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“Thálatta! Thálatta! — The Sea! The Sea!”
– The Ten Thousand,

in Xenophon’s Anabasis, bk IV, ch. 7, S 24, c. 370 BC





Abstract

The ubiquitous plactic monoid, also known as the monoid of Young tableaux, has deep

connections to several areas of mathematics, in particular, to the theory of symmetric

functions. An active research topic is the identities satisfied by the plactic monoids of

finite rank. It is known that there is no “global" identity satisfied by the plactic monoid

of every rank. In contrast, monoids related to the plactic monoid, such as the hypoplactic

monoid (the monoid of quasi-ribbon tableaux), sylvester monoid (the monoid of binary

search trees) and Baxter monoid (the monoid of pairs of twin binary search trees), satisfy

global identities, and the shortest identities have been characterized.

In this thesis, we present new results on the identities satisfied by the hypoplactic,

sylvester, #-sylvester and Baxter monoids. We show how to embed these monoids, of any

rank strictly greater than 2, into a direct product of copies of the corresponding monoid

of rank 2. This confirms that all monoids of the same family, of rank greater than or equal

to 2, satisfy exactly the same identities. We then give a complete characterization of those

identities, thus showing that the identity checking problems of these monoids are in the

complexity class P, and prove that the varieties generated by these monoids have finite

axiomatic rank, by giving a finite basis for them. We also give a subdirect representation

of multihomogeneous monoids by finite subdirectly irreducible Rees factor monoids, thus

showing that they are residually finite.

Keywords: Hypoplactic monoid, sylvester monoid, Baxter monoid, variety,

identities, equational basis, axiomatic rank
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Resumo

O ubíquo monóide plático, também conhecido como o monóide dos diagramas de Young,

tem ligações profundas a várias áreas de Matemática, em particular à teoria das funções

simétricas. Um tópico de pesquisa ativo é o das identidades satisfeitas pelos monóides

pláticos de característica finita. Sabe-se que não existe nenhuma identidade “global” satis-

feita pelos monóides pláticos de cada característica. Em contraste, sabe-se que monóides

ligados ao monóide plático, como o monóide hipoplático (o monóide dos diagramas quasi-

fita), o monóide silvestre (o monóide de árvores de busca binárias) e o monóide de Baxter

(o monóide de pares de árvores de busca binária gémeas), satisfazem identidades globais,

e as identidades mais curtas já foram caracterizadas.

Nesta tese, apresentamos novos resultados acerca das identidades satisfeitas pelos mo-

nóides hipopláticos, silvestres, silvestres-# e de Baxter. Mostramos como mergulhar estes

monóides, de característica estritamente maior que 2, num produto direto de cópias do

monóide correspondente de característica 2. Confirmamos assim que todos os monóides

da mesma família, de característica maior ou igual a 2, satisfazem exatamente as mesmas

identidades. A seguir, damos uma caracterização completa dessas identidades, mostrando

assim que os problemas de verificação de identidades destes monóides estão na classe de

complexidade P, e provamos que as variedades geradas por estes monóides têm caracte-

rística axiomática finita, ao apresentar uma base finita para elas. Também damos uma

representação subdireta de monóides multihomogéneos por monóides fatores de Rees

finitos e subdiretamente irredutíveis, mostrando assim que são residualmente finitos.

Palavras-chave: Monóide hipoplático, monóide silvestre, monóide de Baxter,

variedade, identidades, base equacional, característica axiomática
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1

Introduction

A semigroup identity is a formal equality that, when satisfied by a semigroup, holds for

any evaluation of its variables in that semigroup (see Section 3.1). Many interesting semi-

groups satisfy identities: for instance, the ubiquitous bicyclic monoid satisfies Adjan’s

identity xyyxxyxyyx ≈ xyyxyxxyyx, which is the shortest non-trivial identity satisfied by

this monoid [Adj66].

The study of the identities satisfied by a semigroup S is of great importance, since,

by Birkhoff’s Theorem, the equational theory of S defines the variety generated by it.

Besides the complete characterization of the identities satisfied by a semigroup, there are

two other natural problems which arise when studying them: The first is the finite basis

problem [Sap14; Vol01], which asks if the identities satisfied by S are consequences of

those in some finite subset. There exist several powerful methods with which to approach

the problem for finite semigroups, however, this is not the case for infinite semigroups.

The second problem is the identity checking problem Check-Id(S) [KS95], a decision

problem whose instance is an arbitrary identity u ≈ v, and the answer to such an instance

is ‘YES’ if S satisfies u ≈ v, and ‘NO’ if it does not, and its computational complexity. It

is well-known that, for any finite semigroup S, the problem Check-Id(S) is decidable,

since there are only finitely many substitutions of the variables occurring in the identity

by elements of S. Furthermore, Check-Id(S) belongs in the complexity class coNP.

However, in the case of infinite semigroups, the brute-force approach used in the finite

case does not work, and only recently there have been results on the computational

complexity of identity checking for infinite semigroups, beyond undecidability and trivial

or easy decidability in linear time [Che+20; DJK18; KV20].

The plactic monoid plac, whose elements can be identified with Young tableaux (see

Section 4.1), has long been considered an important monoid, due to its numerous appli-

cations in different areas of mathematics, such as algebraic combinatorics [Lot02], rep-

resentation theory [Ful97; Gre07], symmetric functions [Mac15; Sch77], Kostka-Foulkes

polynomials [LS78] and crystal bases [BS17]. It was first studied by Schensted [Sch61]

and Knuth [Knu70], and later studied in depth by Lascoux and Schützenberger [LS81].

By its definition via Schensted’s insertion algorithm, the plactic monoid has decidable

1



CHAPTER 1. INTRODUCTION

word problem.

The question of identities satisfied by the plactic monoid is actively studied [Izh19;

KO15], since it is an infinite monoid with a powerful combinatorial structure. One of

the initial motivations for the study of these identities was to obtain a more natural

example of a finitely-generated polynomial-growth semigroup that does not satisfy non-

trivial identities, than those given in [Shn93]. However, it is now known that each plactic

monoid of finite rank satisfies non-trivial identities. For example, the plactic monoid of

rank 2 also satisfies Adjan’s identity xyyxxyxyyx ≈ xyyxyxxyyx. The plactic monoid of

rank 3 satisfies the identity uvvuvu ≈ uvuvvu, where u(x,y) and v(x,y) are respectively

the left and right side of Adjan’s identity [KO15]. However, it does not satisfy Adjan’s

identity itself.

It is known that upper triangular tropical matrix semigroups satisfy non-trivial iden-

tities [Izh14; Okn15; Tay17]. Johnson and Kambites [JK21] gave a tropical representation

of the plactic monoid of every finite rank, thus showing that they all satisfy non-trivial

identities. Furthermore, they also show that every identity satisfied by the plactic monoid

of finite rank n is also satisfied by the monoid of n×n upper triangular tropical matrices.

This result, together with algorithms given in [DJK18] and [JT19], show that the identity

checking problem for the plactic monoids of finite rank is in the complexity class P. On

the other hand, Cain et al [Cai+17] showed that the plactic monoid of finite rank n does

not satisfy any non-trivial identity of length less than or equal to n, thus showing that

there is no single “global” identity satisfied by every plactic monoid of finite rank, and

that the infinite-rank plactic monoid does not satisfy any non-trivial identity. Daviaud

et al [DJK18] also show that the monoid of 2× 2 upper triangular tropical matrices, the

bicyclic monoid, and the plactic monoid of rank 2 satisfy exactly the same identities,

expanding on the result obtained by Izhakian in [Izh19]. Since the bicyclic monoid is not

finitely based [Shn89], none of these monoids are. The identities satisfied by the bicyclic

monoid had previously been characterized by Pastijn [Pas06], in terms of the properties

of associated polyhedral complexes.

In the context of combinatorial Hopf algebras, whose bases are indexed by combi-

natorial objects, the plactic monoid is used to construct the Hopf algebra of free sym-

metric functions FSym [DHT02; PR95], whose bases are indexed by standard Young

tableaux. In this context, other monoids arise with similar combinatorial properties to

those of the plactic monoid: the Hopf algebra Sym of non-commutative symmetric func-

tions [Gel+95], whose bases are indexed by integer compositions, is obtained from the

hypoplactic monoid hypo [KT97; Nov00], the monoid of quasi-ribbon tableaux (see Sec-

tion 4.2); the Loday–Ronco Hopf algebra PBT [HNT05; LR98], whose bases are indexed

by planar binary trees, is obtained from the sylvester monoid sylv [HNT05], the monoid

of right strict binary search trees (see Section 4.3); the Baxter Hopf algebra Baxter [Gir12;

Rea05], whose bases are indexed by Baxter permutations [Bax64], is obtained from the

Baxter monoid baxt [Gir12], the monoid of pairs of twin binary search trees (see Sec-

tion 4.4). Also arising in [Gir12] is the #-sylvester monoid, whose elements are identified

2



with left strict binary search trees and whose properties can be derived from those of the

sylvester monoid by parallel reasoning. These monoids are closely related to each other

[Gir12, Proposition 3.7], as well as to the hypoplactic monoid [CM18a; Pri13]. These

monoids satisfy identities, and the shortest identities have been characterized [CM18b].

Unlike in the case of the plactic monoid, these identities are satisfied regardless of rank.

Related as well to the plactic monoid by its growth type [DK94], the Chinese monoid

[Cas+01] embeds into a direct product of copies of the bicyclic monoid [JO11]. Further-

more, the Chinese and plactic monoids of rank 2 coincide, hence, they satisfy the same

identities.

The main goal of this thesis is to present a systematic study of the identities satisfied by

the hypoplactic, sylvester, #-sylvester and Baxter monoids. It also gives an alternate char-

acterization of equality in words in the sylvester, #-sylvester and Baxter monoids, by intro-

ducing the concepts of right and left precedences, which serve the same purpose as inver-

sions for the hypoplactic monoid. The author remarks that Theorems 7.1.5, 7.1.6 and 7.1.7

have been proven independently, in different ways, in [Cai+21, Theorems 6.9 and 6.13]

and in [HZ21, Theorems 4.6, 4.7 and 4.10]. Furthermore, Theorems 5.2.13, 5.2.16 and

5.2.18 also arise as consequences of, respectively, [HZ21, Theorems 4.6, 4.7 and 4.10].

The thesis is structured as follows: Chapters 2, 3 and 4 provide the necessary background

on, respectively, elementary semigroup theory and presentations; universal algebra and

computational complexity; and monoids arising from insertion algorithms. In Chapter 5,

we show how to embed the plactic-like monoids of rank strictly higher than 2 into direct

products of copies of the corresponding monoid of rank 2, thus showing that they gener-

ate exactly the same variety and satisfy exactly the same identities. Chapter 6 gives the

characterization of these identities, as well as results on the computational complexity of

the identity checking problem for these monoids. In Chapter 7, we give finite bases for

the varieties generated by these monoids, thus showing that they have finite axiomatic

rank. We also give a subdirect representation of multihomogeneous monoids by finite

subdirectly irreducible Rees factor monoids, thus showing that they are residually finite.

Finally, Chapter 8 concludes the thesis with a discussion of open questions.

The majority of the results on the hypoplactic monoid are published in [CMR21a] by

Cain, Malheiro, and the present author, while the results on the sylvester, #-sylvester and

Baxter monoids are to appear in the submitted paper [CMR21b], by the same authors.
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2

Elementary semigroup theory

This chapter gives elementary definitions and results on semigroup theory, and mostly

follows Chapters 1 and 2 of [Cai16]. For further background on semigroups and monoids,

see [How95]; for presentations, see [Hig92].

Throughout this thesis, maps are written on the left, e.g. φ(x), and composed right
to left, e.g. (f ◦ g)(x) = f (g(x)). The set of natural numbers (positive integers) is denoted

by N, and by N0 when including 0. For sets X,X ′ ,Y such that X ′ ⊆ X, and for a map

φ : X→ Y , we denote the set difference of X and Y by X\Y , the restriction of the map φ

to X ′ by φ↾X ′ and the image of φ by imφ. We denote the set of functions from X to Y by

Y X . Let (Xi)i∈I be a family of sets. For each k ∈ I , the projection map πk :
∏
i∈iXi → Xk to

the k-th coordinate of the Cartesian product
∏
i∈I Xi is the map defined by

πk(x) = x(k),

where x(k) ∈ Xk denotes the k-th component of the tuple x.

2.1 Semigroups and monoids

Let S be a set. A binary operation on S is a map • : S×S→ S. This operation is associative

if x • (y • z) = (x • y) • z, for any x,y,z ∈ S. A semigroup is an algebraic structure which

consists of a non-empty set S equipped with an associative binary operation •. We denote

such a pair by (S,•), or simply S, if there is no need to distinguish the operation. In

this case, we usually write xy instead of x • y, for any x,y ∈ S, and we call the operation

multiplication, and the element xy the product of x and y. Due to semigroup operations

being associative, there is no ambiguity in writing x1x2 · · ·xn, where x1,x2, . . . ,xn ∈ S and

n ∈ N.

Let e be an element of S. If ex = xe = x, for all x ∈ S, then e is an identity element of

S. A semigroup contains at most one identity element. A semigroup M with an identity

element is called a monoid, and its identity is usually denoted by 1M .

Let z be an element of S. If zx = z, for all x ∈ S, then z is called a left zero. If xz = z,

for all x ∈ S, then z is called a right zero. If zx = z = xz, for all x ∈ S, then z is a zero. A
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semigroup contains at most one zero. If all elements of a semigroup S are left (respectively,

right) zeros, then S is called a left zero semigroup (respectively, right zero semigroup).

For x ∈ S and n ∈ N, we define

xn =

n times︷ ︸︸ ︷
xx · · ·x .

In general, xn is only defined for positive n, however, if S is a monoid, we define x0 = 1S .

An element of the form xn is called a power of x.

A semigroup S is commutative if xy = yx, for all x,y ∈ S.

Let (Si)i∈I be a family of semigroups. The direct product of the family of semigroups

(Si)i∈I is the Cartesian product
∏
i∈I Si with componentwise multiplication: using tuple

notation,

(. . . ,xi , . . . )(. . . , yi , . . . ) = (. . . ,xiyi , . . . ),

for xi , yi ∈ Si , i ∈ I . Componentwise multiplication is associative: as such, the direct

product is itself a semigroup. The direct product of a monoid is also a monoid.

Let T be a non-empty subset of a semigroup S. It is a subsemigroup if it is closed

under multiplication. If it is also a monoid, then it is a submonoid of S. If it is closed

under left and right multiplication by any element of S, then it is a two-sided ideal, or

simply an ideal of S. Any ideal of S is a subsemigroup of S. For any x ∈ S, the principal

ideal generated by x is the ideal

J(x) = {x} ∪ {xy : y ∈ X} ∪ {yx : y ∈ X} ∪ {yxz : y,z ∈ X} .

Let (Ti)i∈I be a family of subsemigroups of S. If the intersection
⋂
i∈I Ti is non-empty,

it is also a subsemigroup of S. Let X be a non-empty subset of S and let (Ti)i∈I be the

family of all subsemigroups of S which containX. Notice that (Ti)i∈I is non-empty, since it

contains at least S. Furthermore, every subsemigroup in (Ti)i∈I contains X, hence
⋂
i∈I Ti

is non-empty and, as such, a subsemigroup, the smallest which contains X. It is called

the subsemigroup generated by X and denoted by ⟨X⟩.
On the other hand, if X is a subset of a semigroup S such that ⟨X⟩ = S, then X is called

a generating set of S, and we say X generates S. If S admits a finite generating set, we

say S is finitely generated. If S is generated by a single element, we say S is a monogenic

semigroup. The free monogenic semigroup ⟨x⟩ is the semigroup generated by a single

element x, such that xm = xn =⇒ m = n, for any m,n ∈ N.

Given a non-empty subset X of a monoid M, we define the submonoid generated by

X in a similar way: it is the intersection of all submonoids of M which contain X ∪ {1M}.
It is the smallest submonoid of M with identity 1M which contains X. If X ⊆M is such

that M is the submonoid generated by X, then X is called a monoid generating set for M

and we say X generates M as a monoid. If M is generated by a single element, we say M

is a monogenic monoid. The definition of free monogenic monoid is analogous to that of

a free monogenic semigroup.
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2.2 Binary relations, orders and lattices

A binary relation ρ on a set X is:

• reflexive if x ρ x for all x ∈ X;

• symmetric if x ρ y =⇒ y ρ x for all x,y ∈ X;

• anti-symmetric if (x ρ y)∧ (y ρ x) =⇒ x = y, for all x,y ∈ X;

• transitive if (x ρ y)∧ (y ρ z) =⇒ x ρ z for all x,y,z ∈ X.

An equivalence relation ρ on a set X is a binary relation which is reflexive, symmetric

and transitive, and it partitions the setX into equivalence classes, each made up of related

elements. The set of equivalence classes is called the quotient set of S by ρ. The identity

relation △X =
{
(x,x) : x ∈ X

}
is an example of an equivalence relation.

A partial order on a set X is a binary relation which is reflexive, anti-symmetric and

transitive, usually denoted by ≤. We write x < y when x ≤ y and x , y, for any x,y ∈ X.

A partially ordered set or poset is a set X equipped with a partial order ≤, denoted by

(X,≤).

Let (X,≤) be a poset and let Y ⊆ X. An element x ∈ X is a lower bound of Y if x ≤ y,

for all y ∈ Y . If z ≤ x, for all z ∈ X which are lower bounds of Y , then x is a greatest lower

bound (alternatively, infimum or meet) of Y . The meet of Y , if it exists, is unique and

denoted by
∧
Y , or, if Y = {a,b}, by a∧ b. We define upper bound, least upper bound (or

supremum or join),
∨
Y and a∨ b in a similar fashion.

A poset (X,≤) is a lattice if the meet and join of any two elements of X exist. If the

meet and join of any subset of X exist, then X is a complete lattice. A subset Y of X is a

sublattice of X if it is closed under meets and joins.

2.3 Homomorphisms

Let S,T be semigroups. A map φ : S→ T is called a homomorphism if φ(xy) = φ(x)φ(y),

for all x,y ∈ S. If a homomorphism is injective, it is called an embedding; if it is bijective,

it is called an isomorphism. If there exists an isomorphism φ : S→ T , then we say that S

and T are isomorphic. Two semigroups which are isomorphic can be viewed as the same

algebraic structure in different settings: the elements of each semigroup may differ by

nature, but they interact with one another in the same way. If φ : S → T is a surjective

homomorphism, we say T is a homomorphic image of S.

The kernel of a homomorphism φ : S→ T is the binary relation

kerφ = {(x,y) ∈ S × S : φ(x) = φ(y)}.

Notice that φ is an embedding if and only if its kernel is the identity relation.

A map φ : S→ T is called an anti-homomorphism if φ(xy) = φ(y)φ(x), for all x,y ∈ S.

If it is bijective, then it is called an anti-isomorphism.
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For monoids S,T and a map φ : S → T , monoid homomorphisms, embeddings, iso-

morphisms, anti-homomorphisms and anti-isomorphisms are defined in the same way,

with the added condition that φ (1S ) = 1T .

2.4 Congruences and quotients

A binary relation ρ on a semigroup S is compatible if x ρ y and z ρ t imply xz ρ yt. A

compatible equivalence relation is called a congruence.

Let ρ be a congruence on S. Let S/ρ denote the quotient set of S by ρ and, for any

x ∈ S, let [x]ρ denote the ρ-class of x, that is, [x]ρ = {y ∈ S : y ρ x}. The multiplication

defined on S/ρ by

[x]ρ[y]ρ = [xy]ρ,

for x,y ∈ S, is well-defined and associative, hence the quotient set of S by ρ is a semigroup,

called the quotient or factor of S by ρ. The map ρ♮ : S→ S/ρ, defined by ρ♮(x) = [x]ρ, is a

surjective homomorphism, called the natural homomorphism or natural map.

The kernel of a homomorphism φ : S→ T is a congruence.

Theorem 2.4.1 ([How76, Theorem 5.4]). Let φ : S→ T be a homomorphism between semi-
groups and let ρ be a congruence on S such that ρ ⊆ kerφ. Then, there exists a homomorphism
ϕ : S/ρ→ T such that ϕ ◦ ρ♮ = φ. Moreover, ϕ is injective if and only if ρ = kerφ.

Let I be an ideal of S. Then ρI = (I × I) ∪ △S is a congruence on S, called the Rees

congruence induced by I . Its factor semigroup is called a Rees factor semigroup, and

is denoted by S/I , and its elements are denoted by [x]I . These are the ρI -classes, which

comprise I itself, which is the zero element of S/I , and singleton sets {x}, for each x ∈ S \ I .
For any binary relation ρ on S, the smallest congruence on S which contains ρ is

called the congruence generated by ρ, and is denoted by ρ#. It is easy to see that ρ# is the

intersection of all congruences which contain ρ. If ρ = {(x,y)}, for some x,y ∈ S such that

x , y, we say ρ# is the principal congruence generated by (x,y).

The set of congruences on S, denoted by Con(S), admits ⊆ as a partial order, and is a

complete lattice.

Congruences on monoids and related definitions , as well as the analogue of Theo-

rem 2.4.1 for monoids, arise in a natural way.

2.5 Alphabets, words and free semigroups

Let X be a non-empty set, referred to as an alphabet, whose elements are referred to as

letters or symbols. The free semigroup over the alphabet X, denoted by X+, is the set of

all non-empty words over X, under the operation of word concatenation. If we include

the empty word, denoted by ε, we obtain the free monoid over the alphabet X, denoted

by X∗. A subset of X∗ is called a language.
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The free semigroup over the alphabet X has the following property, called the univer-

sal property: For any semigroup S and map φ : X→ S, there is a unique homomorphism

φ+ : X+→ S extending φ, that is, φ+ ◦ ι = φ, where ι : X→ X+ is the inclusion embedding.

Equivalently, the following diagram commutes:

X X+

S

ι

φ
φ+

The free monoid has an analogous universal property, concerning monoids and monoid

homomorphisms.

Notice that any free monogenic semigroups and monoids are, respectively, free semi-

groups and free monoids over alphabets with a single letter.

Let u ∈ X∗ be such that u = u1 · · ·uk , where ui ∈ X. The length of u is the number of

symbols which occur in it, namely k, and is denoted by |u|. For any x ∈ X, the number

of occurrences of x in u is denoted by |u|x. For any 1 ≤ i ≤ j ≤ k, the word u1 · · ·uj is a

prefix of u, the word ui · · ·uk is a suffix of u and the word ui · · ·uj is a factor of u. For any

i1, . . . , im ∈ {1, . . . , k} such that i1 < · · · < im, the word ui1 · · ·uim is a subsequence of u. The

empty word can also be considered a prefix, suffix, factor or subsequence of any word.

The content of u, denoted by cont(u), is the infinite tuple of non-negative integers,

indexed by X, whose x-th element is |u|x. The support of u, denoted by supp(u), is the

subset of symbols x ∈ X such that |u|x ≥ 1. Notice that if two words share the same content,

then they also share the same support.

2.6 Presentations

A semigroup presentation is a pair ⟨X |R⟩, where X is an alphabet and R is a binary

relation on X+. The symbols of the alphabet X are called generators, while the elements

of R, which are pairs of words, are called defining relations. The presentation ⟨X |R⟩
defines the semigroup A+/R#, up to isomorphism, and a semigroup S isomorphic to

A+/R# is presented by ⟨X |R⟩.
Let S be a semigroup presented by ⟨X |R⟩. Since S is isomorphic to A+/R#, there is

a bijective correspondence between elements of S and R#-classes. Then, we say a word

w ∈ X∗ represents or is a representative of an element of S if its R#-class corresponds to

that element of S. We denote the R#-class of w by [w]S , to simplify the notation.

A presentation ⟨X |R⟩ is finite if both X and R are finite. A semigroup is finitely

presented if it admits a finite presentation. Finite presentability is independent of the

generating set. A semigroup can be finitely generated but not finitely presented.

A presentation ⟨X |R⟩ is homogeneous (respectively, multihomogeneous) if for every

(u,v) ∈ R, we have |u| = |v| (respectively, cont(u) = cont(v)). In other words, in a homoge-

neous presentation, the defining relations preserve length, and, in a multihomogeneous

presentation, they preserve content. Notice that any multihomogeneous presentation is
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also homogeneous. A semigroup is homogeneous (respectively, multihomogeneous) if it is

presented by a homogeneous (respectively, multihomogeneous) presentation. We define

the length of an element of a homogeneous semigroup as the length of its representatives,

and we define the content and support of an element of a multihomogeneous semigroup

as the content and support of its representatives.

Monoid presentations are defined in a similar fashion. The defining relations are pairs

of words over X∗, and the monoid presentation ⟨X |R⟩ presents the monoid A∗/R#, up to

(monoid) isomorphism. The well-known bicyclic monoid is defined by the presentation

⟨a,b | (ab,ε)⟩. Every element of the bicyclic monoid is uniquely represented by a word of

the form biaj , for some i, j ∈ N∪ {0}.
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3

Universal algebra and

computational complexity

This chapter gives the necessary background on universal algebra and computational

complexity. For a more in-depth look at universal algebra, see [Ber12; BS81; Mal73;

MMT18]; and for computation and complexity theory, see [Pap94; Sip13].

3.1 Varieties and identities

This section mostly follows Chapter 8 of [Cai16] and Chapter 2 of [BS81].

An algebra A is a non-empty set A, called the universe of A, equipped with a family

of finitary functions {fi : i ∈ I}. A function on a set A is a map fi : Aθ(fi ) 7→ A, where θ

is a map from the set of functions to N∪ {0}. For each function fi , the number θ (fi) is

called the arity of fi . A function of arity 0 is a constant, a function of arity 1 is a unary

function, and a function of arity 2 is a binary function. For example, in semigroups, the

multiplication operation is a binary function, while in monoids, the identity element can

be viewed as a constant.

A type T of an algebra is a set of function symbols {{i : i ∈ I}, such that the arity of each

function symbol is determined by a map ϑ : {{i : i ∈ I} → N∪{0}. We say an algebra A is of

type T if there is a bijective correspondence between the functions of A and the function

symbols of T. Types are usually written as a list of pairs in the map ϑ, viewed as a set. For

example, semigroups have type {(•,2)}, while monoids have type {(•,2), (1M ,0)}. Notice

that monoids can also be viewed as semigroups, hence they can be of type {(•,2)} as well.

While functions and function symbols are formally distinct, we use the same symbol to

refer to operations with the same arity in different structures, for example, the different

multiplications in different semigroups.

For the remainder of this section, let us fix a type T =
{
({i ,ϑ ({i)) : i ∈ I

}
. Let A be an

algebra of type T. An algebra B of type T is a subalgebra of A if its universe B is a non-

empty subset of the universe A of A, and its functions are the restriction of the functions
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of A to the universe B: for each i ∈ I and a1, . . . , aθ(fi ) ∈ A, we have

a1, . . . , aθ(fi ) ∈ B =⇒ fi
(
a1, . . . , aθ(fi )

)
∈ B.

In particular, any constant of A must be in B. Let X ⊆ A. The subalgebra generated by X

is the subalgebra of A whose universe is the intersection of all universes B of subalgebras

B of A such that X ⊆ B.

Let A and B be algebras of type T. Then a map φ : A→ B is a homomorphism if, for

each i ∈ I and a1, . . . , aθ(fi ) ∈ A, we have

φ
(
fi
(
a1, . . . , aθ(fi )

))
= fi

(
φ(a1), . . . ,φ

(
aθ(fi )

))
.

Notice that, on the left side of the equality, fi is a function of A, while on the right

side, it is a function of B. An injective homomorphism is an embedding, and a bijective

homomorphism is an isomorphism. If φ : A→ B is a surjective homomorphism, we say B

is a homomorphic image of A; if φ is an isomorphism, we say B and A are isomorphic.

Let A be an algebra of type T. An equivalence relation ρ on A is a congruence on A if it

satisfies the compatibility property, that is, for each i ∈ I and a1, . . . , aθ(fi ),b1, . . . , bθ(fi ) ∈ A,

we have (
(a1 ρ b1)∧ · · · ∧

(
aθ(fi ) ρ bθ(fi )

))
=⇒

(
fi
(
a1, . . . , aθ(fi )

)
ρ fi

(
b1, . . . , bθ(fi )

))
.

The compatibility property allows us to introduce an algebraic structure on the quotient

set A/ρ, inherited from the algebra A. The quotient algebra of A by ρ, denoted by A/ρ,

is the algebra of type T whose universe is A/ρ and, for each i ∈ I and a1, . . . , aθ(fi ) ∈ A, we

have

fi
(
[a1]ρ, . . . , [aθ(fi )]ρ

)
=

[
fi(a1, . . . , aθ(fi ))

]
ρ
.

The set of congruences on A, denoted by Con(A), admits ⊆ as a partial order, and is a

complete lattice. The natural homomorphism or natural map ρ♮ : A→ A/ρ, defined by

ρ♮(x) = [x]ρ, is a surjective homomorphism.

For any binary relation ρ on A, the smallest congruence on A which contains ρ is called

the congruence generated by ρ, and is denoted by ρ#. If ρ = {(x,y)}, for some x,y ∈ A such

that x , y, we say ρ# is the principal congruence generated by (x,y).

Let (Aj)j∈J be a family of algebras of type T. The direct product of the algebras in

(Aj)j∈J is the algebra
∏
j∈J Aj of type T, whose universe is the Cartesian product

∏
j∈J Aj ,

with the functions performed componentwise: for each k ∈ J and a1, . . . , aθ(fi ) ∈
∏
j∈J Aj ,

we have

πk
(
fi(a1, . . . , aθ(fi ))

)
= fi

(
πk(a1), . . . ,πk(aθ(fi ))

)
.

Once again, notice that fi is a function of
∏
j∈J Aj on the left side of the equality, while

on the right side, it is a function of Ak . The projection maps induce surjective homomor-

phisms πk :
∏
j∈J Aj →Ak .

Let X be a non-empty set. Consider the smallest set FTX of words over the alphabet

X ∪ {fi : i ∈ I} ∪ { ( } ∪ { ) } ∪ { , } such that
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• X ∪ {fi : i ∈ I,θ(fi) = 0} ⊆ FTX;

• w1, . . . ,wθ(fi ) ∈ FTX =⇒ fi
(
w1, . . . ,wθ(fi )

)
∈ FTX, ∀i ∈ I .

This set is the universe of an algebra FTX of type T, called the absolutely free or term

algebra of type T. Its elements are usually called terms over X.

The absolutely free algebra of type T has the universal property: For any algebra A

of type T and map φ : X→ A, there is a unique homomorphism φ̂ : FTX→ A extending

φ, that is, φ̂ ◦ ι = φ, where ι : X → FTX is the inclusion embedding. Equivalently, the

following diagram commutes:
X FTX

A

ι

φ
φ̂

For any term w ∈ FTX, a subterm of w is defined in the following way: w is itself a

subterm of w, and if fi
(
w1, . . . ,wθ(fi )

)
is a subterm of w, then each wj is a subterm of w.

The content and support of a term w are defined in the same way as the content and

support of a word given in Section 2.6, but here we only consider the symbols of X which

occur in w, and disregard any symbol from {fi : i ∈ I} ∪ { ( } ∪ { ) } ∪ { , }.
A non-empty class V of algebras of type T is a variety of algebras of type T if it is

closed under the taking of homomorphic images, subalgebras and direct products. Let K

be a non-empty class of algebras of type T. The intersection of all varieties of algebras of

type T which contain K is itself a variety, called the variety generated by K, denoted by

V(K). This variety is the closure of K under taking subalgebras, homomorphic images

and direct products.

Let V be a variety of algebras of type T and let X be a non-empty set. Let A ∈V and let

φ : X→A. Recall that there is a unique extension of φ to a homomorphism φ̂ : FTX→A.

Since im φ̂ (with the corresponding functions) is a subalgebra of A, then im φ̂ ∈V. Let

ρ =
⋂
{ker φ̂ : φ ∈AX ,A ∈V}.

Then ρ is a congruence contained in ker φ̂, for any φ ∈ AX . For each A ∈ V and φ ∈ AX ,

there exists a unique homomorphism φ̄ : (FTX) /ρ → A such that φ̄ ◦ ρ♮ = φ̂. Hence, φ̄

is the unique homomorphism such that φ = φ̂ ◦ ι = φ̄ ◦ ρ♮ ◦ ι, and the following diagram

commutes:

X FTX (FTX) /ρ

A

ι

φ
φ̂

ρ♮

φ̄

The algebra (FTX) /ρ is a subdirect product of the family
{
(FTX) /ker φ̂ : φ ∈AX ,A ∈V

}
of algebras of type T, hence it is a member of V (see Section 3.2 for the definition of

subdirect product). It is called the V-free algebra over X, denoted by FVX, and it satisfies

the universal property as well. The definition of a V-free algebra coincides with that of

an absolutely free algebra when V is the variety of all algebras of type T.

13



CHAPTER 3. UNIVERSAL ALGEBRA AND COMPUTATIONAL COMPLEXITY

Let S be the variety of all semigroups. Then the definitions of absolutely free algebra

and V-free algebra coincide with that of a free semigroup.

An identity, over an alphabet of variables X, is a formal equality u ≈ v, where u and

v are terms in FTX, and is non-trivial if u , v. We say a variable x occurs in u ≈ v if

x ∈ supp(u) or x ∈ supp(v). The rank of an identity is the number of distinct variables

which occur in it. The size of an identity is the sum of the lengths of both sides of

the identity. We say that the identity u ≈ v holds in an algebra A (or that A satisfies the

identity u ≈ v) if for every homomorphism ψ : FTX→ A (also referred to as an evaluation),

the equality ψ(u) = ψ(v) holds in A. In other words, A satisfies the identity u ≈ v if

equality in A holds under every substitution of the variables of u and v by elements of

A. We say that A satisfies the identity u ≈ v up to equivalence if A satisfies all identities

obtained by renaming variables or swapping both sides of the identity u ≈ v.

An identity u ≈ v is balanced if cont(u) = cont(v). We define the length, content and

support of a balanced identity as the length, content and support of both sides of the

identity, respectively. Any identity satisfied by a monoid that contains a free monogenic

submonoid, such as the plactic and related monoids (see Chapter 4), must be balanced.

An identity u ≈ v is obtained by

• symmetry from an identity p ≈ q if u = q and v = p;

• transitivity from identities p ≈ q and p′ ≈ q′ if q = p′, u = p and v = q′;

• replacement from an identity p ≈ q if p is a subterm of u and v is obtained by

replacing the occurrence of p in u by q;

• substitution from an identity p ≈ q if u and v are obtained from p and q, respectively,

by replacing each occurrence of a variable by some term in FTX.

Let Σ be a non-empty set of identities, over an alphabet X. An identity u ≈ v is said to

be a consequence of Σ if there exists a sequence of identities u1 ≈ v1, . . . ,uk ≈ vk , for some

k ∈ N, such that the last identity in the sequence is u ≈ v, each uj ≈ vj belongs to Σ, or is a

trivial identity, or is obtained from the previous identities in the sequence by reflexivity,

transitivity, replacement or substitution. This sequence is called a formal deduction.

In the case of monoids, this is equivalent to having k ∈ N, words w1, . . . ,wk ∈ X∗, and

substitutions σ1, . . . ,σk−1 of variables by elements of X∗ (that is, endomorphisms of X∗),

such that u = w1, v = wk and, for 1 ≤ i < k, ,

wi = riσi(pi)si ,

wi+1 = riσi(qi)si ,

for some pi ,qi , ri , si ∈ X∗ such that pi ≈ qi or qi ≈ pi is in Σ.

A class K of algebras of type T is an equational class if there exists a set of identities Σ

such that K is the class of all algebras of type T that satisfy all identities in Σ. Dually, a set

of identities Σ is an equational theory if there exists a class K of algebras of type T such

14
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that Σ is the set of identities satisfied by all algebras in K. When this holds, Σ is called

the equational class of K. Equational theories are closed under taking consequences.

The notions of equational class and variety coincide, as seen in the following theorem,

known as Birkhoff’s HSP Theorem:

Theorem 3.1.1 ([Bir35]). K is an equational class if and only if K is a variety.

An important corollary of this theorem is that, for any algebra A, the identities satis-

fied by A must also be satisfied by all other algebras in V(A).

A set of identities B is an equational basis (or simply basis) of a variety V if the

equational theory of V consists of all consequences of B. A variety V is finitely based if

it admits a finite basis. The axiomatic rank of V is the least natural number ra(V) such

that V admits a basis B, where the rank of each identity in B does not exceed ra(V). If no

such natural number exists, we say that V has infinite axiomatic rank. Notice that if V is

finitely based, then it has finite axiomatic rank.

A variety V is always generated by its V-free algebra FVX over an infinite alphabet.

However, V may also be generated by a V-free algebra FVXn over a finite alphabet Xn
with n symbols, for some n ∈ N. In such a case, the least natural number rb(V) such that

V is generated by FV(Xrb(V)) is called the basis rank of V. If V is generated by an algebra

with a finite number of generators, the minimal such number coincides with the basis

rank of V.

In the context of semigroups and monoids, an equational theory Σ is left 1-hereditary

if, for every identity u ≈ v of Σ and any variable x ∈ supp(u ≈ v), the identity u′ ≈ v′ is in

Σ, where u′ (respectively, v′) is the longest prefix of u (respectively, v) where x does not

occur (see [Mas96; Vol01]). We define right 1-hereditary equational theories in a dual way.

The equational theory of the variety generated by the bicyclic monoid, which coincides

with that of the variety generated by the plactic monoid of rank 2 (see [JK21]), is both left

and right 1-hereditary (see [Pas06; Shn89]).

3.2 Subdirectly irreducible and residually finite algebras

The definition of a subdirectly irreducible algebra is taken from [BS81, Chapter II, Sec-

tion 8], while that of a residually finite algebra is taken from [Mal73, Chapter I, Section 2,

Subsection 2.5] and [MMT18, Chapter 4, Section 4.5].

An algebra A is a subdirect product of an indexed family (Ai)i∈I of algebras if A is a

subalgebra of
∏
i∈I Ai such that πi(A) = Ai , for all i ∈ I . An embedding φ : A −→

∏
i∈I Ai

is subdirect if φ(A) is a subdirect product of (Ai)i∈I .

An algebra A is subdirectly irreducible if for every subdirect embedding

φ : A −→
∏
i∈I

Ai

there exists i ∈ I such that πi ◦φ : A −→Ai is an isomorphism.

Another characterization of subdirectly irreducible algebras is more useful in practice:
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Theorem 3.2.1 ([BS81, Theorem 8.4]). An algebra A is subdirectly irreducible if and only if
it is trivial or if there exists a minimum congruence in Con(A)\{△A}, the congruence lattice of
A, excluding the identity relation. In the latter case the minimum congruence is a principal
congruence.

Subdirectly irreducible algebras are considered the building blocks of a variety of

algebras V, since every algebra of V is isomorphic to a subdirect product of subdirectly

irreducible algebras of V [Bir44].

An algebra A is residually finite (or finitely approximable) if it is embeddable in a

direct product of a family of finite algebras. Alternatively, an algebra A is residually finite

if, for any x,y ∈ A, there exists a finite algebra B and a homomorphism φ : A→ B such

that φ(x) , φ(y). A residually finite infinite algebra cannot be subdirectly irreducible (see

[MMT18, Chapter 4, Section 4.5, Corollary 5]).

Finitely generated homogeneous semigroups are residually finite: Let S be a finitely

generated homogeneous semigroup and let l ∈ N. Notice that the set Sl of all elements of

S with length strictly greater than l is an ideal of S. Furthermore, S\Sl is finite, since S is

finitely generated and there are only finitely many words of length less than or equal to l.

As such, for any two elements x,y ∈ S, we take the maximum l of the lengths of x and y

and consider the natural homomorphism of S into Sl , which separates x and y. The same

result can be proven for monoids. This is a folklore observation, thus it is difficult to find

the formal statement and proof in the literature. As such, we further explore the subject

in Section 7.2.

If a semigroup is both residually finite and finitely presented, then the word problem

is solvable for such a semigroup [Eva78].

3.3 Computational complexity

In this section, we give a brief overview of basic concepts of algorithms, computational

models and complexity theory. We do not go into detail on most of these subjects, and

refer to [Pap94; Sip13] for further reading.

Intuitively speaking, an algorithm is just a collection of detailed instructions for solv-

ing a problem. Although no definitive formal definition exists, an algorithm is usually

taken to be a set of operations which can be simulated by a Turing machine. This is

due to the fact that all attempts to formalize the notion of computable functions have

resulted in computational models equivalent in computing power to the Turing machine.

This assumption is called the Church–Turing thesis, and we will assume it as true for the

purposes of Chapter 6.

A Turing machine is a computational model with an infinite tape, divided into count-

ably many cells, and a tape head which can read and write one symbol in each cell, and

move around on the tape. It takes as input a string of symbols. In the initial configuration

of the machine, the input string is written on the tape, which is blank everywhere else.
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During its computations, the machine may store information on the tape, by writing over

its cells, and it can read the information stored on the cells. The machine will continue

its computations until it reaches an accepting or rejecting state. If it does not enter such

a state, the machine will continue its computations, and will never halt.

Formally, a (deterministic) Turing machine is a 7-tuple T = (Q,Σ,Γ ,δ,q0,qaccept,qreject),

where Q, Σ, Γ are all finite sets and

1. Q is the set of states,

2. Σ is the input alphabet not containing the blank symbol ⊔,

3. Γ is the tape alphabet, where ⊔ ∈ Γ and Σ ⊆ Γ ,

4. δ :Q × Γ →Q × Γ × {←,→} is the transition function,

5. q0 ∈Q is the initial state,

6. qaccept ∈Q is the accepting state;

7. qreject ∈Q is the rejecting state, where qaccept , qreject.

When a Turing machine is in a state q and the head is over a tape cell reading a symbol

a, the machine will make its computation according to the image of (q,a) by δ, that is, if

δ(q,a) = (r,b,D), the machine will write the symbol b over the symbol a, go to state r, and

move its tape head to the direction D, where D can be either← (left) or→ (right). Notice

that the tape head only moves after writing over the cell. We also assume that the tape

head does not move to the left of the leftmost cell of the tape which does not hold a blank

symbol.

The configuration of a Turing machine is a triple (q,w,u), where q is the current state

of the machine, w is the string of symbols in cells to the left of the tape head, including

the cell where the tape head currently is, and u is the string of symbols in cells to the right

of the tape head. We say a configuration (q,w,u) yields a configuration (q′ ,w′ ,u′) if the

Turing machine moves from the first configuration to the second in a single computation.

In its start configuration, the tape head is at the leftmost cell of the tape, reading the

leftmost symbol of the input, which is not a blank symbol.

We say that a Turing machine accepts an input w if there exists a finite sequence of

configurations C1, . . . ,Ck , where C1 is the start configuration on input w, Ck is an accept-

ing configuration (that is, the state of the configuration is qaccept), and each configuration

in the sequence yields the consecutive one. The definition of a Turing machine rejecting

an input is similarly defined. The collection of strings accepted by a Turing machine T

is called the language recognized by T . A language is Turing-recognizable if some Tur-

ing machine recognizes it, and is Turing-decidable (or simply decidable) if some Turing

machine recognizes it and halts on all inputs.

There exist several variants of the Turing machine, such as multitape or non-deter-

ministic Turing Machines, and many other models of general purpose computations, such
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as Random Access Machines, which have unrestricted access to unlimited memory. One

of the major reasons to assume the Church–Turing thesis is that all of these models of

computation are equivalent in computing power, as long as they satisfy “reasonable” re-

quirements, such as the ability to perform only a finite amount of work in a single step. As

such, we do not give the description of the Turing machine corresponding to an algorithm

in full detail, and only give a high-level description of an algorithm.

Let T be a deterministic Turing machine that halts on all inputs. The time complexity

of T is the function t : N→ R+, where t(n) is the maximum number of computations that

T uses on any input of length n. Time complexity is always computed as a function of

the length of the string representing the input, and using a worst-case analysis.

Let f ,g be functions of N into R+, the set of all positive real numbers. We say that g(n)

is an asymptotic upper bound for f (n), and write f (n) = O(g(n)), if there exist positive

integers c and n0 such that, for every integer n ≥ n0,

f (n) ≤ c · g(n).

Let t : N→ R+ be a function. The time complexity class TIME(t(n)) is the collection of

all languages that are decidable by a Turing machine with time complexity O(t(n)).

A variant of the Church–Turing thesis exists in the context of complexity theory,

which states that all “reasonable” deterministic computational models are polynomially

equivalent to a deterministic single-tape Turing machine, in the sense that any of these

computational models can simulate another with only a polynomial increase in time

complexity. We will also assume it as true for the purposes of Chapter 6.

The class P is the class of languages that are decidable in polynomial time on a deter-

ministic single-tape Turing machine. That is,

P =
⋃
k∈N

TIME(nk).

This class plays a central role in complexity theory, since it is invariant for all computation

models that are polynomially equivalent to a deterministic single-tape Turing machine.

For a given algebra A, its identity checking problem Check-Id(A) is the following

combinatorial decision problem: the instance is an arbitrary identity u ≈ v; the answer

to such an instance is ‘YES’, if A satisfies the identity, and ‘NO’ otherwise. Notice that

the algebra itself is fixed, as such, it is only the identity u ≈ v that serves as the input.

Therefore, the time complexity of Check-Id(A) should be measured only in terms of the

size of the identity.
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4

Monoids from insertion algorithms

This chapter gives the necessary background on the plactic and plactic-like monoids and

their related combinatorial objects. Each section is roughly structured in the following

way: we introduce the combinatorial object related to the monoid, we show how to con-

struct this object using an insertion algorithm and we define a congruence on words using

the objects obtained from each word, from which the monoid arises. Each element of

these monoids can be uniquely identified with its corresponding combinatorial object,

hence why we call them insertion monoids. We also give presentations for each monoid,

and give alternative characterizations of equality of words in the plactic-like monoids,

of which the characterizations for the sylvester, #-sylvester and Baxter monoids are new.

Finally, we give an overview of the known results on the identities satisfied by these

monoids.

4.1 The plactic monoid

This section gives a brief overview of the plactic monoid and its related combinatorial ob-

ject and insertion algorithm, as well as results from [DJK18; JK21; JT19] on the identities

satisfied by them. For more information, see [Lot02, Chapter 5].

Let A = {1 < 2 < 3 < · · · } denote the set of positive integers, viewed as an infinite

ordered alphabet, and let An = {1 < · · · < n} denote the set of the first n positive integers,

viewed as a finite ordered alphabet.

A Young tableau is a (finite) grid of cells, with top-left-aligned rows, filled with sym-

bols from A, such that the entries in each row are weakly increasing from left to right,

and the entries in each column are strictly increasing from top to bottom. An example of

a Young tableau is

1 1 3 3 4
2 3 4
5 6

.

The following algorithm allows us to insert a symbol from A into an existing Young

tableau, in order to obtain a new tableau:
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Algorithm 1: Schensted’s algorithm.
Input: A Young tableau T and a symbol a ∈ A.

Output: A Young tableau T ← a.

1 if a is greater than or equal to any entry in the topmost row of T , then

2 add a as an entry at the rightmost end of T and output the resulting tableau;

3 else

4 let z be the leftmost entry in the top row of T that is strictly greater than a.

Replace z by a in the topmost row and recursively insert z into the tableau

formed by the rows of T below the topmost. (Note that the recursion may

end with an insertion into an ‘empty row’ below the existing rows of T ).

5 return the resulting tableau.

Let u ∈ A∗. Using the insertion algorithm above, we can compute a unique Young

tableau P→plac(u) from the word u: we start with the empty tableau and insert the symbols

of u, one-by-one from left-to-right – see Example 4.1.1.

Example 4.1.1. Computing P→plac(2531613443):

2
5←− 2 5

3←− 2 3
5

1←−
1 3
2
5

6←−
1 3 6
2
5

1←−
1 1 6
2 3
5

3←−

3←−
1 1 3
2 3 6
5

4←−
1 1 3 4
2 3 6
5

4←−
1 1 3 4 4
2 3 6
5

3←−
1 1 3 3 4
2 3 4
5 6

We define the relation ≡plac on A∗ as follows: For u,v ∈ A∗,

u ≡plac v ⇐⇒ P→plac(u) = P→plac(v).

This relation is a congruence on A∗, called the plactic congruence. The factor monoid

A∗/≡plac is the infinite-rank plactic monoid, denoted by plac. The congruence ≡plac natu-

rally restricts to a congruence on A∗n, and the factor monoidA∗n/≡plac is the plactic monoid

of rank n, denoted by placn.

It follows from the definition of≡plac that each element [u]plac of plac can be identified

with the Young tableau P→plac(u).

Recall that the content of u describes the number of occurrences of each symbol of

A in u. It is immediate from the definition of the plactic monoid that if u ≡plac v, then

u and v share the same content. Thus, we can define the content of an element of plac

as the content of any word which represents it. Furthermore, since two words with the

same content also share the same support, we can also define the support of an element

of plac as the support of any word which represents it.

Notice that placn is (isomorphic to) a submonoid of plac, for each n ∈ N, and, for

n,m ∈ N, if n ≤m, then placn is (isomorphic to) a submonoid of placm.
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The plactic monoid can also be defined by the presentation
〈
A
∣∣∣Rplac

〉
, where

Rplac = {(acb,cab) : a ≤ b < c} (4.1)

∪ {(bac,bca) : a < b ≤ c} . (4.2)

The defining relations are known as the plactic relations. A presentation for the plactic

monoid of rank n, for some n ∈ N, can be obtained by restricting generators and relations

of the above presentation to generators in An. Notice that these relations are content-

preserving, hence the plactic monoids are multihomogeneous. As such, the finite-rank

plactic monoids are residually finite. Furthermore, since they are also infinite monoids,

they are not subdirectly irreducible. The infinite-rank plactic monoid is also residually

finite, but not subdirectly irreducible (see Section 7.2).

Recall that a non-trivial identity is an identity where the two sides of the formal

equality are not the same word. The plactic monoid of rank 1 is monogenic and thus

commutative, and so satisfies the non-trivial identity xy ≈ yx. On the other hand, the

plactic monoid of rank 2 satisfies exactly the same identities as the monoid of 2 × 2

upper triangular tropical matrices [Izh19, Corollary 7.19] and the bicyclic monoid [DJK18,

Theorem 4.1], hence, it satisfies Adjan’s identity

xyyxxyxyyx ≈ xyyxyxxyyx,

the shortest non-trivial identity satisfied by the bicyclic monoid. Furthermore, the variety

generated by plac2 is not finitely based [Shn89]. The plactic monoid of rank 3 satisfies

the identity

uvvuvu ≈ uvuvvu,

where u(x,y) and v(x,y) are respectively the left and right side of Adjan’s identity [KO15,

Theorem 2.6], however, it does not satisfy Adjan’s identity itself [KO15, p. 111–2]. Notice

that this identity has sixty variables x or y on each side.

On a more general note, the identities satisfied by the plactic monoids of finite rank

are dependent on the rank. The plactic monoid of finite rank n does not satisfy any

non-trivial identity of length less than or equal to n [Cai+17, Proposition 3.1]. As such,

the infinite-rank plactic monoid does not satisfy any non-trivial identity [Cai+17, The-

orem 3.2]. Johnson and Kambites give a faithful representation of the plactic monoid

of every finite rank as a monoid of upper triangular matrices over the tropical semiring

[JK21, Theorem 2.8], thus showing that the plactic monoids of finite rank each satisfy

non-trivial identities [JK21, Theorem 3.1]. This is due to the fact that upper triangular

tropical matrix monoids satisfy non-trivial identities [Izh14; Okn15; Tay17]. On the other

hand, every identity satisfied by the plactic monoid of finite rank n is also satisfied by the

monoid of n×n upper triangular tropical matrices [JK21, Theorem 4.4]. Furthermore, the

variety generated by plac3 coincides with the variety generated by the monoid of 3 × 3

upper triangular tropical matrices [JK21, Corollary 4.5]. These results, together with

algorithms, given in [DJK18] and [JT19], that check if identities are satisfied in upper
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triangular tropical matrix monoids in polynomial time, imply that the identity checking

problem for the plactic monoids of finite rank is in the complexity class P.

4.2 The hypoplactic monoid

This section gives a brief overview of the hypoplactic monoid and its related combinatorial

object and insertion algorithm, as well as results from [CM18b]. For more information,

see [Nov00] and [CM17].

A quasi-ribbon tableau is a (finite) grid of cells, aligned so that the leftmost cell in

each row is below the rightmost cell of the previous row, filled with symbols from A, such

that the entries in each row are weakly increasing from left to right, and the entries in

each column are strictly increasing from top to bottom. An example of a quasi-ribbon

tableau is

1 2 4
5
6 6

7 8

.

Observe that the same symbol cannot appear in two different rows of a quasi-ribbon

tableau.

The following algorithm allows us to insert a symbol from A into an existing quasi-

ribbon tableau, in order to obtain a new quasi-ribbon tableau:

Algorithm 2: Krob–Thibon algorithm.
Input: A quasi-ribbon tableau T and a symbol a ∈ A.

Output: A quasi-ribbon tableau T ← a.

1 if there is no entry in T that is less than or equal to a, then

2 output the tableau obtained by creating a new cell, labelled with a, and gluing

T by its top-leftmost entry to the bottom of this new cell;
3 else

4 let x be the bottom-rightmost entry of T that is less than or equal to a.

Separate T in two parts, such that one part is from the top left down to and

including x. Create a new cell, labelled with a, to the right of x and glue the

remaining part of T (below and to the right of x) onto the bottom of the new

entry a.

5 return the resulting tableau.

Let u ∈ A∗. Using the insertion algorithm above, we can compute a unique quasi-

ribbon tableau P→hypo(u) from the word u: we start with the empty tableau and insert the

symbols of u, one-by-one from left-to-right – see Example 4.2.1.
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Example 4.2.1. Computing P→hypo(12654768):

1
2←− 1 2

6←− 1 2 6
5←− 1 2 5

6
4←−

1 2 4
5
6

7←−

7←−
1 2 4

5
6 7

6←−

1 2 4
5
6 6

7

8←−

1 2 4
5
6 6

7 8

We define the relation ≡hypo on A∗ in a way analogous to the definition of the plactic

congruence: For u,v ∈ A∗,

u ≡hypo v ⇐⇒ P→hypo(u) = P→hypo(v).

This relation is a congruence on A∗, called the hypoplactic congruence. The factor monoid

A∗/≡hypo is the infinite-rank hypoplactic monoid, denoted by hypo. The congruence

≡hypo naturally restricts to a congruence on A∗n, and the factor monoid A∗n/≡hypo is the

hypoplactic monoid of rank n, denoted by hypon.

It follows from the definition of ≡hypo that each element [u]hypo of hypo can be iden-

tified with the quasi-ribbon tableau P→hypo(u). As with the case of the plactic monoid, we

can define the content of an element of hypo as the content of any word which represents

it, and the support of an element of hypo as the support of any word which represents it.

Notice that hypon is (isomorphic to) a submonoid of hypo, for each n ∈ N, and, for

n,m ∈ N, if n ≤m, then hypon is (isomorphic to) a submonoid of hypom.

Let u ∈ A∗n. Suppose supp(u) = {a1 < · · · < ak}, for some k ∈ N. We say u has an

ai+1-ai inversion, for 1 ≤ i ≤ k − 1, if it admits ai+1ai as a subsequence. In other words,

when reading u from left-to-right, there is at least an occurrence of ai+1 before the last

occurrence of ai . Notice that we only consider inversions of consecutive elements of the

support of u.

Example 4.2.2. The word 31214 has 3-2 and 2-1 inversions, but no 4-3 inversion. On the

other hand, 21341 has a 2-1 inversion, but neither a 4-3 nor a 3-2 inversion.

The following characterization of the hypoplactic monoid is a consequence of [Nov00,

Subsection 4.2, Theorem 4.18 and Note 4.10]:

Proposition 4.2.3. For u,v ∈ A∗, we have that u ≡hypo v if and only if u and v share exactly
the same content and inversions.

By the previous result, we can say that an element [u]hypo of hypo has an ai+1-ai
inversion if the word u itself, and hence any other word in [u]hypo, has an ai+1-ai inversion.

This characterization will be extensively used throughout the rest of this paper.
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The hypoplactic monoid can also be defined by the presentation
〈
A
∣∣∣Rhypo

〉
, where

Rhypo =
{
(acb,cab) : a ≤ b < c

}
(4.3)

∪
{
(bac,bca) : a < b ≤ c

}
(4.4)

∪
{
(cadb,acbd) : a ≤ b < c ≤ d

}
(4.5)

∪
{
(bdac,dbca) : a < b ≤ c < d

}
. (4.6)

The first two relations are the plactic relations, while the last two are known as the

hypoplactic relations. A presentation for the hypoplactic monoid of rank n, for some

n ∈ N, can be obtained by restricting generators and relations of the above presentation to

generators in An. Notice that the hypoplactic monoids are multihomogeneous, hence the

finite-rank hypoplactic monoids are residually finite, but not subdirectly irreducible. The

infinite-rank hypoplactic monoid is also residually finite, but not subdirectly irreducible

(see Section 7.2).

The following non-trivial identities are satisfied by hypo:

xyxy ≈ xyyx ≈ yxxy ≈ yxyx;

xxyx ≈ xyxx.

Furthermore, up to equivalence (that is, up to renaming variables or swapping both sides

of the identities), these are the shortest non-trivial identities satisfied by hypo [CM18b,

Proposition 12]. Notice that these identities are satisfied by hypoplactic monoids of all

ranks, in contrast to the plactic monoid case.

4.3 The sylvester and #-sylvester monoids

This section gives a brief overview of the sylvester and #-sylvester monoids and their

related combinatorial objects and insertion algorithms, as well as results from [CM18b].

We introduce new characterizations of equality of words in these monoids, analogous to

the one given in [Nov00] for the hypoplactic monoid, as well as some new notation. For

more information on the sylvester monoid, see [HNT05] and [CM18a]; on binary search

trees, see [Knu70] and [AU92]; on graph theory, see [Die17].

A graph is a pair G = (V ,E) of sets, where E ⊆ V × V . The elements of V are called

vertices and the elements of E are called edges. An edge {x,y} is usually written as xy.

Two vertices x,y ∈ V are adjacent if xy is an edge of G. We say G′ = (V ′ ,E′) is a subgraph

of G if V ′ ⊆ V and E′ ⊆ E. If G′ is a subgraph of G which contains all edges xy ∈ E with

x,y ∈ V ′, then G′ is called an induced subgraph of G.

A (simple) path is a non-empty graph P = (V ,E), where V = {x1,x2 . . . ,xk} with all

vertices vi distinct from each other and E = {x1x2,x2x3 . . . ,xk−1xk}. The length of the path

is the number of its edges. A cycle is a graph C = (V ,E ∪ {xkx1}), where P = (V ,E) is a

path. Paths and cycles are usually denoted by their sequence of vertices, for example,
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P = x1x2 . . .xk . We say a path or a cycle is in a graph G if it is a subgraph of G. A graph is

connected if it is non-empty and any two vertices are contained in a path in G.

A connected graph which does not contain any cycles is called a tree, and its vertices

are usually called nodes. Any two nodes of a tree are linked by a unique path in the tree.

A rooted tree T is a tree with a fixed node r, called the root. The length of the unique

path from the root to a node x is called the depth of the node x. Let P = x1x2 . . .xk be the

path starting at the root r = x1 of the tree and ending in xk . Then, xi is a child of xi−1, for

1 < i ≤ k, and a parent of xi+1, for 1 ≤ i < k. Furthermore, xi is a descendant of all nodes

xj , for all 1 ≤ j < i, and an ancestor of all nodes xl , for all i < l ≤ k. The lowest common

ancestor of two nodes x and y is the node which is a common ancestor of x and y but

whose child nodes are not. The nodes of a tree with no child nodes are called leaves. A

subtree is a subgraph of a rooted tree induced by a node x and all its descendants. Notice

that a subtree is a rooted tree itself, with x as its root.

A rooted binary tree is a rooted tree where each node has at most two child nodes,

ordered from left to right. A subtree of a rooted binary search tree is a left subtree

(respectively, right subtree) of a node x if its root is a left child (respectively, right child)

of x. The nodes of a left (respectively, right) subtree of a node x are left descendants

(respectively, right descendants) of x.

A labelled tree is a tree where each node has a label or value associated with it.

Throughout the rest of the thesis, we will assume that the labels are symbols from the

infinite ordered alphabet A = {1 < 2 < 3 < · · · }. For brevity, we will write ‘the node a’

instead of ‘the node labelled with a’.

A right strict binary search tree is a labelled rooted binary tree where the label of each

node is greater than or equal to the label of every node in its left subtree, and strictly

less than the label of every node in its right subtree. A left strict binary search tree is a

labelled rooted binary tree where the label of each node is strictly greater than the label of

every node in its left subtree, and less than or equal to the label of every node in its right

subtree. The following are examples of, respectively, right and left strict binary search

trees:
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2

1

1

4

5

5

5

6

7

(4.7)

5

4

1

1

2

4

5

7

6

5

. (4.8)

The (left-to-right) postfix or postorder traversal of a labelled rooted binary tree T is

the sequence of nodes obtained by recursively performing the postorder traversal of the

left subtree of the root of T , then recursively performing the postorder traversal of the

right subtree of the root of T , and then adding the root of T to the sequence. The (left-

to-right) postfix reading of a labelled rooted binary tree T is the word Post(T ) obtained

25



CHAPTER 4. MONOIDS FROM INSERTION ALGORITHMS

by listing the labels of the nodes in the order visited during the postorder traversal. For

example, the postfix reading of the tree given in (4.7) is 1142557654.

The (left-to-right) prefix or preorder traversal of a labelled rooted binary tree T is the

sequence of nodes obtained by first adding the root of T to the sequence, then recursively

performing the preorder traversal of the left subtree of the root of T , and then recursively

performing the preorder traversal of the right subtree of the root of T . The (left-to-right)

prefix reading of a labelled rooted binary tree T is the word Pre(T ) obtained by listing the

labels of the nodes visited during the preorder traversal. For example, the prefix reading

of the tree given in (4.8) is 5411245765.

The infix or inorder traversal of a labelled rooted binary tree T is the sequence of

nodes obtained by recursively performing the inorder traversal of the left subtree of the

root of T , then adding the root of T to the sequence, and then recursively performing the

inorder traversal of the right subtree of the root of T . The following result is immediate

from the definitions of right and left strict binary search trees:

Proposition 4.3.1 ([CM19, Proposition 6.5]). For any right or left strict binary search tree T ,
if a node a is encountered before a node b in an inorder traversal, then a ≤ b.

In other words, the inorder traversal visits nodes in weakly increasing order, in right

or left strict binary search trees.

Let T be a labelled rooted binary tree. Consider two nodes a and b of T , as well as their

lowest common ancestor c. If the node a is in the left subtree of the node c or coincides

with it, and the node b is in the right subtree of the node c or coincides with it, and the

nodes a and b do not both coincide with the node c, then we say that the node a is to the

left of the node b, and the node b is to the right of the node a. It is immediate to see that a

node a is to the left of a node b if and only if the inorder traversal visits the node a before

the node b, hence a is less than or equal to b. Furthermore, if we consider a subset of

nodes of T , the definition of leftmost and rightmost nodes follows naturally.

Let T be a right or left strict binary search tree, and let a ∈ A be a symbol which labels

a node of T . We say that a node a is topmost if all other nodes a are its descendants.

Lemma 4.3.2 ([CM19, Lemma 6.6]). If a node a occurs on a path descending from the root
to a leaf, in a right or left strict binary search tree, then all other nodes a occur in that path as
well. Thus, there is a unique topmost node a.

The following is a generalization of the results obtained in [CM19, Subsection 6.4]:

Lemma 4.3.3. Let T be a right (respectively, left) strict binary search tree, and let a ∈ A be
such that more than one node in T is labelled by a. Choosing a node a, one of the following
holds:

• the node a is topmost;
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• the node a is not a topmost node, and is the left (respectively, right) child of another node
a;

• the node a is not a topmost node, and the right (respectively, left) child of a topmost node
b, and a is the least symbol greater than (respectively, greatest symbol less than) the label
of every topmost node in the subtree rooted at the node b.

The following algorithm allows us to insert a symbol from A into an existing right

strict binary search tree, as a leaf node in the unique place that maintains the property of

being a right strict binary search tree:

Algorithm 3: Right strict leaf insertion.
Input: A right strict binary search tree T and a symbol a ∈ A.
Output: A right strict binary search tree T ← a.

1 if T is empty, then
2 create a node and label it a;
3 else
4 examine the label x of the root node; if a > x, recursively insert a into the right

subtree of the root node; otherwise recursively insert a into the left subtree of
the root node;

5 return the resulting tree.

Let u ∈ A∗. Using the insertion algorithm above, we can compute a unique right strict

binary search tree P←sylv(u) from the word u: we start with the empty tree and insert the

symbols of u, one-by-one from right-to-left – see Example 4.3.4.

Example 4.3.4. Computing P←sylv(1142557654):
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Notice that, for any right strict binary search tree T , we have that P←sylv((Post(T ))) = T ,

that is, the right strict insertion algorithm, with the postfix reading of T as input, gives
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back T . As such, any right strict binary search tree can be obtained as an output of the

right strict insertion algorithm.

We define the relation ≡sylv on A∗ in a way analogous to the definition of the plactic

and hypoplactic congruences: for u,v ∈ A∗,

u ≡sylv v ⇐⇒ P←sylv(u) = P←sylv(v).

This relation is a congruence on A∗, called the sylvester congruence. The factor monoid

A∗/≡sylv is the infinite-rank sylvester monoid, denoted by sylv. The congruence ≡sylv
naturally restricts to a congruence on A∗n, and the factor monoid A∗n/≡sylv is the sylvester

monoid of rank n, denoted by sylvn.

It follows from the definition of ≡sylv that each element [u]sylv of sylv can be identified

with the right strict binary search tree P←sylv(u). As such, for each right strict binary search

tree T , the set of words u ∈ A∗ such that P←sylv(u) = T is called the sylvester class of T , and

the postfix reading of T is called the canonical word of the sylvester class of T . As with

the previous monoids, we can define the content of an element of sylv as the content of

any word which represents it, and the support of an element of sylv as the support of

any word which represents it. We define the content and support of a right strict binary

search tree as the content and support of its corresponding sylvester class.

Notice that sylvn is (isomorphic to) a submonoid of sylv, for each n ∈ N, and, for

n,m ∈ N, if n ≤m, then sylvn is (isomorphic to) a submonoid of sylvm.

The sylvester monoid can also be defined by the presentation
〈
A
∣∣∣Rsylv

〉
, where

Rsylv = {(caub,acub) : a ≤ b < c,u ∈ A∗} . (4.9)

These defining relations are known as the sylvester relations. A presentation for the

sylvester monoid of rank n, for some n ∈ N, can be obtained by restricting generators and

relations of the above presentation to generators in An. Notice that the sylvester monoids

are multihomogeneous, hence the finite-rank sylvester monoids are residually finite, but

not subdirectly irreducible. The infinite-rank sylvester monoid is also residually finite,

but not subdirectly irreducible (see Section 7.2).

The sylvester monoid satisfies the non-trivial identity xyxy ≈ yxxy. Furthermore, up

to equivalence, this is the shortest non-trivial identity satisfied by sylv [CM18b, Proposi-

tion 20].

We now give a new alternative characterization of the sylvester monoid, inspired

by the characterization of the hypoplactic monoid using inversions (see [Nov00]). Let

u ∈ A∗ and let a,b ∈ supp(u) be such that a < b. We say u has a b-a right precedence

if, when reading u from right to left, b occurs before the first occurrence of a and, for

any c ∈ supp(u) such that a < c < b, c does not occur before the first occurrence of a.

The number of occurrences of b before the first occurrence of a is the index of the right

precedence.
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Notice that, by the definition of a right precedence, for any given a ∈ supp(u), there is

at most one b ∈ supp(u) such that u has a b-a right precedence (of index k, for some k ∈ N).

On the other hand, u can have several right precedences of the form b-x, for a fixed b.

Example 4.3.5. The word 3123 has a 2-1 and a 3-2 right precedence, both of index 1,

however, it does not have a 3-1 right precedence, since 2 occurs before the first occurrence

of 1; the word 2313 has a 3-1 right precedence of index 1 and a 3-2 right precedence of

index 2; and the word 3132 has a 2-1 right precedence of index 1, and does not have a 3-1

right precedence.

In order to prove that the sylvester monoid can be characterized using only the content

and right precedences of words, we require some lemmata:

Lemma 4.3.6. Let u ∈ A∗, and let a,b ∈ supp(u) be such that a < b and b occurs at least k
times in u, for some k ∈ N. Then, u has a b-a right precedence of index k if and only if the
topmost node a in P←sylv(u) has exactly k ancestor nodes labelled with b, and no ancestor nodes
labelled with c, for any c ∈ supp

(
P←sylv(u)

)
such that a < c < b.

Proof. Suppose that u has a b-a right precedence of index k. It is clear that, as a conse-

quence of the insertion algorithm 3, the topmost node a in P←sylv(u)) corresponds to the

rightmost occurrence of a in u. Thus, there are exactly k symbols b inserted before a, when

computing P←sylv(u). Notice that, by Lemma 4.3.2, the corresponding nodes must be in a

single path from the root to any leaf of P←sylv(u). Furthermore, since no symbol c occurs

before the rightmost symbol a, when reading u from right-to-left, for any a < c < b, we

have that the rightmost symbol a must be inserted as a left child of a node b, in particular,

the node corresponding to the k-th inserted symbol b. This is due to the fact that, during

the “searching” step of the insertion algorithm, the symbol a will satisfy exactly the same

criteria as the last inserted symbol b, except when checking the k-th node b. Thus, the

topmost node a in P←sylv(u) must have exactly k ancestor nodes labelled with b, and no

ancestor nodes labelled with c.

Suppose now that the topmost node a in P←sylv(u) has exactly k ancestor nodes labelled

with b, and no ancestor nodes labelled with c, for any c ∈ supp
(
P←sylv(u)

)
such that a < c < b.

It is clear, by the previous paragraph, that u cannot have a b-a right precedence of index

different than k. Assume, in order to obtain a contradiction, that u does not have a b-a

right precedence. Then, either no b occurs before the first occurrence of a, or there exists

some c ∈ supp
(
P←sylv(u)

)
such that a < c < b and which occurs before the first occurrence

of a.

In the first case, the symbol a is inserted before any symbol b, when computing P←sylv(u).

Hence, the topmost node a in P←sylv(u) cannot have any ancestor nodes labelled with b. In

the second case, the symbol c is inserted before any symbol a, when computing P←sylv(u).

Assume, without loss of generality, that c is minimal. Therefore, by the same reasoning

given before, the topmost node a in P←sylv(u) must be a left descendant of the topmost node

29



CHAPTER 4. MONOIDS FROM INSERTION ALGORITHMS

c. In both cases, we reach a contradiction, hence, u must have a b-a right precedence of

index k.

It is clear, from the previous lemma, that all words in the same sylvester class must

share exactly the same right precedences. However, it is not immediate that two words

which share the same content and right precedences will produce exactly the same output,

when considered as inputs for the insertion algorithm 3.

Lemma 4.3.7. Let T be a right strict binary search tree, and let a ∈ supp(T ). The topmost
node a is a left descendant of some node if and only if there exists b ∈ supp(T ) such that a < b
and all words in the sylvester class of T have a b-a right precedence of index k, where k is the
number of ancestor nodes of the topmost node a labelled with b.

Proof. If the words in the sylvester class of T have a b-a right precedence, then the topmost

node a must be a descendant of a node b, by Lemma 4.3.6. Since a < b, it must be a left

descendant. On the other hand, if the topmost node a is a left descendant of some node,

then the label of that node must be strictly greater than a. Let b be the lowest possible

label of the nodes of which the topmost node a is a left descendant. The result follows

from Lemma 4.3.6.

The following is a generalization of [CM18b, Lemma 19], given without proof, since

the original proof requires only a slight alteration in its last paragraph in order to hold

for this generalization:

Lemma 4.3.8. Let u,v,w ∈ A∗ be such that cont(u) = cont(v) and supp(uv) ⊆ supp(w). Then,
uw ≡sylv vw.

Now, we are ready to prove our main result:

Proposition 4.3.9. For u,v ∈ A∗, we have that u ≡sylv v if and only if u and v share exactly
the same content and right precedences.

Proof. We already know that if two words u and v are in the same sylvester class, then

they share the same content and right precedences, by Lemma 4.3.6. Suppose now that u

and v share the same content and right precedences.

If the roots of P←sylv(u) and P←sylv(v) are labelled differently, the words in the sylvester

class of the tree whose root label is greater have a right precedence involving the root

label of the other tree, while the words in the sylvester class of the tree whose root label

is lesser do not. This contradicts our hypothesis, hence, we will assume that the two trees

P←sylv(u) and P←sylv(v) have the same root. Let Tu,v be the maximum induced tree of P←sylv(u)

and P←sylv(v), that is, Tu,v is an induced subgraph of both P←sylv(u) and P←sylv(v) that is a tree

and has as many vertices as possible. Notice that Tu,v is a right strict binary search tree

and, by our previous assumption, has at least one node, which corresponds to the shared

root of P←sylv(u) and P←sylv(v). This will also be the root node of Tu,v .
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Let t ∈ A∗ be such that P←sylv(t) = Tu,v . Then, there exist u′ ,v′ such that u′t ≡sylv u and

v′t ≡sylv v. By the observation made after Lemma 4.3.6 and our hypothesis, we have that

u′t, u, v′t and v all have the same content and right precedences. Furthermore, u′ and v′

have the same content.

If supp(u′) = supp(v′) ⊆ supp(t), then, by Lemma 4.3.8, we have that u ≡sylv v. As-

sume, in order to obtain a contradiction, that there is some symbol a ∈ supp(u) which does

not occur in t. Then, the topmost node a in either P←sylv(u) or P←sylv(v) is not a node of Tu,v .

We can assume, without loss of generality, that the topmost node a is not a descendant of

any node labelled by another symbol in supp(u) which does not occur in t.

Suppose that u and v do not have a b-a right precedence, for any b ∈ supp(u). Then,

by Lemma 4.3.7, the topmost node a is not a left descendant of any node in P←sylv(u) or

in P←sylv(v). As such, it must be a right descendant of the rightmost node of Tu,v . Since

we assumed that the topmost node a is not a descendant of any node labelled by another

symbol in supp(u) which does not occur in t, then the topmost node a is the right child

of the rightmost node of Tu,v in P←sylv(u).

Assume, in order to obtain a contradiction, that the topmost node a is not the right

child of the rightmost node of Tu,v in P←sylv(v). Then, there exists a node c in P←sylv(v)

which is the right child of the rightmost node of Tu,v and of which the topmost node a

is a right descendant. This node must be topmost and, since it is not a left descendant

of any node in P←sylv(v), then v does not have a b-c right precedence, for any b ∈ supp(u),

by Lemma 4.3.7. But u and v share the same right precedences, as such, by Lemma 4.3.7

once again, the topmost node c is not a left descendant of any node in P←sylv(u). Then, it

must be a right descendant of the topmost node a in P←sylv(u). Since this is a contradiction,

we can assume that the topmost node a is also a right child of the rightmost node of Tu,v
in P←sylv(v). But this contradicts the maximality of Tu,v .

Suppose now that u and v have a b-a right precedence of index k. By Lemma 4.3.6,

the topmost node a has exactly k ancestor nodes labelled with b, and no ancestor nodes

labelled with c, for any c ∈ supp(u) such that a < c < b, in both P←sylv(u) and P←sylv(v).

Consider the unique path Pu from the topmost node b to the topmost node a in P←sylv(u).

The nodes in Pu , excluding the node a, must be either labelled with b or with a symbol

strictly less than a, since all nodes in Pu except for the topmost node b are in the left

subtree of a node b. Furthermore, for each label strictly less than a, there is a single node

with that label in Pu , since the topmost node a must be in the right subtree of such nodes.

As such, by Lemma 4.3.3, those nodes are topmost. Even more so, they must occur in Pu
in increasing order of the label. As such, none of those nodes have an ancestor node with

label greater than their own label, but less than b. The same can be said about the unique

path Pv from the topmost node b to the topmost node a in P←sylv(v). Notice that, since u

and v have the same right precedences, they share, in particular, b-d right precedences,

where d is the label of a topmost node in Pu or Pv with label strictly less than a.

On the other hand, by our assumption that the topmost node a is not a descendant of

any node labelled by another symbol in supp(u) which does not occur in t, we have that
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the labels of all nodes in Pu , except for a, must occur in t. As such, the topmost nodes

with label strictly less than a in Pu , as well as the topmost node b, must be nodes of Tu,v .

This implies that all nodes in Pu , except for possibly a sequence of nodes b at the end of

the path and node a itself, are in Tu,v . Suppose there is a node d in Pv , with label strictly

less than a, that is not in Tu,v . This node d must be an ancestor of the topmost node a

in P←sylv(v), but in P←sylv(u), it must be a left descendant of the topmost node a, since its

label must be strictly greater than all other labels in Pu , except for a and b, and as such,

when computing P←sylv(u), the symbol d is inserted in the left subtree of the topmost node

a. This implies that v has a b-d right precedence, while u has an a-d right precedence.

This contradicts our hypothesis, hence all nodes in Pv with label strictly less than a are in

Tu,v . But since u and v share the same right precedences, this implies, by the observations

made in the previous paragraph, that Pu and Pv are equal paths. As such, the topmost

node a is a child of the same node of Tu,v in both P←sylv(u) and P←sylv(v). But this contradicts

the maximality of Tu,v .

Therefore, all symbols in supp(u) occur in t, hence u ≡sylv v.

In light of the previous result, we say that an element [u]sylv of sylv has a b-a right

precedence (of index k) if the word u itself, and hence any other word in [u]sylv, has a b-a

right precedence (of index k).

The sylvester and hypoplactic monoids are closely related (see [CM18a; Pri13]). In

fact, the hypoplactic monoid is a homomorphic image of the sylvester monoid. Notice

that, for any right strict binary search tree with support {a1 < · · · < ak}, all words in

its sylvester class have an ai+1-ai inversion if and only if a node ai+1 appears in a right

subtree of a node ai . Hence, the map defined by [u]sylv 7→ [u]hypo, for u ∈ A∗, is a surjective

homomorphism from sylv onto hypo. Therefore, hypo is in the variety generated by sylv,

and thus must satisfy all identities satisfied by sylv, by Birkhoff’s Theorem. By restricting

the map to sylvn, we obtain a surjective homomorphism from sylvn onto hypon.

There is an analogue of the sylvester monoid for left strict binary search trees, arising

from their natural insertion algorithm, which is dual to Algorithm 3:

Algorithm 4: Left strict leaf insertion.
Input: A left strict binary search tree T and a symbol a ∈ A.
Output: A left strict binary search tree T ← a.

1 if T is empty, then
2 create a node and label it a;
3 else
4 examine the label x of the root node; if a < x, recursively insert a into the left

subtree of the root node; otherwise recursively insert a into the right subtree
of the root node;

5 return the resulting tree.

Let u ∈ A∗. Using the insertion algorithm above, we can compute a unique left strict
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binary search tree P→
sylv#(u) from the word u: we start with the empty tree and insert the

symbols of u, one-by-one from left-to-right – see Example 4.3.10.

Example 4.3.10. Computing P→
sylv#(5411245765):
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Notice that, for any left strict binary search tree T , we have that P→
sylv#(Pre(T )) = T ,

that is, the left strict insertion algorithm, with the prefix reading of T as input, gives back

T . As such, any left strict binary search tree can be seen as an output of the left strict

insertion algorithm.

We define the #-sylvester congruence≡sylv# , the infinite-rank #-sylvester monoid sylv#,

the #-sylvester monoid of rank n sylv#
n, and the content and support of a #-sylvester class

in a similar fashion as before.

The #-sylvester monoid can also be defined by the presentation
〈
A
∣∣∣Rsylv#

〉
, where

Rsylv# = {(buac,buca) : a < b ≤ c,u ∈ A∗} . (4.10)

These defining relations are known as the #-sylvester relations. Notice that the #-sylvester

monoids are multihomogeneous, hence the finite-rank #-sylvester monoids are residu-

ally finite, but not subdirectly irreducible. The infinite-rank #-sylvester monoid is also

residually finite, but not subdirectly irreducible (see Section 7.2).

The #-sylvester monoid satisfies the non-trivial identity yxyx ≈ yxxy. Furthermore,

up to equivalence, this is the shortest non-trivial identity satisfied by sylv# [CM18b,

Proposition 24].

The sylvester and #-sylvester monoids of finite rank n are anti-isomorphic: an anti-iso-

morphism from sylvn to sylv#
n arises by taking a right strict binary search tree, reflecting

it about a vertical axis, and renumbering the label i of each node to n− i + 1, thus obtain-

ing a left strict binary search tree. Similarly, we can define an anti-isomorphism from
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sylv#
n to sylvn. These anti-isomorphisms allow us to easily deduce results for finite-rank

#-sylvester monoids from results for the sylvester monoids. However, notice that these

anti-isomorphisms do not arise in the infinite rank case, as there is no way to renumber

the labels of the nodes. In fact, we have the following:

Proposition 4.3.11. There is no anti-isomorphism from sylv to sylv#.

Proof. Suppose, in order to obtain a contradiction, that there exists such an anti-isomor-

phism σ : sylv→ sylv#. Notice that, for any element of the form [a]sylv, where a ∈ A, we

have that
∣∣∣∣σ (

[a]sylv
)∣∣∣∣ = 1, since

∣∣∣∣σ (
[a]sylv

)∣∣∣∣ > 1 implies that

∣∣∣[a]sylv
∣∣∣ =

∣∣∣∣σ−1
(
σ
(
[a]sylv

))∣∣∣∣ > 1,

along with the fact that the identity of sylv must be mapped to the identity of sylv#. Thus,

σ maps the sylv-classes of generators into sylv#-classes of generators.

Thus, we have that σ
(
[1]sylv

)
= [x]sylv# , for some x ∈ A. Since we are considering the

infinite-rank case, there must exist b,y ∈ A such that y > x and σ
(
[b]sylv

)
= [y]sylv# . Notice

that, since σ maps 1 to x, then b > 1. As such, we have that b11 ≡sylv 1b1, but on the other

hand,

σ
(
[b11]sylv

)
= [xxy]sylv# , [xyx]sylv# = σ

(
[1b1]sylv

)
,

which contradicts the hypothesis that σ is an anti-isomorphism.

We now give an alternative characterization of the #-sylvester monoid, parallel to the

one given for the sylvester monoid. Let u ∈ A∗ and let a,b ∈ supp(u) be such that a < b. We

say u has an a-b left precedence of index k if, when reading u from left to right, a occurs

before the first occurrence of b and, for any c ∈ supp(u) such that a < c < b, the symbol c

does not occur before the first occurrence of b. The number of occurrences of a before the

first occurrence of b is the index of the left precedence.

Notice that, by the definition of a left precedence, for any given b ∈ supp(u), there is

at most one a ∈ supp(u) such that u has an a-b left precedence (of index k, for some k ∈ N).

On the other hand, u can have several left precedences of the form a-x, for a fixed a.

Example 4.3.12. The word 1231 has a 1-2 and a 2-3 left precedence, both of index 1,

while 1312 has a 1-2 left precedence of index 2 and a 1-3 left precedence of index 1, and

3121 has a 1-2 left precedence of index 1.

The following proposition mirrors Proposition 4.3.9:

Proposition 4.3.13. For u,v ∈ A∗, we have that u ≡sylv# v if and only if u and v share exactly
the same content and left precedences.

In light of the previous result, we say that an element [u]sylv# of sylv# has an a-b left

precedence (of index k) if the word u itself, and hence any other word in [u]sylv# , has an

a-b left precedence (of index k).
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The hypoplactic monoid is also a homomorphic image of the #-sylvester monoid.

Notice that, for any left strict binary search tree with support {a1 < · · · < ak}, all words

in its #-sylvester class have an ai+1-ai inversion if and only if a node ai appears in a left

subtree of a node ai+1. Hence, the map defined by [u]sylv# 7→ [u]hypo, for u ∈ A∗, is a

surjective homomorphism from sylv# onto hypo. Hence, hypo is in the variety generated

by sylv#, and thus must satisfy all identities satisfied by sylv#, by Birkhoff’s Theorem.

By restricting the map to sylv#
n, we obtain a surjective homomorphism from sylv#

n onto

hypon.

4.4 The Baxter monoid

This section gives a brief overview of the Baxter monoid and its related combinatorial

object and insertion algorithm, as well as results from [CM18b]. Due to its connection

with the sylvester and #-sylvester monoids, we also give an alternative characterization

of this monoid, derived from the characterization of sylv and sylv# given in the previous

section. For more information, see [Gir12] and [CM18a].

The canopy of a rooted binary tree T is the word over {0,1} obtained by doing an

inorder traversal of T , outputting 1 when an empty left subtree is encountered and 0

when an empty right subtree is encountered, then omitting the first and last symbols

of the resulting word (which correspond, respectively, to the empty left subtree of the

leftmost node and the empty right subtree of the rightmost node).

A pair of twin binary search trees consists of a left strict binary search tree TL and

a right strict binary search tree TR , such that TL and TR have the same content, and

the canopies of TL and TR are complementary, in the sense that the i-th symbol of the

canopy of TL is 0 (respectively 1) if and only if the i-th symbol of the canopy of TR is 1

(respectively 0). The following is an example of a pair of twin binary search trees:
5

4

1

1

2

4

5

7

6

5

,

4

2

1

1

4

5

5

5

6

7


Let u ∈ A∗. Due to [Gir12, Proposition 4.5], for each u ∈ A∗, the pair of binary search

trees (
P→sylv#(u),P←sylv(u)

)
is a pair of twin binary search trees. As such, by defining Pbaxt(u) as this pair, we can use

Algorithms 3 and 4 to compute a unique pair of twin binary search trees Pbaxt(u) from

the word u.

We define the Baxter congruence ≡baxt, the infinite-rank Baxter monoid baxt, the

Baxter monoid of rank n baxtn, and the content and support of a Baxter class in a similar

fashion as before.
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The Baxter monoid can also be defined by the presentation ⟨A |Rbaxt⟩, where

Rbaxt = {(cudavb,cuadvb) : a ≤ b < c ≤ d,u,v ∈ A∗} (4.11)

∪ {(budavc,buadvc) : a < b ≤ c < d,u,v ∈ A∗} . (4.12)

These defining relations are known as the Baxter relations. Notice that the Baxter monoids

are multihomogeneous, hence the finite-rank Baxter monoids are residually finite, but

not subdirectly irreducible. The infinite-rank Baxter monoid is also residually finite, but

not subdirectly irreducible (see Section 7.2).

The Baxter monoid satisfies the non-trivial identities

yxxyxy ≈ yxyxxy and xyxyxy ≈ xyyxxy.

Furthermore, up to equivalence, these are the shortest non-trivial identities satisfied by

baxt [CM18b, Proposition 26].

The Baxter, sylvester and #-sylvester monoids are closely related, due to [Gir12, Propo-

sition 3.7]: For u,v ∈ A∗, we have that u ≡baxt v if and only if u ≡sylv v and u ≡sylv# v. As a

consequence of this, and Propositions 4.3.9 and 4.3.13, we have the following:

Corollary 4.4.1. For u,v ∈ A∗, u ≡baxt v if and only if u and v share exactly the same content
and left and right precedences.

In light of the previous result, we say that an element [u]baxt of baxt has a b-a right

(respectively, left) precedence of index k if the word u itself, and hence any other word in

[u]baxt, has a b-a right (respectively, left) precedence of index k.

It is also easy to see that the maps defined by

[u]baxt 7→ [u]sylv and [u]baxt 7→ [u]sylv# ,

for u ∈ A∗, are surjective homomorphisms from baxt onto, respectively, sylv and sylv#.

Therefore, both sylv and sylv#, as well as hypo, are monoids in the variety generated by

baxt, and thus must satisfy all identities satisfied by baxt, by Birkhoff’s Theorem. By

restricting the maps to baxtn, we obtain surjective homomorphism from baxtn onto sylvn
and sylv#

n.

On the other hand, the map defined by [u]baxt 7→
(
[u]sylv# , [u]sylv

)
, for u ∈ A∗, is an

embedding of baxt into sylv# × sylv, due to [Gir12, Proposition 3.7]. Therefore, baxt is a

monoid in the variety generated by {sylv#,sylv}, and thus must satisfy all identities which

are satisfied by both sylv and sylv#, by Birkhoff’s Theorem. By restricting the map to

baxtn, we obtain an embedding of baxtn into sylv#
n × sylvn.
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Embedding results

In this chapter, we prove that the hypoplactic, sylvester, #-sylvester and Baxter monoids,

of rank greater than or equal to 2, satisfy identities regardless of rank. We do this by

constructing embeddings of these monoids of any rank greater than 2 into direct products
of copies of the corresponding monoid of rank 2, as it is not possible to embed one into

another. Thus, monoids of the same family generate the same variety and, by Birkhoff’s

Theorem, satisfy exactly the same identities. We also show that the basis rank of the

varieties generated by these monoids is 2.

The results in Subsections 5.1.1 and 5.2.1 have appeared in [CMR21a], while the

results in Subsections 5.1.2 and 5.2.2 are to appear in the submitted paper [CMR21b].

5.1 Non-existence of embedding into a monoid of lesser rank

We first show that it is not possible to embed a plactic-like monoid of finite rank greater

than 2 into the corresponding monoid of lesser rank. This stands in contrast with the case

of the free monoid, where all countable-rank free monoids can be embedded into the free

monoid of rank 2.

5.1.1 Hypoplactic monoid case

It is not possible to embed a hypoplactic monoid of finite rank greater than 2 into a

hypoplactic monoid of lesser rank:

Proposition 5.1.1. For all n > m ≥ 1, there is no embedding of hypon into hypom.

Proof. First of all, notice that hypo1 is isomorphic to the free monogenic monoid, which is

commutative, and hypon is non-commutative, for any n ≥ 2. Thus, there is no embedding

of hypon into hypo1.

If there exists an embedding of hypon into hypom, for some n > m ≥ 2, then, since

hypom is a submonoid of hypon−1, there must also exist an embedding of hypon into

hypon−1. As such, we just need to prove that this second embedding cannot exist.
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Suppose, in order to obtain a contradiction, that there exists n ≥ 3 such that we have

an embedding φ : hypon→ hypon−1. Without loss of generality, suppose n is the smallest

positive integer in such conditions.

Observe that supp
(
φ
(
[1 · · · (n− 1)]hypon

))
= An−1, that is, the image of the product of

all generators of hypon, except for n, has all the possible symbols of An−1. Indeed, if we

had

supp
(
φ
(
[1 · · · (n− 1)]hypon

))
⫋ An−1,

we would be able to construct an embedding from the submonoid of hypon isomorphic to

hypon−1, generated by all generators of hypon except for n, into a submonoid of hypon−1

isomorphic to hypon−2. This contradicts the minimality of n.

Hence, φ
(
[1 · · · (n− 1)]2

hypon

)
has all the possible inversions of symbols of An−1. If we

multiply this element by any other element of hypon−1, either on the left or the right,

we obtain the same result, by Proposition 4.2.3. Thus, by left and right multiplying by

φ([n]hypon), we have that

φ
(
[n]hypon · [1 · · · (n− 1)]2

hypon

)
= φ

(
[1 · · · (n− 1)]2

hypon
· [n]hypon

)
.

On the other hand, we have that

[n]hypon · [1 · · · (n− 1)]2
hypon

, [1 · · · (n− 1)]2
hypon

· [n]hypon ,

because the left-hand side has a n-n− 1 inversion and the right-hand side does not. This

contradicts our hypothesis that φ is injective. Hence, for all n ≥ 2, there is no embedding

of hypon into hypon−1. As such, there is no embedding of hypon into hypom, for n > m ≥
2.

Corollary 5.1.2. There is no embedding of hypo into hypon, for any n ∈ N.

Proof. If such an embedding existed, for some n ∈ N, then, by restricting the embedding

to the first n+1 generators of hypo, we would obtain an embedding of hypon+1 into hypon,

which contradicts the previous proposition.

5.1.2 Binary search tree monoids case

It is also not possible to embed a sylvester monoid of finite rank greater than 2 into a

sylvester monoid of lesser rank:

Proposition 5.1.3. For all n > m ≥ 1, there is no embedding of sylvn into sylvm.

The overall structure of the proof parallels that of Proposition 5.1.1, but we use the

new characterization of right precedences in sylv and reach a contradiction using different

words.
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Proof. First of all, notice that sylv1 is isomorphic to the free monogenic monoid, which is

commutative, and sylvn is non-commutative, for any n ≥ 2. Thus, there is no embedding

of sylvn into sylv1.

If there exists an embedding of sylvn into sylvm, for some n > m ≥ 2, then, since sylvm
is a submonoid of sylvn−1, there must also exist an embedding of sylvn into sylvn−1. As

such, we just need to prove that this second embedding cannot exist.

Suppose, in order to obtain a contradiction, that there exists n ≥ 3 such that we have

an embedding φ : sylvn→ sylvn−1. Without loss of generality, suppose n is the smallest

positive integer in such conditions.

Observe that supp
(
φ
(
[2 · · ·n]sylvn

))
= An−1, that is, the image of the product of all

generators of sylvn, except for 1, has all the symbols of An−1. Indeed, if we had

supp
(
φ
(
[2 · · ·n]sylvn

))
⫋ An−1,

we would be able to construct an embedding from the submonoid of sylvn isomorphic

to sylvn−1, generated by all generators of sylvn except for 1, into a submonoid of sylvn−1

isomorphic to sylvn−2. This contradicts the minimality of n.

Hence, since all symbols of An−1 already occur in φ
(
[2 · · ·n]sylvn

)
, if we multiply this

element by any other element of sylvn−1 to the left, we obtain an element with the same

right precedences as φ
(
[2 · · ·n]sylvn

)
. Thus, by Proposition 4.3.9, since φ([12]sylv) and

φ([21]sylvn) have the same content, we have that

φ
(
[12]sylvn · [2 · · ·n]sylvn

)
= φ

(
[21]sylvn · [2 · · ·n]sylvn

)
.

On the other hand, we have that

[12]sylvn · [2 · · ·n]sylvn , [21]sylvn · [2 · · ·n]sylvn ,

since the left-hand side has a 2-1 right precedence of index 2, and the right-hand side has

a 2-1 right precedence of index 1.

This contradicts our hypothesis that φ is injective. Hence, for all n ≥ 2, there is no

embedding of sylvn into sylvn−1. As such, there is no embedding of sylvn into sylvm, for

n > m ≥ 2.

Corollary 5.1.4. There is no embedding of sylv into sylvn, for any n ∈ N.

Proof. If such an embedding existed, for some n ∈ N, then, by restricting the embedding

to the first n+ 1 generators of sylv, we would obtain an embedding of sylvn+1 into sylvn,

which contradicts the previous proposition.

If there existed an embedding of a #-sylvester monoid of finite rank greater than 2

into a #-sylvester monoid of lesser rank, then we would be able to compose it with the

anti-isomorphisms given in Section 4.3, thus obtaining an embedding for the sylvester

case. Therefore, no such embedding exists, as well as no embedding of the infinite-

rank #-sylvester monoid into a #-sylvester monoid of finite rank. We can also prove the

corresponding result for the Baxter monoid:
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Proposition 5.1.5. For all n > m ≥ 1, there is no embedding of baxtn into baxtm.

Proof. The proof follows the same reasoning as given in the proof of Proposition 5.1.3:

Instead of considering the elements

[12]sylvn · [2 · · ·n]sylvn and [21]sylvn · [2 · · ·n]sylvn ,

we consider, respectively, the elements

[2 · · ·n]baxtn · [12]baxtn · [2 · · ·n]baxtn and [2 · · ·n]baxtn · [21]baxtn · [2 · · ·n]baxtn ,

which are different in baxtn but whose images under an embedding would have the same

content and left and right precedences.

Corollary 5.1.6. There is no embedding of baxt into baxtn, for any n ∈ N.

5.2 Embedding into a direct product of copies of monoids of

rank 2

5.2.1 Embeddings of the hypoplactic monoids

In this subsection, we prove that the hypoplactic monoids of rank greater than or equal

to 2 satisfy exactly the same identities and that the basis rank of the variety generated by

hypo is 2.

For any i, j ∈ A, with i < j, define a map from A to hypo2 in the following way: For any

a ∈ A,

a 7−→



[1]hypo2
if a = i;

[2]hypo2
if a = j;

[21]hypo2
if i < a < j;

[ε]hypo2
otherwise;

and extend it to a homomorphism f
ij
hypo : A∗ −→ hypo2, in the usual way.

Notice that, for any w ∈ A∗, its image under f ijhypo is the hypoplactic class of the word

obtained from w by replacing any occurrence of i by 1; any occurrence of j by 2; any

occurrence of an a, with i < a < j, by 21; and erasing the occurrences of any other element.

Lemma 5.2.1. f ijhypo factors to give a homomorphism ϕ
ij
hypo : hypo −→ hypo2.

Proof. Since hypo is given by the presentation
〈
A
∣∣∣Rhypo

〉
, we just need to verify that

both sides of the plactic and hypoplactic relations have the same image under f ijhypo. Let

a,b,c,d ∈ A. Assume, without loss of generality, that f ijhypo does not map any symbol to

[ε]hypo2
.
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If a ≤ b < c ≤ d, then either f ijhypo maps at least one symbol to [21]hypo2
, or f ijhypo maps a

and b to [1]hypo2
, and c and d to [2]hypo2

. Thus, by Proposition 4.2.3,

f
ij
hypo(acb) = f ijhypo(cab) and f

ij
hypo(acbd) = f ijhypo(cadb),

since both classes in each side of the equalities have the same content and 2-1 inversions.

If a < b ≤ c, then either f ijhypo maps at least one symbol to [21]hypo2
, or f ijhypo maps a to

[1]hypo2
, and b and c to [2]hypo2

. Thus,

f
ij
hypo(bac) = f ijhypo(bca).

since both classes in each side of the equality have the same content and 2-1 inversions.

If a < b ≤ c < d, then f ijhypo maps b and c to [21]hypo2
. Thus, by the same reasoning,

f
ij
hypo(bdac) = f ijhypo(dbca).

Hence, Rhypo ⊆ kerf ijhypo. Therefore, the congruence generated by Rhypo, which is the

hypoplactic congruence ≡hypo, is contained in kerf ijhypo. As such, by Theorem 2.4.1, there

exists a homomorphism ϕ
ij
hypo : hypo −→ hypo2 such that ϕijhypo◦ ≡

♮
hypo= f ijhypo.

Let w ∈ A∗n, for some n ≥ 3. Assume supp(w) = {a1 < · · · < ak}, for some k ∈ N. Observe

that, ranging 1 ≤ i < k, we can get the number of occurrences of ai and ai+1 in w from the

images of [w]hypo under the maps ϕaiai+1
hypo . Furthermore, we can check if w has an ai+1-ai

inversion: Since no element a ∈ A such that ai < a < ai+1 occurs in w, each occurrence

of 1 in (a word in) ϕaiai+1
hypo ([w]hypo) corresponds to an occurrence of ai in w and, similarly,

each occurrence of 2 in ϕaiai+1
hypo ([w]hypo) corresponds to an occurrence of ai+1 in w. Thus,

ϕaiai+1
hypo ([w]hypo) has a 2-1 inversion if and only if w has an ai+1-ai inversion. Hence, we get

the following lemma:

Lemma 5.2.2. Let u,v ∈ A∗n. Then, u ≡hypo v if and only if ϕijhypo([u]hypo) = ϕ
ij
hypo([v]hypo),

for all 1 ≤ i < j ≤ n.

Proof. The direct implication is trivial, due to the fact that ϕijhypo is well-defined as a map,

for all 1 ≤ i < j ≤ n. The proof of the converse follows from the previous observations, as

well as Proposition 4.2.3.

Example 5.2.3. Checking the inversions for the words given in Example 4.2.2:

[31214]hypo4
7−→
ϕ12
hypo

[121]hypo2
[21341]hypo4

7−→
ϕ12
hypo

[211]hypo2

[31214]hypo4
7−→
ϕ13
hypo

[21211]hypo2
[21341]hypo4

7−→
ϕ13
hypo

[21121]hypo2

[31214]hypo4
7−→
ϕ14
hypo

[2112112]hypo2
[21341]hypo4

7−→
ϕ14
hypo

[2112121]hypo2

[31214]hypo4
7−→
ϕ23
hypo

[21]hypo2
[21341]hypo4

7−→
ϕ23
hypo

[12]hypo2

[31214]hypo4
7−→
ϕ24
hypo

[2112]hypo2
[21341]hypo4

7−→
ϕ24
hypo

[1212]hypo2

[31214]hypo4
7−→
ϕ34
hypo

[12]hypo2
[21341]hypo4

7−→
ϕ34
hypo

[12]hypo2

41



CHAPTER 5. EMBEDDING RESULTS

For each n ∈ N, with n ≥ 3, consider the index set In = {(i, j) : 1 ≤ i < j ≤ n}, and let

I :=
⋃
n∈N In. Now, consider the map

φhypon : hypon −→
∏
In

hypo2,

whose (i, j)-th component is given by ϕijhypo([w]hypo), for w ∈ A∗n and (i, j) ∈ In.

Proposition 5.2.4. The map φhypon is an embedding.

Proof. It is clear that φhypon is a homomorphism. It follows from the definition of φhypon

and Lemma 5.2.2 that, for any u,v ∈ A∗n, we have

u ≡hypon v ⇐⇒ φhypon([u]hypo) = φhypon([v]hypo),

hence φhypon is an embedding.

Thus, for each n ∈ N, we can embed hypon into a direct product of
(n

2
)

copies of hypo2.

Similarly, we can embed hypo into a direct product of infinitely many copies of hypo2.

Consider the map

φhypo : hypo −→
∏
I

hypo2,

whose (i, j)-th component is given by ϕijhypo([w]hypo), for w ∈ A∗ and (i, j) ∈ I .

Proposition 5.2.5. The map φhypo is an embedding.

Proof. It is clear that φhypo is a homomorphism. Notice that, for any word w ∈ A∗, there

must exist n ∈ N such that w ∈ A∗n. Furthermore, for (i, j) ∈ In, we have that the (i, j)-th

component of φhypo([w]hypo) is equal to the (i, j)-th component of φhypon([w]hypo). Thus,

for u,v ∈ A∗, if φhypo([u]hypo) = φhypo([v]hypo), then φhypon([u]hypo) = φhypon([v]hypo), for

some n ∈ N such that u,v ∈ A∗n.

It follows from Lemma 5.2.2 that, for any u,v ∈ A∗, we have

u ≡hypo v ⇐⇒ φhypo([u]hypo) = φhypo([v]hypo),

hence φhypo is an embedding.

As such, all hypoplactic monoids of rank strictly greater than 2 are in the variety

generated by hypo2. Since hypo2 is a submonoid of hypo and hypon, for any n ≥ 3, they

all generate the same variety, which we will denote by Vhypo. Thus, by Birkhoff’s Theorem,

we have the following result:

Theorem 5.2.6. For any n ≥ 2, hypo and hypon satisfy exactly the same identities.

Another consequence of Vhypo being generated by hypo2 is the following:

Proposition 5.2.7. The basis rank of Vhypo is 2.
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Proof. Since Vhypo is generated by hypo2, and hypo2 is defined by a presentation where

the alphabet has two generators, then rb
(
Vhypo

)
is less than or equal to 2.

On the other hand, notice that any monoid generated by a single element is commu-

tative. Since hypo is not commutative, Vhypo cannot be generated by any single monoid

which is itself generated by a single element. As such, rb
(
Vhypo

)
is strictly greater than 1.

Hence, the basis rank of Vhypo is 2.

5.2.2 Embeddings of the sylvester, #-sylvester and Baxter monoids

In this subsection, we prove that the sylvester monoids of ranks greater than or equal to 2

satisfy exactly the same identities and that the basis rank of the variety generated by sylv

is 2. By parallel reasoning, we prove the same results for the #-sylvester monoids of ranks

greater than or equal to 2. Furthermore, as a consequence of [Gir12, Proposition 3.7], we

also obtain the same results for the Baxter monoids of ranks greater than or equal to 2.

For any i, j ∈ A, with i < j, define a map from A to sylv2 in the following way: For any

a ∈ A,

a 7−→



[1]sylv2
if a = i;

[2]sylv2
if a = j;

[21]sylv2
if i < a < j;

[ε]sylv2
otherwise;

and extend it to a homomorphism f
ij
sylv : A∗ −→ sylv2, in the usual way. This homomor-

phism is analogous to the one given in Subsection 5.2.1. The proofs of the following

lemmata and propositions make use of the new characterization using right precedences

for the sylvester monoid (see Proposition 4.3.9).

Notice that, for any w ∈ A∗, its image under f ijsylv is the sylvester class of the word

obtained from w by replacing any occurrence of i by 1; any occurrence of j by 2; any

occurrence of an a, with i < a < j, by 21; and erasing the occurrences of any other element.

Lemma 5.2.8. f ijsylv factors to give a homomorphism ϕ
ij
sylv : sylv −→ sylv2.

Proof. Since sylv is given by the presentation
〈
A
∣∣∣Rsylv

〉
, we just need to verify that both

sides of the sylvester relations have the same image under f ijsylv.

Let a,b,c ∈ A and u ∈ A∗ be such that a ≤ b < c. If f ijsylv maps either a or c to [ε]sylv2
,

then the images of caub and acub under f ijsylv coincide. Assume, without loss of generality,

that f ijsylv does not map any symbol to [ε]sylv2
. Then, f ijsylv maps a to [1]sylv2

, b to either

[21]sylv2
or [1]sylv2

, and c to [2]sylv2
. Notice that b is mapped to an element with no right

precedences. As such, we have that

f
ij
sylv(caub) = f ijsylv(acub),
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since both sides of the equality have no right precedences. Hence, Rsylv ⊆ kerf ijsylv and,

by Theorem 2.4.1 once again, there exists a homomorphism ϕ
ij
sylv : sylv→ sylv2 such that

ϕ
ij
sylv◦ ≡

♮
sylv= f ijsylv.

Let w ∈ A∗n, for some n ≥ 3. Assume supp(w) = {a1 < · · · < ak}, for some k ∈ N. Ob-

serve that, ranging 1 ≤ i < k, we can get the number of occurrences of ai and ai+1 in

w from the images of [w]sylv under the maps ϕaiai+1
sylv , since, when reading any word in

ϕaiai+1
sylv ([w]sylv), every occurrence of 1 corresponds exactly to an occurrence of ai in w, and

every occurrence of 2 corresponds exactly to an occurrence of ai+1.

Recall that there is at most one index j, with 1 ≤ i < j ≤ k, such that w has an aj-ai
right precedence. Ranging 1 ≤ i < j ≤ k, we can check if w has an aj-ai right precedence:

If w does not have any b-ai right precedence, for b < aj , then no b occurs before ai , when

reading w from right-to-left. As such, when reading any word in ϕ
aiaj
sylv([w]sylv) from right-

to-left, the first occurrence of 1 corresponds to the first occurrence of ai , when reading w

from right-to-left, and all occurrences of 2 before the first occurrence of 1 correspond to

all occurrences of aj before the first occurrence of ai . Thus, ϕ
aiaj
sylv([w]sylv) has a 2-1 right

precedence if and only if w has an aj-ai right precedence, and the indexes must coincide.

Hence, we get the following lemma:

Lemma 5.2.9. Let u,v ∈ A∗n. Then, u ≡sylv v if and only if ϕijsylv([u]sylv) = ϕ
ij
sylv([v]sylv), for

all 1 ≤ i < j ≤ n.

Proof. The direct implication is trivial, due to the fact that ϕijsylv is well-defined as a map,

for all 1 ≤ i < j ≤ n. The proof of the converse follows from the previous observations, as

well as Proposition 4.3.9.

Example 5.2.10. Checking the right precedences for the words given in Example 4.3.5

[3123]sylv3
7−→
ϕ12
sylv

[12]sylv2
[2313]sylv3

7−→
ϕ12
sylv

[21]sylv2

[3123]sylv3
7−→
ϕ13
sylv

[21212]sylv2
[2313]sylv3

7−→
ϕ13
sylv

[21212]sylv2

[3123]sylv3
7−→
ϕ23
sylv

[212]sylv2
[2313]sylv3

7−→
ϕ23
sylv

[122]sylv2

[3132]sylv3
7−→
ϕ12
sylv

[12]sylv2

[3132]sylv3
7−→
ϕ13
sylv

[21221]sylv2

[3132]sylv3
7−→
ϕ23
sylv

[221]sylv2

For each n ∈ N, with n ≥ 3, let In and I be the index sets defined in Subsection 5.2.1.

Now, consider the map

φsylvn : sylvn −→
∏
In

sylv2,

whose (i, j)-th component is given by ϕijsylv([w]sylv), for w ∈ A∗n and (i, j) ∈ In.
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Proposition 5.2.11. The map φsylvn is an embedding.

Proof. It is clear that φsylvn is a homomorphism. It follows from the definition of φsylvn

and Lemma 5.2.9 that we have

u ≡sylvn v ⇐⇒ φsylvn([u]sylv) = φsylvn([v]sylv),

for any u,v ∈ A∗n. Hence φsylvn is an embedding.

Thus, for each n ∈ N, we can embed sylvn into a direct product of
(n

2
)

copies of sylv2.

Similarly, we can embed sylv into a direct product of infinitely many copies of sylv2.

Consider the map

φsylv : sylv −→
∏
I

sylv2,

whose (i, j)-th component is given by ϕijsylv([w]sylv), for w ∈ A∗ and (i, j) ∈ I .

Proposition 5.2.12. The map φsylv is an embedding.

Proof. It is clear that φsylv is a homomorphism. Notice that, for any word w ∈ A∗, there

must exist n ∈ N such that w ∈ A∗n. Furthermore, for (i, j) ∈ In, we have that the (i, j)-th

component of φsylv([w]sylv) is equal to the (i, j)-th component of φsylvn([w]sylv). Thus, for

u,v ∈ A∗, if φsylv([u]sylv) = φsylv([v]sylv), then φsylvn([u]sylv) = φsylvn([v]sylv), for some n ∈ N
such that u,v ∈ A∗n.

It follows from Lemma 5.2.9 that, for any u,v ∈ A∗, we have

u ≡sylv v ⇐⇒ φsylv([u]sylv) = φsylv([v]sylv),

hence φsylv is an embedding.

As such, all sylvester monoids of rank higher than 2 are in the variety generated by

sylv2. Since sylv2 is a submonoid of sylv and sylvn, for any n ≥ 3, they all generate the

same variety, which we will denote by Vsylv. Thus, by Birkhoff’s Theorem, we have the

following result:

Theorem 5.2.13. For any n ≥ 2, sylv and sylvn satisfy exactly the same identities.

Another consequence of Vsylv being generated by sylv2 is the following:

Corollary 5.2.14. The basis rank of Vsylv is 2.

Proof. The reasoning is identical to that given for the proof of Proposition 5.2.7.

By parallel reasoning, we can also prove that the #-sylvester monoids of rank greater

than or equal to 2 embed into a direct product of copies of sylv#
2. For any i, j ∈ A, with i < j,

define the homomorphism f
ij

sylv# : A∗ −→ sylv#
2 in an identical fashion to f ijhypo, mapping a

word to a #-sylvester class instead of a hypoplactic class.
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As with the case of f ijhypo (see Lemma 5.2.1), we have that f ij
sylv# factors to give a ho-

momorphism ϕ
ij

sylv# : sylv# −→ sylv#
2. Furthermore, for a word w ∈ A∗n, with n ≥ 3, we

can deduce the number of occurrences of each symbol in w, and its left precedences, by

looking at the images of [w]sylv# under ϕij
sylv# , ranging 1 ≤ i < j ≤ n. Thus, for u,v ∈ A∗n, we

have that u ≡sylv#
n
v if and only if ϕij

sylv#([u]sylv#) = ϕij
sylv#([v]sylv#), for all 1 ≤ i < j ≤ n.

Example 5.2.15. Checking the left precedences for the words given in Example 4.3.12

[1231]sylv#
3
7−→
ϕ12
sylv#

[121]sylv#
2

[1312]sylv#
3
7−→
ϕ12
sylv#

[112]sylv#
2

[1231]sylv#
3
7−→
ϕ13
sylv#

[12121]sylv#
2

[1312]sylv#
3
7−→
ϕ13
sylv#

[12121]sylv#
2

[1231]sylv#
3
7−→
ϕ23
sylv#

[12]sylv#
2

[1312]sylv#
3
7−→
ϕ23
sylv#

[21]sylv#
2

[3121]sylv#
3
7−→
ϕ12
sylv#

[121]sylv#
2

[3121]sylv#
3
7−→
ϕ13
sylv#

[21211]sylv#
2

[3121]sylv#
3
7−→
ϕ23
sylv#

[21]sylv#
2

For each n ∈ N, we can embed sylv#
n into a direct product of

(n
2
)

copies of sylv#
2, using

the embedding

φsylv#
n

: sylv#
n −→

∏
In

sylv#
2,

whose (i, j)-th component is given by ϕij
sylv#([w]sylv#), for w ∈ A∗n and (i, j) ∈ In. Similarly,

we can embed sylv# into a direct product of infinitely many copies of sylv#
2, using the

embedding

φsylv# : sylv# −→
∏
I

sylv#
2,

whose (i, j)-th component is given by ϕij
sylv#([w]sylv#), for w ∈ A∗ and (i, j) ∈ I .

As such, all #-sylvester monoids of rank higher than 2 are in the variety generated by

sylv#
2. Since sylv#

2 is a submonoid of sylv# and sylv#
n, for any n ≥ 3, they all generate the

same variety, which we will denote by Vsylv# . Thus, by Birkhoff’s Theorem, we have the

following result:

Theorem 5.2.16. For any n ≥ 2, sylv# and sylv#
n satisfy exactly the same identities.

We also obtain the following result:

Corollary 5.2.17. The basis rank of Vsylv# is 2.

Notice that the embeddings of the #-sylvester monoids of finite rank greater than

or equal to 2 into a direct product of copies of sylv#
2 can also be obtained using the

anti-isomorphisms between sylvester and #-sylvester monoids of finite rank, and the
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previously obtained embeddings. However, we cannot use this argument for the infinite

rank case, due to Proposition 4.3.11. On the other hand, since anti-isomorphisms exist in

the finite case, we can conclude that, due to Theorems 5.2.13 and 5.2.16, any monoid anti-

isomorphic to sylv (respectively, sylv#) is in the variety generated by sylv# (respectively,

sylv).

Once again, we can also prove that the Baxter monoids of rank greater than or equal

to 2 embed into a direct product of copies of baxt2. For any i, j ∈ A, with i < j, define the

homomorphism f
ij
baxt : A∗ −→ baxt2 in an identical fashion to f ijhypo, mapping a word to a

Baxter class instead of a hypoplactic class.

As before with the case of f ijhypo, we have that f ijbaxt factors to give a homomorphism

ϕ
ij
baxt : baxt −→ baxt2. Furthermore, for a word w ∈ A∗n, with n ≥ 3, we can deduce the

number of occurrences of each symbol in w, and its left and right precedences, by looking

at the images of [w]baxt under ϕijbaxt, ranging 1 ≤ i < j ≤ n. Thus, for u,v ∈ A∗n, we have

that u ≡baxtn v if and only if ϕijbaxt([u]baxt) = ϕijbaxt([v]baxt), for all 1 ≤ i < j ≤ n.

For each n ∈ N, we can embed baxtn into a direct product of
(n

2
)

copies of baxt2, using

the embedding

φbaxtn : baxtn −→
∏
In

baxt2,

whose (i, j)-th component is given by ϕijbaxt([w]baxt), for w ∈ A∗n and (i, j) ∈ In. Similarly,

we can embed baxt into a direct product of infinitely many copies of baxt2, using the

embedding

φbaxt : baxt −→
∏
I

baxt2,

whose (i, j)-th component is given by ϕijbaxt([w]baxt), for w ∈ A∗ and (i, j) ∈ I .
As such, all Baxter monoids of rank higher than 2 are in the variety generated by

baxt2. Since baxt2 is a submonoid of baxt and baxtn, for any n ≥ 3, they all generate the

same variety, which we will denote by Vbaxt. Thus, by Birkhoff’s Theorem, we have the

following result:

Theorem 5.2.18. For any n ≥ 2, baxt and baxtn satisfy exactly the same identities.

Another consequence is the following:

Corollary 5.2.19 (Cor. 5.2.20, p.47). The basis rank of Vbaxt is 2.

We also have that all Baxter monoids of rank greater than or equal to 2 embed into a

direct product of copies of sylv#
2 and sylv2. Since all Baxter monoids of rank greater than

or equal to 2 embed into the direct product of the #-sylvester and sylvester monoids of
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the same rank (see Section 4.4), the following diagrams commute:

baxtn sylv#
n × sylvn

∏
In

baxt2

(∏
In

sylv#
2

)
×
(∏
In

sylv2

)
baxt sylv# × sylv

∏
I
baxt2

(∏
I
sylv#

2

)
×
(∏
I
sylv2

)

As such, baxt is a monoid in the variety generated by {sylv#
2,sylv2}. This implies, by

Birkhoff’s Theorem, that baxt must satisfy all identities which are satisfied by both sylv#
2

and sylv2. Furthermore, by the observations made in Section 4.4, we have the following

corollary:

Corollary 5.2.20. The identities satisfied by the Baxter monoids of rank greater than or equal to
2 are exactly those identities which are simultaneously satisfied by the #-sylvester and sylvester
monoids of rank greater than or equal to 2.
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6

Identities satisfied by the

plactic-like monoids

In this chapter, we obtain a complete characterization of the identities satisfied, respec-

tively, by the hypoplactic, sylvester, #-sylvester and Baxter monoids. These identities and

those satisfied by their respective monoids of rank 2 are exactly the same. As such, we

shall use the monoids of rank 2 to obtain a characterization of those identities.

Most of the results in Section 6.1 have appeared in [CMR21a], except for Corol-

lary 6.1.5, while the results in Section 6.2 are to appear in the submitted paper [CMR21b].

6.1 Characterization of the identities satisfied by the

hypoplactic monoid

Observe that, for each element of hypo2, there is at most one other distinct element of

hypo2 which has the same content as it. Indeed, an element of hypo2 with support {1,2}
either has a 2-1 inversion or not.

Theorem 6.1.1. The identities u ≈ v satisfied by hypo are exactly the balanced identities such
that u admits xy as a subsequence if and only if v does too, for any variables x,y ∈ supp(u ≈ v).

Proof. We first prove by contradiction that an identity satisfied by hypo2 must satisfy the

stated conditions. Suppose u ≈ v is an identity satisfied by hypo2. Since hypo contains

the free monogenic submonoid, we know that any identity satisfied by hypo must be a

balanced identity. Thus, we assume u ≈ v is a balanced identity.

Assume, in order to obtain a contradiction, that there exist variables x,y ∈ supp(u ≈ v),

such that u admits xy as a subsequence, but v does not. Observe that, since both x and y

occur in v, then v must admit yx as a subsequence.

Then, taking the evaluation ψ of X in hypo2 such that ψ(x) = [2]hypo2
, ψ(y) = [1]hypo2

and ψ(z) = [ε]hypo2
, for all other variables z ∈ X, we have

ψ(u) = [2|u|x1|u|y ]hypo2
and ψ(v) = [1|v|y2|v|x ]hypo2

,
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where |u|x = |v|x ≥ 1 and |u|y = |v|y ≥ 1. Notice that ψ(u) has a 2-1 inversion, but ψ(v)

does not. Therefore, by Proposition 4.2.3, we have that ψ(u) , ψ(v), which contradicts

our hypothesis that u ≈ v is an identity satisfied by hypo2.

We now prove by contradiction that an identity which satisfies the previously men-

tioned conditions must also be satisfied by hypo2. Suppose that u ≈ v is a balanced

identity, such that u admits xy as a subsequence if and only if v does too, for any vari-

ables x,y ∈ supp(u ≈ v). Suppose, in order to obtain a contradiction, that there is some

evaluation ψ of X in hypo2 such that ψ(u) , ψ(v).

Notice that, since u ≈ v is a balanced identity, then ψ(u) and ψ(v) have the same

content. Since u ≈ v is non-trivial and ψ(u) , ψ(v), then supp(ψ(u)) = supp(ψ(v)) = {1,2}
and, by Proposition 4.2.3, ψ(u) has a 2-1 inversion but ψ(v) does not, or the converse.

We assume, without loss of generality, that ψ(u) has a 2-1 inversion and ψ(v) does not.

Note that ψ(v), as a congruence class of words, has only one word, of the form 1a2b, for

some a,b ≥ 1. Then, v must be of the form v = v1v2 or v = v1zv2, with z ∈ X, where for

each variable x which occurs in v1, ψ(x) has support {1}; for each variable y which occurs

in v2, ψ(y) has support {2}; and ψ(z) has support {1,2}.
Notice that z is a variable that occurs in neither v1 nor v2, and that no variable occurs

simultaneously in v1 and v2. Also notice that, for any variables x occurring in v1 and y

occurring in v2, v admits xz,xy and zy as subsequences (if there exists a variable z in the

previously mentioned conditions), but not zx,yx nor yz. Thus, by our hypothesis, u must

be of the form u = u1u2 or u = u1zu2, where cont(u1) = cont(v1) and cont(u2) = cont(v2).

Hence, ψ(u1) = ψ(v1) and ψ(u2) = ψ(v2), by the observations in the previous paragraph.

Therefore, we either have

ψ(u) = ψ(u1)ψ(u2) = ψ(v1)ψ(v2) = ψ(v)

or

ψ(u) = ψ(u1)ψ(z)ψ(u2) = ψ(v1)ψ(z)ψ(v2) = ψ(v).

Thus, we have reached a contradiction, hence, there is no evaluation ψ of X in hypo2

such that ψ(u) , ψ(v). Thus, u ≈ v is an identity satisfied by hypo2.

Since all identities satisfied by hypo must also be satisfied by hypo2, we obtain the

stated result.

Recall that two identities are equivalent if one can be obtained from the other by

renaming variables or swapping both sides of the identities. With this characterization,

we recover as a corollary the following result:

Corollary 6.1.2 ([CM18b, Proposition 12]). The following non-trivial identities are satisfied
by hypo:

xyxy ≈ xyyx ≈ yxxy ≈ yxyx;
xxyx ≈ xyxx.

Furthermore, up to equivalence, these are the shortest non-trivial identities satisfied by hypo.
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We also easily obtain some important non-trivial identities satisfied by hypo:

Example 6.1.3. The following non-trivial identities are satisfied by hypo:

xyzxty ≈ yxzxty; (L)

xzxytx ≈ xzyxtx; (M)

xzytxy ≈ xzytyx. (R)

These identities form a basis for the variety generated by the hypoplactic monoid, as

stated in Theorem 7.1.1.

It is well known that the set of all balanced identities is the equational theory of the

variety C of all commutative monoids, which is generated by the free monogenic monoid.

On the other hand, the set J2 of all identities u ≈ v where u and v share exactly the same

subsequences of length at most 2 is the equational theory of the pseudovariety J2, which,

due to Eilenberg’s correspondence (see [Eil76; Pin86]), corresponds to the class of all

piecewise testable languages of height 2 (see [Sim72]). This pseudovariety is generated

by C3, the 5-element monoid of all order preserving and extensive transformations of the

chain 1 < 2 < 3 (see [Vol04]). Thus, the equational theory of V (C3), the variety generated

by C3, is J2. It is easy to see that the equational theory of Vhypo is the intersection of the

set of all balanced identities and the set J2. As such, we have the following corollary of

Theorem 6.1.1, suggested by the anonymous referee of [CMR21a]:

Corollary 6.1.4. Vhypo is the varietal join C∨V (C3), and is generated by the free monogenic
monoid and the monoid C3.

Since there exist polynomial-time algorithms that check if two words over an alphabet

X, with length up to some k ∈ N, have the same content and share exactly the same

subsequences of length at most 2 (see, for example, [Bar+20, Theorem 8]), we have the

following corollary:

Corollary 6.1.5. The decision problem Check-Id(hypo) belongs to the complexity class P.

Let u↾x,y be the word obtained from u by eliminating every occurrence of a symbol

other than x or y. An alternative characterization of the identities satisfied by hypo is the

following:

Corollary 6.1.6. The identities u ≈ v satisfied by hypo are exactly the balanced identities such
that, for any variables x,y ∈ supp(u ≈ v), the identity u↾x,y ≈ v↾x,y is satisfied by hypo.

Proof. Let ψ be an evaluation of {x,y} in hypo2. Extend it to an evaluation of all variables

in u ≈ v by mapping all other variables to the empty word. Then

ψ(u↾x,y) = ψ(u) = ψ(v) = ψ(v↾x,y),

since u ≈ v is satisfied by hypo. Hence u↾x,y ≈ v↾x,y is also satisfied by hypo.
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Suppose then that the identity u ≈ v is balanced and satisfies the following property:

For any variables x,y ∈ supp(u ≈ v), the identity u↾x,y ≈ v↾x,y is satisfied by hypo.

By Theorem 6.1.1, to prove that u ≈ v is satisfied by hypo, we only need to show

that u admits xy (or yx) as a subsequence if and only if v does too, for any variables

x,y ∈ supp(u ≈ v).

Let x,y ∈ supp(u ≈ v). By our hypothesis, we have that u↾x,y ≈ v↾x,y is an identity sat-

isfied by hypo. By Theorem 6.1.1, we know that u↾x,y admits xy (or yx) as a subsequence

if and only if v↾x,y does too.

Notice that u↾x,y is the unique subsequence of u with the same number of occurrences

of x and y as u. Therefore, we can conclude that u↾x,y admits xy (or yx) as a subsequence

if and only if u does too. The same can be said about v↾x,y and v.

Therefore, u admits xy (or yx) as a subsequence if and only if v does too. Hence, by

Theorem 6.1.1, we conclude that u ≈ v is an identity satisfied by hypo.

It is very easy to verify if a balanced identity, over a two-symbol alphabet, is satisfied

by hypo, by the following complete characterization:

Corollary 6.1.7. The non-trivial identities, over the two-symbol alphabet {x,y}, satisfied by
hypo are balanced identities such that neither side of the identity is of the form xayb or ybxa,
for some a,b ∈ N.

Proof. Suppose first that u ≈ v is a non-trivial identity, over the two-symbol alphabet

{x,y}, satisfied by hypo. By Theorem 6.1.1, this identity is balanced. Suppose, without

loss of generality, that u = xayb, for some a,b ∈ N. Then, since u does not admit yx as

a subsequence, v cannot as well. Since u ≈ v is a balanced identity, we conclude that

v = xayb = u, which contradicts our hypothesis that u ≈ v is non-trivial.

Since this argument can be applied to all other possible cases, we conclude that neither

side of the identity is of the form xayb or ybxa.

Conversely, let u ≈ v be a non-trivial, balanced identity, over the two-symbol alphabet

{x,y}, such that neither side of the identity is of the form xayb or ybxa, for some a,b ∈ N.

Then, since u ≈ v is a non-trivial identity, both x and y must occur at least once in both u

and v.

Observe that the only words over {x,y}, where both x and y occur, that do not admit

yx as a subsequence, are words of the form xayb. Similarly, the only words over {x,y},
where both x and y occur, that do not admit xy as a subsequence, are words of the form

ybxa. Thus, both u and v admit xy and yx as subsequences. Hence, by Theorem 6.1.1,

u ≈ v is satisfied by hypo.

The following corollary will be important in Subsection 7.1.1:

Corollary 6.1.8. The shortest non-trivial identity, with n variables, satisfied by hypo, is of
length n+ 2.
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Proof. It is immediate, by the previous theorem, that for variables x,a1 . . . an−1,

xa1 . . . an−1xx ≈ xxa1 . . . an−1x

is an identity satisfied by hypo.

On the other hand, assume, in order to obtain a contradiction, that there exists a non-

trivial identity u ≈ v, with n variables, satisfied by hypo, of length strictly less than n+ 2,

such that supp(u ≈ v) = {a1, . . . , an}. By Theorem 6.1.1, if u admits a subsequence xy, for

variables x,y ∈ supp(u ≈ v), then v must also admit such a subsequence. Thus, we easily

conclude that the identity cannot be of length n, otherwise it would be trivial. As such,

there must be some variable z which occurs at least twice in u and v. Assume, without

loss of generality, that z = an.

Then u ≈ v must be of length n + 1. Hence, an occurs exactly twice and all other

variables a1, . . . , an−1 occur only once, in u and v. Assume, without loss of generality, that

u admits the subsequence a1 · · ·an−1. Then, u is of the form

w1 anw2 anw3,

wherew1,w2,w3 are (possibly empty) words over supp(u ≈ v) such thatw1w2w3 = a1 · · ·an−1.

Notice that, for i ∈ {1, . . . ,n−1}, if ai occurs in w1, then u admits aian as a subsequence, but

not anai ; if ai occurs in w2, then u admits both aian and anai as subsequences; ai occurs

in w3, then u admits anai as a subsequence, but not aian. Once again, by Theorem 6.1.1,

v must admit exactly these subsequences. Hence, we can conclude that u = v.

This contradicts the hypothesis that u ≈ v is a non-trivial identity satisfied by hypo.

As such, there is no non-trivial identity, with n variables, satisfied by hypo, of length

n+ 1.

6.2 Characterization of the identities satisfied by the sylvester,

#-sylvester and Baxter monoids

For a word u over an alphabet of variables X, and for variables x,y ∈ supp(u), we denote

the number of occurrences of y before the first occurrence of x in u, when reading u from

right-to-left (respectively, from left-to-right), by ox←y(u) (respectively, oy→x(u)).

Theorem 6.2.1. The identities u ≈ v satisfied by sylv are exactly the balanced identities such
that ox←y(u) = ox←y(v), for any variables x,y ∈ supp(u ≈ v).

Proof. We first prove by contradiction that an identity satisfied by sylv2 must satisfy the

stated conditions. Suppose u ≈ v is an identity satisfied by sylv2. Since sylv2 contains

the free monogenic submonoid, we know that any identity satisfied by sylv2 must be a

balanced identity. Thus, we assume u ≈ v is a balanced identity.

Suppose, in order to obtain a contradiction, that there exist variables x,y ∈ supp(u ≈ v),

such that ox←y(u) , ox←y(v). Then, if we consider the words u↾x,y and v↾x,y , obtained from
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u and v, respectively, by eliminating every occurrence of a variable other than x or y, we

have that u↾x,y admits the suffix xyox←y (u) and v↾x,y admits the suffix xyox←y (v).

Taking the evaluation ψ of X in sylv2 such that ψ(x) = [1]sylv2
, ψ(y) = [2]sylv2

and

ψ(z) = [ε]sylv2
, for all other variables z ∈ X, we have

ψ(u) = ψ
(
u↾x,y

)
= [u′]sylv2

· [12ox←y (u)]sylv2
and ψ(v) = ψ

(
v↾x,y

)
= [v′]sylv2

· [12ox←y (v)]sylv2
,

for some words u′ ,v′ ∈ A∗2. Since ox←y(u) , ox←y(v), we have that ψ(u) and ψ(v) cannot

share a 2-1 right precedence of the same index. Thus, by Proposition 4.3.9, we have that

ψ(u) , ψ(v), which contradicts our hypothesis that u ≈ v is an identity.

We now prove by contradiction that an identity which satisfies the previously men-

tioned conditions must also be satisfied by sylv2. Suppose that u ≈ v is a balanced identity,

such that ox←y(u) = ox←y(v), for any variables x,y ∈ supp(u ≈ v). Suppose, in order to

obtain a contradiction, that there is some evaluation ψ of X in sylv2 such that ψ(u) , ψ(v).

Notice that, since u ≈ v is a balanced identity, then ψ(u) and ψ(v) have the same

content. As such, since u ≈ v is non-trivial, we have that supp(ψ(u)) = supp(ψ(v)) = {1,2},
and, by Proposition 4.3.9, either ψ(u) and ψ(v) have 2-1 right precedences of different

indexes, or one of them has a 2-1 right precedence and the other does not. Assume,

without loss of generality, that words in ψ(u) admit a suffix of the form 12a, and words

in ψ(v) admit a suffix of the form 12b, for some a,b ∈ N0 such that a > b. Notice that this

assumption covers both the case where ψ(v) has a right precedence and the case where

it does not. Furthermore, the assumption implies that ψ(u) has a 2-1 right precedence of

index a.

Observe that u must be of the form u = u1zu2, with z ∈ X and u2 ∈ X∗, such that ψ(u2)

has support {2} and ψ(z) has either support {1,2} or support {1}. As such, ψ(zu2) has a 2-1

right precedence of index a, the same as ψ(u). Furthermore, notice that z cannot occur in

u2. Thus, by our hypothesis, we have that oz←x(u) = oz←x(v), for any variable x ∈ supp(u2).

Therefore, v must also be of the form v = v1zv2, where v2 has the same content as u2. But

this implies that ψ(v2) has support {2}, hence ψ(zv2) also has a 2-1 right precedence of

index a. Since ψ(zv2) must also have the same right precedence as ψ(v), we have reached

a contradiction.

Thus, there is no evaluation ψ of X in sylv2 such that ψ(u) , ψ(v). Therefore, u ≈ v is

an identity satisfied by sylv2.

Since all identities satisfied by sylv must also be satisfied by sylv2, we obtain the stated

result.

By parallel reasoning, we can obtain the characterization of the identities satisfied by

the #-sylvester monoid:

Theorem 6.2.2. The identities u ≈ v satisfied by sylv# are exactly the balanced identities such
that, for any variables x,y ∈ supp(u ≈ v), ox→y(u) = ox→y(v).

The characterization of the identities satisfied by the Baxter monoid is an immediate

consequence of Theorems 6.2.1 and 6.2.2, and Corollary 5.2.20:
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Theorem 6.2.3. The identities u ≈ v satisfied by baxt are exactly the balanced identities such
that, for any variables x,y ∈ supp(u ≈ v), ox→y(u) = ox→y(v) and ox←y(u) = ox←y(v).

With these characterizations, we recover the following corollaries:

Corollary 6.2.4 ([CM18b, Proposition 20]). The sylvester monoid satisfies the non-trivial
identity xyxy ≈ yxxy. Furthermore, up to equivalence, this is the shortest non-trivial identity
satisfied by sylv.

Corollary 6.2.5 ([CM18b, Proposition 24]). The #-sylvester monoid satisfies the non-trivial
identity yxyx ≈ yxxy. Furthermore, up to equivalence, this is the shortest non-trivial identity
satisfied by sylv#.

Corollary 6.2.6 ([CM18b, Proposition 26]). The Baxter monoid satisfies the non-trivial iden-
tities yxxyxy ≈ yxyxxy and xyxyxy ≈ xyyxxy. Furthermore, up to equivalence, these are the
shortest non-trivial identities satisfied by baxt.

The following corollaries are useful alternative characterizations of the identities

satisfied by sylv, sylv# and baxt. They imply that, when reading both sides of an identity

satisfied by the sylvester, #-sylvester or Baxter monoid, the first occurrence of a variable

is read at the same time in both words:

Corollary 6.2.7. The identities u ≈ v satisfied by sylv (respectively, sylv#) are balanced iden-
tities such that, for any x ∈ supp(u ≈ v), the longest suffix (respectively, prefix) of u where x
does not occur has the same content as the longest suffix (respectively, prefix) of v where x does
not occur.

Proof. We give the proof for the sylv case. The reasoning for the sylv# case is parallel.

Let u = u1xu2 and v = v1xv2, where u2 and v2 are words where x does not occur.

Notice that, due to Theorem 6.2.1, for any variable y which occurs in u2 or v2, we have

that ox←y(u) = ox←y(v). The result follows immediately.

Corollary 6.2.8. The identities u ≈ v satisfied by baxt are balanced identities such that, for
any x ∈ supp(u ≈ v), the longest prefix of u where x does not occur has the same content as the
longest prefix of v where x does not occur, and the longest suffix of u where x does not occur
has the same content as the longest suffix of v where x does not occur.

Proof. The result follows from the previous corollary.

These alternate characterizations allow us to obtain algorithms that check if identities

are satisfied by the sylvester, #-sylvester and Baxter monoids in polynomial time. For

brevity’s sake, we only show the algorithm for the sylvester case:

Proposition 6.2.9. Algorithm 5 is sound and complete, and has time complexity O(k2 log(k)),
where k is the length of the word u, for input u ≈ v.
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Algorithm 5: Identity checking algorithm for the sylvester monoid.
Input: An identity u ≈ v.
Output: True if sylv satisfies u ≈ v, False otherwise.

1 if |u| , |v| then return False;
2 k← |u|;
3 C[1, . . . , k],D[1, . . . , k]← [0, . . . ,0];
4
←−s ←∅;

5 for 0 ≤ i ≤ k − 1 do
6 if uk−i = vk−i then
7 if uk−i < supp

(←−s ) then
8 if C ,D then
9 return False;

10 else
11 append uk−i to←−s ;
12 j← |←−s |;
13 C[j]← C[j] + 1; D[j]←D[j] + 1;

14 else
15 j← index of uk−i in←−s ;
16 C[j]← C[j] + 1; D[j]←D[j] + 1;

17 else
18 if uk−i ,vk−i ∈ supp

(←−s ) then
19 j← index of uk−i in←−s ;
20 l← index of vk−i in←−s ;
21 C[j]← C[j] + 1; D[l]←D[l] + 1;

22 else
23 return False;

24 if C ,D then return False;
25 return True

Proof. Algorithm 5 first checks if u and v have the same length, in line 1. If they do not,

then u ≈ v is not a balanced identity, and as such, is not satisfied by sylv. This is done in

2k + 1 time, in the worst-case scenario where the length of v is greater than the length of

u.

The algorithm scans u and v, from right-to-left, in the for loop in line 5. The arrays

C and D stand for, respectively, the content vectors of the suffixes of u and v read so far,

while the word←−s stands for the support of these suffixes. Notice that, since u is of length

k, then at most k variables occur in u. Hence, C and D have length k.

In each iteration of the loop, the algorithm checks if the symbol which is being read

in u is the same as the one being read in v. If they are the same, and do not occur in←−s ,

this means that this is the first occurrence of a variable x. The algorithm checks if the

arrays C and D are equal. If they are not, this implies that the longest suffix of u where x
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does not occur does not have the same content as the longest suffix of v where x does not

occur. Hence, by Corollary 6.2.7, u ≈ v is not satisfied by sylv. If C and D are equal, then

the algorithm registers the new variable in←−s and updates the content vectors C and D.

On the other hand, if x occurs already in←−s , the algorithm simply updates C and D.

If the symbols which are being read in u and v are different, then the algorithm checks

if they both occur in ←−s . If that does not happen, then that means at least one of them

is the first occurrence of a variable in one of the words, but not in the other. Hence, by

Corollary 6.2.7, u ≈ v is not satisfied by sylv. Otherwise, if they both occur in ←−s , the

algorithm simply updates C and D.

After the final iteration of the loop, the algorithm checks if C and D are equal, to

verify if the content of u is the same as the content of v. This is done because two words

might have the same support, but their content might differ.

It is clear that the algorithm is sound and complete, since it always detects when a

new variable is read, if it is read at the same time in both u and v, and if the content of

the suffixes is the same, as well as if the content of u and v is the same.

Taking into consideration that operations of addition and comparing numbers are

logarithmic time in a Turing machine model, and that accessing coordinates of vectors

is a linear-time operation, we have that comparing the content vectors C and D takes at

most O (k log(k)) time, and updating them takes O (k log(k)) time as well. On the other

hand, checking if a variable occurs in←−s takes O(k) time. As such, each iteration of the for

loop has time complexity O (k log(k)). Since there are k iterations of the loop, and no other

part of the algorithm takes as much time as the loop, we can conclude that Algorithm 5

has time complexity O
(
k2 log(k)

)
.

Corollary 6.2.10. The decision problem Check-Id(sylv) belongs to the complexity class P.

By parallel reasoning, we can also construct an algorithm that checks if identities hold

in sylv#, with time complexity O(k2 log(k)). From that algorithm and Algorithm 5, we can

construct another algorithm for the Baxter case, also with polynomial time complexity.

As such, we also have the following corollary:

Corollary 6.2.11. The decision problems Check-Id(sylv#) and Check-Id(baxt) belong to the
complexity class P.

We can easily obtain some important non-trivial identities satisfied by these monoids:

Example 6.2.12. Recall that the following non-trivial identities, given in Example 6.1.3,

are satisfied by the hypoplactic monoid:

xyzxty ≈ yxzxty; (L)

xzxytx ≈ xzyxtx; (M)

xzytxy ≈ xzytyx. (R)
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The sylvester monoid satisfies (L), but satisfies neither (M) nor (R). On the other hand,

the #-sylvester monoid satisfies (R), but satisfies neither (L) nor (M).

The Baxter monoid satisfies the following non-trivial identities:

xzyt xy rxsy ≈ xzyt yx rxsy; (O)

xzyt xy rysx ≈ xzyt yx rysx. (E)

These identities form bases for the varieties generated by the sylvester monoid, as

stated in Theorem 7.1.5, the #-sylvester monoid, as stated in Theorem 7.1.6, and the

Baxter monoid, as stated in Theorem 7.1.7.

The following corollaries will be important in Subsection 7.1.2:

Corollary 6.2.13. The shortest non-trivial identities, with n variables, satisfied by sylv or by
sylv#, are of length n+ 2.

Proof. Since any identity satisfied by sylv must also be satisfied by hypo, and since the

shortest non-trivial identity, with n variables, satisfied by hypo, is of length n + 2 (see

6.1.8), then a non-trivial identity, with n variables, satisfied by sylv, must be of length at

least n+ 2.

On the other hand, by Theorem 6.2.1, it is immediate that

xya1 . . . an−2yx ≈ yxa1 . . . an−2yx

is an identity satisfied by sylv, for variables x,y,a1, . . . , an−2.

The reasoning for identities satisfied by sylv# is parallel to the one given previously.

Corollary 6.2.14. The shortest non-trivial identity, with n variables, satisfied by baxt, is of
length n+ 4.

Proof. It is immediate, by Theorem 6.2.3, that for variables x,y,a1 . . . an−2,

xy xy a1 . . . an−2yx ≈ xy yx a1 . . . an−2yx

is an identity satisfied by baxt.

On the other hand, let u ≈ v be a non-trivial identity, with n variables, satisfied by

baxt, such that u = wxu′ and v = wyv′, for some words w,u′ ,v′ over the alphabet of

variables X. Notice that, since u ≈ v is satisfied by baxt, it must be balanced, hence

cont(xu′) = cont(yv′). Therefore, x must occur in v′ and y must occur in u′.

Observe that y must occur in w, otherwise, we would have ox→y(u) > ox→y(v). Simi-

larly, x must occur in w. On the other hand, by Corollary 6.2.8, x must occur in u′ and y

must occur in v′, since |u′ | = |v′ |. Therefore, x and y both occur at least three times each in

u and v. Since u ≈ v is an identity with n variables, it must be of length at least n+ 4.

Finally, we can also clarify the relation between the Baxter monoids and the plactic

monoids:
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Corollary 6.2.15. The variety generated by baxt is strictly contained in the variety generated
by plac2.

Proof. Let u ≈ v be an identity satisfied by plac2. Thus, it must be a balanced identity.

Let x,y ∈ supp(u ≈ v). Suppose, in order to obtain a contradiction, that ox→y(u) > ox→y(v).

Let

u = u1 y u2 and v = v1 y v2,

where u1 (respectively, v1) is the longest prefix of u (respectively, v) where y does not

occur. Since the equational theory of the variety generated by plac2 is left 1-hereditary

(see Section 3.1), then u1 ≈ v1 must be satisfied by plac2. Hence, it must be a balanced

identity. But |u1|x = ox→y(u) > ox→y(v) = |v1|x. We have reached a contradiction, hence,

ox→y(u) ≯ ox→y(v).

By this reasoning, we prove that ox→y(u) = ox→y(v) and ox←y(u) = ox←y(v). Hence, by

Theorem 6.2.3, u ≈ v must be satisfied by baxt.

On the other hand, it is well-known that the shortest non-trivial identity satisfied by

the bicyclic monoid is Adjan’s identity xyyxxyxyyx ≈ xyyxyxxyyx (see [Adj66]). Since

plac2 satisfies exactly the same identities as the bicyclic monoid (see [DJK18, Theo-

rem 4.1]), plac2 does not satisfy any non-trivial identity of length less than 10. But

baxt satisfies an identity of length 6, as seen in Corollary 6.2.6. Thus, not all identities

satisfied by baxt are satisfied by plac2.

Therefore, as a consequence of Birkhoff’s Theorem, the variety generated by baxt is

strictly contained in the variety generated by plac2.
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7

Varieties generated by the

plactic-like monoids

In this chapter, we obtain finite bases for Vhypo, Vsylv, Vsylv# and Vbaxt, using the identities

given in Examples 6.1.3 and 6.2.12, and also their axiomatic ranks. We then show how

to subdirectly represent finitely generated multihomogeneous monoids by subdirectly

irreducible monoids.

The results in Subsection 7.1.1 have appeared in [CMR21a], while the results in Sub-

section 7.1.2 are to appear in the submitted paper [CMR21b]. The results in Section 7.2

are new, to the best of the author’s knowledge.

7.1 Finite bases and axiomatic rank

7.1.1 The axiomatic rank of the variety generated by the hypoplactic monoid

The aim of this subsection is to prove that not only Vhypo has finite axiomatic rank, but

that it is also finitely based. We give a basis for Vhypo with three identities, all of them

over a four-symbol alphabet, each of length 6. This basis is minimal, in the sense that

no identity in this basis is a consequence of the others, and also that each identity is of

minimal length, for identities satisfied by hypo over a four-symbol alphabet. Furthermore,

we also prove that there exists no basis for Vhypo with only identities over an alphabet

with at most three variables, thus showing that the axiomatic rank of Vhypo is 4.

Theorem 7.1.1. Vhypo admits a finite basis Bhypo, consisting of the following identities:

xyzxty ≈ yxzxty; (L)

xzxytx ≈ xzyxtx; (M)

xzytxy ≈ xzytyx. (R)

Proof. Let Bhypo be the set comprising the three identities (L), (M) and (R). Notice that

these identities are the ones given in Example 6.1.3.

The proof will be by induction, in the following sense: We order identities by the

length of the common prefix of both sides of the identity. The induction will be on the
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length of the suffix, that is, the length of the identity minus the length of the common

prefix.

The base case for the induction, for identities of length n (with n ≥ 4), is the identities

of the form

wxy ≈ wyx,

where w is a word of length n− 2 and x,y are variables. Observe that, since any identity

u ≈ v satisfied by hypo is a balanced identity, there are no non-trivial identities, of length

n, with a common prefix of length greater than n− 2, satisfied by hypo. That is, the suffix

after the common prefix must have length at least 2. Furthermore, since wxy admits a

subsequence xy and wyx admits a subsequence yx, then x and y must both occur in w.

Thus, w is of the form

w1xw2yw3 or w1yw2xw3,

for some words w1,w2,w3. Therefore, by replacing z with w2, and t by w3, and, if neces-

sary, renaming x and y, we can immediately deduce this identity from the identity (R)

of Bhypo. Notice that, when n = 4, the base case corresponds to the identities given in

Corollary 6.1.2.

The idea of the proof of the induction step is that, for any identity u ≈ v, we can apply

identities of Bhypo, finitely many times, to deduce a new identity u ≈ u∗ from u ≈ v, such

that u∗ is “closer” to v than u, in the sense that u∗ and v have a common prefix which is

strictly longer than the common prefix of u and v. Notice that u∗ ≈ v is a consequence of

Bhypo, by the induction hypothesis. As such, we can conclude that u ≈ v is a consequence

of Bhypo.

The technical part of the proof allows us to show that there is always a way to shuffle

some variables of u in such a way that we obtain u∗. We show that these variables must

occur several times in u, thus allowing us to apply the identities of Bhypo to shuffle u and

obtain u∗.

Let u ≈ v be a non-trivial identity satisfied by hypo. Then, it must be a balanced

identity, by Theorem 6.1.1. Since u ≈ v is a non-trivial identity, we must have u = wxu′

and v = wyv′, for some words w,u′ ,v′ over supp(u ≈ v) and variables x,y ∈ supp(u ≈ v)

such that x , y. Notice that u′ and v′ cannot be the empty word, otherwise, we would

have u = wx and v = wy, which contradicts the fact that cont(u) = cont(v).

On the other hand, since cont(xu′) = cont(yv′), we have that y occurs in u′. Thus, to

distinguish the leftmost y in u′, we have that

xu′ = u1ayu2,

for some variable a and words u1 and u2, such that y does not occur in u1 and a , y. Once

again, since cont(xu′) = cont(yv′), we have that a occurs in v′. Thus, to distinguish the

leftmost a in v′, we have that

v′ = v1av2,
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for some words v1 and v2, such that a does not occur in v1. To sum up, we have that

u = wu1ayu2 and v = wyv1av2,

where y does not occur in u1 and a does not occur in v1.

Notice that u admits ay as a subsequence, hence, v must also do so. Thus, either a

occurs in w, or y occurs in v2, since a does not occur in v1. But if y occurs in v2, then it

must also occur in u2, since cont(xu′) = cont(yv′) and y does not occur in u1.

On the other hand, notice that v admits ya as a subsequence, hence, u must also do so.

Thus, either y occurs in w, or a occurs in u2, since y does not occur in u1.

As such, we have four possible cases to look at:

Case 1. Both variables y and a occur in w. Then, we can deduce the word wu1yau2

from u, by applying the identity (R), renaming x to a.

Case 2. Both variables y and a occur in u2. Then, we can deduce the word wu1yau2

from u, by applying the identity (L), renaming x to a.

Case 3. Variable y occurs in both w and u2. Then, we can deduce the word wu1yau2

from u, by applying the identity (M), renaming x to y and y to a.

Case 4. Variable a occurs in both w and u2. Then, we can deduce the word wu1yau2

from u, by applying the identity (M), renaming x to a.

Observe that we can repeatedly apply this reasoning until we obtain a word of the

form

u∗ = wyu′′ ,

for some word u′′, since the only restriction imposed on the variable a was that a , y.

Thus, we have proven that, for any non-trivial identity u ≈ v satisfied by hypo, we can

obtain a new word u∗ from u such that the common prefix of u∗ and v is strictly longer

than the common prefix of u and v, by applying identities of Bhypo finitely many times.

By induction, we conclude that u ≈ v is a consequence of Bhypo, thus proving that

Bhypo is a basis for Vhypo.

Since Vhypo admits a finite basis, it has finite axiomatic rank. In order to determine

the axiomatic rank of Vhypo, we first check if all identities in Bhypo are necessary in order

to obtain a basis for Vhypo. It is easy to see that right zero semigroups satisfy identities

(L) and (M), but not the identity (R), and left zero semigroups satisfy (R) and (M), but not

(L). Thus, (L) and (R) are not consequences of the other identities in Bhypo.

On the other hand, consider the monoidR1(2) =
〈
e,g

∣∣∣ge = e = eg2, g3 = g,e2 = e3 = e2g
〉
,

with multiplication table:

1 g e eg 0

1 1 g e eg 0

g g 1 e eg 0

e e eg 0 0 0

eg eg e 0 0 0

0 0 0 0 0 0
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This monoid is a noncryptic monoid (that is, Green’s relation H is not a congruence

on it), that belongs to a family of monoids which generate all minimal noncryptic monoid

varieties (see [PV06]). It consists of an ideal extension of a null semigroup K = {e,eg}
by the 2-element cyclic group with a zero adjoined C0

2 = {0,1, g}. Notice that g2 = 1 and

e2 = 0.

The monoid R1(2) satisfies (L) and (R): If we substitute all variables with elements

of C0
2 , we get equality by commutativity. If, after substituting, we have more than one

element of K on each side, both sides equal 0. So we are left with the case of substituting

a variable that appears once (either z or t) with an element of K and everything else with

elements of C0
2 . But since z and t are in the same position on both sides of the identities,

and whichever elements of C0
2 are substituted for x and y commute, the result is the same.

However, R1(2) does not satisfy (M): Taking the evaluation ψ such that ψ(y) = e and

ψ(x) = ψ(z) = ψ(t) = g, we get

ψ(xzxytx) = g3eg2 = e , eg = g2eg3 = ψ(xzyxtx).

Since no identity of Bhypo is a consequence of the other identities also in Bhypo, we

conclude that Bhypo is minimal, in the sense that it does not contain any proper subset

which is also a basis for Vhypo.

We now show that the identities (L) and (R) are required to be in any basis for Vhypo

which contains only identities over an alphabet with four variables:

Proposition 7.1.2. Neither of the identities (L) or (R) is a consequence of the set of non-trivial
identities, satisfied by hypo, over an alphabet with four variables, excluding itself (but not the
other) and equivalent identities.

Proof. We prove the result for the identity (L). Parallel reasoning shows the analogous

result for (R).

LetX = {x,y,z, t} be an alphabet with four variables and let S be the set of all non-trivial

identities, satisfied by hypo, over X, excluding (L) and equivalent identities. Suppose, in

order to obtain a contradiction, that (L) is a consequence of S. As such, there must exist a

non-trivial identity u ≈ v in S, and a substitution σ , such that

xyzxty = w1σ (u)w2,

where w1,w2 are words over X, and σ (u) , σ (v). Notice that u ≈ v must be balanced,

and that there must be at least two variables in supp(u ≈ v), otherwise, u ≈ v would be a

trivial identity.

Observe that if the substitution σ maps some variables in supp(u ≈ v) to the empty

word, then σ (u) = σ (u′) and σ (v) = σ (v′), where u′ and v′ are words obtained by eliminat-

ing every occurrence of such variables in u and v, respectively. Hence, we have that

xyzxty = w1σ (u′)w2.
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Notice that u′ ≈ v′ is an identity satisfied by hypo, which cannot be trivial, otherwise we

would have σ (u) = σ (u′) = σ (v′) = σ (v). Thus, u′ ≈ v′ is also in S. On the other hand,

notice that σ does not map any variable occurring in u′ and v′ to the empty word. As

such, any case where σ maps any variable to the empty word guarantees the existence of

another case where it does not map any variable to the empty word.

Therefore, we can assume, without loss of generality, that σ does not map any variable

to the empty word. Due to this, and since (L) is an identity where x and y occur two times,

and t and z each occur one time, we have that each variable in supp(u ≈ v) can occur at

most two times, and only two variables can occur more than one time. Furthermore, by

Corollary 6.1.8, which gives us a lower bound for the length of the identities, we have

that u ≈ v is of length at least 4. Thus, up to renaming of variables, x and y occur exactly

twice in u ≈ v, and t and z can occur at most one time.

Suppose now, in order to obtain a contradiction, that w1 , ε. Then, since u ≈ v is

of length at least 4, we must have w1 of length at most 2, that is, w1 is either x or xy.

Therefore, x can occur only once in σ (u). But x and y occur twice in u, and σ does not

map any variable to the empty word, hence, there must be at least two variables which

occur twice in σ (u). However, only x and y occur twice in xyzxty. We have reached a

contradiction, hence, w1 = ε. Using a similar argument, we can also conclude that w2 = ε.

Therefore, we have that

xyzxty = σ (u).

As such, we can immediately conclude that only up to three variables occur in u ≈ v:

If u ≈ v were to be a four-variable identity, then it would be of length 6, and σ would

be simply renaming the variables, thus implying that u ≈ v was equivalent to (L), which

contradicts our hypothesis.

Suppose that u ≈ v is a two-variable identity. Hence, it is of length 4 and x and y both

occur twice in it. Since xyzxty = σ (u), then either σ (x) or σ (y) must be a single variable,

and the other must be of length 2. Since no variable occurs more than twice in σ (u), this

implies that three variables occur twice in σ (u). But x and y are the only variables which

occur twice in xyzxty. We have reached a contradiction, hence, u ≈ v is not a two-variable

identity.

Then, u ≈ v must be a three-variable identity. Hence, it is of length 5, with x and

y occurring twice and z occurring once in it. Notice that σ (x) and σ (y) must be single

variables, otherwise, the length of σ (u) would be greater than 6. These variables cannot

be z or t, since they occur only once in xyzxty. Therefore, σ (z) must be a factor of xyzxty

of length 2. But neither x nor y can occur in σ (z), hence, this factor cannot exist, and

subsequently, σ cannot exist.

As such, we can conclude that (L) is not a consequence of the set of non-trivial iden-

tities, satisfied by hypo, over an alphabet with four variables, excluding (L) itself and

equivalent identities.
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Therefore, we can conclude that Vhypo does not admit any basis with only identities

over an alphabet with two or three variables. In other words, we have that:

Corollary 7.1.3. The axiomatic rank of Vhypo is 4.

Another consequence of the previous proposition is the following:

Corollary 7.1.4. Any basis for Vhypo with only identities over an alphabet with four variables
must contain the identities (L) and (R), or equivalent identities.

Furthermore, since (M) is not a consequence of (L) and (R), any basis for Vhypo with

only identities over an alphabet with four variables must contain at least three identities,

one of which must be either (M), an equivalent identity, or an identity of which (M) is a

consequence.

7.1.2 The axiomatic rank of the varieties generated by the sylvester,
#-sylvester and Baxter monoids

Now, we prove that that the varieties generated by the sylvester, #-sylvester and Baxter

monoids are finitely based and, therefore, have finite axiomatic rank. We give bases for

Vsylv and Vsylv# with one identity each, of length 6, over a four-symbol alphabet. Trivially,

these bases are minimal with regards to the number of identities in the basis; they are

also minimal with regards to the number of variables occurring in these identities, and

the length of these identities. We also give a basis for Vbaxt, with two identities, of length

10, over a six-symbol alphabet. This basis is also minimal with regards to the number

of identities in the basis, the number of variables occurring in these identities, and the

length of these identities.

Furthermore, we also prove that there exist no bases for Vsylv or Vsylv# with only

identities over an alphabet with at most three variables, thus showing that the axiomatic

rank of Vsylv and Vsylv# is 4. We also prove that there exists no basis for Vbaxt with only

identities over an alphabet with at most five variables, thus showing that the axiomatic

rank of Vbaxt is 6.

Theorem 7.1.5. Vsylv admits a finite basis Bsylv, consisting of the following identity:

xyzxty ≈ yxzxty. (L)

Proof. The proof follows the same overall strategy as the proof of Theorem 7.1.1. Let

Bsylv be the set of identities which contains only the identity (L). Notice that this identity

is given in Example 6.2.12.

The proof will be by induction, in the following sense: We order identities by the

length of the common suffix of both sides of the identity. The induction will be on the

length of the prefix, that is, the length of the identity minus the length of the common

suffix.

66



7.1. FINITE BASES AND AXIOMATIC RANK

The base case for the induction, for identities of length n (with n ≥ 4), is the identities

of the form

xyw ≈ yxw,

where w is a word of length n− 2 and x,y are variables. Observe that, since any identity

u ≈ v satisfied by sylv is a balanced identity, there are no non-trivial identities, of length

n, with a common suffix of length greater than n− 2, satisfied by sylv. That is, the prefix

before the common suffix must have length at least 2. Furthermore, x and y must both

occur in w, otherwise, we would have ox←y(xyw) > ox←y(yxw) or oy←x(xyw) < oy←x(yxw).

Thus, w is of the form

w1xw2yw3 or w1yw2xw3,

for some words w1,w2,w3. Therefore, by replacing z with w1, and t by w2, and, if neces-

sary, renaming x and y, we can immediately deduce this identity from the identity (L).

Notice that, when n = 4, the base case corresponds to the identity given in Corollary 6.2.4.

Let u ≈ v be a non-trivial identity satisfied by sylv. Then, it must be a balanced

identity, by Theorem 6.2.1. Since u ≈ v is a non-trivial identity, we must have u = u′xw

and v = v′yw, for some words w,u′ ,v′ over supp(u ≈ v) and variables x,y ∈ supp(u ≈ v)

such that x , y. Notice that u′ and v′ cannot be the empty word, otherwise, we would

have u = xw and v = yw, which contradicts the fact that cont(u) = cont(v).

On the other hand, since cont(u′x) = cont(v′y), we have that y occurs in u′. Thus, to

distinguish the rightmost y in u′, we have that

u′x = u1yau2,

for some variable a and words u1 and u2, such that y does not occur in u2 and a , y. Once

again, since cont(u′x) = cont(v′y), we have that a occurs in v′. Thus, to distinguish the

rightmost a in v′, we have that

v′ = v1av2,

for some words v1 and v2, such that a does not occur in v2. To sum up, we have that

u = u1yau2w and v = v1av2yw,

where y does not occur in u2 and a does not occur in v2.

By Theorem 6.2.1, y must occur in w, otherwise, we would have oy←x(u) > oy←x(v).

Thus, a must also occur in w, otherwise, we would have oa←y(u) < oa←y(v). As such, we

can deduce the word u1ayu2w, by applying the identity (L) to u, renaming x to a and

replacing z and t by the appropriate words.

Observe that we can repeatedly apply this reasoning until we obtain a word of the

form

u∗ = u′′yw,

for some word u′′, since the only restriction imposed on the variable a was that a , y.

Thus, we have proven that, for any non-trivial identity u ≈ v satisfied by sylv, we can
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obtain a new word u∗ from u such that the common suffix of u∗ and v is strictly longer

than the common suffix of u and v, by applying the identity (L) finitely many times.

By induction, we conclude that u ≈ v is a consequence of Bsylv, thus proving that Bsylv

is a basis for Vsylv.

By the same reasoning, we can also prove the following result:

Theorem 7.1.6. Vsylv# admits a finite basis Bsylv# , consisting of the following identity:

xzytxy ≈ xzytyx. (R)

Proof. The proof follows the same reasoning as the proof of Theorem 7.1.5, the main

difference being that, within a set of identities of the same length, they are ordered on

the length of the common prefix of both sides of the identity, and the induction is on the

length of the suffix. The induction step resorts to Theorem 6.2.2.

We also use the same reasoning to prove the following theorem:

Theorem 7.1.7. Vbaxt admits a finite basis Bbaxt, consisting of the following identities:

xzyt xy rxsy ≈ xzyt yx rxsy; (O)

xzyt xy rysx ≈ xzyt yx rysx. (E)

Proof. The proof follows the same overall strategy as the proof of Theorem 7.1.5. As such,

we only give the reasoning for the base case and the induction step.

The base case for the induction on the length of the prefix before the common suffix,

for identities of length n (with n ≥ 6), is the identities of the form

xyxyw ≈ xyyxw,

where w is a word of length n − 4 and x,y are variables. Notice that both sides of the

identity must have a prefix of the form xy, due to Corollary 6.2.8. By the same reason,

observe that, since any identity u ≈ v satisfied by baxt is a balanced identity, there are

no non-trivial identities, of length n, with a common suffix of length greater than n− 4,

satisfied by baxt. Furthermore, x and y must both occur in w, otherwise, we would have

ox←y(xyw) > ox←y(yxw). Thus, w is of the form

w1xw2yw3 or w1yw2xw3,

for some words w1,w2,w3. Therefore, by replacing z and t with the empty word, r with

w1, and s by w2, and, if necessary, renaming x and y, we can immediately deduce this

identity from the identity (O) or the identity (E), depending on the form of w. Notice that,

when n = 6, the base case corresponds to the identities given in Corollary 6.2.6.

Let u ≈ v be a non-trivial identity satisfied by baxt. Then, it must be a balanced

identity, by Theorem 6.2.3. Since u ≈ v is a non-trivial identity, we must have u = u′xw
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and v = v′yw, for some words w,u′ ,v′ over supp(u ≈ v) and variables x,y ∈ supp(u ≈ v)

such that x , y. By Corollary 6.2.8, we have that x must occur at least once in u′ and w

and at least twice in v′, and y must occur at least twice in u′ and at least once in v′ and w.

Thus, to distinguish the leftmost y in u′, we have that

u′x = u1yau2

for some variable a and words u1 and u2, such that y does not occur in u2 and a , y. Notice

that y must occur in u1. Since cont(u′x) = cont(v′y), we have that a occurs in v′. Thus, to

distinguish the rightmost a in v′, we have that

v′ = v1av2,

for some words v1 and v2, such that a does not occur in v2. To sum up, we have that

u = u1yau2w and v = v1av2yw,

where y occurs in u1 but not in u2 and a does not occur in v2.

Suppose, in order to obtain a contradiction, that a does not occur in u1. This implies

that |u′ |y = oy→a(u). But |u′ |y = |v′ |y + 1, hence

oy→a(v) ≤ |v′ |y < |u′ |y = oy→a(u).

Thus, by Theorem 6.2.3, we obtain a contradiction. As such, a must occur in u1. By the

same theorem, a must occur in w as well, otherwise, we would have oa←y(u) < oa←y(v).

Therefore, y and a both occur at least once in u1 and w. As such, we can deduce the word

u1ayu2w, by applying the identity (O) or the identity (E) to u, depending on where y

and a occur in u1 and w, renaming x to a and replacing the remaining variables by the

appropriate words.

The identities in Bbaxt also form a basis for either of the varieties generated by, re-

spectively, the monoids 2Cob◦1 and 2Cob◦1, the endomorphism monoids (or local monoids)

at object 1 of the categories 2Cob◦ and 2Cob◦ (see [AV20, Theorem 5.7]). These are in-

termediary categories between, respectively, the category 2Cob of 2-cobordisms and the

(undeformed) partition category P, and the regular category 2Cob (a regular version of

2Cob) and P, which appear in mathematical physics and representation theory. Further-

more, the varieties generated by any other endomorphism monoids of 2Cob◦ and 2Cob◦,

as well as the varieties generated by any endomorphism monoids of 2Cob and 2Cob, are

not finitely based (see [AV20, Theorem 5.6]).

Since they admit finite bases, the varieties Vsylv, Vsylv# and Vbaxt have finite axiomatic

rank. By Proposition 7.1.2, we know that the identities (L) and (R) are not consequences

of the set of non-trivial identities, satisfied by hypo, over an alphabet with four variables,

excluding themselves and equivalent identities. Since the identities satisfied by sylv and

sylv# must also be satisfied by hypo, we can conclude the following:
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Corollary 7.1.8. The identity (L) is not a consequence of the set of non-trivial identities,
satisfied by sylv, over an alphabet with four variables, excluding (L) itself and equivalent
identities. Furthermore, any basis for Vsylv with only identities over an alphabet with four
variables must contain the identity (L), or an equivalent identity.

Corollary 7.1.9. The identity (R) is not a consequence of the set of non-trivial identities,
satisfied by sylv#, over an alphabet with four variables, excluding (R) itself and equivalent
identities. Furthermore, any basis for Vsylv# with only identities over an alphabet with four
variables must contain the identity (R), or an equivalent identity.

Hence, Vsylv and Vsylv# do not admit any bases with only identities over an alphabet

with two or three variables. In other words, we have that:

Corollary 7.1.10. The axiomatic rank of Vsylv and Vsylv# is 4.

We now show that the identities (O) and (E) must be in any basis for Vbaxt which

contains only identities over an alphabet with six variables:

Proposition 7.1.11. Neither of the identities (O) or (E) is a consequence of the set of non-trivial
identities, satisfied by baxt, over an alphabet with six variables, excluding itself (but not the
other) and equivalent identities.

Proof. We prove the result for the identity (O). Parallel reasoning shows the analogous

result for (E).

Let X = {x,y,z, t, r, s} be an alphabet with six variables and let S be the set of all non-

trivial identities, satisfied by baxt, over X, excluding (O) and equivalent identities. Sup-

pose, in order to obtain a contradiction, that (O) is a consequence of S. As such, there

must exist a non-trivial identity u ≈ v in S, and a substitution σ , such that

xzyt xy rxsy = w1σ (u)w2,

where w1,w2 are words over X, and σ (u) , σ (v). Notice that u ≈ v must be balanced,

and that there must be at least two variables in supp(u ≈ v), otherwise, u ≈ v would be a

trivial identity.

By the same reasoning as in the proof of 7.1.2, we can assume, without loss of general-

ity, that σ does not map any variable to the empty word. Due to this, and since only x and

y occur three times in xzyt xy rxsy, and all other variables each occur one time, we have

that each variable in supp(u ≈ v) can occur at most three times, and only two variables

can occur more than one time. Furthermore, by Corollary 6.2.14, which gives us a lower

bound for the length of the identities, we have that u ≈ v is of length at least 6. Notice

that it is exactly of length 6 if only two variables occur in it. Thus, up to renaming of

variables, x and y occur exactly three times in u ≈ v, and t, z, r and s can occur at most

one time.

Suppose now, in order to obtain a contradiction, that w1 , ε. Then, since u ≈ v is of

length at least 6, we must have w1 of length at most 4, that is, w1 is either x, xz, xzy or
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xzyt. Therefore, x can occur only twice in σ (u). But x and y occur three times in u, and σ

does not map any variable to the empty word, hence, there must be at least two variables

which occur three times in σ (u). However, only x and y occur three times in xzyt xy rxsy.

We have reached a contradiction, hence, w1 = ε. Using a similar argument, we can also

conclude that w2 = ε. Therefore, we have that

xzyt xy rxsy = σ (u).

As such, we can immediately conclude that only up to five variables occur in u ≈ v:

If u ≈ v were to be a six-variable identity, then it would be of length 10, and σ would be

simply renaming the variables, thus implying that u ≈ v was equivalent to (O), which

contradicts our hypothesis.

Notice that, regardless of the number of variables occurring in u ≈ v, we have that

both σ (x) and σ (y) are a single variable, otherwise, more than two variables would have to

occur three times in xzyt xy rxsy, or one variable would have to occur six times. Further-

more, σ (x) and σ (y) can only be x or y, since these are the only variables occurring three

times in xzyt xy rxsy. Hence, if u ≈ v is an identity where up to five variables occur, then

u ≈ v cannot be a two-variable identity, and, furthermore, there is at least one variable z

occurring in u ≈ v such that σ (z) is of length at least 2, and neither x nor y can occur in

σ (z). This is impossible, since x or y occur in every factor of xzyt xy rxsy of length 2.

As such, we can conclude that (O) is not a consequence of the set of non-trivial iden-

tities, satisfied by baxt, over an alphabet with six variables, excluding (O) itself and

equivalent identities.

Therefore, we can conclude that Vbaxt does not admit any basis with only identities

over an alphabet with up to five variables. In other words, we have that:

Corollary 7.1.12. The axiomatic rank of Vbaxt is 6. Furthermore, any basis for Vbaxt with
only identities over an alphabet with six variables must contain the identities (O) and (E), or
equivalent identities.

7.2 Subdirect representations of multihomogeneous monoids

As seen in Section 3.2, finitely generated homogeneous monoids are residually finite. We

now show that multihomogeneous monoids are residually finite, by classifying whether

a Rees factor monoid of a multihomogeneous monoid is subdirectly irreducible or not,

then constructing a subdirect representation by finite subdirectly irreducible Rees factor

monoids. We also show that this representation can be used to prove that finitely gen-

erated homogeneous monoids are residually finite, however, we also show that it is not

possible to subdirectly represent these monoids by subdirectly irreducible Rees factor

monoids alone. We are unsure if these results are new, mainly due to the difficulty of

finding results on multihomogeneous monoids, compared to the more general case of

homogeneous monoids, and the different terminology used in the literature.
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Let M be a multihomogeneous monoid, and let ⟨X |R⟩ be a monoid presentation for

M. Recall that J(x) denotes the principal ideal generated by x ∈M. Let

Kx = {y ∈M : x < J(y)}.

It is easy to see that Kx is an ideal: Let y ∈ Kx and z ∈M. Assume, in order to obtain a

contradiction, that yz < Kx, that is, x ∈ J(yz). Then, there exist p,q ∈M such that x = pyzq,

which implies that x ∈ J(y). Similarly, zy < Kx implies that x ∈ J(y). Hence, yz,zy ∈ Kx, for

any y ∈ Kx and z ∈M.

Notice that all elements y ∈M\Kx are such that x ∈ J(y). On the other hand, since M

is multihomogeneous, the content of the product of two elements of M is greater than

the content of any one of those elements, when considering the componentwise order. As

such, if x ∈ J(y), then the content of x is greater than the content of y. Therefore, since

there are finitely many elements of M whose content is less than or equal to the content

of x, the Rees factor monoid M/Kx is finite.

Proposition 7.2.1. Let I be an ideal of a multihomogeneous monoid M. Then, M/I is subdi-
rectly irreducible if and only if I = Kx, for some x ∈M.

Proof. First of all, notice that, for x ∈M, all elements of M whose length is greater than

or equal to the length of x are in Kx, except for x itself.

For any y,z ∈ M\Kx such that y , z and the length of y is less than or equal to the

length of z, there exist p,q ∈M\Kx such that pyq = x and pzq ∈ Kx: Since y < Kx, there exist

p,q ∈M\Kx such that pyq = x. On the other hand, since y , z andM is multihomogeneous,

then cont(y) , cont(z), hence cont(x) = cont(pyq) , cont(pzq). Since the length of y is less

than or equal to the length of z, then the length of pzq is greater than or equal to the

length of x, hence pzq , x and, as such, pzq ∈ Kx.

As such, we have that any principal congruence in M/Kx contains the principal con-

gruence generated by ([x]Kx ,Kx). Thus, Con(M/Kx)\
{
△M/Kx

}
has a minimum element,

which implies that M/Kx is subdirectly irreducible.

On the other hand, let I be an ideal of M such that M/I is subdirectly irreducible.

Suppose, in order to obtain a contradiction, that there is no x ∈M\I such that J(x)\I = {x}.
As such, there must exist a sequence (xk)k∈N of elements in M\I such that xk , xk+1 and

xk+1 ∈ J(xk)\I . Notice that the elements in this sequence are pairwise distinct, since M is

multihomogeneous, therefore any element in J(xk) other than xk itself must be of length

strictly greater than xk . Assume, without loss of generality, that x1 , 1M . As such, the

length of xk is greater than or equal to k, for each k ∈ N. Thus, if we take the principal

congruence ρk of M/I generated by the pair ([xk]I , I), for each k ∈ N, we can see that

ρk+1 ⫋ ρk . As such, we have an infinite chain of congruences on M/I . Notice that, for

any x,y ∈M\I such that x , y and l is the maximum of the lengths of x and y, the pair

([x]I , [y]I ) is not in ρl+1, since neither x nor y are in J(xl+1). Therefore, the intersection of

all congruences ρk is the identity relation, which implies that Con(M/I)\{△M/I } does not
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have a minimum congruence, and consequently M/I is not subdirectly irreducible. This

contradicts our hypothesis.

Therefore, there exists at least an element x ∈ M\I such that J(x)\I = {x}. Let z be

such an element. Suppose, in order to obtain a contradiction, that there exists y in M\I
such that z < J(y). Then, (J(y)∩ J(z))\I = ∅, hence, the intersection of the principal con-

gruence generated by the pair ([y]I , I) and the principal congruence generated by the pair

([z]I , I) is the identity relation △M/I . As such, Con(M/I)\{△M/I } does not have a minimum

congruence, and consequently M/I is not subdirectly irreducible. This contradicts our

hypothesis.

Therefore, there is only be one element x ∈M\I such that J(x)\I = {x}, and all other

elements in y ∈M\I are such that x ∈ J(y). Therefore, Kx ⊆ I . On the other hand, if there

were some y ∈ I such that y < Kx, then x ∈ J(y) ⊆ I , which contradicts our hypothesis.

Hence, I = Kx.

Define δ :M −→
∏
x∈M

M/Kx in the following way: For x,y ∈M,

πx (δ(y)) = [y]Kx .

Proposition 7.2.2. The map δ is a subdirect embedding ofM into the indexed family (M/Kx)x∈M
of subdirectly irreducible monoids.

Proof. It is clear that, by its definition, δ is a morphism. Let p,q ∈M be such that p , q.

Then p,q ∈M\Kpq. Hence, we have that

πpq (δ(p)) = [p]Kpq , [q]Kpq = πpq (δ(q)) ,

therefore, δ(p) , δ(q). Thus, δ is an embedding. Furthermore, it is easy to see that δ(M) is

a subdirect product of the indexed family (M/Kx)x∈M of subdirectly irreducible monoids,

since πx ◦ δ is the natural surjective map from M to M/Kx, for each x ∈M.

We have managed to obtain a subdirect representation of a multihomogeneous monoid

by its finite subdirectly irreducible Rees factor monoids. As such, we have the following

corollary:

Corollary 7.2.3. Multihomogeneous monoids are residually finite.

In particular, we have that the plactic-like monoids of infinite rank are residually

finite. It is also easy to see that all multihomogeneous monoids are infinite, hence, we

have the following

Corollary 7.2.4. No multihomogeneous monoid is subdirectly irreducible.

In the more general case of homogeneous monoids, the map δ is not necessarily an

embedding into a direct product of finite monoids: For example, consider the monoid

M presented by ⟨N |R⟩, where R is such that abc R 111, for all a,b,c ∈ N. Then, for all
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elements x of length greater than or equal to 3, the Rees factor monoid M/Kx is not finite,

since all elements [a]M are in M\Kx, for each a ∈ N.

On the other hand, if we discard all infinite monoids from the definition of δ, we no

longer have an embedding. To clarify this, let M ′ be the subset of elements x of M such

that M/Kx is finite and define δ′ :M −→
∏
x∈M ′

M/Kx in the following way: For x ∈M ′ and

y ∈M,

πx (δ′(y)) = [y]Kx .

Notice that the elements of M ′ are of the form [a]M or [ab]M , where a,b ∈ N are not

necessarily distinct. As such, all elements y of length greater than or equal to 3 are in Kx,

for each x ∈M ′. Thus, we have that, for all x ∈M ′,

πx (δ′ ([123]M )) =
[
[123]M

]
Kx

= Kx =
[
[1234]M

]
Kx

= πx (δ′ ([1234]M )) ,

hence δ′ ([123]M ) = δ′ ([1234]M ). As such, δ′ is not an embedding.

In the case of finitely generated homogeneous monoids, the δ is still an embedding into

a direct product of finite monoids, since having a finite number of generators implies

that there are finitely many words of length less than or equal to the length of an element

x ∈ M, hence M\Kx is finite. This gives us an alternative proof to show that finitely

generated homogeneous monoids are residually finite. However, Proposition 7.2.1 no

longer holds, since the Rees factor monoids may no longer be subdirectly irreducible: For

example, let X = {a,b} and let R be such that

aab R aba R abb R baa R bab R bba.

Let M be the monoid presented by ⟨X |R⟩. It is clear that M is a finitely generated homo-

geneous monoid. Furthermore, it is easy to see that, for any word w ∈ X∗ such that |w| ≥ 3

and supp(w) = {a,b}, then w R ba|w|−1. In other words, for words of length k ≥ 3, there are

only three possible elements of M which they can represent: ak and bk are, respectively,

the sole representatives of [ak]M and [bk]M , and all other words are representatives of

[bak−1]M .

As such, for w ∈ X∗ such that |w| ≥ 3 and supp(w) = {a,b}, we have that, for any

p,q ∈ X∗,
[p]M · [ab]M · [q]M = [w]M ⇐⇒ [p]M · [ba]M · [q]M = [w]M .

Hence, in M/K[w]M , the intersection of the principal congruence generated by the pair([
[ab]M

]
K[w]M

,
[
[ba]M

]
K[w]M

)
and the principal congruence generated by the pair([

[w]M
]
K[w]M

,K[w]M

)
is the identity relation △M/K[w]M

. Therefore Con(M/K[w]M )\
{
△M/K[w]M

}
does not have a

minimum congruence, consequently M/K[w]M is not subdirectly irreducible.
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This shows that Proposition 7.2.2 does not hold for the case of finitely generated homo-

geneous monoids, that is, the embedding δ no longer gives a subdirect representation of a

finitely generated homogeneous monoid by subdirectly irreducible Rees factor monoids.

On the other hand, if we discard all non-subdirectly irreducible monoids from the

definition of δ, we no longer have an embedding. To clarify this, let M ′′ be the subset of

elements x of M such that M/Kx is subdirectly irreducible. Define δ′′ :M −→
∏

x∈M ′′
M/Kx

in the following way: For x ∈M ′′ and y ∈M,

πx (δ′′(y)) = [y]Kx .

For any word w ∈ X∗ such that |w| ≥ 3 and supp(w) = {a,b} and any k ∈ N, since

M/K[w]M is not subdirectly irreducible, and [w]M ∈ Kak ∩Kbk , we have that [w]M ∈ Kx, for

all x ∈M ′′. Therefore, for any x ∈M ′′, we have that

πx (δ′′ ([aab]M )) =
[
[aab]M

]
Kx

= Kx =
[
[aabb]M

]
Kx

= πx (δ′′ ([aabb]M )) ,

hence δ′′ ([aab]M ) = δ′′ ([aabb]M ). As such, δ′′ is not an embedding.

However, the proof of Proposition 7.2.1 still allows us to show that any subdirectly

irreducible Rees factor monoid of M is of the form Kx, for some x ∈M. As such, we can

conclude the following:

Corollary 7.2.5. Finitely generated homogeneous monoids are not subdirectly represented by
subdirectly irreducible Rees factor monoids.

In conclusion, we have that multihomogeneous monoids are residually finite and

subdirectly represented by finite subdirectly irreducible Rees factor monoids; finitely

generated homogeneous monoids are residually finite, but not subdirectly represented

by subdirectly irreducible Rees factor monoids; homogeneous monoids are neither neces-

sarily residually finite, nor subdirectly represented by subdirectly irreducible Rees factor

monoids.
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Open problems

In this thesis, we have proved that the hypoplactic (respectively, sylvester, #-sylvester and

Baxter) monoids of rank greater than or equal to 2 satisfy exactly the same identities. We

have obtained a characterization of these identities and shown that the identity checking

problems for these monoids are in the complexity class P. Furthermore, we have obtained

finite bases for the varieties generated by each of these monoids. However, there exist

other plactic-like monoids, which are yet to be studied in such depth.

Recall that plactic-like monoids are quotients of the free monoid over an ordered

alphabet, whose elements can be uniquely identified with combinatorial objects. Ex-

amples of other plactic-like monoids, besides those studied in this thesis, are the taiga

monoid [Pri13], the monoid of binary search trees with multiplicities; the stalactic monoid

[HNT08; Pri13], the monoid of stalactic tableaux; the left and right patience sorting

monoids [CMS19; Rey07], the monoids of patience sorting tableaux; and the stylic monoid

[AR21], the monoid ofN -tableaux. With the exception of the stylic monoid, the identities

satisfied by these monoids have been first studied in [CM18b] and, in the case of the left

and right patience sorting monoids, in [CMS19]. It has been proven independently in

[Cai+21, Corollary 5.10] and in [HZ21, Theorem 4.2] that the taiga and stalactic monoids

of rank greater than or equal to 2 generate the same variety, which admits a finite basis

consisting of the identity xyx ≈ yxx. However, there are still questions to ask about these

monoids:

Open Problems 1. Do all plactic-like monoids (except the plactic monoid itself) of rank

higher than 2 embed into a direct product of copies of the corresponding monoid of rank

2? Can we obtain a complete characterization of the identities satisfied by these monoids?

Do the identity checking problems for these monoids belong to the complexity class P?

Do the varieties generated by these monoids admit finite bases?

Since the plactic-like monoids arise from the study of combinatorial Hopf algebras,

whose bases are indexed by combinatorial objects, it is natural to ask if we can deduce

results on these Hopf algebras from what we obtained on the plactic-like monoids. In

particular, we ask the following:
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Open Problems 2. Can we deduce identities satisfied by combinatorial Hopf algebras

from the identities satisfied by their corresponding plactic-like monoids?

In this thesis, the plactic monoid of rank nwas defined as a quotient of the free monoid

over the ordered alphabet An = {1 < · · · < n}, by a presentation and by Young tableaux and

the Schensted algorithm. Another possible way for the plactic monoid of rank n to arise

is from the crystal basis for the q-analogue of the special linear Lie algebra sln, that is,

the type An+1 simple Lie algebra, which links the plactic monoid to Kashiwara’s theory

of crystal graphs [KN94]. The plactic congruence corresponds to isomorphisms between

connected components of the crystal graphs. As such, the classical plactic monoid can be

defined in terms of crystals of type An, and thus is said to be of type An.

Similarly, generalizations of the classical plactic monoid arise from the crystals of

representations of other quantum algebras, namely symplectic Lie algebras spn (the type

Cn simple Lie algebra), special orthogonal Lie algebras of odd and even rank so2n+1 and

so2n (the type Bn and Dn simple Lie algebras), and the exceptional simple Lie algebra G2

[KS04; Lec02; Lec03; Lec07]. The plactic monoids of types Bn, Cn, Dn and G2 can also be

defined by presentations or by Young tableaux and the insertion algorithm, as detailed in

[Lec07] and [CGM19].

On the other hand, the hypoplactic monoid [CM17] and the sylvester and Baxter

monoids [CM18a] have been defined using a purely combinatorial notion of quasi-crystals.

However, the corresponding monoids of types Bn, Cn, Dn and G2 are yet to be defined. As

such, we ask the following:

Open Problems 3. Is it possible to define all plactic-like monoids in terms of crystals or

similar structures? Can generalized versions of these monoids, of types Bn, Cn, Dn andG2,

also be defined? If such is possible, then can we obtain characterizations of the identities

satisfied by these monoids, and other related results? And are these results connected to

the previously obtained results on the monoids of type An?

Structures are a generalization of algebras, defined as sets endowed with some re-

lations (not necessarily functions). Automatic presentations for structures were first

introduced by Khoussainov and Nerode [KN95] to extend finite model theory to infinite

structures, in such a way that preserves the decidability of important decision problems.

Informally, an automatic presentation for a structure consists of a regular language of

abstract representatives for the elements of the structure such that the relations of the

structure are all recognizable by synchronous finite automata. A structure that admits

an automatic presentation is said to be FA-presentable. Many characterization and clas-

sification results have been obtained for FA-presentable structures of various kinds (see

[Rub08]).

This concept was first applied to semigroups in [Cai+09], where a complete classifica-

tion of finitely generated FA-presentable cancellative semigroups was given, along with

a complete list of FA-presentable one-relation semigroups. In [Cai+10], the interaction
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of automatic presentations and several semigroup constructions was studied, and clas-

sifications for FA-presentable finitely generated Clifford semigroups, completely simple

semigroups, and completely 0-simple semigroups were also given. In [CRT12], unary

FA-presentable semigroups were studied, and unary FA-presentable completely simple

semigroups were classified. Stuart Margolis asked [A. Cain, personal communication,

2008] if all monoids admitting automatic presentations satisfy non-trivial identities. All

known examples satisfy identities, and the question is still open. In particular, Brough,

Cain and Malheiro proved that finite rank plactic and hypoplactic monoids admit auto-

matic presentations [A. Cain, personal communication]. As such, we ask the following:

Open Problems 4. Do all plactic-like monoids admit automatic presentations? Do all

monoids admitting automatic presentations satisfy non-trivial identities?

As mentioned in Section 4.1, the plactic monoid of finite rank n does not satisfy any

non-trivial identity of length less than or equal to n [Cai+17, Proposition 3.1]. This is the

only known result on a lower bound for the minimum length of the identities satisfied

by finite-rank plactic monoids. Recall that placn must satisfy at least one non-trivial

identity [JK21, Theorem 3.1]. Let l be the length of said identity. Then, by [Cai+17,

Proposition 3.1], all plactic monoids of rank strictly greater than l do not satisfy that

identity, hence they do not generate the same variety as placn. However, it is still unknown

if placm and placn generate the same variety, for any n < m ≤ l. It is conceivable that there

exists a hierarchy of plactic monoids of finite ranks, where each level consists of monoids

which satisfy exactly the same identities.

The case of upper triangular tropical matrix monoids is similar, however, there is a

method to construct identities satisfied by these monoids, given in [Izh14] (on which

there is a mistake which voids the validity of the method, but which is corrected in an

erratum) and in [Tay17, Section 3.2]. Unfortunately, the length of these identities is not

explicitly stated, only an upper bound is given in [Izh14, Section 5]. However, due to

the mistakes in the paper, this upper bound is for the length of identities which are not

necessarily satisfied by upper triangular tropical matrix monoids, as shown in [Tay17,

Section 3.2, Counterexample 3.2.1].

Although the length of the identities satisfied by the monoid of n×n upper triangular

tropical matrices, given in [Tay17, Section 3.2], is not explicitly stated, it is easy to obtain,

by noticing that the shortest (n−1)-power words of C and [n−1] used in their construction

are in fact non-cyclic de Bruijn sequences of order n− 1 on a size-2 alphabet [Bru46]. As

such, these words have length 2n−1 + n − 2, and the identities have length 2n+1 + 4n − 4,

which gives us an upper bound for the minimum length of the identities satisfied by

upper triangular tropical matrix monoids. However, this upper bound is not tight, since

there exist shorter identities satisfied by these monoids [Tay17, Proposition 3.2.30].

The plactic monoid of rank n must satisfy all identities satisfied by the monoid of

d × d upper triangular tropical matrices [JK21, Corollary 3.3], where d = ⌊n2/4⌋+ 1, and

all identities satisfied by placn must be satisfied by the monoid of n×n upper triangular
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tropical matrices [JK21, Theorem 4.4]. As such, the minimum length l of the identities

satisfied by placn is such that

n ≤ l ≤ 2⌊n
2/4⌋+2 +n2.

Recall that the variety generated by plac2 coincides with the variety generated by the

monoid of 2×2 upper triangular tropical matrices [Izh19, Corollary 7.19], and the variety

generated by plac3 coincides with the variety generated by the monoid of 3 × 3 upper

triangular tropical matrices [JK21, Corollary 4.5]. However, it is still unknown if, for

higher ranks, the varieties generated by plactic monoids and upper triangular tropical

matrix monoids coincide.

Open Problems 5. Can these upper and lower bounds be improved, both in the case of

the finite-rank plactic monoids and the case of upper triangular tropical matrix monoids?

Do plactic monoids or upper triangular tropical matrix monoids of different finite ranks

generate the same variety, and if so, which ones? Does the variety generated by a finite-

rank plactic monoid always coincide with a variety generated by an upper triangular

tropical matrix monoid?
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