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Abstract

Machine Learning for AI-Augmented Design Space Exploration of Computer Systems

Jihye Kwon

Advanced and emerging computer systems, ranging from supercomputers to embedded

systems, feature high performance, energy efficiency, acceleration, and specialization. Design

of such systems involves ever-increasing circuit complexity and architectural diversity. Com-

mercial high-end processors, realized as very-large-scale integration circuits, have integrated

exponentially increasing number of transistors on a chip over many decades. Along with

the evolution of semiconductor manufacturing technology, another driving force behind the

progress of processors has been the development of computer-aided design (CAD) software

tools. Logic synthesis and physical design (LSPD) tool-chains allow designers to describe

the computer system at the register-transfer level of abstraction and automatically convert

the description into an integration circuit layout. The slowdown of technology scaling, on

the other hand, has motivated the emergence of dark silicon and heterogeneous architectures

with application-specific hardware accelerators. Design of various accelerators is facilitated

by high-level synthesis (HLS) tools that translate a behavioral description of a computer

system into a structural register-transfer level one. CAD approaches have evolved towards

raising the level of design abstraction and providing more options to optimize the architec-

ture.

For each system synthesized via advanced CAD tools, designers explore the design space

in search of optimal configurations of the tool options and architectural choices, also called

knobs. These knobs affect the execution of CAD algorithms and eventually impact the

multi-dimensional quality-of-result (QoR) of the final implementation. During design-space



exploration (DSE), designers leverage their experience and expertise pertaining to determin-

ing the relationship between knobs and QoR. To further reduce the number of time and

resource consuming CAD runs during DSE, a large number of heuristic and model-based

approaches have been proposed. More recently, the rise of machine learning (ML) and ar-

tificial intelligence (AI) has prompted the possibility of AI-augmented DSE which exploits

ML techniques to predict the knobs-QoR relationship. Yet, existing heuristic and ML-based

approaches still require a sufficient number of CAD runs for each system because they do

not accumulate and exploit experiential knowledge across the systems as designers would do.

To expand the potential of AI-augmented DSE and push the frontier forward, multiple

challenges arise due to the characteristics of CAD flows. 1) Whereas many ML applications

utilize data obtained from huge collections of users’ input and public databases for a single

problem, the QoR-prediction problem for each system suffers from limited availability of

data obtained from expensive CAD runs. Especially, an industrial LSPD tool-chain specifies

hundreds of separate knobs, resulting in an extreme curse of dimensionality. 2) Different

systems exhibit different knobs-QoR relationship. Hence, learning from previously explored

systems needs to be preceded by identifying distinct systems and relating them to one an-

other. Often, it is difficult to obtain an efficient representation of a system. 3) Designers

often apply different sets of knob configurations to different systems, which makes it harder

to learn from previous DSE results. Especially in HLS, the heterogeneity of various systems

leads to broad knob heterogeneity across them. To address these challenges and boost the

ML performance, I propose to flexibly connect the elements of the many QoR-prediction

problems with one another. My thesis is that the exploration of the design space of a

computer system can be effectively augmented by artificial intelligence via learning from the

experience with the design and optimization of other systems.

For LSPD of industrial high-performance processors, I propose a novel collaborative rec-

ommender system approach that learns hidden features from the interactions (CAD runs)

of many users (systems) and items (knob configurations). To cope with the curse of dimen-



sionality, the item features are decomposed into features of item attributes (knobs). The

combined model predicts QoR for each user-item pair. For HLS of application-specific ac-

celerators, I present a series of neural network models in the order of evolution towards the

proposed mixed-sharing transfer learning model. Transfer learning aims at leveraging knowl-

edge gained from previous problems; however, due to the system and knob heterogeneities,

the model needs to distinguish which piece of that knowledge should be transferred. The

proposed ML approaches aim to not only use experiential knowledge as designers do but also

to ultimately assist designers by providing alternative insights and suggesting optimization

possibilities for new systems. As an effort in this direction, I develop an AI-augmented DSE

tool that exploits the aforementioned models and generates recommended knob configura-

tions for new target systems. Through this research, I investigate the potential of next-level

AI-augmented DSE with the goal of promoting secure collaborative engineering in the CAD

community without the need of sharing confidential information and intellectual properties.
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Chapter 1: Introduction

Machine learning has achieved remarkable performance over the past decades in detect-

ing objects, recognizing patterns, extracting relations, and predicting results. These tasks

comprise the computational core of artificial intelligence (AI) applications and AI-augmented

systems in diverse areas including computer vision, natural language processing, autonomous

robots, and health care. Computer engineering, and especially, design of computer systems

are relatively new application areas of AI. Prior to the recent rise of AI, the design pro-

cess has been aided by computers that automatically transform an abstract description of a

system into a specific hardware description. Yet, it has been left to the design experts to ex-

plore the enormous design space by leveraging their knowledge and experience. This chapter

introduces the concept of AI-augmented design space exploration of computer systems and

the challenges of machine learning for such applications.

1.1 Design of Computer Systems

Computers perform computations. Machines operate automatically. Advances in com-

puting machinery has enabled humans to accomplish progressively more complex tasks in

such a way that humans make higher-level decisions while offloading repeated subtasks to

the specialized machines: the modern computer systems. Ranging from mighty supercom-

puters to ubiquitous embedded systems, computers have had and are having a tremendous

impact on human life and society. In order to take advantage of those machines, humans

first design and then build them.

‘Design’ can both refer to the product, as a noun, and to the process, as a verb [1].

Since this dissertation specifically addresses the design of computer systems, I will use the

1



term ‘design’ to refer to the process, while referring to the product as a ‘computer system’,

or briefly as a ‘system’. Matchett defines ‘design’ (from an engineer’s perspective) as the

process of ‘achieving the optimum solution to the sum of the true needs of a particular set

of circumstances’ [2]. To achieve the optimum solution, designers often engage in systematic

and chaotic thinking, employing both mechanical calculation and imaginative thought [1].

In the computer-aided design (CAD) methodology, designers may offload the systematic

thinking and mechanical calculation to computers. This way, designers can cope with the

excessively increasing complexity of the product and the design process, as well as exercising

their creativity to solve problems at a higher level.

Modern electronic computer systems execute software instructions with hardware circuits

such as central processing units (CPUs), graphical processing units (GPUs), tensor process-

ing units (TPUs), application-specific integrated circuits (ASICs), field-programmable gate

arrays (FPGAs), and other types of specialized processors or accelerators. The complexity

of integrated circuits has continued to increase at an exponential pace, actualizing the phe-

nomenon known as Moore’s law [3, 4]. The very large-scale integration (VLSI) circuits of the

1970s integrated tens of thousands of transistors; today’s system-on-chip (SoC) circuits host

multiple billions of transistors [5, 6, 7, 8]. This outstanding growth of computational capa-

bilities has been sustained in part by the progress in development of CAD software tools for

computer systems. The designer abstractly describes the target computer system in the form

of a specification of the system. Then, a CAD tool or a CAD flow (a chain of sequentially

executed CAD tools) performs refinement steps from the higher level down to the detailed

level of description to automatically generate an implementation of the input specification.

Hence, the CAD flow facilitates the design of extremely complex systems; moreover, it does

so by providing separation of concerns between the specification and the implementation.

Both in academia and in industry, CAD approaches (also frequently called ‘electronic

design automation (EDA)’ approaches in industry) have evolved towards raising the level of

abstraction. Advanced CAD flows typically include the steps of high-level synthesis (HLS),

2



High-level synthesis (HLS)Highgh-hhhhhhhhhh--level synthesis (HLS)

Physical implementation

Logic synthesis

Physical design (PD)

ASIC layout FPGA configuration

Logic synthesis (LS)

RTL description

(Verilog, VHDL)

Gate-level description

(Gate-level netlist)

High-level description

(C, C++, SystemC, OpenCL)

Figure 1.1: A typical computer-aided design (CAD) flow with high-level synthesis (HLS),
logic synthesis (LS), and physical design (PD). Each CAD tool or tool-chain (a rounded and
shaded box) transforms a higher-level specification into a lower-level implementation.

logic synthesis (LS), and physical design (PD), as shown in Fig. 1.1. An HLS tool trans-

forms a behavioral specification (in high-level languages such as C, C++, SystemC [9], and

OpenCL [10]) into a structural implementation, which describes the structures and opera-

tions of the specified system at register-transfer level (RTL) [11]. An LS tool translates an

RTL specification (in hardware description languages such as Verilog [12] and VHDL [13])

into a gate-level implementation, which is a network of logic gates implementing the spec-

ified logic and functionality [14]. Given a gate-level specification (in a gate-level netlist), a

PD tool or tool-chain performs placement and routing to generate a final implementation.

Placement determines the location of the logic gates, and routing interconnects those gates

with wires [15]. The final implementation will be a physical layout for an integrated circuit

3
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(CAD) toolAD) to

oror

CAD flow

Implementation
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Quality-of-result (QoR)

Configuration of

CAD parameters,

tool options,
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(a) A single CAD run with configurable CAD
parameters. Their configuration guides the
execution of CAD algorithms, which in turn
affects the quality-of-result (QoR).

CAD toolAD to

oror

CAD flow

Implementation

QoR

Specification

Different

configurations of

CAD parameters

Design objectives

Optimal implementation(s)

(b) Repeated CAD runs for a specification
and design objectives in the search of opti-
mal implementations. This process is called
design space exploration (DSE).

Figure 1.2: An advanced CAD process with configurable CAD parameters.

system, and it will be a configuration bitstream for an FPGA-based system.

Most stages in CAD require the solution of many intractable (NP-hard) problems at a

very large scale [16]. A single run of a CAD flow may take many hours to days, depending

on the complexity of the designed system. However, a designer’s task does not complete

with a single run. Let us recall the aforementioned definition of design: achieving the

‘optimum solution to the sum of the true needs of a particular set of circumstances’. For

CAD of a particular modern electronic computer system (whose behavior is well specified),

the needs are to maximize the system performance while minimizing various types of cost

associated with the production and operation of the system. The principal performance

(e.g., latency, throughput, accuracy) and cost (e.g., area occupation, power dissipation, wire

congestion) metrics are often inversely affected by design choices [17, 18]. For instance,

improving the performance by reducing the latency usually comes at the expensive cost of

larger occupation of silicon area or FPGA resources. Thus, it is infeasible for CAD tools to

automatically generate a final implementation that presents optimal values for all metrics of

interest. Instead, advanced CAD tools and flows provide a variety of CAD parameters that

4



QoR metric 1

QoR metric 2
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design space

Pareto-optimal

implementations

Minimize

(a) Multi-objective DSE to find many Pareto
optimal implementations.

QoR metric 1

QoR metric 2

A single optimal

implementation

constraint

(b) DSE with constraints to find a single op-
timal implementation.

Figure 1.3: Exploration of design spaces with multiple QoR metrics to minimize (or maxi-
mize).

affect the execution of the algorithms within the tools and, eventually, drastically impact the

resulting performance and cost, also called quality-of-result (QoR), as shown in Fig. 1.2 (a).

Hence, it is an essential role of designers to configure the CAD parameters in order to obtain

implementations with acceptable, desirable, or optimal QoR, as shown in Fig. 1.2 (b).

1.2 Design Space Exploration of Computer Systems

The process of searching for the optimal CAD parameter configurations for a computer

system is called design space exploration (DSE). Effects of CAD parameters on QoR vary

depending on the particular system being designed. Moreover, different metrics of QoR

require a careful balancing of the delicate trade-offs. Therefore, designers usually test nu-

merous configurations of different parameter values by repeatedly running the CAD tools

with each configuration in order to navigate the multi-objective design space where each

objective corresponds to maximizing or minimizing one QoR metric of interest. This process

of DSE forms an integral part of optimizing each system, and it consumes a considerable

amount of time along with computing and human resources, even with today’s state-of-the-

art industrial CAD flows.

Multi-objective DSE aims at minimizing or maximizing multiple, often conflicting, QoR

5



metrics of an implementation. Fig. 1.3 (a) illustrates a design space of a specification with

two QoR metrics to minimize. The black points represent distinct implementations of the

same specification. For simplicity, when the objective is to minimize all metrics, one im-

plementation is said to Pareto dominate another implementation if (1) the formal has QoR

values less than or equal to those of the latter in all metrics, and (2) the formal has a strictly

smaller QoR value than the latter for at least one metric. Among all implementations (in

consideration) of a specification, an implementation that is not Pareto-dominated by any

other is called Pareto optimal [19]. In Fig. 1.3 (a), the black points connected by the purple

dotted lines correspond to the Pareto optimal implementations. A goal of the DSE pro-

cess is to identify all CAD parameter configurations that lead the CAD tools to generate

the Pareto optimal implementations. This is mainly for reusing the specification in various

circumstances.

The intellectual property (IP) reuse methodology has become one of the keys for the

productivity improvement of modern computer system design [20]. A final implementation

that exhibits predetermined QoR is classified as hard IP, whereas a higher-level specification

that can be synthesized to have various QoR is soft IP. A library of reusable IP blocks

with various timing, area, and power configurations allows a new system integrator to reuse

the IP blocks with the best configurations to meet the target system’s requirements [21].

Thus, it is often the goal of DSE with HLS tools, especially for designing reusable hardware

accelerators, to find many, if not all, of the CAD parameter configurations that are mapped

to the Pareto optimal implementations, or to the implementations of close QoR values to

those of some Pareto optimal ones [22].

LS and PD tools, on the other hand, generate highly optimized hard IP for a target

system (which could be reused as well). Many stages of optimization in PD (e.g., placement,

routing, post-routing optimization) are order of magnitude more computationally expensive

than those in HLS. Such high complexity of the CAD problems makes it infeasible to find

all Pareto optimal implementations during the DSE, especially for complex VLSI systems
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with stringent time-to-market requirements. Moreover, such exploration has a lower payoff

when done with LS and PD than with HLS [23]. Therefore, another goal of DSE – also

called parameter tuning or CAD flow tuning with respect to this goal – is to find a single

optimal implementation that minimizes (or maximizes) an objective function subject to a

set of constraints, as shown in Fig. 1.3 (b). The objective function is usually defined as a

single QoR metric, or as a scalarization (e.g., a weighted sum) of multiple QoR metrics [24].

The constraints describe a valid range of values for certain QoR metrics. For instance, the

goal with an LS process is to find an implementation ‘with a minimum area while meeting

the delay constraint’ [25]. The ultimate goal with another LS and PD process is ‘to reach

timing closure at the lowest achievable power’ [26].

Strategies for DSE include exhaustively evaluating every possible configuration; randomly

sampling the design space; leveraging the designer’s knowledge, experience, and expertise;

developing analytical models for QoR estimation; and applying heuristics or meta-heuristics,

such as genetic algorithms and simulated annealing [27, 22]. Since an exhaustive search is

impracticable, it is crucial to discover the optimal, or near optimal, configurations after

running the CAD tools or flows as few times as possible. Recently, the proliferation of AI

and machine learning in a wide variety of application areas has motivated the advent of

AI-augmented DSE of computer systems [22, 28].

1.3 AI-Augmented Design Space Exploration of Computer Systems

AI is ‘the science and engineering of making intelligent machines’ which have ‘computa-

tional ... ability to achieve goals in the world’ [29]. Since Turing proposed in 1950 to consider

the question ‘Can machines think?’ [30], researchers have attempted to ‘find how to make

machines use language, form abstractions and concepts, solve kinds of problems now [or,

then] reserved for humans, and improve themselves’ [31]. While the rate of progress in AI

thereafter has been ‘unpredictable’, twenty-first century AI has seen extraordinary advances

fueled by ‘the maturing of machine learning’ [32]. Such maturation has been supported
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by the availability of large-scale data (also called ‘Big Data’), and the capabilities of mod-

ern high-performance computer systems [32, 33, 34]. Consequently, AI has been deployed

or integrated in a variety of AI-assisted, AI-based, AI-centric, AI-driven, AI-enabled, and

AI-powered applications in diverse domains [35, 36, 37, 38, 39, 40].

Design of optimal computer systems is another goal that could be targeted by AI, but

not solely by AI – as of today and in the near future. A more thorough definition of ‘design’

is derived in a survey by Evbuomwan et al. (from mechanical engineers’ perspective):

[Design is] The process of establishing requirements based on human needs,

transforming them into performance specification and functions, which are then

mapped and converted (subject to constraints) into design solutions (using cre-

ativity, scientific principles and technical knowledge) that can be economically

manufactured and produced [41].

Design of computer systems involves (1) establishing requirements, (2) transforming them

into a specification, and (3) converting them into implementations that are optimal or fea-

sible. The first two steps are led by humans. ‘The current state of AI technology is still far

short of the field’s founding aspiration of recreating full human-like intelligence in machines,’

states the 2021 Study Panel of the long-term investigation of AI, One Hundred Year Study

on AI [42]. It is not only the limited capabilities of the current AI, but more importantly,

the impact and responsibility of the decisions made in the first two steps that require those

decisions to be made or confirmed by humans. The third step, which is the main focus of

this dissertation, has been led by humans, aided by computers. AI may assist them.

Initially, human designers manually produced the physical layout. Development and

sophistication of the CAD tools enabled designers to put more effort into producing the

specification and performing DSE while offloading to CAD tools the repeated subtask of

converting the specification into implementations. These activities, by both the designers

and CAD tools, demand intelligence, namely creativity, scientific principles, and technical

knowledge (as noted by Evbuomwan et al.). The goal of AI-augmented design or DSE
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is to develop an AI system with such intelligence to boost both design productivity and

quality. Many approaches have been proposed over the past decade targeting various stages

of CAD [28]. More recently, Google and Nvidia have released that their next-generation

computer systems are designed by AI-driven systems, while Synopsys and Cadence have

announced AI-based optimization platforms targeting their CAD tool products [43]. At the

core of all those AI applications for computer system design is machine learning1.

1.4 Machine Learning for AI-Augmented Design Space Exploration of Com-

puter Systems

Machine learning is ‘a subfield of AI’ that addresses the question of ‘how to build com-

puters that improve automatically through experience’ [34, 44]. A subcategory of machine

learning that has been extensively studied is supervised learning, where machines use a la-

beled set of data, i.e., tuples of (input data; output label), in order to predict the output

label from the unseen input data. For classification problems, the labels are classes or cate-

gories. For instance, in the problem of handwritten digit recognition, the goal is to learn a

model that takes in an image consisting of pixel values and outputs the corresponding digit:

0, 1, · · · , 9 [45]. This model is trained using a labeled set of (input: image; output: digit)

data. For regression problems, the labels are continuous values, such as the temperature,

house prices, or the amount of carbon dioxide emissions. During DSE of a computer sys-

tem, designers run CAD tools a large number of times with various CAD parameter or flow

configurations to learn the corresponding QoR. This DSE problem can be translated into a

regression problem with (input: specification, CAD configuration; output: QoR).

Multiple challenges arise in this problem due to the characteristics of CAD problems.

1. Many machine learning applications utilize data obtained from huge collections of users’

input and public databases for a single problem. The QoR-prediction problem for each

system suffers from limited availability of data obtained from expensive CAD runs.

1Not all, although a majority, of AI applications involve machine learning.
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Especially, an industrial CAD flow specifies hundreds of separate CAD parameters,

resulting in an extreme curse of dimensionality. Hence, I propose to learn from the

experience (labeled datasets) not only with the target computer system, but also with

other systems.

2. Different systems exhibit different configuration-QoR relationship. As a result, a model

learned from a few previously explored systems cannot be directly exploited to predict

the QoR for new target systems. Hence, I propose to learn from the experience with

many other systems. Then, in order to successfully learn from many other heteroge-

neous systems, it is required to identify each system’s characteristics and its relationship

with other systems.

3. Designers apply unique sets of CAD configurations during the DSE of each individ-

ual system. This makes it harder to learn from previous DSE results. Especially in

HLS, the specification heterogeneity leads to broad CAD configuration heterogeneity

across specifications. Hence, I propose to collaborate with designers, augmenting their

performance with AI, and to transfer common knowledge across the design tasks.

To address the above challenges and improve the performance of AI-augmented DSE,

I propose to flexibly connect the elements of the many QoR-prediction problems with one

another. My thesis is that The exploration of the design space of a computer system can

be effectively augmented by artificial intelligence via learning from the experience with the

design and optimization of other systems.

For the design of industrial high-performance processors, I propose a novel collaborative

recommender system approach that learns hidden features from the interactions (CAD runs)

of many users (computer systems) and items (configuration of design parameters). To cope

with the curse of dimensionality, the item features are decomposed into features of item

attributes (individual parameters). The combined model predicts QoR for each user-item

pair.
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For the design of application-specific accelerators, I present a series of neural network

models in the order of evolution towards the proposed mixed-sharing transfer learning model.

Transfer learning aims at leveraging knowledge gained from previous problems; however, due

to the target computer system and design parameter heterogeneities, the model needs to

distinguish which piece of that knowledge should be transferred.

The proposed machine learning approaches aim to not only use experiential knowledge

as designers do but also to ultimately assist designers by providing alternative insights and

suggesting optimization possibilities for new systems. As an effort in this direction, I de-

velop an AI-augmented DSE tool that exploits the aforementioned models and generates

recommended CAD configurations for new target systems.

1.5 Contributions and Outline

My research contributions span across HLS, LS, and PD stages of CAD (shown in

Fig. 1.1) and address DSE problems of both searching for Pareto-optimal implementations

(Fig. 1.3 (a)) and searching for a single optimal implementation (Fig. 1.3 (b)). The contri-

butions are summarized as follows:

• A recommender system approach for industrial LS and PD flows [46, 47]

• A transfer learning approach for HLS flows [48] (Best Paper Award)

• A classification of machine-learning-based approaches for design optimization ([49], a

book chapter under submission, and a survey paper in preparation)

• AI-augmented DSE by learning from the experience with other computer systems,

configuration spaces, technology, and CAD tools (All of the above work, and a journal

article in preparation)

The rest of this dissertation is organized as follows. Chapter 2 presents a typical design

process of a modern computer system, as a background for the research problems addressed
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in this dissertation. Chapter 3 proposes a collaborative recommender system approach

for AI-augmented DSE with LS and PD flows for industrial high-performance processors.

Chapter 4 proposes a transfer learning approach for AI-augmented DSE with HLS flows

for specialized accelerators. Chapter 5 reviews and categorizes machine-learning-based

approaches for DSE with CAD of computer systems. Chapter 6 presents the future work

and concluding remarks.
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Chapter 2: Background

A monolithic integrated circuit, also called an integrated circuit, a microelectronic circuit,

a microchip, or a chip, is a complete circuit or set of circuits manufactured on a single piece

of semiconductor material [50]. Its miniaturizability and scalability have brought about the

impressive success of the microelectronic industry since the 1960s. Today, it serves as the

essential component of most of the contemporary computers, ranging from supercomputers

and cloud servers to embedded systems and IoT (Internet-of-things) devices. Design of

such computer systems has been facilitated and expedited by CAD methodology, which has

evolved in the direction of raising the level of abstraction. The first PD tools date back to the

1960s, LS tools to the 1980s, and HLS tools to the 1990s [15, 51]. This chapter first provides

a brief historical perspective on the emergence of integrated circuits. Then, it introduces the

major stages of modern CAD flows in the reverse order of their development, following the

order of their execution in today’s CAD flows.

2.1 Emergence of Integrated Circuits: A Historical Perspective

Going back in history, Turing proposed in 1936 a mathematical model of computing

machines that laid the foundation of modern computers [52]. The first electronic calculating

machine was built by Atanasoff and Berry in 1939, using a vacuum tube (which controls the

flow of electrons in a vacuum) as a switch or amplifier to control the flow of electric current [53,

54]. ENIAC (Electronic Numerical Integrator and Computer), the first general-purpose

electronic computing machine was built during the Second World War and presented to the

public in 1946 [55]. It was the fastest and large-scale at the time, while being equipped with

about 17,000 vacuum tubes, weighing 26 tons, occupying 440 cubic meters, and consuming

13



174 kilowatts of electricity – not a scalable technology [54].

Smaller and less power-consuming switches to control electronic signals, called transis-

tors, were created by the Bell Labs scientists, Shockley, Bardeen, and Brattain in 1947 [56].

Transistors are made from semiconductor materials, such as silicon and germanium. Semi-

conductors have electrical properties that are between conductors and insulators, and their

conductivity can be controlled by doping, i.e., adding impurities. The first transistors were

made from germanium; later, silicon has become the dominant material, as it offers advan-

tages of higher operating temperatures, breakdown voltage, and power-handling ability [54].

The race for miniaturization of electronic circuits intensified until 1958, when Kilby at Texas

Instruments invented and demonstrated the first (hybrid) integrated circuits, with on-chip

components connected by external wires [57, 58]. After a half year, Noyce at Fairchild

Semiconductor independently invented the first monolithic integrated circuits, with all wires

and components on a single chip [59, 60]. The inventions of transistors and integrated cir-

cuits have revolutionized the electronics industry and were recognized by the Nobel Prize in

Physics in 1956 and 2000, respectively [61, 62].

Integrated circuits consist of different components, such as transistors, resistors, capac-

itors, and diodes, that are all made from the same materials (usually silicon) for integra-

tion [58, 54]. Those circuit components can be analogous to the parts of speech, such as

nouns, verbs, adjectives, and adverb, as noted by Reid [63]. Each component has its own

function, and by connecting them in different ways, we can obtain the sentences or circuits

that perform in different ways [54]. It is the designers’ task to connect those components to

build a circuit that performs as desired. At first, designers produced by hand a geometric

description of circuits, called a layout, on papers and films (for fabricating integrated circuits

on semiconductor substrates by photolithography) [64].

Technology continued to advance to allow integrated circuits to incorporate thousands of

transistors on a single chip by the late 1960s. The computers built with those integrated cir-

cuits were harnessed to speed the development process and eliminate errors in the design of
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the next generation of integrated circuits [65]. IBM and Fairchild developed in-house graph-

ical CAD tools for circuit layout design and simulation [66, 67, 68, 69]. Their work, along

with the academic project SPICE (Simulation Program with Integrated Circuit Emphasis)

laid the foundation for CAD of integrated circuits [67, 70, 71].

2.2 Computer-Aided Design for Modern Computer Systems

Design methodology for integrated circuits has advanced to achieve increasing levels of

automation and abstraction. The automation of computation has allowed designers to offload

the fixed computational subtasks to computers, while solving problems that require higher

degree of creativity. The abstraction level refers to the level at which designers specify

circuits. By raising this level, CAD tools provide separation of concerns between the higher-

level structure, behavior, or functionality, and the lower-level implementation details [72].

Such advances in CAD have supported the development of the state-of-the-art computer

systems that offer high performance, energy efficiency, acceleration, and specialization.

Modern computer systems contain computational subsystems that range from general-

purpose to specialized systems. Since their invention, transistors have reduced in size ex-

ponentially, resulting in an exponential increase of transistor density on a chip (Moore’s

law), yet still capable of maintaining constant power density (Dennard scaling) [3, 4, 73].

Thanks to the VLSI technology and advanced CAD, today’s high-performance processors

and systems-on-chip include multiple billions of transistors on a single chip [5, 6, 7, 8]. Most

of them include general-purpose processors that can run an extensive variety of applications.

The technology scaling, however, has slowed down due to the physical limitations and the

end of Dennard scaling around 2005 [74]. In order to improve the performance while main-

taining the power dissipation and heat generation below thresholds, multi-core and heteroge-

neous architectures have emerged. State-of-the-art SoC architectures may include multiple

and heterogeneous subsystems such as general-purpose processors, special-purpose processors

(e.g., GPUs, TPUs, digital signal processors, and neural processors), and application-specific
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hardware accelerators [75]. The specialized processors or accelerators execute the specific

instructions or applications that they are designed for. Programmable logic devices (e.g.,

FPGAs) and coarse-grain reconfigurable devices (e.g., coarse-grain reconfigurable arrays) can

be configured after fabrication to execute (a group of) specific functionalities. They can be

configured to implement specialized processors or accelerators, and reconfigured for different

applications [76, 77, 78, 79].

A computer system in this dissertation refers to a computational subsystem, be it general-

purpose, specialized, or reconfigurable, that is often designed (or configured) independently

from one another. By extension, the term also refers to a full computer system that in-

cludes those subsystems. Ch. 3 addresses the design of high-performance general-purpose

processors, and Ch. 4 focuses on the design of various specialized accelerators. The following

subsections depict an exemplary CAD flow for modern, electronic, digital1, and synchronous2

computer systems, which belong to the dominant type of modern computer systems.

2.2.1 High-Level Synthesis

A typical CAD flow for a computer system today includes HLS, LS, and PD. To take a

closer look at the design process, let us recall the definition of ‘design’ by Evbuomwan et al.

from the previous chapter. Design is the process of

(i) establishing requirements based on human needs,

(ii) transforming them into performance specification and functions,

(iii) mapping and converting them (subject to constraints) into design solutions (using cre-

ativity, scientific principles and technical knowledge) that can be economically manu-

factured and produced [41].

1Digital circuits deal with discrete levels of signals: e.g., a high voltage representing ‘1’ and a low voltage
representing ‘0’ in binary systems. Analog circuits, on the contrary, deal with continuous signal values.

2In a synchronous digital circuit, an oscillating clock signal determines when the state of memory elements
is changed (values written or read): e.g., on the rising clock edge. Asynchronous circuits do not have global
clock.
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Let us assume that (i) a designer, Danny, was asked to design a low-power real-time ac-

celerator for a specific artificial neural network (ANN) application (human needs). Danny

determines the algorithm, function, or behavior of the ANN application, and confirms sys-

tem requirements such as power and latency (requirements). Then, (ii) Danny generates a

specification from the requirements determined in the previous step. The algorithm, func-

tion, or behavior of the application is transformed into a high-level specification written in

a high-level language, e.g., C, C++, SystemC [9], or OpenCL [10] (function specification).

The system requirements are quantified, e.g., target or maximum values of the power and

latency are set (performance specification). Those values are sometimes given by the cus-

tomer or determined from a larger design project. After generating the specification, (iii)

Danny runs an HLS tool to convert it into RTL implementations (map and convert into

design solutions). The HLS tool uses the synthesis algorithms (scientific principles) and

an RTL component library (technical knowledge). Aided by the HLS tool, Danny performs

DSE to minimize the power, latency (performance specification), and resource utilization

(economically manufactured and produced).

Fig. 2.1 illustrates an overview of a typical HLS process. The HLS tool takes in a high-

level specification and generates an RTL implementation of it [11]. The tool may refer to

high-level libraries (which the designer used in the specification) for front-end compilation.

The RTL component library provides information required in the generation of RTL imple-

mentations that consist of those components. The designer can constrain, guide, and control

the HLS process with design parameters as shown on the right in Fig. 2.1.

Compilation

First, the high-level specification is compiled into a formal model of computation. A

model of a system is a representation that shows relevant features without associated de-

tails, and formal models have a well-defined syntax and semantics for interpretation and

transformation [14]. A formal model in HLS generally exhibits the data and control depen-
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Figure 2.1: A typical design process with an HLS tool that translates a high-level specification
into an RTL implementation as guided by the design parameters.

dencies between the operations without language-dependent details.

Let us take our designer Danny’s ANN accelerator as an example. ANNs usually consist

of interconnected layers of nodes, where each node contains a value and each layer can be

represented as a vector (or a tensor of a higher dimension). Starting from a given input layer,

the next layer is often computed by performing matrix multiplications to the previous layer,

adding a bias, and applying a non-linear activation function. This part can be expressed as

follows:

H = 5 (� · G + 1), (2.1)

where G and H represent the previous and the next layer, respectively; and � is the weight

matrix, 1 is the bias vector, and 5 is the activation function (e.g., C0=ℎ, B86<>83, a rectified

linear unit, or B> 5 C<0G) for computing the next layer.
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1 void add_bias (dType b [ n_next ] , dType y [ n_next ] ) {

2 int i ;

3 for ( i = 0 ; i < n_next ; i++)

4 y [ i ] = y [ i ] + b [ i ] ;

5 }

6

7 void apply_tanh (dType y [ n_next ] ) {

8 int i ;

9 for ( i = 0 ; i < n_next ; i++)

10 y [ i ] = tanh ( y [ i ] ) ;

11 }

12

13 void process_laye r ( dType x [ n_pre ] , dType A[ n_next ] [ n_pre ] ,

dType b [ n_next ] , dType y [ n_next ] ) {

14 int i , j ;

15 dType temp ;

16 for ( i = 0 ; i < n_next ; i++) {

17 temp = (dType ) 0 . 0 ;

18 for ( j = 0 ; j < n_pre ; j++)

19 temp = temp + A[ i ] [ j ] ∗ x [ j ] ;

20 y [ i ] = temp ;

21 }

22 add_bias (b , y ) ;

23 apply_tanh ( y ) ;

24 }

Listing 2.1: A high-level specification in C. The top function (to become the top level

of the implementation) is process_layer which computes Eq. 2.1.
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1 r0 = 0 // i = 0

2

3 Block_1 :

4 r1 = 0 // j = 0

5 r5 = 0 // sum = 0

6 r9 = r3 + r0 ∗ n_pre // address o f A[ i ]

7

8 Block_2 :

9 r6 = load ( r9 + r1 ) // load A[ i ] [ j ]

10 r7 = load ( r2 + r1 ) // load x [ j ]

11 r8 = r6 ∗ r7 // temp = A[ i ] [ j ] ∗ x [ j ]

12 r5 = r5 + r8 // sum = sum + temp

13 r1 = r1 + 1 // j++

14 eva l r1 != n_pre // c t r l = ( j != n_pre )

15 cjump Block_2 // jump to Block_2 i f c t r l i s True

16

17 Block_3 :

18 s t o r e ( r4 + r0 , r5 ) // s t o r e y [ i ]

19 r0 = r0 + 1 // i++

20 eva l r0 != n_next // c t r l 2 = ( i != n_next )

21 cjump Block_1 // jump to Block_1 i f c t r l 2 i s True

22

23 Block_4 :

24 c a l l add_bias , r10 , r4 // subfunct ion add_bias

25 c a l l apply_tanh , r4 // subfunct ion apply_tanh

Listing 2.2: An intermediate representation of the body of process_layer from

Listing 2.1.
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Given the above requirements, Danny produces a specification in C as shown in List-

ing 2.1. Function process_layer computes Eq. 2.1, where n_pre denotes the number of

nodes in the previous layer G, and n_next is for the next layer H. dType is a user defined

data type whose definition is in a header file or in a high-level library. Danny defines it as

a native C type, such as float, for the software version, and selects a fixed-point data type

for HLS. Function tanh shown in line 10 is also provided by a high-level library.

The compilation process involves preprocessing, lexical analysis, parsing, and semantic

analysis. After compilation, a formal model of the specification, called intermediate repre-

sentation, can be obtained as shown in Listing 2.23. This can be further translated into a

control and data flow graph, which is another formal model of the specification as follows.

The intermediate representation is partitioned into basic blocks, which allow only sequential

execution of instructions except the entry and exit points. A control flow graph is a directed

graph whose nodes represent the basic blocks and directed edges represent the control flow

between the blocks. Fig. 2.2 (a) shows a control flow graph of the body of process_layer

from Listing 2.2. The computation in each node (block) of the control flow graph can be

represented by a data flow graph. A data flow graph is a directed graph whose nodes rep-

resent the operations (e.g., Ld (load), ×, +, and ≠) and directed edges represent the data

dependency. Fig. 2.2 (b) illustrates a data flow graph of �;>2: 2 in process_layer. The

left subgraph corresponds to lines 10 – 13 of the intermediate representation in Listing 2.2,

which compute the sum of products of elements from the weight matrix � and from the

previous layer vector G. The right subgraph represents lines 14 – 15, which update the index

9 and compute a control signal 2CA; as a result of eval in line 15. This signal 2CA; is used

to control the flow that goes out of �;>2: 2, as shown in Fig. 2.2 (a). A combination of a

control flow graph and a data flow graph for each block in the control flow graph is called a

control and data flow graph. Since the basic blocks allow only sequential execution, the data

flow graph for each block is acyclic by construction. Some HLS tools enforce that all data

3An intermediate representation is a representation of a software program between the source code and
the machine code. A software compiler usually produces this as an internal representation.
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(a) A control flow graph of
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(b) A data flow graph of �;>2: 2 in process_layer. The left
and right subgraphs correspond to lines 10 – 13 and lines 14
– 15 of the intermediate representation in Listing 2.2, respec-
tively.

Figure 2.2: A control and data flow graph of the body of process_layer from Listing 2.2.

flow graphs remain acyclic throughout the synthesis process.

Design parameters for the compilation process include compile-time arguments such as

data type definitions (e.g., dType), code selection (e.g., an alternative version of the same

functionality), library selection, parallelism options (e.g., number of parallel threads), and

compiler optimizations (e.g., -O0 or -O3).

Transformation

In addition to the front-end compiler optimizations, the formal model (e.g., an intermedi-

ate representation or a control and data flow graph) may undergo a set of semantic-preserving

transformations. In some cases, those transformations are automated; in others, they are

guided by the designer [14]. Design parameters applied during this process determine mi-

croarchitectural details of the implementation. The major transformation parameters are

listed below in three categories. State-of-the-art commercial HLS tools support most (but
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not necessarily all) of them, possibly with different names [80, 81, 82]. Some parameters

become effective when certain conditions related to the target transformation are satisfied.

• Function transformations: function_inline, function_instantiate, convert_to

_lookup.

Danny’s top function process_layer contains two subfunction calls, add_bias and

apply_tanh. If those function calls are inlined, they dissolve into the calling function,

process_layer, and may share components in the RTL implementation. Otherwise,

the callee functions are instantiated; they remain as separate hierarchy blocks in the

RTL, and do not share components with the upper level blocks.

A possible benefit of function_inline is that the scope of application of some opti-

mization techniques is enlarged [14]. However, if the same function is called multiple

times, inlining them every time may result in the increased area or resource utilization.

In that case, function_instantiate will instead have a single block of implementation

used multiple times, as long as the function calls are at the same level of hierarchy.

convert_to_lookup converts a combinational function call into a table lookup. Inputs

to the function drive the address of the table (array) element, and the values read out

of the table drive the outputs of the function. This conversion may be useful for

combinational functions with long latency, as it can improve the timing [81].

• Loop transformations: loop_break, loop_unroll, loop_pipeline, loop_flatten,

loop_merge.

Fig. 2.3 illustrates the effect of four loop transformations on time and resource. loop_

break inserts states so that each iteration of the loop takes at least one clock cycle,

and the iterations are executed in a sequence [81] (Fig. 2.3 (a)). loop_unroll replaces

the loop by as many instances of its body as the number of loop iterations, allowing

some or all of the iterations to occur in parallel (if data dependencies and resources

allow) [14, 80] (Fig. 2.3 (b)). Complete unrolling can be applied only when the loop
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has a data-independent exit conditions [14]. For this, Danny has to explicitly assign

or define values to n_pre and n_next. When those values are not determined at

design time, Danny can use upper bound values to state the loop exit conditions,

and execute the loop body only when the iteration counter value is less than n_pre

or n_next at runtime. Partial unrolling creates as many copies of the loop body

as the given unrolling factor. For instance, Fig. 2.3 (c) shows the partial unrolling

of the loop in Fig. 2.3 (a) by a factor of 2. loop_pipeline allows the overlapped

execution of loop bodies, as shown in Fig. 2.3 (d). When pipelining loops, the designer

may specify the initiation interval, the minimum latency interval, and the maximum

latency interval. The initiation interval (denoted by the pink arrow in the figure) is the

number of clock cycles between two consecutive executions of the loop body. Due to

loop-carried dependencies, the problem of finding the minimum initiation interval of a

given loop is known to be NP-complete [83]. Thus, commercial HLS tools often require

the designer to specify this interval when applying loop pipelining [84, 81, 80]. The

latency interval (the blue arrow) refers to the number of clock cycles to complete the

execution of a single loop body instance. As shown in Fig. 2.3, loop_break may be used

to minimize the area, loop_unroll to reduce the latency and increase the throughput,

and loop_pipeline to optimize altogether the throughput, resource utilization, and

the number of concurrent memory accesses.

loop_flatten removes the loop hierarchy by flattening the innermost loop into a single

outer loop, when only the innermost loop contains loop-body contents. In the RTL

implementation, it requires one clock cycle to move from an outer loop to an inner

loop, and from an inner loop to an outer loop; hence, flattening nested loops may

save clock cycles and allow them to be optimized as a single loop [80]. loop_merge

combines consecutive loops at the same level of hierarchy into a single loop. The

loop bounds of all merged loops must be a constant or a variable of the same value.

This transformation may reduce the overall latency (in RTL for transitioning between
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Figure 2.3: Effect of loop transformations in HLS.

merged loops), increase sharing of components among the loops, and improve logic

optimization [80].

• Array transformations: array_flatten, allocate_memory, array_merge, array_

split, array_restructure.

Some arrays in the specification are built into memories, either as a set of flat registers,

with a built-in memory, with a prototype memory (as a placeholder), or with a vendor

memory from the component library. array_flatten transforms the array into a set of

registers, replacing all read and write operations to the array with equivalent reading

and writing of the variables that each represent an element of the array [81]. This

transformation may reduce the area and latency when the flattened arrays are small

and heavily used. allocate_memory creates the specified type and implementation of
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memory (e.g., built-in memory, random access memory (RAM), block RAM (BRAM),

ultra RAM (URAM), or read-only memory (ROM)) and binds it to the array. The

numbers of read, write, and read/write ports of the memory indicate how many read

and write operations can be performed in parallel at the same clock cycle.

array_merge combines multiple arrays into a single array, which may be smaller than

multiple individual arrays. array_split, on the other hand, splits a single array into

multiple smaller arrays. The split method can be specified among cyclic, block, and

complete [80]. This transformation may improve the memory access parallelism at the

cost of an increased area. array_restructure changes the number of elements (words)

in an array. The array can be scaled up (increased number of words with decreased

data width) or scaled down (decreased number of words with increased data width) in

multiples of powers of 2 [81].

Allocation

From the formal model after the transformations, the data dependency part (also rep-

resented as a data flow graphs) is translated into a datapath, while the control dependency

part (also represented as a control flow graph) becomes a finite state machine that controls

the datapath. The datapath is generated through the steps of allocation, scheduling, and

binding, which may occur concurrently or in various orders.

Allocation determines the type and quantity of hardware resources (e.g., functional units,

storage units, and interconnection units) to be used in the implementation [85, 86]. The

functional units (e.g., arithmetic logic units, multipliers, shifters, and other custom units)

implement operations. The storage units (e.g., registers, register files, and memories) imple-

ment variables and arrays. The interconnection units (e.g., multiplexers and buses) connect

the storage and functional components to transfer the signals [86]. Some resources may be

added during scheduling or binding. Most hardware components are selected from the RTL

component library, which also provides the characteristics, such as area, timing, and power,
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Figure 2.4: An example of scheduling of the data flow graph from Fig. 2.2 (b). The dotted
lines represent discrete time steps. In this example, each operation is assumed to take a
single time step.

of each component.

Resource constraints specify the maximum number of hardware resources, operations,

functions, or IP cores. This may reduce the utilization of the specified resources, possibly

reducing the area and increasing the latency.

Scheduling

Scheduling maps a set of operations in the formal model onto a set of discrete time

steps (i.e., clock cycles) such that all data dependency constraints specified in the model are

satisfied [23]. Fig. 2.4 shows an example of scheduling for the data flow graph in Fig. 2.2 (b).

It is assumed that each operation in this example takes a single time step, but some functional

units that implement certain operations may have longer latency. Additional constraints such

as resource constraints, latency constraints, and the length of a clock period are also taken

into account.

The main objectives of scheduling are to minimize the total number of time steps (i.e.,

overall latency), and to minimize the area or resource utilization. Area is a critical QoR for

integrated circuits (such as ASICs), and resource utilization is important for reconfigurable
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devices such as FPGAs. The scheduler exploits the component library (and the allocation

results) to obtain the latency and area information of the components.

Two fundamental categories of scheduling approaches are time-constrained scheduling (to

minimize the number of components) and resource-constrained scheduling (to minimize the

overall latency) [85]. Since most HLS scheduling problems are NP-hard, schedulers often em-

ploy heuristic methods. Resource-constrained approaches include list-based scheduling [87]

and static list scheduling, such as ASAP (as soon as possible) and ALAP (as late as possi-

ble) [88]. Time-constrained scheduling approaches include force-directed scheduling [89] and

iterative refinement methods [90]. Other heuristic methods such as simulated annealing [91]

and path-based scheduling [92] have been applied as well. Linear programming and integer

linear programming methods formally formulate the scheduling problem [93], such as using a

system of difference constraints [94]. For complex industrial scale designs, the solution space

is too large and, therefore, a slack-based scheduling approach computes the sequential slack

of each operation from the data flow graph and applies heuristic scheduling and binding by

slack budgeting [95].

Design parameters applied during scheduling (and allocation) include resource constraints,

latency constraints, the scheduling effort level, and the constraint relaxation levels. When

the scheduler cannot find a feasible solution after the initial exploration (e.g., in a time limit),

the scheduler employs a more time-consuming and compute-intensive method with a high

scheduling effort, and relax some designer-specified constraints when constraint relaxation is

allowed. Otherwise, it may notify the designer a schedule failure [81].

Binding

Binding maps each operation, variable, and interconnection in the scheduled model to

a functional unit, storage unit, and interconnection unit, respectively, while maximizing

resource sharing [86]. Fig. 2.5 illustrates an example of binding of the data flow graph

scheduled in Fig. 2.4. The operation × is bound to a functional unit MULT. The two +

28



Step 1

Step 2

Step 3

Ld Ld 

MULT COMP

ADD2

ADD1

Figure 2.5: An example of binding of the data flow graph scheduled in Fig. 2.4. The
operations are bound to functional units. Some variables are bound to registers, shown
as the oranges boxes.

operations are bound to ADD1 (for fixed-point addition) and ADD2 (for integer addition),

respectively. The operation ≠ is bound to a negated equality-comparator unit COMP. Multiple

operations of the same type can be bound to a common functional unit if those operations are

scheduled at different time steps. Each variable that carries values across the time steps is

bound to a storage unit, such as a register. In Fig. 2.5, the orange boxes on the edges crossing

a time step line represent the registers. Registers can also be shared among multiple variables

with mutually exclusive lifetimes. Each transfer from component to component is bound to

a interconnection unit, such as a bus or a multiplexer [86]. Due to the tight relationship

among the problems, binding may occur concurrently or interleaved with scheduling and

allocation [14, 86, 96, 97, 98].

Generation

After allocation, scheduling, and binding, the decisions made in those steps are applied to

generate an RTL description of the model written in a hardware description language (HDL)

such as Verilog [12] or VHDL [13]. The RTL implementation contains the synthesized data

path (consisting of the bound functional, storage, and interconnection components) and the
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associated controller. The controller implements the control finite state machine, by typically

using registers to store the current state and combinational logic to compute the next state

based on the current state and the conditions coming from the data path [99]. Some parts

of the data path may be left unbound after HLS; in this case, they are bound and optimized

in the LS and PD stages, using more accurate and practical timing estimates [86].

After the HLS tool generates an RTL implementation, or many implementations using

different configurations of the design parameters, one last subtask remains before the designer

moves onto the LS stage: validation. Although the implementations generated by HLS tools

should be functionally equivalent to the input specification by construction, it is important to

perform validation to ensure that the implementation will function correctly and to eliminate

any possible design errors [14]. This is especially critical in industrial design processes, where

a large volume of expensive chips are manufactured from a single implementation. Validation

can be performed by simulation and verification methods [100]. Since it is not the main focus

of this dissertation, let us assume that Danny completes validation and starts the LS process.

2.2.2 Logic Synthesis

Fig. 2.6 illustrates a typical design process with LS. An LS tool takes in an RTL specifi-

cation, either auto-generated from an HLS tool or provided by the designer, and transforms

it into a gate-level implementation.

• Translation: The RTL specification (in a hardware description language such as Ver-

ilog or VHLD) is first translated into a technology-independent logic representation,

such as finite state machines (for sequential components), Boolean functions (for com-

binational components), or logic networks (for mixed sequential and combinational

components) [14].

For example, the negated equality-comparator unit COMP in Fig. 2.5 takes in two inputs,

namely ! and ', and outputs 5 = 0 if ! = ', and 5 = 1 if ! ≠ '. Assuming that each

of * and + represents an unsigned binary number of 8 bits, the component COMP can
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Figure 2.6: A typical design process with an LS tool that translates an RTL specification
into a gate-level implementation as guided by the design parameters.

be translated into a logic network that computes 5 as shown in Fig 2.7. != and '=

denote the bit value at index = (0 ≤ = ≤ 7) of ! and ', respectively. The XNOR gates

at the first level determine whether a pair of bits at the same index of ! and ' are the

same. The AND gate at the second level outputs 1 if all pairs match, and 0 otherwise.

The NOT gate at the third level negates the output from the AND gate. Hence, the full

network represents COMP.

• Technology-independent optimization: The abstract logic representation is optimized

with an objective of minimizing the complexity, e.g., in terms of the number of Kar-

naugh map implicants, logic gates, levels in logic networks, or states in finite state

machines. The optimization methods have been investigated heavily over multiple

decades for two-level combinational logic [101, 102, 103, 104], multi-level combina-

tional logic [105, 106, 107], and sequential logic components [108, 109, 110, 111, 14].

As many of them are heuristic and iterative methods, advanced LS tools allow the
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Figure 2.7: A logic representation of the negated equality-comparator unit COMP in Fig. 2.5.

designer to select the optimization methods and effort levels. The designer may also

enable or disable the restructuring of the logic components and networks.

• Technology mapping: The logic representation is mapped into instances of a cell li-

brary, which is a set of primitive logic gates [14]. This step is also called ‘cell-library

binding’. The library includes combinational, sequential, and interface elements, with

their characteristics such as area, delay, and load capacity. For FPGAs, the library

can be defined implicitly, e.g., the virtual library of the look-up table is represented

by all logic functions that can be realized by the tables [14]. Two main categories of

binding approaches are heuristic and rule-based. The designer can control this step by

providing manual binding rules or cell selections.

• Technology-dependent optimization: The resulting implementation is further opti-

mized, taking into account the technology-dependent characteristics of the components,

such as area, delay, and load capacity, that are determined during technology mapping.

The optimization is usually performed by a variety of transformation techniques, such

as gate sizing, Vt swapping, cell replication, buffer optimization, restructuring, remap-

ping, and pin permutation [112, 113]. The designer may decide which optimization

techniques to employ, which objectives to pursue, and how much effort to use. They

may also pass arguments to the optimization algorithms via design parameters.
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Figure 2.8: An example of an optimized implementation of the logic network in Fig. 2.7.
The green dotted boxes represent bound cells from the technology library.

Fig. 2.8 illustrates an example of an optimized implementation of the logic representation

for COMP shown in Fig. 2.7. The green dotted boxes indicate the cells from the library that are

bound to the logic gates. The final implementation is described in a netlist, which contains

the cells and connections between them. The netlist may be presented in text or schematic.

After each step or the entire process of LS, validation is performed to confirm the func-

tional correctness of the implementation.

2.2.3 Physical Design

Fig. 2.9 illustrates a typical design process with PD. The PD tool or tool-chain translates

a gate-level specification (described in a netlist) into a physical layout for integrated circuits,

or into a configuration bitstream for FPGAs. While the presented abstract flow generally

applies to both integrated circuit design and FPGA configuration, design flows for FPGAs

usually consist of less number of stages, address smaller degree of freedom, and consequently,

take less time for the design and optimization.

• Partitioning: To solve the complex PD problem efficiently, a large netlist is partitioned

into smaller pieces that can be individually placed on a portion of a large chip or on

an FPGA in a multi-FPGA system. The circuit partitioning problem is an NP-hard

combinatorial problem; hence, PD tools usually rely on heuristic algorithms such as the
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Figure 2.9: A typical design process with a PD tool or tool-chain that translates a gate-level
specification into a physical layout (for integrated circuits) or configuration bitstream (for
FPGAs). Each stage may involve the solution of intractable optimization problems and their
execution can be guided by the design parameters.

Kernighan-Lin algorithm, the Fiduccia-Mattheyses algorithm, simulated annealing, or

genetic algorithms [114].

• Planning: Before the core placement and routing, planning places periphery elements

and establishes internal design constraints. Major substages of planning include floor-

planning, pin planning, power planning, and clock planning. Floorplanning assigns

dimensions and locations to large modules (clusters of logic with a known area) or to

circuit partitions from the previous stage. The modules or partitions with assigned

shape and location are called blocks. Pin planning defines the connectivity with all

periphery elements such as external ports and interfaces. Power planning builds (for

integrated circuits) or configures (for FPGAs) the power supply network. For FPGAs,

clock planning configures the clock resources to distribute clocks across the system.
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For integrated circuits, clock trees are usually synthesized after placement.

In VLSI design, especially floorplanning is a critical problem as it determines the

performance, size, yield and reliability of chips [115]. Since it is another NP-hard com-

binatorial problem, many heuristic approaches have been applied including simulated

annealing, genetic algorithms, particle swarm optimization, and ant colony optimiza-

tion [116].

• Placement: After partitioning and planning, placement determines the spatial locations

of cells or logic elements within each block (from the previous stage) while addressing

the optimization objectives such as minimizing the total length of connections be-

tween elements (for routing) [15]. Techniques for placement, which is also an NP-hard

problem, include partitioning-based algorithms, quadratic placement, force-directed

placement, simulated annealing, and nonlinear optimization [15].

• Clock tree synthesis: A clock tree is generated for each clock domain of the system.

The clock signal maintains the synchronization of all components in a clock domain,

while different domains may run at different frequencies. Advanced FPGAs by default

provide a few clock domains (configured in clock planning), but if the specification

includes more clock domains, then clock tree synthesis is performed.

The optimization objectives in clock tree synthesis include minimizing the clock skew

(the maximum difference in clock signal arrival times) and minimizing the power con-

sumption (because clocks are the major source of power consumption [117]) [15]. Since

skew optimization requires highly accurate timing analysis which is usually infeasible,

a common approach is to apply a sequence optimizations that include geometric tree

construction, initial buffer insertion, buffer sizing, wire sizing, and wire snaking [15].

• Routing: After placement, routing (also called ‘wiring’) defines the interconnections.

Global routing determines the regions traversed by the wires, followed by detailed

routing which determines the specific location of the wires (including their layers and
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contacts) [14]. The optimization objectives include minimizing the total wire length

and minimizing the critical path length (the length of the path with the longest combi-

national delay). Routing involves the solution of an NP-complete problem [118, 119],

and it poses a major computational challenge in PD [15]. The applied approaches

include iterative construction, genetic algorithms, ant colony optimization, and swarm

intelligence [120, 121, 122, 123].

• Timing closure: The main constraints in PD are classified into three categories: tech-

nology constraints (e.g., minimum layout width), electrical constraints (e.g., maximum

signal delay), and geometry constraints (e.g., boundaries provided by the designer) [15].

Timing closure is an optimization process of satisfying the timing constraints, which

belong to the second category, through the layout optimizations and netlist modifica-

tions [15].

After the layout or configuration is generated, it must be fully verified to ensure the

electrical and logical correctness [15]. The physical layout is usually in the GDSII stream

format, and the FPGA configuration is in a bitstream.

Each stage of PD addressed above is related to one or more computationally intractable

optimization problems. Design parameters for PD may determine the optimization algo-

rithms, algorithm options, effort levels, objectives, and constraints for each of the stages.

The next chapter addresses the DSE problem for industrial VLSI design flows.
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Chapter 3: A Recommender System Approach for Industrial

Logic Synthesis and Physical Design Flows

As modern server-class high-performance computer systems consist of extremely com-

plex hardware components containing billions of transistors on a single integrated circuit,

the design paradigm has shifted to block-based and synthesis-centric design methodologies.

A major portion of the system is partitioned into many blocks of distinct functions, each

of which is designed and synthesized separately. Each block, also referred as macro, goes

through the advanced industrial synthesis flow spanning logic synthesis through physical de-

sign. This flow is controlled by various and numerous knobs, called meta-parameters in this

chapter, that ultimately affect the performance and feasibility. One of the key challenges and

opportunities to optimizing a macro design is in the huge number of meta-parameters and

other macros. In this chapter, I present a novel perspective of a collaborative recommender

system which learns from the collective records of macros to make a tailored recommenda-

tion of meta-parameters for each macro. The proposed method learns hidden features of

the macros and meta-parameters from the records containing only the identifiers of macros

and meta-parameters and the score values of performance and feasibility, extracted from

the synthesis log files. This eliminates the need for sharing the macro specifications and

implementations, which is confidential information, with the recommender system.

3.1 Design of High-Performance Processors

The main computing engine at the core of any modern computer server is a high-

performance processor realized as a VLSI circuit, i.e. a semiconductor circuit that integrates

a huge number of transistors into a single chip. State-of-the-art system-on-chip architectures
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(a) A high-performance server-class chip with 12 processor cores.

Macros (10,000 to 100,000 or more gates)

A processor core (10s of units) A unit (10 to 50 macros)

(b) Photographs of a processor core (left) and a unit consisting of many macros (right).

Figure 3.1: A hierarchical overview of a high-performance server-class chip, processor core,
unit, and macros [124].

38



host billions of transistors on a single chip [125, 6, 8]. Such outstanding computational ca-

pabilities have been enabled by the progress of CAD tools for logic synthesis and physical

design (LSPD), which have allowed hardware designers to cope with the remarkably grow-

ing complexity of VLSI design. The VLSI design process is structured along a sequence

of refinement steps from higher levels of abstraction down to the detailed levels of circuit

design. Hardware designers first specify the functionality of digital circuits with HDLs, such

as Verilog [12] and VHDL [13], and then employ an LSPD flow which processes the circuit

specification through a sequence of steps that include logic synthesis, physical placement,

and routing, which have been introduced in Chapter 2.

In order to further handle the design complexity and allow CAD tools to run effectively,

the specification of a complex circuit is typically partitioned into a set of many modules

hierarchically. A high-performance processor typically consists of multiple processor cores,

i.e., the main compute engines, surrounded by chip-level logic and memories [126, 6, 127].

Fig. 3.1 (a) shows a photograph of a server-class processor chip containing 12 processor

cores [124]. A core often consists of hundreds of macros. One of those cores is shown in

Fig. 3.1 (b) on the left, and one of its units is magnified on the right. A unit within a processor

core is a level of hierarchy encapsulating 10 to 50 unique macros. The macros, shown around

the unit in Fig. 3.1 (b) on the right, are at the lowest level of hierarchy, consisting of 10, 000

to 100, 000, or even more, logic gates. Given the area and timing constraints, each macro is

separately designed, synthesized, and optimized by a dedicated designer.

It is one of the main tasks performed by professional logic and physical designers to

optimize the macros by tuning the LSPD flow. As most of the LSPD steps require the

solution of many intractable (NP-hard) problems at a very large scale, it is infeasible for the

CAD tools to automatically generate a final design that presents optimal values for multiple

quality-of-result (QoR) metrics of interest, e.g., delay, power dissipation, routability, and area

utilization. Furthermore, many of these metrics are inversely affected by design choices. For

instance, increasing the processor performance by reducing the circuit delay typically comes
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Table 3.1: Examples of LSPD parameters. These meta-parameters were activated as a result of

the DSE for an exemplary macro.

LSPD parameter Synthesis, placement, and optimization options

dpm Area recovery and optimization after placement

fogs Resizing late in the flow with accurate timing

latup Allow upsizing of latches for timing

lpopt Use a specific low-power optimization algorithm

sprd123 Spread out the logic during optimization steps

at the expensive cost of larger occupation of silicon area. CAD tools also need to be flexible

to handle various types of logic functionality, making it difficult to rely on a single algorithm

for all macro specifications. These challenges have led advanced LSPD flows to provide a

variety of meta-parameters that affect the execution of CAD algorithms within the flow and,

ultimately, impact the QoR. Table 3.1 provides an example of a few meta-parameters, also

called LSPD parameters, from an industrial LSPD flow addressed throughout this chapter.

Since advanced LSPD flows may have hundreds, or even thousands of parameters, it is an

extremely complex task for the designers to configure those parameters for each macro.

While experienced designers may still manually tune parameters, automated parameter-

tuning systems have recently emerged for LSPD and FPGA flows [26, 128, 129, 130]. Pre-

viously proposed systems for tuning CAD flows rely on iterative or adaptive online tuning

algorithms that have significant runtime, disk space, and total compute resource costs. More

recently researchers have focused on reducing iteration counts by parallelizing the CAD flow

tuning algorithms: e.g. Xu et al. presented a distributed autotuning framework for optimiz-

ing FPGA designs [128], while Ziegler et al. presented a synthesis-parameter tuning system

for VLSI designs that requires three to five iterations for each macro [26]. However, for

industrial large-scale design efforts, there is a need to further reduce the parameter tuning

costs. For instance, during a high-performance server design cycle, there may be hundreds

of macros that need to be individually tuned, and the CAD tool input data may change fre-
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quently.1 Thus, even effective iterative tuning systems can stress industrial compute clusters

and design schedules. For the next level of parameter tuning efficiency, I (with M. Ziegler

and L. Carloni) address the problem of AI-augmented tuning of the industrial LSPD flows

for high-performance processors [46, 47].

3.2 Industrial LSPD Flows for High-Performance Processors

Fig. 3.2 shows a high-level diagram of an LSPD flow for industrial high-performance

processors. The LSPD tool-chain takes as input a macro specification (RTL, timing require-

ments, physical boundary) and a configuration of LSPD parameters. The flow steps can

be grouped into two main phases. The first phase performs a sequence of steps including

logic synthesis, physical placement, clock tree synthesis, and post-placement optimization.

Following these steps, key QoR metrics such as timing, power, and congestion (for routabil-

ity) are reported based on estimated wire lengths, and these typically track well with the

final QoR. Thus, designers often optimize QoR by tuning various LSPD parameters using

Phase-1 QoR metrics as guidance in the process of design-space exploration (DSE).2 After

the Phase-1 DSE, the second phase of the LSPD flow is executed to produce the final physical

layout.

The target LSPD flow provides about 400 binary meta-parameters. When one meta-

parameter is activated (i.e. is set to True), a group of synthesis, placement, and/or opti-

mization parameters are set to specific values. A scenario refers to a configuration of all

those LSPD parameters. With 400 binary parameters, the design space of a macro corre-

sponds to 2400 different physical implementations that each could be synthesized for this

macro with one scenario. The goal of the DSE process is to locate one or more high-quality

(near-optimal) scenarios.3 For this DSE task, an iterative parameter tuning flow, shown

1Industrial processor designs often follow synchronized LSPD version release schedules, e.g., a weekly or
bi-weekly cadence.

2For the target LSPD flow addressed in this chapter, Phase-2 steps are computationally expensive, moti-
vating the use of Phase-1 QoR metrics for DSE. Note that Phase-2 QoR metrics could also be used for DSE
with lower Phase-2 overheads.

3The term near-optimal is used since the parameter tuning task is a black-box optimization problem and
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Figure 3.2: An LSPD flow deployed in an industrial environment for designing server-class
high-performance processors.

in Fig. 3.3, has been employed to complete the design of multiple generations of industrial

server-class processor chips.

As an example of iterative parameter tuning employed for prior processors, the de-

sign of a double-precision floating-point pipeline macro is considered. This macro contains

75, 000 logic gates and takes 8 hours on average to be processed through the LSPD flow when

deployed in an industrial environment targeting a 14nm semiconductor technology process

(similar to the processes used in [125, 6, 8]). During five iterations of the parameter tuning

the design space is too large to perform an exhaustive search or to verify that an optimal solution is found.
In practice, the goal of DSE is to locate solutions that provide notable improvements, rather than a precisely
optimal solution.
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Figure 3.3: DSE with an iterative parameter tuning flow.

process, 173 LSPD scenarios with different parameter configurations have been applied, i.e.,

each iteration includes parallel execution of multiple scenarios. Table 3.1 reports the param-

eters of the top scenario determined through this process. While this iterative process has

proven effective for many production processor designs, the overhead is still considerable,

i.e., 173x compute resources and at least 5x runtime (latency). This overhead implies two

important aspects of the target problem. First, it is significant to reduce the computational

and runtime overhead by reducing the number of LSPD flow runs. Second, the top scenarios

vary for the synthesized macros, prompting the need for multiple iterations of the tuning

of parameter configurations. To reduce these iterations, it is critical to characterize each

macro, especially with respect to its relationship with the parameters or scenarios. These

motivate the research on applying machine learning to the target problem.

3.3 Opportunities for Machine Learning: LSPD Results Archive

The iterative tuning flow described in the previous subsection includes a background

process that stores the data that are produced during each tuning run into an archive. As

shown in Fig. 3.4, the archive of LSPD results consists of the (Input: macro, scenario; Output:

QoR)–tuples from macros in multiple product families of high-performance processors, and

over multiple design generations of these families. In total, the archive currently contains

data from over 300,000 LSPD flow runs, from 1000s of macros across 22nm, 14nm, and 7nm
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LSPD results 

Archive

Input Output (normalized QoR)

Macro Scenario Slack 1 Slack 2 Slack 3 Power Congestion

1

1000⋯0 0.42 0.56 0.34 0.88 0.76

0110⋯0 0.89 0.87 0.68 0.75 0.60

1010⋯1 0.92 0.84 0.56 0.65 0.54

0101⋯1 0.27 0.30 0.40 0.45 0.63

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

2

1000 ⋯ 0 0.34 0.22 0.50 0.56 0.83

1011 ⋯ 0 0.51 0.63 0.74 0.66 0.77

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Figure 3.4: An exemplary illustration of the LSPD results archive.

technology nodes. The archived LSPD results can be employed as training data for machine

learning. Overall, the use of the iterative tuning flow provides an essentially free training

set, whereas training sets for many other applications are curated through tedious and often

manual processes. It should also be noted that the goal of the iterative tuning flow is to

improve the QoR of the macro being tuned, not to supply a training set. Thus, the archived

data is truly a by-product of the iterative DSE.

Once a macro is run through the iterative tuning flow and has data captured in the

archive, it is referred as a legacy macro, whereas a macro without archived data is called a

new macro. In general, a new processor generation reuses (inherits) some logic from prior

generations and contains legacy macros and new macros, i.e., a legacy macro reuses some

amount of logic from a macro in prior generations. The amount of reuse can vary from nearly

full logic reuse, e.g., when remapping to a new technology, to partial logic reuse, e.g., for a

new architecture [131]. Some examples in varying levels of reuse models include the “Tick-

Tock” model or “Process-Architecture-Optimization” model [131]. However, even in the case

of a new architecture target, the design complexity of a server chip and the requirements
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Figure 3.5: An example of a collaborative movie recommender system.

of supporting legacy code will result in a sizable amount of logic reuse. As a result of logic

reuse, many macros within the new chip have the same or similar logic content as prior

generations. Thus, in this chapter, the macros are categorized into previously observed

macros (legacy macros) and unobserved macros (new macros). Other unobserved macros

in the new generation processors are considered as new macros. When starting a new chip

design, many macros are classified as legacy macros from observations in prior chips. Over

the course of a chip design project, new macros are reclassified as legacy macros after they

are iteratively tuned and added to the archive.

3.4 Relevant Machine Learning Approaches: Recommender Systems

Recommender systems predict the affinity between each user and items, such as movies,

music, restaurants, shopping items, or posts on social network services, to make personalized

recommendations [132, 133]. The application of recommender systems to complex engineer-

ing tasks is a new and interesting avenue of research with a potential for significant impact.

In the area of software engineering, several systems have been proposed to assist developers

in a range of activities [134, 135].

There are two main paradigms for recommender systems: content filtering and collabora-

tive filtering. The content filtering approach analyzes the content, and thus heavily depends

on the availability and performance of the analysis methods. On the other hand, the collab-

orative filtering approach exploits the collected information on how each user has reacted

to each item. Since this approach mainly observes the users’ reactions, it can be exploited
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Figure 3.6: Overview of the LSPD tuning process, data archive, and proposed recommender
system.

without further processing of the content. For instance, Fig. 3.5 shows a collaborative rec-

ommender system for movies that is based on the technique of matrix factorization [132].

The (user, movie) matrix, consisting of the observed movie ratings by the users, can be fac-

torized into two smaller matrices, namely the user matrix and movie matrix, that represent

hidden properties of the users and movies, respectively. By taking the product of these two

matrices, it is possible to predict the unobserved movie ratings.

For the problem of LSPD parameter recommendation, I propose an analogy between the

LSPD flow scenarios and the items (movies); between the macros and the users; and between

the LSPD QoR and the users’ reactions (movie ratings).

3.5 Proposed Approach: Collaborative Recommendation with Tensor Decom-

position

Fig. 3.6 shows a high-level diagram of the proposed recommender system as well as the

interactions with the archive and iterative tuning flow. The proposed system consists of

two modules: (1) the offline learning module and (2) the online recommendation module.
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The offline learning module trains a QoR prediction model using the LSPD results archive

and the collaborative filtering approach. The online recommendation module takes as input

the learned model, the target macro (the macro name for a legacy macro or sample LSPD

results for a new macro), the QoR cost function or weight vector, and the number of scenario

recommendations to generate. The module makes inferences using the given model and

finally returns the requested number of recommended scenarios.

The recommender system’s performance can be limited due to (1) the limited expres-

siveness of the model, (2) the sparsity of training data with respect to the huge search

space, and (3) the complex nature of the problem, e.g., the existence of macro-specific or

designer-specific parameters that the recommender system cannot address. In some cases,

the performance can be improved by combining machine-generated scenarios with a design

expert’s input scenario (recorded in the archive for legacy macros). The experimental results

show that the collaboration between the recommender system and the design experts could

lead to a QoR that is not achievable by either of them working solely.

3.5.1 Offline Learning Module

The offline learning module leverages the LSPD results archive described in Sec. 3.3 in

order to learn the affinity between the macros (users) and the LSPD flow scenarios (items).

To describe this problem precisely, I formally define the system model as follows.

System Model and Problem Statement

Let M be a set of 3 macros: M = {<1, · · · , <3}, where <8 is a symbolic representation,

e.g., the macro’s name or index. Let P be a set of = binary (meta) parameters ? 9 . That

is, P = {?1, · · · , ?=}. A scenario B is a subset of P, i.e., selected parameters that are set

to True, while others are set to False. Then, &>' is defined as a function that maps a

(macro, scenario)–pair to normalized QoR scores in ℓ metrics, presented as a real-valued
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ℓ-dimensional vector:

&>'(<, B) = (@1, · · · , @ℓ) ∈ [0, 1]ℓ, < ∈ M, B ⊆ P. (3.1)

Unlike many other recommender systems where all users’ ratings are given in a fixed

range, e.g., from 1 to 5 stars, the evaluated QoR scores (e.g., timing, power) are distributed

over different ranges of values depending on both the metrics and the macros. Let B∗ be

the most commonly applied scenario across all macros in the archive. The evaluated QoR

score &>'ev
:

of the :-th metric (1 ≤ : ≤ ℓ) for each macro < is normalized to a QoR score

&>'(<, B): , that is in the range of [0, 1], as follows:

&>'(<, B): =




&>'(<, B)ev
:
− minG &>'ev(<, G):

maxG &>'ev(<, G): − minG &>'ev(<, G):
,

if B∗ has not been applied to macro <;

0.5 +
&>'ev(<, B): − &>'ev(<, B∗):

2 max{3<0G(<, B, :), 3<8=(<, B, :)}
,

where 3<0G(<, B, :) = maxG &>'ev(<, G): − &>'ev(<, B∗): ,

and 3<8=(<, B, :) = &>'ev(<, B∗): − minG &>'ev(<, G): ,

if B∗ has been applied to macro <.

(3.2)

The archive in Fig. 3.6 contains QoR results from prior LSPD flow runs. For each

macro <, let ((<) denote the set of all scenarios that were applied during the DSE for <.

An archive A (shown in Fig. 3.6) contains the (<, B, &>'(<, B))–tuples for all < ∈ M and

B ∈ ((<).

The first target problem is to find a prediction model � that approximates the &>'

function, where � also maps a (macro, scenario)–pair to an ℓ–dimensional vector.
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Problem 1 Find a model � that minimizes

∑

<∈M, B⊆P

| |&>' (<, B) − � (<, B)| |2. (3.3)

In the above problem, the goal is to minimize the sum of !2 distances between &>' (<, B)

and � (<, B) for all macros < and scenarios B. However, for scenarios B ∉ ((<), the golden

&>' (<, B) values are unknown. Thus, the offline learning module aims to minimize the

distances between &>' (<, B) and � (<, B) only for the scenarios recorded in the archive A,

which acts as the training data for machine learning.

Problem 2 Given an archive A, find a model � that minimizes

∑

(<,B,&>'(<,B))∈A

| |&>' (<, B) − � (<, B)| |2. (3.4)

This can be viewed as a regression problem, attempting to predict the &>' values. One

critical challenge is the lack of information regarding the input macro < and scenario B. A

full specification of a macro is a collection of the designer’s description, constraints, and

linked libraries, that are neither easily available nor quantifiable.

Architecture of the Prediction Model

The aforementioned challenge is addressed by exploiting a collaborative filtering ap-

proach, which is widely used for recommender systems when the user information is not

readily available [132]. For instance, a movie recommender system recommends a new

movie to a user, based on this user’s rating for other movies, and all other users’ ratings.

Let matrix � represent the movie ratings by all users, where �8 9 represents user 8’s rating

on movie 9 . Then, without further information, the system can learn latent features of each

user and each movie, by factorizing matrix � into a user matrix � and the transpose of a

movie matrix �, i.e., � = � · �Tr. This factorization can be done approximately when some
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elements of � are missing. After � and � are learned, a missing rating �8 9 can be predicted

as the (8, 9)–element of � · �Tr [132].

Our proposed architecture of the prediction model is motivated by the above approach for

movie recommender systems, but it differs in addressing the following additional challenges.

C1. Unlike movies, the observed scenarios are very sparse. In the iterative parameter tuning

example in Sec. 3.2, only 173 scenarios were observed for one macro, out of about 2400

scenarios. Moreover, sub-optimal scenarios for this macro were rarely observed while

tuning parameters for other macros.

C2. While a movie rating prediction model outputs a single value for each (DB4A, <>E84)–

pair, the QoR prediction model outputs a vector with ℓ elements for each (<02A>,

B24=0A8>)–pair.

To cope with C1, the prediction model factorizes the QoR information into a macro

matrix, a parameter matrix, and the part that relates the latent information for (<02A>,

?0A0<4C4A)–pairs to a QoR vector. On the other hand, C2 indicates that ℓ individual models

could be needed to predict each of the ℓ QoR metrics. Instead, I propose to construct one

holistic model that predicts all ℓ metrics. This model can be described with a (<02A>,

?0A0<4C4A, <4CA82)–tensor in analogy to a (DB4A, <>E84)–matrix. With this approach, it

is possible reduce the number of variables describing the model,4 and exploit all available

information together to learn the latent features.

The proposed prediction model � describes the relationship between (<02A>, B24=0A8>)–

pairs and their ℓ–dimensional &>' vectors by (1) a tensor decomposition approach for pre-

dicting missing values, and (2) an artificial neural network for the regression. Let ) be a

tensor whose (8, 9 , :)–element )8 9 : represents an intermediate value of the :-th QoR met-

ric for the (macro <8, parameter ? 9)–pair. These intermediate values, which are unknown

4The term ‘variables’ is more commonly referred as ‘parameters’ or ‘weights’ in other machine learning
applications and recommender systems. In this chapter, I refer to them as ‘variables’ to avoid the confusion
with ‘LSPD parameters’.
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at first, propagate through a neural network � that predicts the final QoR for a scenario.

Thus, by the backward propagation of errors, the intermediate values can be adjusted, as

well as other variables of �. Then, the tensor ) containing the intermediate values can be

decomposed into factor matrices containing the latent features.

Specifically, the tensor ) has the shape of |M| × (|P| + 1)× ℓ, where |M| is the number of

archived macros, and |P| + 1 is the number of parameters, including one pseudo-parameter

that is always set to )AD4. ℓ is the number of QoR metrics. By CP decomposition [136],5

) is decomposed into the macro matrix ", parameter matrix %, QoR metric matrix &, and

one super-diagonal tensor of shape ℎ × ℎ × ℎ, where ℎ indicates the dimension of the latent

features. The factor matrices ", %, and & have dimensions of |M| × ℎ, (|P| + 1) × ℎ, and

ℓ × ℎ, respectively. By this decomposition, an (8, 9 , :)–element of tensor ) can be computed

as

)8 9 : =
∑ℎ

U=1
"8U · % 9U · &:U . (3.5)

Given elements of the tensor ) , a single-layer perceptron network � predicts the final

QoR vectors [138]. That is, � can be expressed by a coefficient matrix ', a bias vector 1, and

an activation function, e.g., C0=ℎ. For an input vector E, it returns �(E) = C0=ℎ4F(E · ' + 1),

where C0=ℎew denotes an element-wise C0=ℎ function. Now, the input vector that corresponds

to a (macro <8, scenario B)–pair is defined as follows. For any parameter ? 9 , the vector

)8 9 : = ()8 91, · · · , )8 9ℓ) represents intermediate QoR values for the (<8, ? 9)–pair. For notational

simplicity, let B(?) be 1 when the parameter ? is in the scenario B, and 0 otherwise. The

input vector is the concatenation of vectors B(?1) · )81:, · · · , B(?=) · )8=:. Then, &>' for an

(<8, B)–pair can be predicted by �(B(?1) · )81:, · · · , B(?=) · )8=:).

5CP and Tucker are two widely used methods for tensor decomposition. The acronym CP stands for
1) CANDECOMP (canonical decomposition) / PARAFAC (parallel factor analysis), or for 2) canonical
polyadic (decomposition). Tucker is a generalization of CP, where the core tensor is not super-diagonal and
contains hidden features [137]. With CP, it is possible to explicitly represent the latent information for each
macro separately.
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To summarize, the proposed model � is constructed as follows:

�(<8, B) = �(B(?1) · )81:, · · · , B(?=) · )8=:) (3.6)

= C0=ℎ4F((B(?1) · )81:, · · · , B(?=) · )8=:) · ' + 1) (3.7)

Since ) can be described by the latent feature matrices ", %, and &, the model � can be

written as

�(<8, B; ", %,&, ', 1). (3.8)

Here, � has two types of input: (1) the original input (macro <, scenario B) to � and (2)

variables ", %,&, ', 1 that describe how to compute �.

Training the Prediction Model

Training model � corresponds to learning its variables ", %,&, ', and 1. Let archives A

and B contain the training and validation data, respectively. To solve the following problem,

I use a stochastic gradient descent method [138]:

Problem 3 Given A, find model �’s variables that minimize

∑

(<,B,&>'(<,B))∈A

| |&>' (<, B) − � (<, B)| |2 + _1!
1(�) + _2!

2(�). (3.9)

To avoid overfitting � to A, the !1 and !2 regularization terms !1(�) and !2(�) are added,

each multiplied by small constants _1 and _2, respectively.6 A trained model � is evaluated in

terms of the validation error
∑

(<,B,&>'(<,B))∈B | |&>' (<, B)−� (<, B)| |2. After a large number

of training iterations, the offline learning module returns the model � with the smallest

validation error.

6The !1 regularization term is the sum of the absolute value of all variables E describing the model �,
i.e., !1(�) =

∑
E∈� |E |. Similarly, !2(�) =

∑
E∈� E2.
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3.5.2 Online Recommendation Module

Given a trained QoR prediction model � = �(<8, B; ", %,&, ', 1), metric cost function

or weights F, number C of scenarios, and target macro <, the online recommendation module

returns C scenarios that are predicted to achieve near-optimal QoR scores (weighted by F)

for < according to �. The predictions are made by the model �(<, 2; ", %,&, �, 1) that has

been trained during the offline learning stage. Since the variables ", %,&, �, 1 are fixed to

some learned values, the output of � depends only on the macro < and configuration 2.

For a legacy macro <8 ∈ M, the &>'(<8, B) for any scenario B can be predicted by

computing �(<8, B). Making an inference using this model � takes much less time than

applying an LSPD flow (e.g., a few minutes vs. a number of hours).

For a new macro <∗, the recommendation module requires a number of sample LSPD

results for this macro. In the case of a legacy macro <8 ∈ M, the 8–th row of the macro

matrix " contains the latent features for this macro. Similarly, let ` denote the (unknown)

latent feature vector for <∗. Then, &>'(<∗, B) for a scenario B can be estimated by

�(<1, B; `; %,&, ', 1). (3.10)

In this model, only the values of ` are unknown, since the values of P, Q, R, and b are

included in the learned model �. Thus, this ` can be learned using the model � and a

sample LSPD results archive C.

Problem 4 Given the model � and archive C, find ` that minimizes

∑

(<∗,B,&>'(<∗,B))∈C

| |&>' (<∗, B) − �(<1, B; `; %,&, ', 1)| |2 + V. (3.11)

V represents the sum of !1 and !2 regularization terms for `. After ` is learned by the

gradient descent method, the model � can be again used to make inferences for the new

macro <∗.
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After this process, the learned values of the variable ` can be considered as " [8] in the

legacy macro <8’s case. The following lemma states this.

Lemma 1 For the model F(m, c; M, P, Q, A, b), let’s assume that the variables ", %,&, �, 1

are set to certain values (as a result of training) such that 7

�(<, 2; ", %,&, �, 1) ≈A &>'(<, 2). (3.12)

Let <∗ be a new macro with the sample CAD results of

B = {(<∗, 2, &>'(<∗, 2))|2 ∈ �(<∗)}. (3.13)

If a vector ` satisfies

�(1, 2; `; %,&, �, 1) ≈B &>'(<∗, 2), (3.14)

then the following holds:

�(<, 2; " + `, %,&, �, 1) ≈A∪B &>'(<, 2). (3.15)

Thus, for a new macro, the online recommendation module can predict the QoR scores

by learning the latent feature vector ` and using the model �.

3.6 Experimental Results

3.6.1 QoR Prediction Model

As described in Sec. 3.1, the LSPD results archive consists of the historical data for over

1, 000 macros in multiple product families of high-performance processors, collected over a

number of years and prior design efforts. For 250 binary meta LSPD parameters that are not

7≈A means values of the LHS are close to those of the RHS on set A.
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Figure 3.7: Train and validation error of the QoR prediction model.

too macro-specific or designer-specific, the archive contains about 300, 000 (Input: macro,

scenario; Output: QoR)–tuples, with 150, 000 distinct scenarios.

For training, the archive is partitioned into a train set A (80%) and validation set B

(20%). The QoR prediction model � was trained by 600 iterations of the gradient descent

method, with the variables initialized to random values between −0.5 and 0.5. The trained

model’s accuracy is evaluated by the root mean square error (RMSE) on the train set:

train RMSE =

√∑
(<,B)∈A

| |�(<, B) − &>'(<, B)| |2/|A|. (3.16)

The validation RMSE is defined similarly on the validation set B. Fig. 3.7 shows the train

and validation RMSE over the training iterations. Both RMSE values generally decrease as

the number of iterations increases, with diminishing returns. The learning rate _ started

from 0.1 and was decreased by a factor of two when the prediction accuracy (1−RMSE) did

not improve over ten iterations.

The dimension ℎ of the latent feature vectors (in Equation (3.5)) was set to 50 to achieve

a good balance between the capability of the model and the applicability to a new macro.

With higher ℎ, the model can express a more complicated function. However, to learn the
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Table 3.2: A representative set of five macros from industrial 14nm high-performance pro-
cessors.

Macro name Logic function Logic gates Runtime (hours)

FP Floating-point pipeline 75,000 8.0

ECDT Execution control & data transfer 45,000 6.2

IDEC Instruction decode 210,000 21.6

ISC Instruction sequencing control 77,000 13.1

LSC L2 cache control & finite state machine 195,000 12.3

latent features of a new macro by solving Problem 4 in Sec. 3.5.2, at least as many sample

LSPD runs as ℎ are needed.

3.6.2 LSPD Parameter Recommendations

To evaluate the proposed recommender system, five macros in Table 3.2 are selected

from a 14nm production processor. These macros, which perform distinct and critical logic

functions, range in size from 45, 000 to 210, 000 logic gates. The average LSPD (Phase 1)

runtime varies from 6.2 to 21.6 hours. These values are the averages, and it can take many

more hours in the worst case.

QoR metrics of interest are the estimated worst slack, internal (register-to-register) slack,

total negative slack, congestion score (routability), and total power. Since it is often very

difficult to meet exactly the timing constraints for these macros during LSPD Phase 1, the

goal of DSE has been set to minimize the weighted sum of QoR metrics, with a weight vector

F = [1, 2, 1, 3, 4] determined by design experts (according to the archive). Fig. 3.8 shows the

average improvement of maxB F ·&>'(<, B) and the number of LSPD runs for the five target

macros, achieved by the following methods.

• Default: The default setting of LSPD, where all parameters are set to False. This does

not result in the worst QoR and it is the baseline for comparing the QoR of other

scenarios. Other scenarios’ QoR improvement is computed relative to this.
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• Sample: About 50 parameters (each scenario contains one parameter) that were ob-

served frequently and achieved high QoR according to the archive. The results from

these scenarios are used by Iterative and RS_New.

• Iterative: DSE using a software program that iteratively improves the scenarios, fol-

lowing the approach proposed in [26].

• RS_New: 20 scenarios generated by the proposed method for a new macro, using

results from 50 Sample runs.

• Legacy (design expert’s): The parameter configuration used by the designer who owned

the macro for the production macro release. This may include settings of customized

parameters that are effective only for the specific macro.

• RS_Legacy: 30 scenarios recommended by the proposed method for a legacy macro,

each combined (by set-union) with Legacy.

The five macros are considered as new macros for Default, Sample, Iterative, and RS_New,

and as legacy macros for Legacy and RS_Legacy. Fig. 3.8 and the 14nm section (top) of

Table 3.3 show results from this experiment. The overall best approach is RS_Legacy, which

combines the recommended parameters for legacy macros with the design expert’s configu-

ration. RS_Legacy is the only approach that closes the timing with a positive internal slack

(a key metric) for all five macros. It also outperforms other methods on the other two slack

metrics and is close to the best in terms of power and congestion scores. While the Iterative

method eventually achieves a high QoR improvement, it runs more than 170 LSPD scenar-

ios, taking 5 iterations. Although the proposed method RS_New shows a slightly lower

improvement, it takes about 70 LSPD runs on average, achieving higher efficiency (the slope

from the origin to the improvement point on the chart) than the Iterative method. Moreover,

many scenarios by RS_New or RS_Legacy have never been observed in the archive or by

other methods.
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Figure 3.8: The QoR improvement and the number of LSPD runs by the six methods,
averaged over the five macros in Table 3.2. The macros are considered as new macros for
Default, Sample, Iterative, and RS_New methods (left), and as legacy macros for Legacy
and RS_Legacy methods (right).

In a second experiment, the transfer-learning capability of the proposed system is ex-

plored by running a 7nm macro using scenarios recommended by a model trained with 14nm

data [139]. This experiment is conducted on a 7nm version of the IDEC macro, which has

similar logic functionality to the 14nm macro, but also some logic changes. The 7nm section

(bottom) of Table 3.3 shows a comparison of the Default LSPD QoR and the RS_Legacy14

approach, which is a combination of the recommended scenarios and the parameter config-

uration used for the final build of the 14nm version of the macro. RS_Legacy14 provides

a significant improvement in all three timing metrics, along with a small improvement in

power and small degradation in congestion. Based on these results, it is believed that the

proposed recommender system will provide a solid starting point for new chip design projects

in future technologies.

3.7 Concluding Remarks

The proposed recommender system approach for DSE with industrial LSPD flows aims

at reducing the high costs in VLSI design, especially for server-class high-performance pro-
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Table 3.3: Sum of QoR metrics over the five 14nm macros (top), and the metrics for a 7nm
macro (bottom). Positive slacks, lower congestion and power are preferred. ‘a.u.’ represents
an arbitrary unit.

Technology
DSE Worst Internal Total negative Congestion Total power

Method slack (ps) slack (ps) slack (ps) score (a.u.) (a.u.)

14nm

Default -350 -288 -474,886 549 303

Iterative -195 -84 -126,774 441 253

RS_New -200 -110 -167,936 457 265

Legacy -202 -53 -89,675 516 278

RS_Legacy -130 15 -19,691 458 266

7nm
Default -53 -52 -60,047 83 187

RS_Legacy14 -10 -13 -4,384 86 184

cessors. The proposed system learns the QoR prediction model using the LSPD archive and

then uses it to generate scenario recommendations. In many cases, recommended scenar-

ios are unique and have never been previously observed. Experimental results show that

the proposed approach can reduce the computational cost of DSE, and assist designers to

improve the QoR by recommending scenarios to combine with their own configurations.

The recommender system approach can be generally applied to large-scale DSE problems

with a fixed scenario space for the target CAD tools or flows. With HLS, however, the

scenario space varies depending on the specification. Thus, it is not feasible to construct a

universal QoR prediction model with a fixed length of scenarios that can be applied to an

arbitrary specification. The next chapter presents a transfer learning approach to address

this problem.
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Chapter 4: A Transfer Learning Approach for High-Level

Synthesis

HLS raises the level of design abstraction, expedites the process of hardware design, and

enriches the set of final designs by automatically translating a behavioral specification into

a hardware implementation. Different implementations can be obtained with a variety of

HLS knobs, such as loop unrolling or function inlining, applied to particular code regions

of the specification. For the DSE of a single specification, conventional machine learning

approaches can be employed to predict the performance and cost of the implementation from

a configuration of the HLS knobs that are defined for the target specification. However, those

approaches require a sufficient number of sample HLS runs for DSE of each specification.

Can we apply what was learned from the DSE results of different specifications to assist the

DSE of a target specification? This research problem is addressed in this chapter with a novel

approach based on transfer learning. Transfer learning aims to improve the performance of

a target learning task by reusing the knowledge obtained from different tasks or domains. I

identify the challenges for AI-augmented DSE with HLS and present a series of five machine

learning models for QoR prediction, in the order of evolution towards the proposed mixed-

sharing multi-domain transfer learning.

4.1 Design of Hardware Accelerators: the HLS approach

Heterogeneous architectures have emerged as a response to the slowdown of technology

scaling and the rise of diverse data-intensive workloads over the past couple of decades [140,

141, 76]. Specialized hardware accelerators deliver orders of magnitude performance im-

provement and energy advantage compared to general-purpose processors for applications
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Figure 4.1: An overview of design-space exploration with high-level synthesis.

in a variety of domains [142]. However, design of specialized accelerators starting from a

software application is a complex, expensive, and time-consuming task [76]. This can be

dramatically facilitated by HLS flows that automatically translate high-level specifications

into efficient implementations in ASICs or FPGAs, as depicted in Chapter 2.

Fig. 4.1 illustrates an elaborated overview of a design process with HLS from the design

optimization perspective. For a target application or system, designers generate its behav-

ioral specification (the top-right box shaded in yellow) either by implementing the target al-

gorithm or by porting an existing high-level code into an HLS-ready version. While the spec-

ification is written in high-level languages, such as C, C++, SystemC [9], and OpenCL [10],

state-of-the-art HLS tools are restricted to a subset of the high-level language functionality.

For instance, most of the tools do not support dynamic memory allocation or recursion [143,

144]. Designers modify the high-level code to obtain a synthesizable and more optimized

specification for HLS [145, 146, 147].

One high-level specification can be synthesized with different configurations of HLS knobs

that direct HLS flows to generate alternative but functionally equivalent implementations.

Most knobs define micro-architectural choices or synthesis options for particular code regions
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of the specification. In Fig. 4.1, the knob configuration space (the middle-right box shaded in

green) consists of the value for each of the three knobs that determine the loop manipulation,

function inlining, and array mapping options, respectively. The configuration of each knob

can be specified either in the high-level description, or in a script file that controls the HLS

flow.

The HLS flow processes the input specification and generates a hardware implementation

that realizes the specified behavior. As shown in Fig. 4.1, the HLS tool translates a high-level

specification into an RTL description, which is further transformed into an ASIC layout or

an FPGA configuration bitstream via LS and PD (the left box shaded in blue). The knob

configurations direct this HLS flow to generate alternative final implementations in terms

of QoR, such as latency, area, and power. For instance, applying the unrolling option to a

loop in the specification code generally results in a reduction of computational latency in

exchange for an area increase.

A collection of such alternative implementations of a specification constitute a design

space of that specification (the bottom-right box shaded in pink in Fig. 4.1). A design space

includes implementations (to be) generated with all possible, feasible, or considered knob

configurations. Designers explore the design space by running HLS flows with various knob

configurations in order to obtain optimal implementations with respect to the multiple, often

conflicting metrics of QoR. For the design of hardware accelerators as reusable soft IP, it is

usually the goal of DSE to find the Pareto-optimal implementations in all QoR metrics of

interest. Otherwise, designers may aim at finding a single optimal implementation with a

specific objective and constraints.

4.2 Challenges for Design-Space Exploration with HLS

Fig. 4.2 summarizes DSE results for three applications from the Spector OpenCL FPGA

benchmark suite: Sobel Filter, Breadth-First Search, and Merge Sort [148]. For each speci-

fication (the top yellow boxes), the knob configuration space is determined by a number of
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Figure 4.2: Design space exploration results for three applications in the Spector benchmark
suite: Sobel Filter, Breadth-First Search, and Merge Sort [148].
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configurable knobs, each with a set of values (the middle green boxes). The three specifi-

cations are associated with eight, six, and seven knobs, respectively. Each of those knobs

has a distinct definition and a specific set of selectable values. The multi-objective design

space for each specification, associated with the above knob configuration space, is presented

with respect to two QoR metrics: the application latency, and logic resource utilization (the

bottom pink boxes). The depicted implementation points were synthesized and evaluated

by Gautier et al., the authors of the benchmark suite [148].

In practice, it can be costly, impractical, or infeasible to run HLS flows with every knob

configuration since the total number of knob configurations grows exponentially with the

number of individual knobs. For efficient DSE, a large number of approaches have been

proposed [149, 150, 151, 152]. Recent approaches based on machine learning take the HLS

flow as a blackbox and train a QoR prediction model using sampled HLS results [153, 154,

155]. These approaches, however, still require a sufficient number of samples to train the

model with high accuracy. While this number depends on the specification and the knob

configuration space, in the worst cases, 20% to 50% of the design space have been sampled

and synthesized [153, 154, 155].

Conventional machine learning approaches train a separate QoR prediction model for

each specification, because a model constructed for one specification cannot take input from

a new specification that is associated with a different knob configuration space. As shown

in Fig. 4.2, each specification has a different number of distinct knobs and a unique design

space with diverse ranges and distributions of QoR. In this chapter, I investigate the following

research problem: Can we apply what was learned for previous specifications to aid the DSE

of a new specification? By reusing the learned knowledge across different specifications, it is

expected to enhance the training performance and reduce the sample complexity.

Transfer learning attempts to achieve this goal. For a machine learning task with limited

data, transfer learning approaches reuse the knowledge obtained from different yet related

tasks with abundant data. For instance, neural network models trained for natural image
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classification can be transferred to aid the disease classification in medical images [156]. The

new model for the disease classification consists of the pre-trained sub-network for feature

extraction and a newly added layer for classification.

This chapter presents a novel transfer-learning approach for AI-augmented DSE with

HLS. To the best of my knowledge, this is the first work proposing the application of trans-

fer learning to HLS QoR prediction where different specifications have different knobs or

synthesis options.

4.3 Challenges for Transfer Learning with HLS

Transfer learning aims to improve the performance of a target learning task by reusing

the knowledge obtained for different but related source tasks or domains. The properties

and characteristics of HLS-driven DSE pose three critical challenges in applying transfer

learning:

• Both the input domain and output range of the learning problem vary across speci-

fications. A QoR prediction model takes as input a knob configuration and outputs

predicted QoR values. As shown in Fig. 4.2, the three specifications have a different

number of knobs and distribution of realized QoR.

• Obtained knowledge for one application may include application-specific information.

Since Sobel Filter, Breadth-First Search and Merge Sort have different levels and struc-

tures of parallelism, applying some common knobs may have different impacts on their

QoR.

• The target application may contain its own properties which other applications did not

exhibit. Hence, the obtained knowledge from source applications may be insufficient

to fully describe and predict HLS results of the target application.

Each of the above challenges is addressed in this chapter as follows. First, an internal

part of the prediction model from the source task is transferred. For a neural network
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model that predicts output QoR from an input knob configuration, the dimension of the

input layer depends on the specification’s knob configuration space. Hence, unlike the image

classification transfer learning that transfers the intermediate representation learning part,

the proposed approach transfers the regression learning part starting from an intermediate

representation.

Second, a multi-domain transfer learning approach is proposed, where a common model is

trained from multiple source domains. For instance, if DSE results for Breadth-First Search

are available together with those for Sobel Filter in Fig. 4.2, a neural network model can be

constructed such that the model contains two versions of the first hidden layer, one with eight

elements for Sobel Filter, and the other with six elements for Breadth-First Search. This is

in an attempt to extract effectively common knowledge between multiple source applications

that is expected to be shared also with the target application.

Third, a mixed-sharing multi-domain transfer learning approach is proposed. In multi-

task learning and transfer learning, hard parameter sharing refers to the sharing of a common

model by multiple tasks [157]. In soft parameter sharing, each task has its own model and

parameters, where some parameter values are shared across all tasks [158]. I propose a

mixed-sharing approach to reflect the diversity of various source and target applications, as

presented in the next section.

4.4 Proposed Approach: Towards Mixed-Sharing Multi-Domain Transfer Learn-

ing

This section presents a series of neural network models addressing the aforementioned

challenges, in the order of evolution starting from a single-domain single-task learning to-

wards the proposed mixed-sharing multi-domain transfer learning.

66



4.4.1 System Model and Problem Description

Let - denote the set of all configurations G of = HLS knobs defined for a given specifica-

tion:

G = (G1, · · · , G=) ∈ - ⊂ R= (4.1)

Let &>' be a function that maps a knob configuration to the QoR values obtained by

applying the target HLS flows:

&>' : - → R< (4.2)

&>'(G) = (&>'1(G), · · · , &>'<(G)) (4.3)

where < denotes the number of QoR metrics of interest. As shown in Fig. 4.2, the ranges of

QoR values vary depending on the specification. Let )A08= denote the set of knob configu-

rations G ∈ - with known QoR values, and )4BC the set of those with unknown QoR values.

A normalized QoR function �&>')A08= returns the QoR values for G ∈ )A08= normalized to a

fixed interval, e.g., [0, 1]< ⊂ R<, where the normalization is performed separately for each

QoR metric. When this function is applied to G ∈ )4BC, some of the resulting �&>')A08=(G)

values may be out of the original normalization interval. When )A08= is obvious, we omit it

from the notation �&>')A08=. The target problem for a given specification is to learn its �&>'

function, given a )A08= set labeled with the observed QoR values:

Problem 5 Given )A08= ⊂ -, find a prediction function � : - → R
< that approximates

�&>':

arg min
�

∑

G∈-

| |�(G) − �&>'(G)| |2 (4.4)

The goal of machine learning for classification and regression is to learn a label-prediction

function, given an input domain (a set of knob configurations), output label space (the range

of normalized QoR values), and training data (sampled DSE results). Recently, neural net-

work models have been extensively used in machine learning tasks to represent the prediction

functions. Inspired by the human brain, a neural network consists of processing layers that
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Figure 4.3: A predictive model � 8 for �&>'
8

(1 ≤ 8 ≤ <) in single-task learning.

contain computation units called nodes or neurons [159]. By the universal approximation

theorem, any continuous function on a compact set can be approximated by a fully-connected

neural network [160, 161]. In this work, a fully-connected neural network model is proposed

for HLS QoR prediction.

4.4.2 Single-Task Learning

In single-task learning, a single predictive model � 8 : - → R approximates a single

unknown target function �&>'
8
, as shown in Fig. 4.3 (a). A fully-connected neural network

implementation of the abstract model is illustrated in Fig. 4.3 (b). A neural network consists

of layers, and each layer contains nodes, depicted as small solid squares in the figure. Each

node represents a single value, and the width of a layer is the number of nodes contained in

it. The input layer represents a knob configuration G from the domain -. The 9-th layer ℓ8
9

is computed with a function 5 8
9

that takes the previous layer as input and outputs a vector

of dimension equal to the width of ℓ8
9
. Layer functions 5 8

9
are defined as follows:

5 89 (H) = �2C8E0C8>=(�8
9 H + 189) (4.5)
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where �8
9

is a weight matrix, 18
9

is a bias vector (of appropriate dimensions), and �2C8E0C8>=

denotes a nonlinear activation function such as hyperbolic tangent, sigmoid, rectified linear

unit, or softmax. A neural network implementation of � 8 with five layers, as shown in

Fig. 4.3 (b), is a composition of the five layer functions 5 8
9

(1 ≤ 9 ≤ 5):

� 8(G) = ( 5 85 ◦ 5 84 ◦ 5 83 ◦ 5 82 ◦ 5 81)(G) = 5 85( 5 84( 5 83( 5 82( 5 81(G))))) (4.6)

The objective of the learning is to minimize the difference between the predicted QoR

� 8(G) and the actual QoR value �&>'
8
(G) for all knob settings G. Given a configuration set

)A08=, Problem 5 can be re-written as follows:

arg min
� 8=(�8

1
,18

1
,··· ,�8

5
,18

5
)

∑

G∈)A08=

‖ � 8(G) − �&>'
8
(G) ‖2 (4.7)

Stochastic gradient descent and its variants with optimization techniques have been demon-

strated to solve effectively the above problem [162]. The L1 norm and squared L2 norm of

the weights �8
9

multiplied by a small coefficient are often added to the objective function in

Eq. (4.7) as regularization terms.

4.4.3 Multi-Task Learning

Instead of learning one model for each QoR metric as in Fig. 4.4 (a), multi-task learning

attempts to improve the performance of multiple learning tasks by using some common

knowledge contained in those tasks, as shown in Fig. 4.4 (b) [163]. Fig. 4.4 (c) illustrates

a neural network implementation of the multi-task model � for < QoR metrics of interest,

defined as follows:

�(G) = (�1(G), · · · , �<(G)) (4.8)

�8(G) = ( 5 85 ◦ 5 84 ◦ 63 ◦ 62 ◦ 61)(G) = 5 85( 5 84(63(62(61(G))))) (4.9)
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71



where 61, 62, and 63 are nonlinear functions for the first three hidden layers. The input

for 61 is a knob setting G ∈ - for the target specification. The output of 63 represents the

common feature that is used as an input to 5 85 ◦ 5 84 for each task 8.

From experiments, it has been observed that when the size of )A08= is large enough,

single-task models can approximate the target function with higher accuracy on )4BC than

multi-task ones, but when )A08= is relatively small, multi-task models outperform single-task

ones.

4.4.4 Cross-Domain Transfer Learning

The QoR prediction model in Fig. 4.5 (a) learned for one specification can be transferred

to have a different domain, as shown in Fig. 4.5 (b). More precisely, a part of the neural

network learned for the source task is transferred to be a part of another neural network for

the target task. The source model � can be described as a composition of two functions 6

and �′, i.e., � = �′ ◦ 6. Given a pre-trained multi-task model �, a target model � can be

constructed as �′ ◦ ℎ, where �′ is transferred from � and ℎ is a new function defined on

the domain of �. Fig. 4.5 (c) and Fig. 4.5 (d) illustrate a neural network implementation of

the source model � and the target model �, respectively. The dotted box in Fig. 4.5 (c)

corresponds to �′ that is transferred to the shaded box in Fig. 4.5 (d). Given the neural

network of the source model � as in Eq. (4.8) and Eq. (4.9), a neural network of the target

model � is defined as follows:

�(G) = (�1(G), · · · , �<(G)) (4.10)

�8(G) = ( 5 85 ◦ 5 84 ◦ 63 ◦ 62 ◦ ℎ)(G) = 5 85( 5 84(63(62(ℎ(G))))) (4.11)

where ℎ denotes the new nonlinear function in the first hidden layer (the brown layer in

Fig. 4.5 (d)). Pre-trained functions 62, 63, 5 84, and 5 85 (in the shaded box in Fig. 4.5 (d)) are

transferred from �. The leftover part in � is its first hidden layer 61. The domain of 61 is
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the knob configuration space of the synthesized specification that � has been trained for.

The codomain of 61 is a vector space of a fixed dimension, which is the domain of 62. The

new function ℎ is defined with the domain of the knob configuration space for the new target

specification and its codomain is equal to that of 61. Since this codomain coincides with the

domain of 62, the function composition of 62 ◦ ℎ is well-defined in the new model �. The

transferred part determines how to compute the predicted QoR values from the intermediate

feature and it remains fixed during training for the new target task. Only the new function

ℎ from the target domain to the intermediate feature space is learned, possibly with much

smaller samples. The optimization problem can be expressed as follows:

arg min
ℎ=(�ℎ,1ℎ)

∑

G∈)A08=

‖ �(G) − �&>'(G) ‖2 (4.12)

4.4.5 Multi-Domain Transfer Learning

Transfer learning aims to improve the performance of the target learning task by discov-

ering and transferring latent or hidden knowledge from the source domain and task [164].

One of the main research topics in transfer learning is “what to transfer.” Some knowledge

is specific for individual domains or tasks, whereas some other common knowledge can be

transferred to help improve the performance of the target task [139]. Thus, it is critical to

identify such common knowledge, which is often latent. In an attempt to more effectively

disentangle common latent knowledge from what is specific for the source domain and task, I

propose a multi-domain transfer learning model that interacts with multiple source domains.

Fig. 4.6 (a) and Fig. 4.6 (b) illustrate the source model and the target model, respectively,

of the proposed multi-domain transfer learning. In this model, it is assumed that HLS results

for multiple source specifications are available for pre-training. For � source specifications

with heterogeneous knob configuration spaces -3 (1 ≤ 3 ≤ �), the proposed multi-domain

QoR prediction model % is defined as %(3, G3) = (%′ ◦ ?3)(G3), where G3 ∈ -3 , and function
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Figure 4.6: A source model % and a target model � for multi-domain transfer learning.
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?3 is defined on -3 . Function %′ plays the fundamentally same role as �′ in model � for

cross-domain transfer learning (Fig. 4.5), but %′ is trained with multiple source tasks. A

neural network implementation of %, as illustrated in Fig. 4.6 (c), is defined as follows:

%(3, G3) = (%1(3, G3), · · · , %<(3, G3)), 1 ≤ 3 ≤ �, G3 ∈ -3 (4.13)

%8(3, G3) = ( 5 85 ◦ 5 84 ◦ 63 ◦ 62 ◦ ?3)(G3)

= 5 85( 5 84(63(62(?3(G3))))), G3 ∈ -3 (4.14)

where ?3 represents the individual feature function for specification 3. The domain of each

?3 is the knob configuration space for specification 3, but their codomain is the common

feature vector space with a fixed dimension, which is also the domain of the next layer

function 62. In this model, ?3 functions for 3 ≠ 1 have some similarities with ℎ in the

cross-domain transfer learning model � (in Fig. 4.5 (d)). However, whereas ℎ and its inputs

are not used for the pre-training of the rest of � (which has been transferred from �), all ?3

functions and their inputs are used for training the entire model %. By exploring multiple

source domains and individual feature functions simultaneously, the shared part of the model

5 85 ◦ 5 84 ◦ 63 ◦ 62, grouped by the dotted box in Fig. 4.6 (c), is expected to extract common

latent knowledge, while individual ?3 functions are expected to interpret knowledge specific

to each specification. Then, the shared part can be transferred to a new model for the target

specification, as shown in the shaded box in Fig. 4.6 (d).

4.4.6 Mixed-Sharing Multi-Domain Transfer Learning

To further separate common knowledge from possibly application-specific and domain-

specific knowledge, I propose another multi-domain multi-task model, illustrated in Fig. 4.7,

that reconciles two types of parameter sharing: hard and soft. The models in Fig. 4.5

and Fig. 4.6 employ hard parameter sharing, where individual active networks for different

75



..
.

..
.

..
.

..
.

&

G1

G�

?1

?�

&1(G1)
&<(G1)

&′

@1

@�

A1

A�
&1(G�)

&<(G�)

(a) A mixed-sharing multi-domain multi-task
model & for multiple source tasks. The input G3
(1 ≤ 3 ≤ �) for the 3-th source task is processed
in parallel by an auxiliary function @3 , and by ?3
followed by &′. The output from the two paths
are passed to A3, which outputs the final predicted
�&>'

1

, · · · ,�&>'
<

for G3 .

..
.

..
.

(G

(1(G)

(<(G)

ℎ

&′

@t

At

(b) A transfer learning model ( for the tar-
get task. The input G is processed in parallel
by @t, and by ℎ followed by &′. The output
from the two paths are passed to At, which
generates the final output. &′ is transferred
from & in (a), whereas @t and At are trained
for the target task.

Figure 4.7: A source model % and a target model ( for mixed-sharing multi-domain transfer
learning with both hard and soft parameter sharing.

specifications share a common sub-network (the dotted box in (c) and the shaded box in (d)

of each figure). In soft parameter sharing, each task has its own network and parameters

where some parameter values are shared (the values are either identical or very similar)

across those tasks [157, 158]. The proposed model & incorporates both hard parameter

sharing and a variant of soft parameter sharing, as shown in Fig. 4.7 (a):

&(3, G3) = A3

(
(&′ ◦ ?3)(G3), @3(G3)

)
, 1 ≤ 3 ≤ �, G3 ∈ -3 (4.15)

where function ?3 is defined on the knob configuration space -3 , function &′ predicts values

of intermediate QoR, function @3 separately and independently predicts intermediate QoR,

and function A3 takes in the two intermediate QoR predictions to output the final predicted

�&>' for G3 . &′ is shared by multiple source tasks, while ?3 , @3 , and A3 are used only

for specification 3. The target model ( for mixed-sharing transfer learning is shown in

Fig. 4.7 (b):

((G) = At

(
(&′ ◦ ℎ)(G), @t(G)

)
, G ∈ -t (4.16)
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Here, -t denotes the knob configuration space for the target specification, function &′ is

transferred from model &, and functions ℎ, @t, and At are defined for the target task.

Fig. 4.8 illustrates a neural network implementation of the source model & shown in

Fig. 4.7 (a). For � distinct source specifications, it is defined as follows:

&(3, G3) = (&1(3, G3), · · · , &<(3, G3)), G3 ∈ -3 (4.17)

&8(3, G3) = U3( 5 85 ◦ 5 84 ◦ 63 ◦ 62 ◦ ?3)(G3) + @3(G3)

= U3 · 5
8
5( 5 84(63(62(?3(G3))))) + @3(G3) (4.18)

(1 ≤ 3 ≤ �, G3 ∈ -3, 1 ≤ 8 ≤ <, U3 ∈ R)

where @3 represents an auxiliary function for specification 3 (shown as the light purple sub-

network on the top for Specification 1 and the light orange sub-network at the bottom for

Specification �). These auxiliary functions are expected to capture the application-specific

knowledge in a stronger sense than ?3 functions and to separate it from the shared sub-

network (shown in the dotted box). The aggregation function A3 in Fig. 4.7 (a) is realized in

this neural network model with a learnable parameter U3 that determines the ratio of the

contribution of the shared function to the final predicted �&>'.

After the pre-training using multiple source specifications, only the shared sub-network

5 85 ◦ 5 84 ◦ 63 ◦ 62 is transferred to a new model for the target specification. This new model

also has its application-specific auxiliary part @t, in addition to its feature function ℎ and

aggregation function At, that will be freshly trained for the target specification while the

transferred sub-network parameters are fixed.

4.5 Experimental Results

To evaluate the performance of the presented models, a set of comprehensive DSE re-

sults is exploited from the Spector benchmark suite repository [148] containing the nine
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applications reported in Table 4.1. The authors of the benchmark suite synthesized the

specifications using the Altera OpenCL SDK v14.1, and executed successfully synthesized

designs on a Terasic DE5 board with a Stratix V FPGA. The QoR metrics of interest are

the latency and utilization of the four types of resources: logic, RAM, on-chip memory, and

DSP. For each of bfs and spmv, there are two sets of QoR obtained with different input

datasets. The following predictive models are evaluated:

• Single-Task Single-Domain Learning: Model � 8 in Fig. 4.3 (b) for 8 = 1, · · · , 5. Each

� 8 has four hidden layers with 25 nodes per hidden-layer.

• Multi-Task Single-Domain Learning: Model � in Fig. 4.4 (c) with four hidden layers.

Each hidden layer contains 125 nodes.

• Multi-Domain Transfer Learning: Model % in Fig. 4.6 (c) for the pre-training in the

source domains, and model � in 4.6 (d) for the transfer learning in the target domain.

Model % has one domain-specific hidden layer with ten nodes per domain, and three

shared hidden layers with 125 nodes each. Model � consists of one domain-specific

hidden layer with ten nodes, and the transferred sub-network from %.

• Mixed-Sharing Multi-Domain Transfer Learning: Mixed sharing multi-domain model

& in Fig. 4.8 for the pre-training, and a target model ( as in Fig. 4.7 (b) for transfer

learning. & has one domain-specific hidden layer containing ten nodes, one shared

sub-network with three hidden layers each containing 100 nodes, and a domain-specific

auxiliary network that has four hidden layers with 25 nodes per hidden-layer for each

source domain.

The structure of the single-task model was determined empirically based on the obser-

vation that as the numbers of layers and nodes increase, the model’s prediction accuracy

first increases and then decreases; the structure with the peak accuracy was selected. Other

models were defined to have the same number of hidden layers and nodes with the single-task
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Table 4.1: Design spaces of the nine applications in the Spector dataset. Each of bfs and
spmv has two versions of the QoR results.

Application
bfs_ bfs_

dct fir hist
merge

dense sparse sort

Number of
6 6 9 8 7 7

knobs

Size of
507 507 211 1173 896 1532

design space

Application mm
nor-

sobel
spmv_ spmv_

mals 5000 500000

Number of
9 7 8 4 4

knobs

Size of
1180 696 1381 740 740

design space

ones. For two transfer learning models, all applications except the target one were used as

the source applications. The models were trained using the PyTorch library with the itera-

tions of 100,000 and the learning rate of 0.001 for % and &, and of 0.01 for all other neural

networks. For each application, pre-training with % or & took between 100 and 160 minutes

using Intel i7-6700K CPU running Ubuntu 16.04.6 LTS. Training the target predictive mod-

els took between ten and 30 minutes, depending on the sample complexity. Fig. 4.9 shows the

geometric mean of the RMSE (root mean squared error) of the four predictive models across

all target applications for each of the sample size 1%, 2%, · · · , 10% of the design space [162].

Those RMSE values were computed after normalizing the entire DSE results -, whereas for

training, )A08= sets were independently normalized. With small sample complexity from

1% to 3%, the multi-task single-domain model (marked by black asterisks) achieves lower

error rates, and thus higher accuracy, than the single-task model (marked by brown circles).

Transfer learning without mixed-sharing (marked by blue triangles) results in even higher

error rates than the traditional single-task and multi-task learning. For all sample complex-

ities tested, the proposed mixed-sharing multi-domain transfer learning model (marked by

red squares) achieves the lowest error rates, and thus, the highest prediction accuracy.
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Figure 4.9: Geometric mean of RMSE across the 11 sets of HLS QoR, achieved by each of
the four predictive models.

I simulated AI-augmented DSE using the Spector dataset by reading the reported QoR

values instead of running HLS flows to train and test the single-task single-domain, multi-task

single-domain, and mixed-sharing multi-domain transfer learning models. The two objectives

of DSE in this evaluation are to minimize the latency and logic utilization; it is possible to

perform a multi-dimensional DSE with more metrics. The target models were trained with

3% of the design space of each application. Then, 3% Pareto-optimal and near-optimal

configurations were selected from the design space based on the predicted QoR. Fig. 4.10

shows the ADRS (average distance from reference set) of the proposed configurations by each

model with respect to the golden Pareto-optimal set [22]. The mixed-sharing multi-domain

transfer learning model achieves the lowest ADRS for most of the applications. Table 4.2

summarizes this set of experiments by presenting the geometric mean of the ADRS, achieved

by each approach, across all applications. The proposed mixed-sharing multi-domain transfer
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Figure 4.10: Simulated AI-augmented DSE results for the nine Spector applications with
3%-sample and 3%-proposed configurations. Each of bfs and spmv has two versions of the
input.

learning model achieves the lowest mean of distances, which is equal to 0.034.

4.6 Concluding Remarks

HLS flows expedite the design of computer systems for hardware engineers, and facilitate

the FPGA acceleration of applications for software engineers. To the best of my knowledge,

this is the first transfer learning approach for HLS-driven DSE, where different specifications

have different lists of knobs. When DSE results from other source specifications are available,

successfully trained predictive models can approximate QoR without invoking HLS tools for

an exhaustive DSE. As demonstrated using the Spector dataset, the proposed mixed-sharing

multi-domain transfer learning model outperforms traditional machine learning models and

82



Table 4.2: Geometric mean of ADRS from the simulated AI-augmented DSE using the three
predictive models, across the nine Spector applications with 3%-sample and 3% proposed
configurations.

Predictive Single-task Multi-task Mixed-sharing multi-domain

model single-domain single-domain transfer learning (proposed)

Mean of ADRS 0.094 0.087 0.034

conventional transfer learning models in QoR prediction and in the simulated AI-augmented

DSE. The proposed approach can enhance DSE at early stages and enable efficient DSE

especially for specifications with huge design spaces.

The models presented in this chapter only consider the knob configuration spaces (as the

input domains) and the QoR spaces (as the output spaces) and applies transfer learning.

Ferretti et al. propose another approach that considers the application specifications, in

addition to the two aforementioned spaces. For a new target application, they select the most

similar application from the database of prior DSE results, and apply domain knowledge to

transform Pareto-optimal configurations for the source application into configurations for

the target application [165]. For both approaches, it is crucial to have access to the prior

DSE results [148, 166].

The next chapter reviews and categorizes machine-learning-based approaches for the

design parameter tuning problems, with CAD tools ranging from high-level synthesis to

physical design.
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Chapter 5: A Survey on Online and Offline Machine Learning for

Design Space Exploration

Over the past decade, machine-learning-based approaches have been proposed for design

space exploration of computer systems and circuits with a variety of CAD tools and flows

that include high-level synthesis, logic synthesis, and physical design. They aim at finding

optimal or near-optimal implementations in reduced time and cost by learning from the

experience with the tools and flows. In this chapter, I review those approaches and classify

them into the online and offline approaches, and into the inside and outside approaches,

depending on when and where the machine learning process takes place.

5.1 Classification categories

Online algorithms receive the input incrementally and generate output in response to each

input portion, whereas offline algorithms know the entire input sequence in advance [167].

When it comes to machine learning, online learners learn incrementally as new data arrives,

whereas offline learners learn from past experience or data [168]. It sounds as if offline

algorithms know the future and offline learners know the past, but that may be relative

to when the present is. In all cases, the online counterparts do not know or process such

information. It has been suggested that ‘the origin of the words “on-line” and “off-line” lies

in cryptographic systems, in which decryption was either done as part of the communications

system (i.e., on the communication line) or after the fact by using other facilities (i.e., off

the communication line)’ [169]. In this regard, the machine learning approaches for design

space exploration of computer systems can be categorized into online and offline approaches

as follows.

84



Online approaches refer to the machine-learning-based approaches for design space ex-

ploration where the main learning or training is performed after a new input specification

is given. Hence, the learning is done as part of the design space exploration. For those ap-

proaches, the machine learning model, agent, engine, or system is initialized for each target

computer system separately because an identical CAD tool parameter or flow configuration

often has diverse impacts on different specifications. Offline approaches are those where the

main learning or training is performed using prior results before a new input specification

is given. Those approaches attempt to leverage prior experience on designing different com-

puter systems for design space exploration of a new system. Usually the main predictive

model is trained offline using a large amount of prior data, and it may be briefly trained

online to adapt to the new system.

Furthermore, the machine-learning-based approaches can be characterized by the target

problems that they address. Most stages of CAD involve solving many intractable problems

for which there exists no efficient algorithm, especially for complex specifications [170]. To

address those problems, the CAD tools have employed approximate and heuristic methods,

and more recently, machine learning approaches [17, 28]. Such machine learning approaches

performed within the execution of CAD tools are referred to as Inside approaches. Those

approaches improve the performance of target CAD tools and flows in general. On the other

hand, the designers need to specifically determine the optimal configurations of CAD tool

parameters and flow settings for each of their individual computer systems. The machine

learning approaches that address this search problem that is external to CAD tools and flows

are referred to as Outside approaches.

The following sections review a variety of machine-learning-based approaches for design

space exploration with CAD tools and flows described in Chapter 2. The approaches are

classified according to the aforementioned categories, as summarized in Tables 5.1, 5.2, and

5.3.
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Table 5.1: Categorization of approaches: (1) Machine learning (ML) inside CAD tools.

CAD tools

HLS LS PD

Online
Reinforcement Multi-armed Reinforcement

ML learning [171] bandit [172] learning [173]

Approaches
Offline

Reinforcement Neural

learning [174] networks [175]

Table 5.2: Categorization of approaches: (2) Machine learning (ML) outside CAD tools.

CAD tools

HLS LS PD

Online

Random forest, Multi-armed

Active learning [153], Reinforcement bandit [176],

Active non-Pareto learning [25] Graph neural

ML elimination [154] networks [177]

Approaches

Offline

Meta-heuristic [178], Transfer Reinforcement

Transfer learning learning learning

[48] (Ch. 4) [179] [180], [181]

5.2 Approaches for High-Level Synthesis

5.2.1 Online Inside approaches for HLS

As HLS transforms a high-level description into an RTL one, the first step in most HLS

tools is the compilation of the input description. Haj-Ali et al. propose a reinforcement learn-

ing approach to optimize the sequence of compiler optimization phases applied to the input

description [171]. To address this phase ordering problem, which is an NP-hard problem,

Haj-Ali et al. first train random forests offline to determine important features of descrip-

tions (e.g., number of branches). Then, for a specific input description, a reinforcement

learning agent repeatedly selects the next optimization pass to apply, knowing the values of

the important features and the history of optimization passes applied so far. This agent is
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Table 5.3: Categorization of approaches: (3) Machine learning (ML) outside CAD flows.

CAD flows

LSPD flows FPGA flows

Online

Decision

engine [26, 182], Multi-stage Multi-armed Principal

Bayesian tuning [183], bandit [128] component

ML optimization [184] analysis,

Offline

Recommender Hybrid approach Model Bayesian

systems [46] (Ch. 3), [49] (Ch. 6) stacking [130]

Transfer learning [185] [186]

trained with the goal of maximizing the total rewards that are defined as the numbers of

cycle counts reduced by taking each action.

5.2.2 Offline Inside approaches for HLS

Chen et al. propose a reinforcement learning approach for one of the most critical stages

in HLS: scheduling [174]. Given a data flow graph whose nodes represent operations and

edges represent data dependency, a schedule is a mapping of each node to a control step,

satisfying the dependency relation. The objective of the time-constrained scheduling problem

is to find a schedule that minimizes the number of the resources (e.g., the number of the

same type of operations at the same control step). An ASAP (as soon as possible) schedule

maps each node to the earliest possible control step. The reinforcement learning agent starts

from an ASAP schedule, and takes a sequence of actions of moving one operation in the

schedule to the next control step. The agent attempts to find an optimal policy to maximize

the total rewards that are defined as the amounts of the resources reduced by taking each

action. A deep neural network that represents the policy is trained once with a large amount

of generated graphs, and used for scheduling new graphs.

Both Haj-Ali et al. [171] and Chen et al. [174] apply reinforcement learning to address

problems within HLS. While both approaches have a mixture of offline and online properties,
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the former is classified as an Online approach because the main learning part is performed

after a new input description is given1, whereas it is performed using a generated dataset

in the latter, which is classified as an Offline approach. In the rest of this chapter as well,

the approaches are classified as Online or Offline depending on when the main learning or

training occurs2.

5.2.3 Online Outside approaches for HLS

The two main inputs to an HLS tool are the high-level specification and a configuration of

the tool parameters. Online Outside approaches attempt to generate optimal configurations

for each input specification. Liu et al. perform active learning via Transductive Experimental

Design to sample representative and hard-to-predict configurations [153]. The HLS tool is

repeatedly executed with the sampled configurations whose results are fed to train a random

forest for predicting the area and latency. Meng et al. also actively sample configurations

to run the HLS tool and use them to train random forests, but instead of improving the

prediction accuracy, they iteratively eliminate non-Pareto optimal implementations from

the candidates [154].

5.2.4 Offline Outside approaches for HLS

Offline Outside approaches exploit the CAD results of previous computer systems to train

a model that can be applied online for a new system. Wang et al. train predictive models

for tuning hyper-parameters of the meta-heuristic methods (e.g., the simulated annealing,

genetic algorithm, and ant colony optimization) for design space exploration with HLS [178].

The predictive models are trained offline, and exploited online to tune the hyper-parameters

of the meta-heuristics for new systems.

Chapter 4 of this dissertation addresses another Offline Outside approach for HLS. The

1The authors also demonstrate the potential to generalize a trained policy to process new input descrip-
tions. The generalization version would belong to the offline approaches.

2The distinction may be subtle in some cases. The purpose of this classification is not to disregard certain
aspects of the proposed approaches but to focus on and emphasize their major contributions.
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proposed approach performs transfer learning, which aims to improve the performance of a

target task by reusing the knowledge extracted from different but related source tasks [48].

The knowledge extraction is usually executed offline, whereas the target task may be executed

online. In the context of design space exploration, the source tasks are related to the tuning

problem for prior computer systems, and the target task is defined for a new system. This

approach trains an input-dependent neural network model on prior data and transfers only

the input-independent part to a new model for new systems.

5.3 Approaches for Logic Synthesis

5.3.1 Online Inside approaches for LS

Yu proposes an approach that addresses an important problem within the LS stage:

Boolean logic optimization [172]. Given a Boolean circuit in the form of a directed acyclic

graph (where the nodes represent logic gates and the edges represent wires), the optimization

is performed by applying a sequence of synthesis transformations to the graph. Yu proposes

a multi-armed bandit approach, which is a class of reinforcement learning, that chooses a

sequence of strategies (synthesis transformations) from a set of multiple strategies with the

goal of maximizing the total payoff (e.g., the reduced number of AND-Inverter graphs).

5.3.2 Offline Inside approaches for LS

Neto et al. propose a framework for addressing a subtask of LS [175]. The proposed

framework partitions the input circuit into smaller pieces and uses an artificial neural network

to classify them into the two categories of representation: the And-Inverter Graph (AIG),

and the Majority-Inverter Graph (MIG). The AIG partitions are likely to be optimized well

with AIG optimizers, whereas the MIG partitions may prefer MIG optimizers, for the logic

optimization step during LS. The classification neural network is trained offline using a

generated dataset.
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5.3.3 Online Outside approaches for LS

Hosny et al. define an LS tool configuration as a permutation with repetition of several

primitive transformations and propose a reinforcement learning approach to obtain a configu-

ration with a minimized area subject to a timing constraint [25]. Over the state space defined

with the representative characteristics of the output gate-level description, the reinforcement

learning agent performs actions of adding a primitive transformation to the configuration,

with the goal of maximizing the reward that increases when the area decreases. The LS tool

is repeatedly initialized and executed over many episodes of the training.

5.3.4 Offline Outside approaches for LS

Yu et al. propose a transfer learning approach for LS [179]. They use a Long Short-

Term Memories network, which is a class of recurrent neural network, for predicting QoR

(e.g., the critical path delay) from an LS parameter configuration (a list of applied synthesis

transformations at each time frame). The neural network model is trained offline using a

generated dataset, and updated online for a new computer system and manufacturing process

technology.

5.4 Approaches for Physical Design

5.4.1 Online Inside approaches for PD

Elgammal et al. propose a reinforcement learning approach for the placement stage in

PD for FPGAs [173]. The reinforcement learning agent interacts with a simulated-annealing-

based placer that applies a sequence of moves (changing the location of some netlist blocks)

to an initial solution. The agent repeatedly proposes a candidate move to apply in order to

maximize the reward defined as the reduction in the normalized placement cost.
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5.4.2 Online Outside approaches for PD

Stefanidis et al. propose a multi-armed bandit approach to repeatedly select the next

heuristic algorithm to apply, among the three gate-sizing heuristics and among the four

buffering heuristics. The gate-sizing and buffering interleave [176]. Given a netlist after

floorplanning, Lu et al. performs cell clustering via unsupervised learning. The resulting

clusters are fed into the placement tool [177]. Both approaches are considered as Outside

approaches because the addressed problems have been conventionally solved by the designers.

As CAD tools continue to advance, future versions of PD tools may address such problems.

In that case, the above approaches would be classified as Inside approaches.

5.4.3 Offline Outside approaches for PD

Mirhoseini et al. propose a reinforcement learning approach for the chip floorplanning

step in the placement stage of PD [180]. Their approach focuses on generalizing the problem

so that a reinforcement learning policy network trained with a large set of previous computer

systems can effectively guide the placement of a new system. For this, they first train a

graph neural network that embeds the netlist information and predicts the reward defined

as a linear combination of the approximate wirelength, congestion, and density. This neural

network (except the last prediction layer) is used as the encoder of the reinforcement learning

policy network. The trained policy network may also be fine-tuned online for new systems.

Agnesina et al. propose another reinforcement learning approach for tuning the place-

ment parameters to minimize the wirelength [181]. Given the state defined by the netlist

information and the current placement parameter settings, the reinforcement learning agent

performs an action of modifying the parameter settings (e.g., flip Boolean parameter values,

or increase integer parameter values). The netlist information includes the handcrafted fea-

tures (e.g., the number of cells, and floorplan area) and the extracted features using a graph

neural network. After the agent is trained on a set of computer systems, it can operate for

new systems using the learned policy.
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5.5 Approaches for Logic Synthesis and Physical Design flows

5.5.1 Online Outside approaches for LSPD

Ziegler et al. propose a Bayesian-inspired decision engine for tuning extremely large-sacle

LSPD (logic synthesis and physical design) flows for designing industrial high-performance

computer systems [26, 182]. The online decision engine incrementally and adaptively con-

structs parameter configurations to run the LSPD flows with. Ma et al. perform an explicit

Bayesian optimization in the LSPD flow tuning to minimize the QoR values [184]. In each

iteration, an acquisition function samples a configuration, and the LSPD flow is executed

with that configuration to output the QoR values, which are used to update a surrogate

model. Given a configuration, the surrogate model based on Gaussian process regression

outputs a predicted QoR value (a single QoR value or a weighted sum of multiple QoR

values) along with the uncertainty of the prediction. The acquisition function exploits the

updated surrogate model to sample a new configuration in the next iteration.

5.5.2 Offline Outside approaches for LSPD

Chapter 3 of this dissertation addresses an Offline Outside approach for LSPD flows [46].

The proposed approach performs customized recommendation, motivated by a movie recom-

mender system that learns the relationship between movies and users from many different

users ratings on various movies and makes a personalized recommendation to the users.

This approach trains a QoR prediction model on a collection of prior data and makes a cus-

tomized recommendation for each computer system. The prediction model is trained offline,

whereas the recommended parameter configurations are built online for new systems. Davis

et al. propose a transfer learning approach for QoR prediction in RTL-to-GDS flows [185].

A neural network model is trained offline for predicting the QoR values from the flow pa-

rameters using a prior dataset. For new systems, only the last layers of the trained model

are re-trained online with a small number of the CAD flow runs.
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5.5.3 Hybrid Outside approaches for LSPD

While the main machine learning part is executed offline, many of the Offline approaches

discussed above include an online adaptation part for new computer systems. The fundamen-

tal difference between those online adaptation parts and the Online approaches is that the

former requires a trained model or obtained knowledge from the offline learning part whereas

the latter can be performed without any prior data. The Online-Offline Hybrid approaches

consist of both online and offline machine learning parts such that the online learning can

be carried out immediately without prior data or models. Liang et al. propose a multi-

stage approach that consists of the online parameter tuning and the offline warm-up [183].

For each stage of an LSPD flow (e.g., LS, placement, CTS, routing, and optimizations), an

ant-colony optimization engine suggests the settings of the parameters for that individual

stage, while cooperating across all stages to evaluate the settings (by running the LSPD

flows). This online flow tuning may be enhanced via the offline warm-up that initializes the

online engines and reduces the number of parameters to be tuned by grouping the frequently

interacting ones and selecting only the important ones determined from the archived data.

Chapter 6 of this dissertation proposes another hybrid approach for LSPD flows in [49]. The

proposed system includes both online and offline subsystems such that the online system

evaluates, combines, and refines the parameter settings while the offline system may provide

recommended settings using prediction models trained on the archived data.

5.6 Approaches for FPGA flows

5.6.1 Online Outside approaches for FPGAs

Xu et al. propose a parallel multi-armed bandit approach for tuning the parameters of an

FPGA compilation flow (from an RTL description to a configuration bitstream) [128]. The

search space defined by the (discretized) FPGA parameters grows exponentially with respect

to the number of parameters; hence, the proposed approach dynamically partitions the search
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space into subspaces to be explored in parallel on multiple machines. The partitions are made

without any prior knowledge and based on the information gains, measured after the initial

FPGA flow runs with a number of sample parameter settings for the input specification.

Then, they exploit a multi-armed bandit method to allocate more computing resources (for

running the OpenTuner, an open-source autotuning framework [187], that invokes the FPGA

flows) to more promising subspaces.

5.6.2 Offline Outside approaches for FPGAs

Agnesina et al. propose an approach for tuning the parameters of an FPGA place &

route flow for FPGA-based logic emulation [186]. For hard-to-compile netlists, they first

train multiple base models (a random forest, extra trees, gradient-boosted trees, and an

artificial neural network) that each takes in the extracted features of the input netlist and

predicts the winning probability for each FPGA flow scenario. In this problem, a scenario

wins if it achieves the shortest FPGA compilation time. Then, they train a stacker (a

logistic regressor) that collects the output of the base models and makes a final prediction.

The models are trained using a large-scale commercial FPGA compilation database.

5.6.3 Hybrid Outside approaches for FPGAs

Kapre et al. propose an online-offline hybrid approach such that the online learning can

be carried out immediately without prior data or models [130]. For the goal of accelerating

timing closure, the online Bayesian learning component learns to predict the total negative

slack of the implementation from the settings of the (Boolean) FPGA flow parameters.

The offline component performs Principal Component Analysis to reduce the number of the

parameters to be tuned in order to improve the online machine learning performance.
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5.7 Concluding Remarks

With the recent rise of AI, machine learning approaches have been actively proposed for

AI-augmented DSE of computer systems with various CAD tools and flows. This chapter

has provided an overview of the state-of-the-art machine learning approaches spanning the

CAD stages of HLS, LS, and, PD, and the CAD flows of LSPD and FPGAs. Among

the presented categories, the main focus of this dissertation has been the Offline Outside

approaches because (1) from the perspective of the user of advanced CAD tools and flows,

the machine learning system exists outside the tools or flows, and (2) to address the machine

learning challenges introduced in Chapter 1, it is inevitable to learn from the experience

with the design and optimization of other computer systems.

The next chapter presents future work and concluding remarks for this dissertation.
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Chapter 6: Future Work and Concluding Remarks

Chapter 3 and Chapter 4 discussed AI-augmented design space exploration of computer

systems with HLS tools, and with LSPD flows. Chapter 5 classified related machine learning

approaches into categories of online learning and offline learning. This chapter presents

future work motivated by the previous chapters and concludes the dissertation.

6.1 AI-Augmented DSE with End-to-End CAD

Machine-learning-based approaches have been introduced for DSE at different steps of

CAD flows. Running an entire end-to-end (E2E) flow with aggressive performance and energy

efficiency goals may require different DSE techniques, e.g., one for high-level synthesis and

another for logic synthesis and physical design. Moreover, along the CAD tool-chain, the

decisions made at an earlier step can often both guide and constrain the pool of feasible

implementations at latter steps. To address these challenges, I propose an AI-augmented

DSE approach with E2E CAD flows, as shown in Fig. 6.1.

The proposed work addresses the problem of configuring many CAD tool parameters

across HLS, LS, and PD by exploiting machine-learning-based approaches to configure the

hyperparameters that guide the configuration of individual CAD parameters. This approach

includes the development of the following three main modules.

1. Meta-optimization framework for E2E design hyperparameter configuration: A hyper-

parameter and CAD parameter configuration framework will flexibly support different

E2E design flows, which may include specific CAD tools with tunable parameters. For

instance, an individual E2E flow may consist of a sequence of specialized CAD tools

and execution scripts. As illustrated in Fig. 6.1, this meta-optimization framework
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Figure 6.1: An overview of the proposed AI-augmented DSE with end-to-end CAD flows.

configures hyperparameters and passes specific parameter configurations to the CAD

tools within the flow. This framework provides an environment for developing and

deploying the next modules.

2. Collaborative recommender system for a single E2E design flow: A learning-based

recommender system for E2E hyperparameters will leverage collaborative filtering in

order to predict the final QoR for a computer system specification based on the previ-

ous results for other systems. As shown in Fig. 6.1, this recommender system is trained

using a collection of E2E QoR values, and a new specification is taken as input for the

inference using the trained recommender system. This recommender system approach

differs from the one presented in Chapter 3 in that it also processes the specification

as an input, whereas the recommender system in Chapter 3 processes only the config-

urations and CAD results. The recommender system becomes a building block for the

next module.

3. Federated transfer learning engine for multiple E2E design flows: A federated transfer

learning engine will convert trained prediction or recommendation models for other E2E

design flows into an informative model for the target flow. As noted at the bottom

of Fig. 6.1, this transfer learning engine interacts with multiple E2E design flows or
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Figure 6.2: An overview of the proposed system with the interplay of online and offline
machine learning [49].

a collection of E2E QoR values from those flows. This transfer learning approach

performs federated learning, i.e., it trains transferable models from multiple flows where

the training data are not shared across different flows. This approach would allow

protecting the confidential information, an issue not explicitly addressed in Chapter 4.

6.2 Interplay of Online and Offline Machine Learning

As classified in Chapter 6, machine-learning-based approaches have been also introduced

both for (1) online problems, without previous DSE experiences, and for (2) offline problems,

where DSE results from other computer systems are available. For a new target computer

system, the online approaches can be applied even when previous results are not available,

whereas the offline approaches may enhance the performance of DSE by extracting and

exploiting hidden knowledge and information from the previous results. To take advantage

of both approaches depending on the design environment and data availability, I (with M.
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Ziegler and L. Carloni) propose a hybrid approach where the online and offline components

interplay and interact with each other. Fig. 6.2 illustrates an overview of the proposed hybrid

system.

The proposed system consists of three main components: (1) an online-learning system,

(2) a data archive, and (3) a recommender system. The aim of the overall system is to

create a holistic approach that can cover all phases of the design cycle and availability of

suitable training data set. For example, if little or no suitable training data is available,

the system can emphasize the online-learning system. However, as the data archive contains

suitable training data, the system can utilize the recommender system. The system also

inherently supports hybrid or mixed-mode online and offline approaches. For example, the

scenarios originating from the recommender system can be mixed with scenarios from the

online component and iteratively refined. Furthermore, the system can take scenarios from

additional source of prior knowledge. For example, in an industrial setting, there are often

legacy designs that could provide useful scenarios that would be beneficial to the iterative

refinement process. The legacy design scenarios may not exist in the data archive, as they

could be generated using ad hoc methods. Expert designers can also directly supply input

to the online system.

6.3 Concluding Remarks

To address the challenges of increased design complexity, high-performance goals, power

constraints, time-to-market pressures, and non-recurring engineering cost, CAD approaches

have evolved towards raising the level of abstraction in the design process. Along this path of

evolution, DSE problems have progressed to work with the corresponding level of abstraction.

Designers not only specify the computer system at a high level of abstraction, but also

control the compute-intensive HLS, LS, and PD flow by configuring the corresponding CAD

tool options and flow settings. For each of those problems, DSE approaches have advanced

towards exploiting a variety of optimization algorithms and techniques. Over the past decade,
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machine-learning-based methods have been proposed as state-of-the-art approaches for DSE

problems at all major levels of abstraction. This dissertation has proposed novel machine-

learning-based approaches that learn from past experience with different computer systems

to augment the DSE of new systems.

Heterogeneity has emerged as a key to resolving the fundamental trade-off between high

performance and low power dissipation of computer systems. Designers design each of the

various heterogeneous subsystems of computer systems and specialized accelerators. To cope

with, and even to leverage, the increased degree of heterogeneity and number of distinct sub-

systems, this dissertation has investigated the potential to effectively and efficiently learn

from the DSE experience with different systems and subsystems. One of the main takeaways

is not only to find common properties among computer systems and apply similar param-

eter configurations, but to grasp the underlying relationship among heterogeneous systems

and their reactions to the CAD tools and flows in order to generate customized parameter

configurations.

Both the level of design abstraction and the degree of heterogeneity may continue to

increase over time. Domain-specific design languages allow designers to specify a domain-

specific hardware accelerator with a much smaller number of lines of code than for HLS [188].

Emerging devices and technology, such as quantum computing [189], nuromorphic comput-

ing [190], optical computing [191, 192], and optical communications [193], prompt the need

for developing or modifying CAD tools and flows accordingly. In such cases, AI-augmented

DSE approaches will face another challenge; nevertheless, they are expected to enhance the

design process to a greater degree when it is possible to learn from the diverse experience.
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