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ABSTRACT 

Technologies have enabled societies to socially and economically prosper and to be more 

interconnected. With the decreasing cost of data storage and processing, cities are now trying 

to extract actionable information from the available data to improve and optimize their 

resource allocation and planning. 

 This thesis aims to develop a data-mining approach to predicting urban fires in Lisbon, 

leveraging both climate, building, and population data available to predict where a fire will 

happen in the future within a particular period. To aid RSB in reducing their overall response 

time to fires by predicting probable positive emergency event areas and understand the 

driving factors that lead to these events in Lisbon.  

This supervised learning task developed using the CRISP-DM methodology makes use of 

standard machine learning estimators using the h2o.ai python module to incorporate parallel 

distributed computing combined with an AutoML package, evaluated using cross-validation,  

PR-AUC and F-0.5 score. The main conclusion from this paper is that applying predictive 

methods of data mining in the prediction of emergency events has a large potential to aid in 

resource allocation and understanding of drivers to combat emergency events, however 

requires large amounts of data to for algorithms to learn and extract actionable insights from 

their predictions. 
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1. INTRODUCTION 

1.1. BACKGROUND 

The first records of firemen started in ancient Rome around the 1st century, shortly after 'The 

Great Fire of Rome' took place where two-thirds of Rome had been destroyed. During these times, 

fires were a major concern to the population, most homes were timber-framed, and the destruction 

was enormous. These groups of men were run by private business owners and incurred a price per 

service. If negotiations fell through, firefighters would let the fires burn. It was only around the 3rd 

century that Emperor Nero created the 'Vigiles,' a state-run brigade of firefighters (History of 

Firefighting, 2016).  

The main issue that arose when battling fires was the scarcity of means to combat fires (both 

in human resources & tools). In Oxford 872, the first fire alarm system was created (Cipriano, 2012). 

Even though fire brigades were privately owned by insurance companies rather than an organized fire 

protection system, this leads to faster response times, significantly reducing the devastating effect of 

wildfires.  

In Lisbon, the first organization dedicated to fire response was created by King D. João I in 

1395. Before forming the first firefighting organization, fires in Lisbon were put out by local carpenters 

and caulkers. As there were no water pumps at the time, locals would use axes to clean nearby areas 

surrounding the fires.  (Bombeiros de Gouveia,2004).  In 1678, three fireman stations were created 

around Lisbon to make sure the necessary people and equipment to respond to emergency incidents 

quickly. Since then, as technologies evolve, the role of firefighters evolve as well. In Portugal, 

firefighters' scope has evolved, and today they respond to many more types of emergencies such as 

floods, road accidents, and damaged infrastructures. In 2018 alone, RSB responded to more than 9000 

incidents.  

By nature, when fires start, they are easily controllable flames, however, as a fire spreads out, 

temperatures rise, and smoke affects visibility, making these harder to control. A critical factor in 

containing the spread and eliminating of a fire is the response time from firefighters, pivotal to saving 

lives and minimizing loss of property (Xin, 2013).  

There are numerous studies and models that, over the years, have focused on the importance 

of quick response times and how to improve them to help emergency services (Police, Ambulances, 

Fire Brigades). From the development of GPS systems to find the best route to any location to other 

technological improvements that enable faster resource allocation (Eidam, 2016). More recently, the 
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development of information and communication technologies (ICT's) and other IoT (Internet of things) 

devices have allowed for much more extensive data collection and advanced analytics in this industry.  

1.2.  DATA MINING IN CITY MANAGEMENT 

Compared to the more traditional statistical analysis, automated data mining applications can 

deal with more complex data to extract actionable knowledge, identifying hidden trends and patterns. 

We now can process real-time data at very low costs and provide efficient decision support systems to 

cities' resource/urban management (Hand, Mannila, & Smyth, 2001). 

Thanks to the advancement of IOT's and open data repositories and the increase in data storage 

and analytics capacity, cities can now take advantage of predictive analytics to aid in the decision-

making process of resource management planning. Learning how factors influence the severity of 

emergency incidents and which locations or timeframes are most at risk of an emergency event can 

lead to a more efficient allocation of resources and lower response time on behalf of emergency 

response services (medical services, firemen, police).  

Machine learning tools have helped deal with the more complex problems within emergency 

event prediction in urban management. Accounting for both temporal and spatial fluctuations in 

emergency events such as human-caused fires, road accidents, or damaged infrastructures has made 

data mining processes and tools the preferred approach in tackling these issues. 

There are many studies relating to the use of data mining for fire prediction. The majority of 

studies done to date focus on wildfire risk prediction and severity since wildfires tend to have a more 

critical impact on the environment. These studies use climate & spatial-temporal data combined with 

machine learning algorithms such as random forests and neural networks (NN) to predict areas where 

fires are more likely to happen and how extreme a given fire can be. However, few studies have 

focused on predicting urban fire risk across cities all over the world. These studies focus on predicting 

urban areas or properties which are more prone to fires or at higher risk due to overdue inspections 

and overpopulation. These studies and models have allowed firefighters to take smarter approaches 

to firefighting.   

This work project will make use of the acquired skills in both practical application of python, as 

well as theoretical knowledge of algorithms and predictive methods of data-mining learned 

throughout the information management masters specifically in the area of business intelligence and 

data mining modules to provide a data-mining approach to predicting urban structural fire risk in 

Lisbon, using population and building demographic data collected from the 2011 Portuguese census 

survey and real-time meteorological data collected across three stations in.  
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2. LITERATURE REVIEW 

Many researchers have developed data-mining models around the world to improve resource 

planning and decision-making of emergency responding entities. From predicting the location of 

crimes in cities to predicting forest fires across an entire country, these models have proved to be 

useful in predicting future emergency events and, in turn, reducing the negative impact on society and 

the environment (Mukhopadhyay, et al., 2020). 

2.1. WILDFIRE PREDICTION MODELS: 

In Portugal, a study made in Trás-os-Montes by Cortez & Morais (2007), to take a supervised 

learning approach by attempting to predict the burnt area of any given fire in Matosinhos natural park, 

using machine learning algorithms such as Support Vector Machines (SVM) and random forest (RF). 

The study used daily climate data collected from sensors around Matosinhos natural park combined 

with historical incidents logs to understand the relationship between meteorological indicators and 

the size of fires.  

A related study was conducted across the entire USA in 2017 by Xiong (2017) used 24 years of fire 

records (1.8 million fires) combined with climate data to predict the size of any given wildfire within 

the USA. The main difference was this problem was framed as a multi-class classification problem, 

while the Portuguese study framed the problem as a regression. The main goal of this study was to 

understand the driving factors of wildfire severity across the USA. Similarly, a study to understand the 

wildfire driving factors for each of the six regions of China by Ma, Feng, Cheng, Chen, & Wang (2020) 

used climate, socio-economic, and spatial data to create data-mining models for each geographic 

region to predict locations where wildfires will take place daily.  

2.2. PROPERTY LEVEL URBAN FIRE PREDICTION 

For this project, we focus more on urban fire prediction rather than wildfires. Urban fires relate to 

structural fires, and in this field, there are two types of models to predict fires. Property level refers to 

predicting specific buildings at risk of fire, and community level which refers to predicting areas where 

fires are more likely to happen. 

In New York, a property-level urban fire prediction model named 'Firecast'  developed by the New 

York City Fire Department (FDNY) highlights buildings that are more vulnerable to fires (Heaton, 2015). 

The model analyses data for each building in the city considering over 7500 distinct risk factors, and 

using data-mining techniques, compute a risk score for each building. The risk score allows FDNY to 

prioritize inspections of commercial buildings that are most at risk, significantly reducing the risk of 
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fires. This is an example of 'smart firefighting’ where machine learning algorithms help transform the 

firefighting methods from reactive to pro-active (Roman, 2014). 

A very similar property-level urban fire prediction model was created in Atlanta, GA, named 

'FireBird,' in the same way as 'Firecast'; the main objective of this model is to predict the risk level of 

each of the over five thousand properties in Atlanta, GA. To do this, they collect data from different 

sources relating to building information, socio-demographic and financial information on residents, 

commercial licenses, and fire permits to obtain a total of 252 variables per property (Madaio, et al., 

2016) and apply predictive algorithms to predict risk scores. 

The property-level urban-fire prediction has proved to be a more useful tool than the community 

level. Despite having lower model accuracy due to fewer positive events per location, understanding 

which buildings are most at risk and the main factors that explain the risk at a building level allow Fire 

departments and government agencies to act more proactive rather than reactive. (Walia, et al., 2018) 

The issue with developing models of such a nature is the granularity of the data available. Most building 

and population data is mainly available through census surveys and, therefore, usually aggregated at 

census block levels. 

2.3. COMMUNITY LEVEL URBAN FIRE PREDICTION 

In San Diego, California, a model was developed to predict areas more susceptible to any kind of 

emergency incident (Medical, fires, road accidents). The general goal was to highlight which areas are 

at the highest risk tomorrow based on previous days (Romero, Barnes, & Cipollone, 2016). Rather than 

using census blocks, this study split the city into 400x400 meter grids, selects the top one percent of 

incident risk locations, and uses those for daily planning of emergency services. 

A study made in  Pittsburgh is perhaps the nearest precedent for this study. In this study, two 

predictive models were created. One was a property-level fire prediction model aimed at commercial 

buildings in Pittsburgh. The second was a community-level fire prediction model aimed at residential 

buildings and split into three hundred and fifty census blocks. (Walia, et al., 2018), Like the previous 

studies analysed, the property level model is used to evaluate risk scores so commercial inspections 

can be prioritized. On the residential model, since properties do not tend to be inspected, each census 

block's risk scores are used to prioritize education efforts on fire safety. 

As a whole, most models and studies that relate to fire predicting, whether wildfire or urban fire 

prediction, show that a risk score for each location, given a specific time frame, is the optimal output 

for firemen. This score allows for fire departments to select the risk cut-off point to obtain the more 

at-risk locations. The selection of the cut-off point is based on the availability of resources to Fire 
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departments  (i.e., Number of VUCI available). Therefore, this study will also aim to develop a model 

that returns each census block's periodical fire risk levels in Lisbon. The main difference between all 

urban fire-prediction models analysed and this study is the inclusion of climate data. Therefore, it 

combines features used in wildfire prediction (weather and topography) and features used in urban 

fire prediction (infrastructure and population).  

2.4. OPTIMIZATION OF FIREFIGHTER RESPONSE IN LISBON WITH PREDICTIVE ANALYTICS 

A previous master thesis study was conducted in 2020 by, using historical data from RSB, census 

data, and climate data to develop a machine learning model to predict positive emergency events that 

RSB responds to. The main purpose of the study was to highlight which features have high importance 

to predict the target variable.  

The granularity levels of the data that were used were the most detailed levels of granularity 

available which meant that all 3351 census-blocks were used as locations and the time frame for 

predictions was hourly, which meant to predict hourly events the overall size of the training data frame 

had over 150 million data points, which ultimately affected the computational performance of the 

model.  

Having a very large dataset means that a severe imbalance of the target variable was present within 

the data. To overcome the severe imbalance, over and undersampling techniques were used to test 

which sampling method obtained better performance on the test set for each estimator.  

The three machine learning estimators that were used in the study were; Logistic regression, 

Decision Trees, and Random Forests, of which the best performing estimator was a Random forest 

algorithm with random undersampling, achieving an AUC ROC score of 0.67 and an F1-score of 0.41.   

In an attempt to build and improve on what has been previously done, this study will use the same 

data sources used in the previous 2020 study, however rather than predicting any type of event that 

RSB responds to. A model will be created to predict only 1 type of event in the belief that each type of 

event has different characteristics, optimal predictive features, and estimator algorithms for a single 

type of event can vary differently from another and therefore should be modeled separately.  

2.5. SPATIAL & TEMPORAL RESOLUTIONS: 

In the literature review, many different spatial and temporal resolutions are used. A 2019 study 

on the optimal resolution of space and time for machine learning concluded that the resolution 

depends on the specific needs of the problem at hand (Bao, Liu, & Ukkusuri, 2019).  
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A study that reviews several incident prediction models, concluded that when dealing with a 

low amount of positive events within the data, increasing the spatial or temporal resolutions 

discretization might reduce the accuracy of various methods, such as tree-based and deep learning 

algorithms. The loss in accuracy occurs because if some areas have 0 counts, this will cause a bias 

within models that use statistical learning (Mukhopadhyay, Pettety, Vazirizadey, & Lu, 2020).  

2.6. FEATURE SELECTION: 

Feature selection is also an essential aspect of studies relating to emergency incident 

prediction since model accuracy is dependent on selected features (Mukhopadhyay, Pettety, 

Vazirizadey, & Lu, 2020). Including too many features in a dataset will make the model 'noisy' and 

become more prone to overfitting (Saurav, 2016). Since this is a supervised machine learning problem, 

we can apply wrapper methods of feature selection which include, backward elimination & recursive 

Feature elimination, as these are seen to generally lead to better scores of classification & regression 

models than traditional unsupervised filter methods. (Cai, Luo, Wang, & Yang, 2018). This type of 

feature selection is also included in the FireBird model. 

For wildfire predictions, where climate data plays an important role, the key features focused 

on rain, humidity, and temperature, not only instantaneous but also year and season averages. 

However, the rain variable is more critical in determining wildfire severity rather than the cause. For 

both levels of urban-fire prediction types, the main features that are considered essential to predict 

positive events are mainly building characteristics (year built, land area, property type, percent 

occupied, smoke detector) population demographics, and financial data such as (tax amount, land 

value). Since these variables are consistent across other models, we will assume these variables have 

fundamental importance in Lisbon's fire prediction. 

2.7. MODELS: 

Both linear and multi-linear regression has been tested in several models relating to the 

prediction of emergency events. In an analysis of emergency prediction models, it has been concluded 

that this type of estimator fails at modeling the complexity of emergency incidents (Mukhopadhyay, 

Pettety, Vazirizadey, & Lu, 2020), and therefore will not be considered in this study. 

Based on the analysed studies, the main algorithms that resulted in the highest accuracy scores 

for emergency incident predictions were; Random Forests and other tree-based algorithms. The 

benefits found are that tree-based algorithms are better than logistic regression and support vector 

machine algorithms at handling severely imbalanced datasets (Haixiang, et al., 2017) and can disregard 

non-important information faster which is more cost-effective. Furthermore, Neural networks and 
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other deep learning algorithms have also been used in the prediction of emergency events within 

cities, most studies indicate that deep learning is more effective with datasets that contain a large 

number of positive cases (Bao, Liu, & Ukkusuri, 2019). 

2.7.1. H2o.ai 

H2o is an open-source application that is used for machine learning. The python module of 

H2o has functions that automate much of the training and evaluation of supervised machine learning 

problems, and increase transparency of models. The use of h2o has not been extensive in the 

prediction of emergency events. However, this technology has become a leading tool in the 

development and deployment of many machine learning models. The ease of connection to a cluster 

and the simple scalability into distributed computing without extra code, whilst having functions such 

as AutoML, that run multiple estimators and ensembles in a standardized way has made h2o the 

preferred tool for many data scientists (Devisschere, 2021). The H2o.ai platform is also a preferred tool 

due to the APIs offered for users to integrate with other technologies.   

2.8. MODEL EVALUATION: 

In the analysed models, a majority of the analysed studies use random cross-validation 

methods to assess the model performance. Nevertheless, some frame their models as a time series 

problem where cross-validation is not random. Framing the task as a time series implies that events 

and features are dependants on time, and therefore the best approach to test if a model will be able 

to deal well with future data is to check if past data can predict future data. 

When it comes to model selection and evaluation, cross-validation ensures the model scores 

are consistent against unseen data (Brownlee, 2020). A report which analyses different cross-

validation techniques for various parametric models provided a greater insight into the benefits and 

disadvantages of each type of split for cross-validation. The general approach was to test random 

versus block split; block split refers to applying cross-validation with the dependant variables. The main 

conclusion of this study was that block-split cross-validation can cause bias in the model due to the 

user selection of blocks, but when properly selected the results to tend to be closer to the true 

performance of a model against unseen data compared with Random split. Random split is the 

preferred cross-validation technique when the user is not very familiar with the data.  

2.8.1. Evaluation Metrics: 

Due to this project's nature and the negative implications of a poorly accurate model, it is 

essential to consider the metrics chosen to evaluate model performance. Based on most studies 

analysed, emergency incident prediction, datasets tend to be severely imbalanced, where positive 
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events have a one to one hundred ratio to negative events. Therefore common classification metrics 

such as accuracy and precision can be misleading about the actual performance of the model (Haixiang, 

et al., 2017).  

When considering the business case at hand, the weighting of false positives and false 

negatives is different, depending on the model's application. For optimizing fire inspections, it is 

essential to prioritize classifying the positive class rather than minimizing false positives because false 

negatives would result in no inspection and, therefore, adverse outcomes (Walia, et al., 2018), while 

false positives result in inspections that have no adverse outcome. On the other hand, if a model is 

used to optimize resource allocation (which is the case for this model), then false positives will allocate 

resources where no event takes place, and if resources are scarce, this will have an adverse outcome 

on the business.  

A commonly used metric to evaluate imbalanced models is the and area-under-receiving 

operating curve ("AUROC"), where the relationship between specificity (True negative rate) and 

sensitivity (true positive rate), at different threshold levels is plotted (Narkhede, 2018). However, 

AUROC weights false positives and false negatives equally, therefore depending on the problem at 

hand, AUROC can also be misleading.  

To evaluate the model taking into consideration the business case to focus primarily on 

improving true positives and reducing false positives, 2 metrics are used; Area under the precision-

recall curve (‘PR-AUC’) and F0.5 score.  

The precision-recall curve (‘PRC’) shows the ratio between precision and recall for different 

threshold levels (Pedregosa, Varoquaux, Gramfort, & Michel, 2011). The main difference between the 

PRC and the ROC is that precision-recall curves do not consider true negatives, which helps 

understanding how well the model predicts the positive events (Ekelund, 2017). Unlike the AUC ROC 

curve where the baseline used to compare any model is 0.5, the PR-AUC curve’s baseline has to be 

calculated based on the number of samples tested. 

F0.5-score is also seen as a critical metric when dealing with severe imbalance data in emergency 

incident prediction. The F1-score places equal importance on both precision and recall, but changing 

the beta from 1 to 0.5, places higher importance on precision and less to recall resulting in a better 

understanding of how the model predicts positive events (Brownlee, A Gentle Introduction to the 

Fbeta-Measure for Machine Learning, 2020). 
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3. METHODOLOGY 

The methodology that will be used for this data mining model is the 'Cross Industry Standard 

Process for Data-Mining' (known as CRISP-DM). This is one of the most widely used methodologies in 

data mining (Brown, 2015). This process was developed in 1999 with funding from the European Union 

to develop a universal process for data mining. 

The main concept of the CRISP-DM structure is the development of a model through  6 phases 

(Chapman, Clinton, Kerber, Khabaza, & Reinartz, 2000). Beginning with the business understanding 

where the developer identifies the business goals defined before the development of the model. It is 

important to consider that the business goals are always subject to changes as time progresses and 

therefore a robust model needs to account for potential changes in the overall projected applications 

of the model.  

The second phase of the process is understanding the data. This refers to the discovery of the raw 

data and conducting exploratory data analysis to define whether the available data is relevant for the 

model and if more data is required for analysis.  

The third phase refers to the preparation of the data for modelling, this includes cleaning (missing 

variables, outlier treatment), feature selection & engineering, and integrating data sources. It is 

important to consider the modelling stage ahead since some models benefit from extra steps in the 

data preparation stage such as feature scaling for linear machine learning algorithms (Roy, 2020).  

The fourth phase of the process is the modelling section where the data is split into training and 

testing samples, machine learning models are selected and fine-tuned to train the data, and the model 

is built and run.  

The fifth phase of the process is the evaluation of the results generated from the models and 

whether these answer the business goals. These results always have to be put into context since 

depending on the mining goal some metrics are more relevant than others.  

The final phase of the CRISP-DM methodology process is the deployment of the model, where the 

model is documented, reviewed, and actionable information is extracted or the model is put into a 

repeatable mining process. 

The following section describes the CRISP-DM process of the model completed for this thesis. 
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3.1. BUSINESS UNDERSTANDING 

RSB currently responds to over five thousand emergency incidents per year in the city of Lisbon, of 

which 25% are fires. This paper, however, focuses on predicting fires in the city of Lisbon.  Despite 

there being some seasonality to fires around Lisbon, there is currently no system to help predict where 

or when fires will happen. Firefighters rely on their intuition and expertise to manage their resources.  

Based on the evidence found on the importance of a rapid response time to reduce the severity of 

an emergency event,  the main goal for this model is to be able to reduce the response time to 

emergency events to within five to ten minutes. To achieve this response time, firefighters need to 

understand which areas are at greater risk of a fire constantly to allocate first response emergency 

vehicles (VUCI) to high-risk areas.   

The concept of the model will be to predict where and when fires will take place. However, the 

model is designed not specifically for fires, but for all types of emergency, events responded to by RSB. 

Fires have been chosen as the preferred emergency type to predict, due to the negative externalities 

caused by fires compared with other emergency events. Fires as an emergency event have a sporadic 

nature, and therefore models which can predict complex events, will in theory perform well on less 

complex emergency events, such as floods. 

3.2. DATA UNDERSTANDING 

The available data comprises three separate datasets. The first dataset is the Historical log of 

incidents between 2013-2018 provided by the RSB of Lisbon. The second dataset is provided by the 

national institute of sea and atmosphere with weather recordings from 3 different stations around 

Lisbon for the same period. The third dataset is the census data aggregated at the census block level 

provided by the Portuguese national institute of statistics. In this section a further description of each 

dataset and the connection to the target variable. 
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3.2.1. Event Dataset 

• 67,656 rows relating to all events (emergency & non-emergency) responded by the RSB 

Fireman in Lisbon, between the dates of 01-08-2013 to 31-12-2018. 

• 9 columns, relating to time, date, and location of event, type of event (i.e. Fire, Flood, Road 

Accident, etc..), and relevant ID’s. 

 

  

 

 

 

 

 

 

 

 

 

 

The above figures show the distribution of event types responded by RSB. For this model, we 

disregard the ‘Low severity’ as an event type, since RSB operates differently for non-emergency events. 

From the yearly distribution, we can visualize how events alter throughout the years. For the case of 

fires, these are decreasing year on year, however, the opposite occurs in car accidents. It doesn’t 

necessarily mean that there are more car accidents in general only that there are more car accidents 

where RSB responded. For this study, the target variable will be chosen as fires (0 equals no event, 1 

equals positive event). 

 

Figure 3: Emergency events count per year  

Figure 2: Distribution of event types  
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3.2.2. Weather Dataset 

The second dataset was provided by the Instituto Português do Mar e da Atmosfera, containing the 

hourly meteorological data between 2013 and 2018 across three different weather stations in Lisbon.  

• 156,652 rows where each row represents hourly timestamps (between 01-01-2013 to 31-12-

2018) for each of the 3 weather stations in Lisbon. 

• 56 columns, relating to weather indicators (i.e Humidity, Temperature, precipitation, etc..) and 

time characteristics (i.e. Day of the week, season, period of the day, etc..) 

 

To better understand if the available data has useful information to make predictions, we explore 

our variables to discover relationships between them and the target variable.  

Starting with the weather dataset, we can see from the charts above that our target variable has 

some seasonality to it. We can see that the target variable occurs more often in the summer, which 

can also be seen by the average temperature and humidity of positive and negative values. From this 

we can assume there is some sort of seasonality, this can be interpreted in two ways. The first is we 

can assume that high temperatures and low humidity levels cause fires to propagate faster and 

therefore cause positive events, or we can assume that for an unrelated reason there are more fires 

in summer, where coincidently temperatures are higher and humidity levels are lower. 

Figure 7: Count of fires per period  Figure 6: Count of fires per season  

Figure 4: Average temperature per year per target  Figure 5: Average humidity per year per target  
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When viewing temperature and humidity graphs per month-year, we find evidence that temperatures 

are on average higher and humidity levels are on average lower for positive events, independently of 

the season, suggesting that these features can be important in predicting a positive event. 

3.2.3. Census Dataset 

The third dataset is the 2011 census survey, which includes a snapshot of 2011 building 

characteristics and population data within Lisbon and is grouped geographically into 3,551 subsections.  

The Census data consists of: 

• 3351 rows which are the 3351 census blocks at the lowest level of granularity. 

• 102 columns, which are the characteristics and demographics of each census block. These are 

broken down into: 

➢ 9 Columns relating to IDs, coordinates, and associated weather stations. 

➢ 56 Columns relating to population demographics (n. men & woman, n. residents w/ 

secondary education, etc..) 

➢ 37 Columns relating to building demographics (n. classical buildings, n. concrete buildings, 

etc..) 

Since columns are highly correlated with each other, there won’t be a major shift between 

trends of predictive columns and the target variable. Within the aggregations, some census blocks are 

much larger in area than others and therefore have more buildings and larger population size, which 

in turn correspond to a higher number of positive events. Figure 9 below shows that as the area 

Figure 8: Average temperature per season per year per target (blue = no event, orange = positive event)  
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increases the number of positive events also increases however not exactly linearly.  The same can be 

verified in figure 10, graphing the number of residents against the target variable.  

Since both figures above are almost identical, to better understand the relationship between these 

two variables and the target variable a new graph is created that combines both area and population 

into ‘Population Density (number of residents / Area of c-block), in an attempt to extract further 

insights.  

 

3.3. DATA PREPARATION 

3.3.1. Data Cleaning 

3.3.1.1. Missing Values 

The data cleaning section of this model was initially done in a previous thesis using the same 

data sources (Teixeira, 2018). The only dataset that contained missing values was the IPMA dataset. 

As there are two other stations, the data was filled using the closest weather station data. In the case 

where all stations had missing data for the same period, then the averages of the previous and the 

next hour were inputted. In the case of wind direction, 0.5% of records were not recorded on either 

station and therefore the authors used a random forest algorithm to predict the missing values.  There 

were no missing values for the census or the RSB historical dataset. 

3.3.1.2. Multicollinearity  

To reduce a potential bias within the data, it is common practice to remove features with high 

multicollinearity. Within the weather data, for each meteorological measurement (humidity, 

temperature, wind speed, etc..), there are three features, the instant recording, the one hour & two 

hour average of the indicator measurement. These columns are very highly correlated with each other, 

so we chose to remove the instant and the 2hr measurement, leaving only the 1hr average.  

Figure 9: Count of fires per Area Figure 10: Count of fires per number of residents 
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Within the census data, many features are highly correlated to other features. Some features 

overlap and double count the statistics. (i.e., n.Residents aged 20_65 & n.Residents aged 25_65), Other 

columns are highly correlated with other features, (such as students attending secondary education vs 

n.Residents aged 14_20. The treatment of multicollinearity between features will be the same as in 

the previous study where Pearson's correlation coefficient is greater than 0.8 were removed from the 

dataset, a full list of the included/removed features is in appendix 3.  

3.3.2. Data Integration 

3.3.2.1. Geospatial interpolation 

To combine the weather dataset with the census dataset, a weather station was assigned to 

each of the 3,351 subsections of the census. This was done using simple interpolation using ArcGis 

based on the shortest Euclidean distance between the weather station and subsection. No topography 

was taken into consideration in this interpolation.  

3.3.2.2. Spatial-Temporal Resolutions 

Based on the analysed literature, it is essential to create the right balance between spatial and 

temporal discretization but also to consider the implications that changing resolutions and granularity 

of the data might have on the model and real-world application. Larger datasets might require under-

sampling or dimensionality reduction to predict efficiently; however, increasing the resolution of the 

data can also create bias and cause overfitting. (Mukhopadhyay, et al., 2020) 

For the weather data, to reduce the size of our dataset, we have decided to rather than use 

hourly meteorological data, we aggregate a day into six blocks of four hours each (see appendix 1).  

The main reason for this is that when put into context the application of this model, firefighters tend 

to work in shifts of four hours. When considering future predictions the data that is being used will be 

IPMA forecasted weather, which itself contains a predictive error, rather than the actuals used for 

training the model. Therefore using 4-hour averages reduces the potential error that these forecasts 

might have. Since weather indicators are already one-hour averages, the aggregating function will be 

to take the mean values of indicators within the blocks. This reduces our weather dataset by 75% from 

52,584 to 13,149 rows.  

In terms of the census data, there are three possible aggregations, 3351 streets, 1063 

municipalities, or 55 parishes.  



16 
 

Figure 11 shows the potential space and time combinations that could be tested for the available 

dataset. 

 

 

When defining the optimal breakdowns of the spatial resolution, it is vital to consider the 

performance and the computational time of the model. It is also important that the spatial resolution 

breakdown is still relevant to solve the problem at hand. For the particular case of this study, the main 

objective is to reduce the first response vehicle travel time to five minutes. Therefore, for the lowest 

spatial resolution available, which corresponds to the 55 parishes of Lisbon, we created an interactive 

map that creates a five-minute radius for the ten largest parishes in terms of area (km2) and when 

compared to the radius to the coordinates of the historical fire log to check if any emergency event 

lied outside the 5minute radius. All events were captured within the ranges of the five-minute drive, 

which means that using the lowest census special resolution would still be useful when considering 

the problem at hand.  

For this methodology, we assume that the spatial resolution used will be 55 location blocks, 

and the temporal resolution used is 10,950 periods (5years, 365 days, six 4-hour blocks). These 

resolutions were chosen because they are the optimal resolutions where predictions are most useful 

for RSB.  

 

Figure 11:  Diagram showing the potential breakdown of spatial and temporal resolutions. 

Figure 12 Oalley Map, showing 5min radius from largest parishes 

 
Figure 13 Map of Fireman Incidents locations in largest parishes 



17 
 

Similarly, as seen in the methodology section with the census dataset we concluded that 

predictions are more practical for RSB if the data is aggregated at parish level rather than street or 

district level. Therefore reducing the number of rows from  3351 to 55, aggregating features by 

summing the values rather than taking the mean. 

3.3.2.3. Cross Joining data frames 

Once the granularity level of each dataset has been decided and aggregated, the next step is to 

cross-join both tables, so that we create a paired combination of each row of one table with the other, 

obtaining the product of both tables. With the granularity levels that were decided the final cross 

joined table has 55(parish’s)*13,149(periods) = 723,195 rows. Figure 14 below shows the selection of 

granularity levels. 

With the main data frame is created, joining weather indicators for the past 6 years for each of 

the fifty-five census block locations, we now need to identify rows where a positive event had 

occurred. Using the information provided on the Event dataset, a left joined is used to identify which 

rows (census-block, date-period) correspond to a positive event. In this case, the positive event was 

‘Fires’, however, any other emergency event which RSB responds to can be used as the target variable. 

 

 

 

 

 

 

 

 

 

 

 

Parish (55) 

District (1063) 

Street (3351) 

Region (2) 

Census Block Levels (n. rows) 

Daily (2,190) 

 

4-hr Blocks (13,149) 

Hourly (52,584) 

Monthly (72) 

( 

Time Hierarchy Levels (n. rows) 

55 Parish’s in 4-hr 

blocks (723,195) 

Cross-Joined Table (n. rows) 

Figure 14:  Diagram showing the selection from hierarchy levels of datasets and cross joining dataframes 
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3.3.3. Data Pre-processing 

3.3.3.1. Imbalanced Dataset 

Now that our data set is created and clean, we need to prepare it to be run through the 

algorithms. A vital step to consider is the bias in our data. Currently, within our dataset, our positive 

target variable accounts for 0.58% of our dataset (4220 positive events). It is expected that having an 

imbalanced dataset will affect the performance of the model and will limit the metrics that can be used 

to evaluate model performance.  

Therefore three different balancing approaches are tested to understand their significance 

towards the model performance. The first strategy is to oversample the minority class, which means 

we synthetically increase the number of positive records to obtain a 50/50 split and a total of 1,437,074 

records. The second strategy is to under-sample the majority class, which means removing records of 

the majority class to end up with a 50/50 split and a total of 8,438.  The third strategy is to use a 

combination of both over and under-sampling, which has proven to increase the accuracy of 

predictions (Nutthaporn Junsomboon, 2017). The final strategy is not to make any changes to the 

created dataset and leave the imbalanced. All strategies will be tested and selected based on the best 

performance metrics. 

To test these methods of balancing the data, a grid search will be run where different balancing 

ratios are used. Essentially the 3 tests will be to use no sampling, under-sampling, and oversampling. 

Despite the previous study’s best-performing model being a random forest with under-sampling, since 

a different library and estimators will be used, there is no certainty the best model will be the same. 

3.3.3.2. Feature Selection 

From the literature review, we have seen examples of feature selection. Feature selection is 

the process of selecting variables to keep or remove from the dataset. Removing some variables can 

reduce noise and improve the computational performance of the model whilst increasing the 

interpretability of results by reducing the complexity of the model (Saurav, 2016). Nevertheless, 

removing too many variables might cause model bias.  

3.3.3.3. Unsupervised feature selection 

Within the pre-processing phase of the process, a manual selection of features that are not 

relevant for the study is removed, such as survey responses that relate to the timeframe of the 

questionnaire (a timeframe not in the scope of this project). Features that also have high 

multicollinearity will be removed or used to create new features that reduce multicollinearity because 

as seen in the literature review, features that are highly correlated to other features can cause some 
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bias in the model. It is important to consider some correlations are not removable due to their 

perceived importance to the model therefore in the modelling section, models that are not affected 

by multicollinearity are used. 

3.3.3.4. Supervised feature selection 

Since the model is computationally intensive, wrapper methods of feature selection are not 

used. The h2o module doesn’t have any specific feature selection function however, most algorithms 

used to train the model, especially tree-based models and neural networks, use feature ranking as part 

of the training process and therefore reduce the need for feature selection in the pre-processing stage. 

The results from the training algorithms also show the variable importance in predicting the target 

variable, which can be used to interpret the model itself and for further analysis to prevent future 

positive events. 

3.4. MODELLING 

3.4.1. Train test split 

The holdout method will be used for training and testing the model. Since the target variable 

has an even distribution across years, we define time as a good feature to split the data. Therefore, all 

data before 31-12-2017 is be used to train the model using cross-validation. Since all our features are 

independent of time, a time series cross-validation is not used, instead, k-fold cross-validation is used.  

 

Figure 15 K-fold cross validation Diagram  

Dataset 

Train (2013 – 2017) Test (2018) 

Validate Train Train Train Train 

Train Validate Train Train Train 

Train Train Validate Train Train 

Train Train Train Validate Train 

Train Train Train Train Validate 

Best Model Test 

Final Evaluation 

5-fold 

cross-

validation 
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3.4.2. Auto ML 

In the predictive section of the model, the single package used for the supervised machine 

learning problem is called H2o. The main benefit of using this package versus other machine learning 

packages such as ‘Scikit-learn is due to the easy scalability and integration to enterprise-level 

deployments such as spark, HDFS, and databricks. This means that machine learning algorithms can 

run faster and therefore increasing the amount of data will not greatly impact the computational 

performance whilst continuously improving the predictive performance of the model. Most tree-based 

algorithms are used to deal with large severely imbalanced datasets.  

A commonly used feature of the h2o package is the ‘AutoML’ command, The AutoML algorithm 

of the H2o package automates the machine learning training process by creating a pipeline of 

estimators and ensembles. The full process is described as “trains and cross-validates the following 

algorithms (in the following order): three pre-specified XGBoost GBM (Gradient Boosting Machine) 

models, a fixed grid of GLMs, a default Random Forest (DRF), five pre-specified H2O GBMs, a near-

default Deep Neural Net, an Extremely Randomized Forest (XRT), a random grid of XGBoost GBMs, a 

random grid of H2O GBMs, and a random grid of Deep Neural Nets.” (LeDell & Poirier, 2020) 

Since the Lisbon Intelligent Management Platform (LIMP) is running in a distributed cluster, 

the use of the h2o package will reduce computing time and simplify the code necessary to achieve 

parallel computing. Therefore, the approach is to run the ‘Automl’ as a baseline which retrieves a list 

of best models based on chosen criteria which in this case is Area under the curve of precision and 

recall (PR-AUC). The result of the AutoML is then analysed to select the estimator that best performed. 

A model is then run with a grid search in an attempt to fine-tune the model. 

3.4.3. Hyperparameter Tuning 

Regarding hyperparameter tuning, a grid search will be included in the cross-validation pipeline to 

reduce overfitting and improve model performance.   

The grid search is used to determine which treatment (over/undersample) is best for the imbalance 

in our dataset. Using the ‘balance_classes’ function to determine if the model generates better 

performance metrics when over/undersampling the data. To define the best sampling strategy within 

the grid search, the criteria chosen is ‘max_balance_after_size’, which refers to the ratio change of the 

minority class (1< for undersampling, 1 for no sampling, >1 for oversampling). The grid search is also 

used to tune other attributes of the best performing algorithm in the AutoML stage, such as ‘max 

depth’ and ‘sample rate’ for tree-based algorithms. The max depth relates to the maximum vertical 

splits of a tree. By limiting the amount that the trees can grow the model tends to increase its 
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generalization which decreases the chance of overfitting the training data.  However, reducing the max 

depth by too much can cause the model to become too generalized and can negatively affect the 

performance. The sample rate relates to the proportion of rows that are sampled. For larger datasets 

with low positive events larger sample rates tend to have better performance. When reducing the 

dataset size through sampling the model generalization is also increased, so the optimal rate is tested 

within the grid search.  
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4. RESULTS AND DISCUSSION 

As seen from the methodology section, the optimal evaluation metric to be used for this problem 

given the severe imbalance of the dataset is the area under the precision-recall curve. The first 

calculation is understanding what the actual baseline PR-AUC is for this dataset. To calculate this the 

formula is the proportion of positive examples to the total number of samples: 

𝑇𝑟𝑎𝑖𝑛 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐴𝑈𝐶𝑃𝑅 =  
𝑁. 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 (𝑃)

𝑇𝑜𝑡𝑎𝑙 𝑁. 𝑜𝑓 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝐷𝑎𝑡𝑎 (𝑁) 
=  

4,220

723,030
= 0.005837 

Likewise, for our testing sample, the baseline PR-AUC is given by; 

𝑇𝑒𝑠𝑡 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐴𝑈𝐶𝑃𝑅 =
572

120,450
= 0.0047489 

Another key metric that is also used for evaluating the performance of the models with severe 

imbalance is the ‘Fbeta’-score which similarly to the PR-AUC calculates the relationship between 

precision and recall, the h2o module has a specific f0.5-score which score places more importance on 

false positives than false negatives.  

 Figure 16 shows the summary of the top 10 models run within the AutoML on the validation set. 

 

 

 

 

 

 

 

 

Figure 16:  AutoML Leader board 
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The results show that overall the best performing estimator on the training set with the 

problem is the Gradient Boosting Machine.  To check for overfitting, the results of cross-validation are 

also analysed to determine if there is a large discrepancy between train set metrics and cross-

validation metrics. With cross-validation, sample sizes of each fold can vary, and therefore a baseline 

PR-AUC is not calculated for each fold, however, it is assumed that the proportion of positive target 

events is similar across all folds, and therefore the baseline PR-AUC for the training will also be 

considered for the cross-validation.  

The optimal model from the AutoML function is described as following 

 

Using the information obtained from the optimal model summary, there is a better 

understanding of which values should be used in the grid search when fine-tuning the model. The  

Figure 20 shows the hyperparameters selected in the grid search for the gradient boosting machine 

estimator of the h2o module. 216 combinations were selected to be tested. Specifically the ‘max dept’ 

levels to reduce computation and reduce potential overfitting, ’column sample rate’ and ‘sample rate’ 

which defines the ratio of columns and rows, this is mainly used for large datasets and finally the 

balancing of classes to deal with the severe imbalance of the dataset. 

 

 

 

Figure 17:  AutoML best model train set results 
Figure 18:  AutoML best model cross validation results 

Figure 19:  AutoML Selected model characteristics 

Figure 20:  GBM grid search hyperparameters 
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The optimal model based on the grid search, improved the PR-AUC of both the cross-validation and 

the test set, as seen in the figure below.  

 

 

 

 

 

 

 

 

 

 

 

The output from the grid search shows an improvement in all metrics against the test set 

compared with the AutoML run before the hyperparameter tuning. The best performing model, did 

not balance classes which means for this particular case that over or under sampling did not improve 

the chosen metrics. 

Comparing the above figures, it is clear that the models can improve on the baseline PR-AUC, 

however analysing the confusion matrix there are still a significant amount of false positives and false 

negatives, which is a practical approach that is not yet sufficient to use as a decision-making tool to 

effectively allocate resources since the potential cost of a false positive is very high. Nevertheless, it is 

important to consider that the false positive/ negative rate using this methodology is significantly 

lower compared to the methodology used in a previous paper using the same data sources. This 

Sample Baseline (PR-AUC) Best Model (PR-AUC) F-0.5 Score 

Cross-Validation 0.005 0.0169 0.042614 

Test-Set 0.004 0.0176 0.042716 

Figure 21:  Baseline to actual comparison table 

Figure 22:  Grid search results on test data 
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suggests that this method of running machine learning algorithms for specific event types rather than 

all emergency events can lead to better predictions. Since the model has shown that it is considered 

better than the baseline, the variable importance tool can give some further insights into the features 

that are considered to have the most information gained towards predicting the target variable. 

After a model is selected based on its F0.5-score and the PR-AUC against the test dataset, the 

feature importance ranking of the model is plotted to understand which features have the most 

predictive power. This allows for some explanation of the sporadic nature of urban fires in Lisbon.   

4.1. VARIABLE IMPORTANCE 

 

 

Considering the variable importance, we can see that all subsections of data appear as 

important variables. If only the census data (population & buildings) appeared within the top variables 

then we could conclude that the model is only predicting hotspots. Since the model also includes 

climate data such as temperature and humidity this means that there is some sort of correlation 

between these indicators and the fires. Another key variable is the time variable 

‘period_early_morning’ because this also puts the model working in terms of time frame. Since the 

variable importance only shows how important features are, it does not show the relationship 

between the feature and the target variable (i.e if it contributes positively or negatively.) Another key 

takeaway from the variable importance plot is the building characteristics. The highest-ranked feature 

Figure 23:  Top 10 variables ranked by variable importance 
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is the number of buildings between 1970 and 1980 and the 10th ranked feature is Nº of buildings of 

masonry walls without steel structure. This information alone can be used in decision-making for 

building inspections. Prioritizing building inspections to structures that contain characteristics 

represented in the variable importance graph could lead to more preventive actions to reduce the risk 

of future emergency events. Understanding which areas or demographics are most likely to be 

involved in fires can also help firefighters educate people on how to prevent emergency events from 

happening. 

Analysing the Variable importance of some key takeaways can help not only predict future fires but 

also raises awareness on which factors might make a location more prone to fires than others. Once 

relevant factors have been identified then, the model can be used as a proposal for an IoT device that 

allows getting more frequent updates on these figures. 

4.2. OUTPUT 

The final stage of the model is predicting future events for RSB to use in their resource planning. 

The model is created such that a user can upload a weather forecast for any future period (day, week, 

month), provided the file is in the same format as the IPMA weather log, and the model will predict 

probabilities of a positive event per location per 4-hour block.  The users can then depending on 

available resources select the top n locations per 4-hour block, and assign first-response vehicles to 

the area, so that in the case that an emergency event takes place, they can respond within a 5-minute 

window. 
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5. CONCLUSIONS 

To summarize the project, many studies and articles were reviewed to determine the best 

approach to tackle the issue of predicting emergency events. The overall goal of this project was use 

skills learnt during the masters to build on top of a similar project that was undertaken as part of a 

masters project and to try and use the same data sources and data treatments along with state of the 

art algorithms and functions to develop a machine learning model which can predict individual 

emergency events within a specific time frame for each of the defined subsections of the city of Lisbon. 

Whilst being able to be re-trained and scalable with more data sources and different areas.  Despite 

most of the approaches taken is based on the literature review, some changes arose from discussions 

with the Urban analytics lab at NOVA IMS, which is in close contact with the council of Lisbon, to give 

both theoretical and practical methods to solving the problem at hand. In terms of the modelling 

section, various data treatments and algorithms were tested and selected based on appropriate 

evaluation measures. The model itself is not yet sufficient to be used as the only decision-making tool, 

however, the groundwork has been developed for the model to constantly improve as more data is 

fed to it, both event data, but also new predictive variables can be added to the model, as these are 

available. Overall, the lessons learnt during the masters were applied successfully and the project 

improved from the previous study conducted using skills learned throughout the Information 

Management masters and applications of state of the art technologies and methodologies and has set 

up for future works in the emergency prediction industry.   
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6. LIMITATIONS AND RECOMMENDATIONS FOR FUTURE WORKS 

6.1. LIMITATIONS 

6.1.1. Weather Data Limitations 

A potential limitation for this project is the reliability of the unseen data is useful to make 

predictions. The data used to train the model was actual weather data collected from 3 separate 

weather stations around Lisbon however, the weather data that will be used to make predictions will 

be forecasted weather indicators. These indicators are not 100% accurate and therefore will have 

some error, this error will then carry on into the model and potentially affect the prediction.  

In terms of the geospatial interpolation of the weather stations to the geographical locations, 

there are also some limitations. Using the Euclidean distance between location and weather station 

means that topography is ignored in general, and taking into consideration that Lisbon is a hilly city, 

not using topography in spatial interpolation might not give an actual representation of the weather 

indicators. A better spatial interpolation can be used to get more accurate climate data for each census 

block. Another way to improve the accuracy of the weather data used for training is to increase the 

number of stations that collect climate data. Currently in Lisbon, more IoT devices are being set up 

across the city to collect climate data. The data from these can be used moving forward to get more 

accurate data sources for training the model.  

6.1.2. Census Limitations 

The main limitation of this model is the census data. Since the data is static and has been collected 

2 years before the first event of the historical data, it doesn’t take into account changes over time, and 

therefore can be outdated. Given that the census survey is only collected once every ten years the next 

available survey will be conducted in 2021, however, according to the Portuguese national institute 

for statistics, the census blocks in Lisbon will be altered. Specifically, more parishes have been created 

and the borders have changed, so some districts will have changed their associated parish. This will 

require the user to recreate the spatial interpolation for emergency events and weather station 

allocation to use the historical data combined with the new data available.  

6.2. FUTURE WORKS 

As per most supervised machine learning problems, the larger the observation size, the better the 

model predicts the target variable. Therefore, the best approach to improving the output of the model 

is to keep adding event data and train the model regularly. By doing so, the model will have more 

examples to learn from and will in theory generate better predictions. Since the computation time of 
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the entire model running with a single node is about 2.5 hours, running the model weekly or monthly 

with a cluster of nodes will not be operationally expensive, even though the dataset is larger. 

Additionally, other data sources can be added to make the model more robust. As seen in the 

literature review, using economic data such as building valuation and tax amounts are also seen as 

useful in predicting emergency events. Another potential data source that could be added to the 

report, is the population in each area. The department for urban analytics is developing a dataset that 

compiles cellular network data to count the number of people in each location per time frame. If these 

data sources are at the same granularity level (both spatial and temporal) as the event data, then this 

can be added to make the model more robust. Despite this not being captured in the census survey 

this type of information will potentially add another perspective to the data (financial & population 

movement) and can lead to better performance or better indication of which drivers contain higher 

importance in predicting each type of emergency event 

6.2.1. Predicting other emergency events. 

In a previous study, using the same data sources, a model was created to predict all emergency 

events that RSB responded to. In comparison, this model only predicts fires, however, it is built so users 

of this model and easily change the model so it predicts any other emergency type that RSB responds 

to. For example, as seen from the variable importance the current model places greater importance 

on the season being summer. It can be that this model predicts better fires that take place in the 

summer than in the winter (where there are fewer fires), however, in the winter there are more floods 

and therefore one can easily switch the target variable to floods. This also allows to take better 

actionable insights into what are contributing factors for each positive emergency event and has the 

potential to lead RSB in taking a more preventive approach in tackling emergency events and improving 

operational efficiency.  
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8. APPENDIX 

8.1. APPENDIX 1: TABLE SHOWING BREAKDOWN OF DAILY PERIODS  

Order Period 

1 Late Night (0h-4h) 

2 Early Morning (4h-8h) 

3 Morning (8h-12h) 

4 Noon (12h-16h) 

5 Evening (16h-20h) 

6 Night (20h-0h) 

 

8.2. APPENDIX 2: PAIR CORRELATIONS AND THE REMOVED VARIABLES: 

Variable 1 Variable 2 Correlation Eliminated 

N_INDIVIDUOS_RESIDENT_20A64 N_INDIVIDUOS_RESIDENT_25A64 0,9987 1 

N_INDIVIDUOS_RESIDENT_M_20A64 N_INDIVIDUOS_RESIDENT_M_25A64 0,9986 1 

N_INDIVIDUOS_RESIDENT_H_20A64 N_INDIVIDUOS_RESIDENT_H_25A64 0,9983 1 

N_IND_RESID_EMPREGADOS N_IND_RESID_EMPREG_SECT_TERC 0,9977 2 

N_INDIVIDUOS_RESIDENT N_INDIVIDUOS_RESIDENT_M 0,9959 1 

N_INDIVIDUOS_PRESENT N_INDIVIDUOS_PRESENT_M 0,9958 1 

N_INDIVIDUOS_RESIDENT_25A64 N_INDIVIDUOS_RESIDENT_M_25A64 0,9951 1 

N_INDIVIDUOS_RESIDENT_65 N_INDIVIDUOS_RESIDENT_M_65 0,9941 2 

N_INDIVIDUOS_RESIDENT_14A19 N_INDIVIDUOS_RESIDENT_15A19 0,9939 2 

N_INDIVIDUOS_RESIDENT_65 N_IND_RESID_PENS_REFORM 0,9925 1 

N_INDIVIDUOS_PRESENT_M N_INDIVIDUOS_RESIDENT_M 0,9920 1 

N_INDIVIDUOS_RESIDENT_M_14A19 N_INDIVIDUOS_RESIDENT_M_15A19 0,9907 2 

N_INDIVIDUOS_PRESENT_H N_INDIVIDUOS_RESIDENT_H 0,9891 1 

N_INDIVIDUOS_RESIDENT_H_14A19 N_INDIVIDUOS_RESIDENT_H_15A19 0,9887 1 

N_INDIVIDUOS_RESIDENT_H N_INDIVIDUOS_RESIDENT_H_25A64 0,9879 2 

N_INDIVIDUOS_RESIDENT_M_25A64 N_IND_RESID_EMPREGADOS 0,9856 2 

N_INDIVIDUOS_RESIDENT_H N_INDIVIDUOS_RESIDENT_M_25A64 0,9842 1 

N_INDIVIDUOS_RESIDENT_M N_INDIVIDUOS_RESIDENT_M_25A64 0,9832 2 

N_INDIVIDUOS_RESIDENT_20A24 N_INDIVIDUOS_RESIDENT_H_20A24 0,9744 2 

N_INDIVIDUOS_RESIDENT_20A24 N_INDIVIDUOS_RESIDENT_M_20A24 0,9735 1 

N_INDIVIDUOS_RESIDENT_M N_IND_RESID_SEM_ACT_ECON 0,9730 1 

N_INDIVIDUOS_RESIDENT_H_65 N_IND_RESID_PENS_REFORM 0,9721 1 

N_INDIVIDUOS_RESIDENT_10A13 N_IND_RESIDENT_FENSINO_2BAS 0,9713 1 

N_EDIFICIOS_1OU2_PISOS N_EDIFICIOS_CLASSICOS_1OU2 0,9711 1 
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N_INDIVIDUOS_RESIDENT_0A4 N_INDIVIDUOS_RESIDENT_H_0A4 0,9682 2 

N_IND_RESID_PENS_REFORM N_IND_RESID_SEM_ACT_ECON 0,9681 2 

N_INDIVIDUOS_RESIDENT_0A4 N_INDIVIDUOS_RESIDENT_M_0A4 0,9670 1 

N_INDIVIDUOS_RESIDENT_5A9 N_INDIVIDUOS_RESIDENT_H_5A9 0,9614 1 

N_INDIVIDUOS_RESIDENT_14A19 N_IND_RESID_ESTUD_MUN_RESID 0,9609 1 

N_IND_RESIDENT_ENSINCOMP_1BAS N_IND_RESIDENT_ENSINCOMP_2BAS 0,9568 2 

N_EDIFICIOS_CLASSICOS_1OU2 N_EDIFICIOS_CLASSICOS_EMBANDA 0,9464 1 

N_INDIVIDUOS_RESIDENT_H_10A13 N_IND_RESIDENT_FENSINO_2BAS 0,9406 1 

N_INDIVIDUOS_RESIDENT_H_5A9 N_IND_RESIDENT_FENSINO_1BAS 0,9390 2 

N_IND_RESIDENT_FENSINO_SEC N_IND_RESID_ESTUD_MUN_RESID 0,9363 2 

N_INDIVIDUOS_RESIDENT_M_10A13 N_IND_RESIDENT_FENSINO_2BAS 0,9290 2 

N_IND_RESIDENT_ENSINCOMP_SUP N_IND_RESIDENT_FENSINO_SUP 0,9285 1 

N_IND_RESIDENT_ENSINCOMP_1BAS N_IND_RESIDENT_ENSINCOMP_3BAS 0,9177 2 

N_IND_RESIDENT_ENSINCOMP_SEC N_IND_RESIDENT_FENSINO_SUP 0,9080 2 

N_IND_RESIDENT_ENSINCOMP_1BAS N_IND_RESID_DESEMP_PROC_EMPRG 0,9078 2 

N_INDIVIDUOS_RESIDENT_M_14A19 N_IND_RESIDENT_FENSINO_SEC 0,9038 2 

N_INDIVIDUOS_RESIDENT_H_15A19 N_IND_RESIDENT_FENSINO_3BAS 0,9001 2 

N_IND_RESIDENT_ENSINCOMP_SEC N_IND_RESID_PENS_REFORM 0,8961 1 

N_INDIVIDUOS_RESIDENT_H_15A19 N_INDIVIDUOS_RESIDENT_M_20A24 0,8827 1 

N_INDIV_RESIDENT_N_LER_ESCRV N_IND_RESIDENT_ENSINCOMP_1BAS 0,8742 1 

N_INDIVIDUOS_RESIDENT_M_10A13 N_INDIVIDUOS_RESIDENT_M_20A24 0,8690 1 

N_IND_RESID_TRAB_MUN_RESID N_IND_RESID_PENS_REFORM 0,8639 1 

N_ALOJAMENTOS_VAGOS N_EDIFICIOS_CLASSICOS_3OUMAIS 0,8602 2 

N_INDIVIDUOS_RESIDENT_M_0A4 N_INDIVIDUOS_RESIDENT_M_5A9 0,8477 2 

N_INDIVIDUOS_RESIDENT_H_5A9 N_INDIVIDUOS_RESIDENT_M_0A4 0,8419 2 

N_INDIVIDUOS_RESIDENT_M_20A24 N_IND_RESID_EMPREG_SECT_SEQ 0,8382 1 

N_ALOJAMENTOS_VAGOS N_EDIFICIOS_CLASSICOS 0,8313 2 

N_INDIVIDUOS_RESIDENT_M_14A19 N_IND_RESID_EMPREG_SECT_SEQ 0,8164 1 

N_IND_RESIDENT_ENSINCOMP_1BAS N_IND_RESID_EMPREG_SECT_SEQ 0,8138 1 

 

 

 


