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ABSTRACT 

In recent years Artificial Intelligence has become a core part of many businesses, from manufacturers 

to service providers, AI can be found helping to improve business processes as well as providing 

customized experiences and support for the customers. Natural language processing gives computers 

the ability to understand human language, recent breakthroughs in multilingual models bring us closer 

to overcome language barriers and achieve various tasks regardless of the language. This brings to 

companies the opportunity to process data and provide services to customers regardless of their 

language. In this dissertation, we review the progress of NLP towards multilingual text classification, 

our results suggest that using a machine translation to augment our corpora is a suitable approach to 

fine-tune multi-language models like XLM-Roberta, obtaing better results than zero-shot approaches. 

Our results also suggest that in domain pre-training can help to increase the performance of the 

classification for both monolingual and multi-language classifiers 

 

KEYWORDS 

Multi-Language Text Classification; Supervised Machine Learning; Deep Learning; Text Classification; 

Natural Language Processing; Customer Support; 

  



 

iv 
 

INDEX 

1 Introduction .................................................................................................................. 1 

2 Background ................................................................................................................... 3 

 Machine Learning .................................................................................................. 3 

 Neural Networks .................................................................................................... 3 

2.2.1 Perceptron ...................................................................................................... 3 

2.2.2 Multi-layer Perceptron ................................................................................... 3 

2.2.3 Optimizers ...................................................................................................... 4 

2.2.4 Recurrent Neural Network ............................................................................. 4 

2.2.5 Long Short-term memory networks ............................................................... 4 

2.2.6 Sequence-to-Sequence models ...................................................................... 5 

2.2.7 Transformers .................................................................................................. 6 

 Word Embedding ................................................................................................... 6 

 Multi-Task Learning ............................................................................................... 7 

 Transfer Learning ................................................................................................... 8 

3 Related Work ................................................................................................................ 9 

 Email Classification ................................................................................................ 9 

 Recurrent Convolutional Neural Networks ......................................................... 10 

 Recurrent Neural Network for Text Classification with Multi-Task Learning ..... 11 

 BERT Transformer ................................................................................................ 13 

3.4.1 Masked Language Modeling ........................................................................ 13 

3.4.2 Next sentence prediction ............................................................................. 14 

3.4.3 German BERT ................................................................................................ 15 

 RoBERTa ............................................................................................................... 15 

3.5.1 CamemBERT ................................................................................................. 15 

 Bert Multilingual .................................................................................................. 15 

 XLM-R................................................................................................................... 16 

4 Methodology .............................................................................................................. 17 

 Corpora Used ....................................................................................................... 18 

 Neural Classifiers ................................................................................................. 19 

 Transformers Library ........................................................................................... 20 

 Hyperparameters ................................................................................................ 20 

4.4.1 Batch size and Epochs. ................................................................................. 20 

4.4.2 Learning Rate ................................................................................................ 20 



 

v 
 

4.4.3 Dropout ........................................................................................................ 21 

4.4.4 Activation function ....................................................................................... 21 

 Evaluation Metrics ............................................................................................... 22 

5 Experiments ................................................................................................................ 25 

 Training TextRNN ................................................................................................. 25 

 RCNN .................................................................................................................... 26 

 Fine-Tuning Bert .................................................................................................. 26 

 Fine-Tuning RoBERTa ........................................................................................... 27 

 Fine Tuning Multi-Lingual Bert ............................................................................ 28 

 XLM, CamemBERT and GermanBERT .................................................................. 29 

 Fine Tuning  XLM- RoBERTa ................................................................................. 30 

 Time performance ............................................................................................... 31 

 Discussion and Limitations .................................................................................. 32 

6 Conclusions ................................................................................................................. 33 

7 Future work ................................................................................................................ 33 

8 Bibliography ................................................................................................................ 34 

 

 

 

 

 

 

 

 

 

 



 

vi 
 

LIST OF FIGURES 

Figure 1 – Example of hierarchical softmax ............................................................................... 7 

Figure 2 - Visual representation of hard parameter sharing. Taken from (Ruder, 2017) .......... 8 

Figure 3 - Visual Representation of soft parameter sharing. Taken from (Ruder, 2017) .......... 8 

Figure 4 - Image representation of the RCNN layers. Taken from(Lai et al., 2015) ................. 10 

Figure 5 – Visual representation of the uniform-layer architecture. Taken from (P. Liu et al., 

2016) ................................................................................................................................. 11 

Figure 6 - Visual representation of the coupled layer architecture. Taken from (P. Liu et al., 

2016) ................................................................................................................................. 12 

Figure 7 – Visual Representation of the Shared-layer Architecture. Taken from (Vaswani et al., 

2017) ................................................................................................................................. 12 

Figure 8 - Visualization of the clusters formed by the embeddings of the word Bank in different 

contexts. Taken from (Mickus et al., 2019) ...................................................................... 14 

Figure 9 – Simplified example of how segment embeddings influence the final embeddings 14 

Figure 11 – Number of samples on each dataset .................................................................... 18 

Figure 10 – NeuralNetwork toolkit framework. Taken from (Devlin et al., 2019) ................... 19 

Figure 12- Visual representation of a NN without using dropout (a) and using dropout (b). 

Taken from (Galeone, 2017) ............................................................................................ 21 

Figure 13 - Sigmoid function plot ............................................................................................. 21 

Figure 14 - Tanh function plot .................................................................................................. 22 

Figure 15 - RELU function plot.................................................................................................. 22 

Figure 16 - Variation of Weighted precision and Macro F-score with Training Size................ 27 

 

 

 

 

 



 

vii 
 

LIST OF TABLES 

Table 1 – Weighted Precision and Macro F-score for TextRNN, TextRNN + w2v embeddings 

and TextRNN + w2v Embbedings embedding freeze ....................................................... 25 

Table 2 - Wheighted Precision and Macro F-score for TextRCNN, TextRCNN + w2v embbedings 

and TextRCNN + w2v Embbedings embbeding freeze ..................................................... 26 

Table 3 – Bert weighted precision and macro F-Score variation across various learning rates

 .......................................................................................................................................... 26 

Table 4- Bert and Roberta weighted precision and Macro F-Score ......................................... 28 

Table 5 - RoBERTa weighted precision and Macro F-Score with and without In-domain pre-

training ............................................................................................................................. 28 

Table 6 – Comparison of MBert weighted precision on English, Deutch, French and Spanish 

test sets, using zero-shot approach and training on all languages .................................. 29 

Table 7 – CamemBERT, German BERT, and XLM weighted precision...................................... 29 

Table 8 – Comparison of XLM-R weighted precision trained on mono language and multi-

language training sets, zero-shot and in-domain pre-training ........................................ 30 

Table 9 – Comparasion of training times and classification of one email for each tested model 

ran on Tesla K80 ............................................................................................................... 31 

 

  



 

viii 
 

LIST OF ABBREVIATIONS AND ACRONYMS 

MLP  Multi-Layer Perceptron 

RAM  Random Acess Memory 

CPU  Central Processing Unit 

VRAM  Video Random Acess Memory 

GPU  Graphic Processing Unit 

NN  Neural Network 

RELU  Rectified Linear Unit function 

MTL  Multi-Task Learning  

LSTM Long Short Term Memory 

RNN Recurrent Neural Network 

RCNN  Recurrent Convolutional Neural Network 

MLM  Masked Language Modeling 

SVM Support Vector Machines 

NB Naive Bayes 

BERT Bidirectional Encoder Representations from Transformers 

MBERT Multil-language BERT 

RoBERTa Robustly Optimized BERT Pretraining Approach 

 



 

1 
 

1 INTRODUCTION 

In today’s competitive market long term customer relationship is an integral part of a successful 

enterprise, it is also known that customer retention leads to profit increase, making it important to 

determine the factors that influence the longevity of the relationship between customer and service 

provider(Dovaliene et al., 2007). Customer support has an important role in maintaining a relationship 

between customers and companies, almost every company either manufacturer or service provider is 

performing some kind of customer support, the extent of this service can be specific and tailored for 

each customer or more general like repairing a piece of faulty hardware (Qasim & Asadullah, 2012). 

(Loomba, 1998) defines customer support as simply ensuring that a determined product is usable by 

the customer during the product’s life span. (Coffin & New, 2001) complements saying that that 

customer support can be used to add value to a product and achieve customer satisfaction. However, 

customer support does not come without monetary and human resources, thus the use of AI can 

facilitate the streamline of processes and help to reduce costs. 

The introduction of Artificial Intelligence to help with customer support ticket triage raises from the 

need to find a more efficient way to perform a repetitive and expensive problem. By eliminating the 

need of having agents dedicated to reading and classifying customer emails according to a set of topics 

we can let the agents focus on more meaningful tasks that AI cannot yet tackle. According to (Sarah 

Patterson, 2019) only 24% of the businesses in 2019 use AI to help in customer support tasks, however, 

the same study tells us that 56% of the services decision-makers are actively looking for ways to 

integrate AI. 

As the amount of text data generated increases due to the extensive use of digital platforms for 

communication proposes, raises the need for classifying said data. On the topic of emails, the (The 

Radicati Group, 2015) shows that the daily email traffic is increasing every year reaching over 246 

billion of emails sent/received per day in 2019. Has customers extensively use email services to reach 

companies, managing such emails is an important topic for the companies increasing the importance 

of automated email classification solutions.  

As the globalization of markets speeds up and companies start to expand beyond the boundaries of 

their native languages the need for models capable of handling multiple languages also increases, 

traditional automated classification solutions are only able to perform in monolingual scenarios and 

due to complexity, implementing a classification model for each language can be difficult to manage, 

some languages also lack suitable data to train classification models. As the need for multilingualism 

raises a particular neural network architecture known as transformers is proving to be especially 

effective in handling multi-language tasks. These challenges that modern-day companies face serves 

as motivation for this dissertation 

This thesis Goal is to train a classifier capable of classifying customer support emails in multiple 

languages according to a given set of topics. The project can be divided into two phases. In the first 

phase, the objective was to build an efficient monolingual English classifier that would serve as a 

baseline for the multilingual model. In the second phase, we experiment with various models and 

training approaches to fine-tune a multi-language classifier. Throughout the development of the 

project, several models have been tested as well as the effect of various hyper-parameters on the 

model’s performance. This thesis aims to answer the following questions. 
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How well can transformers perform on customer support data classification? 

Is it possible to build a performing multi-language classifier by training it on machine-translated data? 

What is the performance trade-off between monolingual and multi-lingual models? 
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2 BACKGROUND 

This section provides the reader with the fundamental concepts needed to fully understand the rest 

of the document. In section 2.1 the concept of machine learning is introduced. Section 2.2 establishes 

the fundamentals of neural networks as well as the different architectures. In section 2.3 we present 

different methods of representing textual information. 

 MACHINE LEARNING 

Machine learning is a field of study that focuses on the research and development of algorithms that 

are capable of learning with experience (Mitchell, 1997). We can sub-classify machine learning in 

supervised and unsupervised depending on how the supervision of the training phase is done. 

In supervised machine learning algorithm learns from pre-labeled examples known as ground truth, i.e 
observations of a training dataset that is annotated with a predefined set of possible category values. 
After training a model on the labeled training dataset, The goal of the machine learning algorithm is 
to, predict the labeling for the unseen un-labeled data. 

 

In unsupervised machine learning, the data is not previously labeled in any anyway, the machine 

learning algorithm tries to learn by finding common patterns in the data and grouping it accordingly. 

 NEURAL NETWORKS 

An artificial neural network or ANN is a type of machine learning model inspired by the neurobiology 

understanding of the human brain. In 1943 Warren McCulloch and Walter Pitts proposed the first 

computational model for a neuron. Inspired by the McCulloch-Pitts neuron Frank Rosenblatt proposed 

in 1957 what is the basic element of a neural network the perceptron. 

2.2.1 Perceptron 

Has previously mentioned the most basic unit of a neural network is a perceptron. Formally represented 

by the equation.  

𝑧 =  ∑ 𝑥𝑖𝑤𝑖 + 𝑏

𝑁

𝑖=𝑙

 

The perceptron takes an 𝑥 vector of length 𝑁 as input and calculates the product of each value of 𝑥 

with the corresponding weight of the matrix 𝑤, the resulting product is then summed to the bias 𝑏 

which typically has the value of 1, The bias term allows the decision boundary to be shifted. The output 

𝑧 is then passed through an activation function, this activation function can be changed according to 

the problem needs. 

2.2.2 Multi-layer Perceptron  

Multi-layer Perceptron or MLP is neural architecture composed of multiple perceptrons divided into 

at least three distinct layers; an input layer, one or multiple hidden layers, and the output layer, in 

other words, it can be seen as a logistic regression where the input is non-linearly transformed. The 
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number of perceptrons present in the hidden layers can be changed arbitrarily. Like in most neural 

networks the training of the MLP consists of two main phases that can be repeated N times where N 

is a number defined arbitrarily. In the first phase the forward pass, the input signal is propagated 

through the network. The inputs are multiplied with the respective weights and added to a bias, this 

process is repeated until it reaches the end of the neural network where the outputted probabilities 

will be compared with the ground truth and a loss is computed. In the second phase, the backward 

pass the loss is propagated backward through the network, in this phase, the model adjusts the 

learnable parameters to minimize the loss, this is done using gradient descent.  

2.2.3 Optimizers 

The optimization algorithm is a vital part of the neural network architecture helping the model to 

minimize the error function. 

Adam optimizer or Adaptive Moment estimation proposed by (Kingma & Ba, 2015) is an optimizer 

specifically designed for training machine learning algorithms, has the name infers Adam computes 

different learning rates for each learnable parameter. The Adam optimizer is heavily inspired by 

momentum and RMSdrop optimizers 

AdamW or Adam with weight decay is proposed by (Loshchilov & Hutter, 2019), this optimizer as the 

name indicates is a variation of the original Adam optimizer, AdamW detaches the weight decay from 

the optimization steps allowing the weight to be optimized independently from the learning rate. 

2.2.4 Recurrent Neural Network 

Unlike vanilla neural networks, Recurrent neural networks are capable of processing sequential data 

using internal memory.  

ℎ(𝑡) = 𝑓(𝑈 ∗ 𝑥(𝑡) + 𝑊 ∗ ℎ(𝑡−1)) 

 At time-step 𝑡 the Hidden state ℎ𝑡 is calculated using an input 𝑥(𝑡) and the previously hidden state 

ℎ(𝑡−1). 𝑈 and 𝑊 are weight matrixes that transform𝑥(𝑡) and ℎ(𝑡−1) linearly. These linear 

transformations are then passed through a non-linear function 𝑓 in order to produce the next hidden 

state. 

2.2.5 Long Short-term memory networks 

In order to address the vanishing gradient problem (Hochreiter & Schmidhuber, 1997) proposed the 

LSTM architecture.LSTM’s are composed of cells and three types of gates named, Forget gate, Input 

gate, and Output gate. 

The Forget gate controls which values shall be kept or erased from the previous cell state. For this task 

it uses a sigmoid function, that looks at the previous state ℎ(𝑡−1)and the input 𝑥(𝑡) the output is a 

number between 0 and 1 for each number in the cell state 𝐶(𝑡−1). The output will decide whether the 

information will be kept (1) or omitted (0). 

𝑓𝑡 = σ (𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓 ) 
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The input gate decides what values from the input should be stored. This is done using two layers. The 

sigmoid layer that decides which values will be inputted and a tanh layer that creates a set of 

candidates 𝐶̃(𝑡−1). 

𝐶̃𝑡 = tanh (𝑊𝐶 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶  ) 

𝑖𝑡 = σ (𝑊𝑖. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖 ) 

 

The old state 𝐶(𝑡−1) is then multiplied by 𝑓𝑡 in order to erase the values marked to be omitted by the 

forget gate. To store the new values the result of the previous operation is added to the product of the 

input values 𝑖𝑡 with the candidate Values 𝐶̃𝑡 

 

𝐶𝑡 = 𝑓𝑡 . 𝐶𝑡−1 + 𝑖𝑡 . 𝐶̃𝑡  

As the name indicates the output gate will decide the output, it does so by making use of a sigmoid 

layer that will decide what parts of the cell state will be outputted. A function 𝑡𝑎𝑛ℎ is then applied to 

the cell state 𝐶𝑡 and multiplied with the output of the sigmoid layer in order to output the marked 

values. 

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 

ℎ𝑡 =  𝑜𝑡  . tanh(𝐶𝑡) 

2.2.6 Sequence-to-Sequence models 

Sequence-to-Sequence is an architecture proposed by (Sutskever et al., 2014) in order to solve 

problems where the output sequence length is different from the input sequence length. This is 

particularly useful for machine translation, where the length of an input sequence in a given language 

does not have the same length as the corresponding translation in the target language. 

The architecture uses two RNN models often called the encoder and the decoder. The encoder maps 

the input sequence to a fixed-length vector, the vector is then passed as an input to the decoder that 

maps it to a variable-length vector.  

However, this architecture may have problems resulting from long-term dependencies, to solve this, 

the author suggests the use of LSTMs since as we have seen in the previous section these models are 

best suited for this particular problem. The decoder-encoder are jointly trained to maximize the log 

probability formally represented in the equation below. 

1/|𝑆| ∑ 𝑙𝑜𝑔 𝑃(𝑇|𝑆)

(𝑇,𝑆)∈𝑆

 

Once the training is complete, we can get the translation or the most likely sequence: 

𝑇̂ = arg max(T) 𝑝(𝑇|𝑆) 
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This is done by using a left-to-right beam search decoder. This method maintains a small number of 𝐵 

hypotheses, when all the 𝐵 hypothesis are generated only the most likely hypothesis is not discarded. 

2.2.7 Transformers 

Transformers are an encoder-decoder architecture proposed by (Devlin et al., 2019) the model 
explores the concept of self-attention. The self-attention mechanism resembles the way humans read, 
shifting their attention from word to word depending on its importance for a given context. 

For each imputed token, three matrixes are created Query, Key, and Value, in order to generate these 

matrixes an input value 𝑋 is multiplied by a weight 𝑊𝑞 generating the Query 𝑄 matrix, the Query 

matrix is then multiplied by 𝑊𝑘 to generate the Key 𝐾 matrix and finally, the Key matrix is multiplied 

by 𝑊𝑣 in order to generate the Value 𝑉 matrix. Wq, 𝑊𝑘, and 𝑊𝑣 are randomly initialized and are 

trainable parameters. In order to produce a matrix 𝑍 the following function is applied. 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘

)𝑉 

The 𝑍 matrix that results from each word is then summed and feedforwarded trough the network.  

In the multi attention head case, the entire process is re-done generating 𝑁 𝑍 matrixes, 𝑁 being a 

number of attention heads. Since this process generates multiple 𝑍 matrixes and the feedforward 

layers only receives a single matrix we concatenate every matrix 𝑍 into a single matrix. 

 WORD EMBEDDING 

Word embedding is one of the most popular representations of text, capable of capturing syntactic 

and semantic relationships. Basically, an embedding is a dense vector of values that are trained to 

maximize the distance between words that usually appear in different context and minimize the 

distance between words that usually appear close-by. The length of the vectors that represent the 

words can be specified; high dimensional embeddings can learn more fine-grained relationships but 

are more data-hungry to train. 

There are numerous proposed approaches to achieve this representation. The two most popular 

approaches are proposed by (Mikolov et al., 2013) 

The continuous bag-of-words uses a window size in order to represent a target word, for example, 

given the phrase ”A cute cat looks through the windows” and use a window's size of two to predict the 

word “cat” the context words will be “cute” and “looks”.For instance, a target word 𝑤𝑡 is defined by 

the sum of the 𝑤(𝑡 + 𝑛) words preceding 𝑤𝑡 and 𝑤(𝑡 + 𝑛)where 𝑛 is a number arbitrarily set  

The skip-gram model, this model finds word representations to predict the surrounding words. 

Formally, given a sequence of words 𝑤1, 𝑤2, … 𝑤𝑡 the training objective of the skip-gram is to 

maximize the average log probability. 
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1

𝑇
∑

𝑇

𝑇=1

∑ 𝑙𝑜𝑔 𝑝(𝑤𝑡+𝑗|𝑤𝑡)

−𝑐≤𝑗≤𝑐,𝑗≠0

 

𝑐 being the size of the training context, large 𝑐 leads to higher accuracy but higher training times. 

However, since  𝑝(𝑤𝑡+1|𝑤𝑡) is defined using softmax function, the computing cost of this formulation 

is proportional to the number of words in the vocabulary 𝑂(𝑛), rendering it impractical. 

The author suggests two approaches to deal with this time complexity problem. The first approach is 

to use hierarchical softmax in place of the regular softmax. Hierarchical softmax uses a binary tree to 

represent the output words 𝑊 as its leaves and for each node the probability of its child nodes. Each 

word can be reached by an appropriate path from the root of the tree, the probability of a word 𝑤 is 

the product of the probabilities of each edge on the path to 𝑤. Since it is only needed to evaluate  

𝑙𝑜𝑔2(𝑊) nodes the time complexity of this algorithm is 𝑂(𝑙𝑜𝑔 𝑛) speeding up the training time. 

 

Figure 1 – Example of hierarchical softmax 

The second proposed approach is called negative sampling. Negative Sampling uses a sigmoid function 

to learn for a given word-context pair (𝑤, 𝑐) if the word 𝑐 is in the context of the center word 𝑤. In 

context it is likely to observe pairs of 𝑤  “animal” with context 𝑐 {“dog”,”cat”,”zoo”}, this pairs will have 

output target of 1(Positive) while unlikely pairs, “animal” with {“plane”,”engine”,”car”} will have an 

output target of 0(negative). This approach turns a multi-classification problem into binary-

classification reducing the time complexity. 

 MULTI-TASK LEARNING 

 Multi-task learning  or MTL is a sub-field of Machine learning that aims to use the correlation between 

tasks to improve classification performance, it does so by forcing the model to learn generalized 

representations of features or attributes for various tasks. If there are 𝑁 tasks that are related to each 

other MTL will use the knowledge contained in all the 𝑁 tasks to improve its performance. Multi-task 

learning can be also be viewed as a way to introduce bias that prefers the hypothesis that explains all 

the 𝑁 tasks, reducing the risk of overfitting. There are two major techniques to achieve MTL. The first 
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and most common is called hard parameter sharing. This technique shares hidden layers between all 

tasks while keeping task-specific output layers. 

 

Figure 2 - Visual representation of hard parameter sharing. Taken from (Ruder, 2017) 

 

The other major approach is called soft parameter sharing, each task has a separated model with its 

own weights and biases, these parameters are then regularized across the models in order to become 

similar and represent multiple tasks. 

 

Figure 3 - Visual Representation of soft parameter sharing. Taken from (Ruder, 2017)  

 TRANSFER LEARNING 

Transfer Learning is a method used in machine learning that consists in using a model that was pre-

trained on a larger dataset, this allows the model to learn generic features, the model is then fine-

tuned to perform on a smaller, domain-specific dataset on the desired task. This method allows for 

better predictive performance and faster training times. 
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3 RELATED WORK 

In this chapter, we start by presenting different approaches that were previously used by some authors 

to tackle email classification tasks. As research in NLP continues to grow new models have appeared 

that are capable of achieving better results in a varied set of tasks, however to the best of our 

knowledge some of them are yet to be properly explored in email classification tasks, that is the case 

of RCNN, TextRNN, BERT, BERT Multilingual, RoBERTa, and XLM-R that are formally explained in this 

chapter. 

 EMAIL CLASSIFICATION  

Email classification consists of classifying an email under one or multiple pre-defined categories, 

machine learning provides an efficient and automated solution to achieve this goal. Literature shows 

numerous ways to achieve automatic email classification, (Rennie, 2000) proposes a system bases on 

Naive Bayes or NB algorithm that suggests the three most suited folders for an incoming Email with an 

accuracy of 85%. 

(Kiritchenko & Matwin, 2001) the authors compare support vector machines or SVM and NB on an 

email classification task, showing that SVM performs better than Naive Bayes.(Gent, 2007) the authors 

propose an automatic email classification system that discriminates customer's complains from non-

complains using the Adaboost algorithm, the authors show that adding linguistic style features to the 

set of predictors increases the predictive performance of the algorithm.  

(Yang & Linchi Kwok, 2012) Put K-means++, NB and K-nearest neighbors or KNN to test on an email 

classification task, the email corpus consisted of 3015 manually classified entries labeled according to 

200 classes, of the three algorithms tested K-means++ showed the best performance by classifying the 

1611 emails of the test set with an accuracy of 96%. 

(Bonatti et al., 2016) with the objective of classifying a private email corpus of 11410 emails in 120 

classes the authors test SVMs and NB algorithms alongside pre-processing techniques like part-of-

speech (POS) and lemmatization. The authors show that for their case lemmatization caused the 

algorithms to perform worse, however, a POS filter that keeps verbs, nouns, adjectives, and adverbs 

improved the classification performance. The authors show that SVMs achieved the best performance 

with a precision of 87%. 

 (Borg, 2017) uses LSTMs to classify an email corpus of 33 topics the author experiments with various 

word representation methods such as Skipgram, Skipgram N-gram, Continues Bag of words, and global 

vectors of word representation or GloVe, the LSTM model is put to test using different network sizes 

and compared against non-sequential models like Support Vector Machine or SVM and Naive Bayes. 

The author concludes that LSTM achieves higher performance when compared with the non-

sequential models although it requires more data and training time.  
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 RECURRENT CONVOLUTIONAL NEURAL NETWORKS 

(Lai et al., 2015) proposes a model that uses a bi-directional recurrent neural network to capture the 

contexts in order to obtain word meaning. 

𝑐𝑙(𝑤𝑖) = 𝑓(𝑊(𝑙)𝑐𝑙(𝑤𝑖−1) + 𝑊(𝑠𝑙)𝑒(𝑤𝑖−1)) 

𝑐𝑟(𝑤𝑖) = 𝑓(𝑊(𝑟)𝑐𝑟(𝑤𝑖−1) + 𝑊(𝑠𝑟)𝑒(𝑤𝑖+1)) 

The first equation 𝑐𝑙(𝑤𝑖) is defined as the left context of the word 𝑤𝑖 where 𝑒(𝑤𝑖−1) represents the 

word embedding of the word (𝑤𝑖−1). 𝑊(𝑙) is a matrix that transforms the hidden layer in the next 

hidden layer. 𝑊(𝑠𝑙) is the matrix that combines the semantic of the current word with the next word’s 

left context. 𝑓 is a non-linear activation function. 

The second equation 𝑐𝑟(𝑤𝑖)  is defined as the right context of the word  𝑤𝑖 and is calculated in the 

same manner as the first equation. 

𝑐𝑖(𝑤𝑖) and 𝑐𝑟(𝑤𝑖) are dense vectors with |𝑐|real value elements and both 𝑒(𝑤𝑖−1) and 𝑒(𝑤𝑖+1) are 

both dense vectors with |𝑒| real values. 

 

Figure 4 - Image representation of the RCNN layers. Taken from(Lai et al., 2015) 

 

The third equation concatenates the left-side context with the embedding and the right-side context, 

this structure helps the model to disambiguate the meaning of the word 𝑤𝑖. 𝑐𝑟 is obtained through a 

forward scan of the text while 𝑐𝑟 is obtained through a backward scan.  

𝑥𝑖 = [𝑐𝑖(𝑤𝑖); 𝑒(𝑤𝑖); 𝑐𝑟(𝑤𝑖)] 

A linear transformation is applied to 𝑥𝑖 together with a 𝑡𝑎𝑛ℎ activation function and the results are 

sent to the next layer as shown in the equation above. 𝑦𝑖
(2)

is a latent semantic vector used to 

determine the most useful factor to represent the text. 
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𝑦𝑖
(2)

= tanh (𝑊(2)𝑥𝑖 + 𝑏(2)) 

In order to convert the text into a fixed length vector a max-pooling layer is utilized and represented 

on the equation above has 𝑦(3).  

𝑦(4) = 𝑊(4)𝑦(3) + 𝑏(4) 

In order to obtain the final probabilities, the softmax function is applied to 𝑦(4). 

 

 RECURRENT NEURAL NETWORK FOR TEXT CLASSIFICATION WITH MULTI-TASK LEARNING 

In the section 2.4, we saw that multi-task learning can be used to further improve model performance, 

(P. Liu et al., 2016) proposes three different models of sharing information using recurrent neural 

networks. 

In the first proposed model, uniform-layer architecture the multiple tasks share the same LSTM layer 

and embedding layer besides their own. For a given task 𝑚 the input 𝑥𝑡
(𝑚)

 consists of two embeddings 

a task-specific 𝑥𝑡
(𝑚)

 and a shared word embedding 𝑥𝑡
(𝑠)

 concatenated  

𝑥𝑡
(𝑚)

=  𝑥𝑡
(𝑚) ⊕ 𝑥𝑡

(𝑠)
  

The LSTM layer is shared for all tasks 𝑥𝑡, the final representation for a task 𝑚 is the output of the LSTM 

at step 𝑡. 

ℎ𝑇
(𝑚)

=  𝐿𝑆𝑇𝑀(𝑥(𝑚)) 

 

Figure 5 – Visual representation of the uniform-layer architecture. Taken from (P. Liu et al., 2016) 

The second proposed model assigns an LSTM layer for each task that can share and retrieve 

information from the LSTM layers of the remaining tasks. Each pair of tasks (𝑚, 𝑛) has its specific LSTM, 

at step t the output of two combined LSTM layers is ℎ(𝑡)
(𝑚)

and ℎ(𝑡)
(𝑛)

.  

To better control the information between tasks a global gating unit is implemented this gives the 

model the ability to decide how much information is accepted similar to the traditional LSTM model. 

Where g(𝑖→𝑚)  =  σ(𝑊 (𝑔)
(𝑚)

 𝑥𝑡 + ℎ (𝑔)
(𝑖)

 ℎ (𝑡−1)
(𝑖)

) 
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Figure 6 - Visual representation of the coupled layer architecture. Taken from (P. Liu et al., 2016) 

The third and final model like the second model has an LSTM layer for each task on top of this the 

architecture introduces a bidirectional LSTM layer to share information through all tasks. 

We denote the outputs of the forward and backward LSTMs at step 𝑡 as 
ℎ
→

(𝑡)

(𝑠)and 
ℎ
←

(𝑡)

(𝑠) respectively. 

The output of the shared layer is ℎ𝑠
(𝑡)

 = 
ℎ
→

(𝑡)

(𝑠)  
ℎ
←

(𝑡)

(𝑠) . 

 

Figure 7 – Visual Representation of the Shared-layer Architecture. Taken from (Vaswani et al., 2017) 

To improve the interaction between the task-specific layers and the shared layer this architecture also 

uses a gating mechanism to give the task-specific layer the ability to accept or refuse information from 

the shared layer.  
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 BERT TRANSFORMER 

Bidirectional Encoder Representation from Transformers or BERT proposed by (Devlin et al., 2019) is a 

transformer architecture designed to pre-train representations of unlabelled text.  

The base model consists of 12 layers with hidden size of 768, 12 attention heads with a total of 340M 

parameters.  

BERT model is pre-trained on BoooksCorpus that consists of 800M words and English Wikipedia Aricles 

(2,500M Words). 

It is capable of handling various downstream tasks; to do so BERT makes use of an Input/Output 

representations that consists of a sequence of tokens, this sequences can be a sentence or a pair of 

sentences, the first token is the [CLS] that can be used for classification tasks since it is pre-trained to 

represent the entire sentencer. In order to discriminate pairs of sentences, a special token [SEP] is 

used. Each token is then represented using WordPiece Embeddings. BERT uses two more embeddings 

in order to represent the tokens, Segment embeddings that identify which sentence the token belongs 

to, and a Positional Embedding that identifies the position of the token in the inputted sequence. 

For each token, the sum of the corresponding word embedding with the segment embedding and the 

positional embedding gives the representation of that token. 

BERT is pre-trained on two different tasks, Mask language Modeling and Next sentence prediction. 

3.4.1 Masked Language Modeling 

MLM (Masked Language Modeling) this task aims to achieve contextualized embeddings. MLM 

consists of randomly masking a percentage(15%) of the inputted tokens and using the last hidden state 

of the model to predict the masked token, since the model makes use of the non-masked tokens in 

the sentence in order to make the prediction this enables BERT to learn bidirectional representations. 

Masked tokens only appear in the pre-training phase of BERT in order to mitigate this difference in the 

pre-training and fine-tuning BERT MLM is trained with the following strategy; 80% of the time the 

words are masked using the mask token [MASK], 10% of the time the token is replaced with a random 

word the other 10% of the time the word is not replaced at all. The prediction are made by feeding the 

masked tokens representation into a softmax function, the loss function used is cross-entropy. 

(Wiedemann et al., 2019) proves that this approach can achieve the goal of contextualized 

embeddings. By simply clustering the BERT embeddings of a word in multiple contexts  
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Figure 8 - Visualization of the clusters formed by the embeddings of the word Bank in different 
contexts. Taken from (Mickus et al., 2019)  

We can clearly visualize different clusters that the embeddings form depending on the word context. 

 

 

3.4.2 Next sentence prediction 

The second task used to pre-train BERT is called next sentence prediction, this task allows the model 

to understand sentence relationships. Next sentence prediction is very similar to binary classification 

since it consists in training the model to predict if a give sentence A precedes a sentence B, in this 

specific application 50% of sentences are the following and they are labeled with (IsNext) the other 

50% are random sentences and are labeled with (NotNext). 

(Chan et al., n.d.) Finds that this task can negatively affect BERT embeddings. Next sentence prediction 

requires the tokens to be identified with a segment embedding as explained in section 3.4.1, this 

causes words with the same context being represented with different embeddings. 

 

Figure 9 – Simplified example of how segment embeddings influence the final embeddings 
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In the example above the word, bank is used in the same context however because they are in a 

different pair due to the segment embedding the final embedding of the word diverges introducing 

noise in the contextualization of the word. 

3.4.3 German BERT 

German BERT is a model proposed by (Y. Liu et al., 2019) this model has the same architecture and 

training tasks as vanilla BERT. As the name indicates German BERT is a transformer model trained on 

Deutsch datasets like German Wikipedia OpenLegalData Dump and German news articles. 

 ROBERTA 

RoBERTa or Robustly optimized BERT is a transformer model proposed by (Martin et al., 2019) RoBERTa 

is based of BERT architecture, the model archives state of art results on GLUE, RACE and SQuAD tasks. 

RoBERTa researchers found that BERT is undertrained and proposes an improved method to train BERT 

model. These changes to the training method include training more epochs with bigger batches and 

bigger Datasets, training on longer sequences of sentences, removing the next sentence prediction 

task that has shown in section 3.4.2, can degrade the quality of the contextualized embeddings. The 

masked language modeling task was also changed, instead of masking the words during the pre-

process phase (static masking) the masks are generated dynamically every time a sequence is fed to 

the model, this way the model sees different masks over the various training epochs. 

3.5.1 CamemBERT 

CamemBERT is a model proposed by (Lample & Conneau, 2019) is a transformer model trained on 

French web crawled data, this model is based on RoBERTa architecture and training tasks 

 BERT MULTILINGUAL 

BERT multilingual or MBert was released by (Devlin et al., 2019) this model has the same architecture 

as the original BERT, instead of being pre-trained only using English corpora, multilingual Bert is pre-

trained on monolingual corpora of 104 languages from Wikipedia pages. Even though this model is 

capable of multilingual representation has (Pires et al., 2020) explains MBert does not incorporate any 

explicit multilingual training objective this hinders the performance of the model especially across 

languages that use different scripts, despite that the authors debate that the MBert capability to 

generalize across languages comes from the word piece tokenizer that causes words with similar 

meaning in different languages to be mapped to the same shared space. 

XLM is a cross-lingual model proposed by (Conneau et al., 2019) the architecture of this transformer is 

the same as BERT, the differences are in the tokenizer, pre-training strategies and corpora used. 

The XLM model is trained in a MLM task similar to BERT however instead of using pairs of sentences 

for pre-training has described in BERT section, XLM uses text streams of an arbitrary number of 

sentences, this eliminates the need of segment embeddings, language embeddings that identify the 

text stream language are used instead, furthermore to compensate for the imbalance between low-

resource languages and high-resource languages most frequent tokens are subsampled.  

There is an alternative training task for XLM called Translation Language Modelling this task is an 

extension of MLM, instead of using monolingual text steam, TLM uses pairs of sentences A and B, 



 

16 
 

sentence B being the translation of sentence A. This encourages cross-lingual embedding alignment 

since in order to predict the masked token the model attends to both languages.  

This model makes use of a shared vocabulary across all languages created by using BPE (byte pair 

encoding). This method improves embedding alignment across all languages that share the same 

vocabulary or digits  

 XLM-R 

XLM-R is a model proposed by (L. Liu et al., 2019), it is pre-trained on 100 different languages of 

CommonCrawl data since this corpus contains more data for low-resource languages, this allows the 

model to learn overall better representations for these languages. 

XLM-R is trained using a dynamic MLM task very similar to the one explained on the XLM section 

without making use of language embeddings, this allows XLM-R to have a better performance when it 

comes to code-switching. 
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4 METHODOLOGY 

In this chapter, we present the methodology used to tackle the multi language classification problem. 

We start by collecting data relevant to the task, the dataset used throughout the experiments was 

provided by Clevery in sections 4.1 we present the corpora used as well as the method used to 

augment it.  

The dataset is pre-processed by replacing names, emails, and URLs with specific tokens. Different 

methods of tokenization are used, for TextRNN and RCNN models we use the tokenizer provided by 

the NLTK library for the remaining models we use the specific tokenizers described in the previous 

chapter.  

Various methods of encoding are tested, for the textRNN and RCNN  models we start with randomly 

initialized embedding, this is before the model starts training the embedding for each word is randomly 

initialized and trained along with the classifier. According to  (Kocmi & Bojar, 2017) pre-trained 

embedding can boost the model’s performance, Inspired by the author we also train Word2Vec 

Embedding described in section 2.3 using the gensim library on the English train Dataset. 

Various machine learning models are tested for this task, TextRNN and RCNN are implemented using 

the Neural Classifier framework presented in section 4.2, RoBERTa, CamemBERT, BERT, GermanBERT, 

BERT Multilingual, and XLM-R are implemented using the transformers library described in section 4.3, 

all the implemented models are formally explained in chapter 3. 

Hyperparameters play a crucial role in the training and fine-tuning of a given model having a high 

impact on the final performance. These are sets of variables that determine the neural network 

structure and how it’s trained, they are usually fixed and unchangeable during the training phase, 

unlike parameters, hyper-parameters cannot be learned from data. The best value for each 

hyperparameter entirely depends on the problem we are trying to solve and the model we are working 

with. Hyperparameter tuning is performed against a metric, this helps us to understand which set of 

hyperparameters works best for the task that we are trying to achieve. There are various ways to do 

hyperparameter tuning; Grid search where a model is built for every combination of pre-specified 

hyperparameters, Randomized search where the hyperparameters are randomized 𝑁 times, 𝑁 being 

a number arbitrarily set, and a model is built for each random combination, for this dissertation, we 

will perform hyperparameter tuning manually, this way we can better understand the effect of each 

hyperparameter on the final model and adjust it in to achieve the best performance possible. The 

evaluation metrics used to access the model performance are presented in section 4.5 

       

Data Colection
Pre 

Procesing
Encodings Modelation

Peformance 
Evaluation

Figure 10 – Methodology order 
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 CORPORA USED 

The corpora used consists of 5926 in-house customer support emails with the average of 250 tokens 

written in English, 2990 emails written in Deutch, both annotated, and 66 912 non-annotated English 

written emails. Both the annotated English dataset and the Deutsch dataset were previously cleaned, 

removing names, replacing emails, URLs with specific tokens. The annotated datasets were previously 

partitioned in train and validation sets. In order to create additional datasets in multiple languages, we 

used marianMT transformer to translate the original English dataset into French and Spanish. The 

original English dataset was also augmented by translating the original Deutsch dataset to English, all 

the validation sets for the non-English languages are translations of the English validations dataset. 

After the machine translation step, we ended up with 8318 English Emails, 5338 Spanish Emails, 5338 

French Emails, and 3508 Deutsch emails. 

 

 

Figure 11 – Number of samples on each dataset  
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 NEURAL CLASSIFIERS 

We start by testing the models with the best performance according to NeuralClassifier toolkit (L. Liu 

et al., 2019), Neural Classifier is an open-source text classification toolkit designed to solve hierarchical 

and multi-label problems using a modular framework. 

 

Figure 12 – NeuralNetwork toolkit framework. Taken from (Devlin et al., 2019) 

The toolkit uses a four layer architecture that can be configured via JSON file. The JSON configuration 

file acts as a user interface and is separated into four parts;  

Common Settings where the classification task can be specified whether if its single-label classification, 

multi-label classification, hierarchical or flat. 

Input settings provide control over input data such has max sequence length, dictionary size, and pre-

trained embeddings. 

Training settings include features like batch size, type of loss function, optimizer, learning rate number 

of epochs, and CPU or GPU training. 

 Network structure settings is used to specify the pretended text encoder, for each text encoder the 

corresponding hyperparameters can be tuned here. 
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 TRANSFORMERS LIBRARY 

The Transformers library is a large open-source community supported by Hugging Face company (Wolf 

et al., 2019). This library largely developed in python provides an API to use various state of the art 

pre-trained models. The main focus is to provide easy and compressible access to pre-trained 

transformers models for researchers and companies as well as pushing good implementation 

practices. The library uses three main classes. The configuration class defines the architecture 

optimization of the model, the tokenizer class provides the tokenizer used in each model as well as 

configurations that can be modified by the user, the model class provides the model logic.  

 HYPERPARAMETERS 

4.4.1 Batch size and Epochs. 

The batch size defines the number of training data samples that will pass through the network and is 

highly limited to the amount of RAM available in the machine when a CPU is used for training, if a GPU 

is used for training the batch size will be limited by the amount of VRAM available in the GPU. Epochs 

are the number of times the entire dataset will pass through the model, the number of steps an epoch 

needs to perform to be considered complete is formally explained by the following formula 

𝑆𝑡𝑒𝑝𝑠 =
𝑡𝑟𝑎𝑖𝑛 𝑠𝑖𝑧𝑒

𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒
 

 

4.4.2 Learning Rate 

The Learning rate is a hyperparameter that affects how much the model’s weights are adjusted during 

the training phase, the learning rate value can dramatically change the model performance and the 

optimal value can differ a lot depending on the model architecture. By default, low learning rates are 

better at finding local minima but can lead to massive increases in training time or in some cases 

completely stall the model of any progress. However, high learning rates can make the model unstable 

and prevent it from converging. 

Learning rates can be adjusted while the model is training by setting up a scheduler that makes the 

learning rate decay accordingly to a linear, exponential, or cosine function 
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4.4.3 Dropout 

Dropout is a regularization technique used to avoid overfitting, therefore improving the generalization 

capacity of the NN. It consists of ignoring a certain set of neurons during the training phase excluding 

them from being considered during the forward and backward pass phases. 

 

Figure 13- Visual representation of a NN without using dropout (a) and using dropout (b). Taken from 
(Galeone, 2017) 

4.4.4 Activation function  

 The activation functions are equations that are bound to each neuron of the NN, they determine if a 

specific neuron is relevant to the prediction and normalize the output of each neuron to a range 

between 1 and 0 or -1 and 1 depending on the function used. The activation function can greatly impact 

not only the quality of the predictions but also the training time of the model. 

Sigmoid Function – Commonly used in classification, transforms values into probabilities making the 

output values range between 1 and 0, formally explained in the equation below. 

𝑦 =
1

1 + 𝑒−𝑥
 

 

Figure 14 - Sigmoid function plot 
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Tanh Function – Also referred to as the hyperbolic tangent makes the normalizes the values to range 

between 1 and -1, formally explained in the equation below 

𝑦 =
2

1 + 𝑒−2𝑥
− 1 

 

Figure 15 - Tanh function plot 

Rectified Linear Unit function – Or simply abbreviated to RELU is the most commonly used function in 

deep learning due to the ability to solve the vanishing gradient problem (gradient decreasing 

exponentially halting the train of the model). In this function, negative input values are set to 0, positive 

input values are mapped to it’s owned value, formally explained in the equation below 

𝑦 = max (0, 𝑥) 

 

Figure 16 - RELU function plot 

 EVALUATION METRICS  

Evaluation metrics are used to determine how well a given model is performing and allows us to have 

feedback on the changes we do to hyperparameters. The choice of the metric is a crucial part of 

building a classifier and one that is entirely dependent on the goal we want to achieve. 

Accuracy metric is the ratio between the number of correctly predicted labels related to the total of 

input samples. This metric works well only if there is an equal number of samples in each class. Let us 

take a binary classification example. If a given dataset is composed of 90 samples of a class X and 10 

samples of a call Z, we can easily achieve 90% accuracy by simply labeling all the samples with class X 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
tp + tn

tp + fn + fp + tn
 

In the case of multi-classification, we can only calculate the Average Accuracy which gives us the 

average per-class effectiveness of a classifier, formally explained by the following equation 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑𝑙

𝑖=1
tp𝑖 + tn𝑖

tp𝑖 + fn𝑖 + fp𝑖 + tn𝑖

𝑙
 

 

Precision metric tells us, of all the predicted labels for a given class, the ratio of those entries that were 

correctly predicted, in the binary classification case precision can be explained by the following 

equation  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
tp

tp + fp
 

Recall metric tells us, for all entries that should have been classified with a given class, the ratio that 

was correctly classified. For the binary classification, case recall is defined as follows 

𝑅𝑒𝑐𝑎𝑙𝑙 =
tp

tp + fn
 

In the case of multi-classification problem, just like precision, recall calculated differently and for the 

purpose, we will use weighted recall, formally explained in the equation bellow 

F1-Score Is the harmonic mean of precision and recall, F1-score is often used to seek a balance 

between precision and recall, in binary classification F1-Score is defined as follows  

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
1

1
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +

1
𝑟𝑒𝑐𝑎𝑙𝑙

 

 

In a multi-classification problem, precision recall and f1-score are calculated differently, for the 

purpose of this thesis we will use the weighted variation of all the metrics, that are formally explained 

in the equation below.  

1

∑ |𝑦̂𝑙|𝑙∈𝐿
∑ |𝑦𝑙̂|𝜑

𝑙∈𝐿
(𝑦̂ , 𝑦̂𝑙) 

Where 𝑙 is a set of labels, 𝑦̂ a ground truth label, 𝑦 a predicted label, 𝑦̂𝑙  is all the ground truth labels 

that have the label 𝑙, |𝑦̂𝑙| the number of ground truth labels that have the label 𝑙, 𝜑(𝑦̂ , 𝑦̂𝑙) computes 

the precision, recall, and f1-score for the ground truth and predicted labels that have the label 𝑙. 
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 To calculate precision let 𝜑(𝐴, 𝐵) =  
|𝐴∩𝐵|

|𝐴|
 , to calculate recall let 𝜑(𝐴, 𝐵) =  

|𝐴∩𝐵|

|𝐵|
, and to calculate 

f1-score let 𝜑(𝐴, 𝐵): = (1 + 𝛽2)
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐴,𝐵)∗𝑅𝑒𝑐𝑎𝑙𝑙(𝐴,𝐵)|

𝛽2𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐴,𝐵)+𝑅𝑒𝑐𝑎𝑙𝑙(𝐴,𝐵)
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5 EXPERIMENTS 

In this chapter, we present the experiments conducted throughout this dissertation as well as the 

results obtained. In section 5.9 we discuss the obtained results and some of the limitations met. 

 TRAINING TEXTRNN 

We train a TextRNN explained in section 3.3 using the original English Dataset described in section 4.1 

Inspired by (Goodfellow et al., 2016) we start with a high learning rate of 0.1 and then try with 

exponentially lower values, similar to a log scale from 0.1 to 1e-5 after we found the value that yields 

good results we further test with smaller increases until we reach an optimal value, in this case, we 

found the optimal value for the learning rate at 1e-2. To further improve the model, we initialize the 

word embeddings with the pre-trained word2vec embeddings. Since we are no longer initializing the 

embeddings randomly, freezing the embedding layer on the first epochs of the training phase can often 

prove beneficial, not doing so can cause the quality of the embeddings to decay. 

Model Precision Macro F-score 

TextRNN 68% 59% 

TextRNN + w2v Embbedings 71% 66% 

TextRNN + w2v Embbedings + Freeze 72% 64% 

Table 1 – Weighted Precision and Macro F-score for TextRNN, TextRNN + w2v embeddings and 
TextRNN + w2v Embbedings embedding freeze 

by comparing the models, we can clearly see a boost in the model performance when the pre-trained 

embeddings are introduced.  
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 RCNN 

The implementation of the RCNN explained in section 3.2 is made using the NeuralClassifier Toolkit 

described in section 4.2. RCNN training is made on the same dataset as the previous model, using the 

same strategy to find the optimal learning rate. The toolkit provides interface to edit 7 settings for 

the RCNN, RNN type, hidden dimensions size, number of layers and bidirectionality were explained in 

the previous chapter, kernel sizes, max pooling, num kernals. 

Model Precision Macro F-score 

TextRCNN 69% 65% 

TextRCNN + w2v Embbedings 72% 65% 

TextRCNN + w2v Embbedings + 

Freeze 

73% 69% 

Table 2 - Wheighted Precision and Macro F-score for TextRCNN, TextRCNN + w2v embbedings and 
TextRCNN + w2v Embbedings embbeding freeze 

 

 FINE-TUNING BERT 

We start by fine-tuning the BERT-base model previously explained in section 3.4. on the original 

dataset described in section 4.1. With the recommended learning rate between 2e-5 and 5e-5 in 

mind (Devlin et al., 2019) the objective of the first test is to find the best learning rate for this 

classification problem. Four tests were ran using learning rate of 2e-5, 3e-5, 4e-5 and 5e-5. 

  

Learning Rate Precision Macro F-score 

5e-5 75% 64% 

4e-5 74% 60% 

3e-5 72% 60% 

2e-5 67% 50% 

Table 3 – Bert weighted precision and macro F-Score variation across various learning rates 

With this experiment, we conclude that higher learning rates work better to fine-tune the BERT base 

model to our specific domain. This conclusion contradicts the results from (Sun et al., 2019), where 
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BERT-base model would incur in a catastrophic forgetting problem, this is, a higher learning rate 

would make the model erase knowledge acquired in the pre-training phase, however, the authors 

used a much larger dataset that can intensify this unintended behavior.  

As we augmented the original English dataset with translated text from the Dutch dataset, it was 

important to test if Bert would benefit from more data in the fine-tuning phase. In order to validate 

this premise, we fine-tune Bert using the same hyper-parameters from above with learning rate of 

5e-5 variating the amount of data in the train set, since we are adding data to the train set in order to 

not incur in under fit problem the training epochs are set to 20. We ran 4 tests each test adds 450 

random entries to the English train Dataset. 

 

 

Figure 17 - Variation of Weighted precision and Macro F-score with Training Size  

 

With this test we can conclude that although adding more data seems to slightly improve the 

classifier performance when compared to the first test, further adding data to the fine-tuning can 

make the performance decay. Further hyper-parameter tuning was performed but the results always 

led to the same conclusion, do to this problem we decided to move away from BERT. 

 FINE-TUNING ROBERTA 

With the goal of improving the performance of the monolingual classifier we decided to test 

RoBERTa model, as explained in section 3.5, this model has better benchmark performance than 

BERT due to the larger amount of data used in the pre-training and the modification made to the pre-

training tasks. We fine-tune RoBERTa base model on the augmented English train dataset. The 

objective is to assess if Roberta is capable of taking advantage of a larger dataset.  
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Model Precision Macro F-score 

RoBERTa 86% 67% 

BERT 76% 68% 

Table 4- Bert and Roberta weighted precision and Macro F-Score 

 

With this test we conclude that RoBERTa has much better performance than the previously tested 

model, making a better baseline for the final multilingual model.  

To assure that we get the best results possible for the baseline further pre-training is applied to the 

model. As explained in section 3.5, Roberta is pre-trained in a general domain corpus, the data 

distribution of this corpus may differ from our domain-specific corpus. Inspired by (Sun et al., 2019) 

we further pre-train RoBERTa using masked language modeling tasks, the best epoch is chosen based 

on loss.  

To achieve the In-domain pre-training previously explained, we start by running a masked language 

modeling task on a non-finetuned RoBERTa model using the train split of the augmented English 

dataset. After the task is complete we fine-tune RoBERTa with the same hyper-parameters used in 

the previous test. 

Model Precision Macro F-score 

RoBERTa 86% 67% 

In-domain pre-trained RoBERTa 88% 71% 

In-domain pre-trained RoBERTa 

(non-annotated English Dataset) 

88% 72% 

Table 5 - RoBERTa weighted precision and Macro F-Score with and without In-domain pre-training  

As described in the table 5 the pre-training strategy results in a performance increase of 2% in 

precision and 4% in Macro F-Score. To further improve the performance, we try to the same strategy 

using the non-annotated English Dataset described in section 4.1 although we can improve the 

classifier by 1% in Macro F-Score the fine-tuning takes more time to converge. 

 FINE TUNING MULTI-LINGUAL BERT 

Multi-Lingual Bert is our first attempt to train a multilingual classifier, taking a zero-shot approach for 

the first test, we fine-tune multi-lingual Bert on the English augmented Dataset and evaluate on the 

English, Deutsch, French, and Spanish evaluation set to see how well the model generalizes across 

languages. On the second test, we concatenate all the training datasets and train them together 
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evaluating with the same method. On both tests, we chose the model that has better performance 

across the various languages.  

Model EN DE FR  ES 

MBert Zero-Shot 72% 56% 46% 42% 

Mbert 78% 74% 74% 75% 

Table 6 – Comparison of MBert weighted precision on English, Deutch, French and Spanish test sets, 
using zero-shot approach and training on all languages  

 XLM, CAMEMBERT AND GERMANBERT 

We fine-tune XLM by trining in on the concatenation of the English training set and Deutsch training 

set. We also experiment with CamemBERT and GermanBERT by training in on the French training set 

and Deutsch training set. We decided to not further explore these models since they produce worse 

results when compared with the previous models. 

Model EN DE  FR 

CamemBERT - - 70% 

German BERT - 69% - 

XLM 74% 65% - 

Table 7 – CamemBERT, German BERT, and XLM weighted precision 
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 FINE TUNING  XLM- ROBERTA 

We fine-tune XLM- RoBERTa using three different strategies. In the first strategy, we only use 

monolingual training sets for each language, resulting in a different fine-tuned model for each 

language. The second strategy uses the concatenation of all monolingual language sets in a single 

multilingual training set. In the third strategy, we use the concatenated set to pre-train and then fine-

tune the model. The in-domain pre-training is done as described in section 5.4. 

Model EN DE FR  ES 

XLM-R English 78% - - - 

XLM-R Deutsch - 75% - - 

XLM-R French - - 75% - 

XLM-R Spanish - - - 75% 

XLM-R All Languages 82% 78% 80% 80% 

XLM-R Zero-Shot 78% 67% 68% 71% 

In-domain pre-trained 

XLM-R 

84% 82% 82% 82% 

Table 8 – Comparison of XLM-R weighted precision trained on mono language and multi-language 
training sets, zero-shot and in-domain pre-training 
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  TIME PERFORMANCE 

Training NLP models can come with a hefty time cost that can translate into monetary costs, not 

having the right hardware to train more complex models like transformers can halt the process of 

hyperparameter tuning or make the training of the model impossible do to memory problems, 

therefore, it’s important to take in consideration the hardware available when selecting a model to 

train. The time a given model takes to classify unseen data can also be important, especially if real-

time results are needed. Has described in the table 8 the increase in classification performance that 

transformers provide come at cost of training times and classification times.  

Model Train time 1000 steps Time for 

Classificating 1 

label 

TextRCNN 2min 12sec 7e-5 secs 

RNN 1min 48sec 6e-5 secs 

BERT 14 min 0,2 sec 

RoBERTa 14min 0,2 sec 

CameBERT 14mins 0,2 sec 

German Bert 14mins 0,2 sec 

XLM 19 mins 0,2 sec 

XLM-R 15 Mins 0,3 Secs 

Table 9 – Comparasion of training times and classification of one email for each tested model ran on 
Tesla K80 

All the tests carried trought this dissertation were realized using a machine running ubuntu with a Tesla 

K80 GPU, 64GiB RAM, and 250 terabytes of disk memory, costume code was executed on jupyter lab. 

 

 

 

 



 

32 
 

 DISCUSSION AND LIMITATIONS 

Our results suggest that XLM- RoBERTa combined with in domain pre-training is the best approach 

for our domain-specific case, fine-tuning the model with a training set where all the target languages 

are represented, has proven to be the best approach to achieve a multi-language classifier that has 

uniform results across all the evaluated languages. However, in the English case, XLM- RoBERTa was 

never able to outperform monolingual transformers like RoBERTa and BERT, achieving only better 

results than non-transformer models like RCNN and TextRNN. The zero-shot approach has proven to 

be less precise however it eliminates the need to perform machine translation which is a resource-

intensive step and can be unreliable for larger datasets. 

When it comes to English only classifiers, Roberta combined with in-domain pre-training achieves the 

best results, our experiments suggest that using machine translation to augment the training dataset 

allows for better performance.TextRNN and RNN cannot keep up with the transformer’s 

classification performance. however, these models are far simpler to train and less resource-

intensive making them a good option if the hardware is a limitation. 

While our approach is capable of outputting performing classifiers both for English only and multi-

language, hardware limitations prevent us to test on larger transformers such has Roberta-Large, 

Bert-Large and XLM-Roberta-Large, the literature suggests that these models can outperform the 

models that we use. 

Machine-translation is used to generate multi-language to compensate for the lack of human-

generated entries, however, this translation can be inaccurate and can affect the fine-tune and 

evaluation of the models.   
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6 CONCLUSIONS 

Has shown in section 5.9 the goal of training a multi-language classifier capable of classifying 

customer support emails has been successfully achieved, throughout the dissertation we were also 

able to answer the following initial questions.  

• How well can transformers perform on customer support data classification?  

From our experiments throughout this thesis, we can conclude that transformer architecture performs 

exceptionally well for monolingual and multi-lingual classifications although difficult to train from 

scratch do to the amount of data and computational resources needed, transfer learning allows us to 

achieve viable results by using pre-trained versions of the models. 

• What is the performance trade-off between monolingual and multi-lingual models?  

The use of various languages in the training set using a multi-lingual model helps to leverage the results 

across all languages achieving better results than training a monolingual classifier for each language, 

however, the multi-linguage models are more computational and time expensive to train. TextRNN 

and RCNN although less accurate than transformers are capable of outputting competent results for 

monolingual classification requiring less computational resources. For both models, pre-training 

embeddings seem to be a crucial step to achieve viable results.  

• Is it possible to build a performing multi-language classifier by training it on machine-

translated data?  

Machine-translation has proved viable to produce datasets of various languages but the quality of the 

translations can drastically affect the final performance of the classifier. 

 

7 FUTURE WORK 

Future work is aligned with the limitation described in the previous section, testing the “large” 

variant of the models used can improve the results of the final classifier. All the multi-language 

models should be fined-tuned and re-evaluated using human-generated data to have a better 

understanding if machine-translation is affecting the model performance. 

There are other variants of the models used that can be interesting to explore, DestilBERT and 

DestilRoBERTa are less resource-intensive variants that can retain almost 90% of the original 

performance of BERT and RoBERTa, this can lead to faster fine-tuning times and faster classifications. 
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