
i 
 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

An Artificial Intelligence Method to Describe the Onset 
and Transition from Stochastic to Coordinated Neural 
Activity in Danionella Translucida Embryo 

Inês Filipa Ferreira Diogo 

Dissertation presented as partial requirement for obtaining 
the Master’s degree in Data Science and Advanced Analytics 

 

 

 

Mestrado em Data Science and Advanced Analytics 
Master Program in Data Science and Advanced Analytics 



i 
 

NOVA Information Management School 

Instituto Superior de Estatística e Gestão de Informação 

Universidade Nova de Lisboa 

 

AN ARTIFICIAL INTELLIGENCE METHOD TO DESCRIBE THE ONSET 

AND TRANSITION FROM STOCHASTIC TO COORDINATED 

NEURAL ACTIVITY IN DANIONELLA TRANSLUCIDA EMBRYO 

by 

Inês Filipa Ferreira Diogo 

 

 

 

 

Dissertation presented as partial requirement for obtaining the Master’s degree in               
Data Science and Advanced Analytics 

 

 

 

Advisor: Mauro Castelli 

Co-Advisor: Davide Accardi 

 

 

 

 

 November 2021  



ii 
 

ACKNOWLEDGEMENTS 

I would like to thank my advisors, Professor Mauro Castelli and Dr. Davide Accardi, and also Dr. 
Michael Orger for envisioning the project and giving me the opportunity to carry on with it. 
Professor Mauro Castelli for always being available to give me advice and guidance. Dr. Davide 
Accardi for the guidance and for allowing me to be part of the ABBE Platform (Advanced 
BioImaging & BioOptics Experimental Platform) of the Champalimaud Foundation throughout 
this project. Michael Orger for the invaluable support related to the biological field. Thank you 
very much. 

I would like to thank Leonor Morgado not only because she was co-responsible to carry on this 
project, being focused on sample handling and image acquisition, but also for showing me and 
explaining the entire process and for all the help and advice. Thank you. 

I would also like to thank Anna Pezzarossa. Thank you very much for all your help and advice, 
for both the image analysis and the writing process, and also for the encouragements. 

To my parents for always being by my side, always believing in me, and always wanting the 
best for me. To Flapas for always making me smile and being part of my life. Thank you so 
much for all the love and support. 

To my friends for being there for me and all the encouragement, especially one of my best 
friends, Inês Ribeiro. Thank you for everything. 

To my uncles and cousins who were also there for me. Thank you. 

Finally, a special thank you to everyone who had a massive positive impact on my life during 
this phase, even those who unknowingly helped me a lot. 

 

 

 

 

 

 



iii 
 

ABSTRACT 

In recent years, deep learning has become increasingly successful applied to tackle different 
questions in several fields. In bioimage analysis, it has been used to extract meaningful 
information from microscopy images. Here, we applied DL to light-sheet microscopy data to 
understand the early development of the nervous system. It is currently known that the brain 
is responsible for most of our voluntary and involuntary actions, and that it regulates 
physiological processes throughout the body. However, technical barriers have left us with 
many open questions regarding the development and function of neural circuits. Imaging has 
proven a powerful technique to answer these questions, although difficulties in segmenting 
and tracking single neurons have slowed down progress. 

Danionella translucida has recently been introduced as a powerful model organism for 
neuroscience studies due to having the smallest known vertebrate brain and not developing a 
complete skull as an adult, thus making it easily accessible for imaging studies. Yet, the 
emergence of neural activity and subsequent assembly of neural circuits in the early embryo 
development has not been characterized. 

This dissertation intends to provide a first description of the entire process at cellular 
resolution by using advanced microscopy techniques and an artificial intelligence method to 
segment and analyze the data. We use light-sheet fluorescence microscopy to image the onset 
and coordination of Danionella translucida spinal cord neural activity with high temporal 
resolution and for long periods of time. Moreover, we analyze the data with a deep learning-
based algorithm to detect, segment and track in space and time the signal of each neuron.  

We focused our analysis on the intensity peaks of the signal, in other words, the moment the 
neurons were firing, and we found more activity in the posterior region of the embryo, 
suggesting a correspondence to the extension of the tail. 

This work demonstrates that the combination of methods used was able to image and analyze 
the data successfully. It opens the possibilities for a more in-depth study of the Danionella 
translucida neural network, and for studying signals from crowded images with single-cell 
resolution that otherwise would be too complex to be analyzed. 

 

 

KEYWORDS 

Deep Learning; Cell Detection; Cell Segmentation; Light-sheet Fluorescence Microscopy; 
Danionella Translucida; Neural Activity 

  



iv 
 

RESUMO 

Nos últimos anos, a aprendizagem profunda tem se tornado cada vez mais bem-sucedida 
quando aplicada para lidar com diferentes questões em diversos campos. Na análise de 
bioimagem, tem sido usada para extrair informações significativas de imagens microscópicas, 
onde aplicamos aprendizagem profunda a dados de microscopia de light-sheet para 
compreender o desenvolvimento inicial do sistema nervoso. Atualmente, sabe-se que o 
cérebro é responsável pela maioria de nossas ações voluntárias e involuntárias e que regula os 
processos fisiológicos em todo o corpo. No entanto, as barreiras técnicas deixaram muitas 
questões em aberto em relação ao desenvolvimento e função dos circuitos neuronais. 
Imagiologia provou ser uma técnica poderosa para responder a essas perguntas, embora as 
dificuldades em segmentar e rastrear neurônios individuais tenham retardado o progresso. 

Danionella translucida foi recentemente introduzida como um poderoso organismo modelo 
para estudos neurocientíficos devido a ter o menor cérebro de vertebrado conhecido e não 
desenvolver um crânio completo na idade adulta, tornando-a facilmente acessível para 
estudos de imagem. No entanto, o surgimento da atividade neural e subsequente montagem 
de circuitos neurais no desenvolvimento inicial do embrião não foi ainda caracterizado. 

Esta dissertação pretende fornecer uma descrição inicial de todo o processo de resolução 
celular, utilizando técnicas avançadas de microscopia e um método de inteligência artificial 
para segmentar e analisar os dados. Usamos microscopia de fluorescência de light-sheet para 
obter imagens do início e da coordenação da atividade neuronal da medula espinhal da 
Danionella translucida com alta resolução temporal e por longos períodos de tempo. Além 
disso, analisamos os dados com um algoritmo baseado em aprendizagem profunda para 
detetar, segmentar e rastrear no espaço e no tempo o sinal de cada neurônio. 

Focamos nossa análise nos picos de intensidade do sinal, ou seja, no momento em que os 
neurónios estavam a disparar, e encontramos mais atividade na região inferior do embrião, 
sugerindo uma correspondência com a extensão da cauda. 

Este trabalho demonstra que a combinação de métodos utilizados foi capaz de gerar imagens e 
analisar os dados com sucesso. Abre as possibilidades para um estudo mais aprofundado da 
rede neuronal da Danionella translucida, e para estudar sinais de imagens aglomeradas com 
resolução de célula única que, de outra forma, seriam muito complexas para serem analisadas. 

 
 
 

PALAVRAS-CHAVES 

Aprendizagem profunda; Deteção de células; Segmentação de células; Microscopia de 
fluorescência de light-sheet; Danionella Translucida; Atividade Neuronal 

 



v 
 

 
INDEX 

1. Introduction .................................................................................................................. 1 

1.1. Research Question And Dissertation Objective .................................................... 1 

1.2. Danionella Translucida .......................................................................................... 2 

1.3. Light-Sheet Fluorescence Microscopy ................................................................... 2 

2. Theoretical Background ................................................................................................ 4 

2.1. Machine Learning .................................................................................................. 4 

2.1.1. Supervised Learning ....................................................................................... 4 

2.1.2. Unsupervised Learning ................................................................................... 4 

2.1.3. Semi-supervised Learning .............................................................................. 5 

2.1.4. Reinforcement Learning ................................................................................. 5 

2.2. Artificial Neural Network ....................................................................................... 5 

2.2.1. Regularization ................................................................................................. 6 

2.3. Deep Learning ........................................................................................................ 6 

2.3.1. Stochastic Gradient Descent .......................................................................... 6 

2.3.2. Momentum ..................................................................................................... 7 

2.4. Convolutional Neural Network .............................................................................. 8 

2.4.1. Architecture of a CNN .................................................................................... 8 

2.4.1.1. Input Layer ........................................................................................................... 8 

2.4.1.2. Convolutional Layer ............................................................................................. 9 

2.4.1.3. Pooling Layer ....................................................................................................... 9 

2.4.1.4. Fully Connected Layer........................................................................................ 10 

2.4.2. Transfer Learning .......................................................................................... 10 

2.5. R-CNN .................................................................................................................. 10 

2.6. Fast R-CNN ........................................................................................................... 11 

2.7. Faster R-CNN ....................................................................................................... 12 

2.7.1. Intersection over Union ................................................................................ 13 

2.7.2. Non-Maximum Suppression ......................................................................... 14 

2.7.3. Balanced Samples ......................................................................................... 14 

2.7.4. RoI Pooling Layer and Final Layer ................................................................. 15 

2.8. Mask R-CNN ......................................................................................................... 15 

2.8.1. Instance Segmentation ................................................................................. 16 

2.8.2. Mask Representation ................................................................................... 16 



vi 
 

2.8.3. RoI Align ........................................................................................................ 16 

2.8.4. Loss Function ................................................................................................ 17 

2.9. U-Net ................................................................................................................... 18 

3. Literature review ........................................................................................................ 20 

3.1. StarDist ................................................................................................................ 20 

3.2. TrackMate ............................................................................................................ 22 

3.3. StarDist and TrackMate ....................................................................................... 22 

3.4. Other applications ............................................................................................... 22 

4. Data............................................................................................................................. 24 

4.1. Danionella Translucida Care ................................................................................ 24 

4.2. Data Acquisition .................................................................................................. 24 

4.2.1. Sample Preparation ...................................................................................... 24 

4.2.2. Light-sheet Imaging ...................................................................................... 25 

4.3. Data Description .................................................................................................. 27 

5. Methodology .............................................................................................................. 30 

5.1. Tools .................................................................................................................... 30 

5.2. Segmentation using StarDist ............................................................................... 30 

5.2.1. Validation ..................................................................................................... 31 

5.2.1.1. Comparison between StarDist and human segmentation ................................ 31 

5.2.1.2. Comparison between StarDist and human segmentation performed on 
synthetic data .................................................................................................................. 34 

5.2.1.3. Conclusion on the validation ............................................................................. 35 

5.3. Intensities ............................................................................................................ 35 

5.4. Tracking File ......................................................................................................... 36 

5.5. Tracking using TrackMate .................................................................................... 37 

5.6. Table with Spots Information and Intensities ..................................................... 39 

5.7. Distinguish Between Left and Right Side of the Embryo ..................................... 40 

5.8. Analysis of the Tables .......................................................................................... 42 

6. Results......................................................................................................................... 45 

6.1. Neural activity of the embryos from the selected movies .................................. 45 

6.1.1. Frequency of the Intensity peaks ................................................................. 45 

6.1.2. Position of the intensity peaks over time .................................................... 47 

6.2. Neural activity at a later stage of embryonic development................................ 49 

6.2.1. Intensity over time of coordinated neurons ................................................ 49 

7. Discussion ................................................................................................................... 52 



vii 
 

7.1. Neural activity of the embryos from the selected movies .................................. 52 

7.1.1. Frequency of the Intensity peaks ................................................................. 52 

7.1.2. Intensity peaks’ position in y over time ....................................................... 53 

7.2. Neural activity at a later stage of embryonic development................................ 53 

7.2.1. Intensity over time of coordinated neurons ................................................ 53 

7.3. Performance of the software .............................................................................. 54 

8. Conclusions ................................................................................................................. 55 

8.1. Implications based on this project ...................................................................... 55 

8.2. Limitations ........................................................................................................... 55 

8.3. Future Work......................................................................................................... 56 

9. Bibliography ................................................................................................................ 58 

 

  



viii 
 

LIST OF FIGURES 

Figure 1.1: Danionella Translucida .................................................................................... 2 

Figure 1.2: Light-sheet Illumination .................................................................................. 3 

Figure 2.1: Momentum ..................................................................................................... 7 

Figure 2.2: Example of a simple CNN’s architecture ......................................................... 8 

Figure 2.3: Illustration of a convolutional layer ................................................................ 9 

Figure 2.4: Architecture of R-CNN ................................................................................... 11 

Figure 2.5: Architecture of Fast R-CNN ........................................................................... 12 

Figure 2.6: Architecture of Faster R-CNN ........................................................................ 12 

Figure 2.7: Region Proposal Network process (RPN) ...................................................... 13 

Figure 2.8: Intersection over Union (IoU) ....................................................................... 13 

Figure 2.9: Before and after applying Non-Maximum Suppression ............................... 14 

Figure 2.10: Mask R-CNN architecture ............................................................................ 15 

Figure 2.11: RoIAlign ....................................................................................................... 16 

Figure 2.12: U-Net segmentation mask .......................................................................... 18 

Figure 2.13: U-Net Architecture ...................................................................................... 19 

Figure 3.1: The number of scientific publications per year in the last decade (until 

2019) on deep learning and related terms ............................................................. 20 

Figure 3.2: StarDist .......................................................................................................... 21 

Figure 4.1: Illustrative image of the dechorionation procedure ..................................... 25 

Figure 4.2: Scheme for the preparation for light-sheet imaging .................................... 26 

Figure 4.3: YZ orthogonal projection of an embryo ........................................................ 26 

Figure 4.4: Representation of the acquired channels ..................................................... 27 

Figure 4.5: Intensity during the time of the experiment ................................................ 28 

Figure 4.6: Representation of the intensity fading over time in a Danionella translucida 

embryo .................................................................................................................... 28 

Figure 4.7: Cropped frame from a Danionella Translucida embryo ............................... 29 

Figure 5.1: StarDist segmentation ................................................................................... 31 

Figure 5.2: Example of the segmentation performed by a human and by StarDist ....... 32 

Figure 5.3: Distribution graph for the minimum distance between two centroids ........ 33 

Figure 5.4: Synthetic images ........................................................................................... 34 

Figure 5.5: Graph comparing the number of segmented objects between StarDist, 

Experts, and Non-experts on the synthetic images ................................................ 34 

Figure 5.6: Graph comparing the number of segmented objects between StarDist and 

humans on the synthetic images ............................................................................ 35 



ix 
 

Figure 5.7: Comparison between the centroid from StarDist and the actual geometric 

center ...................................................................................................................... 36 

Figure 5.8: Tracking file code .......................................................................................... 37 

Figure 5.9: Centroids from the tracking file overlapping the original image .................. 37 

Figure 5.10: Tracks in TrackMate .................................................................................... 38 

Figure 5.11: Skeleton of an embryo ................................................................................ 41 

Figure 5.12: Organized graph - Intensity over time ........................................................ 43 

Figure 5.13: Graph with intensity peaks ......................................................................... 44 

Figure 6.1: Peaks Frequency............................................................................................ 46 

Figure 6.2: Quantity of objects in time ........................................................................... 47 

Figure 6.3: Intensity peaks’ position in y over time ........................................................ 48 

Figure 6.4: Intensity in time of coordinated neurons ..................................................... 50 

Figure 6.5: Sequence of frames showing the neurons firing .......................................... 50 

Figure 6.6: Intensity in time of uncoordinated neurons ................................................. 51 

 

 

 

 

 
  



x 
 

LIST OF TABLES 

Table 5.1: Intensity table ................................................................................................. 36 

Table 5.2: TrackMate table – Statistics about spots in tracks ......................................... 39 

Table 5.3: TrackMate table with mean intensity for each object ................................... 40 

Table 5.4: TrackMate table with mean intensities and side information ....................... 41 

Table 5.5: Table with side information for each neuron ................................................ 42 

Table 5.6: Binary table – Existence of peaks ................................................................... 44 

 

  



xi 
 

LIST OF ABBREVIATIONS AND ACRONYMS 

AI Artificial Intelligence 

ANN Artificial Neural Network 

CNN  Convolutional Neural Network  

DL Deep Learning 

DNN Deep Neural Network 

hpf hour(s) post-fertilization 

IoU Intersection over Union 

MIP Maximum Intensity Projection 

NMS Non-Maximum Suppression 

R-CNN Region-based Convolutional Neuronal Network 

ReLU Rectified Linear Unit 

RGB Red-Green-Blue 

RoI Region of Interest 

RPN Region Proposal Network 

SGD Stochastic Gradient Descent 

SVM Support Vector Machine 

 



1 
 

1. INTRODUCTION 

Over the past few years, deep learning has become progressively more used in several research areas 
due to its success in solving problems. A class of machine learning algorithms that can find out 
patterns and structures in high-dimensional data, thus able to handle an increasing amount of data, 
beating other techniques (Lecun et al., 2015). It has been utilized in recognition of speech and image, 
natural language understanding, and scientific and medical research (Goodfellow et al., 2016). The 
medical field can generate a large amount of data, especially when dealing with in vivo imaging 
during many hours. Consequently, automated algorithms for imaging analysis, such as detection, 
segmentation, and quantification of cells, are fundamental to making a more accurate and more 
straightforward diagnosis and disease research. Apart from allowing better analysis and 
comprehension of such a high quantity of data, manually detecting cells would be time-consuming, 
laborious, and highly susceptible to human error caused by some factors like cell concentration and 
visibility. Furthermore, human perception can lead to biased results and, consequently, variability 
between interobserver and intraobserver (Salinas et al., 1997). 

For all the mentioned above, counting cells is an essential task for neuroscience, which is the 
scientific study of how the nervous system develops, how it is structured, and what it does. While it 
is known that the brain is responsible for most of our voluntary and involuntary actions, and it 
regulates physiological processes through the body, there are still many open questions regarding 
the development and function of neural circuits.  

Nevertheless, there are limitations related to imaging the human nervous system. So, model 
organisms with similar characteristics to humans and more accessible to imaging, like Danionella 
translucida, can be used to study the nervous system. 

 

 

1.1. RESEARCH QUESTION AND DISSERTATION OBJECTIVE 

This dissertation aims to provide a first answer to the research question that is the unknown 
description of the onset and transition from stochastic to coordinated neural activity of Danionella 
translucida embryo.  

We intend to answer this research question by using advanced microscopy techniques to capture the 
data. In particular, we used light-sheet microscopy to image Danionella translucida spinal cord with 
high temporal resolution and for long periods. Moreover, data analysis was performed by developing 
a deep learning-based algorithm that can detect, segment and track in space and time the signal of 
each neuron. Thus, providing a description of the entire process at cellular resolution.  

 

 



2 
 

1.2. DANIONELLA TRANSLUCIDA 

Until now, in the neuroscientific field, one of the most used model organisms is zebrafish. However, 
Danionella translucida has recently been introduced due to its benefits over zebrafish. 

Conventionally, zebrafish is used for neural studies since it is a well-established model organism 
because it shares a large proportion of the human genome and, consequently, shares many features 
with the human systems (Howe et al., 2013). Additionally, zebrafish embryos have a small size and a 
nearly optically transparent appearance, making them well suited for microscopy and allowing for 
more straightforward observation of the development of its internal structures (Hill et al., 2005). 
Another main reason for its usage is that the zebrafish grows at a high-speed rate and breeds readily 
(Kimmel et al., 1995). Zebrafish embryo has already been used to study neuronal circuit development 
(Wan et al., 2019).  

Danionella translucida has been presented as a powerful model organism for neuroscience studies, 
given that it has the smallest known vertebrate brain and does not develop a complete skull as an 
adult. Besides, it has more than 85% of zebrafish genes, having the same advantages of being small 
and optical clearer, but it is also behaviorally and neural complex as an adult vertebrate (Schulze et 
al., 2018). Figure 1.1 shows the Danionella translucida size and transparency. 

 

 

Figure 1.1: Danionella Translucida 

A: body size of a female and male specimen, top and bottom respectively; B: Head image. Image from (Schulze 
et al., 2018). 

 

Hence, it is a great promising model to study neural development. However, the emergence of the 
neural activity and subsequent assembly of neural circuits in the early embryo of Danionella 
translucida development has not yet been characterized. 

 

 

1.3. LIGHT-SHEET FLUORESCENCE MICROSCOPY 

Fluorescence microscopy uses fluorescence to examine cells, which is the process of illuminating a 
specimen with a light of a specific wavelength, with the purpose of the molecules absorbing it, 
causing them to emit light of longer wavelengths. This difference allows us only to visualize the 



3 
 

fluorescent cells, which are the ones that emit fluorescence. These molecules that can re-emit light 
upon excitation are called fluorophores (Lichtman & Conchello, 2005). 

Light-sheet fluorescence microscopy has recently become widely used to image in vivo organisms 
over a long period of time since it combines gentle illumination with a high spatial-temporal 
resolution. In addition, it allows an easier rotation of the sample, which offers the possibility to 
acquire images from different angles (Weber & Huisken, 2011). In contrast to other imaging 
techniques, it manages to selectively illuminate only a thin slice of the sample, as shown in Figure 
1.2, which means the fluorophores out of the focus plane are not excited, reducing photodamage 
(Reynaud et al., 2010). 

 

 

Figure 1.2: Light-sheet Illumination 

The blue and green indicate the volume that is excited when imaging a single plane of the sample. Image 
adapted from (Wolf & Debrégeas, 2018) 

 

Photodamage happens when the excited molecules become more reactive, making them more prone 
to react with other molecules, producing responses that can lead to potentially cell damage, resulting 
in photobleaching and phototoxicity (Satsoura et al., 2007). Photobleaching occurs when a molecule 
loses its ability to fluoresce, whereas phototoxicity is the damage of subcellular components and can 
even lead to cell and then sample death (Icha et al., 2017). 

Therefore, the light-sheet technique enables us to image Danionella translucida embryos for more 
extended periods with high frequency and more efficiently. 

 

 

 

 



4 
 

2. THEORETICAL BACKGROUND 

2.1.  MACHINE LEARNING  

Machine learning is a branch of artificial intelligence that focuses on developing computer algorithms 
able to automatically learn and improve through experience and by using data (Mitchell, 1997). The 
goal is to learn and recognize patterns on sample data, known as training data, in order to make 
predictions and decisions in the future without human intervention (Zhang, 2020). Throughout 
recent years, there has been an exponential increase in generated data. As a result, machine learning 
has been evolving and becoming progressively more used to analyze data thanks to its computational 
power. Consequently, it enables us to analyze an enormous amount of data while providing accurate 
and fast results.  

There are various applications where this type of algorithm can be used, such as healthcare, 
sentiment analysis, fraud recognition, computer vision, and several other fields. Moreover, machine 
learning can be classified, considering the type of input data, into four general areas: Supervised 
Learning, Unsupervised Learning, Semi-Supervised, and Reinforcement Learning. 

 

 

2.1.1. Supervised Learning 

Supervised learning uses labeled data to train the model to predict or classify accurately. Given input 
data already categorized, usually by humans, the algorithm learns the features of the different labels 
by adjusting their weights until the model fits the dataset. After training, it can predict the output for 
new unseen data based on its features (Mohri et al., 2012). 

Furthermore, supervised learning algorithms can be divided into classification and regression. In 
classification algorithms, the output value is categorical, so it is limited. Whereas, in regression 
algorithms, the outputs can have numerical values between a range. For example, a regression 
problem would predict a person’s age, while a categorical problem would classify between young 
and old. 

 

 

2.1.2. Unsupervised Learning 

In supervised learning, the opposite occurs, the input dataset is unlabeled, and the algorithm’s goal is 
to find patterns in the data (James et al., 2013). The system identifies shared characteristics in the 
data and gives an output based on the presence or absence of such traits. For instance, it can be used 
to group customers and understand their differences. 

 



5 
 

2.1.3. Semi-supervised Learning 

In semi-supervised algorithms, the input data is both labeled and unlabeled, where generally, there is 
more unlabeled data than labeled. This way, it uses the labeled data to classify and the unlabeled to 
extract new features, significantly improving the model’s accuracy. 

 

 

2.1.4. Reinforcement Learning 

Reinforcement learning algorithms learn from feedback by interacting with the environment and 
using trial and error. The learning system tries to give outputs and receives positive or negative 
feedback for each output. According to the feedback received, it is able to learn by itself and improve 
the performance of the task that is being learned (Zhang, 2020). 

 

 

2.2. ARTIFICIAL NEURAL NETWORK 

Artificial neural network (ANN) is inspired by the human brain, and, like the biological brain, it is 
composed of connected networks of neurons. Hence, ANNs are organized into multiple layers, where 
each one is responsible for processing different parts of the information. It starts with the input 
layer, which receives the data, followed by one or more hidden layers that process the information, 
and finally, an output layer generates the results.  

The most simple neural network is the perceptron (Goodfellow et al., 2016). Furthermore, the single-
layer perceptron, consisting of the input and output layers and just one hidden layer, was the first 
artificial network. However, this network is only capable of dealing with linearly separable patterns. 
Thus, to solve this problem, the multilayer perceptron was developed by combining multiple neurons 
to the network, where a neuron is a mathematical function.  

The perceptron consists of an algorithm for supervised learning that produces an output based on a 
function that receives multiple inputs and combines weights and biases (Haykin et al., 2009). First, 
concerning the input data, the weights are defined in the training process and combined with the 
respective inputs through a summation function. Then, an activation function is used in every neuron 
to reduce the amplitude of the output. Finally, by using a loss function, the error is calculated with 
the difference between the output value and the ground truth, and it is propagated backward, 
updating the weights and the biases, based on a learning rate, which is a parameter that controls 
how much the error affects the values for the weights. This process is called backpropagation and is 
repeated until the error is minimized. 

As a result, the computational power of neural networks is associated with their parallel distributed 
structure and their ability to generalize, that is, their ability to produce accurate results in unseen 
data (Haykin et al., 2009). 

 



6 
 

2.2.1. Regularization 

One of the most common problems when dealing with neural networks is overfitting, which occurs 
when the algorithm performs very well on the training data but fails with unseen data of similar 
nature. A way to prevent this is L1 and L2 regularizations. These are techniques that reduce the 
complexity of the model during training by updating the cost function adding a regularization term to 
the loss, defined in equation (2.1). 

𝐶𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝐿𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 + 𝑡𝑒𝑟𝑚  

 

L1 regularization adds a penalty parameter using the sum of the absolute value of the weights. In 
contrast, L2 regularization, also known as weight decay or Ridge regression, uses the squared value 
of weights (Goodfellow et al., 2016). L2 is the most commonly used since the weight parameters 
decrease but do not become zero, contrary to L1. Furthermore, it causes the learning algorithm to 
suppress any irrelevant components of the weights in the training process, leading to more accurate 
models (Krogh & Hertz, 1991). 

 

 

2.3. DEEP LEARNING 

Deep learning is a subfield of machine learning based on artificial neural networks. Machine learning 
algorithms learn from the input dataset, whereas deep learning algorithms can train themselves to 
detect or classify patterns in the raw data (Lecun et al., 2015). Consequently, it can be used in many 
fields, including computer vision, natural language processing, and medical image analysis. A deep 
neural network is an ANN with multiple hidden layers, which allows dealing with complex problems, 
since the system learns as it processes information through each hidden layer, just like the human 
brain. 

In summary, compared with machine learning, it eliminates some pre-processing on the data since 
these algorithms can receive unstructured input data and can automate feature extraction. In 
addition, it uses processes of gradient descent and backpropagation to improve accuracy. 

 

 

2.3.1. Stochastic Gradient Descent 

Gradient descent is an optimization technique in Deep Learning and Machine Learning (Mitchell, 
1997). The gradient is the slope of a function, so gradient descent is used to find a local minimum of 
a loss function by iteratively finding the optimal values of the parameters (i.e., the neural network’s 
weights). The loss function measures the error between the prediction and the target values. 
Subsequently, the optimizer updates the network’s weights by considering the value of the loss 
function. The magnitude of the update depends on the value of the learning rate. 

(2.1) 



7 
 

A stochastic process has a random probability distribution. Therefore, in Stochastic Gradient Descent 
(SGD), only a subset, also called minibatch, is randomly selected to update a parameter in a 
particular iteration instead of the entire training sample. As a result, SGD reduces the computational 
complexity, performing faster iterations. 

 

 

2.3.2. Momentum 

Momentum is an optimizer used to accelerate the learning process. It accumulates an exponentially 
decaying moving average of the past gradients and moves in their direction (Goodfellow et al., 2016). 
In SGD, the derivate of the loss function is an estimation based on a minibatch, which means it is not 
always headed in the optimal direction since the derivates are noisy. Thus, using momentum with 
SGD is better because using exponentially weighted averages helps provide an estimation closer to 
the actual value of the derivate.  

Another reason that it is better to use SGD with momentum lies in ravines. Ravine is an area where 
there is a steeper curve in one dimension than in another. Additionally, ravines are typically near 
local minimums, which makes SGD oscillate across the narrow ravine since the negative gradient will 
point out towards the sides rather than the optimum. Thus, momentum helps to accelerate the 
gradient descent in the optimal direction. Figure 2.1 illustrates this momentum effect, where the 
black arrows show the gradient’s path without momentum, and the red path indicates the path 
followed by the gradient with momentum. This figure shows that the path with momentum is smaller 
than the one without momentum. 

 

Figure 2.1: Momentum 

Illustration of the Momentum Effect. The black contour lines represent a quadratic loss function. The red path 
indicates the path followed by the gradient with momentum, and the arrows indicate the direction that the 

gradient descent would take at that point (Goodfellow et al., 2016). 

 

The momentum optimizer is defined by a parameter α ∈ [0.1[, which is usually initialized with a small 
value and is slowly increased to 0.9 and closer to it. 

 



8 
 

2.4. CONVOLUTIONAL NEURAL NETWORK 

Convolutional Neural Networks (CNN) are a class of ANNs commonly used in computer vision since it 
is specifically designed to process 2D grids of pixel values (Goodfellow et al., 2016).  

In regular neural networks, the inputs are only processed in the forward direction. All the neurons in 
one layer pass information in the direction of the subsequent layer, so a single output node interacts 
with all the input nodes. This process would become computational complex when dealing with 
image data. Whereas CNNs use convolutional, which is a mathematical operation that processes 
information in a grid-like structure. Thus, making CNNs very successful in capturing spatial and 
temporal dependencies and performing image and video processing. 

 

 

2.4.1. Architecture of a CNN 

The architecture of a CNN was inspired by the biological processes of the virtual cortex path (Lecun 
et al., 2015). It contains an input layer, an output layer, and several hidden layers in between, as 
shown in figure 2.2. The hidden layers are composed first by convolutional and pooling layers, 
followed by fully connected layers. 

 

Figure 2.2: Example of a simple CNN’s architecture 

In this example, there are five layers. From left to right: The input image, the convolution layer with the 
activation function ReLU, the pooling layer, the fully connected layer with ReLU, another fully connected layer, 

and the final output layer. In this example, the goal was to identify which number was present in the input 
image. (O’Shea & Nash, 2015). 

 

 

2.4.1.1. Input Layer 

The input layer is the image that is going to be analyzed, with dimensions [width × height × depth], 
where depth is the number of colored channels in the image, there could be three channels in case 



9 
 

of a colored image (RGB) or one, in case of a grayscale image. Besides, an image can be defined as an 
array of values (pixels) which range from 0 to 255. 

 

 

2.4.1.2. Convolutional Layer 

The convolutional layer, as the name implies, plays an essential task in this network. It comprises 
multiple convolution operations, each composed of a kernel matrix, usually smaller in spatial 
dimensionality. These kernels will slide over the entire input image horizontally and vertically. As it 
moves, the dot product is calculated for each value in that kernel, resulting in a reduced output 
feature map, as illustrated in Figure 2.3. This way, a pixel in the output feature map is not processed 
individually and is only connected to a subset of pixels in the input. The size of the step that the 
kernel slides, known as stride size, is usually 1. 

 

Figure 2.3: Illustration of a convolutional layer 

Left to Right: Input image with the kernel area, image patch, represented as a blue square. Next, the dot 
product between the image patch and the kernel. Finally, the output feature map with the value resulting from 

this dot product. The output value is 1*1+1*3+1*5+1*6+1*7+1*9 = 31 (Reynolds, n.d.). 

 

The resulting output is then passed through an activation function. The most commonly used one is 
Rectified Linear Unit (ReLU) because it increases non-linearity in CNN. 

Since the feature map size is always smaller than the input, zero padding is used to maintain the 
dimensions of the output matrix. In addition, a layer of zero-value pixels is added around the border 
of the input, preserving the spatial size and improving performance. 

 

 

2.4.1.3. Pooling Layer 

The pooling layer aims to reduce the dimensionality and, thus, reduce the number of parameters and 
computational complexity. Furthermore, it is inserted after every convolutional layer with the 
purpose of making the CNN more invariant to small changes in the input, which helps to extract 
dominant features (Goodfellow et al., 2016). 



10 
 

The most common type of pooling is max pooling, which uses the maximum value of each portion of 
the image covered by the feature map. Another type of pooling is average pooling, where instead of 
using the maximum value, it calculates the mean of the values in the kernel. A pooling layer can be 
defined through two parameters: the stride and the spatial size. Usually, it is applied kernels of 2*2 
with a stride of 2 along the input’s dimensions 

 

 

2.4.1.4. Fully Connected Layer 

The fully connected layer will perform the same as a traditional multilayer perceptron neural 
network by connecting every neuron in the previous layer to every neuron in the next layer. 
Moreover, it is placed in the end to be used for classification.  

It involves flattening that is transforming the entire output from the previous layer into a column 
vector. In the end, an activation function, usually SoftMax or sigmoid, is used to classify the output. 

 

 

2.4.2. Transfer Learning 

Transfer learning is a technique that is nowadays popular in the field of deep learning. The main idea 
behind transfer learning is to re-use an already trained model, developed for a specific task, to 
address a different but related problem. Since CNNs usually require a large amount of training data, 
transfer learning is usually applied when the new dataset is smaller than the one used to train the 
pre-trained model (Hussain et al., 2018). Typically, the datasets are similar. So, transfer learning can 
be used as a feature extractor or fine-tuning.  

Feature extraction happens when only the last layer of CNN is changed concerning the new 
classification. For instance, the basic spatial features learned from the pre-trained data used to 
classify one dataset are used to classify similar information. For example, a model that learned to 
identify dogs may have spatial features that can be useful to identify cats. 

Fine-tuning would occur when the whole model is re-trained on new data with a low learning rate. 
This procedure can improve the results by adapting the pre-trained features to the new data. 

Overall, transfer learning brings a significant benefit because it reduces the time necessary to train a 
model. 

 

 

2.5. R-CNN 

Region-based Convolutional Neural Networks (R-CNN) was proposed in 2014 to improve the 
precision in object detection (Girshick et al., 2014). It aims to detect multiple objects in one input 



11 
 

image using features created from CNNs while generating a high-quality segmentation mask for each 
instance.  

R-CNNs algorithm is shown in Figure 2.4. It begins by using a selective search method to extract 
region proposals, which groups pixels by color, intensity, or texture for each region, generating 
around 2000 regions of interest (RoI). Each RoI is then fed into a CNN to generate a dimensional 
feature vector as output. Afterward, for each output, Support Vector Machine (SVM) classifiers are 
used to classify the object within that candidate region proposal. Furthermore, the algorithm also 
predicts offset values to increase the precision of the bounding box by feeding the vector into a 
bounding box regressor. 

 

 

Figure 2.4: Architecture of R-CNN 

1. Input image that is given to the algorithm; 2. Extraction of the 2000 region proposals; 3. CNN layer to 
compute the features for each region; 4. Classification of each region using SVMs (Girshick et al., 2014). 

 

 

2.6. FAST R-CNN 

Fast R-CNN was proposed as an improvement of R-CNN by using RoI pooling since classifying around 
2000 region proposals per image would still take a long time to train the network (Girshick, 2015). 
Instead of feeding every region proposal to CNN, the input image is fed to the CNN only once, 
providing a convolution feature map. The proposal regions are identified with selective search and 
reshaped using a RoI pooling layer. Then, these regions are fed to a sequence of fully connected 
layers that separate into two final layers: a softmax layer to classify the proposal region and a 
regressor layer to predict the offset values for the bounding box. Figure 2.5 shows the architecture of 
the algorithm. 

 



12 
 

 

Figure 2.5: Architecture of Fast R-CNN 

The input image is fed to a CNN to generate the convolutional feature map. Next, the RoIs generated by the 
selective search method are projected to the Conv feature maps, which are then fed to a RoI pooling layer to 

reshape them to the same size. Then, each RoI is mapped to a feature vector by fully connected layers. Finally, 
the output layers classify each RoI with a classification layer and adjust the bounding boxes with a regression 

layer (Girshick, 2015). 

 

 

2.7. FASTER R-CNN 

Fast R-CNN also uses selective search to generate the region proposals, which is a time-consuming 
process. This way, Faster R-CNN was created to eliminate the selective search algorithm using a 
Region Proposal Network (RPN) (Ren et al., 2016). The algorithm can be visualized in Figure 2.6. 

 

Figure 2.6: Architecture of Faster R-CNN 

The input image is fed into a CNN to generate a feature map, which is followed by an RPN to create the anchor 
boxes. Next, non-maximum suppression is used to reduce the number of RoIs. Afterward, a RoI pooling layer 

scales each RoI to the same size. Finally, a classification layer classifies each RoI, and a regression layer adjusts 
the bounding boxes (Ren et al., 2016). 



13 
 

Like Fast R-CNN, the input image is first fed to a CNN to generate a convolutional feature map. 
However, instead of the selective search, the RPN identifies the region proposals, visualized in Figure 
2.7. It works by moving a sliding window through the feature map, creating a set of anchor boxes 
with three different aspect ratios and three different scales, creating a total of 9 anchors. Then, the 
network simultaneously uses a classification layer and a regression layer to learn which anchor boxes 
have an object in them and learn the anchor boxes’ offsets in order to adjust for fitting the objects, 
respectively. The anchor boxes use the Intersection over Union (IoU) score to understand whether it 
is foreground or background (Ren et al., 2016). 

 

Figure 2.7: Region Proposal Network process (RPN) 

For each anchor point of the respective sliding window in the feature map, k anchor boxes are generated (Ren 
et al., 2016). 

 

 

2.7.1. Intersection over Union 

Intersection over Union (IoU) is calculated by dividing the area of overlap between the predicted 
bounding box and the ground-truth bounding box by the area of the union of both boxes (Ren et al., 
2016). Figure 2.8 shows a representation of this calculation. 

 

Figure 2.8: Intersection over Union (IoU)  

IoU is equal to the area of overlap divided by the area of union (Rosebrock, 2016). 



14 
 

When training the RPN, for each anchor box, it is assigned a positive or negative score based on the 
IoU. The score can range from 0.0 to 1.0, 0.0 meaning no intersection, and 1.0 when the boxes are 
equivalent. The anchor receives a positive label when the score is higher than 0.7 with any ground-
truth box, but if no anchor has a score higher than 0.7, then the one with the highest value is 
assigned the positive label. The negative label is when the value is lower than 0.3 for all ground truth 
boxes. If an anchor box is neither positive nor negative, it does not contribute to the training. Thus, 
an anchor with a positive label is considered foreground, whereas a negative label is background. 

 

 

2.7.2. Non-Maximum Suppression 

Non-maximum Suppression (NMS) is applied to reduce the number of bounding boxes proposals. It 
does this by removing the boxes taking into account a specific threshold value (Ren et al., 2016). NMS 
starts by sorting from high to low all the regions based on their scores. Then, it selects the box with 
the highest score and computes the IoU between this and all the remaining boxes. The ones that 
have an IoU greater than the threshold are removed. These steps are repeated until there are no 
more proposals. Lastly, NMS removes unnecessary bounding boxes, keeping only the best ones, that 
is, avoiding detecting the same object multiple times (Schmidt et al., 2018). Figure 2.9 shows an 
example of the before and after the application of NMS. 

 

Figure 2.9: Before and after applying Non-Maximum Suppression  

A: Before applying NMS, there are multiple bounding boxes; B: Afterward, only the final bounding boxes remain 
(Singh, 2020). 

 

 

2.7.3. Balanced Samples 

The resulting proposals are sampled to balance positive and negative anchors, particularly having a 
ratio of up to 1:1. The goal is to avoid bias towards the most dominant label, usually negative (Ren et 
al., 2016). 



15 
 

2.7.4. RoI Pooling Layer and Final Layer 

After NMS, the proposal boxes, the regions of interest (RoI), are fed into a RoI pooling layer to resize 
the regions, which converts all the regions into the same size. And then, they are fed into a fully 
connected layer to classify the object and predict the offset values for the bounding box, just like the 
last step in the Fast R-CNN. 

 

 

2.8. MASK R-CNN 

Mask R-CNN is an extension of Faster R-CNN by adding instance segmentation, a branch to predict 
segmentation masks on each RoI, in parallel with the classification and bounding box regression 
branch (He et al., 2018). Additionally, mask R-NN also replaces the RoI pooling layer with a layer 
called RoIAlign. Figure 2.10 shows a representation of the Mask R-CNN architecture.  

 

Figure 2.10: Mask R-CNN architecture  

It shows the Mask R-CNN framework for instance segmentation. The input image is fed to a CNN to generate a 
feature map. Next, RPN generates the RoIs, and a RoIAlign layer scales these regions. Then, the scaled RoIs go 

to classification and bounding box regression layers, in parallel with a segmentation layer (He et al., 2018). 

 

Similar to Fast R-CNN, the input image is fed to a CNN to generate the feature map. Subsequently, an 
RPN generates multiple RoI using a binary classifier, and an NMS is applied. Then, a RoI align layer is 
used to scale the RoIs. These are then fed into classification and bounding box regression in parallel 
with the segmentation layer. That is, mask R-CNN predicts the class and box offset and outputs a 
binary mask for each RoI, a matrix, where 1s represent pixels that belong to an object and 0s 
elsewhere (He et al., 2018).  

 

 



16 
 

2.8.1. Instance Segmentation 

Instance segmentation requires object detection and semantic segmentation. That way, it can 
correctly detect and segment all objects in an image by assigning a label to each pixel of that image 
(Li et al., 2017). 

 

 

2.8.2. Mask Representation 

A mask encodes the spatial layout of an object. Thus, it is different from the label and box offsets 
encodings, which are short vectors. An m × m mask is predicted from each RoI to allow a consistent 
object spatial layout. The masks’ spatial structure is extracted using the pixel-to-pixel 
correspondence provided by convolutions, which requires the RoI features to maintain the direct 
per-pixel spatial correspondence (He et al., 2018).  

 

 

2.8.3. RoI Align 

Image segmentation depends on pixel-level specificity. So, using RoI pooling layers leads to slightly 
misaligned masks caused by harsh quantization. Therefore, a RoIAlign layer was developed to align 
the extracted features with the input correctly. RoIAllign uses bilinear interpolation to compute the 
exact floating values of the features at four different locations in each RoI bin and aggregate the 
result (He et al., 2018). Figure 2.11 shows the bilinear interpolation for an anchor that is misaligned 
to the feature map. 

 

Figure 2.11: RoIAlign  

The dashed grid represents a feature map, the solid lines a RoI (2×2 bins), and the dots the four sampling points 
in each bin (He et al., 2018). 

 

 



17 
 

2.8.4. Loss Function 

During training, a multi-task loss is defined on each sampled RoI as equation (2.2).  

𝐿 = 𝐿௖௟௦ +  𝐿௕௢௫  + 𝐿௠௔௦௞ 

The classification loss 𝐿௖௟௦ and bounding-box loss 𝐿௕௢௫ are the same as in Fast R-CNN. Also, these 
losses are independent of each other since they are trained and predicted in parallel (He et al., 2018).  

In Fast R-CNN, each RoI is labeled with a ground-truth class 𝑢 and a ground truth bounding box 
regression target 𝑣. A multi-task loss 𝐿, equation (2.3), is used on each RoI to train in parallel the 
classification and bounding-box regression. 

𝐿(𝑝, 𝑢, 𝑡௨, 𝑣) = 𝐿௖௟௦(𝑝, 𝑢) +  λ[u ≥ 1]𝐿௟௢௖(𝑡௨, 𝑣) 

in which 

𝐿௖௟௦(𝑝, 𝑢) = −𝑙𝑜𝑔𝑝௨  

𝐿௖௟௦ is log loss of the true class 𝑢, 𝑝 is the discrete probability distribution of the categories. The 𝐿௟௢௖ 
is defined over a tuple of true bounding-box regression targets for class 𝑢, 𝑣 = (𝑣௫, 𝑣௬, 𝑣௪ , 𝑣௛) and a 
predicted tuple 𝑡௨ = (𝑡௫

௨, 𝑡௬
௨, 𝑡௪

௨ , 𝑡௛
௨) for the bounding-box regression of the class 𝑢. The Iverson 

bracket indicator function [u ≥ 1] evaluates to 1 when u ≥ 1; 0 otherwise, where ‘1’ is labeled 
foreground and ‘0’ foreground. The 𝜆 controls the balance between the two classes’ losses (Girshick, 
2015). 

The bounding box regression computes four coordinates, defined in equation (2.5), where x and y 
represent the center coordinates, and w and h the width and height of the box. If one of these letters 
is followed by a small ‘a’ it represents the anchor box, and if it is followed by ‘*’ it represents a value 
for the ground truth box. Thus, this can be described as bounding-box regression from an anchor box 
to a nearby ground-truth box (Ren et al., 2016). 

𝑡௫ =
(௫ି௫ೌ)

௪ೌ
 ,  𝑡௬ =

(௬ି௬ೌ)

௛ೌ
 ,  

𝑡௪ = log (
௪

௪ೌ
) , 𝑡௛ = log (

௛

௛ೌ
) , 

𝑡௫
∗ =

(௫∗ି௫ೌ)

௪ೌ
 , 𝑡௬

∗ =
(௬∗ି௬ೌ)

௛ೌ
 , 

𝑡௫
∗ = log (

௪∗

௪ೌ
) ,  𝑡௬

∗ = log (
௛∗

௛ೌ
) ; 

 

For the bounding-box regression loss, 𝐿௕௢௫, the equation is defined as equation (2.6). 

𝐿௟௢௖(𝑡௨, 𝑣) =  Σ ௜∈{௫,௬,௪,௛}𝑠𝑚𝑜𝑜𝑡ℎ௅ଵ(𝑡௜
௨ −  𝑣௜) 

𝑠𝑚𝑜𝑜𝑡ℎ௅ଵ(𝑥) =  ൜
0.5𝑥ଶ          𝑖𝑓 |𝑥|  < 1
|𝑥| − 0.5    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(2.2) 

(2.5) 

(2.4) 

(2.3) 

(2.6) 



18 
 

 

The mask branch generates a mask with m × m dimensions for each RoI, thus having an output with 
size K.m2, where K is the number of classes. Since the model is trying to learn a mask for each class, 
there is no competition between classes. The 𝐿௠௔௦௞ is defined as the average binary cross-entropy 
loss, and if the region is associated with the ground truth class k, then 𝐿௠௔௦௞ only includes the k-th 
mask (He et al., 2018). 

 

 

2.9. U-NET 

U-Net is a convolutional neural network developed for biomedical image segmentation. It was 
created in 2015, the same year as Fast R-CNN because the pre-existing CNN focused only on image 
classification, where the output is only one label. However, in other tasks, like processing biomedical 
images, it is also required to know the mask’s localization (Ronneberger et al., 2015). Therefore, the 
U-Net is based on a fully convolutional network. It aims to generate a segmentation binary mask, 
where 1 indicates the foreground, meaning it belongs to a cell, and 0 indicates the background. This 
mask can be visualized in Figure 2.12.  

 

Figure 2.12: U-Net segmentation mask  

A: Raw image; B: Segmentation binary mask. Image adapted from (Ronneberger et al., 2015). 

 

The architecture of U-Net is different from all the other R-CNN algorithms, having a u-shape, as can 
be seen in Figure 2.13, where the left side is the contracting path, and the right side is the expansive 
path. 



19 
 

 

Figure 2.13: U-Net Architecture  

The input image is passed fed to convolutional layers in the contractive path to extract the features. Then, the 
expansive path extracts the exact localization (Ronneberger et al., 2015). 

 

The contractive path, also known as encoder, is similar to the architecture of a traditional CNN. It 
consists of the repeated application of convolutions, each followed by a ReLu and a max-pooling 
operation for downsampling. During this process, the spatial information is reduced while feature 
information is increased. Whereas the expansive path, also known as decoder, is used to compute 
the exact localization. It is almost symmetrical to the contracting part and combines features and 
spatial information. It consists of a repeated process of up-convolutions and concatenations of high-
resolution features maps from the contracting path (Ronneberger et al., 2015). 

One challenge in the segmentation of biological images is separating touching objects, so U-Net uses 
a weighted loss in the loss function, where the separating background between touching objects 
receives larger weights (Ronneberger et al., 2015).  



20 
 

3. LITERATURE REVIEW 

Over the past few years, there has been a growing interest in the application of Deep Learning to 
bioimage analysis. As shown in Figure 3.1, the scientific literature on deep learning applied to image 
analysis and related fields has been increasing exponentially in the last decade (until 2019). 
Consequently, there has been a significant effort from the biological community to identify the best 
method for each different study. 

 

Figure 3.1: The number of scientific publications per year in the last decade (until 2019) on deep 
learning and related terms 

Publications with the terms Deep learning (DL), machine learning (ML), or artificial intelligence (AI) in the title, 
according to Google Scholar (GS) and Web of Science (WOS). Adapted from (Meijering, 2020). 

 

The interest in applying deep learning to extract valuable information from biological images is 
growing so much that many implementations have been developed, each one tailored to different 
aspects of bioimage analysis. This chapter presents the software chosen to achieve the aim of the 
project and offers an overview of other existing DL and AI-based software developed for bioimage 
analysis. 

 

 

3.1. STARDIST 

Automatic detection and segmentation of cells is a fundamental procedure in analyzing biological 
images, and in recent years, many deep learning-based algorithms have been proposed. However, in 
images with crowded cells, they become susceptible to some segmentation errors. StarDist was 
proposed in 2018 (Schmidt et al., 2018) to address this limitation. It is a deep learning network able 
to predict a flexible shape representation using star-convex polygons, which can output a roundish 
shape, similar to cell nuclei. Moreover, the StarDist algorithm is based on U-Net and is simple to use 
and train. 



21 
 

StarDist predicts a star-convex polygon for every pixel, meaning that for every pixel with index 𝑖, 𝑗, it 

regresses the distances ൛𝑟௜,௝
௞ ൟ

௞ୀଵ

௡
 to the boundary of the object with equidistant angles, as can be 

seen in Figure 3.2.B. In addition, it predicts if a pixel is part of an object, considering only those with a 
high probability 𝑑௜,௝ for polygon proposals. NMS is applied after computing the polygon candidates to 
retain only the polygons with the highest object probability in a particular region (Schmidt et al., 
2018). 

 

 

Figure 3.2: StarDist 

A: Raw image; B: Star-polygons parameterized by the radial distance 𝑟௜,௝
௞ ; C: Predicted objects probabilities 𝑑௜,௝; 

Image Adapted from (Schmidt et al., 2018). 

 

 To classify if a pixel is part of an object, StarDist uses an object probability 𝑑௜,௝ as the Euclidean 

distance to the nearest background pixel. The Euclidean distances 𝑟௜,௝
௞  to the object boundary can be 

calculated by following each radial direction 𝑘 until a pixel with a different object identity is 
encountered. This way, instead of doing binary classification, the NMS favors polygons associated 
with pixels closer to the center of the cell. 

StarDist has as a base the U-Net architecture. However, after the final U-Net feature layer, an 
additional convolutional layer is added to prevent the two subsequent output layers from fighting 
over features. This final layer outputs the object probability.  

In the paper (Schmidt et al., 2018), StarDist was compared with Mask R-CNN and traditional U-Net. It 
demonstrated that the first methods based on axis-aligned bounding boxes, mask R-CNN, cannot 
segment some shapes. Additionally, it was demonstrated that StarDist has better accuracy than the 
traditional U-Net. Thus, concluding that StarDist outperforms all the other methods. 

The StarDist python package already has some pre-trained models incorporated, one of which was 
trained for nuclei segmentation in fluorescence microscopy 2D single-channel images.  

 

 



22 
 

3.2. TRACKMATE 

TrackMate is a popular software for automated single-particle tracking in 2D. It starts by detecting 
the objects in the image and then linking these objects over time. More specifically, first, the 
automatic detection phase uses a Laplacian of Gaussian filter applied to the image, with a sigma 
customized to the blob estimated size. Then, the tracker used is based on the Linear Assignment 
Problem mathematical framework. The spots are first linked frame to frame to build track segments, 
which afterward can be tuned in several ways, like gap closing and splitting and merging events. 
Furthermore, it has visualization and analysis tools able to show and evaluate these results (Tinevez 
et al., 2017). 

This software is an interactive Fiji plugin (Fiji is a pre-packaged distribution for performing biological-
image analysis). In other words, there are multiple consecutive stages, each corresponding to a step 
in the tracking process, where the users can choose the optimal algorithm and the best parameters 
for their type of biological images. In the end, it is able to perform many measurements to analyze 
the results, including spatial and temporal coordinates of the spots in each track, that is, the spot’s 
position in x and y, and the frame number (Tinevez et al., 2017). 

Moreover, it is a highly cited paper, with applications ranging from tracking the fluorescence paint 
spots on the non-human primate’s hand to studying the relationship between mid-lateral cerebellar 
complex spikes and decision making (Sendhilnathan et al., 2021). It has also been used in 
developmental and cell biology to track the division cycle of the blastoderm cells and to study 
microtubule dynamics in the zebrafish embryo (Bernardello et al., 2021). 

 

 

3.3. STARDIST AND TRACKMATE  

In 2020, a pipeline was proposed to automate cell segmentation and tracking in fluorescence and 
brightfield images by combining StarDist and TrackMate (Jacquemet et al., 2020). The idea is to use 
StarDist to segment the objects in each frame of a 3D image stack and generate tracking files based 
on the coordinates of the pixels associated with each final polygon. Then, these tracking files can be 
used as inputs for TrackMate to track the identified objects over time. Before applying StarDist, the 
authors trained a StarDist model for their data type, which is necessary if the pre-trained models 
available were not trained in similar data. 

 

 

3.4.  OTHER APPLICATIONS 

Other software and platforms, both commercial and open-source, could be used for segmentation 
and tracking, such as Imaris, Arivis, EmbryoMiner, DeepCell, 3DeeCellTracker, Ilastik, and CellProfiler 
Analyst 3.0. 



23 
 

Imaris is a commercial software used for live-cell segmentation, automated tracking, and 
visualization of multi-channel microscopy datasets of 2D images and 3D time series independently of 
their size (Imaris for Cell Biologists - Imaris - Oxford Instruments, n.d.). 

Arivis is another commercially available platform with various tools and modules for processing 
biology images. Arivis Vision4D is a modular software that deals with 2D, 3D, and 4D images from 
massive datasets. Moreover, it can perform semi-automated/manual segmentation and cell tracking, 
among other functionalities (Image Visualization and Analysis, n.d.). 

EmbryoMiner is an interactive framework for large-scale cell tracking of developing embryos. It was 
implemented on the open-source data mining toolbox SciXMiner for MATLAB. EmbryoMiner aims to 
visualize, annotate and analyze vast amounts of cell tracking data (Schott et al., 2018). 

DeepCell has a deep learning model for cell tracking (Moen et al., 2019). In addition, DeepCell is a 
platform containing data and many prediction models (DeepCell, n.d.). It has an available python 
package for single-cell analysis of biological images, enabling the user to apply the pre-existing 
models.  

3DeeCellTracker is a deep learning-based pipeline for segmentation and tracking cells in 3D time-
lapse images deforming/moving organs (Wen et al., 2021). 

Ilastik is an open-source software for image classification and segmentation based on interactive 
learning. It allows users to train their random forest classifier by providing the labels (Sommer et al., 
2011). 

CellProfiler Analyst is an open-source software package used to explore and analyze data 
interactively. In addition, it includes a feature to train machine learning classifiers (Jones et al., 2008). 

However, the multiple software mentioned in this section did not offer what was essential for this 
project. Imaris and Arivis are commercial software, which can become expensive, and thus, they 
have restricted access. Additionally, their code is private, making it very difficult to know how it 
works. Moreover, Imaris’ statement of handling data independently of their size might be slightly 
unrealistic since it cannot usually handle a few hundred GB of data. EmbryoMiner framework did not 
focus on the tracking algorithm, so it was not a good option for our project, which requires highly 
accurate applications. DeepCell did not have pre-trained models available on similar data to ours at 
the time, and so, it was not ready to be used for segmentation or tracking. Likewise, 3DeeCellTracker, 
Ilastik, and CellProfiler Analyst did not offer pre-trained models. 

In conclusion, StarDist and TrackMate seem to be the best combination of software to handle our 
data and provide accurate results, given the characteristics mentioned before. 

 



24 
 

4. DATA 

The data analyzed in this project are time-lapse series of in vivo Danionella translucida embryos. The 
movies are CZI files generated by Zeiss Lightsheet Z.1 microscope and were provided by the 
Champalimaud Foundation, Lisbon, Portugal. 

 

 

4.1. DANIONELLA TRANSLUCIDA CARE 

The Danionella translucida fish were raised at the Champalimaud Foundation Fish Facility, according 
to animal handling and experimental procedures approved by the Champalimaud Foundation Ethics 
Committee and the Portuguese Direcção Geral Veterinária and were performed according to the 
European Directive 2010/63/EU. 

 

 

4.2. DATA ACQUISITION  

4.2.1. Sample Preparation 

The strain used was the Danionella translucida transgenic line Tg(elavl3:H2B-GCaMP6s). This line is 
an unpublished line from Judkewitz Lab(Judkewitz Lab — Imaging Microscopy Neuroscience Berlin, 
n.d.).  

To obtain the required embryos for the experiment, Danionella translucida eggs were collected and 
transferred to Petri dishes containing E3 medium, where they were microinjected with Alpha-
bungarotoxin mRNA and H2B-mCherry mRNA at the one-cell stage (Wan et al., 2019). Then, they 
were placed in an incubator until the desired stage for the experiment was reached.  

Since chorions affect imaging, the embryos were manually dechorionated, illustrated in Figure 4.1, 
and were screened for the mCherry signal. Since the two constructs of H2B-mCherry and Alpha-
bungarotoxin mRNA were injected together, if the mCherry signal is present, then in principle, the 
embryos also incorporated the alpha-bungarotoxin construct. 

 



25 
 

 

Figure 4.1: Illustrative image of the dechorionation procedure 

A: intact embryo; B: egg fixed with one pair of tweezers; C: piercing the chorion with a second pair of tweezers; 
D: expanding the cleft by pulling apart the chorion using two tweezers; E: chorion with a cleft before lifting; and 

F: dechorionated embryo. Adapted from (Henn & Braunbeck, 2011). 

 

 

4.2.2. Light-sheet Imaging 

To observe in vivo development over time, we used light-sheet fluorescence microscopy, which 
combines gentle illumination with a high spatial-temporal resolution since only the plane that is 
being imaged is illuminated. Thus, it enabled us to image Danionella embryos for long periods and 
with high frequency more efficiently, without inducing significant phototoxicity on the embryos.  

Embryos were observed using a Lightsheet Z.1 microscope with one 10x/0.2 illumination objective 
and one 10x/0.5 detection objective. Solid-state lasers, with an output power of 50 mW, of 488 nm 
at 25%-35% power and 561nm at 2-5% power, were used to respectively excite GCaMP6f and 
mCherry fluorophores, with an exposure time of 30ms. A laser blocking filter 405/488/561/640 was 
used to avoid excitation light detection. A secondary beam splitter LP 560 and emission filters BP 
505-545 and BP 575-615 were used to detect the two signals selectively. Detection of emitted 
fluorescence was realized by two pco.edge 5.5 sCMOS cameras with a pixel size of 6.5 x 6.5 μm, 
outputting in 16-bit. The acquisition area was set to 800 x 1500 pixels, with a pixel size of 0.455 μm, 
at an internal zoom factor of 1. The thickness of the light-sheet was 4.12 μm. The temperature 
throughout the imaging period was maintained at 28.5 °C inside the chamber of the microscope. 

For light-sheet imaging preparation, the previously screened Danionella translucida embryos were 
transferred to EppendorfTM tubes containing 0.8% low melting temperature agarose at around 38 °C. 
Next, they were drawn into a glass capillary with a 1 mm inner diameter using a Teflon-tipped 
plunger, inserted into the microscope, which is schematically represented in Figure 4.2. 

 



26 
 

 

Figure 4.2: Scheme for the preparation for light-sheet imaging 

Illustration 0.8% agarose and a Danionella translucida embryo being drawn into a glass capillary (Kaufmann et 
al., 2012). 

 

The section of the agarose cylinder containing the sample was pulled out and oriented towards the 
objective lens. At the end of the experiment, the embryo heart rate and overall morphology were 
visually evaluated, and only the ones with normal heart rates were considered for further analysis. 

We acquired volumetric images every 2 seconds for 20 000 cycles, which corresponds to 
approximately 11.1 hours. A z-stack containing 19 slices with a 5 µm step interval, corresponding to 
90 µm of thickness, is acquired in each cycle. The number of slices was chosen as a way to image 
enough data of the spinal cord but taking into consideration the acquisition frequency. 

The time-lapse series were then transformed into maximum intensity projection (MIP), a technique 
for producing 2D images from 3D data, where it projects the voxels with the highest intensity value 
on every view throughout the volume onto a plane projection. We used only MIP files because we 
observed that in this developmental phase, neurons are distributed along the fish spine in a 
monolayer of cells, as shown in Figure 4.3, which shows the YZ orthogonal projection of an embryo. 
Therefore, projecting the whole signal in one plane did not reduce the information collected and 
provided the benefit of reducing the data size by 19 folds. Consequently, the efforts for data handling 
and computational power were proportionally reduced. 

 

Figure 4.3: YZ orthogonal projection of an embryo  

YZ orthogonal projection of a Danionella translucida embryo with the GCaMP6f (green) and the mCherry 
(magenta) signals. 

Plunger 

Capillary 

0.8% agarose 
Danionella translucida embryo 



27 
 

4.3. DATA DESCRIPTION 

The resulting MIP contains 16-bit images of two channels, a green channel corresponding to the 
GCaMP signal and a magenta to the mCherry signal. Each channel is an image stack composed of 
20000 2D images, corresponding to the number of cycles in the experiment. The channels can be 
visualized in Figure 4.4.  

The mCherry fluorescence indicates all the cells in the embryo. Not only is it used to make sure the 
embryo was injected correctly, as described in section 4.2.1, but it could also be used to identify the 
orientation of the embryo and to monitor the cells over time. In addition, GCaMP6f fluorescent 
protein is a calcium indicator for monitoring neuronal activity (Chen et al., 2013). 

 

Figure 4.4: Representation of the acquired channels 

 Channels of one frame of a Danionella translucida embryo. A: GCaMP6f signal; B: mCherry signal; C: Composite 
image of A and B with the GCaMP6f (green) and mCherry (magenta) signals overlapped. 

 

An initial evaluation of the data acquired through this high-frequency observation showed some 
decrease in the fluorescence intensity. The graph in Figure 4.5 shows the exponential decay of the 
intensity throughout time. By fitting an exponential regression model in the data, we obtained an R2 

of 0.9816. 



28 
 

 

Figure 4.5: Intensity during the time of the experiment 

 

This decay is due to some photodamaging effects caused by prolonged exposure to high-intensity 
light. Even though the excitation in the light sheet microscope is restricted merely to the volume near 
the focal plane, there is still some damage to the fluorophores being imaged. Figure 4.6 shows the 
fade of intensity in the embryo throughout the experiment. 

 

Figure 4.6: Representation of the intensity fading over time in a Danionella translucida embryo  

Time goes from left to right, where the leftmost image is the first, and the rightmost image is the last. 

 

Since the goal is to understand the neuronal circuit, only the GCaMP6f signal is necessary for the 
detection, segmentation, tracking, and analysis steps. After further analyzing the images, the active 
neurons can be observed. They transmit higher intensity light, which can be seen in lighter colors, as 



29 
 

shown in Figure 4.7. On average, the neurons have a 6 µm diameter, and there are around 100-400 
neurons detected at each time point. 

 

 

Figure 4.7: Cropped frame from a Danionella Translucida embryo 

 

For the next steps of the project, only three movies were considered, all imaged at around the same 
hours-post-fertilization (hpf) and with similar characteristics. Each movie corresponds to a different 
embryo. 



30 
 

5. METHODOLOGY 

The present chapter describes each step of the analysis process and their respective result to achieve 
this dissertation’s goal. Additionally, the chapter describes the tools used in this project. 

 

 

5.1. TOOLS 

We used Fiji, an open-source platform for biological-image analysis (Schindelin et al., 2012), and the 
programming language Python 3.7. Fiji was utilized to visualize the data and track the cells with 
TrackMate (Tinevez et al., 2017). The remaining analysis was performed using Jupyter Notebooks on 
Anaconda Navigator, a python distribution containing open-source packages for data processing.  

 

 

5.2. SEGMENTATION USING STARDIST 

The first step for the analysis is to segment the neurons. This step was performed using StarDist. As 
mentioned in section 3.1, StarDist exists as a python package with pre-trained models for 2D, one of 
which was trained on fluorescence nuclei images, identical to our data. Thus, there is no need to 
introduce a new model to segment the data since we can predict the segmentation using the model 
already trained. 

The algorithm consists of a loop of repeated steps for each image in the stack. First, a low blurring 
filter was applied to smooth the image and remove noise. The chosen filter was the median filter 
with a radius of 2 pixels, given that it efficiently smooths the noise while preserving sharp edges 
(Justusson, 1981). Next, we used the function predict_instances from the StarDist module to 
generate a labeled image, the mask, and the star-polygons information, including the outline and 
center coordinates for each segmented object. The resulting segmentation can be visualized in Figure 
5.1. Finally, each labeled image was concatenated into a stack, and it was saved as a single TIFF able 
to contain several images. Additionally, a RoI folder was exported containing the region coordinates 
of all segmented objects in each image, which can be directly imported in Fiji. To sum up, StarDist 
was applied, and its parameters were optimized to get the best possible results. 

Different probability and overlap thresholds were tested, and the results were evaluated, by direct 
observation, to find the optimal one in our data. 

 

 

 

 



31 
 

 

Figure 5.1: StarDist segmentation  

A: Original image; B: Labeled image. 

 

 

5.2.1. Validation 

Even though the model used was pre-trained on a similar dataset, it is necessary to guarantee that 
the segmentation can be considered valid. Hence, to evaluate the segmentation performed by 
StarDist, two tests were performed. The first one compares StarDist segmentation with human 
segmentation on a subset of randomly cropped images from different files in our data. However, this 
test is biased because the absolute number of objects in the image is unknown, and there are 
discrepancies even between humans in annotating the images. 

To overcome this limitation, we generated a set of synthetic data, where the ground truth is known, 
and compared the performance between the humans and StarDist in segmenting the images. The 
synthetic images were generated to be similar to the real ones. 

In both evaluations, the humans were divided between experts in the biology images (3 people) and 
non-experts (3 people). Each group was composed of three humans. 

 

 

5.2.1.1. Comparison between StarDist and human segmentation 

For this assessment, thirty images were randomly cropped from our data to contain diverse regions 
of interest from different frames. The cropped images were small, about 100 × 100 pixels, and each 
included around twenty to thirty nuclei. Both groups, experts and non-experts, received fifteen 



32 
 

images, and all the humans in that group segmented all fifteen pictures. In addition, the thirty images 
were also segmented by StarDist. 

Before running this test, we compared the performance of StarDist between cropped and entire 
images to observe if its performance would diminish when cropping an image. A set of randomly 
selected images was segmented using StarDist, and subsequently, each image was cropped on a 
specific region of interest. Next, the same set of images were, first, cropped on the same region of 
interest, and then, StarDist was used again, receiving as input only the cropped area. 

Let’s consider that group A contains the images, which the segmentation was performed on the 
entire image first, and group B includes the others. The next step was to compare the number of 
segmented objects between each duplicate pair. On average, group B had 80% of the total number 
of items segmented on group A. The fact that group B has a smaller number of segmented objects 
could be because when cropping the image, some objects on the region’s border are also cropped, 
and thus, StarDist cannot recognize it as an object. However, this can also occur to humans when 
having access to only part of an image. Therefore, the difference was logical and StarDist 
performance on cropped images was not considered worse than on the entire frame. 

The humans performed the segmentation manually on the Fiji platform. Then, they exported the RoIs 
of each object so we could compare the coordinates between the segmented objects in an image by 
StarDist and by a human. Additionally, they segmented the images independently from each other to 
avoid bias. Figure 5.2 shows the comparison between the segmentation by a human, Figure 5.2.B, 
and by StarDist, Figure 5.2.C.  

 

 

Figure 5.2: Example of the segmentation performed by a human and by StarDist  

A: Original image; B: Human segmentation; C: StarDist segmentation. 

 

We started by comparing the number of objects identified. For each human, it was calculated the 

statistical mean between ௤௨௔௡௧௜௧௬ ௢௙ ோ௢ூ௦ ௙௥௢௠ ௌ௧௔௥஽௜௦௧ᇲ௦ ௦௘௚௠௘௡௧௔௧௜௢௡

௤௨௔௡௧௜௧௬ ௢௙ ோ௢ூ௦ ௙௥௢௠ ௔ ௛௨௠௔௡ᇲ௦ ௦௘௚௠௘௡௧௔௧௜௢௡
 on each image. On average, 

StarDist segmented 1.9 times more objects than the humans.  



33 
 

Nonetheless, the quantity of objects doesn’t inform if the objects segmented are the same between 
humans and StarDist. For example, it may happen that StarDist and a human segmented the same 
number of items in an image, but they are different. For this purpose, it was verified how many 
segmented neurons were the same by comparing the position of the centroids of each. The centroids 
were calculated from the RoI coordinates. However, even though all the humans used the Fiji 
platform for the segmentation, they chose different selection tools, implying that the RoIs between 
some humans had the information organized differently. In total, there were three types: 

-  Two lists contained coordinates corresponding to the outline of the RoI, one for the x-axis 
and another for the y-axis. The centroid could be calculated by the average point, that is 
(𝑥௖ , 𝑦௖) =  (𝑎𝑣𝑔(∑ 𝑥), 𝑎𝑣𝑔(∑ 𝑦) ); 

- Values for top, left, width, and height, i.e., top, correspond to the y lowest value since the y 

axis is from top to bottom on Fiji.  The centroid was (𝑥௖ , 𝑦௖) =  (𝑙𝑒𝑓𝑡 +
௪௜ௗ௧௛

ଶ
, 𝑡𝑜𝑝 +

௛௘௜௚௛௧

ଶ
 ); 

- Coordinates of two points, (𝑥1, 𝑦1) and (𝑥2, 𝑦2), corresponding to the extremes of a line 

segment in the RoI. The centroid is the center of that segment, (𝑥௖ , 𝑦௖) = ቀ
௫ଵା௫ଶ

ଶ
,

௬ଵା௬ଶ

ଶ
ቁ. 

 

Two objects are considered the same if the distance between their centroids is lower or equal to 3 
pixels. This criterion was based on the distribution of the minimum distance between each centroid. 
The majority had a space lower or equal to 3 pixels, as can be visualized in Figure 5.3.  

 

Figure 5.3: Distribution graph for the minimum distance between two centroids  

The distances were separated into bins, which are represented in blue color. For experts, 66% of the minimum 
distances were lower or equal to 3 pixels, and for non-experts was 71%. In addition, the red line is a curve fitting 

of a gaussian distribution. The R-squared was 0.95 and 0.96 for experts and non-experts, respectively. 

 

The final step is to calculate the percentage of objects identified equally in each image by dividing the 
number of matching items by the total number from the one that segmented less. On average, 76% 
of objects were considered the same between humans and StarDist segmentation. In particular, 75% 
for the experts' segmentation and 77% for the non-experts. To conclude, non-experts’ segmentation 
was more similar to StarDist than the non-experts’ segmentation. However, this difference is 
minimal. 



34 
 

5.2.1.2. Comparison between StarDist and human segmentation performed on synthetic 

data  

Fifteen synthetic images were created on python by creating ellipses of different shapes, sizes, and 
intensities to be the most possible similar to the actual data. In addition, the ellipses had diameters 
identical to the neurons, and they were placed randomly in an image with a black background. The 
number of ellipses created in each image was generated based on the frequency of the number of 
objects segmented in the thirty previous pictures. In the end, some noise was added to become more 
realistic. Finally, the synthetic images created were all segmented by StarDist and all the Humans 
(experts and non-experts). Figure 5.4 shows two of those fifteen images. 

 

Figure 5.4: Synthetic images 

 

This second evaluation assumed as ground truth the number of objects as returned by the image 
generating algorithm. Then it was compared with the quantity that StarDist and the humans 
segmented. Figure 5.5 shows the comparison for each image sorted by the number of objects 
between the ground truth, StarDist, experts, and non-experts. As the number of items increases, 
both StarDist and humans segment less, proportionally to the ground truth. This difference is likely 
due to the presence of overlapping objects in a more populated image. In general, both the humans 
and StarDist segmented less quantity than the ground truth. On average, StarDist segmented 82% of 
the ground truth, experts 84%, and non-experts 78%. 

 

Figure 5.5: Graph comparing the number of segmented objects between StarDist, Experts, and Non-
experts on the synthetic images 



35 
 

In Figure 5.6, all the humans are compiled in one line, and it shows that all the humans, on average, 
perform pretty similar to StarDist. In total, all the humans segmented 81% of the ground truth. 

 

Figure 5.6: Graph comparing the number of segmented objects between StarDist and humans on the 
synthetic images 

 

 

5.2.1.3. Conclusion on the validation 

To sum up, when comparing the ground truth, humans and StarDist segmentation, it showed that 
StarDist and humans have almost the same performance, wherein general experts segmented a little 
more and non-expert a little less than StarDist. Additionally, comparing the StarDist segmentation 
and the humans segmentation in the actual data showed that StarDist segmented, on average, more 
objects, and that 76% of the objects segmented between StarDist and the humans were considered 
the same. Therefore, the segmentation performed by StarDist can be deemed valid for the 
segmentation step. 

 

 

5.3.  INTENSITIES  

To study the neural activity of the Danionella translucida embryo, we needed to measure the 
intensities of the neurons over time. Therefore, after the segmentation performed by StarDist, we 
calculated for each segmented object in all the images their mean intensities. 

The python package scikit-image was developed for image processing (Van Der Walt et al., 2014). It 
includes a function called ‘measure.regionprops_table’ able to compute properties for each 
segmented region. This function receives the labeled image and the original image as input, and it 
returns a table with the chosen properties, the value of the mean intensity, and the centroid 
coordinates. Thus, every image generated a table, like Table 5.1, containing the mean intensity, 
centroid coordinates, and frame number, that is, the position of the image in the stack. 



36 
 

 

Table 5.1: Intensity table 

This table was from the dataset with 20000 frames or cycles. It has five columns, label identity, mean intensity, 
y coordinate, x coordinate, and frame number. 

 

 

5.4. TRACKING FILE 

In the paper (Jacquemet et al., 2020), the tracking file was generated with the star-polygons center 
coordinates from StarDist. However, there is a discrepancy between the StarDist’s star-polygons 
centers, and the geometric center retrieved from regionprops, as shown in figure 5.7. 

 

Figure 5.7: Comparison between the centroid from StarDist and the actual geometric center  

The red dot is the centroid of the star-polygons resulting from the segmentation by StarDist. The yellow dot is 
the geometric center, which corresponds to the values on the intensity table. 

 

Therefore, the tracking file was generated using the centroid coordinates from the intensity table. 
First, all the centroid coordinated were saved organized in lists, each for each image in the stack. 



37 
 

Next, for each position, a point was generated in the corresponding coordinates and frame number. 
Figure 5.8 shows the code used to create this file. In addition, Figure 5.9 shows an example of the 
tracking file overlapping the original image. 

 

Figure 5.8: Tracking file code 

 

 

Figure 5.9: Centroids from the tracking file overlapping the original image 

This figure is a cropped image from a random frame. The white points are the circles created in the tracking 
file, and the ellipse shape objects correspond to objects in the original file. 

 

 

5.5. TRACKING USING TRACKMATE  

The tracking file was imported in the Fiji plugin, TrackMate, to connect the dots in time to create the 
tracks, as can be visualized in Figure 5.10. Trackmate’s pipeline main steps begin by choosing a 
detector. In our case, we used the Downsample LoG detector, with an input size of 1 micron for the 



38 
 

estimated diameter of the objects. The next important step is choosing the tracker algorithm and its 
parameters. We chose LAP Tracker since it allows us to deal with gap-closing events, that is, having 
spots linking with a frame gap, because there could be frames where StarDist misses to segment 
some object. For its parameters, the following values were assigned: 

1. The maximum distance between the frame to frame linking was 6 microns, corresponding to 
the average diameter size of a neuron. 

2. The gap closing maximum distance was 10 microns, selected taking into account the 
maximum distance a neuron can travel. 

3. The gap closing maximum frame gap was 400, corresponding to around 13 minutes, which is 
a small interval in the entire experiment. 
 

 

Figure 5.10: Tracks in TrackMate  

It is an example of a sequence of images showing the tracks being generated in time. 

 

TrackMate generated tables with information about the tracks. Each spot is assigned to a unique 
track, identified by a Track ID, and returns its coordinates and frame number. An example is shown in 
Table 5.2. 



39 
 

 

Table 5.2: TrackMate table – Statistics about spots in tracks 

This table has information about the dot coordinates and frame number, the same as the Intensity table. The 
only difference here is that the coordinates are rounded. 

 

As shown in Table 5.2, for each experiment, more than one thousand tracks were generated. 

 

 

5.6.  TABLE WITH SPOTS INFORMATION AND INTENSITIES 

The mean intensities previously calculated (see section 5.3) can be added to the TrackMate Table to 
the correspondent centroid coordinates and frame number. Each row corresponds to one segmented 
object. Hence, for each row on the Intensity Table, the coordinates and frame values were first 
extracted. Then, a row on the TrackMate Table matching those values was searched, and when 
found, the mean intensity was added in a new column. Accordingly, the final table looks like Table 
5.3. 



40 
 

 

Table 5.3: TrackMate table with mean intensity for each object 

This table is equal to table 5.2 with an added column for the corresponding mean intensities. 

 

 

5.7. DISTINGUISH BETWEEN LEFT AND RIGHT SIDE OF THE EMBRYO 

In order to achieve the goal of describing the neural activity of a Danionella translucida embryo, a 
piece of vital information is to know if a neuron belongs to the left or right side of the embryo. For 
this reason, we first needed to have a comparison point, so having the coordinates of the embryo’s 
skeleton allowed us to know if a neuron is on the left or the right. The python package scikit-image 
(Van Der Walt et al., 2014) contains a function, skeletonize, that computes the skeleton of the object 
in an image. It works by making successive passes. On each border, pixels are identified and removed 
if they do not break the connectivity of the corresponding object (Skeletonize — Skimage 
v0.19.0.Dev0 Docs, n.d.).  However, the input image has to be binary. Thus, before using the function 
skeletonize, a blurring filter was applied to smooth the whole embryo, and then a binary mask was 
created. In Figure 5.11 it can be visualized the steps to produce the skeleton and the result. 

 



41 
 

 

Figure 5.11: Skeleton of an embryo  

Example of the process to create the skeleton in an image. A: Original Image; B: Blurred object; C: Binary mask 
of the blurred object; D: Skeleton generated by the skeletonize function; E: Skeleton, blue line, overlapping the 

original image. 

 

The pipeline to assign the position of a neuron starts by generating the skeleton for each image, 
followed by computing the side belonging to each object and adding this information to the 
TrackMate with Intensities Table, as visualized in Table 5.4. In the cases where the spot belongs to 
the skeleton coordinates, the side assigned on the table was ‘on the line’. 

 

Table 5.4: TrackMate table with mean intensities and side information  

The side information can have three labels: ‘left’, ‘right’, or ‘on the line’. 

 

 



42 
 

Since the generation of the skeleton is not precise and considering that the neurons move in the 
embryo over time, spots in the tracks may have different sides assigned over time. To overcome this 
issue, each track ID, corresponding to a single neuron, was counted which side appeared the most 
through time, and the majority side was assigned to the track ID, as can be visualized in Table 5.5. 

 

Table 5.5: Table with side information for each neuron 

        

 

5.8. ANALYSIS OF THE TABLES 

To understand how the neural activity in each side of the embryo was behaving over time, the 
TrackMate table with the intensities, Table 5.3, was split into 2, one for each side. Table 5.5. 

For each side table, the intensities of all the tracks over time were plotted on a graph. Then, for each 
track, the intensities over time were standardized using equation 5.1 to rescale the distribution of 
the values to have a mean equal to 0 and a standard deviation equal to 1. 

𝑡௡௢௥௠ =
(𝑡 − 𝑚𝑒𝑎𝑛)

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 

Where 𝑚𝑒𝑎𝑛 =  
∑ ௫೙

೔

௡
 , and 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =  ට

∑ (௫೔ି௠௘௔௡)మ೙
೔

௡ିଵ
 , 𝑛  =  number of data points. 

Afterward, the tracks were organized according to their y position to have the tracks arranged from 
tail to head, as shown in Figure 5.12. 

(5.1) 



43 
 

 

Figure 5.12: Organized graph - Intensity over time  

This graph only plotted the last ≈1.1 hours of an experiment and only for the left side of the embryo. Since there 
are hundreds of tracks, it would not be a clear visualization to plot them all. 

 

For each side, the intensity peaks, which correspond to the firing of a neuron, were studied using the 
function ‘find_peaks’ (Scipy.Signal.Find_peaks — SciPy v1.7.1 Manual, n.d.) This function belongs to 
the module Signal of the python library SciPy, developed for scientific computing (Virtanen et al., 
n.d.). It enabled us to find peaks based on their prominence. The prominence of a peak measures 
how much the peak stands out by the vertical distance between the highest point and its lowest 
contour line. This way, we could exclude smaller peaks, which could be related to changes in the 
embryo’s intensity due to the experiment’s external factors. After identifying the peaks, their 
frequency was calculated over time by creating a binary table, where 1 corresponds to the existence 
of a peak and 0 otherwise (Table 5.6). 



44 
 

 

Table 5.6: Binary table – Existence of peaks 

  

Subsequently, we selected all the peaks from the frames that contained at least two. Then, the y 
position of those peaks was extracted. Finally, the y position of the peaks was plotted over time, as 
shown in Figure 5.13.  

 

Figure 5.13: Graph with intensity peaks 

In this graph, the peaks of all frames were plotted. The x-axis represents the frames, and the y-axis represents 
the peaks’ position in y. 

 

 



45 
 

6. RESULTS 

The present chapter provides the analysis results on the three movies selected for this study. One of 
the analysis steps was to separate the embryo into two parts, left and right, which means there are 
always two final graphs for each movie.  The two graphs represent the frequency of the intensity 
peaks over time and the intensity peaks’ position in y over time. They were considered the most 
important because their visualization gives an overview of the neural activity present in the embryos.  

This chapter also shows a graph resulting from a small analysis to an additional subset from a fourth 
movie. The embryo in this movie was imaged at a later embryonic stage when we can observe the 
coordinated neural activity. We analyzed a subset of coordinated neurons and plotted their 
intensities over time. 

 

 

6.1. NEURAL ACTIVITY OF THE EMBRYOS FROM THE SELECTED MOVIES 

6.1.1. Frequency of the Intensity peaks 

The frequency of the intensity peaks over time enables us to understand how the quantity evolves 
over time, whether there was a decrease, increase, or even if they remained stable. Since each movie 
has 20 000 frames, the peaks were added up in bins of 200 frames to allow a better visualization of 
the final graphs. Figure 6.1 shows all the frequency graphs for the three movies. Each row 
corresponds to a different MIP file, and the columns correspond to the side of the embryo in that 
movie, i.e., the column on the left represents the left side of the embryo, and the right column 
represents the right side. Each frequency graph has the bins of frames on the x-axis and the quantity 
on the y-axis. 

 

 

 

 

 

 



46 
 

 Left Side Right Side 

             
M
o
v
i
e 

1 
 

              
M
o
v
i
e 

2 
 

                         
M
o
v
i
e  

3 
 

Figure 6.1: Peaks Frequency  

The six graphs show the peaks frequency by movie on each side. The rows represent different movies, and the 
columns correspond to the sides. The column on the left symbolizes the left side and the column on the right, 

the right side. 

The number of peaks was added up in bins of 200 frames to have a better visualization. On the x-axis, there are 
the bins, and in the y-axis, the number of peaks. 

 

To understand how the changes in frequency were affected by the total number of neurons in the 
system, we also plotted the number of all identified objects in each frame. Figure 6.2 shows a graph 
for each movie with the number of neurons in time. 



47 
 

Movie 
1 

 

Movie 
2 

 

Movie 
3 

 

Figure 6.2: Quantity of objects in time  

The three graphs show the number of objects for every movie, where each row corresponds to a different file. In 
each graph, the x-axis represents the frames and the y-axis the quantity. 

 

 

6.1.2. Position of the intensity peaks over time 

The position in y of the intensity peaks over time enables us to visualize where and when the embryo 
was most active and subsequently observe the synchronized activity. These graphs can be visualized 
in Figure 6.3, which has the same organization as Figure 6.1. The x-axis represents the frames, and 
the y-axis represents the peaks’ position in y. 



48 
 

 Left Side Right Side 

M
o
v
i
e  

1 

M
o
v
i
e  

2 

Figure 6.3: Intensity peaks’ position in y over time 

The six graphs represent the peaks Intensity peaks’ position in y over time by movie and side. The rows 
represent different movies, and the columns correspond to the sides. The column on the left symbolizes the left 
side and the column on the right, the right side. The x-axis represents the frames, and the y-axis represents the 

peaks’ position in y.  

(Figure continues the next page) 



49 
 

M
o
v
i
e
 
3 

 

 

 

6.2. NEURAL ACTIVITY AT A LATER STAGE OF EMBRYONIC DEVELOPMENT 

6.2.1. Intensity over time of coordinated neurons 

For the fourth movie’s analysis, we wanted to visualize a representation of the intensities of a few 
coordinated neurons. With that aim, we studied, by direct observation, regions on the embryo which 
seemed to have neurons firing simultaneously, and the coordinates of those areas were extracted. 
Then, the analysis pipeline described previously was applied to extract the neurons’ position and 
intensity over time. Finally, multiple sets of neurons were analyzed in order to select one that 
demonstrates the evolution of the intensity of coordinated neurons throughout time. Figure 6.4 
shows a graph with ten neurons firing almost always at the same time.  

 

 

 



50 
 

 

Figure 6.4: Intensity in time of coordinated neurons  

The graph demonstrates ten lines (in gray), one for each neuron, with their peaks almost always in the same 
place in 100 frames. In addition, to a blue line that represents the sum of the intensities of the coordinated 

neurons. The x-axis represents the frames, and the y-axis is the intensity of the lines organized by their 
corresponding neuron’s position in y.  

 

Figure 6.5 demonstrates a representation of neurons firing in a small sequence of frames. Their 
intensities change throughout the sequence, where the images with brighter neurons correspond to 
intensity peaks of those neurons. The neurons shown were the same ones selected for Figure 6.4. 

      

Figure 6.5: Sequence of frames showing the neurons firing 

Each image corresponds to a frame. In frames A, C, and E, the intensities of the neurons are more deemed. In 
frames B, D, and F, the intensities of the neurons are brighter, corresponding to intensity peaks. 

 

As a means of comparison, Figure 6.6 displays a graph similar to the one in Figure 6.4. However, in 
this graph, the intensities are representative of uncoordinated neurons from one of the three movies 
from the same time interval.  

A F B C D E 



51 
 

 

Figure 6.6: Intensity in time of uncoordinated neurons 

The graph demonstrates the intensities over time of uncoordinated neurons in gray. In addition, to a blue trace 
that represents the sum of the intensities of the coordinated neurons. The x-axis represents the frames, and the 

y-axis is the intensity of the lines organized by their corresponding neuron’s position in y. 

 



52 
 

7. DISCUSSION 

This chapter presents a discussion about the results demonstrated in the previous chapter. In 
addition, it provides an analysis of the overall performance of the software. 

 

7.1. NEURAL ACTIVITY OF THE EMBRYOS FROM THE SELECTED MOVIES 

7.1.1. Frequency of the Intensity peaks 

In Figure 6.1, we can observe that the different sides of the embryo have comparable behavior in 
each movie. The fact that some sides have a larger quantity of peaks than their opposite side is due 
to a high number of tracks in the formers. Furthermore, this difference could be a consequence of 
some error that might occur when dividing the embryo into two parts vertically. In other words, the 
line that makes this division could be slightly misaligned. 

Movie 1: Both sides maintain more or less the same quantity of peaks. Overall, from the beginning to 
the end of the movie, there is a slight decrease of around 2000 peaks 

Movie 2: Both sides have an initial increase in the number of peaks. The left side follows with a slight 
decrease but then increases again until the end. The right side, after the rise, maintains more or less 
the same quantity of peaks and then displays a slight decrease in the final frames. 

Movie 3: Both sides have an exponential decrease of the number of peaks initially, followed by a 
slight increase until the end. 

The decrease in the number of peaks in Figure 6.1 is correlated with a decline in the number of 
neurons in the same embryo, as can be observed in Figure 6.2. More specifically, the number of 
neurons in time in Movie 1 and 3 have the same behavior as the number of peaks on both sides of 
the respective movie. In Movie 2, the quantity of neurons is roughly steady in the end, but the 
number of peaks on the left increases and on the right decreases, so we could say that they also have 
the same behavior on average. 

The decrease in the number of neurons could be related to the quality of the images. More precisely, 
it could be due to the general decrease of the intensity in the movies, as shown in Figure 4.4 in 
section 4.3, due to photophysical processes as photobleaching. In contrast, the increase in the 
number of neurons could be due to the development of the embryo. After all, as the embryo is 
developing, the number of cells is growing. 

In conclusion, the frequency of the intensity peaks and the number of neurons over time suggest that 
we were entirely able to image and identify the active neurons since each intensity peak corresponds 
to the moment when a neuron is firing, implying it is active. 

 

 



53 
 

7.1.2. Intensity peaks’ position in y over time 

In Figure 6.3, we notice that there are almost parallel curves in all the movies that go upwards most 
of the time. In addition, the different sides of each embryo have the same behavior.  

Movie 1 has a constant inclination upwards all the time 

Movie 2 has short periods, one in the beginning and the other at the end, where the lines are steady. 
However, the rest of the time, the curves have a positive slope. 

Movie 3 has a minimal movement downward in the first frames, followed by an inclination upwards. 

The movements of the curves represent the migration of cells, which was possible to confirm by 
looking at the movies, where we can see the neurons on the embryos moving according to what is 
represented on the graphs. 

In addition, by observing the number of the curves, we can understand where and when the neural 
activity was most active. In all three movies, we can see more quantity in the bottom part of the 
embryo. In particular, Movie 2 and 3 show a local increased neural activity in the that region. The 
concentration in the bottom part implies that the neurons are more active in the tail region of the 
embryo. Consequently, the position where the neurons are firing more suggests an association with 
the extension of the tail. Since the period when the tail elongates implies that the neurons need to 
be more active in that region. 

There is a temporal shift among these movies due to the uncertainty in the fecundation time. 
However, it is possible to identify the specific temporal event corresponding to the tail extension in 
all three movies. In particular, in Movie 1, this event can be observed right at the beginning, but for 
Movie 2 and 3, it appears only in the second half of the experiment time, around the frame 12500 
and 15000, respectively. 

 

 

7.2. NEURAL ACTIVITY AT A LATER STAGE OF EMBRYONIC DEVELOPMENT 

7.2.1. Intensity over time of coordinated neurons 

Since we were not able to observe coordinated behavior in the very early stages of Danionella's 
development, we focused our attention on later stages. Here we could observe the coordinate firing 
of multiple neurons, as shown in Figure 6.4. In the graph, a subset of 10 neurons was followed over 
100 frames, corresponding to 3.3 minutes, which are firing simultaneously, at a high temporal 
frequency, as can be seen by the sum of the intensities, which follows the same pattern as the 
intensities of the coordinated neurons.  

As a comparison, Figure 6.6 shows the intensities of uncoordinated neurons in the same time interval 
from one of the three files analyzed previously. We selected a short time interval representative of 
the behavior of these neurons during the whole duration of the movie, and by observing the sum of 
the intensities, it can be seen that it does not follow any pattern, as opposed to the sum of the 



54 
 

intensities of the coordinated neurons. These preliminary results of imaging embryos at a later stage 
of embryonic development highlight the ability to extend our analysis pipeline to a more developed 
embryo. 

 

7.3. PERFORMANCE OF THE SOFTWARE 

The StarDist validation on section 5.2.1 showed that StarDist manages to identify and segment 
neurons in Danionella translucida embryos without the need to train a new model. Likewise, the 
graphs previously referred to in the previous sections also indicate that the tracking performed by 
TrackMate and the remaining steps of the analysis were significantly good. Since the quantity of 
neurons is proportional to the number of intensity peaks of active neurons, one could infer that 
there was no loss of information throughout the whole analysis. 

To sum up, the software chosen were suitable and had a good performance. 

 

 

 



55 
 

8. CONCLUSIONS 

An imaging method and an analysis pipeline based on deep learning were proposed to image 
Danionella translucida embryos and then investigate their neuronal activity as a way to achieve the 
aim of this dissertation. Accordingly, to the outcomes made throughout this project, several 
conclusions could be made: 

 We were able to image several Danionella translucida embryos using light-sheet fluorescence 

microscopy.  

 StarDist was effective in segmenting the neurons in the embryos imaged. 

 TrackMate could track the segmented neurons. In particular, it could track the centroids of 

neurons from the tracking file that we successfully generated. 

 We managed to identify and locate the neurons, specifying whether they belonged to the left 

or right side and whether they belonged to the bottom, center, or top region. 

 We could visualize the onset neural activity and also the synchronized activity of a few 

neurons. 

 We believe we could observe the consistent migration of cells and the incremental activity 

during the tail extension. 

In conclusion, the methods chosen to image and analyze the data successfully studied the neural 
activity of Danionella translucida embryos imaged. 

 

 

8.1. IMPLICATIONS BASED ON THIS PROJECT 

This project proves it is possible to image developing Danionella translucida embryos during long 
periods of time using light-sheet fluorescence microscopy. Moreover, it is possible to perform deep 
learning-based analysis to identify, segment, and track the neurons in fluorescence images. Despite 
having studied only three full movies from embryos imaged at a similar embryonic stage, and a small 
subset from an embryo at a later developmental stage, it demonstrates great potential to perform a 
more in-depth study on the neural activity in Danionella translucida embryo. In addition, it shows a 
reliable procedure to analyze fluorescence microscopy images that can detect, track, and explore the 
signal in time. 

 

 

8.2. LIMITATIONS 

While the results demonstrate that the proposed procedure was an excellent approach to describe 
the neural activity of the Danionella translucida embryo, some limitations should be taken into 
consideration when making assumptions based on this study. 



56 
 

Due to the novelty of using Danionella translucida embryos in biological studies, it was challenging to 
know the correct time to image the embryos, more precisely when the transition from stochastic to 
coordinated neuronal activity happens. This problem led to only a few big movies with embryos in 
similar development periods that could be used for the analysis. Additionally, the neural activity was 
not fully synchronized in these movies. 

Moreover, due to the limited computational power available and time constraints, it was impossible 
to image and analyze longer movies corresponding to longer imaging time or explore more movies.   

Even with access to a computer with considerable capability, separating the files in quarters was 
necessary to perform the proper segmentation. Then, in the end, the labeled images from the 
different quarters were compiled into the correct order for the next steps. This implies that to use 
StarDist segmentation, it is necessary a computer with a RAM larger enough to handle the size of the 
big data files. 

Consequently, three movies might not be enough to conclude about certain behaviors of the 
neurons. 

 

 

8.3. FUTURE WORK 

The recommendations for potential future work are highly associated with the limitations stated 
previously in this chapter.  

Firstly, it is still an open question to observe the transition from stochastic to coordinated neural 
activity in Danionella translucida embryo. Even though we could not observe the coordination we 
expected in the stage of embryonic development that we examined, we were able to implement the 
necessary tools for that goal. Hence, future work could focus on imaging at a later stage and during 
more prolonged periods and, subsequently, with more computational power, analyze longer movies 
in order to describe the transition to synchronized neural activity. 

Secondly, we were able to extract the neuron's position, and this information could be used in a 
detailed analysis. For example, instead of only comparing the sides of the embryo, it would be 
interesting to compare regions by bottom, center, and top. More specifically, tail, center, and head 
regions. We were indeed able to make this division. However, because of the time limit, we realized 
that it was enough to compare the sides of the embryo for this dissertation because it gave a general 
overview. In summary, all the information already extracted could be used for a more in-depth study 
of the neural activity in Danionella translucida embryos. 

Moreover, the methods used for imaging and analysis based on deep learning could benefit not only 
neuroscientists, but the biological community in general, since they could be used to study signals 
from different types of cells that otherwise would be too complex to be analyzed. For example, it 
could be used to study the development of different organs in fish or the development of other 
model systems, like Drosophila. 



57 
 

Furthermore, this work could be extended to 3D detection and tracking since most organs and 
organisms depend on a correct 3D organization to function. So, limiting to 2D translates into a 
significant loss of information. 

In conclusion, this project offers exceptional value for scientists that need to study long and complex 
biological processes that need the help of artificial intelligence algorithm to detect, track and extract 
meaningful information.  

 



58 
 

9. BIBLIOGRAPHY 

Bernardello, M., Marsal, M., Gualda, E. J., & Loza-Alvarez, P. (2021). Light-sheet fluorescence 
microscopy for the in vivo study of microtubule dynamics in the zebrafish embryo. Biomedical 
Optics Express, 12(10), 6237. https://doi.org/10.1364/BOE.438402 

Chen, T. W., Wardill, T. J., Sun, Y., Pulver, S. R., Renninger, S. L., Baohan, A., Schreiter, E. R., Kerr, R. 
A., Orger, M. B., Jayaraman, V., Looger, L. L., Svoboda, K., & Kim, D. S. (2013). Ultrasensitive 
fluorescent proteins for imaging neuronal activity. Nature, 499(7458), 295–300. 
https://doi.org/10.1038/NATURE12354 

DeepCell. (n.d.). Retrieved November 19, 2021, from https://www.deepcell.org/ 

Girshick, R. (2015). Fast R-CNN. https://github.com/rbgirshick/ 

Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object 
detection and semantic segmentation Tech report (v5). hƩp://www.cs.berkeley.edu/˜rbg/rcnn. 

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press. 
http://www.deeplearningbook.org 

Haykin, S., York, N., San, B., London, F., Sydney, T., Singapore, T., Mexico, M., Munich, C., Cape, P., 
Hong, T., & Montreal, K. (2009). Neural Networks and Learning Machines Third Edition. 

He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2018). Mask R-CNN. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 42(2), 386–397. https://arxiv.org/abs/1703.06870v3 

Henn, K., & Braunbeck, T. (2011). Dechorionation as a tool to improve the fish embryo toxicity test 
(FET) with the zebrafish (Danio rerio). Comparative Biochemistry and Physiology. Toxicology & 
Pharmacology : CBP, 153(1), 91–98. https://doi.org/10.1016/J.CBPC.2010.09.003 

Hill, A. J., Teraoka, H., Heideman, W., & Peterson, R. E. (2005). Zebrafish as a Model Vertebrate for 
Investigating Chemical Toxicity. Toxicological Sciences, 86(1), 6–19. 
https://doi.org/10.1093/TOXSCI/KFI110 

Howe, K., Clark, M. D., Torroja, C. F., Torrance, J., Berthelot, C., Muffato, M., Collins, J. E., Humphray, 
S., McLaren, K., Matthews, L., McLaren, S., Sealy, I., Caccamo, M., Churcher, C., Scott, C., 
Barrett, J. C., Koch, R., Rauch, G. J., White, S., … Stemple, D. L. (2013). The zebrafish reference 
genome sequence and its relationship to the human genome. Nature, 496(7446), 498–503. 
https://doi.org/10.1038/nature12111 

Hussain, M., Bird, J. J., & Faria, D. R. (2018). A Study on CNN Transfer Learning for Image 
Classification. Advances in Intelligent Systems and Computing, 840, 191–202. 
https://doi.org/10.1007/978-3-319-97982-3_16 

Icha, J., Weber, M., Waters, J. C., & Norden, C. (2017). Phototoxicity in live fluorescence microscopy, 
and how to avoid it. In BioEssays (Vol. 39, Issue 8). John Wiley and Sons Inc. 
https://doi.org/10.1002/bies.201700003 

Image visualization and analysis. (n.d.). Retrieved November 18, 2021, from https://www.arivis.com/ 

Imaris for Cell Biologists - Imaris - Oxford Instruments. (n.d.). Retrieved November 18, 2021, from 
https://imaris.oxinst.com/products/imaris-for-cell-biologists 

Jacquemet, G., Fazeli, E., Roy, N. H., Follain, G., Laine, R. F., von Chamier, L., Hänninen, P. E., Eriksson, 



59 
 

J. E., & Tinevez, J. Y. (2020). Automated cell tracking using StarDist and TrackMate. 
F1000Research, 9, 1–9. https://doi.org/10.12688/f1000research.27019.1 

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to Statistical Learning. In 
Current medicinal chemistry (Vol. 7, Issue 10). https://doi.org/10.1007/978-1-4614-7138-7 

Jones, T. R., Kang, I. H., Wheeler, D. B., Lindquist, R. A., Papallo, A., Sabatini, D. M., Golland, P., & 
Carpenter, A. E. (2008). CellProfiler Analyst: Data exploration and analysis software for complex 
image-based screens. BMC Bioinformatics, 9(1), 1–16. https://doi.org/10.1186/1471-2105-9-
482/FIGURES/8 

Judkewitz Lab — Imaging Microscopy Neuroscience Berlin. (n.d.). Retrieved November 26, 2021, from 
https://jlab.berlin/#about 

Justusson, B. I. (1981). Median Filtering: Statistical Properties. Two-Dimensional Digital Signal 
Processing II., 161–196. https://doi.org/10.1007/BFB0057597 

Kaufmann, A., Mickoleit, M., Weber, M., & Huisken, J. (2012). Multilayer mounting enables long-term 
imaging of zebrafish development in a light sheet microscope. Development, 139(17), 3242–
3247. https://doi.org/10.1242/DEV.082586 

Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., & Schilling, T. F. (1995). Stages of embryonic 
development of the zebrafish. Developmental Dynamics : An Official Publication of the 
American Association of Anatomists, 203(3), 253–310. 
https://doi.org/10.1002/AJA.1002030302 

Krogh, A., & Hertz, J. (1991). A Simple Weight Decay Can Improve Generalization. Advances in Neural 
Information Processing Systems, 4. 

Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. 
https://doi.org/10.1038/NATURE14539 

Li, Y., Qi, H., Dai, J., Ji, X., & Wei, Y. (2017). Fully Convolutional Instance-aware Semantic 
Segmentation. 

Lichtman, J. W., & Conchello, J.-A. (2005). Fluorescence microscopy. Nature Methods 2005 2:12, 
2(12), 910–919. https://doi.org/10.1038/nmeth817 

Meijering, E. (2020). A bird’s-eye view of deep learning in bioimage analysis. Computational and 
Structural Biotechnology Journal, 18, 2312–2325. https://doi.org/10.1016/J.CSBJ.2020.08.003 

Mitchell, T. M. (1997). Machine Learning. 414. 

Moen, E., Borba, E., Miller, G., Schwartz, M., Bannon, D., Koe, N., Camplisson, I., Kyme, D., Pavelchek, 
C., Price, T., Kudo, T., Pao, E., Graf, W., & van Valen, D. (2019). Accurate cell tracking and lineage 
construction in live-cell imaging experiments with deep learning. BioRxiv. 
https://doi.org/10.1101/803205 

Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2012). Foundations in Machine learning. In The MIT 
Press. 

O’Shea, K., & Nash, R. (2015). An Introduction to Convolutional Neural Networks. 
https://arxiv.org/abs/1511.08458v2 

Ren, S., He, K., Girshick, R., & Sun, J. (2016). Faster R-CNN: Towards Real-Time Object Detection with 
Region Proposal Networks. http://image-net.org/challenges/LSVRC/2015/results 



60 
 

Reynaud, E. G., Kržič, U., Greger, K., & Stelzer, E. H. K. (2010). Light sheet-based fluorescence 
microscopy: More dimensions, more photons, and less photodamage. 
Http://Dx.Doi.Org/10.2976/1.2974980, 2(5), 266–275. https://doi.org/10.2976/1.2974980 

Reynolds, A. H. (n.d.). Convolutional Neural Networks (CNNs). Retrieved October 28, 2021, from 
https://anhreynolds.com/blogs/cnn.html 

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image 
Segmentation. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial 
Intelligence and Lecture Notes in Bioinformatics), 9351, 234–241. 
https://arxiv.org/abs/1505.04597v1 

Rosebrock, A. (2016). Intersection over Union (IoU) for object detection - PyImageSearch. 
https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-
detection/ 

Salinas, M., Rosas, J., Iborra, J., Manero, H., & Pascual, E. (1997). Comparison of manual and 
automated cell counts in EDTA preserved synovial fluids. Storage has little influence on the 
results. Ann Rheum Dis, 56, 622–626. 

Satsoura, D., Leber, B., Andrews, D. W., & Fradin, C. (2007). Circumvention of Fluorophore 
Photobleaching in Fluorescence Fluctuation Experiments: a Beam Scanning Approach. 
Chemphyschem : A European Journal of Chemical Physics and Physical Chemistry, 8(6), 834. 
https://doi.org/10.1002/CPHC.200600589 

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, 
C., Saalfeld, S., Schmid, B., Tinevez, J. Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., & 
Cardona, A. (2012). Fiji: An open-source platform for biological-image analysis. Nature Methods, 
9(7), 676–682. https://doi.org/10.1038/nmeth.2019 

Schmidt, U., Weigert, M., Broaddus, C., & Myers, G. (2018). Cell Detection with Star-convex Polygons. 
Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence 
and Lecture Notes in Bioinformatics), 11071 LNCS, 265–273. https://doi.org/10.1007/978-3-030-
00934-2_30 

Schott, B., Traub, M., Schlagenhauf, C., Takamiya, M., Antritter, T., Bartschat, A., Löffler, K., Blessing, 
D., Otte, J. C., Kobitski, A. Y., Nienhaus, G. U., Strähle, U., Mikut, R., & Stegmaier, J. (2018). 
EmbryoMiner: A new framework for interactive knowledge discovery in large-scale cell tracking 
data of developing embryos. PLOS Computational Biology, 14(4), e1006128. 
https://doi.org/10.1371/JOURNAL.PCBI.1006128 

Schulze, L., Henninger, J., Kadobianskyi, M., Chaigne, T., Faustino, A. I., Hakiy, N., Albadri, S., 
Schuelke, M., Maler, L., Del Bene, F., & Judkewitz, B. (2018). Transparent Danionella translucida 
as a genetically tractable vertebrate brain model. Nature Methods, 15(11), 977–983. 
https://doi.org/10.1038/s41592-018-0144-6 

scipy.signal.find_peaks — SciPy v1.7.1 Manual. (n.d.). Retrieved November 15, 2021, from 
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html 

Sendhilnathan, N., Ipata, A., & Goldberg, M. E. (2021). Mid-lateral cerebellar complex spikes encode 
multiple independent reward-related signals during reinforcement learning. Nature 
Communications, 12(1), 6475. https://doi.org/10.1038/S41467-021-26338-0 

Singh, A. (2020). Selecting the Right Bounding Box Using Non-Max Suppression (with 
implementation). https://www.analyticsvidhya.com/blog/2020/08/selecting-the-right-



61 
 

bounding-box-using-non-max-suppression-with-implementation/ 

Skeletonize — skimage v0.19.0.dev0 docs. (n.d.). Retrieved November 14, 2021, from https://scikit-
image.org/docs/dev/auto_examples/edges/plot_skeleton.html 

Sommer, C., Straehle, C., Kothe, U., & Hamprecht, F. A. (2011). Ilastik: Interactive learning and 
segmentation toolkit. Proceedings - International Symposium on Biomedical Imaging, 230–233. 
https://doi.org/10.1109/ISBI.2011.5872394 

Tinevez, J. Y., Perry, N., Schindelin, J., Hoopes, G. M., Reynolds, G. D., Laplantine, E., Bednarek, S. Y., 
Shorte, S. L., & Eliceiri, K. W. (2017). TrackMate: An open and extensible platform for single-
particle tracking. Methods, 115, 80–90. https://doi.org/10.1016/j.ymeth.2016.09.016 

Van Der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager, N., Gouillart, 
E., & Yu, T. (2014). Scikit-image: Image processing in python. PeerJ, 2014(1), e453. 
https://doi.org/10.7717/PEERJ.453/FIG-5 

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., 
Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Jarrod Millman, 
K., Mayorov, N., J Nelson, A. R., Jones, E., Kern, R., Larson, E., … van Mulbregt, P. (n.d.). SciPy 
1.0: fundamental algorithms for scientific computing in Python. Nature Methods. 
https://doi.org/10.1038/s41592-019-0686-2 

Wan, Y., Wei, Z., Looger, L. L., Koyama, M., Druckmann, S., & Keller, P. J. (2019). Single-Cell 
Reconstruction of Emerging Population Activity in an Entire Developing Circuit. Cell, 179(2), 355-
372.e23. https://doi.org/10.1016/j.cell.2019.08.039 

Weber, M., & Huisken, J. (2011). Light sheet microscopy for real-time developmental biology. Current 
Opinion in Genetics & Development, 21(5), 566–572. 
https://doi.org/10.1016/J.GDE.2011.09.009 

Wen, C., Miura, T., Voleti, V., Yamaguchi, K., Tsutsumi, M., Yamamoto, K., Otomo, K., Fujie, Y., 
Teramoto, T., Ishihara, T., Aoki, K., Nemoto, T., Hillman, E. M. C., & Kimura, K. D. (2021). 
3deecelltracker, a deep learning-based pipeline for segmenting and tracking cells in 3d time 
lapse images. ELife, 10. https://doi.org/10.7554/ELIFE.59187 

Wolf, S., & Debrégeas, G. (2018). CHAPTER 1:Fast Volumetric Imaging Using Light-sheet Microscopy. 
Principles and Applications. Comprehensive Series in Photochemical and Photobiological 
Sciences, 18, 1–24. https://doi.org/10.1039/9781788013284-00001 

Zhang, X.-D. (2020). Machine Learning. A Matrix Algebra Approach to Artificial Intelligence, 223–440. 
https://doi.org/10.1007/978-981-15-2770-8_6 

 

 

 

 

 

 



62 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 


