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Objectives: To determine whether coronary computed tomography angiography (CCTA) scanning, scan prepa
ration, contrast, and patient based parameters influence the diagnostic performance of an artificial intelligence 
(AI) based analysis software for identifying coronary lesions with ≥50% stenosis. 
Background: CCTA is a noninvasive imaging modality that provides diagnostic and prognostic benefit to patients 
with coronary artery disease (CAD). The use of AI enabled quantitative CCTA (AI-QCT) analysis software en
hances our diagnostic and prognostic ability, however, it is currently unclear whether software performance is 
influenced by CCTA scanning parameters. 
Methods: CCTA and quantitative coronary CT (QCT) data from 303 stable patients (64 ± 10 years, 71% male) 
from the derivation arm of the CREDENCE Trial were retrospectively analyzed using an FDA-cleared cloud-based 
software that performs AI-enabled coronary segmentation, lumen and vessel wall determination, plaque quan
tification and characterization, and stenosis determination. The algorithm's diagnostic performance measures 
(sensitivity, specificity, and accuracy) for detecting coronary lesions of ≥50% stenosis were determined based on 
concordance with QCA measurements and subsequently compared across scanning parameters (including 
scanner vendor, model, single vs dual source, tube voltage, dose length product, gating technique, timing 
method), scan preparation technique (use of beta blocker, use and dose of nitroglycerin), contrast administration 
parameters (contrast type, infusion rate, iodine concentration, contrast volume) and patient parameters (heart 
rate and BMI). 
Results: Within the patient cohort, 13% demonstrated ≥50% stenosis in 3 vessel territories, 21% in 2 vessel 
territories, 35% in 1 vessel territory while 32% had <50% stenosis in all vessel territories evaluated by QCA. 
Average AI analysis time was 10.3 ± 2.7 min. On a per vessel basis, there were significant differences only in 
sensitivity for ≥50% stenosis based on contrast type (iso-osmolar 70.0% vs non isoosmolar 92.1% p = 0.0345) 
and iodine concentration (<350 mg/ml 70.0%, 350-369 mg/ml 90.0%, 370–400 mg/ml 90.0%, >400 mg/ml 
95.2%; p = 0.0287) in the context of low injection flow rates. On a per patient basis there were no significant 
differences in AI diagnostic performance measures across all measured scanner, scan technique, patient prepa
ration, contrast, and individual patient parameters. 
Conclusion: The diagnostic performance of AI-QCT analysis software for detecting moderate to high grade ste
nosis are unaffected by commonly used CCTA scanning parameters and across a range of common scanning, 
scanner, contrast and patient variables. 
Condensed abstract: An AI-enabled quantitative CCTA (AI-QCT) analysis software has been validated as an 
effective tool for the identification, quantification and characterization of coronary plaque and stenosis through 
comparison to blinded expert readers and quantitative coronary angiography. However, it is unclear whether 
CCTA screening parameters related to scanner parameters, scan technique, contrast volume and rate, radiation 
dose, or a patient's BMI or heart rate at time of scan affect the software's diagnostic measures for detection of 
moderate to high grade stenosis. AI performance measures were unaffected across a broad range of commonly 
encountered scanner, patient preparation, scan technique, intravenous contrast and patient parameters.   

1. Background 

Coronary computed tomography angiography (CCTA) has estab
lished itself as an effective tool for diagnosing and grading coronary 
artery disease (CAD) severity through high performance against the 
current gold standard, invasive coronary angiography (ICA).1,2 

Furthermore, data derived through CCTA improves clinical care by 
guiding disease prognostication, reducing unnecessary invasive testing 
and improving overall outcomes.3–6 While these scans provide data that 
have direct clinical utility, they also provide a quantity of data that 
qualitative reads by human readers cannot generate in a clinically useful 
period of time. 

The use of artificial intelligence (AI) for image analysis and inter
pretation has further enhanced our diagnostic and prognostic capability 
by using pixel level analytics and automated learning algorithms for 
rapid adaptation.7–9 Given AI guided CCTA's (AI-QCT's) consistency, 
expediency and high performance for stenosis grading against gold 
standards like expert readers, quantitative invasive coronary angiog
raphy (QCA) and fractional flow reserve (FFR), CCTA analysis is likely to 
employ AI on a widespread basis in the future.10,11 While AI-QCT may 
have the capability to rapidly and accurately analyze CCTA images, 
widespread use will require an understanding of its performance across 
the various parameter settings. At this early stage, it is not yet clear 
whether AI-QCT's performance changes across common scanning pa
rameters. However, if AI-QCT performance is comparable to QCA for 
plaque analysis without limitation across scan parameters, this would 
support the widespread use of a safe, noninvasive mode of mild to 
moderate lesion diagnosis and further AI-QCT generated atherosclerosis 
analyses on a grand scale. 

This study evaluated the sensitivity, specificity and accuracy of AI- 

QCT analysis compared to QCA for identifying moderate to high grade 
stenosis (≥50% stenosis) across a range of commonly encountered 
scanner, patient preparation, scan technique, intravenous contrast and 
patient parameters. 

2. Methods 

2.1. Subjects 

We retrospectively evaluated data from 303 patients including 
CCTA, FFR and QCA from the derivation arm of the Computed Tomo
gRaphic Evaluation of Atherosclerotic Determinants of Myocardial 
IsChEmia (CREDENCE) Trial.12,13 The CREDENCE trial (clinicaltrials. 
gov NCT02173275) was a prospective, multicenter diagnostic 
derivation-validation, controlled clinical trial recruiting patients from 
2014 to 2017.12,13 Sites and Investigators are listed in Appendix B. All 
enrolled CREDENCE subjects underwent CCTA, and QCA with FFR. The 
IRB of each site approved the study protocol and patients provided 
written informed consent. Inclusion and exclusion criteria and clinical 
sites are listed in the supplement (Appendix A). This study is an 
investigator-initiated study. Cleerly Inc. had no role in study design or 
performance. Cleerly Inc. performed the CCTA analyses for the study in 
a blinded manner and provided statistical services as determined and 
requested by the study investigators. 

2.2. CT imaging protocols 

CCTA was performed using a CT scanner with ≥64-detector rows. 
Sites were instructed to perform CCTA in accordance with guidelines 
from the Society of Cardiovascular Computed Tomography (SCCT).12,14 
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2.3. CCTA scanning parameters 

The software's sensitivity, specificity and accuracy for detecting 
coronary lesions ≥50% stenosis were tested across a multitude of 
screening parameters including scanner vendor (GE, Philips, Siemens, 
Toshiba), scanner model, single vs. dual source scanning, gating tech
nique (prospective vs. retrospective helical), bolus type (tracker vs. test 
bolus) and injection rate, contrast agent (Iodixanol [Visipaque] vs. all 
others), contrast volume and iodine concentration, radiation parameters 
including tube voltage and dose length product, mode of image gener
ation (filter back projection vs. iterative reconstruction), administration 
of beta blockers or nitroglycerine prior to scanning, and patient's 
average heart rate and BMI at time of scan. The AI-software's diagnostic 
performance measures were determined based on concordance with 
QCA measurements and subsequently compared across screening 
parameters. 

2.4. Quantitative coronary angiography 

Invasive coronary angiography was performed in agreement with 
clinical indications and imaging standards. A dedicated core laboratory 
performed blinded QCA in two orthogonal views on a per lesion basis of 

every lesion visually ≥30% diameter stenosis in vessels with a reference 
vessel diameter ≥2.0 mm. Lesions estimated to be less than 30% were 
recorded as no stenosis. 

2.5. Artificial intelligence-based segmentation and stenosis quantification 

The AI-based approach to CCTA interpretation in this study was 
performed using an FDA-cleared software service (Cleerly Lab, Cleerly, 
New York, NY) that performs automated analysis of CCTA using a series 
of validated convolutional neural network models (including VGG19 
network, 3D U-Net, and VGG Network Variant) for image quality 
assessment, coronary segmentation and labeling, lumen wall evaluation 
and vessel contour determination (Fig. 1) and plaque characterization.15 

Training and testing were performed on a proprietary database. A 
centerline algorithm was developed from 1,007,945 images, which 
incorporated 23,068 vessels from 3671 patients. Lumen and vessel wall 
algorithms were developed from 1,414,877 images, comprised of 8555 
vessels from 3676 patients. First, the AI-aided approach produces a 
centerline along each coronary artery for lumen and outer vessel wall 
contouring. This is applied to each phase of the examination. The two 
optimal series are then identified for further analysis. These top two 
phases are evaluated interactively on a per vessel basis, e.g., the right 

Fig. 1. A stepwise explanation of how AI-QCT calculates % diameter stenosis. AI-QCT segmentation and analysis of a CCTA from a 53 yr old male with chest pain and 
a positive nuclear stress test. A. Initially, all available series are evaluated by two machine learned algorithms to select the two series with optimal image quality for 
further analysis. B. A centerline algorithm is performed along each coronary artery. C. Once coronary artery segmentation is performed, an automated labeling (blue 
line and boxes) is done to classify arteries by their location as well the proximal, mid and distal portions within a single vessel. D and E. The lumen (purple) and outer 
vessel wall (yellow) contouring boundaries are determined. F. For each plaque, the cross-sectional slice that demonstrates the greatest absolute narrowing, % 
diameter stenosis severity and remodeling index is automatically calculated (73% proximal LAD stenosis with a RI of 1.7 depicted). G. A color overlay is performed 
based upon HU attenuation, in this case a predominantly noncalcified plaque is present with a low-density non-calcified core (red overlay). (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 

R.A. Jonas et al.                                                                                                                                                                                                                                



Clinical Imaging 84 (2022) 149–158

152

coronary artery (RCA) will be reconstructed from the phase which yields 
the highest RCA image quality, while the posterior descending artery 
(PDA) may come from the second phase if the PDA has a higher image 
quality on that phase. 

Once coronary artery segmentation is performed, segments are 
labeled in an automated fashion to classify the segment by vessel, and 
whether it is in the proximal, mid or distal portion of that vessel. For 
stenosis evaluation the software places markers at the beginning and end 
of each lesion and selects the mean coronary diameter at the closest 
normal proximal reference cross section as the reference diameter (Dref), 
and the mean diameter on the cross section demonstrating the greatest 
absolute stenosis (Ds). The % diameter stenosis is then automatically 
calculated using the following formula: % Diameter stenosis = (1 – (Ds/ 
Dref)) x 100. After the AI algorithm has finished all operations, as 
mandated by the FDA, a quality control cardiac CT trained technician 
reviews the results and makes manual adjustments if necessary. AI 
computational analysis time was 10.3 ± 2.7 min. 

2.6. Stenosis comparison QCA vs CCTA 

QCA stenosis was measured by core lab readers in each vessel ter
ritory. If QCA detected stenosis, AI-based stenosis evaluation was then 
conducted on those coronary segments using an SCCT 18-segment cor
onary tree model. When QCA evaluated a vessel territory and recorded 
0% stenosis, that value was applied to each segment in the territory. 
However, if QCA was present in only one segment of the territory, and 
identified stenoses, values were treated as missing in the other segments. 
Thus, the denominator for per-segment analysis equals the sum of all 
segments in all territories where QCA is 0% and all segments where QCA 
was measured and recorded as >0%. The maximum QCA and AI-based 
diameter stenosis were calculated across segments for each stenotic 
vessel. Where QCA was measured in just one segment in the vessel, that 
value was applied to the vessel. Per-vessel territory and per-patient re
sults were obtained in a similar manner. No cases were excluded due to 
impaired image quality on CCTA. If impaired image quality was present 
due to motion, beam hardening or other artifact, just the portion of the 
coronary artery with poor quality was excluded from the analysis. Any 
quantitative data from the excluded segment is not included in the final 
report. 

2.7. Statistical analysis 

Analysis was performed using SAS software version 9.4 (SAS Inc., 
Cary, NC). The diagnostic performance of AI-based diameter stenosis 
was evaluated by calculating the sensitivity, specificity and diagnostic 
accuracy for identifying ≥50% stenosis on a segment, vessel, vessel 
territory and patient basis using QCA as the reference standard. Area 
under the receiver operating characteristic curves was used to evaluate 
the diagnostic performance for ≥50% stenosis per QCA. The compara
bility of the continuous measures of diameter stenosis for AI and QCA 
were assessed via correlation using Pearson's correlation coefficients and 
calculation of the mean difference (bias). Sensitivity, specificity, and 
diagnostic performance for ≥50% diameter stenosis per vessel territory 
were compared across patient subgroups using logistic generalized 
estimating equation (GEE) regression models, to account for the po
tential correlation of multiple vessel territories per patient. 

AI diagnostic performance on a per patient basis was compared 
across categorical scan parameters using the Chi-square or Fisher's exact 
test. Ordered parameters were compared using the Jonckheere-Terpstra 
test. Diagnostic performance measures for vessel territories were 
compared across scan parameters using a logistic generalized estimating 
equation model to account for any within subject correlation of the three 
vessel territories measured per subject. 

3. Results 

3.1. Study population 

Baseline characteristics of the study population are listed in Table 1. 
A total of 303 of the 307 (98%) subjects comprising the derivation arm 
of the CREDENCE cohort12,13 were included; 4 patients were excluded 
due to corruption of their CT imaging data. Of the 303 patients evalu
ated, 175 (57.8%) had obstructive disease while 128 (42.2%) had non- 
obstructive disease. 

3.2. AI analysis success 

The AI algorithm was run successfully in all 303 patients (100%). 
There was a total of 171,195 mm of vessel length evaluated in the entire 
cohort, of this, a total of 1861 mm (1.09%) was excluded due to 
impaired image quality. The length of an exclusion averaged 14.1 (±
13.9) mm and were longer in the RCA (15.22 ± 6.72 mm) than the LAD 
(7.62 ± 4.12 mm) or the Circumflex (7.58 ± 8.13 mm) arteries. 

3.3. AI diagnostic measurements by scanning parameters at the patient 
level 

AI sensitivity, specificity, and accuracy measurements for detecting 
moderate stenosis at the patient level are listed for each of the tested 
scanning parameters in Table 2. The table reflects that at the patient 
level, there were no significant differences in AI diagnostic measure
ments based on scanner type (vendor, model, single vs. dual source), 
gating technique, bolus type, contrast features (agent, volume, iodine 
concentration), radiation features (tube voltage, dose length product), 
image generation (filtered back projection vs. iterative reconstruction), 

Table 1 
Patient characteristics.  

Patient parameters  

Age 64 ± 10 
Male 71% (218) 
BMI 26 ± 4 
Race  

Black 2% (7) 
Asian 71% (217) 
White 27% (82) 

Hypertension 64% (197) 
Hyperlipidemia 44% (136) 
Diabetes 31% (95) 
Current Smoker 17% (53) 
Prior Smoker 34% (103) 
# Diseased Vessel Territories (≥50% CCTA stenosis)  

0 32% (96) 
1 35% (105) 
2 21% (64) 
3 13% (38)   

Scan parameters  

Scanner vendor  
General Electric 18% (54) 
Philips 2% (5) 
Siemens 43% (132) 
Toshiba 38% (116) 

Tube Voltage  
70 kV 0.3% (1) 
80 kV 6% (17) 
100 kV 38% (116) 
120 kV 52% (160) 
Other 4% (11) 

Gating technique  
Prospective/sequential 31% (95) 
Retrospective helical 61% (188) 
Single beat acquisition 8% (23)  
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medication administration prior to imaging (beta blockade, nitroglyc
erine) or clinical (Figs. 2,3) patient features at time of scan (heart rate, 
BMI). While the p values for specificity of scanner vendor and scanner 
model were 0.13 and 0.2, respectively, these values are low suggesting a 
trend, but do not meet statistical significance (P < 0.05). 

Table 2 
AI Diagnostic performance by scanning parameter on the patient level.  

Subgroup Sensitivity Specificity Accuracy 

Scanner vendor    
GE 96% (24/25) 82.8% (24/ 

29) 
89.9% (48/ 
54) 

Philips 100% (3/3) 50% (1/2) 80.0% (4/5) 
Siemens 94.7% (71/75) 60% (33/55) 80.0% (104/ 

130) 
Toshiba 93.2% (69/74) 70% (28/40) 85.1% (97/ 

114)  
0.9227 0.1312 0.4194 

Scanner model    
Toshiba – Aquilion One 93.2% (69/74) 70.0% (28/ 

40) 
85.1% (97/ 
114) 

GE-VCT Light Speed 64 96.0% (24/25) 84.0% (21/ 
25) 

90.0% (45/ 
50) 

Siemens Dual Source 
Definition 

100% (25/25) 58.3% (14/ 
24) 

76.6% (39/ 
49) 

All others 92.5% (49/53) 62.2% (23/ 
37) 

80% (72/90)  

0.7029 0.2001 0.3787 
Single source vs dual source    

SS 93.8% (137/ 
146) 

71.3% (67/ 
94) 

85% (204/ 
240) 

DS 96.8% (30/31) 59.4% (19/ 
32) 

77.8% (49/ 
63)  

>0.999 0.2116 0.1693 
Average heart rate during CT    
≤70 bpm 94.6% (139/ 

147) 
69.0% (69/ 
100) 

84.2% (208/ 
247) 

>70 bpm 95.2% (20/21) 68.8% (11/ 
16) 

83.8% (31/ 
37)  

>0.999 >0.999 0.9471 
≤75 bpm 94.9% (149/ 

157) 
69.4% (75/ 
108) 

84.5% (224/ 
265) 

>75 bpm 90.9% (10/11) 62.5% (5/8) 79.0% (15/ 
19)  

0.4648 0.7020 0.5165 
≤70 94.6% (139/ 

147) 
69.0% (69/ 
100) 

84.2% (208/ 
247) 

71–80 100% (16/16) 69.2% (9/13) 86.2% (25/ 
29) 

>80 80.0% (4/5) 66.7% (2/3) 75.0% (6/8)  
0.9755 0.9801 0.9123 

Beta blocker IV    
Yes 94.0% (141/ 

150) 
67.3% (76/ 
113) 

82.5% (217/ 
263) 

No 96.3% (26/27) 76.9% (10/ 
13) 

90.0% (36/ 
40)  

>0.999 0.4783 0.2344 
Nitroglycerin dose    

None 95.9% (47/49) 65.9% (29/ 
44) 

81.7% (76/ 
93) 

Low (0.1–0.4 mg) 95.2% (40/42) 65.7% (23/ 
35) 

81.8% (63/ 
77) 

High (>0.4 mg) 93.0% (80/86) 72.3% (34/ 
47) 

85.7% (114/ 
133)  

0.4569 0.5054 0.3941 
None 95.9% (47/49) 65.9% (29/ 

44) 
81.7% (76/ 
93) 

Some 93.8% (120/ 
128) 

69.5% (57/ 
82) 

84.3% (177/ 
210)  

0.7287 0.6787 0.5790 
Bolus tracker or test bolus    

BT 95.3% (101/ 
106) 

67.2% (43/ 
64) 

84.7% 
(144,185) 

TB 93.0% (66/71) 70.5% (43/ 
61) 

82.6% (109/ 
132)  

0.5249 0.6902 0.6185 
Gating technique    

Prospective/sequential/ 
Single Beat 

91.9% (68/74) 72.1% (31/ 
43) 

84.6% (99/ 
117) 

Retrospective helical 96.1% (99/ 
103) 

67.1% (55/ 
82) 

83.2% (154/ 
185)  

0.3240 0.6853 0.7527  

Table 2 (continued ) 

Subgroup Sensitivity Specificity Accuracy 

Contrast agent    
Visipaque 100% (5/5) 77.8% (7/9) 85.7% (12/ 

14) 
All others 94.2% (162/ 

172) 
67.5% (79/ 
117) 

83.4% (241/ 
289)  

>0.999 0.7179 >0.999 
Concentration mg iodine per 

mL    
Q1: <350 100% (5/5) 80.0% (8/10) 86.7% (13/ 

15) 
Q2: 350–369 94.1% (32/34) 70.3% (26/ 

37) 
81.7% (58/ 
71) 

Q3: 370–400 90.8% (59/65) 65.2% (30/ 
46) 

80.2% (89/ 
111) 

Q4: >400 97.3% (71/73) 68.8% (22/ 
32) 

88.6% 
(93.105)  

0.3731 0.5912 0.2411 
Contrast injection rate (cc/ 

sec)    
<5 89.5% (34/38) 66.7% (20/ 

30) 
79.4% (54/ 
68) 

5 95.3% (102/ 
107) 

72.7% (56/ 
77) 

85.9% (158/ 
184) 

>5 96.9% (31/32) 52.9% (9/17) 81.6% (40/ 
49)  

0.1659 0.5554 0.6059 
Contrast volume- mg/kg body 

weight    
Q1: <333.4 89.5% (34/38) 71.1% (27/ 

38) 
80.3% (61/ 
76) 

Q2: 333.4–408.2 93.3% (42/45) 63.3% (19/ 
30) 

81.3% (61/ 
75) 

Q3: 408.3–504.5 98.0% (49/50) 68.0% (17/ 
25) 

88.0% (66/ 
75) 

Q4: >504.5 95.5% (42/44) 71.9% (23/ 
32) 

85.5% (65/ 
76)  

0.1688 0.9100 0.2378 
Tube voltage    
≤80 kV 100% (8/8) 100% (10/ 

10) 
100% (18/18) 

100 kV 91.8% (67/73) 60.0% (24/ 
40) 

80.5% (91/ 
113) 

120 kV 95.4% (83/87) 70.8% (51/ 
72) 

84.3% (134/ 
159)  

0.5689 0.8529 0.8520 
Dose length product 

(mGy*cm)    
Q1: <200.5 91.3% (42/46) 64.3% (18/ 

28) 
81.1% (60/ 
74) 

Q2: 200.5–365 95.2% (40/42) 71.9% (23/ 
32) 

85.1% (63/ 
74) 

Q3: 366–600.2 98.0% (42/43) 71.0% (22/ 
31) 

86.5% (64/ 
74) 

Q4: >600.2 93.2% (41/44) 68.8% (22/ 
32) 

82.9% (63/ 
76)  

0.5930 0.7709 0.7296 
BMI    
<30 94.4% (151/ 

160) 
69.6% (71/ 
102) 

84.7% (222/ 
262) 

≥30 94.1% (16/17) 62.5% (15/ 
24) 

75.6% (31/ 
41)  

>0.999 0.5009 0.1434 
Iterative reconstruction    

FBP 96.0% (24/25) 84.0% (21/ 
25) 

90.0% (45/ 
50) 

IR 94.1% (143/ 
152) 

64.4% (65/ 
101) 

82.2% (208/ 
253) 

Scanner vendor >0.999 0.0589 0.1753  

R.A. Jonas et al.                                                                                                                                                                                                                                



Clinical Imaging 84 (2022) 149–158

154

Fig. 2. Comparison of performance in two scans of differing image quality secondary to BMI differences. CCTA of a 53-year-old woman with a BMI of 34 dem
onstrates increased noise and low signal-to-noise ratio. Curved multiplanar reformat (A) depicts scattered nonobstructive plaques. AI-QCT analysis (B) depicts 
scattered mixed plaques and a 38% stenosis in the mid vessel; QCA depicted a 44% stenosis in this location. CCTA on a 62-year-old male with BMI 25 has significantly 
improved overall IQ and SNR (C). A 76% stenosis was depicted on AI-QCT, which corresponded to a 70% stenosis determined on QCA. 

A B C D E F 

Fig. 3. Image quality secondary to iodine concentration differences with conventional coronary angiography correlation. CCTA on a 57 year old man using iodine 
with a concentration of 400 mg iodine per mL demonstrates high intra-arterial attenuation (480 HU) (A). AI-QCT (B) depicts a 50% stenosis in the mid LAD (arrow) 
which as determined to be 56% on quantitative coronary angiography (QCA) (arrow, C). CCTA on a 65 year old woman using iodine with a concentration of 320 mg 
iodine per mL demonstrates decreased intra-arterial attenuation (210 HU) (D). A 46% stenosis was depicted on AI QCT (arrow S), which corresponded to a 45% 
stenosis on QCA (arrow, E). 
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3.4. AI diagnostic measurements by scanning parameters at the level of 
the vessel territory 

AI sensitivity, specificity, and accuracy measurements for detecting 
moderate stenosis at the level of the vessel territory, and per patient, are 
listed for each of the tested scanning parameters in Table 3. Data indi
cate that there were significant differences in sensitivity for detecting 
50% stenosis based on contrast type (iso-osmolar 70.0% vs non iso
osmolar 92.1% p = 0.0345) and iodine concentration (<350 mg/ml 
70.0%, 350-369 mg/ml 90.0%, 370–400 mg/ml 90.0%, >400 mg/ml 
95.2%; p = 0.0287). There was no significant difference in the specificity 
or accuracy which remained comparable across both iodine concentra
tions and contrast types. There were no significant differences observed 
in diagnostic performance measurements for any other scanning 
parameters. 

4. Discussion 

This study evaluated the effect of CCTA scanning parameters on the 
performance of an FDA-cleared AI-enabled software capable of identi
fying and quantifying coronary stenoses and found that on a per-patient 
basis the software's sensitivity, specificity and accuracy for identifying 
lesions with ≥50% stenosis were unaffected by scanner type, gating 
technique, contrast features, radiation features, mode of image recon
struction or patients' clinical features at time of scan. 

The natural variability amongst readers, the sheer volume of data as 
well as the time expenditure required for each read provide a foundation 
for the introduction of AI guided CCTA into the field of cardiac imag
ing.10 To test the software's performance for stenosis identification and 
for plaque characterization, the CLARIFY trials compared the AI soft
ware against three gold standards, expert readers, QCA and FFR and 
showed AI performed strongly for stenosis identification and better than 
expert readers for plaque morphology.10,11 This raises the question of 
whether accuracy and performance favors AI in addition to improving 
read expediency and data processing. Further studies are currently un
derway to evaluate this AI software's capability for plaque quantification 
and characterization against intravascular ultrasound and optical 
coherence tomography. However, based on current data, there is a 
strong basis for the use of AI for the identification or exclusion of 
moderate to severe stenoses given high performance against QCA, ex
perts, and FFR. 

As AI becomes more widely accepted in CCTA analysis, it becomes 
necessary to test its performance across a variety of scanning parameters 
as widespread use will require it to perform well across all parameter 
variants. But additionally, the functional and anatomical variability that 
necessitates adjustments in scanning parameters further reinforces the 
importance of high AI performance across a multitude of different set
tings. To date, AI has been used to minimize motion artifact in cir
cumstances where patients are nonresponsive to beta blockers,16 and to 
optimize phase selection when patients have abnormal heart 
rhythms.17–19 While these programs paved the way for AI use for opti
mization of the imaging process, the AI software discussed in this study 
attacks the problem of interpretation itself, not just image optimization. 
Uniquely, this software was designed to automatically identify and 
calculate stenoses based on a series of algorithms that segment the 
coronary tree, identify a midline around which perpendicular slices are 
compared to identify the beginning, end and maximum point of stenosis 
in a lesion. The program subsequently employs deep learning to enhance 
its performance as it is exposed to more vessels. This is the first study to 
analyze the application of this AI program for stenosis identification 
across scanning parameters and supports that the software's perfor
mance is on par with the performance of QCA, an invasive gold standard 
for stenosis identification.11 

CCTA images are generated using a variety of different scanning 
parameter combinations purposefully chosen by the CT technologist to 
optimize image quality while minimizing radiation exposure. While 

Table 3 
AI diagnostic performance by scanning parameter at the level of the vessel 
territory.  

Subgroup Sensitivity Specificity Accuracy 

Scanner vendor    
GE 86.1% (37/43) 87.4% (104/ 

119) 
87.0% (141/ 
162) 

Philips 100% (6/6) 77.8% (7/9) 86.7% (13/ 
15) 

Siemens 92.2% (95/ 
103) 

84.0% (241/ 
287) 

86.2% (336/ 
390) 

Toshiba 92.0% (103/ 
112) 

81.3% (187/ 
230) 

84.8% (290/ 
342)  

0.6239 0.6473 0.8013 
Scanner model    

Toshiba – Aquilion One 92.0% (103/ 
112) 

81.3% (187/ 
230) 

84.8% (290/ 
342) 

GE-VCT Light Speed 64 86.1% (37/43) 86.9% (93/ 
107) 

86.7% (130/ 
150) 

Siemens Dual Source 
Definition 

96.9% (31/32) 83.5% (96/ 
115) 

86.4% (127/ 
147) 

All others 92.5% (49/53) 87.5% (98/ 
112) 

89.1% (147/ 
165)  

0.3414 0.4776 0.6559 
Single source vs dual source    

SS 91.0% (202/ 
222) 

83.5% (416/ 
498) 

85.8% (618/ 
720) 

DS 92.9% (39/42) 83.7% (123/ 
147) 

85.7% (162/ 
189)  

0.6779 0.8815 0.9693 
Average heart rate during CT    
≤70 bpm 90.9% (200/ 

220) 
83.7% (436/ 
521) 

85.8% (636/ 
741) 

>70 bpm 96.9% (31/32) 82.3% (65/ 
79) 

86.4% (96/ 
111)  

0.3036 0.8878 0.8863 
≤75 bpm 92.9% (13/14) 83.3% (464/ 

557) 
85.8% (682/ 
795) 

>75 bpm 91.6% (218/ 
238) 

86.1% (37/ 
43) 

87.7% (50/ 
57)  

0.8865 0.6119 0.7284 
≤70 90.9% (200/ 

220) 
83.7% (436/ 
521) 

85.8% (636/ 
741) 

71–80 100% (25/25) 80.7% (50/ 
62) 

86.2% (75/ 
87) 

>80 85.7% (6/7) 88.2% (15/ 
17) 

87.5% (21/ 
24)  

0.6420 0.9718 0.8392 
Beta blocker IV    

Yes 91.3% (42/46) 81.1% (60/ 
74) 

85.0% (102/ 
120) 

No 91.3% (199/ 
218) 

83.9% (479/ 
571) 

85.9% (678/ 
789)  

0.9910 0.5413 0.8010 
Nitroglycerin dose    

None 91.9% (57/62) 83.4% (181/ 
217) 

85.3% (238/ 
279) 

Low (0.1–0.4 mg) 89.7% (61/68) 80.4% (131/ 
163) 

83.1% (192/ 
231) 

High (>0.4 mg) 91.8% (123/ 
134) 

85.7% (227/ 
265) 

87.7% (350/ 
399)  

0.9915 0.4926 0.3450 
None 91.9% (57/62) 83.4% (181/ 

217) 
85.3% (238/ 
279) 

Some 91.1% (184/ 
202) 

83.6% (358/ 
428) 

86.0% (542/ 
630)  

0.7914 0.9938 0.7855 
Bolus tracker or test bolus    

BT 92.4% (146/ 
158) 

81.5% (287/ 
352) 

84.9% (433/ 
510) 

TB 89.6% (95/ 
106) 

86.2% (250/ 
290) 

87.1% (345/ 
396)  

0.4569 0.1492 0.3681 
Gating technique    

Prospective/sequential/ 
single beat 

87.9% (102/ 
116) 

83.0% (195/ 
235) 

84.6% (297/ 
351) 

Retrospective helical 

(continued on next page) 
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various societal guidelines recommend specific techniques, investigators 
in the PROTECT VI (Prospective Multicenter Registry On RadiaTion 
Dose Estimates Of Cardiac CT AngIOgraphy IN Daily Practice in 2017) 
found that the protocols varied widely and that recommended tech
niques were not routinely adhered to.20 Likely this was a function of the 
added necessity and complexity of adjusting parameters based on the 
clinical characteristics of patients at the time of scan.21 In routinely 
performed clinical CCTA exams, selected scanning protocol parameters 
are selected based on patient requirements to produce diagnostically 
readable, though sometimes varied appearing images. 

For CCTA, the gating technique has one of the greatest impacts on 
image appearance, diagnostic quality and radiation dose. Prospective 
gating is commonly used with lower heart rates. This technique mini
mizes radiation exposure by using a “step-and-shoot” approach of 
limited exposure during a small part of the cardiac cycle, usually dias
tole. The alternative is to continuously scan throughout the cardiac 
cycle, known as known as retrospective helical gating.22 Prospective 
gating has been shown to have higher image quality scores than retro
spective gating,23 however, these results, and others from similar studies 
were dependent on patient specific variables including low and consis
tent heart rates.21,24–26 Despite the potential for significant image 
quality differences between the techniques, we did not find that the 
gating technique affected diagnostic performance of the algorithm. 

The image reconstruction techniques are known to affect image 
quality. Filtered back projection (FBP) has been the standard recon
struction algorithm since the invention of CT 50 years ago but has been 
known to produce images with greater noise than more recent tech
niques.27 Iterative reconstruction (IR) is a newer and more computa
tionally intense method which can typically produce images of better 
quality at lower radiation dose than FBP.28,29 However, the additional 
filters used in IR scan generation can sharpen the appearance of a 
structure's edges which may result in loss of fine detail.28 Consistently, at 
low radiation doses the Agatston score calculated from a calcium scoring 
CT based on IR generated images could vary by up to 15% from those 
calculated based on images using FBP.30 As with gating techniques, we 
did not find any performance differences for the algorithm based on the 
reconstruction technique. 

While our overall data show that there are no significant differences 
in AI performance compared to QCA across the scan parameters tested, 
there are a few caveats regarding iodine concentration, scanner model 
and scanner vendor that require further discussion. With regard to dif
ferences in iodine concentrations, it is important to recognize that the 
contrast type, its concentration of iodine, and injection rates all 
contribute to lumen enhancement. While high iodine concentrations 
increase vessel attenuation, they also increase patient heart rate, intro
ducing potential motion artifacts into the image31 or obscure the 
distinction between calcified and non-calcified plaque.32,33 Iso-osmolar 
contrasts are consequently preferable but require higher flow rates at 
injection to achieve similar levels of vessel attenuation as dyes con
taining higher iodine concentrations.31,34 While our findings indicate 
that AI was less sensitive to stenosis on a per vessel basis with Iodixanol 
(Visipaque) use, it is notable that the patients who received this dye 
were injected at a non-standard flow rate of 2–3 mL/s, well below the 
standard practice guidelines of 4–6 mL/s, likely resulting in low vessel 
attenuation. Additionally, the patient level specificity across scanner 
model and vendor were equivocal, likely due to low power of our cohort. 
However, overall, these data strongly support the use of AI guided CCTA 
based on a strong performance against a QCA gold standard. 

This study has limitations. The present study was a post-hoc analysis 
of the CREDENCE trial and, while it is unexpected that significant bias 
would be introduced in a retrospective evaluation leveraging blinded 
core laboratory readers, it nevertheless emphasizes the absence of a 
prospective clinical trial that should be performed in the future. Further, 
this study evaluated the AI-based evaluation for measures of stenosis 
severity, rather than for plaque volume, composition, vascular remod
eling and other important CAD metrics. Also, ground truth in this 

Table 3 (continued ) 

Subgroup Sensitivity Specificity Accuracy 

93.9% (139/ 
148) 

84.0% (342/ 
407) 

86.7% (481/ 
555)  

0.0938 0.7001 0.4257 
Contrast agent    

Visipaque 70.0% (7/10) 87.5% (28/ 
32) 

83.3% (35/ 
42) 

All others 92.1% (234/ 
254) 

83.4% (511/ 
613) 

85.9% (745/ 
867)  

0.0345 0.5624 0.6777 
Concentration mg iodine per 

mL    
Q1: <350 70% (7/10) 88.6% (31/ 

35) 
84.4% (38/ 
45) 

Q2: 350–369 90% (45/50) 85.3% (139/ 
163) 

86.4% (184/ 
213) 

Q3: 370–400 90.0% (90/ 
100) 

79.8% (186/ 
233) 

82.9% (276/ 
333) 

Q4: >400 95.2% (99/ 
104) 

85.8% (181/ 
211) 

88.9% (280/ 
315)  

0.0287 0.9920 0.3223 
Contrast injection rate (cc/ 

sec)    
<5 88.7% (55/62) 82.4% (117/ 

142) 
84.3% (172/ 
204) 

5 91.7% (143/ 
156) 

85.9% (340/ 
396) 

87.5% (483/ 
552) 

>5 93.5% (43/46) 76.2% (77/ 
101) 

81.6% (120/ 
147)  

0.3456 0.4741 0.6803 
Contrast volume- mg/kg body 

weight    
Q1: <333.4 87.5% (49/56) 84.3% (145/ 

172) 
85.1% (194/ 
228) 

Q2: 333.4–408.2 90.8% (59/65) 80.0% (128/ 
160) 

83.1% (187/ 
225) 

Q3: 408.3–504.5 93.3% (70/75) 84.7% (127/ 
150) 

87.6% (197/ 
225) 

Q4: >504.5 92.6% (63/68) 85.6% (137/ 
160) 

87.7% (200/ 
228)  

0.2671 0.5518 0.2633 
Tube voltage    
≤80 kV 91.7% (11/12) 90.5% (38/ 

42) 
90.7% (49/ 
54) 

100 kV 88.6% (101/ 
114) 

80.9% (182/ 
225) 

83.5% (283/ 
339) 

120 kV 93.6% (117/ 
125) 

84.7% (298/ 
352) 

87.0% (415/ 
477)  

0.2257 0.7881 0.6652 
Dose length product 

(mGy*cm)    
Q1: <200.5 87.8% (42/46) 84.5% (125/ 

148) 
85.6% (190/ 
222) 

Q2: 200.5–365 91.8% (40/42) 88.2% (142/ 
161) 

89.2% (198/ 
222) 

Q3: 366–600.2 95.1% (42/43) 77.0% (124/ 
161) 

82.0% (182/ 
222) 

Q4: >600.2 90.9% (41/44) 84.6% (137/ 
162) 

86.4% (197/ 
228)  

0.4324 0.3295 0.6740 
BMI    
<30 91.6% (219/ 

239) 
83.9% (459/ 
547) 

86.3% (678/ 
786) 

≥30 88.0% (22/25) 81.6% (80/ 
98) 

82.9% (102/ 
123)  

0.6232 0.5686 0.3194 
Iterative reconstruction    

FBP 86.1% (37/43) 86.9% (93/ 
107) 

86.7% (130/ 
150) 

IR 92.3% (204/ 
221) 

82.9% (446/ 
538) 

85.6% (650/ 
759)  

0.2073 0.4985 0.7591  
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present study was core-lab interpreted QCA for any stenosis >30%, in 
keeping with prior multicenter studies employing QCA. Because of this, 
we are not able report the diagnostic performance of the AI-based 
evaluation for the presence of stenosis lower than this range. Stenoses 
in this range have been historically considered inconsequential by QCA, 
although newer data suggest a prognostic significance to these “mild” 
lesions that may nevertheless possess high-risk atherosclerotic 
characteristics. 

5. Conclusion 

AI -QCT can identify moderate to high grade stenoses with high 
sensitivity, specificity and accuracy compared to QCA, the invasive gold 
standard. Furthermore, the diagnostic performance measurements of AI 
are unaffected by CCTA scanner, scan technique, radiation dose, patient 
preparation, contrast, and patient parameters. 
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Appendix A. Inclusion and exclusion criteria 

Inclusion criteria 

1. Age >18 years 
2. Scheduled to undergo clinically indicated non-emergent invasive 

coronary angiography 

Exclusion criteria 

1. Known CAD before index testing (myocardial infarction, percu
taneous coronary intervention, or coronary artery bypass graft surgery) 

2. Hemodynamic instability 
3. Inability to provide written informed consent 
4. Concomitant participation in another clinical trial in which sub

ject is subject to investigational drug or device 
5. Pregnant state 
6. Contraindication to iodinated contrast due to prior near-fatal 

anaphylactic reaction (laryngospasm, bronchospasm, cardiorespiratory 
collapse, or equivalent) 

7. Serum creatinine ≥1.7 mg/dl or Glomerular Filtration Rate <30 
ml/min 

8. Baseline irregular heart rhythm (e.g., atrial fibrillation, etc.) 
9. Heart rate ≥100 beats per minute 
10. Systolic blood pressure ≤90 mmHg 
11. Contraindications to β blockers or nitroglycerin or adenosine 
12. BMI >40 kg/m2 

Appendix B. Participating sites and enrolling investigators 

Investigator: Erick Avelar, MD 
Oconee Heart and Vascular Center at St Mary's Hospital 
Athens, GA, USA 
Investigator: Hyuk-Jae Chang, MD PhD3 
Severance Cardiovascular Hospital and Severance Biomedical Sci

ence Institute, Yonsei University College of Medicine, Yonsei University 
Health System Seoul, South Korea 

Investigator: Jung Hyun Choi, MD PhD 
Pusan National University Hospital Busan, South Korea 
Investigator: Jason Cole, MD 
Mobile Cardiology Associates Mobile, Alabama, USA 
Investigator: Joon-Hyung Doh, MD 
Inje University Ilsan Paik Hospital Goyang, South Korea 
Investigator: Andrejs Erglis, MD 

Pauls Stradins Clinical University Hospital Riga, Latvia 
Investigator: Alessia Gimelli, MD, Dante Chiappino, MD 
Fondazione Toscana Gabriele Monasterio Pisa, Italy 
Investigator: Ae-Young Her, MD 
Kang Won National University Hospital Chuncheon, South Korea 
Investigator: James J. Jang, MD 
Kaiser Permanente Hospital San Jose, CA, USA 
Investigator: Muhammad Akram Khan, MD, Venkaa Chilakapati, 

MD, Ahmed Ladak, MD, Irfan Ullah, MD 
Cardiac Center of Texas McKinney, Texas, USA 
Investigators: Paul Knaapen, MD, PhD 
Amsterdam University Medical Center VU University Medical Center 

Amsterdam, the Netherlands 
Investigator: Bon-Kwon Koo, MD PhD 
Seoul National University Hospital Seoul, South Korea 
Investigator: Bin Lu, MD 
State Key Laboratory of Cardiovascular Disease, Fuwai Hospital 

Beijing, China 
Investigator: Atizazul Mansoor, MD 
Pinnacle Health Cardiovascular Institute Harrisburg, PA, USA 
Investigator: Faisal Nabi, MD 
Houston Methodist Hospital Houston, Texas, USA 
Investigators: Ryo Nakazato, MD, Hiroyumi Niinuma, MD 
St. Luke's International Hospital Tokyo, Japan 
Investigator: Chang-Wook Nam, MD PhD 
Keimyung University Dongsan Hospital Daegu, South Korea 
Investigator: Hyung-Bok Park, MD 
International St. Mary's Hospital Catholic Kwandong University 

College of Medicine Incheon, South Korea 
Investigator: Michael Ridner, MD 
Heart Center Research, LLC Huntsville, Alabama, USA 
Investigator: Chris Rowan, MD 
Renown Heart and Vascular Institute Reno, NV, USA 
Investigator: U. Joseph Schoepf, MD, Daniel Sternberg, MD 
Medical University of South Carolina Charleston, SC, USA 
Investigator: Sang-Hoon Shin, MD 
National Health Insurance Service Ilsan Hospital Goyang, South 

Korea 
Investigator: Randall C. Thompson, MD 
St. Luke's Mid America Heart Institute Kansas City, MO, USA 
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