
MethodsX 9 (2022) 101643

Contents lists available at ScienceDirect

MethodsX

j o u r n a l h o m e p a g e: w w w . e l s e v i e r . c o m / l o c a t e / m e x

Method Article

Automatic detection of vegetation cover changes

in urban-rural interface areas

Bruno Barbosa

a , b , ∗, Jorge Rocha

a , b , Hugo Costa

c , d , Mário Caetano

c , d

a Centre for Geographical Studies, Institute of Geography and Spatial Planning, University of Lisbon, Lisbon, Portugal
b Associated Laboratory TERRA, Lisbon, Portugal
c Direção-Geral do Território, Lisbon, Portugal
d NOVA Information Management School (NOVA IMS), University NOVA of Lisbon, Lisbon, Portugal

a b s t r a c t

The present work started from the need to streamline the process of monitoring changes in vegetation in the

in urban-rural interface fuel management bands, defined by Portuguese legislation as areas where the existing

biomass must be totally or partially removed. The model developed uses a time series of Sentinel 2 satellite

images to search for changes in the vegetation cover in a 100 m buffer around built-up areas. The use of satellite

data allows analysing large areas and speeds up the task of identifying the places where fuel management took

place and the places where there is a need to carry out such management. The objective of the proposed method

is to give a script in Python language that can verify the cleanliness of vegetation in the fuel management ranges

through multi-temporal analysis of satellite images.

• The paper presents a step-by-step procedure for a Sentinel 2 time series vegetation index analysis.
• Automated routine to detection of spatiotemporal vegetation changes based on statistical parameters.
• Used Python language to do geoprocessing analysis.

© 2022 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

a r t i c l e i n f o

Method name: Statistical Meaningful Vegetation Changes

Keywords: Sentinel 2, Time Series, Vegetation index, Vegetation change, Python

Article history: Received 21 December 2021; Accepted 20 February 2022; Available online 24 February 2022

∗ Corresponding author at: Centre for Geographical Studies, Institute of Geography and Spatial Planning, University of Lisbon,

Lisbon, Portugal.

E-mail address: bruno.misson@gmail.com (B. Barbosa).

https://doi.org/10.1016/j.mex.2022.101643

2215-0161/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

https://doi.org/10.1016/j.mex.2022.101643
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mex
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mex.2022.101643&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:bruno.misson@gmail.com
https://doi.org/10.1016/j.mex.2022.101643
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 B. Barbosa, J. Rocha and H. Costa et al. / MethodsX 9 (2022) 101643

•

•

•

•

Specifications table

Subject Area: Geographical Sciences

More specific subject area: Spatial data analysis

Method name: Statistical Meaningful Vegetation Changes

Name and reference of original

method:

Not applicable

Resource availability: Python script available as supplementary material

Used data

The data used as inputs for the model are.

Land Use map.

Buffer of 600 m of the built areas, in raster format.

Buffer of 100 m of the built areas, in raster format.

Time series of vegetation indices.

Method details

The developed method, adapted from [1] , consist in search statistically significant differences

across the Normalized Difference Vegetation Index (NDVI) time series of satellite data obtained from

Sentinel 2, using a moving window through each pixel.

The analysis uses three time series information. For each available image we check: (i) the

vegetation index value in each pixel located within the study area; (ii) the vegetation index mean

value of neighbouring pixels within a given distance radius, located outside of the study area and of

the same land use class; and (iii) the difference between (i) and (ii).

For each of this information and at each date of time series we applied a Welch’s t-test [2] . This

test identifies significant differences between the means of two data sets with different sizes and

variances. The data sets are defined by a time window with a group of images from after and before

each date. This groups could have a minimum of 2 dates and a maximum of 8 dates to realize the

Welch’s t-test. The moving temporal window is set to 60 days, to avoid comparing values of distant

dates and minimise problems with months when there are few or no images with valid values, e.g.,

because of the presence of clouds.

A change is set to occur when the test points significant differences on the same date for the

‘pixel (i)’ value and the ‘difference (iii)’ value but not to the ‘mean (ii)’ value. We aim to find only the

changes that indicate the decrease of the vegetation index, and this information is associated with

negative values of ‘t’. With these criteria the pixels are classified with (1) where one change occur

and (0) in the unchanged areas. For each analyzed image a Boolean raster is generated indicating

change (1) and no change (0).

Script construction

For the development of this methodology, we use the Python version 3.9.2 [3]. According with

[4] there are some features that make Python an ideal tool for geoprocessing analysis, like: (i) is an

easy-to-learning language; (ii) is object-oriented; (iii) the abundance of available resources, because

it is an open-source language, presents a vast community of programmers who make information

available online; and (iv) its embedded in many geoprocessing software, e.g., ArcGIS, GRASS GIS, QGIS

and PostGreSQL/PostGIS.

To achieve the proposed objectives, ten specific functions were developed that helped collect and

produce the information necessary for the analysis. Developed scripts were based on modules ’os’ and

’glob’, gdal’ ’numpy’ ’scipy’ ’time’ and ’datetime’ [5–11] .

B. Barbosa, J. Rocha and H. Costa et al. / MethodsX 9 (2022) 101643 3

D

r

c

i

r

i

w

t

g

fi

c

s

fi

w

t

v

c

t

fi

w

a

1

a

p

s

i

i

r

a

c

eveloped functions

aster2array()

This function uses the gdal module to extract information from an input raster file. First, a variable

ontaining a numpy array with the values of each pixel is generated and then the spatial data

nformation is organized in a dictionary. This is the metadata with the characteristics of the selected

aster file, during the script this information will be used to verify the spatial relations between the

mages.

orld2Pixel()

This function checks the first point of intersection between two given raster files and converts

his information into numbers of row and column of a numpy array. The information of the

dal.GetGeoTransform() object that contain the coordinates and cell size (i.e., spatial resolution) of a

rst raster file, e.g., (530250.0, 10.0, 0.0, 4471020.0, 0.0, -10.0), and the coordinates of the upper left

orner (minimum X and maximum Y) of a second raster, are used to do that.

aveRaster()

This function converts the numpy array values into to a raster file format. Initially, a new raster

le is created without information with the same format as the input template file and then fills it

ith the information provided by the metadata. The number of rows and columns, the projection and

he geotransformation are used to establish the position of this new raster in space. Subsequently the

alues are filled with the data available in an input numpy array and saved in a selected folder.

lipRaster()

This function organizes three other functions created, raster2array(), world2Pixel() and saveRaster() ,

o generate a new raster with the data clipped of a input raster where it overlay with a second raster

le selected.

indow()

This function creates the (n x n) pixel window required to incorporate the desired radius size

ccording to the spatial resolution of a raster. In the case of Sentinel-2, as each cell in the image has

0 m resolution the expression is given by:

n =

((
radius

10

)
∗ 2

)
+ 1 (1)

rrayMean()

This function is responsible for calculating the arithmetic mean around a window of (n x n) of a

ixel. Here we need three inputs information, the array with the pixel values, the mask with outside

tudy area and the size of (n x n) window.

It starts by generating two new arrays, the first outdata with null values and the same size of the

nput array and the other a new arrayMask , its result by the multiplication of the input array and the

nput mask, because the purpose is to calculate the average of outside the study area.

After that we use two for looping, the first with the range of rows [i] and the second with the

ange of columns [j], obtained of the array shape size. The propose of that is to calculate the mean in

ll array cell inside a moving window of (n x n).

The Fig. 1 simplifies this idea in a matrix of 5 rows and 4 columns where we would like to

alculate the mean in a window (3 × 3) at points P1 and P2.

4 B. Barbosa, J. Rocha and H. Costa et al. / MethodsX 9 (2022) 101643

Fig. 1. Array (5,4).

1

2

3

In Python the first value of an numpy array object is always at the index position zero, so point P1

is located at position (0,0) and its mean is obtained from the range: array[0:2, 0:2]. That is, the values

between rows 0 and 1 and between columns 0 and 1. The mean of P1 is given by (P1 + 3m1)/4.

Point P2 is located at position (3,2) of the array, so the values to calculate its mean are in the range:

array[2:5, 1:4], that is, the values that are between rows 2 and 4 and between columns 1 and 3. The

mean of P2 is given by (P2 + 8m2)/12.

This example shows that each cell has a different range that must be elaborated according to the

position of the cell in array. In the case presented the window (3 × 3) of point P1 cannot be complete

as it would involve values in the row and column -1 that do not exist. If the script tries to access the

values in missing rows or columns, an empty set is generated, and the mean is not calculated. Because

of this, we must lay down two rules to avoid this error:

. If the index of rows or columns is less than zero, use zero.

. If the index of rows or columns is greater than the maximum of rows and columns, use the

maximum value.

To ensure that the generated matrix displays values only in the allowed cells, a third rule is

stipulated.

. If the input array value in row [i] and column [j] is null, the generated array outdata will display a

null value at this same position.

Finally, when the corresponding range is generated for the row [i] and column [j], the mean is

obtained using this range in the values of the array matrix. This process obtains the average of

neighbouring pixels in each radius located outside the study area. This process requires processing

time, as all the cells of the input matrix are covered and in each of them a new calculation is made,

based on different intervals.

dicArray()

Generate a dictionary containing numpy arrays with information collected and produced from a

set of rasters. The key for each item in this dictionary is a datetime object with the date of each

image. Four information is associated with each key, the raster name, the vegetation index value in a

pixel, the vegetation index outside mean and the difference between these two values.

The first process performed is the inversion of the array of the study area, because the average

that we want to calculate considers the pixels located outside the study area. Subsequently, for each

item in the given entry set raster, a dictionary key is generated, based on raster time data. To this key

is associated the array containing the pixel values, obtained through the raster2array() . If a raster has

all null values it is deleted from processing.

Then, for each land use class, multiplication between pixel values and the land use mask is made.

The result of this calculation is inserted into the arrayMean() function with the inverted array of the

study area and the window which the mean around each pixel will be calculated. This process meets

the assumption of the mean of neighbours of the pixel, outside the study area in the same land use

class.

B. Barbosa, J. Rocha and H. Costa et al. / MethodsX 9 (2022) 101643 5

s

t

t

w

a

s

b

d

s

w

u

i

n

b

i

o

a

p

s

c

d

G

t

a

v

a

6

t

I

n

t

a

t

d

r

t
ets()

This function is responsible for select which images are part of the analysis from the established

ime window. There is a minimum and maximum number of images used and they must respect a

ime limit. This function generates two lists, one containing the set of images before the analysis date,

ith this included, and the other the set of images after the analysis date.

rraySet()

This function is responsible for take the value of the pixel, of the mean and of the difference and

tore that into lists for each established date in a set. Here we use as input the dictionary created

y dicArray() and the list created by sets() . As the list contains the datetime objects, which are the

ictionary key, for each date of the list we can take the information contained in the dictionary and

tored in a new list, which is returned at the end of the function.

elchTest

Here the script performs the Welch’s t-test calculation for two sets of input data arrays. The test

sed here is a function belonging to the scipy module and returns the values of t and p for each

tem in a set of dates. In this case the function is given as: scipy.stats.ttest_ind(arrayA, arrayB, axis = 0,

an_policy = ‘omit’) . The ‘axis’ = 0 indicates that the calculation should be in the third dimension, i.e.,

etween the cells located in the same position in the different input arrays. The ‘nan_policy’ = ‘omit’

ndicates that the operation does not take the null values into account, this factor reduces the effect

f the absence of values caused by interference with the satellite image signal. As a result, two new

rrays are generated, one with the t values and the other with the p values for each analyzed cell.

Subsequently a Boolean matrix is generated where the values less than or equal to established

- Value will be (1) and all the others will be (0). These values indicate whether there has been a

ignificant change between the values of the sets. In other words, it checks if there was a significant

hange in the vegetation index values between two sets of dates. The information if there was a

ecrease in the vegetation index is indicated by the t signal.

eneral script

The first step is importing all the necessary modules and generate all global variables. We chose

o generate the functions presented in a separate file and import them into the script as if they were

 module.

After, are collected the information of two raster used as a mask for which the images with

egetation index values will be ‘cut out’, represented by the buffers of 600 and 100 m of the built

reas.

Subsequently, information from the land use and occupation map is collected. First it is cut to the

00 m mask around the built areas using the clipRaster() function. After clipping, the information of

his new raster is stored in new variables via raster2array() .

Land use classes are individualised in a dictionary that has as keys the code of the land use classes.

t is verified which land use classes exist in the study area if isn’t the key is eliminated. Otherwise, a

ew check is made if the key in question belongs to the list of uses used in the analysis, in this case

he cells where the values are equal receive value (1) and the others receive null value.

The following are cut out all vegetation index images to the 600 m mask around the built

reas. With those new images is created the dictionary containing the information required, namely:

he name, pixel value, outside study area mean and difference between these values, through the

icArray() .

Now the data are grouped for the calculation of the Welch t-test. A list is generated that will

eceive all the keys in the dicData() dictionary, using the native Python function sorted() we ensures

hat the items are entered in chronological order in the list. Subsequently, a looping is made to

6 B. Barbosa, J. Rocha and H. Costa et al. / MethodsX 9 (2022) 101643

perform the statistical test for each data. In this looping are deleted the first two and the last two

dates. This is done because the Welch’s t-test needs at least two values in each input set.

In this looping a new variable is created in each iteration with the information about day, month

and year of each image analyzed. Next are set the limits of the time window, the minimum of 2

images, the maximum of 8 images in a period of maximum 60 days later and before the date of the

image analyzed. The sets() function is used to generate two lists containing sets of earlier and later

dates that obey the established limits. The data from these two generated lists will be used in the

arraySet() function to access arrays with pixel, outside mean and difference values between them for

each date of the sets. With this set is made the Welch t-test through the welchTest() function.

Following, operations are carried out with the Boolean arrays generated. The bin_fnc1 variable

receive the multiplication between the pixel array and difference array, and the bin_fnc2 variable

receive the inverse array of the outside mean value. These two variables are then multiplied to

determine the areas of change in vegetation.

Finally, the information of the day, month and year of the datetime object is removed to compose

the name of the raster that is generated through the saveRaster() function and saved in the specified

folder.

Conclusion

The proposed process of analyzing data obtained from satellite imagery showed the versatility of

using the Python language. The functions developed and the ones used in existing modules made it

possible to create a logical and functional structure to achieve the desired goals. The option for a

free programming language was given to avoid the use of geoprocessing software, which often has

expensive licenses, and the model can be easily replicated by other users. The model proved to be

efficient, as it was able to detect changes in the selected study areas. Finally, the possibility of jointly

processing a large volume of information in a single environment demonstrated the potential of this

approach for spatial analysis.

Acknowledgments

This work was financed by national funds through FCT—Portuguese Foundation for Science and

Technology, I.P., under the framework of the Project “FORESTER - Data fusion of sensor networks and

fire spread modelling for decision support in forest fire suppression” [PCIF / SSI / 0102 / 2017] and is

relative to a scientific Research Fellowship BI_27_20.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal

relationships that could have appeared to influence the work reported in this paper.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi: 10.

1016/j.mex.2022.101643 .

References

[1] M.L. Campagnolo, D. Oom, M. Padilla, J.M.C. Pereira, A patch-based algorithm for global and daily burned area mapping,

Remote Sens. Environ. 232 (January) (2019) 111288, doi: 10.1016/j.rse.2019.111288 .
[2] B.L. Welch , The generalization of ‘student’s’ problem when several different population variances are involved, Biometrika

34 (1947) 28–35 .
[3] Python TM : (2022) https://www.python.org/ .

[4] L. Tateosian, Python for ArcGIS, 1, Springer International Publishing, 2015, doi: 10.1007/978- 3- 319- 18398- 5 .

[5] OS - Miscellaneous operating system interfaces: https://docs.python.org/3/library/os.html . (acesssed on 03/02/2022).
[6] GLOB - Unix style pathname pattern expansion: https://docs.python.org/3/library/glob.html . (acessed on 03/02/2022).

[7] GDAL/ORG: https://gdal.org/ . (acessed on 03/02/2022).

https://doi.org/10.1016/j.mex.2022.101643
https://doi.org/10.1016/j.rse.2019.111288
http://refhub.elsevier.com/S2215-0161(22)00028-0/sbref0002
http://refhub.elsevier.com/S2215-0161(22)00028-0/sbref0002
https://www.python.org/
https://doi.org/10.1007/978-3-319-18398-5
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/glob.html
https://gdal.org/

B. Barbosa, J. Rocha and H. Costa et al. / MethodsX 9 (2022) 101643 7

[

[

[8] NumPy Developers: https://numpy.org/doc/stable/ . (acessed on 03/02/2022).

[9] SciPy API: https://docs.scipy.org/doc/scipy/reference/ . (acessed on 03/02/2022).
10] TIME - Time access and conversions: https://docs.python.org/3/library/time.html . (acessed on 03/02/2022).

11] DATETIME- Basic date and time types: https://docs.python.org/3/library/datetime.html . (acesssed on 03/02/2022).

https://numpy.org/doc/stable/
https://docs.scipy.org/doc/scipy/reference/
https://docs.python.org/3/library/time.html
https://docs.python.org/3/library/datetime.html

	Automatic detection of vegetation cover changes in urban-rural interface areas
	Used data
	Method details
	Script construction
	Developed functions
	raster2array()
	world2Pixel()
	saveRaster()
	clipRaster()
	window()
	arrayMean()
	dicArray()
	sets()
	arraySet()
	welchTest

	General script
	Conclusion
	Acknowledgments
	Declaration of Competing Interest
	Supplementary materials
	References

