues 

 

Explained variance  Cumulative variance 

6.558450 99.072999 99.072999 

0.055650   0.840671 99.913671 

0.0045482   0.0687061 99.982377 

0.0006479   0.0097876 99.992164 

0.0002363   0.0035704 99.995735 

0.0001606   0.0024263 99.998161 

7.4864948   0.0011309 99.999292 

            Table 5    Eigenvalues and explained variance – PCA Sentinel-2 – Escondida district  

Figure 12. Visualizations of the first three Components in the PCA analysis on the 

Escondida district using Sentinel-2. (a) first component; (b) second component; (c) 

third component.  

a b c 
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In summary: 

Landsat-8 and Sentinel-2 satellites have shown on Escondida short-spectral-signature 

intervals along the wavelength spectra associated with some selected components of the 

eigenvector-eigenvalue matrix. Table 6 shows the summary   

 

Landsat-8 Sentinel-2 

Components Bands Components Bands 

4 (5)-6- 7 2 2-(3)-4 

5 (4)-5- 6 7 2-(3)-4 

6  2–(3)-4 6 5-6-7 

Summary B2-B4 /B6-B5 / B6-B7 Summary B2–B4 /B5-B6/B6-B7 

 

Figure 13. Principal Component Sentinel-2 showing the eigenvalue loadings with the 

“high & low” values across the wavelength spectrum indicating the transition from 

energy brightness to energy absorption.  
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Table 6. Summary of the bands´ interrelations that, based on distinctive components, 

define short-intervals of the wavelength spectra where the presence of selected 

minerals is detected. 
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Figure 14.    Wavelength-intervals where iron oxides (hematite, magnetite, and others), ferrous   

minerals (olivine, pyroxenes, others), clay minerals (alunite, chlorite, kaolinite, and others)  

are detected in Escondida through the PCA analysis using Landsat-8 and Sentinel-2 satellites.  

B6 (1.567-1.651) 

SWIR1            

B7 (2.107-2.294) 

SWIR2 B5 (0.851-0.879) 

NIR 

B6 (1.567-1.651) 

SWIR1 

B2 (0.452-0.512) 

BLUE 

B4 (0.636-0.673) 

RED 

                     CLAY MINERALS 

                     FERROUS MINERALS 

                     IRON OXIDES 
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. 

PCA analysis has been used in this thesis to try to approach mine site visualization and 

corroboration of minerals specimens. 

 

Mine site visualization         

 

Visualization has been addressed in two ways: 

 

(1) Through the first three Principal Components of the PCA analysis using the 

Landsat-8 and the Sentinel-2, Figures 8 and 13. Both triad of figures are very similar 

to each other showing, with special quality, the ground topography. Discrimination 

of different geological structures is difficult, or almost impossible, without having 

any field work. 

 

(2) Through the selection of components 4-5-6 in the case of Landsat-8 and 2-7-6 in 

the case of Sentinel-2 and their relations between eigenvalues data and associated 

bands, identification of distinctive wavelength intervals have corroborated the 

presence of selected minerals specimens dealing with iron oxides, ferrous minerals, 

and clay minerals as Table 6 shows 

 

As a matter of fact, the geological map of Figure 15 (Below) shows most of the key 

minerals available in the district. Specimens, as most of the hydrothermally altered 

deposits, are in line with the minerals indicated in the text of Figure 14.    
 

Figure 15 shows the visualization of the Escondida district using the components 4-

5-6 of a PCA analysis in the case of Land-8 and the components 2-7-6 of a PCA 

analysis in the case of Sentinel-2 as well as the geological map referred above. Map 

has been done based on outcrops in the mine-site and interpreted in accordance with 

various geological teams. 
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 3.3  Band Ratios and Spectral indices 

Figure 15.  (Above, left) Visualization of the Escondida district using Landsat-8 and 

components 4, 5, 6 of a PCA analysis. (Above, right) Visualization of the Escondida 

district using Sentinel-2 and components 2, 7, 6 of a PCA analysis. (Below) Map of 

Escondida district (Figure 2).  
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Based on the previous analysis as well as in the interest for the characterization of 

mineral specimens, it is necessary now to set up a series of spectral signatures allowing 

a better identification of those specimens. To perform this identification and estimation 

on a very specific site, this procedure will be carried out within the area of the argillic 

alteration which is the final phase of mineralization..   

Literature review provide various spectral indices in geology (Z. Ourhzif et al, 2019; 

A.F. Alasta, 2011; D. Segal, 1982; S. Drury, 1990).        

Based on those suggestions and in the analysis under way, eight ratios were considered 

for analysis: 

 

 

 

The ratio 4/2 is useful for mapping iron oxides because it has absorption in the blue 

region, where it has a high reflectance in the red region. The ratio 6/7 has the ability to 

map some clay minerals such as kaolinite, montmorillonite. The ratio 6/5 has been used 

for mapping ferrous minerals due to the high reflectance of these minerals in this ratio 

(R. Gupta, 2003).  

Band ratios derived from image spectra (4/2, 6/7, 5/4 in RGB) is used for the 

identification of argillic alteration´s mineral specimens.  

Finally, for geological classification using Landsat-8 the following platform was set 

up: 

 

 

 

 

For the geological classification using Sentinel-2 the following platform was set up: 

4/2 11/8a 11/12 8a/4 PC 2 PC 6 

 

 
 

Below, Figure 16, shows the extensions of iron oxides within the argillic alteration 

zone of Escondida in accord with Landsat-8 and Sentinel-2. 

  

4/2 4/7 5/4 6/2 6/5 6/7 7/2 7/6 

4/2 6/5 6/7 5/4 PC 2 PC 6 

Table 7.  Series of band ratios for identification and measurement of 

mineral specimen occurrences 

Table 8.  Series of band ratios for classification of mineral specimen 

occurrences --- Landsat 8 

Table 9.  Series of band ratios for classification of mineral specimen 

occurrences --- Sentinel 2 
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Index B4/B2 is suitable for detecting the presence of iron oxides such as limonite, hematite, 

goethite along with K-feldespar. Sentinel-2 shows a better contrast when using this index. 

Similar situations are displayed using index B6/B5 (or B11/B8a) for detecting clay minerals), 

and index B6/B7 (or B11/B12) for detecting ferrous minerals.  

 

 

 

Figure 16.  B4/B2 for (a) Landsat-8 and (b) Sentinel-2´s Geological extensions of Iron Oxides in   
Escondida ‘s argillic alterations  

                                                           

 
  

          LANDSAT-8 2016                              SENTINEL -2 2016 



 
 

31 
 

 

 

 

 

 

 

 

 

 

 

 

 

             

Figure 17. (a) B6/B5 for Landsat-8 and (b) B11/B8a for Sentinel-2. Geological visualization of  
ferrous minerals in Escondida´s argillic alteration  

               LANDSAT-8 2016                               SENTINEL -2 2016 
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       LANDSAT-8 2016        SENTINEL -2 2016 

Figure 18. (a) B6/B7 for Landsat-8 and (b) B11/B12 for Sentinel-2. Geological extensions of 
clay in Escondida´s argillic alteration  
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In the present study, the Landsat 8 bands 4, 5, 6, and 7 are highly effective in discriminating 

various rock units. Various rock units such as quartz feldspathic schist rocks shown by 

white pixels and igneous and metamorphic rocks exhibit by dark pixels can be easily 

discriminated. High reflectance correspond to band 6; low reflectance corresponds to band 

5. The ratio 6/7 has the ability to map kaolinite, montmorillonita and clay minerals. (Z. 

Ourhzif et al 2019). 

 

As a summary, within the argillic alteration sector (4,114 Ha) in Escondida, the extensions 

of these three groups of minerals follows: 

As a complementary information, and according to mineral processing studies, there is a 

12% of Kaolinite, a 4% of montmorillonite, and a 18% of Illita in the Escondida mine 

(Bulatovic et al, 1999).  

 

 
 

           
 
 
 

 
 
 
   
 
 
 

3.4  Classification 
 

In Appendix, classification procedures have been divided in supervised, unsupervised, and 

object-based methodology. In this case, a supervised procedure was applied using for this a 

classification software (an algorithm or classifier based on machine learning) to perform the 

classification activity. Four ratios (red/blue, swir1/nir, swir2/swir1 and nir/red), and two 

components (PC2, and PC6) were chosen for image generation. 

 

Following, twenty classes within the image available were considered but, after analyzing the 

whole scene the focus was on one specific occurrence in the surrounding neighborhood of 

the two main pits at Escondida. Samples were chosen for the due training on the target 

specimen and a group of fifty secondary samples were considered to assess their matching on 

the target specimen. A Random Tree classifier was employed for this analysis and results are 

given in Figure 19, Figure 20, and Table 11. 

 

      MINERAL 

OCCURRENCES 

Extension (Ha);  

% of alteration zone on 

the basis of Landsat-8 

Extension (Ha);  

% of alteration zone on  

the basis of Sentinel-2 
   
IRON  
OXIDES 

621,5 (15,11%) 1,330,0 (32,32%) 

FERROUS  

MINERALS 
56,2 (1,36%) 223,1 (5,42%) 

CLAY 866,0 (21,05%) 978,5 (23,78%) 

            Table 10. Areal extensions of Iron Oxides, Ferrous Minerals, and Clay Minerals 

                    at Escondida ´s superficial argillic alteration zone (4,114Ha) 

 



 
 

34 
 

  
 
 
 

 
 
 
 
 
 
 

                                     Figure 19   Identified Mineral Target Occurrences 

                             within Escondida superficial argillic alteration zone (4,114 Ha) 
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                                     Figure 20   Classified Mineral Target Occurrences 

                             within Escondida superficial argillic alteration zone (4114 Ha) 

 

LANDSAT-8 SENTINEL-2 

295 Ha 321 Ha 

 
                           Table 11    Classified Target Extension 
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3.5 Assessment of Classified Target Mineral Occurrences 

 

The assessment of classified target mineral occurrences was done by using 

confusion matrices.  

 
 

CLASSES TARGET OTHER TOTAL ACCURACY KAPPA 

TARGET 23 2 25 0.92 0 

OTHER 5 20 25 0.80 0 

TOTAL 28 22 50 0 0 

Paccuracy 0.8214 0.9090 0 0.86 0 

     0.72 

                                      

                                  Table 12 Confusion Matrix for Landsat -8 

 

                                

CLASSES TARGET OTHER TOTAL ACCURACY KAPPA 

TARGET 24 1 25 0.96 0 

OTHER 7 18 25 0.72 0 

TOTAL 31 19 50 0 0 

Paccuracy 0.7741 0.9473 0 0.84 0 

     0.68 
 

                              Table 13 Confusion Matrix for Sentinel 2 
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4.         Discussion 

 

◼ On the Sentinel-2 capability for mineral exploration in arid regions. 
 

Through this investigation it is clear that Sentinel-2 performs remote sensing 

processes in mineral exploration with similar efficiency and effectiveness that 

Landsat-8. Band composition, band ratios, PCA analysis, spectral indices, and 

classification procedures have been applied under which, Landsat-8 and Sentinel-

2 have performed in agreement with the objectives established. There was only 

one noticeable difference between the results of Landsat-8 and Sentinel-2: the 

estimation of the minerals extensions. Although all comparisons between Landsat-

8 and Sentinel- 2 were consistently under the same parameters and conditions, the 

difference in extension among them can be a result of the different statistical values 

considered in each case by the software. It should be interesting to prove Sentinel-

2 over land with bushes and thick vegetation to evaluate its limitations. 

 

◼ On products obtained as results 
 

Among the products obtained as results Sentinel-2 has provided similar results than 

Landsat-8 in  
 

o illustrating images for geological distinction at large scale (band composition)  

o visualizing the mine-sites using a PCA analysis through (a) the components 

enclosing the maximum variabilities (first three components); (b) components 

selected through contrasting positive/negative eigenvalue-loadings associated 

with the bands sequence.  

o identifying and measuring the typical groups of mineral in hydrothermally 

altered copper-molybdenum deposits through band ratios. 

o classifying target mineral occurrences through a supervised classification 

technique including the “random trees” classifier as a machine learning 

algorithm.   

o assessing a sampling procedure within the classification process on the basis 

of a confusion matrix. 

             

◼ On exploration data 

 

It is interesting to notice that the most important group of minerals in a hydrothermally 

altered deposit is the iron oxide minerals family (32%) following by the clay minerals 

(23%). Ferrous minerals reach only 5%. 

 

◼ On the assessment of classification 

 

In terms of the classification done on Escondida´ argillic alteration area, the assessment 

index is both cases are almost similar between Landsat- 8 an Sentinel-2 (72% and 68% 

respectively) which are classified at a ”good” level according to the standards in remote 

sensing.  
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5.        Conclusions 

 

Although results could have been much more complete and the interpretation of the 

images much more convincing, remote sensing is an activity than can add substantially 

more value to mineral exploration. This because remote sensing is a relatively 

inexpensive activity in comparison to other mineral exploration activities, it can 

quickly generate maps of large exploration areas, and it can obtain images of any area 

of interest. It is evident that a good skill in the interpretation of images is necessary. 

In this work only an interpreted geological map has been used. With field work and 

data on sampling, geological structures, exclusive mineral pathfinders, and more results 

would had improved notably. 

At ending this work I would like to respond to the three questions posed at the 

very beginning of it: 

  

How Sentinel-2 applications & procedures match landsat-8 ones 

Sentinel-2 applicability & activities in remote sensing match very well those used 

by landsat-8 considered this as a reference technology.  

           How Sentinel-2 spatial resolution impact remote sensing results 

Sentinel-2 spatial resolution impact in benefit of a better discrimination of some 

elements such as structural and geological features for mineral exploration 

providing a satisfactory definition of a geological environment and a suitable 

discrimination of their mineralization border’s which is of utmost importance in 

mineral exploration. 

How we can improve the results of the analysis for mining exploration using 

remote sensing? 

Definitively remote sensing alone is not enough for mineral exploration. It offers a 

good sense of what kind of minerals could be under or over surface. To improve 

the results more than a geologic map is required. Data such as geochemical 

sampling, geophysics data, a few rock samples and hopefully some field work, 

would presumably improve notoriously the results. 
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                                   Remote Sensing basic review 

 

NOTE:  In this Appendix, a compilation of papers, documentations, and internet 

links are presented. Citations are all indicated.  

 

 

Remote sensing is the technology that captures information about the Earth's surface without 

actually being in contact with it. This is done because different objects reflect or emit different 

amounts of energy in different bands of the electromagnetic spectrum (John A. Richards, 

2012). The amount of energy reflected or emitted depends on the properties of both the 

material and the incident energy (angle of incidence, intensity and wavelength). Detection and 

discrimination of objects or surface features is done through the uniqueness of the reflected 

or emitted electromagnetic radiation from the object. A device to detect this reflected or 

emitted electro-magnetic radiation from an object is called a “sensor” (e.g., cameras and 

scanners). A vehicle used to carry the sensor is called a “platform” (e.g., aircrafts and 

satellites); Figure 1.  

Main stages in remote sensing (N. Rux, ESRI, https: // storymaps. arcgis. com) are the 

following:  

 

(a) Emission of electromagnetic radiation  

(b) The Sun or an electro-magnetic-radiation (EMR) source located on the platform 

B and transmission of this energy from the source to the object  

(c) Absorption and scattering of the EMR while transmission  

(d) Interaction of EMR with the object and subsequent reflection and emission  

(e) Transmission of energy from the object to the sensor  

(f) Recording of energy by the sensor  

(g) Photographic or non-photographic sensors  

(h) Transmission of the recorded information to the ground station  

(i) Processing of the data into digital or hard copy image  

(j) Analysis of data. 

 

These stages (R.K. Vincent, 2022; S.M. Gandhi et at, 2016) are shown in Figure 1. 

  

https://storymaps.arcgis.com/
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Sensors 

 
There exist at present a variety of sensor space-crafts (Aster, World View, SPOT, Ikaros, and 

many others). However, our interest is in two of them: Landsat-8 and Sentinel-2. Both provide 

satellite images without any payment; all the other sensors charge for providing satellite 

images. 

 

As the link https://landsat.gsfc.nasa.gov/satellites/ landsat-8/ describes, the “Landsat-8 

satellite is an American Earth observation satellite launched on 11 February 2013 It is the 

eighth satellite in the Landsat program; the seventh to reach orbit successfully. Originally 

called the Landsat Data Continuity Mission (LDCM), it is a collaboration between NASA and 

the United States Geological Survey (USGS). NASA  Goddard Space Flight 

Center in Greenbelt, Maryland, provided development, mission systems engineering, and 

acquisition of the launch vehicle while the USGS provided for development of the ground 

systems and will conduct on-going mission operations. It comprises the camera of 

the Operational Land Imager (OLI) with 30m spatial resolution and nine bands, and 

the Thermal Infrared Sensor (TIRS) with 100m spatial resolution and two bands which can 

be used to study Earth surface temperature and is used to study global warming.  

The satellite was built by Orbital Sciences Corporation, who served as prime contractor for 

the mission. The spacecraft's instruments were constructed by Ball Aerospace & 

Technologies and NASA's Goddard Space Flight Center (GSFC), and its launch was 

contracted to United Launch Alliance (ULA). During the first 108 days in orbit, LDCM 

underwent checkout and verification by NASA and on 30 May 2013 operations were 

transferred from NASA to the USGS when LDCM was officially renamed to Landsat 8. The 

area covered by each scene is 185 × 180 km”. 

Figure 1. Stages in remote sensing 

https://landsat.gsfc.nasa.gov/satellites/%20landsat
https://en.wikipedia.org/wiki/Goddard_Space_Flight_Center
https://en.wikipedia.org/wiki/Goddard_Space_Flight_Center
https://en.wikipedia.org/wiki/Greenbelt,_Maryland
https://en.wikipedia.org/wiki/Operational_Land_Imager
https://en.wikipedia.org/w/index.php?title=Thermal_Infrared_Sensor&action=edit&redlink=1
https://en.wikipedia.org/wiki/Earth
https://en.wikipedia.org/wiki/Orbital_Sciences_Corporation
https://en.wikipedia.org/wiki/General_contractor
https://en.wikipedia.org/wiki/Ball_Aerospace_%26_Technologies
https://en.wikipedia.org/wiki/Ball_Aerospace_%26_Technologies
https://en.wikipedia.org/wiki/United_Launch_Alliance
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In a parallel fashion, the link https://www.esa.int/Applications/ Observing the Earth/ 

Copernicus/Sentinel-2 describes the Copernicus Sentinel-2 mission S2/MSI as “a mission 

with two satellites (S2A/MSI and S2B/MSI launched by the European Union’s Copernicus 

Earth Observation program of Europe Space Agency (ESA) in 2015 and 2017, respectively). 

Both S2 satellites carry the Multi-Spectral Instrument (MSI), a sensor containing 13 bands 

and spatial resolution varying between 10 and 60 m at visible to shortwave infrared (SWIR) 

regions Because of their spectral capabilities (including three bands in the Red-edge and two 

bands in the SWIR), S2/MSI mission provides new mapping possibilities. It aims at monitoring 

variability in land surface conditions, and its wide swath width (290 km) and high revisit time 

(10 days at the equator with one satellite, and 5 days with 2 satellites under cloud-free 

conditions which results in 2-3 days at mid-latitudes) will support monitoring of Earth's 

surface changes”  

A similar link https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-2/satellite 

complements the previous information adding that “the Sentinel-2 satellite system was 

developed by an industrial consortium led by Astrium GmbH (Germany). Astrium SAS 

(France) is responsible for the MultiSpectral Instrument (MSI). The MSI works passively, by 

collecting sunlight reflected from the Earth. New data is acquired at the instrument as the 

satellite moves along its orbital path”.  

“The incoming light beam is split at a filter and focused onto two separate focal plane 

assemblies within the instrument; one for Visible and Near-Infra-Red (VNIR) bands and one 

for Short Wave Infra-Red (SWIR) bands. The spectral separation of accomplished by stripe 

filters mounted on top of the detectors”. 

 

 

Figure 2. The Landsat-8 space-craft 

https://www.esa.int/Applications/
https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-2/satellite%20complement
https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-2/satellite%20complement
https://sentinel.esa.int/web/sentinel/missions/sentinel-2/instrument-payload
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Wavelengths as well as their mid-points (CW) are calculated differently for Landsat 8 and 

Sentinel-2 - see below for description, Figure 4 (GIS Ag Maps.com). 
 

 

 
   Figure 4. Central wavelength, wavelength range, bandwidth,     

     Resolution Comparison between Landsat 8 and Sentinel 2  
                                   (GIS Ag Maps.com) 

Figure 3. The Sentinel-2 space-craft 
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▪  

 
As described in https://www.quora.com; https://romgistors.blogspot.com/2015/05/brief-

introduction-to-remote-sensing.html, Sensors “can be on board of airplanes or on board of 

satellites, measuring the electromagnetic radiation at specific ranges (usually called bands). 

If the source of the measured energy is the Sun, then it is called passive remote sensing, and 

the result of this measurement can be a digital image. If the measured energy is not emitted 

by the Sun but from the sensor platform then it is defined as active remote sensing, such as 

radar sensors which work in the microwave range (Richards and Jia, 2006). The range of 

energy examined in a remote sensing system is broken into 256 bins. A single pixel may have 

several digital number (DN) variables corresponding to different bands recorded”. 

An image is made up of individual elements that are arranged in a grid of rows and columns. 

These elements are called pixels. In fact, the word "pixel" is derived from "picture element". 

As a result, the measures are quantized and converted into a digital image, where each picture 

elements (i.e. pixel) has a discrete value in units of Digital Number, DN (NASA, 2013). The 

resulting images have different characteristics (resolutions) depending on the sensor. There 

are several kinds of resolutions: 

 

Spatial resolution, as https://fromgistors.blogspot.com defines it usually measured in pixel 

size, “is the resolving power of an instrument needed for the discrimination of features and 

is based on detector size, focal length, and sensor altitude”; spatial resolution is also 

referred to as geometric resolution or IFOV; 

 

Spectral resolution, in accord with https://www.earthdatascience.org/courses/earth-

analytics/multispectral-remote-sensing-data/introduction-multispectral-imagery-r/, “is the 

number and location in the electromagnetic spectrum (defined by two wavelength indices) of 

the spectral bands in multispectral sensors, for each band corresponds an image; Such as 

Figure 5 shows, theoretically, the electromagnetic radiation extends along the whole 

wavelength spectrum as a sequence of adjacent ranges called bands. Space-crafts captures, 

according to the nature of each of them, radiations from only privilege bands within the whole 

wavelength spectrum”, Figure 6. Expressions of the spectral signatures along these selective 

bands support the configuration of the spectral signature of an object/material.    

 
A whole spectrum of radiation is shown in Figure 5. 

 
 

 

https://www.encyclopedia.com/science-and-technology/computers-and-electrical-engineering/computers-and-computing/bin#1O13bin
https://www.encyclopedia.com/literature-and-arts/performing-arts/music-theory-forms-and-instruments/band#1O13band
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Radiometric resolution, as defined in https://semiautomaticclassificationmanual-

v5.readthedocs.io/ru/latest/remote_sensing.html , “usually measured in bits (binary digits), 

is the range of available brightness values, which in the image correspond to the maximum 

range of DNs; for example, an image with 8-bit resolution has 256 levels of brightness” 

(Richards and Jia, 2006); 

For satellites sensors, there is also the temporal resolution, which is the time required for 

revisiting the same area of the Earth. 
 

Other definitions follow: 

 

 

Radiance and Reflectance 

Sensors, in agreement with https://semiautomaticclassificationmanual-v5.readthedocs.io 

/fa/latest/remote_sensing.html, measure the radiance, which corresponds to the brightness 

in a given direction toward the sensor; it is also useful to define the reflectance as the ratio of 

reflected versus total power energy. Images in radiance can be converted to Top of 

Atmosphere (TOA) Reflectance (combined surface and atmospheric reflectance) in order to 

reduce the in between-scene variability through a normalization for solar irradiance. The 

TOA reflectance becomes a unit-less ratio of reflected versus total power energy. 

Spectral Signature 

The link https://semiautomaticclassificationmanual-v5.readthedocs.io/de/latest/ remote 

_sensing.html also defines the spectral signature as the reflectance as a function of 

         Figure 5. The electromagnetic spectrum 

(Earth Resources Observation and Science (EROS) Center March 1, 2019) 

  

https://semiautomaticclassificationmanual-v5.readthedocs.io/ru/latest/remote_sensing.html
https://semiautomaticclassificationmanual-v5.readthedocs.io/ru/latest/remote_sensing.html
https://semiautomaticclassificationmanual-v5.readthedocs.io/de/latest/remote_sensing.html#id31
https://semiautomaticclassificationmanual-v5.readthedocs.io/de/latest/remote_sensing.html#id32
https://semiautomaticclassificationmanual-v5.readthedocs.io/de/latest/%20remote%20_
https://semiautomaticclassificationmanual-v5.readthedocs.io/de/latest/%20remote%20_
https://www.usgs.gov/centers/eros
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wavelength; each material has a unique signature, therefore it can be used for material 

classification. Remote sensing process digital images to extract spectral signatures at each 

pixel and use them to divide the image in groups of similar pixels (segmentation) using 

different approaches. As a last step, they assign a class to each group (classification) by 

comparing with known spectral signatures. Depending on pixel resolution, a pixel can 

represent many spectral signature "mixed" together - that is why much remote sensing 

analysis is done to "unmix” mixtures. Ultimately correct matching of spectral signature 

recorded by image pixel with spectral signature of existing elements leads to accurate 

classification in remote sensing. 

 

 

 

 

Bands 

 

N. Horning (2004) comments that a satellite image appears to be a 2-dimensional image. In 

reality, in addition to the rows and columns of pixels, images also have layers, or levels, also 

called “bands” which describe a range of wavelengths. They represent the different colors or 

light that are used to display an image on a computer screen. These images are created on the 

basis of the three primary colors of light; red, green, and blue. The RGB primary colors can 

be mixed to create any color. By selecting three bands from a multi-band image and 

illuminating each of them with either red, green, or blue light we can create a color image, 

Figure 7. Another way to visualize this concept is to see how an individual pixel is composited. 

Figure 8 illustrates this same process for an individual pixel.  

Below the Figure we see that a pixel has three layers; one each for the red, green, and blue 

light emitted from the computer screen. Each of these layers is represented by a number, the 

pixel value, which typically ranges from 0 - 255 where "0" represents black (no light) and 

 Figure 6. Some spectral signatures  

                             (NASA 2013)  

 

https://en.wikipedia.org/wiki/Digital_images
https://en.wikipedia.org/wiki/Segmentation_(image_processing)
https://en.wikipedia.org/wiki/Pixel
https://en.wikipedia.org/wiki/Remote_sensing
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"255" represents very bright light. When each of these layers is illuminated by one of the 

primary colors of light, the color filter, and the layers are superimposed on top of one another, 

the appropriate color is produced for that pixel. If the pixel we want to view is from a black 

and white image we still use the three primary colors to create the image on the computer 

monitor. This is done by using the same pixel value for each of the pixel layers (N. Horning, 

2004) 

    

 

 

 

 

 

To make a color image from images that have several bands we need to select three bands that 

can be assigned to the 3 color channels in a computer monitor, Figure 8.        

 

 

 Figure 7. Color image as a result of a RGB composite  

                     (N. Horning, version 1, 2004) 
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Band Ratios 

 
Band Ratios are used to enhance the spectral differences between bands, as the link 

https://www.L3harrisgeospatial.com/docs/bandratios.html explains . Dividing one band 

(of high reflectance) by another (of high absorption) a process called “band ratio” allow us to 

enhance the spectral differences between bands whereby images providing relative band 

intensities are produced providing relative band intensities. The image enhances the spectral 

differences between bands. You may combine three ratios into a color-ratio-composite (CRC) 

image to determine the approximate spectral shape for each pixel’s spectrum. Several band 

ratios are shown in the literature for mapping different minerals (A. El Atillah et al, 2019).  

Band Ratio images improve the contrast between the features by partitioning the brightness 

values at peaks and troughs in a reflectance curve, after removing the atmospheric conditions 

from the image. Spectral band rationing enhances compositional information while 

suppressing other types of information about earth’s surface. This method is very useful for 

highlighting certain features or materials that cannot be seen in the raw bands. Band ratio 

transformation is useful for qualitative detection of hydrothermal alteration minerals (Di 

Tommaso. 2007; Rockwell et al. 2008; Pour, B. and Hashim, A. 2011).  

 

 

 

 

                    Figure 8. Final Color Pixel Image  

                      (N. Horning, version 1, 2004) 

                  

 

https://www.l3harrisgeospatial.com/docs/bandratios.html
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PCA 

 
Principal Component Analysis, or PCA, in accord with Z. Jaadi (2021) is a dimensionality-

reduction method that is often used to reduce the dimensionality of large data sets, by 

transforming a large set of variables into a smaller one that still contains most of the 

information in the large set. PCA is a covered method on the web, and there are too many 

articles about it.  

 

Principal component analysis can be broken down into five steps. 

 

a. Standardize the range of the continuous initial variables. The aim of this step is to 

normalize the range of the continuous initial variables so that each one of them contributes 

equally to the analysis. More specifically, the reason why it is critical to perform 

standardization prior to PCA, is that the latter is quite sensitive regarding the variances of 

the initial variables. That is, if there are large differences between the ranges of initial 

variables, those variables with larger ranges will dominate over those with small ranges. So, 

transforming the data to comparable scales can prevent this problem. 

   

        

b. Once the standardization is done, all the variables will be transformed    

c. to the same scale. The aim of this step is to understand how the variables of the input 

data set are varying from the mean with respect to each other, or in other words, to see if 

there is any relationship between them. This is done because, sometimes, variables are highly 

correlated in such a way that they contain redundant information. So, in order to identify 

these correlations, we compute the covariance matrix. 

d. Compute the covariance matrix to identify correlations. 

The covariance matrix is a p × p symmetric matrix (where p is the number of dimensions) that 

has as entries the covariances associated with all possible pairs of the initial variables. For 

example, for a 3-dimensional data set with 3 variables x, y, and z, the covariance matrix is a 

3×3 matrix of this from: 

 

   cov (x,x) cov (x,y)          cov (x,z)   

   cov (y,x) cov (y,y)  cov (y,z) 

                 cov (z,x) cov (z,y) cov (z,z) 

 

Since the covariance of a variable with itself is its variance (cov(a,a)=Var(a)), in the main 

diagonal (Top left to bottom right) we actually have the variances of each initial variable. 

And since the covariance is commutative (Cov(a,b)=Cov(b,a)), the entries of the covariance 

Z= (value - mean) / (standard deviation) 
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matrix are symmetric with respect to the main diagonal, which means that the upper and the 

lower triangular portions are equal. 

 

e. Compute the eigenvectors and eigenvalues of the covariance matrix to      

  identify the principal components 

 

f.  Create a feature vector to decide which principal components to keep 

 

7.         Recast the data along the principal components axes 

PCA is done in order to reduce the number of variables of a data set. This naturally comes at 

the expense of accuracy, but the objective in dimensionality reduction is to trade a little 

accuracy for simplicity. Because smaller data sets are easier to explore and visualize and make 

analyzing data much easier and faster for machine learning algorithms without extraneous 

variables to process. 

So to sum up, the idea of PCA is to reduce the number of variables of a data set, while 

preserving as much information as possible.  

Eigenvectors and eigenvalues are the linear algebra concepts that we need to compute from 

the covariance matrix in order to determine the principal components of the data.  

Principal components are new variables that are constructed as linear combinations or 

mixtures of the initial variables. These combinations are done in such a way that the new 

variables (i.e., principal components) are uncorrelated and most of the information within the 

initial variables is squeezed or compressed into the first components. So, the idea is N-

dimensional data gives you N principal components, but PCA tries to put maximum possible 

information in the first component, then maximum remaining information in the second and 

so on. 

Organizing information in principal components this way, will allow you to reduce 

dimensionality without losing much information, and this by discarding the components with 

low information and considering the remaining components as your new variables. 

Geometrically speaking, principal components represent the directions of the data that explain 

a maximal amount of variance, that is to say, the lines that capture most information of the 

data. The relationship between variance and information here, is that, the larger the variance 

carried by a line, the larger the dispersion of the data points along it, and the larger the 

dispersion along a line, the more the information it has. In other words, principal components 

as new axes that provide the best angle to see and evaluate the data, so that the differences 

between the observations are better visible. 

In regard to the eigenvectors and eigenvalues, they always come in pairs, so that every 

eigenvector has an eigenvalue. And their number is equal to the number of dimensions of the 
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data. For example, for a 3-dimensional data set, there are 3 variables, therefore there are 3 

eigenvectors with 3 corresponding eigenvalues. Eigenvectors are the directions of the axes 

where there is the most variance (most information) and that we call Principal Components; 

and eigenvalues are simply the coefficients attached to eigenvectors, which give the amount 

of variance carried in each Principal Components.  

Classification 

 

As the link http://www.sc.chula.ac.th/courseware/2309507/Lecture/remote18.htme 

explains, “the intent of the classification process is to categorize all pixels in a digital image 

into one of several land cover classes, or "themes". This categorized data may then be used to 

produce thematic maps of the land cover present in an image. Normally, multispectral data 

are used to perform the classification and, indeed, the spectral pattern present within the data 

for each pixel is used as the numerical basis for categorization (Lilles and Kiefer, 1994). The 

objective of image classification is to identify and portray, as a unique gray level (or color), 

the features occurring in an image in terms of the object or type of land cover these features 

actually represent on the ground.  

Two main classification methods are:   

Supervised Classification and Unsupervised Classification.” 

“With supervised classification, we identify examples of the Information classes (i.e., land 

cover type) of interest in the image. These are called "training sites". The image processing 

software system is then used to develop a statistical characterization of the reflectance for each 

information class. This stage is often called "signature analysis" and may involve developing 

a characterization as simple as the mean or the rage of reflectance on each bands, or as 

complex as detailed analyses of the mean, variances and covariance over all bands.” 

Once a statistical characterization has been achieved for each information class, the image is 

then classified by examining the reflectance for each pixel and making a decision about which 

of the signatures it resembles most. (Eastman, 1995)” 

Thus, digital image classification is the process of assigning a pixel (or groups of pixels) of a 

remote sensing image to a land cover class. The objective is to classify each pixel into only 

one class (crisp or hard classification) or to associate the pixel with many classes (soft 

classification). Because of my general familiarity with the mining industry, I applied a 

Supervised Classification. 

 

Reflectance and Bands along the Spectra Space 

 

As it was previously said, the emission and transmission of electromagnetic radiation from 

the Sun or from another platform with an electro-magnetic-radiation source to an object on 

the earth´s ground produces, after absorption and scattering of this radiation, the reflection of 

http://www.sc.chula.ac.th/courseware/2309507/Lecture/remote18.htme
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it from the object to the platform and sensor which records the energy reflected. Each pixel 

responds in a very selected way to each band, sometimes a high reflectance is captured for a 

selected band, sometimes a very low reflectance is captured for another band. Sometimes the 

level of reflectance is very similar from band to band, other times there is significant contrast 

between the reflectance received by one band and the reflectance received by its neighbor 

band. As a result of this phenomenon, the reflected energy transmitted by any object in the 

ground is captured along the whole spectra, that is, along the whole wavelength space but   

showing, from time to time, “highs and lows” reflectance values. Figure 9 and Figure 10 

explain this concept. 

 

 

 

 

 

 

Six spectral bands(a) of Landsat 5 (M. Delgadillo-Herrera et al, 2019), converted into 

reflectance data (b) on one-pixel for display, Figure 9 and Figure 10.. 

 

 

                 Figure 9. A one-water pixel selection  
              (a) in six spectral bands of Landsat 5 TM (b) spectral signature of the water pixel  
                      

          (M. Delgadillo-Herrera, et al, 2019) 
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It is very useful at this time to make reference to Band Mathematics (Band Math) 

(https://www.l3harrisgeospatial.com/docs/bandmath.html) which is a concept whereby 

different math operations can be developed to improve the visualization of land cover 

imaginary. 

 

 

 

 

 

Reflectance, Bands, and Mineral Exploration 

 

Through time there have been several applications, experiences, and reports about the 

association existing between the energy reflected by some particular geological specimens 

and its capture by distinctive bands of the spectra space corresponding to different sensors. 

            Figure 10. A two-water/snow pixel selection  
            (a) in six spectral bands of Landsat 5 TM (b) spectral signature of the snow/ice pixel  

          (M. Delgadillo-Herrera, et al, 2019) 

 

 

                 

 

             Figure 11. A band math processing for an image data              

                     (https://www.l3harrisgeospatial.com/docs/bandmath.html) 
                 

https://www.l3harrisgeospatial.com/docs/bandmath.html
https://www.l3harrisgeospatial.com/docs/bandmath.html
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(A. El Atillah, 2019). Bands or a combination of bands which privilege the visualization of 

some mineral specimens are usually called Spectral Geological Indices and they are applied 

for some specific group of minerals. For instance, we have: 

Clay Minerals Ratio 

 

This band ratio highlights hydrothermally altered rocks containing clay and alunite. In the 

case of Landsat 8, 

                                            

                                            SWIR1 

Clay Minerals Ratio =   ----------- 

                                        SWIR2 

 

Where: 

Shortwave-infrared (SWIR) 1: 1.567-1.651 µm 

SWIR2: 2.107-2.294 µm 

For Landsat 8, this corresponds to bands 6 (SWIR1) and 7 (SWIR2). This index works with any 

multispectral sensor with bands that fall within the listed ranges. 

 

Ferrous Minerals Ratio 

 

This band ratio highlights iron-bearing minerals. 
                                                                                            

                                                SWIR1 

Ferrous Minerals Ratio=   ----------- 

                                              NIR 

 

Where: 

Shortwave-infrared (SWIR1) 1.567-1.651 µm 

NIR: 0.851-0.879 µm 

For Landsat 8, this corresponds to bands 6 (SWIR1) and 5 (NIR.SWIR2). This index works with 

any multispectral sensor with bands that fall within the listed ranges. 

 

 

 
Iron Oxide Ratio 

 
This band ratio highlights hydrothermally altered rocks that have been subjected to oxidation 

of iron-bearing sulphides. 
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                                             Red 

Ferrous Minerals Ratio=    ----------- 

Blue 

Where: 

Red: 0.636-0.673 µm 

Blue: 0.452-0.512 µm 

 
For Landsat 8, this corresponds to bands 4 (Red) and 2 (Blue). This index works with any 

multispectral sensor with bands that fall within the listed ranges  

 

The ratio 4/2 is useful for mapping iron oxides because it has absorption in the blue region, 

where it has a high reflectance in the red region. The ratio 6/7 was used in this study for its 

ability to map kaolinite, montmorillonite and clay minerals. All these features have a high 

reflectance on band 6 and low reflectance in band 7 o 

http://www.sc.chula.ac.th/courseware/2309507/Lecture/remote18.htm f Landsat 8 image. 

The ratio 6/5 was used for mapping ferrous minerals due to the high reflectance of these 

minerals in this ratio (R. Gupta., 2003). 

Two combinations of RGB images have been used for lithological mapping and 

hydrothermal alteration zones which they called Sabin’s ratio (4/2, 6/7 and band 10 as RGB 

and 4/2, 6/5 and 6/7 as RGB) (F. Sabins,1999) 

Identification of iron oxides is implemented using bands 2 and 4 of Landsat-8. Mapping clay 

and carbonate minerals is carried out using bands 6 and 7 of Landsat-8. Band ratios derived 

from image spectra (4/2, 6/7, 5/4 in RGB) is used for the identification of rock units, 

alteration. The alteration minerals are detected in the scenes as yellow color. Other 

interesting data on this issue follows. 

 

 

  

 

 

 

 

 

 

 

 

                        Figure 12. Spectral signatures 

     (F. Sabins, 1999) 
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                              Figure 13 Landsat 8 spectral signatures 

            (M. Yadzi, 2013) 

 

       Figure 14 Landsat 8 spectral signatures for alteration minerals 

                                  (M. Yadzi, 2013) 
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If individual bands provide useful information for specific types de mineral species, the triad 

RGB should provide much more information, Figure 11 (G. Wenyan et al, 2020). 

 

Hydrothermal alteration is a very complex process involving mineralogical, chemical and 

textural changes, resulting from the interaction of hot aqueous fluids with the rocks through 

which they circulate, under evolving physicochemical conditions. Hydrothermal fluids 

chemically attack the mineral constituents of the wall rocks, which tend to re- equilibrate by 

forming new mineral assemblages that are in equilibrium with the new conditions. As a result 

of one of these processes, Escondida became a multi-stage composited mine district subjected 

to a hydrothermal alteration whose structural features are typically associated with 

mineralizations where propyllitic (epidote, chlorite, calcite), argillic (kaolinite, quartz, 

montmorillonite), phyllic (quartz, sericite, pyrite), potassic (biotite, sericite, felspar, quartz) 

components and others are typical mineral specimens associated with porphyry copper 

deposits. (Porter GEO, 2021)  

 

 

 

 

                 Figure 15        Sentinel-2 spectral signatures  

                              (G. Wenyan, 2020) 
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