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Abstract

Thymic-derived Regulatory T cells (tTregs) play a central role in maintaining im-
mune homeostasis by suppressing pro-inflammatory activity of conventional T cells (tTconvs).
Disruption of tTreg development and /or function is at the origin of many pathologies, from
allergies and autoimmunity to chronic inflammation and cancer. To understand tTreg de-
velopment it is necessary to characterise tTreg genes and uncover the regulation of their
expression.

This dissertation aims to contribute to the characterisation of regulatory CD4 T cells
in the human thymus and the regulation of their development by exploring the relationship
between differences in transcription factor binding to chormatin and changes in gene ex-
pression (differential gene expression). To do this, I analysed vast amounts of epigenomic
and transcriptomic data produced by Next-Generation Sequencing, respectively, ATAC-seq
and RNA-seq, generated from human tTregs and tTconvs using computational biology and
data science methodologies.

In this dissertation I will discuss 3 steps of this project where Data Science played
an important role: The discovery of a linear relationship between transcription factor ac-
cessibility to chromatin and associated gene expression in tTregs; the systematization and
standardization of a gene set enrichment analysis protocol (GSEA) to detect signatures of
activated biological pathways in ranked datasets of differential gene expression; and the de-
velopment of systematised k-means clustering of Transcription Factor Binding Sites (TFBS)
, with heatmap visualisation, to discover relationships between the TFBS landscape and
gene expression profile of tTregs.

Keywords: Immunology, Human CD4+ T cells, Genomics,Next Generation Sequencing,
Data Science, K means
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Chapter 1

Introduction

1.1 The Immune System and Acquired Immunity

Immunity is the ability of an organism to resist damage from foreign substances
such as microorganisms, harmful chemicals and internal threats such as cancer. The im-
mune system as a whole is divided by a network of cells, molecules and organs that can be
found all over the body as we can see in[L.1].
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Figure 1.1: Distribution of the major organs of the Immune System in a Human(image
created with the aid of BioRender.com)

It can be divided into two types: innate immunity and adaptive immunity. In
innate immunity, the body detects and reacts to threats the same way with each exposure



to them, while with adaptive immunity the body recognizes the threat and improves the
response to it with each exposure to it. Tate and Seeley| (2009).

Adaptive immunity, also known as acquired immunity, is characterized by its ab-
bility to learn and develop which each exposure to a pathogen, through creating immuno-
logical memory specific to each one after exposure to them. This mechanism is kept work-
ing through a fine equilibrium mechanism, known as immune homeostasis. Through this
mechanism, the body learns to identify what belongs to it (self) from what is foreign (non-
self), ignoring the first but reacting to the second. A lack of balance in self/non self recog-
nition and the organism can end up in auto-immunity, where it attacks itself or in immun-
odeficiency, where it’s unable to sufficiently respond to a pathogen Arosa et al.|(2012).

In the balance of this mechanism lies a great number of immune related diseases,
mostly by shifting the balance of immune homeostasis towards one side. Allergies, Lupus
and Rheumathoid Artritis are examples of a shift towards auto immunity, HIV, primary
immunodeficiencies or the usage of immunosupressors in transplant patients are examples
of a shift towards immunodeficiency Lee and Lee| (2018),Sakaguchi et al. (2020)Godinho-
Santos et al.[(2020).

Immune Homeostasis

Auto-
Immunity

Lupus, Allergies,

Reumathoid Arthritis HIV, Cancer, CVID

Regulatory CD4+ T cells

Figure 1.2: CD4 Regulatory T cells are the scale keeping immune homeostasis in balance.

Regulatory T cells, also known as regulatory CD4+ T cells (Treg), play an impor-
tant role in this mechanism, actively suppressing the immune system, preventing auto-
immunity. Their importance is such that dysregulation of their functioning, either through
genetics or through acquired form through a virus or bacteria. , can lead into serious dis-
eases such as diabetes, allergies or associated with higher propensity to certain cancers.

Studying the development of CD4 t cells in humans thus becomes a crucial point
into both understanding the mechanism of immune homeostasis and provide new clinical
insights into the illnesses dependent on the malfunctioning of this group of cells.



1.2 T Cell Development in Humans and Their Role in Immune
Regulation

T cells begin their development as haematopoietic precursors in the bone marrow,
travelling to the thymus through the blood stream, the organ located beneath the sternum
, in the upper front part of the chest as seen in fig[1.3|. It’s in this gland that they complete
their development and earn their name as T cells|Arosa et al.|(2012).

Cross section

Capsule

Cortex

Medulla

Figure 1.3: The location of the Thymus Gland (image created with the aid of BioRender.com)

Inside the thymus, the haematopoietic precursors become thymocytes and initiate
their last stage of maturation. This stage occurs mostly in the cortex (which you can see in
the diagram[1.4]) and is composed by two parts:

¢ Positive selection - where each thymocytes gains an antigen(protein compound that
react to a substance or pathogen) and those who are able to produce a suitable reaction
with the major histocompatibility complex (MHC) survive move towards the next
stage;

* Negative selection - where the thymocites are exposed to self-antigens (antigens that
react against the organisms cells) and those that react die by apoptosis.

A thymocyte that successfully completes these two selections matures as a T cell
and can exit the thymus. We’ll dwell deeper into this maturation in

Figure 1.4: Thymus T cell development, (image created with the aid of BioRender.com)

The maturation of the thymocytes is thus a crucial point in the development of
the immunotolerance mechanism and important to be studied in both healthy subjects and
patients with diseases associated to this subset of cells.



A good pathway to uncover this development process is to use Next Generation
Sequencing (NGS) techniques and uncover new sources of data about these cells such the
Genetic, Genomic and Transcriptomic data and study patterns in them to understand their
biological significance. In a multi-omics approach, where data from several approaches
(genomics, transcriptomics, proteomics,...) is gathered and analysed, a better overview of
the cell development can be achieved.

Although there are some studies in tTregs NGS data with Mus musculus such as
Hu et al. (2018),an extensive study of thymic CD4+ T cells in humans didn’t exist until the
project in which this dissertation is integrated existed.

1.3 Obijectives

This dissertation is integrated in a project being developed at "AEsousalLab" at the
Instituto de Medicina Molecular (IMM-FMUL). This project, named "Decoding Genotype-
Phenotype correlation in Immune Complex Disorders through the Gene Regulatory Land-
scape of CD4 T Cells" aims to decode the development stages of CD4 T cells in humans
through the usage of NGS data and computational biology techniques, which are an essen-
tial cell group to the maintenance of immune tolerance mechanisms. The main goals of the
project go as follows:

1. Generate the Gene Regulatory Landscape (GRL) of Human CD4 T Cells;

2. Apply the GRL to uncover Genotype/Phenotype correlation in Complex Immune
Disorders.

The dissertation integrates in the first stage of the project and where several tasks
required the usage of computational techniques in the data science sphere. The dissertation
will highlight 3 points, which techniques were used in each and the results obtained.

The 3 points of focus for this dissertation are:

1. Using Linear Regression Modelling accounting for Heteroscedasticity to model the
relationship between gene expression and transcription factor accessibility in CD4 +
TCells;

2. Standardization of the Gene Set Enrichment Analysis, its application to gene expres-
sion data in CD4 + TCells using the whole MSigDb Database;

3. Clustering binding data of CD4 + TCells to uncover patterns between genes and Tran-
scription Factor Binding Sites(TFBS).

The work developed under the dissertation resulted in a paper being submitted
in a near future from the AESousalLab at IMM. The current provisional name for the pa-
per is "Differential Binding uncovers key transcriptional modules defining regulatory T-cell
identity in the human thymus ".



1.4

Dissertation Organization

This dissertation is organized as follows:

This first chapter presents the problem being studied in a general view, as well as why
it should be studied with the help of data science;

The second chapter describes the theoretical biological and technological background
behind the study of CD4+ T regulatory cell development;

Chapter 3 is dedicated to the Methodology behind the dissertation, discussing in
depth the techniques used in the 3 major points discussed;

Chapter 4 presents and discusses the numerical and graphical results obtained while
discussing the meaning of those results within the biological reality;

The final chapters summarizes the main conclusions obtained in this work and pro-
vides some ideas for future work.



Chapter 2

Theoretical Background

In this section we’ll discuss the Theoretical Background behind this project.

We'll start first by understanding the major area of study in which the project is
inserted, Clinical Immunology in then in section we’ll discuss how
acquired immunity develops and the importance of studying t cell development. Then in
section[section 2.3we’ll discuss what Computational Inmunology is and how it can address
the problems underlying the project.

2.1 Clinical Immunology

Clinical immunology is the study in depth of disease caused by disorders of the
immune system (such as failure, aberrant actions and malignant growth of the cellular el-
ements of the system) and the mechanisms subjacent to those disorders. It can also study
diseases from other systems such as diabetes, where immune reactions can play a part in
the pathology and clinical features of the diseaseChapel et al.|

The diseases studied by clinical immunology usually fall within 3 categories:

¢ Immunodeficiency, in which part of the immune system fails to create an adequate
response (in this group we have diseases such as chronic granulomatous disease and
primary immune diseases);

¢ Auto-immunity in which the immune system attacks it’s own host cells (in this group
with have diseases such as Lupus, rheumatoid arthritis and Hashimoto’s disease);

* Various hypersensitivities in which the immune system responds inappropriately to
otherwise harmless compounds (in which we find asthma and other allergies).

Clinical immunology began as sub-speciality of Internal Medicine or Paediatrics
but soon became a research area on its own. It also studies acquired immunodeficiencies
such as AIDS and ways to prevent the immune system to destroy allografts (transplant
rejection).

Within research environments, clinical immunology focus both on the mechanisms
of immunology related diseases as well as the biological processes underlying them. Most
of these teams are multidisciplinary, aggregating doctors, biochemists, microbiologists, molec-
ular biologists, computational biologists and others. They conduct basic, translational and
clinical aimed at understanding and treating these complex diseases.

6



2.2 Acquired Immunity and T cell Development

One of the major areas of study within clinical immunology are the mechanism
underlying acquired immunity.

Acquired immunity, in a simple definition Tate and Seeley|(2009), is the subsystem
of one’s immune system that develops over the person’s lifetime.

It includes both humoral immunity and cell mediated immunity components both
used in destroying non self entities in the organism, namely pathogens or cancer.

The main characteristic of acquired immunity that distinguishes it from innate im-
munity is the specificity of its response allied to capabilities to memorize previous attacks
of a pathogen, i.e., it builds a immune response specific to an attack and memorizes that re-
sponse so it can trigger it faster and more effectively if such attack is repeated [Tate and See-
ley| (2009). It’s fine mesh of cells and molecules and their communications that are mostly
mediated by two major groups of cells that together constitute the lymphocytes, B cells and

T cells|Figure 2.1
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Figure 2.1: Major Cell Groups of the Blood Lymphocyte. Acquired Immunity is mediated by
the branches of the Lymphoid B and T cell precursors . Image from https://www.genome.
gov/genetics-glossary/Lymphocyte

The normal population values for the blood lymphocyte in a human Edgar| (2011)
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is comprised by:
e 70-90% T cells;
® 5-10% B cells;
¢ 1-10% Natural Killer (NK) cells

All of them are derived from lymphoid stem cells in the bone marrow Germain
(2002). Lymphocyte subsets are defined by their expression of surface markers named CD
antigens (CD for Cluster of Differentiation).

* T cells are classified by CD3+
T helper cells are classified by CD3+CD4+;
Cytotoxic T cells are classified by CD3+CD8+;

* B cells are classified by CD19+;

* NK cells are classified by CD16+CD56+

T cells as a whole are distinguished by the presence of the TCR receptor and are
mostly known as a whole regulators of the immune response and responsible for collecting
specific immune responses in antigens.

This project aims to study a specific subgroup of T helper cells, known as Reg-
ulatory T cells, that plays a crucial task of regulating the immune response due to their
suppressive behaviour.

2.21 Regulatory T Cell Development and its Importance

To fully understand the importance of this subgroup of CD4+ T cells it’s important
to understand its development.

Regulatory T Cells express at the surface the biomarkers CD4, FOXP3 and CD25.
Due to conventional T cells also expressing CD4 and CD25, makes this subgroup specially
difficult to study Singh et al. (2013)Hori et al. (2017).

The main function of this subgroup is to suppress immune response of other cells.
The suppressive function of this group is crucial to act as a "self check" built into the immune
system to prevent excessive reactions, balancing the inflammatory and anti-inflammatory
response.

The development of T regulatory cells starts in the bone marrow ?where the haematopoi-
etic pluripotent stem cells transforms into lymphoid progenitor and in place the lymphoid
progenitor transforms itself into T cell precursor (the cell lineage that gives rise to all T cells)
Figure 2.2

The T cell precursors migrate to the thymus for their second stage of development.
In the thymus they undergo their second stage of development Silva et al.|(2017).

Committed lymphoid progenitors arise in the bone marrow and migrate to the

thymugFigure 23

¢ Early committed T cells lack expression of T-cell receptor (TCR), CD4 and CDS8, and
are named double negative (DN; no CD4 or CD8) thymocytes;
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* DN thymocytes can then be further subdivided into four stages of differentiation
(DN1, CD44 + CD25—; DN2, CD44 + CD25+; DN3, CD44 — CD25+; and DN4, CD44 —
CD25-);

¢ As cells go through the DN2 to DN4 stages, they start expressing the pre-TCR, which
is composed of the non-rearranging pre-Ta chain and a rearranged TCR S chain;

* Successful pre TCR expression leads to substantial cell proliferation during the DN4
to double positive (DP) transition and replacement of the pre TCR « chain with a
newly rearranged TCR a-chain, which yields a complete o TCR;

* The ap-TCR + CD4 + CD8+ (DP) thymocytes then interact with cortical epithelial
cells of the thymus that express a high density of MHC class I and class II molecules
associated with self-peptides;

* The fate of the DP thymocytes depends on signalling that is mediated by interaction
of the TCR with these self-peptide-MHC ligands:

Too little signalling results in delayed apoptosis (death by neglect);

Too much signalling can promote acute apoptosis (negative selection);

* The appropriate, intermediate level of TCR signalling initiates effective maturation
(positive selection);

e Thymocytes that express TCRs that bind selfpeptide-MHC-class-I complexes become
CDS8 + Tcells, whereas those that express TCRs that bind self-peptide-MHC-class-II
ligands become CD4 + Tcells;

¢ These cells are then ready for export from the medulla to peripheral lymphoid sites.
SP, single positive.

A small subset of the CD4+ T cells goes then to express FOXP3 and constitutes the
subset thymic T regulatory cells. Iris Caramalho et al.| (2015) After this they move into the
periphery and until they come in contact with the antigen, they stay Naive T cells. During a
person’s lifetime, a reservoir of Nédive and Memory T regulatory cells is maintained by the
organism to keep immune regulation in check.

As this subset of cells is associated with regulation of immunity, there’s a consider-
able association between them and several immune system pathologies Kondélkova et al.
(2010). It has been associated to Complex Variable Immunodeficiencies Silva et al. (2019),
HIV Godinho-Santos et al.| (2020)and in tumour progression.

This turns the study of their development into a crucial task. Due to the difficulties
in clearly isolating this cell subset, a lot of questions are yet to be answered, namely the cell
development changes they undergo.

This project aims to combine the data acquisition power of today’s genetic and
genomic techniques with the data science power of computational methods to understand
the various "-omics" levels (genome, epigenome, transcriptome,...) of CD4+ T reg cells and
unveil a bit more the intricate cell "ballet" that creates this subset, with hopes that it will
lead to potential treatment targets for the pathologies mentioned.



2.3 Computational Immunology

Computational immunology (or systems immunology) involves the development
and application of bioinformatics methods, mathematical models and statistical techniques
for the study of immune system biology. The field’s main aim is to convert immunological
data into computational problems, solving them using mathematical and computational
approaches and then convert the results into immunologically meaningful interpretations.

It’s applications span from cancer informatics, allergies, infectious diseases and
host responses and Immune system function.

Although the beginnings of this area can be traced back to a century ago to the very
first theoretical models of malaria Ross|(1916) it experienced a boom in the 90s and 2000’s
during the tech boom with the first systematic immunology related databases |[Petrovsky
and Brusid (2002) and a second boom in the 2010’s due to the onset of Next Generation
Sequencing Techniques and the increasing accessibility of the techniques Davis et al.[(2017).

The area studies at all levels of clinical immunology and its success depends on
this contribution from the clinic to the laboratory where data acquisition, data
processing and information systems techniques are crucial.
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Figure 2.4: Cross-disciplinary efforts have allowed considerable advances in human med-

ical research, from the clinic (a) to technology (b) to bioinformatics (c) and the laboratory
(d), it’s the collaboration of all that moves Computational Immunology forward Davis et al.
2017))

Computational Immunology encompasses many areas such as imagiology, clin-
ical data, allergy studies and mathematical modelling. In this project we will discuss the
crossing between Genetics and Genomics techniques to study Immune system function and
development and the multitude of techniques used in this area which can be seen in

By crossing multiple techniques which address various aspects of the cell such as
genome, gene expression, protein expression and others hopefully the fine tuned orchestra
that’s happening inside CD4+ Treg cells will be unveiled.

This project uses RNAseq to establish gene expression and ATAC-seq to establish
Chromatin accessibility (one of the most important measures of the epigenome) to start this
task.
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2.3.1 Genetics and Genomics in Computational Immunology

Immunology relies a lot on cell lines and animal models, for obvious ethical rea-
sons. However translating discoveries to our own human immunology reveals itself to

be quite hard Dheilly et al.| (2014) as cell to cell interaction is crucial for immune function

and comparing our own immune system with the one from model species doesn’t always
translates.

Next Generation Sequencing techniques might be the answer to this problem. Con-
sistently acquiring genomic, transcriptomic and epigenomic data at an unprecedented scale
at affordable rates allows us to have an overview of the events in each cell type being study
and determine crucial mechanisms of regulation by doing comparative analyis of NGS data
between cell types or stages of development.

The onset of Next Generation Sequencing (NGS) Techniques in 2004 commercially
Slatko et al.| (2018) which allows for sequencing efforts that are more accessible and more
precise, has brought a new push in the usage of genetics and genomics efforts to study cell

development.
It’s also known as Massive Parallel Sequencing as the common protocol goes as
follows

1. DNA sequencing libraries are generated by clonal amplification by PCR in vitro.;



2. The DNA is sequenced by synthesis, such that the DNA sequence is determined by
the addition of nucleotides to the complementary strand rather than through chain-
termination chemistry;

3. the spatially segregated, amplified DNA templates are sequenced simultaneously in
a massively parallel fashion without the requirement for a physical separation step.

This methodology allows for a broad range of studies aiming at studying differ-
ent components of genetics and genomics, varying just the molecule and protocol studied
Slatko et al.| (2018): Whole Genome Sequencing and Whole Exome Sequencing target se-
quencing of the genome, RNAseq targets gene expression, ATACseq targets opening of the
chromatin and so on...

Targetting multiple dimensions of the genetic-genomic landscape by applying dif-
ferent techniques then allows to collect multiple dimensions of the same cell group being
studied.

These techniques produce high amounts of data, with a high variance (as variance
is inherent between organisms)and often without a big amount of replicates making them
ideal candidates for analysis with data science techniques.



Chapter 3

Methodology

In we described the biological and computational backgrounds behind
the study of T cell development. In this chapter we discuss the methodology and techniques
used in this project.

First, we discuss in a overview the techniques and methods used to obtain and
clean this data in[section 3.1|in order to understand the origins of this data.

Then we discuss the statistics behind the discovery of the existence of a linear cor-
relation between Differential Chromatin Acessibility (DCA) and Gene Expression in tTregs
insection 3.2

Next we discuss the methodology used behind the standardization of Gene Set
Enrichment Analysis(GSEA) to run with the full msigDb database on section[section 3.3]

Finally, at we discuss in depth the protocol created that originated the
clustering analysis of the digital footprinting results.

3.1 Multiomics Data: Extraction of thymic T Cell Data and Pre
Preparation

This project assumed a multiomics approach that involved extracting mainly gene
expression (RN Ag;) and chromatin accessibility data (ATACs,,) allowing us a diverse overview
of the tTreg cell development.

3.1.1 Cell Sorting and Selection

Biological replicates were extracted from CD4 single-positive thymocytes, isolated
from thymuses obtained after paediatric cardiac surgery of three different individuals. Ma-
ture thymocytes were sorted (as seen in and purified as TCRaf+, CD4, .,
CD8_ CD27... Cells were further purified into conventional (tTconv) and regulatory (tTreg),

defining tTregs as CD25. and CD127;,, as seen in|Figure 3.2
3.1.2 RNAge and Differential Expression

RNA samples were extracted from tTregs and tTconvs, as explained in
Libraries were built by BGI, selecting for polyadenylated RNA after depleting
ribosomal fraction and then sequenced by high-throughput parallel sequencing (RN Ase;) in

14



o f et "
1

4

1

¥
COBAPC-Cy 7

S ¢
1ot | tTreg
[ 8~ | ({CD25*CD127ax)
L p - .
CD4 PerCP-Cy5 - o?
v
& g g g
d =Y 2 |y
Q2 ] pr— o] ...
£ ] 55 § i : >
3 i o - v tTconv
S T
CD27FITC CD127PE

(IL7RA)

Figure 3.1: Strategy for sorting tTregs and tTconvs from human thymuses collected dur-
ing routine corrective paediatric cardiac surgery. Mature CD4 single-positive thymic Tregs
(tTregs) and their conventional counterparts (tTconvs) were sorted using CD25 and CD127.
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Figure 3.2: Representative profiles of raw RN Age; gene expression of emblematic genes of
tTregs (FOXP3 and CTLAA4) and tTconvs (IL7RA and CD40LG) paired with the Accessi-
bility to Chromatin Data (ATAC;y data) within their genomic domains. Top Row indicates
their location in their respective chromossome. "Regions of Open Chromatin” row indicates
detection of regions with significant ATAC,,, signal enrichment, tTreg signal is depicted in
red, tTconv signal in blue. For the gene row, black depicts sense direction, blue depicts an-
tisense direction

4000 sequencer. Raw sequencing data was processed and analysed with ap-

a [llumina Hiseq
propriate tools, such as samtools Danecek et al.|(2021) using the High-Performing Computer
cluster iMM-LOBO, with quality control of reads made with FastQC Andrews (2010). The
resulting ca. 200 million paired-end reads per biological replicate (PE100) were uniquely
mapped and annotated to the human genome (hg38) with “TopHat” |[Kim et al.| (2013) and
transcript expression was quantified with R package “HTSeq” (Count Per Million, CPM),
with exclusion of genes with less than 1 CPM in more than 2 libraries. Before determin-
ing the Differential Expression between tTregs and tTconvs with R package “edgeR”, all li-
braries were scaled by Trimmed Mean of M-values (TMM) normalisation and corrected for
heterogeneity of samples specific to contrast matrix with weighted scaling based on voom-

limma (R package “limma”). Finally, we fitted multiple linear models by ImFit (“limma”).



Conversion between annotations was made with “biomaRt”.
Differential Gene Expression threshold set between tTregs and tTconvs at log,FC >
+2, with FDR < 0.05.

3.1.3 ATAC; and Differential Chromatin Accessibility

ATACse; was performed following the Omni-ATAC protocol Corces et al.| (2017)
with minor modifications. Three biological replicate samples per cell type were extracted

from three distinct healthy thymuses, in same conditions and as described in[subsection 3.1.1}

5x104 sorted tTreg or tTconv cells were lysed for 3 minutes on ice, in 50uL of ATAC-Resuspension
Buffer (10mM Tris-HCl pH 7.4, 10mM NaCl, 3mM MgCl2) containing 0.1% NP40, 0.1%
Tween-20, and 0.01% Digitonin. tn5 tagmentation was performed using TDE1 Enzyme and
Buffer TD (Illumina) at 37°C for 30 minutes, shaking at 1000rpm. After purification with

a MinElute PCR Purification Kit (Qiagen), samples were amplified with NEBNext High
Fidelity 2x PCR Master Mix (New England Biolabs) with index adapters from Buenrostro

et al. (2015).

Final PCR reaction was then purified with a MinElute PCR Purification Kit fol-
lowed by size-selection (150bp-1000bp using Ampure XP beads (Beckman Coulter). Se-
quencing was performed using a MGISEQ-2000 (BGI-Shenzen, China), yielding a total se-
quencing depth between 200 and 600 million PE50 reads.

To identify the Regions of Open Chromatin(ROCs) and determine Differential Chro-
matin Accessibility raw sequencing read quality was assessed for quality using FastQC.
Reads were uniquely mapped to hg38 using Bowtie2 |Langmead and Salzberg| (2012) and
adapted for peak calling by MACS2 [Zhang et al.| (2008) using in-house pipeline, namely
by converting to appropriate formats and correcting tn5 shift. MACS2 command with the
following parameters:

macs2 callpeak -t ${bam} -f BAMPE -g hs -q 0.05 --nomodel \
--extsize 200 --shift -100 -n ${bam} --outdir PEAKS

Peaks from all samples were merged to create the total landscape of Regions of
Open Chromatin and we used PeakAnalyzer Salmon-Divon et al|(2010) to annotate these
peaks to Nearest TSS using GTF annotation for hg38. To determine chromatin accessibil-
ity and its variation between tTregs and tTconvs (Differential Chromatin Accessibility), we
used the same tools, method, normalisations and rescaling of ATACse; sequence libraries as
for RN A, libraries, with the Peak_ID of each Region of Open Chromatin as the anchor for
signal computation.

3.1.4 Digital Genomic Footprinting and Transcription Factor Binding analysis

For Digital Genomic Footprinting, transcription factor motifs within ROCs were
identified using the Positional Weight Matrices (PWMs) in the JASPAR Core database Fornes
et al.| (2020) Khan et al.| (2018). We selected 639 motif profiles matching “Homo Sapiens
species” + “Latest Version”.

We used the TOBIAS framework 0.12.6Bentsen et al.|(2020) to perform read bias
correction of the list of ROCs using ATACorrect, calculation of continuous footprint scores
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ATAC-seq (Assay for Transposase-Accessible Chromatin using high-throughput sequencing) is a sequencing assay for
investigating genome-wide chromatin accessibility. The assay applies a Tn5 Transposase to insert sequencing adapters
into accessible chromatin, enabling mapping of regulatory regions across the genome. Additionally, the local
distribution of Tn5 insertions contains information about transcription factor binding due to the visible depletion of
insertions around sites bound by protein - known as footprints.

TOBIAS is a collection of command-line bioinformatics tools for performing footprinting analysis on ATAC-seq data,
and includes:

s Correction of Tn5 insertion bias
o Calculation of footprint scores within regulatory regions
¢ Estimation of bound/unbound transcription factor binding sites

e Visualization of footprints within and across different conditions

For information on each tool, please see the wiki.

Figure 3.3: Tobias, the package used for Digital Genomic Footprinting, which can be found
inhttps://github.molgen.mpg.de/pages/loosolab/www/software/TOBIAS/

across accessible chromatin regions with ScoreBigWig (which can be seen in the frame-
work depicted in [3.4), followed by classification as bound /unbound (p-value < 0.01) state
for transcription factor binding sites (TFBS) across both cell populations and calculation of
differential binding as the fold-change between the footprint scores of the two cell types.
The differential binding scores and p-values between tTregs and tTconvs are represented
as a volcano plot and were obtained using the BinDetect module. TFs with -log10(p-value)
above the 95% quantile or differential binding scores smaller/larger than the 5% and95%
quantiles (top 5% in each direction) are colored and shown with labels.
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Figure 3.4: The TOBIAS framework, ScoreBigWig is represented by Differential Binsing
Analysis.

Aggregate footprints were created by aligning the genomic signals on the 200bp
region surrounding the binding sites, with the aggregate signal being the mean of the score
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on each bp.

After Digital Genomic Footprinting Analysis, we’ve obtained new data points,
namely treg_score The footprinting score within treg cells for a specific TFBS, tconv_score
The footprinting score within tconv cells for a specific TFBS and treg_tconv_log2fc (further
called diffbinding) which is the log?2 fold change between the footprinting scores of treg and
tconv cells, telling us whether the TFBS was predicted to be more or less bound between
the cells (positive equals more bound to treg, negative equals more bound to tconv).

3.2 Differential Expression vs Accessibility of The Chromatin

From the RN Aseq data extracted as described in[subsection 3.1.2|and the ATACseq
data extracted as described in [subsection 3.1.3| we can obtain a dataset that pairs Gene Ex-

pression values of a specific gene with ROCs associated to said gene identified by differen-
tial chromatin accessibility (DCA).
To assess if any relationship between chromatin accessibility (DCA) and gene expression(log>FC),
the two dimensions were plotted with the help of ggplot2 |Wickham! (2009), R’s most well
known data visualization library.
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Figure 3.5: Raw Data to extract Differential Chromatin Accessibility and Gene Expression
info from

As each gene has 1 or more ROCs (with some having more than 50 ROCs) the
values for Differential Chromatin accessibility were reduced to the mean by gene and the
number of ROCs kept to ease the visualization.

Before the visualization the data looked as follows
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Figure 3.6: Data cleaned for input in data visualization of Gene Expression vs Differential
Chromatin Accessibility



A first attempt was at plotting the data as a bubble plot with the X,xis, the Fold
Change values, were set as factor and set to ascending order as seen in@ From the begin-
ning it was decided to keep down regulated genes in tTregs in blue (to set as examples for
tTconv cells) and up regulated genes in red. This colour scheme was kept in all visualiza-
tions for ease of reading and interpretation.
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Figure 3.7: Differential Gene Expression in x and Differential Chromatin Accessibility in y

The figure[3.7|revealed that a conversion of Differential Gene Expression to log was
warranted in order to clearly separate between down regulated genes in tTreg (in blue) and
up regulated genes in tTreg (in red). This visualization also gave a first hint that a linear
regression might exist between these 2 variables.

Fold Change was therefore transformed from linear to logarithmic and Linear Re-
gression was calculated between gene expression and Differential Chromatin Accessibility.
After a visual assessment, it was verified that this was a case of heteroscedasticity with the
Breusch-Pagan Test and Imrob() from the robustbase package Maechler et al.|(2021) was used
to obtain the linear regressions values accounting for the existence of heteroscedasticity.

3.3 Standardization of Gene Set Enrichment Analysis

To explore the gene ontology of the data we possessed we have explored a few
algorithms that provide gene ontology information such a Gene Ontology Project enrich-
ment analysis and the Camera algorithm [Wu and Smyth! (2012) but in the
end settled for the Gene Set Enrichment Analysis Algorithm (GSEA) Subramanian et al.|
(2005).
The code for this part of the project can be found inhttps://github.com/theinsilicobiology/
fgsea_msigDB_Thymus_paper.

The basic Gene Set Enrichment Analysis algorithm should go roughly as follows
according to its original proposal in Subramanian et al. (2005) and depicted in

1. Calculate the Enrichment Score (ES) that represents the amount to which the genes
the given set are over-represented at either the top or the bottom of the list. This score
is a Kolmogorov-Smirnov like statistic;

2. Estimate the statistical significance of the ES. This calculation is achieved through a
phenotypic based permutation test in order to produce a null distribution for the ES.
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Figure 3.8: Diagram of the major stages of Gene Set Enrichment Analysis

The p-value is calculated in comparison with the null distribution;

3. Adjust for multiple hypothesis testing for when a large number of gene sets are being
analysed at one time. The enrichment scores for each set are normalized and a false
discovery rate is calculated

As the standard GSEA is slow to compute and not very sensitive when using small
gene sets a variation of the algorithm, named Fast Gene Set Enrichment Analysis (fgsea)
Sergushichev] (2016) (https://github.com/ctlab/fgsea/| )was chosen for the task. This
variant of the algorithm is faster than the original, efficiently reusing one sample multiple
times. This demonstrates the possibility of doing thousands of permutations in a small
amount of time, leading to accurate p-values. It also allows the application of standard
FDR correction procedures.

The algorithm goes as described in image
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Figure 3.9: The FGSEA algorithm is depicted in the image. Image from Sergushichev|(2016)

With the algorithm chosen a library of annotated gene sets to compare our own
data was required. After a few tests, the mSigDB, a molecular signature database
manian et al. (2005), maintained by the same team that created the original GSEA algo-
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rithm became the most appropriate choice. This database, which can be found in https:
//www.gsea-msigdb.org/gsea/msigdb/index. jsp, provides us with a variety of curated
datasets that associate gene sets to certain phenotypes such as cancer, immunology, regu-
latory target genes or cell type signature gene sets. These collections come from various
sources such as Ensembl BioMart, biomedical literature, BioCarta or KEGG (you can see
the origins and details of each collection in https://www.gsea-msigdb.org/gsea/msigdb/
collection_details. jsp).

hallmark gene sets are coherently expressed
signatures derived by aggregating many MSigDB

H gene sets to represent well-defined biological states
or processes.

C positional gene sets for each human chromosome
1 and cytogenetic band.

curated gene sets from online pathway databases,
publications in PubMed, and knowledge of domain
experts.

regulatory target gene sets based on gene target
predictions for microRNA seed sequences and
predicted transcription factor binding sites.

C4 computational gene sets defined by mining large
collections of cancer-oriented microarray data.

C5 ontology gene sets consist of genes annotated by
the same ontology term.

oncogenic signature gene sets defined directly
from microarray gene expression data from cancer
gene perturbations.

C 7 immunologic signature gene sets represent cell
states and perturbaticns within the immune system.

cell type signature gene sets curated from
cluster markers identified in single-cell sequencing
studies of human tissue.

Figure 3.10: The collections existent in the mSigDB databaset. They can be found at https:
//www.gsea-msigdb.org/gsea/msigdb/index. jsp

To assure that no relevant results are forgotten, a standardized protocol to execute
the FGSEA algorithm in all the datasets of the mSigDB database became important.
ure 3.10] An R project to execute this task so thus become crucial.

First, an function to standardize the execution of the fgsea protocol was devel-
oped. 3 outputs were chosen for this function, a table that systematizes Enrichment Scores,
p-values and leadingEdge (genes in common between our input and a geneset from the
mSigDB), a bar plot of the Normalized Enrichment Score for gene sets with a significant
p-value and a sticks/barcode plot for the most enriched gene sets on both ends

With this function working reliably and without errors, a second function that runs
the previous one in the whole mSigDB database was created To ease up-
dates of the function, it was followed the order provided by the mSigDB website https:
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createGSEA<-function(statsLab, paths, genetableused ,transition){

Tibrary(stats)
library(fgsea)

Tlibrary(tidyverse)
Tibrary(dplyr)

fgseaRes <- fgsea(pathways=paths, stats=statsLab,minsize=15,max5ize=500)

fgseaResTidy fgseares %>%
as_tibble() %
arrange(desc(NES))

bardata<-subset(fgseaResTidy,fgseaResTidy$padj<=0.05)

barname<-paste(transition,”/",genetableused,”/",genetableused,transition, "barplot. pdf™, sep="")
ggplot(bardata, aes(reorder(pathway, NES), NES)) +

geom_col (aes (Fi11=(padj<0.05))) +

coord_f1ip() +

Tabs(x="pathways”, y="normalized enrichment score”,

title= "NES from GSEA™) +

theme_minimal ()

ggsave(filename = barname, width = 20, height = 20)

topPathwaysup <- fgseaRes[ES > 0, ][head(order(padj), n=10), pathway]
topPathwaysbown <- fgseaRes[ES < 0, ][head(order(padj), n=10), pathway]
topPathways <- c(topPathwaysup, rev(topPathwaysDown))

stickname<-paste(transition,”/",genetableused,” /", genetableused, transition,”stickstopl0.pdf”, sep="")
pdf(file = stickname,h=10,w=12)

plotGseaTtable(paths [topPathways], statsLab, fgseares,gseaParam = 0.5)

dev. offF ()

return(fgsearesTidy)

Figure 3.11: R function created to run the fgsea protocol in a standardized fashion. The
full function can be found in https://github.com/theinsilicobiology/fgsea_msigDB_
Thymus_paper/blob/main/Functions/FunctionsForGSEA.R.

//www .gsea-msigdb.org/gsea/msigdb/index. jsp so it can be quickly updated when the
database itself has updates.

Within each iteration of the function one of the collections from mSigDB is up-
loaded and the fgsea is calculated. Finally, a csv containing the results, the barplot with
significant NES and the sticks plot with top enriched genes sets on both ends are produced.
All outputs are arranged in folders thus organizing the outputs.

Finally, by observing the table output of the FGSEA algorithm we can
observe 3 interesting columns. The NES column giving us the gene sets which have a more
relevant enrichment score towards of data, the padj gives us which ones are significant and
the leadingEdge where we get the genes in common in between our own data and each
respective gene set.

Creating a visual way to observe this in interesting outputs of data/mSigDB col-
lection was paramount. The final decision became a heatmap with genes in columns, gene
sets in rows and the NES value as the value in the heatmap. Ordering this heatmap by NES
we can then observe which gene sets are more enriched in our data and which gene sets
share enrichment areas with our own data as seen in the example in
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—function(stat namenametransition){

source("Functions/FunctionsForGsEA.R"™)
Tibrary(fgsea)

Tibrary(tidyverse)

Tibrary(dplyr)

tostring(nametransition)

AllGenes<- gmtPathways("MsigbDb/msigdb.v7.4.symbols. gmt™)
AllGenestable<- createGSEA(stats,AllGenes, "AllGenes”, nametransition)

genetableused<-"AllGenes™

tablename<-paste(nametransition,”/",genetableused,

,genetableused,nametransition, "table.csv”, sep

tibble_with_lists_to_csv(AllGenestable, tablename)

Clpos<- gmtPathways("MsigDb/cl.all.v7.4.symbols.gmt™)
Clpostable<- createGSEA(stats,Clpos,”Clpos”, nametransition)
genetableused<-"Clpos”

tablename<-paste(nametransition,”/™,genetableused,”/",genetableused,nametransition, "table. csv”, sep=

tibble_with_lists_to_csv(Clpostable, tablename)

Hallmark<- gmtPathways("MsigDb/h.all.v7.4.symbols.gmt™)
Hallmarktable<- createGseEA(stats,Hallmark,"Hallmark”™, nametransition)
genetableused<-"Hallmar

tablename<-paste(nametransition,”/",genetableused, ,genetableused,nametransition, "table.csv”, sep

Figure 3.12: Function that runs the function |[Figure 3.11|iterating over the whole mSigDB
database. The full function can be found in https://github.com/theinsilicobiology/
fgsea_msigDB_Thymus_paper/blob/main/Functions/fgsealMsigDb.R.

pathway

HALLMARK_IL2_STAT>_SIGNALING 0.0006092485 0.01340343 0 7062 04292047 1.8013415 66 | ILZRA,ILTRL1, TNFRSFE, TMFRSF18,TNFRSFS,CSF1,TNFRSF4,CT...
HALLMARK_ESTROGEM_RESPONSE_LATE 0.0036646530 003870231 040701792 04988080 23 | CPE,RAB31,PERP LSR,CAV1,FGFR3,IGFBP4 FABPS,BATF TMPR...
HALLMARK_INFLAMMATORY_RESPOMSE 0.004553677: 0.03870231 040701792 04261441 41 | PCOH7,IL1R1,TNFRSF9,EBI3,CSF1,CCL22 ICAM1 PTGERZ, IL15...
HALLMARK_TNFA_SIGNALING_VIA_NFKB 0.0493119266 021697243 03651996 1.5168085 46 | PTGS2 TNFRSF9,CSF1,ICAM1,CD83 MAP3KS, IL15RADUSPA,T...
HALLMARK_KRAS_SIGNALING_DN 00773333333 0.28; D4e16461 14836360 16 | RYR1,CCRE,SPTBNZ, FGFR3, TENTSC.CLDN16
HALLMARK_MYOGEMNESIS 0.1264060100 0.34920635 0.3684340 1.3405600 26 | RYR1LAMAZ FSTACTNZ,CASQTADAM1ZPLXNE2
HALLMARK_INTERFERON_GAMMA_RESPONSE 0.1286407767 0.34920635 03330748 1.322337¢ 37 | PTGS2,|RF5,ICAM1.XCL1,IL1SRA,CSF2RB SECTM1,FGL2,IL2RB, .
HALLMARK_ALLOGRAFT_REJECTION 01428571429 0.34920635 012384217 03238170 13073112 40 | IL2RA,CSF1,CCL22,ICAM1,CDT9A,LYN,TLR2, NCF4,PRF1,HDAC...
HALLMARK_KRAS_SIGNALING_UP 0.1753086420 038567901 011237852 03371282 1.2688735 30 | CPERELN PTGS2 HDACS,BIRC3 TNFRSF1B,ARGT PRDMI MA...
HALLMARK_HYPOXIA 774569 039122040 010244947 0. 1.2493633 20 | HMOX1,HS35T1,FBP1,CAV1,5DC4, 5100A4, BHLHE4D,GCNTZ, ..
HALLMARK_APOPTOSIS 0.2197368421 039122040 010208011 0.3743343 1.2369824 17 | HMOX1 LMMA,CAV1 HGF,PRF1,BIRC3 FZR,FAS, PMAIP1,GAD...
HALLMARK_COMPLEMENT 039122040 009923333 03642384 1.2254871 19 | TMPRSSE,FN1,ACTN2Z LYN,F5
HALLMARK_XENOBIOTIC_METABOLISM 042225053 0.0845 03218201 1.1450363 24 | IL1R1,HMOX1 FBP1,AKR1CZ IGFBP4 ARG1,GCNTZ IRFS FAS A...
HALLMARK_P53_PATHWAY 0.05028451 0.2566262 24 | HMOX1 PERP PLXNB2,5100A4 VDR PTPN14,SESN1,RGS16,F2...
HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION 004773424 02516386 23 | FN1LAMAZ ADAM12 SDC4,IGFBR4 FBNT
HALLMARK_APICAL_JUNCTION 0.7349865452 0.04024776 0.2316302 21 | ACTG21CAM1,ACTNZ NEGR1 FBN1,TRAF1,LAYM,MDK
HALLMARK_ESTROGEM_RESPOMSE_EARLY i 202155 003699325 02179917 22 | RAB31,IGFEP4,INPPSF, TMPRS53,BHLHES0,NRIP1,KCMKS
HALLMARK_MTORC1_SIGNALING 0.8956406569 093529024 003149289 0.1834576 19 | NIBAN1,TEK1 FGL2,BHLHE40,50LE GCLC, TFRC, MEPR,SHMT2...
HALLMARK_MITOTIC_SPINDLE 1.0000000000 1.00000000 002527128 01013348 0.3488995 21 | ARAP3PREX1,CDC428PA

HALLMARK_H METABOLISM 06430000000 0.79200000 010395847 -0.2080587 -0.8591162 18 | ADDZ,ACSLE,DMTN

pval

dot

padj

‘do

log2emr

dol

Figure 3.13: CSV output of [Figure 3.11

leadingEdge
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Figure 3.14: Heatmap to observe the results of FGSEA (with data originated
in with the aid of heatmap.2() from the package gplots https://
github.com/talgalili/gplots. The function that generates this heatmap is found
in https://github.com/theinsilicobiology/fgsea_msigDB_Thymus_paper/blob/main/
Functions/generateHeatmapCSVFgsea.R

The system created thus allows to create a standardized method that provides us
with a way to analyse gene ontology of a gene expression dataset over a well maintained
and varied collection of annotated gene sets and also provides us with easy to interpret
results, visual when necessary.

3.4 Clustering TFBS/Gene Binding Patterns in tTreg/tTconv Cells

From the digital genomic footprinting analysis executed with the TOBIAS frame-

work and described in [subsection 3.1.4{we’ve obtained 3 new variables: treg_score, tconv_-

score and diffbinding.

The code for this part of the project can be found inhttps://github.com/theinsilicobiology/
Kmeans_TOBIAS_CD4Thymus_paper.

These new variables lead us to a new question. Are there patterns in the relation-
ship between tTreg signature genes and their respective Transcription Factor Binding Sites?
To answer this question, clustering became the solution.

The data was obtained raw from TOBIAS in the form shown in[Figure 3.15, Prepro-
cessing was required to extract one of the variables (treg_score, tconv_score or diffbinding)
for all TFBS and gene combinations. As in some situations more than one value can be
found for the same combination, the mean was taken for those cases.

The final data form before clustering becomes a matrix where genes are rows and
TFBS are columns such as the example in [Figure 3.16]

From here ComplexHeatmap, a package in R |Gu et al| (2016) becomes
the tool of choice as it allows both the execution of a simple kmeans clustering and the
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Figure 3.16: Example of a small portion of a Matrix ready to be used as an input for cluster-
ing analysis. Genes are in rows, TFBS are in columns

elaboration of a heatmap for observation of said clustering.

Figure 3.17: ComplexHeatmap package logo

ComplexHeatmap
Complete Reference

Zuguang Gu

To assure reproducibility the protocol was set as follows:




1. Extract relevant data from the raw data (pairs of TFBS/gene and their respective
treg_score, tconv_score or diffbinding);

2. Extract expression data for the genes in rows

3. Convert the data into matrix form and calculate averages when pairs of gene/TFBS
have more than 1 value;

4. Estimate the ideal number of clusters by calculating it through the silhouette and
elbow methods (and estimating the best between both);

5. Scale the matrix by rows, by column and keep a matrix with no scaling for reference;

6. Calculate the colour scale for the heatmap according to the values of the matrix after
scaling;

7. Create the heatmap with 2 k-means (one of columns, one for rows) with the k cal-
culated in 4 and add a bar plot for columns and rows with the expression of each
gene;

8. Extract cluster information for each pair of Gene/TFBS in each variation (column scal-
ing, row scaling and no scaling).

9. Analyse results.

As the protocol is quite extensive and reproducibility is paramount, functions were
created to automatize and standardize steps.
A first function was created to automatize extraction of the final matrix from the

raw data and the row and column data for the bar plots |[Figure 3.18, 3 variants of the
function were created to extract either treg_score, tconv_score or diffbinding from the data.

Getmatrixpata_Tregscore<-function(data){

genesTreg <- read.table("Data/ExpressionData/TregvsTconv_Thy_DEGnoco.tTxt”, sep = "\t"”, header = TRUE )

datajensembl_gene_id<-data$gene_id

data-subset(data,datastreg score!=0)

if (1 "TFBS_motif™ %in% colnames(data))

Figure 3.18: Function to extract relevant data to execute the heatmap. This ex-
ample is for Treg score.  The full code for this task can be seen in https:
//github.com/theinsilicobiology/Kmeans_TOBIAS_CD4Thymus_paper/blob/main/
Functions/ExtractInfoFromDataset.R.

A second function was created to automatize the elbow and silhouette methods. It
was set for both rows and columns (by transposing the matrix) allowing for us to retrieve
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the ideal k for both k-means in one function. The outputs are the respective graphs for both

methods [Figure 3.19

AssessNumClusters<-function{datamatrix){
Tibrary(factoextra)

data_widematrixRows<-scale(data_wide, center = TRUE)
data_widematrixRows<-as.data.frame(data_widematrixRows)

kmax<-nrow(data_widematrixRows)-1

if (kmax>10) {kmax=10}

ElbowGenes<-fviz_nbclust(data_widematrixrRows, kmeans, iter.max=1000, method = "wss", k.max = kmax) +
Tabs(subtitle = "Elbow method - Genes™)
ElbowGenes

Silhouettecenes<-fviz_nbclust(data_widematrixRows,kmeans,iter.max=1000, method = "silhouette”, k.max = kmax)}+
Tabs(subtitle = iThouette method - Genes™)
5ilhouerteGenes

Figure 3.19: Function that executes the elbow and silhoutte methods for the extracted data
to determine the ideal number of clusters - k. It outputs the graphs for both rows and
columns. The full function can be found in https://github.com/theinsilicobiology/
Kmeans_TOBIAS_CD4Thymus_paper/blob/main/Functions/AssessNumClusters.R

After executing scaling according to rows or columns, a function was created to
colour the heatmap and recentre it on 0 as seen in [Figure 3.20} This function was adapted
to diffbinding, treg_score and tconv_score.

getcolours_diffBindingHeatmap_colscaling<-function(datamatrix){

1i11aICE: :colModes (datamatrix)
in(Modes)

Tibrary(circlize)
col_fun = colorramp2(c(min(datamatrix)-.001,Minimum-0.1, Minimum-0.01, Minimum,Maximum, Maximum+0.01, Maximum:0.1,max(datama
c("#afff2e™, "#189b00", "#106a00", “black™, "black™ ,"#b36200", "#e67e00”, "#ffa333"), space = "XvZ")

return(col_fun)

Figure 3.20: Function that calculates the mode per column or per row (according to scal-
ing) and sets the colours of the heatmap according to it. Scale from blue to green in
treg and tconv score and green/black/orange for diffbinding. The full functions can be
found in https://github.com/theinsilicobiology/Kmeans_TOBIAS_CD4Thymus_paper/
blob/main/Functions/ColoursHeatmap.R

Finally, after executing the heatmap, two more functions are run. The first
extracts the info about the created clusters and creates csvs ready to analyse. The
second compares the gene expression dataset from the same subset with the TOBIAS data
and checks which genes from the gene expression dataset do not exist in the TOBIAS data

of the same subset |Figure 3.22
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extractClusterInformation_Tregscore<-function(HM){

r.dend < i_dend (HM)
rcl.Tlist row_order (HM)

Tlapply(rcl. list, function(x) Tength(x))

library(magrittr)

<— Tlapply(names(rcl.Tist), function(i){
names (data_wideHeatmap)
<- data.frame(ensembl_gene_id = r[rcl.1ist[[i1]],
ClusterGene = paste0(i),
stringsAsFactors = FALSE)
return{out)
D =%
do.call(rbind, .)

ClustersGenes<-unique(data. frame(clu_df))

Figure 3.21: Function to extract cluster information after a heatmap is created. It generates
3 CSVs, one for gene clusters, one for TFBS clusters and one with the information com-
bined. The functions can be found in https://github.com/theinsilicobiology/Kmeans_
TOBIAS_CD4Thymus_paper/blob/main/Functions/extractClusterInformation.R.

potintable<—function (A'i 1clusters){

genesTreg <- read.table("pata/Expressionbata/TregvsTconv_Thy_DEGnoco.txt”, sep = "\t", header = TRUE )

genes<- genesTregihgnc_symbol
genes<-toupper (genes)
genes<-umique(genes)

—unique (Genesset)

GenesOs<-setdiff (genes, Genesset)
return{Genes0s)

Figure 3.22: Function to assess which genes exist in a specific subset of gene ex-
pression but in the correspondent TOBIAS output data. The full function can be
found in https://github.com/theinsilicobiology/Kmeans_TOBIAS_CD4Thymus_paper/
blob/main/Functions/notintable.R.
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Chapter 4

Results

In this chapter the results obtained during this project will be presented.

In section we'll discuss the final visualizations obtained regarding the
existence of a linear correlation between DCA and gene expression that differentiates tTRegs
from tTConvs. In section the final results from the standardization of the Gene
Set Enrichment Analysis protocol to run with the full mSigDB in our data will be discussed.
Finally in the section[section 4.3|we’ll discuss the final results and discoveries from the clus-
tering procedure applied in the digital footprinting analysis data obtained from the TOBIAS
framework.

4.1 Analysing Gene Expression vs Differential Chromatin Acces-
sibility

To check how we’ve arrived at this results please consult section [section 3.2 where
you can see the full protocol followed for the following results.

From the analysis of the dataframe we can already conclude a few things, namely
regarding ROCs and genes We can also conclude that biggest majority
of our genes in the dataset are protein coding[Table 4.3 vouching for the importance of this
data to study tTreg regulation.

Question Answer
How many ROCs do we have in total? 7520
How many ROCs have a positive DCA? 3593
How many ROCs have a negative DCA? 3927

Which Gene has more ROCs associated? How many? CSMD1, has 99 ROCs

Table 4.1: ROCs main characteristics in the data

Question Answer
How many genes do we have in total? 1058
How many genes have a positive logFC? 590
How many genes have a negative logFC? 378

Table 4.2: Genes main characteristics in the data
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Gene Biotype N° Genes

IncRNA 52
processed_pseudogene 17
protein_coding 979
TR_V_gene 1
transcribed_unitary_pseudogene 1
transcribed_unprocessed_pseudogene 6
unprocessed_pseudogene 2

Table 4.3: Distribution of the Genes per Gene Biotype

The bubble plot with Gene Expression in x and Differential Chromatin Accessibil-
ity in y reveals the possibility of existent linear correlation between both vari-
ables. At a first glance, that linear relationship seems to exist.
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Figure 4.1: Bubble Plot of Differential Gene Expression in x and Differential Chromatin
Acessibility in y. To assure one point per gene , the DCA was assumed to be the mean of all
ROCSs for each gene. The number of ROCs is stored as the size of each bubble giving us an
idea on how many each gene possesses.

To assure that the calculation of the Linear Regression of this data is not affected
by the restraints of the ggplot2 protocol and to allow full control of the regression, we've
opted to calculated separately from the graph and then gather the two in one visualization.
At first glance the correlation seems positive and consistent as seen in [Figure 4.2}

However if we look at the report from the Im() function from R the values observed
are not the best as you can see in We can observe a significant pvalue but the
R-Squared doesn’t seem to give evidence of a strong correlation. Yet this is not the final
form of this linear regression.

By observing the image we can faintly observe the visual aspect of heteroscedas-
ticity as the point in the graph seem to progressively decrease in variance the further they
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Figure 4.2: The same graph as but with an Added Linear Regression line between
xand y

call:
Im{formula = DCA ~ TogFCA, data = temp)

Residuals:
Min 10 Median 30 Max
-1.53928 -0.31710 -0.01637 0.27054 2.53884

coefficients:

Estimate std. Error t value Pr{=|t|)
(Intercept) -0.011417 0.005863 -1.947 0.0516 .
TogFca 0.046222 0.002133 21.673 <2e-16 #**

signif. codes: 0 “*¥*¥*' 0,001 ***° 0.01 **’ 0.05 *.” 0.1 * "1

Residual standard error: 0.4827 on 7518 degrees of freedom
Multiple R-squared: 0.05881, Adjusted R-squared: 0.05868
F-statistic: 469.7 on 1 and 7518 DF, p-value: < 2.Ze-16

Figure 4.3: Initial Linear Regression results for the Gene Expression vs DCA combo.

are from the origin. So a validation of the existence of heteroscedasticity is in place. The
Breusch-Pagan test was chosen and was executed with the aid of the function bptest() from
the package Imtest Achim and Torsten| (2002).

The Breusch-Pagan tests for the existence of heteroscedasticity in a linear regression
by using the following null and alternative hypotheses:

¢ Null Hypothesis (H0): Homoscedasticity is present (the residuals are distributed with
equal variance);

¢ Alternative Hypothesis (HA): Heteroscedasticity is present (the residuals are not dis-
tributed with equal variance)

If the p-value of the test is less than some significance level (we assume 0.05) then



we reject the null hypothesis and conclude that heteroscedasticity is present in the regres-
sion model.
The protocol for the Breusch-Pagan test goes as follows:

1. Fit the regression model (the model uses the function Im());
2. Calculate the squared residuals of the model;
3. Fit a new regression model, using the squared residuals as the response values;

4. Calculate the Chi-Square test statistic X2 as n*R*new where: n is the total number of
observations and R*new: The R-squared of the new regression model that used the
squared residuals as the response values

If the p-value that corresponds to this Chi-Square test statistic with p (the number
of predictors) degrees of freedom is less than some significance level (we use 0.05) then
reject the null hypothesis and conclude that heteroscedasticity is present.

The Breusch-Pagan Test can be executed simply in R with the bptest() function over
the original linear regression and, if the pvalue is <0.05 then heteroscedasticity is indeed,
present. By observing [Figure 4.4/we can thus validate the existence of heteroscedasticity in
this visualization

studentized Breusch-Pagan test

data: temp.lIm
EP = B5.226, df = 1, p-value < 2.2e-16

Figure 4.4: Breusch-Pagan test results of the linear regression executed in using
the function bptest() from the Imtest package. As the p-value is <0.05, heteroscedasticity is
in fact, present.

With heteroscedasticity validated we can then move to assess it and modify the
original linear regression to deal with the difference in variance in this data. In R we can
solve this simply by using the function Imrob() from the package robustbase Todorov and
Filzmoser| (2010) which computes a robust regression version of the original linear regres-
sion. As we can see in[Figure 4.5} the R-Squared evolved towards a relevant 0.2308.

With this we end up with evidence of a significant positive correlation between Dif-
ferential Chromatin Accessibility with the existence of heteroscedasticity and an R-squared
of 0.2308.

The final equation is thus approximately,

DCA = logFC % 0.061922 + 0.019303

Which lead us to conclude that Up regulated DEGs are more frequently associated
to regions of chromatin where mean accessibility is increased in tTregs (3,593 “open” ROCs),
when compared to tTconvs. On the other hand, Down regulated DEGs show a stronger as-
sociation with regulatory regions with an associated decreased accessibility in tTregs (3,927
“closed” ROCs),



call:
Tmrob(formula = mean ~ logFCA, data = tempcoruniqul)
Y—-> method = "MM"
Residuals:
Min 1q Median 3q Max
-0.93BB0 -0.17461 -0.01646 ©0.19381 1.43573

Coefficients:
Estimate std. Error t value Pr{>|t]|)

(Intercept) 0.019303 0. 008707 2.217 0.0268 *
TogFca 0.061922 0.004051 15.2B4 <la-1fb ***

Signif. codes: 0 “#=*' 0 Q01 ***' 0.01 “*" 0.05 *." 0.1 °

Robust residual standard error: 0.2674
Multiple R-squared: 0.2308, Adjusted R-squared: 0.23
Convergence in 12 IRWLS iterations

Figure 4.5: Robust regression of the same variables as in [Figure 4.3 The R-squared did
indeed improve to 0.2308

4.2 Gene Set Enrichment Analysis - Standardizing the Algorithm

From analyzing the results of crossing our data with the Hallmark collection of
mSigDB we can already observe some interesting results.

At first we attempted to perform the GSEA on the full gene expression dataset and
we find already interesting results in the Hallmark collection test. We can observe in ta-
ble that a few interesting pathways are significantly enriched in this data, namely
HALLMARK_IL2_STAT5_SIGNALING, HALLMARK_IL6_JAK_STAT3_SIGNALING , HALL-
MARK_INFLAMMATORY_RESPONSE, HALLMARK_TNFA_SIGNALING_VIA_NFKB ,HALL-
MARK_INTERFERON_GAMMA_RESPONSE, HALLMARK_E2F_TARGETS and HALLMARK_-
WNT_BETA_CATENIN_SIGNALING, all pathways related to thymic t cell metabolism. How-
ever, as the input hasn’t been restricted for significance, these results might be dubious.

Repeating the test for the subset of our gene expression data restricted for signifi-
cance is important to validate these results. We can observe in that the results turn
a lot more simplified.

By observing we can observe a group of enriched pathways namely the
first4 (HALLMARK_IL2_STAT5_SIGNALING, HALLMARK_ESTROGEN_RESPONSE_LATE,
HALLMARK_TNFA_SIGNALING_VIA_NFKB andHALLMARK_INFLAMMATORY_RESPONSE)
and the last one (HALLMARK_GLYCOLYSIS) on the table.

From comparing both tables we can see improved enriched pathways in the table
with cut-off than the whole table and more potential for explainability of the results. One
question then arose, which genes exist in common with our data in these enriched pathways
and are there any genes in common between pathways?

We took the results from these 2 tests and constructed the heatmap described in
and we can see the results in for the dataset without cut-off and
for the database with cut-off.

By observing at the heatmap that is a result of the GSEA of our full gene expression



Pathway Padj NES
HALLMARK_IL2_STAT5_SIGNALING 0.000000037 | 2.0393
HALLMARK_IL6_JAK_STAT3_SIGNALING 0.000020558 | 2.0215
HALLMARK_INFLAMMATORY_RESPONSE 0.00000623 1.9688
HALLMARK_TNFA_SIGNALING_VIA_NFKB 0.000001987 | 1.9169
HALLMARK_INTERFERON_GAMMA_RESPONSE 0.000047582 | 1.7822
HALLMARK_INTERFERON_ALPHA_RESPONSE 0.005222246 | 1.6692
HALLMARK_XENOBIOTIC_METABOLISM 0.003937029 | 1.6612
HALLMARK_KRAS_SIGNALING_DN 0.014707853 | 1.6357
HALLMARK_ALLOGRAFT_REJECTION 0.005222246 | 1.6115
HALLMARK_ESTROGEN_RESPONSE_LATE 0.014707853 | 1.5867
HALLMARK_HYPOXIA 0.014707853 | 1.5383
HALLMARK_KRAS_SIGNALING_UP 0.027959701 | 1.5131
HALLMARK_ANGIOGENESIS 0.121411483 | 1.5016
HALLMARK_MYOGENESIS 0.052956034 | 1.4639
HALLMARK_BILE_ACID_METABOLISM 0.112518519 | 1.4349
HALLMARK_CHOLESTEROL_HOMEOSTASIS 0.1225 1.4218
HALLMARK_APICAL_SURFACE 0.184429477 | 1.4043
HALLMARK_APOPTOSIS 0.062672849 | 1.3762
HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION | 0.184429478 | 1.3192
HALLMARK_P53_PATHWAY 0.282982249 | 1.2081
HALLMARK_REACTIVE_OXYGEN_SPECIES_PATHWAY 0.522956623 | 1.1418
HALLMARK_UV_RESPONSE_UP 0.494093921 | 1.1184
HALLMARK_COAGULATION 0.557723578 | 1.101
HALLMARK_APICAL_JUNCTION 0.557723578 | 1.0763
HALLMARK_MTORCI1_SIGNALING 0.557723578 | 1.0696
HALLMARK_COMPLEMENT 0.569405523 | 1.0548
HALLMARK_PROTEIN_SECRETION 0.604008992 | 1.0359
HALLMARK_ESTROGEN_RESPONSE_EARLY 0.608129729 | 1.0157
HALLMARK_HEDGEHOG_SIGNALING 0.608129729 | 1.0122
HALLMARK_UV_RESPONSE_DN 0.608129729 | 1.0097
HALLMARK_ADIPOGENESIS 0.636283797 | 0.9931
HALLMARK_TGF_BETA_SIGNALING 0.658373171 | 0.9592
HALLMARK_PEROXISOME 0.762645914 | 0.8913
HALLMARK_HEME_METABOLISM 0.837714058 | 0.8729
HALLMARK_FATTY_ACID_METABOLISM 0.91178119 0.8141
HALLMARK_OXIDATIVE_PHOSPHORYLATION 1 0.6123
HALLMARK_PI3K_AKT_MTOR_SIGNALING 1 0.5856
HALLMARK_UNFOLDED_PROTEIN_RESPONSE 1 0.4229
HALLMARK_DNA_REPAIR 1 -0.7182
HALLMARK_MYC_TARGETS_V2 0.9195061728 | -0.8117
HALLMARK_MYC_TARGETS_V1 0.9117811905 | -0.8998
HALLMARK_MITOTIC_SPINDLE 0.6976821192 | -0.9679
HALLMARK_ANDROGEN_RESPONSE 0.5587396849 | -1.0375
HALLMARK_SPERMATOGENESIS 0.5662735849 | -1.05
HALLMARK_GLYCOLYSIS 0.1686251834 | -1.2076
HALLMARK_NOTCH_SIGNALING 0.1819462228 | -1.4198
HALLMARK_G2M_CHECKPOINT 0.0052222456 | -1.5029
HALLMARK_E2F_TARGETS 0.0052222456 | -1.5189
HALLMARK_WNT_BETA_CATENIN_SIGNALING 0.0364379885 | -1.6649

the Hallmark mSigDB as a comparison.

Table 4.4: Subset of the results table of the GSEA applied to our gene expression data with




Pathway Padj NES
HALLMARK_IL2_STAT5_SIGNALING 0.0134 | 1.9013
HALLMARK_ESTROGEN_RESPONSE_LATE 0.0387 | 1.7745
HALLMARK_INFLAMMATORY_RESPONSE 0.0387 | 1.7339
HALLMARK_TNFA_SIGNALING_VIA_NFKB 0.2169 | 1.5168
HALLMARK_KRAS_SIGNALING_DN 0.2836 | 1.4836
HALLMARK_MYOGENESIS 0.3492 | 1.3406
HALLMARK_INTERFERON_GAMMA_RESPONSE 0.3492 | 1.3223
HALLMARK_ALLOGRAFT_REJECTION 0.3492 | 1.3073
HALLMARK_KRAS_SIGNALING_UP 0.3856 | 1.2688
HALLMARK_HYPOXIA 0.3912 | 1.2494
HALLMARK_APOPTOSIS 0.3912 | 1.2369
HALLMARK_COMPLEMENT 0.3912 | 1.2285
HALLMARK_XENOBIOTIC_METABOLISM 0.4226 | 1.1490
HALLMARK_P53_PATHWAY 0.784 | 0.9163
HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION | 0.784 | 0.8952
HALLMARK_APICAL_JUNCTION 0.851 | 0.7975
HALLMARK_ESTROGEN_RESPONSE_EARLY 0.8562 | 0.7644
HALLMARK_MTORC1_SIGNALING 0.9383 | 0.6256
HALLMARK_MITOTIC_SPINDLE 1 0.3489
HALLMARK_HEME_METABOLISM 0.792 | -0.8591
HALLMARK_UV_RESPONSE_DN 0.4223 | -1.1485
HALLMARK_GLYCOLYSIS 0.0387 | -1.9263

Table 4.5: Subset of the results table of the GSEA applied to our gene expression data (with
a previous cutoff applied to those which p-value for the expression was significant) with
the Hallmark mSigDB as a comparison.

dataset we can observe that the most enriched pathways are also those with more genes in
common with other pathways. By observing the genes in the leadingEdge, we see some
expected genes, namely IL2RA, IL2RB, IL10RA, CTLA4, DUSP4, IKZF4, BATE, IRF8, NFK-
BIZ, NFKB2, REL, RELB, NFKBIE, BHLHE40, KLF6, NR4A3, BCL3 and BCL2A1 Hayatsu
et al.|(2017) that were identified as present in the metabolism of the development of thymic
Tregs.

The evidence of this group of genes is existent in[Figure 4.6/ but their enrichment is
more evident in

As enrichment and explainability have to go hand in hand in computational biol-
ogy we’'ve decided to move forward with the results from the gene expression data with the
cut-off for significance as it gives meaningful, interpretable information, while also assuring
that we are within significant statistics.

We progressed to analyze which kind of enrichment we were finding in these gene
sets gith our data, and to understand if the enrichment was mostly on top of the rank,
bottom or a mix, the best approach is an enrichment plot

We thus create an enrichment plot for the pathways with a significant p-value
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Figure 4.6: GSEA results for the full Gene Expression dataset in comparison with the

Hallmark Collection from mSigDB. The Rows are the pathways with Enrichment, in the
columns are the genes identified in common between our data and the hallmark collections,
the value in the heatmap corresponds to the NES calculated during the FGSEA protocol
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Figure 4.7: GSEA results for the Gene Expression dataset with a cut-off for significance
in p-value in comparison with the Hallmark Collection from msigDB. The Rows are the
pathways with Enrichment, in the columns are the genes identified in common between
our data and the hallmark collections, the value in the heatmap corresponds to the NES
calculated during the FGSEA protocol

value we can understand the dimension of this enrichment as in where can
observe a higher number of genes (sticks in the barcode) in HALLMARK_IL2_STAT5_SIG-



NALING. We can also observe that most of the enrichment comes from the top of the gene
sets. The least enriched pathway, HALLMARK_GLYCOLYSIS, only appearing as signifi-
cant in the table with the previous cut-off, we find the smallest gene set in common being
NDST3,TGFA,TPST1,TKTL1,ALDH7A1,CDK1 and IER3.
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Figure 4.8: Enrichment plots for the pathways in [Figure 4.7l where the p-value is significant.

To sum up, analysing the GSEA results for the cross between our data and the
Hallmark collection from the mSigDB we can then conclude that:

¢ We find important signalling molecules such as IL2RA, IL2RB, IL10RA, and CTLA4
in the case of HALLMARK IL2_STAT5 SIGNALING, or DUSP4, and IL15RA both in
HALLMARK_TNFA_SIGNALING_VIA_NFKB and HALLMARK_INFLAMMATORY _-
RESPONSE;

¢ The overlap of the significantly enriched signatures includes several transcription fac-
tors of relevance in the Tcell development context, namely IKZF4 (Eos), BATF, IRFS,
the NFKB2 pathway inhibitor NFKBIZ (HALLMARK_IL2_STAT5_SIGNALING; NFKB2,
REL, RELB, their inhibitor NFKBIE, BHLHE40, KLF6, NR4A3, BCL3 and BCL2A1 (HALL-
MARK_TNFA_SIGNALING_VIA_NFKB).

4.3 Clustering of Digital Footprinting Analysis Results

With the protocol set as described infsection 3.4]to configure and create the heatmaps,
it was decided to set up a set of experiments creating subsets of the full dataset as it can be
seen on diagram in[4.9

First a division according to Tregbound=1 defined as the combination of gene/TFBS
that is bound in tTreg, and ALL, defined as all Data extracted from the TOBIAS analysis.

Within these a group of experiments was set:

DEGS, defined as the list of Differentially Expressed Genes calculated during the Data
Preparation stages,

UP as the up regulated DEG genes in tTregs,

DOWN as the down regulated DEG genes in tTregs,

NOCO as the gene data without any set cutoffs,

NOCOUP as the NOCO genes up regulated in tTregs and
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Figure 4.9: Types of Heatmaps Created

* NOCODOWN as the NOCO genes down regulated in tTregs.

For these experiments 3 sets of heatmaps were constructed, ColScaling were the
matrix input was scaled by row putting emphasis on TFBS regulation across the genes ,
RowScaling were the matrix input was scaled by row putting emphasis on Gene Expression
across the TFBS and NoScaling to use as reference.

For further analysis, as the patterns of gene expression crucial to tTreg develop-
ment became the most preponderant question, the choice fell on analysing the results from
the row scaling heatmaps and the tests were ttreg_bound==1, so pairs of TFBS/gene that
were determined to be bound to thymic tregs by TOBIAS.

When analyzing the heatmaps, the intersection of a cluster from the kmeans of
the genes and a cluster from the kmeans of the columns that has a distinct colour well be
defined as a Gene Regulatory Module (GRM).

We’ll dwelve into discovering which transcription factors are associated with the
discovered GRM'’s in Bound UP regulated genes subset, Bound Down Regulated Genes
Subset and Bound DEGs genes Subset

4.3.1 Bound Thymic T regs - UP regulated Genes

First we’ll analyse the results of for the bound thymic t regs, in this case for up
regulated genes.

Beginning by analysing the Treg_score [Figure 4.10 heatmap we can see 3 major
GRM'’s:

* Row 4, Column 1 - We find in this GRM, transcription factors such as BACHI, BACH2,
BATF, FOS, FOSL2, JUNB and MAFK, we'll see this cluster often, and realize that all of
them belong to the Activator Protein 1 Family (AP-1), a group of transcription factors
that regular cellular processes in response to stimuli;



¢ Row 1, Column 2 - We find in this GRM, transcription factors such as ETV5, IKZF1,
ETS1, ELK3, FLI1, ERF, ETV6, ELK1, ETV1, ELF4, ELF2, ETS2, ETV3, ELF1, ELK3 and
ZBTB7A, this group of ETS/ETV/ELF TF’s will appear often;

¢ Row 5, Column 5 - We find in this GRM, transcription factors such a SP2, KLF9, KLF4,
SP3, KLF3, KLF10, KLF6, KLF11, KLF16, KLF5, SP4, KLF2 and SP1, we'll see this clus-
ter often, and realize that most of them belong to the KLF/SP family which are C2H2
zinc-finger containing transcription factors split into two groups based on the struc-
ture at the N-terminus, a group of transcription factors that regular cellular processes
in response to stimuli.

Figure 4.10: Heatmap for Clustering of Treg_score data for the Bound Up regulated subset

Next, analysing the Tconv_score [Figure 4.11 heatmap we can see 2 major GRMs:

* Row 4, Column 2 - It’s a big cluster but here we find interesting TF’s such as FOXP3,
MAF, REL, RUNX1, RUNX2 and TBX21;

* Row 3, Column 1 - we can find transcription factors here such as BACH1, BACH2,
BATF, MAFK, FOS, FOSL2, JUND and JUNB, the AP1 group.

Finally , analyzing the DiffBinding |Figure 4.12|heatmap we can see 3 major GRM’s:

¢ Row 5, Column 7 . here we find above all TF’s from the KLF family acting as repres-
sors such as KLF10, KLF11, KLF16, KLF2, KLF3, KLF4, KLF5, KLF6, KLF9 and TF’s from
the SP family such as SP1, SP2, SP3 and SP4, the KLF/SP family of genes;



Figure 4.11: Heatmap for Clustering of Tconv_score data for the Bound Up regulated subset

* Row 6, Column 5 . here we find the elements of the AP1 group such as BACHI,
BACH2, BATF, MAFK, FOS, FOSL2, JUND and JUNB;

¢ Row 4, Column 7 - here we find above the same KLFSP family protein as in the GRM
of Row 5 Column 7, yet here they work mostly as activators.

4.3.2 Bound Thymic T regs - DOWN regulated Genes

In this section we’ll analyse the results for the subset for Bound Down Regulated
Genes.

Beginning by analyzing the Treg_score [Figure 4.13| heatmap we can one major
GRMs:

* Row 1, Column 4 - here we find above all TF’s from the KLF/SP family, ZNF148 and
EGR1

Next, analyzing the Tconv_score [Figure 4.14|heatmap we can see one GRM:

* Row 6, Column 4 - we find quite a bit of proteins from the KLF family (KLF2, KLF3,
KLF4, KLF6 and KLF9), some from the SP family (SP1, SP2 and SP4), EGR1, MAZ and
ZNF148, thus the KL/SP family.

Finally , analyzing the DiffBinding heatmap we can see 3 major GRMs:

* Row 6, Column 5 . we find in this GRM TF’s acting as activators from the KLF/SP
family such as KLF5 and SP1. We also find EGRI1.



Figure 4.12: Heatmap for Clustering of DiffBinding data for the Bound Up regulated subset

¢ Row 5, Column 3 - we find in this GRM, TF’s such as FLI1, ELF4, ETS2, ELK4, ETV5,
ERF, ZBTB7A, ELK1, ELK3, ETV3, ETS1, ZKSCAND, ELF2 and ETV6, being here the
ETS/ETV/ELF TF’s;

¢ Row 1, Column 5 - we find in this GRM TF’s acting as repressors from the KLF/SP
family such as KLF5 and SP1. We also find EGR1.

4.3.3 Bound Thymic T regs - DEGs regulated Genes

In this section, we'll analyse the results from the subset of Bound DEGs genes. This
subset is a sum of the Bound Up and Bound Down genes.

Beginning by analyzing the Treg_score [Figure 4.16| heatmap we can see 3 major
GRMs:

¢ Row 3, Column 3 - Here we find again the AP1 family, finding FOS, FOSL2, BACH]1,
BACH2, BATF, MAFK, JUNB, JUND and CTCF, thus the AP-1 family GRM;

¢ Row 2, Column 2 - Here we find he TF’s ELF4, ETV5, FRF, FLI1, ETS2, ELF1, ELF1,
ETS1,ETV3,ETV6, ELK1, ETV6, ELK1, IKZF1, ELF2, ELK4, ETV1, ELK3 and ZBTB7A,
being this group part of the ETS/ETV/ELF TF's GRM;

¢ Row 1, Column 5 - in this GRM we find once more the KLFSP family with SP1, SP2,
SP3, SP4, KLF3, KLF4, KLF5, KLF6, KLF9, KLF10, KLF11, KLF16 and ZNF148, being
this group part of the KLF/SP family GRM.



Figure 4.13: Heatmap for Clustering of Treg_score data for the Bound Down regulated
subset

Next, analyzing the Tconv_score heatmap we can see 3 major GRMs:

¢ Row 2, Column 3 - in this GRM we find ERF, ELF1, ELF2, ELF4,ETS1,ETS2,ETV1,ETVS3,
ETV5, ELK1 and FLII;

¢ Row 1, Column 5 - in this GRM we find once more the KLFSP family with SP1, SP2,
SP3,SP4, KLF3, KLF4, KLF5, KLF6, KLF9, KLF10, KLF11, KLF16 and ZNF148

* Row 6, Column 1 - we find the AP-1 family in this GRM namely BATF, FOSL2, FOS,
BACH1, MAFK, JUND, BACH2 and JUNB.

Finally , analyzing the DiffBinding|Figure 4.15heatmap we can see 3 major GRMs:

* Row 6, Column 2 - we find ELK1, ETV3, ETV5, ZBTB7A, IKZF1, ETS2, FLI1, ETS],
ELK4, ELK3, ERF, ELF4, ETV1, ELF1, ZKSCANS5, ELF2 and ETV6, being this group
part of the ETS/ETV/ELF TF’s family GRM,;

* Row 7, Column 5 - we see once again the KLFSP family activating genes in tTregs
with SP2, KLF16, KLF10, SP4, KLF9, KLF6, KLF5, SP1, KLF3, KLF4, SP3, KLF11 and
KLF2 being this group part of the KLF/SP family GRM;

* Row 1, Column 5 - the same as before of the KLF/SP family, this time repressing
genes in tTreg.



Figure 4.14: Heatmap for Clustering of Tconv_score data for the Bound Down regulated
subset

4.3.4 Conclusions

From the sections|subsection 4.3.1} [subsection 4.3.2|and |[subsection 4.3.3|we can see

that some GRM’s are common between them.

As our main interest during the project is to understand tTreg development in con-
trast with tTconv development , we can reduce our discoveries mostly to the diffbinding
heatmaps for Bound Up-Regulated and Bound Down-Regulated subsets.

We find 3 major groups of genes in notorious Gene Regulatory Modules all over
the tests: the AP1 family, the KLF/SP family and the ETS/ETV/ELF family.

The AP1 family GRM is constituted by proteins that form heterodimers or ho-
modimers and bind to the DNA [Katagiri et al| (2021). It comprises 4 sub-families Jun (c-
Jun, JunB, JunD), c-Fos (c-Fos, FosB, Fral, Fra2), musculoaponeurotic fibrosarcoma (Maf;
c-Maf, MafB, and MafA. Mafg/f/k, Nrl), and activating transcription f actor (ATF; ATF2,
LRF1/ATF3, BATF, JDP1, JDP2). AP-1 has pleiotropic effects and plays a central role in var-
ious aspects of the immune system, such as T cell activation, Th cell differentiation, T cell
anergy, and fatigue . We find this group in Row 6, Column 5 of [Figure 4.19

The KLF/SP family GRM of transcription factors are C2H2 zinc-finger containing

transcription factors split into two groups based on the structure at the N-terminus
(2012). We can find them with repressor effect in tTregs in Row 5 Column 7 of
and activator effect in Row 4 Column 7. On we find the same group
acting as activators of transcription in Row 6 Column 5 and repressors in Row 1 Column
5.
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Figure 4.15: Heatmap for Clustering of DiffBinding data for the Bound Down regulated
subset

Finally the ETS/ETV/ELF family GRM, which possesses Ets domain, which is
shared by all ETS proteins, specifically recognizes DNA sequences that contain a GGAA/T
core element.ETS group protein are involved in multiple biological processes such as hematopoiesis,

angiogenesis, or tumor progression. They are also associated to B and T cell development
Mouly et al|(2010). We find the ETS/ETV/ELF family in|Figure 4.20/in Row 5 Column 3 .



Figure 4.17: Heatmap for Clustering of Tconv_score data for the Bound DEGs subset



Figure 4.18: Heatmap for Clustering of DiffBinding data for the Bound DEGs subset
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Figure 4.19: Heatmap for Clustering of DiffBinding data for the Bound UP regulated subset
- Annotated for to show the GRMs
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Figure 4.20: Heatmap for Clustering of DiffBinding data for the Bound Down regulated
subset - Annotated for to show the GRMs



Chapter 5

Discussion and Conclusions

In this chapter we’ll discuss the main findings of this dissertation and the conclu-
sions to which we can reach

We’ll divide this section into the sections of the results to make the reading easier.
Final discussion and conclusion on the Gene Expression vs Differential Chromatin Accessi-
bility is in for the Standardization of the Fast Pre Ranked Gene Set Enrichment
Analysis go to and finally for the final analysis of the clustering of the Digital

Footprinting Analysis results go to

5.1 Analysing Gene Expression vs Differential Chromatin Acces-
sibility

While the linear regression found might be small (with a slope of just 0.061922)
the significance of the finding is a lot bigger than it seems. Even with a dataset with just 3
replicates per cell type and stage, a significant R-squared of 0.2308 (which is significant in
datasets with high variability such as genomic datasets ) is obtained.

We can conclude that in healthy conditions, the chromatin is more open in T regu-
latory cells than in T conventional cells, leading us to observe that epigenetics plays a big
role in the development of CD4+ T cells.

From the image we can also observe that typical genetic markers of the
tTreg lineage such as FOXP3, STAT4 and IL2RA can be found in the tTreg side with the most
open chromatin, while markers for tTconv such as TGFA and IL7R are found on the tTconv
side. These markers have been all added after the bubble plot and linear regression were
calculated, to uncover where these gene markers were in the plot.

The protocol for this kind of analysis needs to be standardized as similar analysis
are hard to find and compare. The discovery and validation of possible correlations be-
tween chromatin accessibility and gene expression require a stable protocol for the units
used with each variable, the type of plots performed and how correlations are calculated.
Heteroscedasticity is also common in such datasets and valid correlations might be ignored
due to lack of statistical knowledge.

A next step should be repeating the same protocol for other stages of t cell de-
velopment and with datasets reflecting particular immune illnesses in order to discover
significant differences with this regression and if disease can significantly alter this balance.
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5.2 Gene Set Enrichment Analysis - Standardizing the Algorithm

The necessity of a standardized protocol for the application of the Gene Set Enrich-
ment Analysis became evident during this project.

This kind of algorithms allows us to measure how represented is our data in anno-
tated datasets associated to metabolic pathways or disease. It's demonstrable more reliable
than simple gene ontology [Mi et al.| (2019) as it associates both a ranked list and also the
gene expression values.

By standardizing the procedure and having it run against the whole MSigDB we
can assure at least that, for this thorough library, significant results are not ignored and that
research bias does not exist.

This analysis produced the most relevant results in the Hallmark subset of MSigDBas
it can be seen described in While some results appear with the overall dataset
and the immunity subset, the most relevant are found in Hallmark. Some of the results
were expected such as the enrichment in HALLMARK_IL2_STAT5_SIGNALING and HALL-
MARK_TNFA_SIGNALING_VIA_NFKB, some results were surprisingly interesting such as
HALLMARK_ESTROGEN_RESPONSE_LATE and HALLMARK_GLYCOSIS.

It’s important to reinforce the importance of the finding of significant signalling
molecules such as IL2RA, IL2RB, IL10RA, and CTLA4 in the case of HALLMARK_IL2_-
STAT5_SIGNALING, or DUSP4, and IL15RA both in HALLMARK_TNFA_SIGNALING_VIA_-
NFKB and HALLMARK_INFLAMMATORY_RESPONSE.

It’s also crucial that we are finding in the overlap of the significantly enriched
signatures, several transcription factors of relevance in the T cell development context,
namely IKZF4 (Eos), BATF, IRF8, the NFKB2 pathway inhibitor NFKBIZ (HALLMARK_-
IL2_STAT5_SIGNALING; NFKB2, REL, RELB, their inhibitor NFKBIE, BHLHE40, KLF6, NR4A3,
BCL3 and BCL2A1 (HALLMARK_TNFA_SIGNALING_VIA_NFKB).

Most of these conclusions developed after the heatmap visualization was created,
revealing to be a powerful way to analyse results from gene set enrichment analysis. Heatmaps
such as the one created in[Figure 4.7)allows us to check for how much of the dataset in ques-
tion is represented in the curated database and checking for overlaps between significantly
enriched pathways. The heatmap should be added to the Gene Set Enrichment Analysis
protocol in a standard analysis due to its usefulness

5.3 Clustering of Digital Footprinting Analysis

Finally we reach the analysis of the results obtained in the Clustering of Digital
Footprinting Analysis.

This method revealed itself to be quite reliable in unearthing patterns existent in the
dataset. As a new method to analyse this kind of data the protocol still requires some clean-
ing but it demonstrates potential. It demonstrates that 2 K means clustering algorithms on a
dataset considering the variable that unites two distinct components of the system (such as
genes and transcription factor binding sites in this case) is a useful method to discover the
patterns in those components of the system separately and also crossed patterns between
both when observed in the heatmap.



The most interesting results come especially from the differential binding heatmaps
in the Up Regulated Genes subset and Down Regulated Genes subset
, where we can observe which gene/TFBS combinations are more relevant towards
tTreg development and tTconv development.

In the Up Regulated Genes subset we find mostly 2 promoted groups
in tTregs: Row 6, Col 5 and Row 5, Col 3 where we find the AP1 family of proteins. AP-
1 has pleiotropic effects and plays a crucial task in the T cell family, being identified as
playing a role in T cell activation, Th cell differentiation and T cell anergy. We also find
the ETS/ETV/ELF family, which possesses the Ets domain. It is identified in B and T cell
development and in biological processes such as haematopoiesis and tumour progression.

In the Down Regulated Genes subset we find the KLS/SP family with
repressor effects Row 5, Column 7 and interestingly find the same group in the Up regu-
lated genes with activator effect in Row 4, Column 7 and repressor effect in Row 1, Column
5. Studying the dual effect of this subgroup should be a goal in future projects.

This methodology has thus proved itself useful in the discovery of interesting reg-
ulation patterns as the consistency of the results over the several tests performed and the
association of the patterns discovered to T reg development shows.

Further developing this analysis protocol to generalize it to accept new datasets
without an issue and improving the colour scheme algorithm will hopefully turn this method-
ology into a useful comparison method between cell development stages and healthy /illness
associated datasets as the heatmaps have an ability to become fingerprints of the regulation
patterns with the dataset.



Chapter 6

Limitations And Recommendations
For Future Works

This work has successfully used data science techniques to improve the discovery

of important regulatory pathways in the development of CD4+ T cells. The discoveries

have allowed the laboratory to uncover new regulatory pathways for this subset of cells

and new methods for the analysis of CD4+ T reg cells were developed.

The most significant limitations were found in the limited dataset available (only

3 replicates) which can interfere with the validity of the results obtained. Nonetheless it

has set a good foundation for more data science to be incorporated in such projects. Next

logical steps in this project are:

Transform the standardization of the Fast Pre-ranked Gene Set Enrichment Analy-
sis with the MSigDb into an R package, further distributing the standardization and
easing the using of this technique by others;

Compare the results of the Gene Expression vs Differential Chromatin Accessibility
in CD4+ T Cells for healthy subjects with the same protocol for patients with Immune
Diseases in search for significant changes;

Extend the analysis performed to bigger datasets (more replicates) and/or to disease
specific datasets to compare with this healthy subjects dataset;

Extend the data to incorporate more genetic, genomic, proteomic, metabolomic and
clinical data, broadening the analysis potential of such data and increasing the depth
of the multi-omic approach to this analysis;

Incorporate the findings of this project in a future classification algorithm for Com-
plex Variable Immunodeficiencies (with cured data for healthy subjects and clinical
immunology clinical cases) that could analyse new clinical immunology cases in a
hospital setting and help predict outcomes of the case from the first data obtained
from the patient, thus saving critical time for the patient to reach a full diagnosis.
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