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Abstract

Learning predictive models from menstrual cycle data

Kathy Li

Despite being a physiological phenomenon that impacts billions of womxn worldwide, men-

struation has long been understudied. In this dissertation, we first explore the menstrual char-

acteristics of nearly 380,000 womxn, as collected via a self-tracking mobile health (mHealth)

app, Clue. We examine how variation in menstrual cycle length is related to volatility in other

experienced symptoms, helping to debunk the idea that menstrual cycles should be ‘regular.’

We then develop predictive models for menstruation utilizing this dataset, demonstrating first

how a fully generative model that explicitly accounts for the possibility that self-tracked data

may be flawed in terms of reliability can both outperform baselines and aid in the detection

of self-tracking artifacts (i.e., instances where a user supposedly did not experience a period

event, but in reality forgot or otherwise neglected to track it). Finally, we explore a hierarchical,

deep generative model for symptom tracking, where we utilize a deep neural network to learn

per-user parameters for tracking and retain a mechanism for modeling per-user likelihood of

adherence. We find that leveraging symptom data at the time series level allows us to predict

occurrence of next bleeding and non-bleeding tracking events with high accuracy. This work

demonstrates the great potential that large-scale mHealth data holds to better understanding

menstruation as a whole, as well as the importance of treating such data carefully.



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Mobile health data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Menstrual cycle definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Data overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Ethics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5.1 Graphical modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5.2 Deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Characterization of self-tracked menstrual cycle data . . . . . . . . . . . . . . . . . 14

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 Menstruation as an understudied topic . . . . . . . . . . . . . . . . . . . 14

3.1.2 Variation in menstrual cycles . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Defining variability groups based on cycle tracking history . . . . . . . . 21

3.2.2 Excluding cycles lacking user engagement . . . . . . . . . . . . . . . . . 24

3.2.3 Characterizing symptom tracking variability . . . . . . . . . . . . . . . . 29

i



3.2.4 Kolmogorov–Smirnov test . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Cycle length characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.2 Period length characteristics . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.3 Length statistics over the app usage timeline . . . . . . . . . . . . . . . 37

3.3.4 Symptom tracking differences . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 A hierarchical, generative model for menstrual cycle lengths that models skipped

period tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.1 User adherence to mobile health apps . . . . . . . . . . . . . . . . . . . 45

4.1.2 Menstrual trackers as use case . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.1 Data cohort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.2 Definition of adherence artifact . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.3 Proposed generative model . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.4 Parameter inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.5 Computing predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.6 Model training, prediction task, and evaluation . . . . . . . . . . . . . . 57

4.2.7 Alternative baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.1 Detecting self-tracking artifacts . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.2 Representing multimodality in cycle length distribution . . . . . . . . . 64

ii



4.3.3 Model performance as cycle proceeds . . . . . . . . . . . . . . . . . . . . 66

4.3.4 Impact of cycle variability . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4 Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 A hierarchical, deep generative model for menstrual symptoms that accounts for

skipped tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.1 Data cohort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.2 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.3 Proposed hierarchical, deep generative model . . . . . . . . . . . . . . . 77

5.2.4 Description of RNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.5 Inference using the approximate expected log likelihood . . . . . . . . . 81

5.2.6 Computing the Viterbi path, the most probable path iterating forward

and backward through x . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2.7 Simulated periodic data . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2.8 Data selection, training, and optimization . . . . . . . . . . . . . . . . . 87

5.2.9 Prediction by day . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2.10 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2.11 Alternative baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.1 Evaluation of optimization . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3.2 Inference of b on simulated periodic data . . . . . . . . . . . . . . . . . . 94

5.3.3 Predicting future event . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

iii



5.3.4 Predicting next cycle start . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.4 Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

A Supplementary information for Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . 115

A.1 Supplementary Information: Cohort and dataset . . . . . . . . . . . . . . . . . 115

A.1.1 Study dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A.1.2 User demographics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A.1.3 Cycle statistics per user age . . . . . . . . . . . . . . . . . . . . . . . . . 120

A.2 Supplementary Information: Results . . . . . . . . . . . . . . . . . . . . . . . . 126

A.2.1 Assessing differences in reported symptoms across user groups . . . . . 126

B Supplementary information for Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . 136

B.1 Supplementary Information: Methods . . . . . . . . . . . . . . . . . . . . . . . 136

B.1.1 Simulated data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

B.1.2 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

B.2 Supplementary Information: Results . . . . . . . . . . . . . . . . . . . . . . . . 138

B.2.1 Performance stability across different priors . . . . . . . . . . . . . . . . 138

B.2.2 Performance stability across different dataset sizes and ordering of cycles 138

B.2.3 Baseline results with different neural network settings . . . . . . . . . . 141

C Supplementary information for Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . 146

C.1 Supplementary Information: Methods . . . . . . . . . . . . . . . . . . . . . . . 146

C.1.1 Computing the MLE of b . . . . . . . . . . . . . . . . . . . . . . . . . . 146

iv



C.2 Supplementary Information: Results . . . . . . . . . . . . . . . . . . . . . . . . 150

C.2.1 Learned α and β values . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

C.2.2 RMSE over prediction day . . . . . . . . . . . . . . . . . . . . . . . . . . 150

C.2.3 AUC of predicting bleeding on days 4− 7 of test set . . . . . . . . . . . 157

C.2.4 RMSE of predicting next cycle start for (2, 2) initialization . . . . . . . 159

C.2.5 Normalized histogram of events per day . . . . . . . . . . . . . . . . . . 160

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

v



List of Figures

2.1 Sample screenshots of the Clue app. Users can track daily symptoms across

20 categories. On the left, for example, the app displays what day the user

is currently on in their cycle. On the right, a user can choose from ‘cramps,’

‘headache,’ ‘ovulation,’ or ‘tender breasts’ symptoms for the category ‘pain.’ . . 7

2.2 Simplified example of a graphical model, indicating the relationship between

observed data xt, latent variable λt, and hyperparameter θ. xt and λt are

replicated per t for t = 1, . . . T . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Sample graphic for a one-layer RNN, showcasing how input x maps to output,

with hidden states h that are dependent on previous hidden state and current

input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Step-by-step filtering process for computing the final user and cycle cohort.

The percentage of users and cycles removed at each step is computed out of the

initial numbers. Note that we only include users aged between 21-33 years, since

womxn exhibit more stable menstrual behavior in their ‘middle life’ phase [1; 2;

3; 4; 5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

vi



3.2 We provide illustrative examples of identifying a cycle tracking artifact (top)

and characterizing a user’s regularity (bottom) based on CLD statistics. In

each example, we display a user’s cycle history with a total of 4 cycles. Cycle

length is computed as the length of time between the first day of a period and

the first day of the next period, and CLD is computed as the absolute difference

between subsequent cycle lengths (i.e., if a user has n cycles tracked, they will

have n − 1 CLD values). Period length is computed by counting the number

of sequential days on which there is menstrual bleeding greater than spotting

(‘light,’ ‘medium,’ or ‘heavy’). Two such sequences are considered one period

if separated by no more than one day of non-bleeding/spotting. In the top

example, the user’s second CLD exceeds their median by at least 10, and thus

we identify the corresponding ‘artifically long’ cycle in red — this cycle will be

excluded from our analysis. In the bottom example, the user’s median CLD is

at least 9, and thus they will be classified as a consistently highly variable user. 23

3.3 Looking at the cumulative distribution of median CLD, we see that the curve

flattens out significantly around the ‘elbow’ at 9 days; thus, we choose greater

than 9 days as our cutoff for our definition of consistently highly variable. . . . 25

3.4 For each user, we compute the maximum CLD and plot a histogram before

(blue) and after (red) excluding cycles without user engagement (i.e., cycles

that are potential artifacts). We see that the multi-modal behavior (peaks at

around 30 and 60 days) is largely dampened upon removing these cycles. In

addition, the fat right-hand tail in the red curve implies that we preserve the

natural variation in cycle length — we are not simply removing long cycles. . . 27

vii



3.5 We plot a two-dimensional histogram of users’ median CLD versus maximum

CLD in logarithmic space, as well as the line where maximum CLD is equal to

median CLD plus 10 in red. We can see that the line separates out a highly con-

centrated region of users, as well as a more scattered region of users. Specifically,

the majority of the mass falls under this line, as showcased by the concentrated

red color in the lower lefthand corner of the plot and a diagonal band extending

upwards, while the concentration in the region above the line is more dispersed.

Thus, we examine the cycles that fall above the line as possible cycle tracking

artifacts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6 We sample one consistently highly variable and one consistently not highly vari-

able user, each with the median number of cycles (11), from the user cohort

and plot each set of three consecutive cycles on the x, y and z axes, respectively.

This allows us to visualize how much a user’s cycle lengths change throughout

their entire cycle tracking history — we would expect that a not consistently

highly variable user would have points that cluster closer together in space. We

see that the consistently not highly variable (teal) user occupies a small region,

while the consistently highly variable (orange) user’s points move through the

space. This indicates that the teal user’s cycle lengths are consistently very

similar to one another, whereas the orange user experiences more consistent

fluctuation in cycle lengths. Thus, we see that separating users into groups on

the basis of median CLD identifies those who are more and less consistently

highly variable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

viii



3.7 Time series embedding (a) and probability distributions (b) of cycle length

for the consistently not highly variable (teal) and consistently highly variable

(orange) groups. (a) The cycle lengths of three consecutive randomly sampled

cycles from each user in the cohort are plotted on the x, y, and z axes. Each

consistently not highly variable user is represented by a teal point, and each

consistently highly variable user by an orange point. It is visually evident that

the teal cluster of users occupies a tighter region of the space around the x =

y = z line, with the orange cluster fanning outward. (b) The cycle length

probability distributions of the cohort, where we note that the orange group’s

distribution has a much wider spread and is less peaked than the teal group.

Cycle lengths are more heterogeneous, or widely distributed, for the orange

group, confirming that the consistently highly variable group represents those

with more fluctuation in cycle length. The cumulative distributions per-group

differ significantly (as per a two-sample KS test). . . . . . . . . . . . . . . . . 35

ix



3.8 Time series embedding (a) and probability distributions (b) of period length

for the consistently not highly variable (teal) and consistently highly variable

(orange) groups. (a) The period lengths of three consecutive randomly sampled

cycles from each user in the cohort are plotted on the x, y, and z axes. Visually,

we observe that both groups occupy a very similar region of the period length

space (few orange points are placed outside the region occupied by the teal

cluster). (b) The period length probability distributions of the cohort, where

we observe that the orange and teal distributions are largely overlapping, with

the same median of 4 days and a similar shape, indicating that period lengths

are distributed very similarly for the two groups. We notice a slight peak in

single day period reports in both groups, which we argue is reminiscent of app

usage behavior: some users are interested in knowing (approximately) when

they had their period, not in tracking how long it was, so they may only track

the day it occurred and not continue tracking after that. . . . . . . . . . . . . 37

x



3.9 For each user’s cycles (indexed by cycle ID), we average cycle (a) and period

length (b) across three different groups: the entire user cohort (top, purple), the

consistently not highly variable user cohort (middle, teal), and the consistently

highly variable user cohort (bottom, orange). This allows us to visualize how

cycle and period length vary over time for each group on average and in terms

of standard deviation (for illustrative purposes, we restrict the cycle ID to 20).

Cycle and period length statistics are stationary over the app usage timeline

within each plot. We note that the top and middle plots look similar in each

figure (i.e., the consistently not highly variable group looks similar to the overall

population in terms of both cycle and period length), but the wider shaded

orange spread of the bottom plot demonstrates the higher degree of variability

in the consistently highly variable group. In addition, this spread is consistently

wider for the orange plot over time. This showcases that the consistently highly

variable group represents a large degree of the variability that we see in the data

overall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

xi



4.1 Example cycle tracking history for the same user, demonstrating two scenarios:

where they track all of their periods (top) and where they skip tracking of one of

their periods (bottom). Cycle start dates are highlighted in green and skipped

period tracking is highlighted in red. The bottom panel showcases how skipping

tracking of one period can result in inflated observed cycle lengths — instead of

two subsequent cycles of length 27 and 35, respectively, because the user skips

tracking of a period, it appears that they have one cycle of length 62. This

is because cycle length is determined by the number of days between tracked

periods. This phenomenon holds analogously if a user skipped more than one

period (in which case three subsequent cycle lengths would appear as if it were

a single, inflated cycle length). . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Hierarchical graphical model for proposed generative process. In our graphical

model, variables within the outer plate are replicated for users i = 1, · · · , I, vari-

ables within the inner plate are replicated for each per-user cycle c = 1, · · · , Ci,

and variables within the innermost plate are replicated for each skipped cycle

j = 0, · · · , si,c. Individual-level parameters λi (average cycle length without

skipping) and πi (probability of skipping a cycle) are drawn from population-

level distributions characterized by hyperparameters u = [κ, γ, α, β]. si,c rep-

resents number of skipped cycles for user i and cycle number c; di,c represents

observed cycle length. We model observed data (cycle lengths di,c) as the sum

of true (unobserved) cycle lengths di,j,c skipped si,c times (so that an observed

cycle length di,c contains 1 + si,c unobserved cycle lengths di,j,c). . . . . . . . . 51

xii



4.3 Predicted probability of skipping one cycle over time for a simulated user. Or-

ange curve represents probability of user having skipped one cycle; markers

indicate probability of having skipped one cycle on day 30 or 40 of the up-

coming cycle. We see that the probability of having skipped one cycle in the

upcoming cycle is low until day 30. However, past day 30, we see that this

probability increases; on day 40, it is around 0.8 (versus 0.2 on day 30). Thus,

the model detects that the user is likely to have skipped a cycle on day 40, when

their typical cycle length has been passed. Because data in this experiment are

simulated, we know that this user has skipped a cycle before in their history and

does actually skip the next cycle. Our inferred probabilities recover this, show-

ing that our model can accurately detect when a user is likely to have skipped

an upcoming cycle based on their individual cycle length histories and update

these beliefs over time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

xiii



4.4 Individual posterior predictive probability of skipping upcoming cycle, pi (s∗|dcurrent),

over current day of next cycle dcurrent for two users from simulated data: one

who has skipped a cycle in their history (a) and one who has never skipped

a cycle (b). Our personalized model detects differences in predicted skipping

behavior for the two users. Blue and orange curves represent probabilities of

skipping zero or one cycle, respectively; markers indicate probability of skipping

zero or one cycle on day 30 or 40 of the upcoming cycle. Note that users can also

skip more than one cycle. For both example users, we see that the probability

of having skipped zero cycles in the upcoming cycle (pi (s∗ = 0|dcurrent)) is high

until day 30. However, past day 30, the model detects that the user (a) who has

skipped in their history is more likely to have skipped the upcoming cycle than

for the user (b) who has never skipped. This demonstrates how the model takes

into account the previous non-skipping behavior of this user. Because data in

this experiment are simulated, we know that the user in (a) does actually skip

the next cycle, while the user in (b) does not. Our inferred probabilities recover

this, showing that our model can accurately detect when a user is likely to have

skipped an upcoming cycle based on their individual cycle length histories and

update these beliefs over time. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

xiv



4.5 Posterior predictive distribution for cycle length over prediction day d∗ (i.e.,

what the next reported cycle is predicted to be) and current day dcurrent (i.e.,

day in next cycle) for the same user from menstruator data, assuming either that

next observed cycle is truth (a) or that next observed cycle may contain skipped

cycles (b). (a) When we assume the next observed cycle is true as reported

(s = 0), our posterior predictive distribution is unimodal. The probability of

the next cycle length is peaked around 30 until around day 30 of the next cycle,

after which the peak moves consistently to the right, indicating that our cycle

length predictions are consistently increasing past day 30 and not adjusting for

the likelihood of skipped cycles. (b) When we account for the possibility of

skipped cycles with s ≥ 0, our posterior predictive distribution is multimodal.

Prior to day 30 of the next cycle, the distribution is similarly peaked around

30 days, as with the s = 0 case. However, when the cycle passes day 30, the

distribution shows a peak around day 60, indicating the possibility that a user

may have skipped a cycle. This behavior holds analogously past day 60. Our

explicit modeling of cycle skips allows us to identify when a user may have

missed tracking a cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

xv



4.6 Prediction RMSE for proposed model and baselines over current day of the next

cycle on the menstruator data, averaged over all users. Both models’ superior

performance is magnified past around day 30 of the next cycle; they are able to

update predictions dynamically, as compared to static baselines. In particular,

accounting for skipped cycles (‘full’ version of our proposed model, blue line)

proves especially beneficial to prediction accuracy versus assuming the next

reported cycle is truth (‘alternative’ version of our proposed model, gray line)

— by anticipating the possible presence of skipped cycles, we are able to make

more accurate predictions and avoid the bump in RMSE seen in the gray line. . 66

4.7 Violin plot of per-user absolute error of predicted next cycle length, stratified

by user median cycle length difference (CLD) on the menstruator data. We see

from the increasing trend in absolute error with median CLD that more variable

users are typically more difficult to predict, showcasing that consideration of

per-individual behavior is vital to the integrity of our model. . . . . . . . . . . 70

5.1 Graphical model for deep generative model. xi,t represents observed binary data

for user i at time t (0 if tracking is not observed, 1 if tracked is observed), gi,t

is an indicator of whether tracking was skipped, bi represents the probability

that a user adhered to tracking, and zi,t represents the true binary data. bi

are drawn from a population-wide Beta distribution, Beta(α, β). True data zi,t

ranges from t = 0, · · · , T , observed data xi,t ranges from t = 1, · · · , T , and user

index i ranges from 1, · · · , I. Note: initial emission probability p(zi,0 = 1) = θ0,i

is not pictured, but is learned per-user. . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Loss (−Q̂(θ)) over epochs for different optimization methods. . . . . . . . . . . 95

xvi



5.3 Learned prior and posterior bi vs. true adherence bi on simulated data with

different initializations of (α, β). We see that the learned prior bi values have

more spread across users, whereas the learned posterior bi values cluster around

the adherence b, showcasing our model’s ability to successfully recover the truth

(i.e., the value on the y-axis). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4 Computed prediction probabilities p(x̂t = 1) (more precisely, p(x̂i,t = 1|zi,t−1))

over time for a particular user and particular seed, utilizing the bleeding only

model and predicting one day out. Vertical lines represent where the observed

data contains a 1, i.e., where the user tracked an event, and the dotted red line

indicates our prediction threshold of 0.5. We see how our model captures predic-

tion probabilities over time in a multimodal manner — probabilities generally

increase when a tracking event is coming up and decrease after the tracking

period has finished. In this instance, a lower prediction threshold may have

allowed for us to identify more true positives. . . . . . . . . . . . . . . . . . . . 99

5.5 AUC of predicting future symptom events for each model with a symptom in

addition to bleeding as input. We see that across models, we are able to pre-

dict future symptom events well, and that this performance improves as the

prediction day approaches the day of the event we are trying to predict. . . . . 101

5.6 AUC of predicting day 29 of bleeding across models. We see that across models,

we are able to predict day 29 of bleeding (the most common cycle length in the

dataset) well, with an AUC of about 0.7 as we approach day 29. . . . . . . . . 102

xvii



5.7 RMSE of predicted next cycle start, using model with bleeding only over pre-

diction day (a), and histogram of observed cycle length for the full dataset (b).

We see that cycle lengths are peaked around day 29, and that prediction RMSE

drops past around day 10 of prediction. This RMSE decreases as we approach

the typical cycle length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.8 RMSE of predicted next cycle start, using model with bleeding only and bleed-

ing with another symptom over prediction day (a), and histogram of observed

number of events per symptom on each day of the test set (b). We see that pre-

dictive performance is similar among models (i.e., whether we include another

symptom or not), due to the fact that symptom events are aligned with when

bleeding events occur, as seen in the histogram of tracking events. . . . . . . . 107

xviii



A.1 For users with cycles at a specific age, we average cycle (left) and period length

(right) across three different groups: the entire user cohort (top, purple), the

consistently not highly variable user cohort (middle, teal), and the consistently

highly variable user cohort (bottom, orange). This allows us to visualize how

cycle and period length vary with age for each group, on average and in terms

of standard deviation. We observe that cycle and period length statistics are

stationary over the studied age range within each plot. We note that the the

top and middle plots look similar in each figure (i.e., the consistently not highly

variable group looks similar to the overall population in terms of both cycle

and period length), but the wider shaded orange spread of the bottom plot

demonstrates the higher degree of variability in the consistently highly variable

group. In addition, this spread is consistently wider for all ages in the orange

plot. This showcases that the consistently highly variable group represents a

large degree of the variability that we see in the data overall. . . . . . . . . . . 125

A.2 Empirical CDFs of proportion of cycles with symptom out of cycles with cate-

gory between different user groups for ‘heavy’, ‘tender breasts’, and ‘spotting’. 135

B.1 Prediction RMSE over number of training individuals for a less informative (i.e.,

a more uncertain) prior on λ and π, u0 = [60, 2, 0.01, 0.1]. . . . . . . . . . . . . 139

B.2 Prediction RMSE over number of training individuals for a less informative prior

on λ and a completely uninformative (i.e., uniform) one on π, u0 = [60, 2, 1, 1]. 139

xix



B.3 Prediction RMSE for proposed model and baselines on day 0 over number of

individuals, I (a) and number of training cycles, C (on the full set of I) (b).

C = 2 means 2 input cycles were used to predict the third and so on. (a) Our

model outperforms summary statistic-based and neural network-based baselines

on day 0 when we account for skipped cycles (blue line), across all subsets of

I. In addition, our model produces sharper estimates (lower variance) and is

stable across I – with less than 40, 000 users, we have an RMSE less than 7.5.

(b) Our model is robust to different C, as shown by consistent RMSE with at

least 4 training cycles. Note that all models experience some fluctuations in

RMSE depending on number of training cycles; this is due to data randomness,

see Figure B.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

B.4 Prediction RMSE over number of training cycles, averaged over 10 runs of dif-

ferent randomly-drawn datasets of I = 10, 000 users. . . . . . . . . . . . . . . . 140

B.5 Prediction RMSE over number of training cycles, averaged over 10 runs of dif-

ferent randomly-drawn datasets of I = 10, 000 users. Here, before we take the

first C cycles from each user, we randomly shuffle them. . . . . . . . . . . . . . 141

B.6 Prediction RMSE over number of individuals for CNNs with 1, 2, 5, and 10

layers (blue, green, red, and purple lines, respectively) and a kernel size of 3. . 142

B.7 Prediction RMSE over number of individuals for LSTMs with 1, 2, 5, and 10

layers (blue, green, red, and purple lines, respectively) and a hidden size of 3. . 143

B.8 Prediction RMSE over number of individuals for RNNs with 1, 2, 5, and 10

layers (blue, green, red, and purple lines, respectively) and a hidden size of 3. . 143

xx



B.9 Prediction RMSE over number of individuals for CNNs with 1, 2, 5, and 10

layers (blue, green, red, and purple lines, respectively) and a kernel size of C = 10.144

B.10 Prediction RMSE over number of individuals for LSTMs with 1, 2, 5, and 10

layers (blue, green, red, and purple lines, respectively) and a hidden size of C = 10.144

B.11 Prediction RMSE over number of individuals for RNNs with 1, 2, 5, and 10

layers (blue, green, red, and purple lines, respectively) and a hidden size of

C = 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

C.1 Learned α and β values over epochs for bleeding only model for a particular

seed, across different initializations of (2, 2) and (5, 1). . . . . . . . . . . . . . . 150

C.2 RMSE of predicting next cycle start across models using (2, 2) initialization for

α and β. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

C.3 Histogram of observed number of events per symptom on each day of the test

set, normalized by total number of events per symptom, i.e., the proportion of

tracking events per symptom on each day. . . . . . . . . . . . . . . . . . . . . . 160

xxi



List of Tables

3.1 Description of the Clue app tracking categories and corresponding symptoms,

along with the per-symptom number of tracking observations (and their corre-

sponding proportion with respect to the total number of observations) for the

‘consistently not highly variable’ and ‘consistently highly variable’ user groups. 17

3.2 Per-user cycle characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Summary statistics for selected self-tracked menstruator dataset . . . . . . . . 49

4.2 Prediction RMSE results by model on day 0 and day 40 . . . . . . . . . . . . . 68

5.1 Overview of dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Overall test AUC vs. baseline, evaluated per symptom. Models are either

trained on bleeding only or bleeding and another symptom. . . . . . . . . . . . 98

5.3 AUC of predicting bleeding on day 2 of the test set over prediction day (aligned

at day 0) for bleeding only model. The average and SD are computed across 3

seeds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4 AUC of predicting bleeding on day 3 of the test set over prediction day (aligned

at day 0) for bleeding only model. The average and SD are computed across 3

seeds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

xxii



A.1 Summary statistics of this study’s cohort dataset, compared with state of the

art references on menstrual health studies through mobile apps. . . . . . . . . . 115

A.2 High-level characteristics for this study’s cohort dataset, compared with state

of the art references on menstrual health studies through mobile apps. . . . . . 116

A.3 Per-age number of users and cycles for the full cohort, as well as for the consis-

tently not highly variable and consistently highly variable user groups. . . . . 117

A.4 Per-country user count in the full cohort, as well as for the consistently not

highly variable and consistently highly variable user groups. . . . . . . . . . . . 118

A.5 Per-age average number of cycles per user for the full cohort, as well as for the

consistently not highly variable and consistently highly variable user groups. . 120

A.6 Per-age average cycle length per user for the full cohort, as well as for the

consistently not highly variable and consistently highly variable user groups. . 121

A.7 Per-age average period length per user for the full cohort, as well as for the

consistently not highly variable and consistently highly variable user groups. . 122

A.8 Per-age average median CLD per user for the full cohort, as well as for the

consistently not highly variable and consistently highly variable user groups. . 123

A.9 Per-age average maximum CLD per user for the full cohort, as well as for the

consistently not highly variable and consistently highly variable user groups. . 124

A.10 Kolmogorov-Smirnov test results for symptoms per-group . . . . . . . . . . . . 126

xxiii



A.11 Likelihood of low proportion (λs < 0.05) of cycles with symptom out of cycles

with category per group, with the associated odds ratio of how likely users in the

consistently highly variable group to the consistently not highly variable group

are not to track a symptom throughout their cycle history (i.e., in very few of

their cycles). 95% confidence intervals attained via bootstrapping with 100,000

samples are shown in parentheses. . . . . . . . . . . . . . . . . . . . . . . . . . 129

A.12 Likelihood of high proportion (λs > 0.95) of cycles with symptom out of cycles

with category per group, with the associated odds ratio of how likely users in

the consistently highly variable group to the consistently not highly variable

group are to consistently track a symptom throughout their cycle history (i.e.,

in almost every cycle where they track the category). 95% confidence intervals

attained via bootstrapping with 100,000 samples are shown in parentheses. . . 132

C.1 RMSE of predicted next cycle start over prediction day (aligned at day 0 per

user) for model using bleeding only. . . . . . . . . . . . . . . . . . . . . . . . . . 151

C.2 RMSE of predicted next cycle start over prediction day (aligned at day 0 per

user) for model using bleeding and energy. . . . . . . . . . . . . . . . . . . . . . 152

C.3 RMSE of predicted next cycle start over prediction day (aligned at day 0 per

user) for model using bleeding and emotion. . . . . . . . . . . . . . . . . . . . . 154

C.4 RMSE of predicted next cycle start over prediction day (aligned at day 0 per

user) for model using bleeding and pain. . . . . . . . . . . . . . . . . . . . . . . 155

C.5 AUC of predicting bleeding on day 4 of the test set over prediction day (aligned

at day 0) for bleeding only model. The average and SD are computed across 3

seeds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

xxiv



C.6 AUC of predicting bleeding on day 5 of the test set over prediction day (aligned

at day 0) for bleeding only model. The average and SD are computed across 3

seeds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

C.7 AUC of predicting bleeding on day 6 of the test set over prediction day (aligned

at day 0) for bleeding only model. The average and SD are computed across 3

seeds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

C.8 AUC of predicting bleeding on day 7 of the test set over prediction day (aligned

at day 0) for bleeding only model. The average and SD are computed across 3

seeds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

xxv



Acknowledgments

I am very fortunate to have a strong support system that has assisted me throughout this

journey.

I would first like to thank my collaborators and advisors, whose knowledge, insight, and

generosity made this dissertation possible. Thank you first and foremost to my advisor, Prof.

Chris Wiggins, for always offering an honest opinion, helping me organize my (often) scattered

thoughts, and encouraging me to take breaks. I am lucky to have had an advisor whom I

also consider a friend. Next, thank you to Dr. Inigo Urteaga for his patience, willingness and

ability to explain things in a way that just seems to ‘click’ in my brain, and his commiseration

during times of stress. Finally, thank you to my dissertation committee, Prof. Kyle Mandli,

Prof. Marc Spiegelman, and Prof. Noemie Elhadad for their words of encouragement, useful

insights, and flexibility.

Secondly, I would like to express my immense gratitude to my parents, whose fierce belief

in my ability to do anything has guided me throughout my life, and especially when I faced

setbacks and difficulties in my research process. Thank you mom and dad for always supporting

me, encouraging me, and checking in (and for offering to proofread).

Next, I would like to thank the friends, old and new, whose paths crossed with mine in

the last five years. The friends who listened to my concerns and complaints, boosted me up in

xxvi



times of doubt, and celebrated my wins, no matter how small. I love you all, and I couldn’t

have done it without you — in particular, thank you Linda and Lena, for being there always.

To cap it off, since I’m a little cheesy, I would like to thank the city of New York for being

a constant source of inspiration, a literal and metaphorical breath of fresh air, and one of my

favorite places in the world.

xxvii



To Mom and Dad

xxviii



Chapter 1

Introduction

Menstruation serves as an important health indicator for womxn 1, and is an experi-

ence that womxn are accustomed to anticipating and monitoring from a young age, learn-

ing about terms like PMS (premenstrual syndrome) and TSS (toxic shock syndrome) [6] and

being prepared for when their period arrives each month. From adolescence, many womxn

are often introduced to menstruation as a taboo and embarrassing topic to discuss and find

their experiences of pain to be invalidated or ignored [7; 8]. At best, menstruation can

be a confusing phenomenon to navigate; at worst, it can be disruptive, distressing, and a

source of great shame [9; 10]. It affects physical, mental, and social health; it can indicate

the presence of myriad conditions ranging from fertility issues [11; 12] and menopause [13;

14; 15] to cardiovascular disease [16]. In fact, menstruation is such a compelling source

of insight for womxn that it has been hypothesized as “the fifth vital sign” [17; 18; 19;

20]. Beyond individual health insights, it raises broader concerns about contraception, edu-

cation around how to use period products like pads and tampons (as well as access to such

products), and fertility.

1In this dissertation, we refer to Clue users or menstruators with the term ‘womxn,’ which is often considered

to be more gender-inclusive, acknowledging that not all menstruators are women and vice versa.
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However, while menstruation is a large part of many peoples’ lives and plays a key role in

understanding womxn’s health, it has continued to mystify researchers across different contexts

and remains largely misunderstood and understudied. Historically, this neglect has occurred

for a variety of reasons — among them, societal stigma associated with discussing menstrua-

tion candidly, the normalization of womxn’s pain, insufficient knowledge related to menstrual

physiology, and lack of access to large-scale, reliable datasets [21; 22] have limited advance-

ments. Nearly 15,000 publications in the past decade related to seminal fluid can be found in

PubMed; by comparison, only about 400 publications exist that mention menstrual blood [21].

The company Pantone released a new “period red” shade in 2020 meant to de-stigmatize men-

struation; however, the effort fell short, receiving criticism for the bright red color failing to

represent menstrual blood and the marketing, which inaccurately depicted a menstrual cup

inside a uterus [23]. This stark difference in research interest for and broader understanding

of male and female health conditions, even though menstruation affects half of the world’s

population, clearly demonstrates the importance of this field.

In particular, open questions relating to menstruation include how to improve inclusivity

around menstruation, how to reliably characterize the length and nature of menstrual cycles,

how menstruation relates to other aspects of mental and social wellness, and how to predict

the occurrence of menstrual cycles. Each of these questions requires collaboration across fields

— experts on the physiological nature of menstruation can inform assumptions around typical

menstrual behavior, those who investigate the social impact of menstruation can provide con-

text for the needs of menstruators, and quantitative researchers can develop models to assist

in predicting various aspects of menstruation.

While this field has grown in popularity in recent years, it is still relatively new and offers
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limitless opportunities for advancement. In particular, with the rise in usage of mobile tracking

apps such as menstrual trackers that allow users to input information about their menstrual

cycles, we now have access to data at a size and scale that was previously unavailable. Al-

though this data offers great potential for in-depth, quantitative investigation of menstruation,

it also holds its own reliability risks due to its self-tracked nature (for instance, users may not

always track exactly what they experience, or may forget to track altogether). In this disser-

tation, I will explore how to develop accurate, interpretable, and flexible predictive models for

menstruation, with a particular focus on how to consider the inherently unreliable nature of

mobile health data.

Specifically, in Chapter 2 I will provide background on mobile health data and its potential

to contribute to our knowledge of health behavior at-large; menstrual cycle definitions as

they pertain to our self-tracked mobile health dataset from Clue, a popular menstrual health

tracker; an overview of the Clue dataset; and machine learning, including graphical modeling

as it relates to depicting generative statistical processes for observed data and a brief overview

of deep learning. In Chapter 3, I will characterize our dataset, which spans millions of cycles

and hundreds of thousands of users, paying special attention to developing a quantitative

definition of menstrual cycle variability and helping to debunk the idea that menstruation

should be ‘regular.’ In addition, I will demonstrate how variation in menstrual cycle length

relates to variation in menstrual cycle symptoms.

In Chapters 4 and 5, I will move to proposing two different predictive models for menstru-

ation. Starting with a fully generative model in Chapter 4, I will describe in more detail how

inconsistent user adherence to self-tracking apps impacts data reliability and motivate the need

to consider such behavior. I will then introduce a hierarchical, generative model for menstrual
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cycle lengths that parameterizes separately per-user typical cycle length behavior and per-user

self-tracking adherence, showcasing how this model outperforms baselines, particularly as the

cycle proceeds, as well as how it can be practically applied to improve mobile health apps. In

Chapter 5, I will introduce a second model that utilizes time series representations of the data

(rather than menstrual cycle lengths) as input, spanning both period flow and other related

qualitative symptoms. In contrast to the model in Chapter 4, this model will be a deep gen-

erative model, leveraging the power of deep learning to learn parameters related to symptom

tracking in order to predict the occurrence of the next period (i.e., next cycle length) as well

as the occurrence of future symptoms. As in the model introduced in Chapter 4, this model

will also incorporate a hierarchical component for user adherence.

By providing an in-depth exploration of the dataset, as well as careful considerations of

different types of predictive models, I will demonstrate how machine learning models serve as

powerful tools to not only predict menstruation, but also to understand it. Such insights can

benefit users, clinicians, app designers, and researchers across specialties in the field, and more

broadly can inform those who work with self-tracked mobile health data.
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Chapter 2

Background

In this chapter, we introduce relevant issues and considerations for utilizing mobile health

data. In addition, we provide context for menstrual cycle definitions, which will be useful to

understanding the dataset that we use, and present a summary of the dataset. Finally, we

provide an overview of graphical modeling notation and definitions, as well as describe the

structure and utility of deep learning models.

2.1 Mobile health data

The rise of data-powered health has enabled more nuanced, quantitative understanding of

various health conditions and user behaviors. For instance, observational health data sources

have shed light on individual clinical trajectories [24], increased self-awareness about individual

health [25], and helped deliver on the promise of precision medicine [26]. Meanwhile, mobile

health solutions have also enabled a high-resolution view of a large, highly diverse range of

individuals over time [27; 28; 29; 30] and can provide insights into chronic diseases and be-

haviors [31; 32; 33; 34; 35; 36; 37; 38; 39; 40]. Menstrual trackers in particular have become

increasingly common — they are the second most popular app for adolescent girls and the

fourth most popular for adult womxn [41; 42] — meaning that millions of womxn around the
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world now routinely track their menstrual cycles and a variety of contextual factors and symp-

toms, accumulating high volumes of temporal, heterogeneous data via several different apps [43;

44; 45; 46; 47]. This growth in access to menstrual health data has enabled researchers to iden-

tify menstrual patterns at scale and explore their relationships with a broad set of symptoms.

Such research is exemplified by studies connecting the menstrual cycle to variations in womxn’s

mood, behavior, and vital signs [48], which showcase the insights that self-tracked data can pro-

vide into cycle characteristics [49], ovulation timing, and the evolution of reproductive health

for large populations [50]. Furthermore, these insights can empower informed decision-making

through increased self-awareness [51].

2.2 Menstrual cycle definitions

We define a self-tracking event, in the context of mobile health data, as an instance when

a user logs a symptom in the app. Relatedly, period self-tracking events refer to instances when

a user self-reports days where they have experienced period flow. We use such period tracking

events to determine length of the menstrual cycle, which we define as the span of days from

the first day of a period through to and including the day before the first day of the next

period [4]. A period consists of sequential days of bleeding (greater than spotting and within

ten days after the first greater-than-spotting bleeding event) unbroken by no more than one

day on which only spotting or no bleeding occurred.

2.3 Data overview

We utilize a de-identified user-tracked dataset from Clue by BioWink [43], one of the most

popular and accurate menstrual trackers worldwide [52]. Clue users can track period data and
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symptom information in categories like exercise, pain, and sexual activity (see Figure 2.1). Note

that Clue users input personal information at sign up, such as birth control usage and age, but

are not required to specify gender; information on race or ethnicity is also not collected. This

large-scale dataset provides a high resolution, long-term view of variation in both physiology

(e.g., period and cycle duration) and symptoms (e.g., pain and mood) across menstrual cycles,

enabling us to study the shared information between quantitative, temporal attributes and

qualitative, symptomatic attributes of menstrual experiences.

Figure 2.1: Sample screenshots of the Clue app. Users can track daily symptoms across 20

categories. On the left, for example, the app displays what day the user is currently on in

their cycle. On the right, a user can choose from ‘cramps,’ ‘headache,’ ‘ovulation,’ or ‘tender

breasts’ symptoms for the category ‘pain.’

Users are able to self-track their symptom experiences across 20 different categories, both

directly related to period physiology like ‘period flow’ and not, like ‘social activity’. These
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categories are selected at sign up, and not all users track all categories. As described above,

a ‘self-tracking event’ refers to an instance when a user logs an event by selecting a category,

such as ‘period flow,’ and then choosing an associated symptom out of the available options

(‘light,’ ‘medium,’ ‘heavy,’ or ‘spotting,’ in this example). Each row in the primitive dataset

represents a tracked event e, with the relevant information being (i) the user u that tracked

the event eu, (ii) the reported symptom s associated with that event eu = s, and (iii) the

user-specific cycle ce in which the event takes place.

2.4 Ethics

Since we utilize mobile health data in this work, it is imperative that we take ethical

concerns into consideration. In particular, mobile health data contains individual-level health

information that can be sensitive to the user. We have taken care to approach this data with

respect for ethics, as defined by the Belmont Report principles for conducting research involving

human subjects (namely, respect for persons, beneficence, and justice) [53]. Our data are de-

identified, ensuring that sensitive information is not personally identifiable. Furthermore, our

work seeks to benefit future users by providing insights that can have positive impact on their

understanding of their menstrual cycles. We have worked closely with experts at Clue to

ensure the data being used and the areas being investigated both serve this purpose without

jeopardizing ethics for the user. Finally, the research presented here was exempt from Columbia

University IRB approval, in accordance with 45CFR46.101(b), as all data are de-identified, and

no participant risks are associated with taking part in the study. Although participants do not

receive direct benefit from this study, their participation contributes to the general knowledge

of menstrual cycles and their symptoms.
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2.5 Machine learning

2.5.1 Graphical modeling

A graphical model [54] is a visual representation for explaining and reasoning about a

probabilistic model, which outlines the relationships between latent variables, observed data,

parameters, and hyperparameters. It provides a diagram for a generative model, which is a

hypothesis for how data are generated (and can be used to generate synthetic data to, for

instance, check the consistency of an inference or prediction method). We provide a simple

example of a graphical model in Figure 2.2. In this type of representation, shaded circles rep-

resent observed data, open circles represent latent (unobserved) variables, and dots represent

hyperparameters. Latent variables are the quantities we wish to infer from the data. The

lines and arrows drawn between shapes represent conditional dependencies between variables.

‘Plates’ (the rectangular boxes) represent groups of variables which share the same repeated

conditional dependence relations; for instance, a plate could represent many users or many

instances of time for representing a temporal process. By following the arrows in a graphical

model, one can see the hypothetical process by which the data are generated.

For instance, in Figure 2.2, θ represents the hyperparameter; λt represents the latent vari-

able; and xt represents the observed data. The plate around λt and xt with the label T

indicates that λ and x are indexed per-time, whereas one θ exists for the whole dataset. We

can consider, for instance, that λt are drawn from a probability distribution hyperparameter-

ized by θ. The lines and arrows indicate that xt is dependent on λt, and λt is dependent on θ

— the generative process begins with θ, from which λt is determined, and then xt.
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xtθ λt

T

Figure 2.2: Simplified example of a graphical model, indicating the relationship between ob-

served data xt, latent variable λt, and hyperparameter θ. xt and λt are replicated per t for

t = 1, . . . T .

2.5.2 Deep learning

Deep learning is a subset of machine learning that focuses specifically on progressively

learning from input data to output by utilizing multilayer methods to process information [55].

In the context of this work, we focus on deep (artificial) neural networks, which are meant to

simulate the way biological neural networks process information. Deep learning can be thought

of in terms of arbitrary function approximation, or as a method for probabilistic inference [56];

in general, it refers to a set of methods for learning data by learning a set of weights for

successive layers of non-linear transformations that lead from input to output.

There are many different architectures used in deep learning; we outline the key ones briefly

below:

• Multilayer perceptrons (also called deep feedforward networks) [56], which are defined
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as mappings from input to output where information is only passed forward from input,

to intermediate functions, to the output. These networks typically utilize composition

of multiple functions, where the first function is considered the first layer, the second

is considered the second layer, and so on, with the final layer referred to as the output

layer. The length of the chain of functions that are composed together is referred to as

the depth of the network. Since the training data does not have the output for each of

the individual functions (layers), these are referred to as hidden layers.

• Convolutional neural networks (CNNs) [57], which are defined as a set of networks

typically used for grid-like data (for instance, images, which represent a 2-D grid of

pixels). CNNs differ from other neural networks in that a convolution is used instead

of a general matrix multiplication in at least one of their layers. A convolution is a

mathematical operation defined as the integral of the product of two functions, where

one is reversed and shifted. This integral is evaluated for all values of the shift, which

produces the convolution function. For CNNs, the function that is shifted is referred

to as the kernel and the output is referred to as the feature map. CNNs can utilize

multi-dimensional kernels to process multi-dimensional data (like images). A layer of

a CNN also often contains a pooling layer, which replaces the output of the layer with

a summary statistic of nearby outputs (such as the maximum or average of a specific

rectangular neighborhood).

• Recurrent neural networks [58; 59] (RNNs), which are networks developed for se-

quential data and differ from feedforward networks in that they utilize iterative function

loops to process information. The key idea is that at each hidden layer, not only is
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the current external input utilized, but also the activations from the hidden layer of the

previous timestep. That is, whereas feedforward networks can only map from input to

output, RNNs can map from the entire history of the input to the output, allowing for

the network to retain ‘memory’ of previous inputs (since prior elements influence the

output). Gated RNNs, like long short-term memory networks [60] (LSTMs), allow for

accumulation of information over a longer duration.

h0 ht

output

input

h0 h1 ht−1 ht…

h1 ht−1 hth2

x1 x2 xt−1 xt

Figure 2.3: Sample graphic for a one-layer RNN, showcasing how input x maps to output, with

hidden states h that are dependent on previous hidden state and current input.

In Chapter 5, we will utilize an RNN-based deep generative model for symptom tracking

information, which is sequential. We provide a depiction of an RNN in Figure 2.3, which shows

how prior hidden state ht−1 and current input xt influence the output at each timestep.

Since deep learning involves using multiple hidden layers with non-linear functions, it is

possible to learn more abstract patterns by expressing complex representations in terms of

simpler ones. However, this can come at the sacrifice of interpretability. In Chapter 5, we
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utilize a deep generative model, which hypothesizes a generative model for the data, and learns

the proposed parameters via deep learning in order to represent the complex symptomatic

behavior. This is inspired by a hierarchical, deep generative modeling approach for a different

biological application of modeling how different cancer cell lines respond to experimental drugs,

which utilizes a generative model for the experimental setup and a deep learning model for

biological complexities [61]. This method allows for balance between predictive power offered

by deep learning and interpretability offered by a generative approach.
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Chapter 3

Characterization of self-tracked menstrual cycle data

In this chapter, we characterize a large-scale dataset of self-tracked menstrual cycle infor-

mation, including menstrual cycle lengths and a variety of qualitative symptoms. By exploring

this dataset, we are able to develop a quantitative definition for menstrual cycle ‘regularity,’

a concept that remains open to exploration among researchers in the field. Additionally, we

showcase that users with different menstrual cycle patterns also exhibit different symptomatic

experiences, which sets the stage for the importance of individual-level modeling.

3.1 Introduction

3.1.1 Menstruation as an understudied topic

As discussed in Chapter 1, menstruation continues to be an understudied area of research,

despite its key role in understanding womxn’s health. Due to such neglect, womxn are often

left with unaddressed pain and confusing or inaccurate diagnoses [62]. The existence of pain

associated with menstruation is very common — dysmenorrhea, or painful menstruation as-

sociated with symptoms like abdominal cramps and headaches — is estimated to affect up to

91% of womxn of reproductive age [63]. Dysmenorrhea has also been shown to be associated

with quality of life conditions like depression, anxiety, decreased productivity, and fatigue [64;
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65], as well as menstruation-related disorders like polycystic ovary syndrome (PCOS) and en-

dometriosis, which can cause infertility, intense pelvic pain, and limited mobility [66; 67]. By

better understanding the day-to-day patterns of menstruation, researchers can work to close

the systemic gaps that exist in addressing conditions that disproportionately affect womxn [68],

providing healthcare professionals with the tools and vocabulary to better identify such con-

ditions and empowering womxn with the knowledge to manage them.

3.1.2 Variation in menstrual cycles

Although the phenonemon of menstruation has been long been a subject of curiosity for

researchers in a diverse set of fields, spanning medicine and healthcare to sociology, some

misconceptions about the menstrual experience still remain. In particular, the notion of a

‘regular 28-day long cycle’ continues to exist, despite empirical evidence that variation is both

a natural and likely part of the menstrual experience. Clinical studies and recent analyses of

menstrual self-tracking app data [49; 50] have supported the claim that “complete regularity

in menstruation through extended time is a myth,” [69; 1] and have shown that variation

in period and cycle length (the number of days between subsequent periods) between cycles,

between and within womxn, and among populations is the norm [2; 70; 71; 72; 73; 74; 75;

4; 76]. In order to quantitatively solidify these findings and assist in dismantling the idea

of menstruation as a homogenous experience, we aim to develop a definition for menstrual

variability that is grounded in a large-scale dataset. In doing so, we can make progress in

answering the open question: what exactly does it mean to be ‘regular’ [74]?

In addition to variation in the length and consistency of menstrual cycles, each womxn’s

qualitative menstrual symptoms are unique. As previously mentioned, menstruation can influ-
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ence not only physiological symptoms like abdominal pain and headaches, but can also impact

quality of life, affecting mood and energy levels. With access to a large-scale, longitudinal

dataset, we also seek to characterize how womxn who track their cycle lengths differently may

also track their symptom experiences distinctly. Finally, we also acknowledge that users may

not always track their cycles perfectly and therefore develop a methodology for identifying and

removing such cycles from our dataset (a concept which we will further motivate in Chapter

4).

3.2 Methods

As mentioned in the Background section, we leverage a dataset from Clue, where users are

able to track symptoms across 20 categories. Table 3.1 provides a description of the available

Clue categories, their corresponding symptoms, and the frequency with which they are tracked

in the dataset (note that the definition of a user as ‘consistently highly variable’ or ‘consistently

not highly variable’ will be described later in this chapter).
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Table 3.1: Description of the Clue app tracking categories and corresponding symptoms, along

with the per-symptom number of tracking observations (and their corresponding proportion

with respect to the total number of observations) for the ‘consistently not highly variable’ and

‘consistently highly variable’ user groups.

Category Description Symptoms No. of tracking events

(%) for consistently not

highly variable group

No. of tracking events

(%) for consistently

highly variable group

period Period flow spotting, light,

medium, heavy

22,096,884 (19.71) 913,403 (18.56)

emotion Emotional

state

happy, sensitive,

sad, PMS

11,377,997 (10.15) 501,610 (10.19)

pain Type of

pain experi-

enced

cramps, ten-

der breasts,

headache, ovula-

tion pain

9,730,958 (8.68) 406,710 (8.26)

energy Energy

level

low, high, ex-

hausted, ener-

gized

8,710,403 (7.77) 410,216 (8.34)

sleep Hours of

sleep

0-3, 3-6, 6-9, > 9 8,597,769 (7.67) 405,726 (8.24)

skin Skin health acne, good, oily,

dry

5,896,540 (5.26) 263,258 (5.35)

mental Mental

state

calm, distracted,

focused, stressed

5,871,137 (5.24) 252,621 (5.13)

sex Sexual

health

unprotected sex,

high sex drive,

protected sex,

withdrawal sex

5,813,292 (5.19) 271,540 (5.52)
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motivation Motivation

level

motivated,

unmotivated,

productive, un-

productive

5,467,728 (4.88) 236,052 (4.80)

craving Food crav-

ings

sweet, salty,

carbs, chocolate

4,867,777 (4.34) 224,751 (4.57)

digestion Digestive

health

great, bloated,

gassy, nauseated

4,825,627 (4.30) 209,651 (4.26)

social Social

behavior

sociable, with-

drawn, support-

ive, conflict

4,178,744 (3.73) 186,110 (3.78)

poop Stool health normal, consti-

pated, great,

diarrhea

3,889,471 (3.47) 172,716 (3.51)

hair Hair health good, bad, oily,

dry

3,128,384 (2.79) 147,844 (3.00)

fluid Vaginal dis-

charge type

creamy, egg

white, sticky,

atypical

2,378,211 (2.12) 106,782 (2.17)

collection

method

Method for

period col-

lection

pad, tampon,

panty liner,

menstrual cup

2,027,258 (1.81) 84,270 (1.71)

exercise Physical ex-

ercise

running, yoga,

biking, swimming

1,222,568 (1.09) 44,946 (0.91)

party Party-

related

experiences

drinks, cigarettes,

big night, hang-

over

900,444 (0.8) 40,779 (0.83)

medication Type of

medication

taken

pain, cold / flu,

antihistamine,

antibiotic

561,540 (0.5) 21,030 (0.43)
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ailment Physical

maladies

cold / flu, allergy,

injury, fever

550,951 (0.49) 20,899 (0.42)

Cohort definition

The cohort for this chapter’s study comprises 117, 014, 597 self-tracking events for 378, 694

users located on all continents from 2015-2018, aged 21–33 years old (see Appendix A for tables

of detailed summary statistics, detailed count of cohort users per country, and age-specific

statistics). At sign up, users can input overall personal information like age and hormonal

birth control (HBC) type. We select users from the Clue dataset in this age range to ensure

the consistency of our dataset (because menstrual cycle lengths are relatively less variable and

cycles are more likely to be ovulatory during this age interval [1; 2; 3; 4; 5]). Specifically,

the reproductive axis (the hypothalamic-pituitary-ovarian axis) may not be fully matured for

younger womxn, especially those who experienced a later than average age at menarche. On

the other end, older womxn may be experiencing premature menopause. By restricting our

cohort to this age range, we substantially reduce the influence of confounders like undetected

heterogeneity on our results.

In addition, we select users with natural menstrual cycles only (i.e., no HBC or intrauterine

device (IUD)) to control for the impact of hormonal contraception, which has been shown to

impact cycle length and other aspects of menstruation. Specifically, we remove cycles from

users who reported some form of HBC (patch, pill, injection, ring, implant) or IUD (there is

no explicit distinction between hormonal and copper IUD usage in the dataset). Although this

step reduces the dataset size by about 45%, it ensures that the exhibited menstrual behavior

is due to physiology and not the effect of birth control.
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Users are also able to specify whether a cycle should be excluded from their tracking history

— for instance, if they feel that the cycle is not representative of their typical menstrual

behavior due to a medical procedure or changes in birth control, they can indicate this in

the app; we exclude such cycles. We also eliminate cycles longer than 90 days and users who

have only tracked two cycles, to rule out cases where there may be lack of engagement or

non-continuous app usage.

Finally, we exclude cycles where it’s possible that the user forgot to track their period, hence

resulting in an artificially long cycle length. We refer to such artificially long lengths as ‘self-

tracking artifacts.’ The effect of these filtering steps on the dataset is outlined in Figure 3.1;

the final step indicates the removal of self-tracking artifacts. In total, these data filtering steps

reduced the size of the cycle dataset by about 49%, but the resulting age-specific, natural

cycle-only user cohort and corresponding dataset with potential artifacts removed enables us

to study our research questions in a less noisy setting.

For this resulting cohort, the average user is 25.49 (median of 25) years old (per-country

and per-age detailed statistics are provided in the Appendix A). As reported in Table 3.2, the

average number of cycles tracked per user is 12.89 (median of 11), with an average cycle length

of 29.73 (median of 29) days and mean period length of 4.08 (median of 4) days. Note that a

menses duration longer than 10 days is considered an outlier by Clue, since it exceeds mean

period length plus 3 standard deviations for any studied population [4].

20



start: 851.9K users, 9.7M cycles

450.8K users, 5.4M cycles 
(52.9% users, 55.3% cycles remain)

natural cycles only 

449.7K users, 5.3M cycles 
(52.8% users, 54.8% cycles remain)

446.9K users, 5.2M cycles 
(52.5% users, 53.9% cycles remain)

378.7K users, 5.1M cycles 
(44.5% users, 52.9% cycles remain)

final: 378.7K users, 4.9M cycles  
(44.5% users, 50.3% cycles remain)

exclude user-
excluded cycles

exclude cycles > 90 days

exclude users with only 
two cycles

exclude potential cycle 
artifacts

Figure 3.1: Step-by-step filtering process for computing the final user and cycle cohort. The

percentage of users and cycles removed at each step is computed out of the initial numbers.

Note that we only include users aged between 21-33 years, since womxn exhibit more stable

menstrual behavior in their ‘middle life’ phase [1; 2; 3; 4; 5].

3.2.1 Defining variability groups based on cycle tracking his-

tory

The first question we seek to answer is whether we can quantitatively characterize cycle

‘regularity.’ To that end, we develop a definition for cycle variability based on the character-

istics of the studied users.

We first propose the computation of cycle length differences, or CLDs, which we define as

the absolute differences between consecutive cycle lengths. These are computed per-user — if
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Table 3.2: Per-user cycle characteristics

Full cohort’s Consistently not highly variable group’s Consistently highly variable group’s

Variable mean±sd, (95% CI), median mean±sd, (95% CI), median mean±sd, (95% CI), median

Number of cycles 12.89 ± 9.11 (3.00,36.00) 11.00 13.45 ± 9.19 (3.00,37.00) 11.00 6.19 ± 3.87 (2.00,17.00) 5.00

Cycle length 29.73 ± 5.73 (21.00,43.00) 29.00 29.45 ± 4.98 (21.00,41.00) 29.00 37.04 ± 13.71 (13.00,69.00) 34.00

Period length 4.08 ± 1.76 (1.00,7.00) 4.00 4.07 ± 1.72 (1.00,7.00) 4.00 4.28 ± 2.54 (1.00,9.00) 4.00

Median CLD 4.15 ± 4.94 (1.00,18.00) 3.00 3.04 ± 1.86 (1.00,8.00) 2.50 17.48 ± 9.15 (9.50,43.00) 14.00

Maximum CLD 10.07 ± 7.49 (2.00,31.00) 8.00 8.82 ± 5.65 (2.00,23.00) 8.00 25.15 ± 10.10 (12.00,53.00) 23.00

Per-user high-level cycle characteristics for the full cohort, as well as for the consistently not

highly variable and consistently highly variable user groups. We utilize a greater than 9 day

median cycle length difference threshold to place users in each group — those in the consistently

highly variable group represent the far end of a cycle variability spectrum. The ‘cycle length

difference’ (CLD) refers to the absolute difference between two consecutive cycles.

we define a user’s C cycle lengths as d = [d0, d1, d2, . . . , dC ], then the CLDs are computed as

[|d1 − d0|, |d2 − d1|, . . . , |dC − dC−1|]. (3.1)

For instance, a user with cycle lengths d = [30, 40, 25, 30] has corresponding CLDs of [10, 15, 5].

CLDs allow us to understand volatility from one cycle to the next. Although cycle lengths have

been shown to vary widely among womxn [2; 70; 71; 72; 73; 74; 75], they fail to capture between-

cycle dynamics. In contrast, regardless of specific cycle lengths, CLDs capture menstrual

patterns in a user’s longitudinal tracking history. This allows us to measure fluctuation over

time and identify users who are more or less consistent in their cycle volatility.

CLDs do not capture certain menstrual phenomena, such as a cycle length that grows at

a constant rate; for instance, if a user’s cycle length increases consistently by two days every

cycle, the CLDs would all equal two, but there would indeed be a large differential between
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the shortest and longest cycle length (i.e., there would be volatility that isn’t necessarily

captured). However, CLDs and related metrics of median and maximum CLD do allow us to

characterize those who fall on the extreme ends of the between-cycle variability spectrum and

identify potential self-tracking artifacts. Figure 3.2 outlines how CLDs and related statistics

are computed, as well as describes how potential artifacts are detected.

cycle day 1 2 3 4 … 28 29 30 1 2 3 4 … 26 27 28 1 2 3 4 … 38 39 40

period day1 2 3 4 1 2 3 4

cycle length: 30

CLD: 2

1 2 3 4

cycle length: 28 cycle length: 40

//

CLD: 12

// //
1 2 3 4 … 23 24 25

1 2 3 4
//

cycle length: 25

CLD: 15

median CLD: 12; max CLD: 15

cycle day 1 2 3 4 … 28 29 30 1 2 3 4 … 25 26 27 1 2 3 4 … 41 42 43

period day1 2 3 4 1 2 3 4

cycle length: 30

CLD: 3

1 2 3 4

cycle length: 27 cycle length: 43

//

CLD: 16

// //
1 2 3 4 … 36 37 38

1 2 3 4
//

cycle length: 38

CLD: 5

median CLD: 5; max CLD: 16

Figure 3.2: We provide illustrative examples of identifying a cycle tracking artifact (top) and

characterizing a user’s regularity (bottom) based on CLD statistics. In each example, we

display a user’s cycle history with a total of 4 cycles. Cycle length is computed as the length

of time between the first day of a period and the first day of the next period, and CLD is

computed as the absolute difference between subsequent cycle lengths (i.e., if a user has n

cycles tracked, they will have n− 1 CLD values). Period length is computed by counting the

number of sequential days on which there is menstrual bleeding greater than spotting (‘light,’

‘medium,’ or ‘heavy’). Two such sequences are considered one period if separated by no more

than one day of non-bleeding/spotting. In the top example, the user’s second CLD exceeds

their median by at least 10, and thus we identify the corresponding ‘artifically long’ cycle in

red — this cycle will be excluded from our analysis. In the bottom example, the user’s median

CLD is at least 9, and thus they will be classified as a consistently highly variable user.

Variability of womxn’s menstrual experiences exists on a broad spectrum. In order to
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define and examine groups of users who fall on different ends of the variability spectrum,

we utilize the per-user metric of median CLD. We choose the median because it is able to

characterize the overall consistency of users’ cycles while remaining robust to outliers (versus

the mean, which would be more susceptible to being skewed by rare events). We choose a

cutoff of greater than 9 days for identifying users with consistently highly variable menstrual

patterns, based on examining the cumulative distribution function for median CLD across

users as seen in Figure 3.3. We believe this cutoff is an appropriately stringent choice because

it aligns with existing work on analyzing menstrual patterns — cycle length variability studies

conducted for womxn in Guatemala, Bolivia, India, Europe, and the US noted differences

in the maximum and minimum cycle length ranging from 6 to 14 days [70; 71; 72; 73; 74;

75].

Our proposed cutoff for median CLD separates users into two distinct groups of menstrual

patterns: the vast majority (92.32%) of the population falls to the left of this threshold in

the not consistently highly variable group. The remaining 7.68% of the population, who

we consider to be the consistently highly variable group, represent those whose variability

is extreme — these users experience more drastic fluctuations in cycle length, as seen in the

Results section below. We use a two-sample Kolmogorov–Smirnov (KS) [77] test to confirm

that the cycle length distributions differ significantly between the two groups, which we describe

in further detail below.

3.2.2 Excluding cycles lacking user engagement

Since our data are self-tracked, they pose the possibility of users not engaging reliably

with the app; namely, users may not track a physiological event, even if it happened. In
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Figure 3.3: Looking at the cumulative distribution of median CLD, we see that the curve

flattens out significantly around the ‘elbow’ at 9 days; thus, we choose greater than 9 days as

our cutoff for our definition of consistently highly variable.

particular, if a user forgets or otherwise skips tracking of their period, the corresponding

computed cycle length will appear artificially inflated (since cycle length is computed as the

number of days between subsequently-tracked periods) — we refer to such an instance as a cycle

engagement or self-tracking artifact. In order to combat this, we develop a methodology for

identifying and removing cycles we believe lack user engagement, which allows us to distingush

physiological behavior (i.e., true ‘long’ cycle lengths) from self-tracking artifacts (i.e., artificially

inflated cycle lengths) to more reliably consider symptom tracking behavior as a proxy for true

physiological behavior.

Median CLD and maximum CLD provide a view into how each users’ cycle lengths fluc-

tuate, and to what degree of extremity. In particular, examining median CLD allows us to
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characterize typical patterns, while maximum CLD allows us to identify outliers in cycle length

variation (and therefore potential cases of inconsistent user engagement). In Figure 3.4, we

showcase a histogram of maximum CLD across users — the multimodality of the curve (in

blue) indicates that there may be instances where users skipped tracking of their period, thus

resulting in an overestimation of cycle length. Specifically, peaks at 30 and 60 days suggest

instances where a user may have self-tracking artifacts corresponding to an inflation of one

or two cycle lengths (i.e., skipped tracking of one or two periods), respectively. For instance,

consider a user who exhibits perfectly uniform cycle lengths of 30 days each and corresponding

CLDs of 0. If this user were to skip tracking of one period in their history, then their maximum

CLD would be 30 (with an artificially inflated cycle length of 60 days) — such a user would

fall in the first peak of the maximum CLD histogram.

In order to identify where self-tracking artifacts occur, we compare the median and maxi-

mum CLD of each user and flag cycles where the corresponding CLD exceeds the user’s median

CLD (which represents their ‘typical’ cycle variability) by at least 10 days as a possible ‘atypi-

cally long’ cycle. Specifically, the longer of the two cycles corresponding to the CLD is flagged.

We provide an illustrative example of this procedure in the top panel of Figure 3.2, where the

third cycle has been identified as a potential instance of skipped tracking. The cutoff of 10

days is based on an attempt to locate a feature in the data (rather than posit a priori) that

distinguishes ‘typical’ from ‘extreme’ reported cycles. In particular, we plot a two-dimensional

histogram of median versus maximum CLD, where each example is one user in Figure 3.5,

illustrating how median and maximum CLD demonstrate the discrepancy between per-user

typical cycle patterns and extreme events. In particular, we see a clear visual feature — a

band of users where maximum CLD is within 10 days of median CLD, and a scatter of other
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Figure 3.4: For each user, we compute the maximum CLD and plot a histogram before (blue)

and after (red) excluding cycles without user engagement (i.e., cycles that are potential ar-

tifacts). We see that the multi-modal behavior (peaks at around 30 and 60 days) is largely

dampened upon removing these cycles. In addition, the fat right-hand tail in the red curve

implies that we preserve the natural variation in cycle length — we are not simply removing

long cycles.

users for whom the maximum CLD far exceeds the median; this is displayed as a diagonal red

line along where maximum CLD is equal to 10 more than the median CLD. To capture this,

we define extreme events as those corresponding to cycle lengths where the CLD is at least 10

days more than the median, and consider other events to fall within the spectrum of normalcy

for that particular user. These flagged cycles are considered ‘atypically long’ as the result of

self-tracking artifacts and are excluded from our analysis.

After we exclude such cycles from our analysis, we see that the multimodality of the maxi-

mum CLD histogram is largely removed (see red line in Figure 3.4). However, note that while
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Figure 3.5: We plot a two-dimensional histogram of users’ median CLD versus maximum CLD

in logarithmic space, as well as the line where maximum CLD is equal to median CLD plus

10 in red. We can see that the line separates out a highly concentrated region of users, as

well as a more scattered region of users. Specifically, the majority of the mass falls under this

line, as showcased by the concentrated red color in the lower lefthand corner of the plot and

a diagonal band extending upwards, while the concentration in the region above the line is

more dispersed. Thus, we examine the cycles that fall above the line as possible cycle tracking

artifacts.

our method is stringent enough to identify self-tracking artifacts, it is also conservative enough

to preserve the heterogeneity of the data (and the multitude of menstrual experiences that it

represents), as seen in the long righthand tail of the red line. In particular, we find that for

the 42% of users who have at least one ‘atypically long’ cycle, we exclude a small number of

cycles (1.59) per user on average.
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In order to further validate that the cycles we exclude are likely due to skipped tracking,

we examine user tracking activity during the interval where they are expected to track their

period for each of these excluded cycles to see if any bleeding-related events were tracked. We

define this interval as the user’s last reported period day plus their median cycle length, plus or

minus their median period length. In 89.18% of these cycles, no bleeding-related events were

tracked, indicating that the user likely did not engage in period tracking; in the remaining

10.82% of the excluded cycles, it is unclear whether the bleeding-related events tracked by the

user during this interval represent period or non-period bleeding. However, by our definition,

a single bleeding event is not sufficient to be considered a period. To be conservative and

maintain consistency of our definitions for period and artificially inflated cycle lengths, we

exclude these cycles from our analysis, ensuring a coherent data preprocessing pipeline. Note

that this impacts results minimally, since excluded cycles with some bleeding-related events

account for only 0.56% of all cycles. By quantifying inconsistent engagement with tracking,

we can ameliorate its impact on subsequent analyses.

3.2.3 Characterizing symptom tracking variability

To quantify symptom tracking behavior, we consider how often throughout each user’s

longitudinal tracking history they track each symptom, regardless of when (i.e., which phase

or day) within the cycle the tracking occurred. In other words, we focus on symptom tracking

at the cycle level. Since cycle length varies both within and between users’ tracking histories,

the number of tracking events per cycle would be skewed by cycle length; to combat this, we

measure the per-user proportion of cycles where a symptom has been tracked.

Since not all users track all categories, we wish to capture symptom tracking behavior for
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cycles where users were interested in tracking the associated category. We consider a user

to be interested in tracking the associated category if they have tracked any symptom in

that category at least once across all of their cycles, and we compute a metric we refer to as

‘proportion of cycles with symptom out of cycles with category,’ which is how often a user u has

a symptom s tracking event eu = s per cycle n, given that they have tracked symptoms within

the associated category C at least once across all their cycles Nu. This is mathematically

denoted as

λus =

∑Nu
n=1 1[∃eu = s]∑Nu
n=1 1[∃eu ∈ C]

. (3.2)

That is, to account for user interest in tracking the symptom at hand, we compute the

proportion of cycles with a symptom being tracked out of the number of cycles where the user

has tracked the category related to that symptom. For instance, consider a user who tracked

9 cycles; out of these, they tracked any of the symptoms within the ‘mental state’ category for

4 cycles. For only 1 of these cycles, they tracked the symptom ‘distracted,’ while for 3 of these

cycles, they tracked the symptom ‘stressed.’ For this example user, 25% of the cycles with

‘mental state’ have ‘distracted’ tracked, while 75% of the same cycles have reports of ‘stressed.’

Our metric λus captures the tracking regularity of each symptom across a user’s cycles; it

essentially represents the conditional probability that user u tracks the specific symptom s

given that they have tracked any symptom from the symptom’s corresponding category. This

metric is robust to (i) different cycle lengths and number of cycles (it is normalized with

respect to each user’s number of cycles), (ii) different user app interests (it is contingent on

whether the user has shown interest in tracking a given category), and (iii) different app usage

behaviors (it is independent of how many times within a cycle a given symptom is tracked).
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3.2.4 Kolmogorov–Smirnov test

In order to understand if and how symptom tracking differs between variability groups,

we utilize a two-sample Kolmogorov–Smirnov [77] (KS) test. This test is nonparametric and

suitable for any ordinal (as opposed to, e.g., binary or categorical data), which is useful since

we lack a mechanistic model of what distribution the data may be drawn from. It compares

the equality of one-dimensional probability distributions arising from two samples, and can be

used to assess statistical differences in symptom tracking behavior between variability groups.

Using this test, we can examine how the cumulative distributions of λs per group (i.e., λus

for all users u within each variability group) differ, and in particular, how these densities are

distinct on their support boundaries across groups (i.e., the consistently not highly variable and

consistently highly variable user groups). The KS statistic quantifies the distance between the

empirical cumulative distributions of two samples (i.e., between the two groups); the associated

KS test is sensitive to differences in both location and shape of the distributions, allowing us

to characterize where and how much the symptom tracking patterns (as measured by the

proposed λs metric) differ between groups.

In the two-sample case of the KS test, the null distribution of the KS statistic is calculated

under the null hypothesis that the samples are drawn from the same distribution, where this

distribution is an unrestricted continuous distribution (in our case, no distributional assump-

tion is made on the symptom tracking patterns). The KS statistic depends on the number

of data points within each population (i.e., the number of observations that we have for each

variability group when computing their per-symptom empirical cumulative density function).
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The null hypothesis is rejected at level α if

Dn,m >

√
−1

2
lnα · n+m

nm
, (3.3)

where n and m are the sizes of the first and second data samples, respectively, and Dn,m is the

computed two-sample KS statistic. The reported p-values for the KS test consider observed

sample sizes, accounting for the impact of whether certain symptoms are more or less frequently

logged in each user group.

In addition to determining whether the symptom tracking distributions differ between

groups, we also seek to explore how they differ. To do so, we study the support boundaries of

the distributions for each group, i.e., where p(λs > 0.95) and p(λs < 0.05). These probability

intervals represent how likely users in each variability group are to either consistently track a

symptom throughout their cycles (i.e., in almost all of the cycles where they track the category,

they track the specific symptom), or to not track it at all (i.e., in almost all of the cycles where

they track the category, they do not track the specific symptom). We then compute the odds

ratio of these values for the consistently highly variable group to the consistently not highly

variable group, for both the high extreme and low extreme end of the proportion range. If

the odds ratio is greater than 1 for the high extreme end of the range for a symptom, this

indicates that the consistently highly variable group is more likely than the consistently not

highly variable group to report a very high proportion of cycles with that symptom. On the

contrary, if the odds ratio is greater than 1 for the low extreme end, this indicates that the

consistently highly variable group is more likely to report a very low proportion of cycles with

that symptom (i.e., the consistently highly variable group is more likely not to report such a

symptom)

Note that when possible, 95% confidence intervals have been added to reported KS values
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using bootstrap analysis. To do so, we draw 100,000 random samples — resampled with

replacement — from each variability group and report the estimated mean KS statistic values

and their 2.5 and 97.5 percentiles.

3.3 Results

3.3.1 Cycle length characteristics

We examine the cycle length characteristics of users in each of the variability groups.

First, we visualize tracking histories on an individual level by plotting a time series embedding

of consecutive cycle lengths for one randomly sampled user from each variability group in

Figure 3.6. Specifically, we sample one user each from the consistently highly variable and

consistently not highly variable groups who have the median number of cycles tracked (11

cycles) and plot their consecutive cycle lengths on the x, y, and z axes, respectively. This

allows us to visualize how much each user’s cycle lengths change over the tracked cycles. We

find that the consistently highly variable (orange) user’s cycles wander through the space,

indicating that they experience consistently volatile cycle lengths throughout their history. On

the other hand, the consistently not highly variable (teal) user’s cycles occupy a much tighter

area, indicating that their cycle lengths are consistently stable throughout their history.

Next, we extend our visualization of this phenomenon to a population level. To do so,

we randomly sample three consecutive cycles from each user’s tracking history for the entire

cohort and once again plot these lengths on the x, y, and z axes, respectively. This time

series embedding of cycle length for the entire population is seen in Figure 3.7a, where each

point represents one user’s three consecutive cycles (in contrast to Figure 3.6, where we plotted

the entire cycle histories of each user). If a user is perfectly consistently not highly variable
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Figure 3.6: We sample one consistently highly variable and one consistently not highly variable

user, each with the median number of cycles (11), from the user cohort and plot each set

of three consecutive cycles on the x, y and z axes, respectively. This allows us to visualize

how much a user’s cycle lengths change throughout their entire cycle tracking history — we

would expect that a not consistently highly variable user would have points that cluster closer

together in space. We see that the consistently not highly variable (teal) user occupies a small

region, while the consistently highly variable (orange) user’s points move through the space.

This indicates that the teal user’s cycle lengths are consistently very similar to one another,

whereas the orange user experiences more consistent fluctuation in cycle lengths. Thus, we see

that separating users into groups on the basis of median CLD identifies those who are more

and less consistently highly variable.

(i.e., they always track the exact same cycle length from one cycle to the next), then their

representative point would fall on the x = y = z line. If a user’s cycle lengths fluctuate at

all, then they would fall somewhere outside of this line; the degree of their fluctuation would

determine their position. We observe a phenomenon in Figure 3.7a that is consistent with the

one seen in Figure 3.6 — the consistently not highly variable group (teal) occupies a tighter

region of space than the consistently highly variable one (orange). Specifically, this region is

clustered around the x = y = z line. This indicates that a user in the consistently highly
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variable group is more likely to experience volatile menstrual patterns (i.e., highly varying

cycle lengths), and that therefore our median CLD metric reasonably separates out groups of

users based on their cycle length fluctuations.

cycle_lengths[i]

102030405060708090

cycle_lengths[i+1]

10203040
50

60
70

80
90

cycle_lengths[i+2]

10
20
30
40
50
60
70
80
90

(a)(a)
10 20 30 40 50 60 70 80 90

Cycle length in days

0.00

0.02

0.04

0.06

0.08

0.10

0.12

P(
Cy

cle
 le

ng
th

 =
 n

)

(b)

Figure 3.7: Time series embedding (a) and probability distributions (b) of cycle length for the

consistently not highly variable (teal) and consistently highly variable (orange) groups. (a)

The cycle lengths of three consecutive randomly sampled cycles from each user in the cohort

are plotted on the x, y, and z axes. Each consistently not highly variable user is represented by

a teal point, and each consistently highly variable user by an orange point. It is visually evident

that the teal cluster of users occupies a tighter region of the space around the x = y = z line,

with the orange cluster fanning outward. (b) The cycle length probability distributions of the

cohort, where we note that the orange group’s distribution has a much wider spread and is less

peaked than the teal group. Cycle lengths are more heterogeneous, or widely distributed, for

the orange group, confirming that the consistently highly variable group represents those with

more fluctuation in cycle length. The cumulative distributions per-group differ significantly

(as per a two-sample KS test).

We also study the empirical cycle length distributions per group in order to assess how their

location and shape may differ. In Figure 3.7b, we see that not only do cycle length statistics

such as mean and median cycle length differ between the groups, but the shapes of each group’s

distribution are also distinct — in addition to being centered at longer cycle lengths (median of
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34 days versus 29 days), the cycle length distribution for the consistently highly variable group

is less peaked with a wider spread. In other words, this group’s distribution of cycle lengths

encompasses a more volatile range, has much heavier tails, and is skewed towards longer cycle

lengths. As expected, we also find with a two-sample KS test that these distributions differ

significantly — the KS statistic is 0.377 with a 95% confidence interval of (0.375, 0.378).

3.3.2 Period length characteristics

In addition to cycle length, we also examine how period length characteristics differ between

the two variability groups and find that our metric (median CLD) identifies two distinct groups

of users based on their cycle (not period) length variability. This is because while womxn in

the two variability groups differ significantly in their cycle lengths, as seen above, their period

length distributions are much less variable — period lengths fluctuate similarly between the

groups. Specifically, Figure 3.8 showcases the distributions of period length for each group —

period length is centered around the same median of 4 days for both groups, and the shapes

of the distributions are similar. Therefore, we see that variability in cycle length (as separated

out by median CLD) is not due to period length differences between groups, as period length

varies the same amount across all womxn. Note that although period length distributions

do differ significantly under the two-sample KS test, the KS statistic for the period length

distributions is 0.066 with a 95% confidence interval of (0.064, 0.068), which is nearly an order

of magnitude smaller than the associated values for the cycle length distributions, showcasing

that the cycle length distributions differ more drastically and with much higher probability

than the corresponding period length distributions.
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Figure 3.8: Time series embedding (a) and probability distributions (b) of period length for

the consistently not highly variable (teal) and consistently highly variable (orange) groups. (a)

The period lengths of three consecutive randomly sampled cycles from each user in the cohort

are plotted on the x, y, and z axes. Visually, we observe that both groups occupy a very similar

region of the period length space (few orange points are placed outside the region occupied

by the teal cluster). (b) The period length probability distributions of the cohort, where we

observe that the orange and teal distributions are largely overlapping, with the same median of

4 days and a similar shape, indicating that period lengths are distributed very similarly for the

two groups. We notice a slight peak in single day period reports in both groups, which we argue

is reminiscent of app usage behavior: some users are interested in knowing (approximately)

when they had their period, not in tracking how long it was, so they may only track the day

it occurred and not continue tracking after that.

3.3.3 Length statistics over the app usage timeline

In order to determine how cycle and period variability may change over time, we examine

per-group cycle statistics over the app usage timeline. In particular, we align users by their

subsequently-tracked cycles (not absolute time) using cycle ID, i.e., a cycle ID of 1 corresponds

to the first cycle of a user, 2 to their second cycle, and so on. Figure 3.9 demonstrates that

cycle and period length statistics are stationary over time at the group level, and that the
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consistently highly variable group consistently displays a higher average cycle length over time

(as compared to the consistently not highly variable group). This is verified in Table 3.2 —

the mean cycle length for the consistently not highly variable group is 29.45 days (median

of 29), and the mean is 37.04 days (median of 34) for the consistently highly variable group.

In addition, we find that although average cycle and period length are stable over time for

all examined cohorts (the consistently highly variable group, consistently not highly variable

group, and the entire user cohort), the consistently highly variable users exhibit a wider spread

(i.e., higher volatility) across cycles. Consequently, we see that the consistently highly variable

group accounts for a large degree of the volatility in the data, a detail that would likely be

‘smoothed out’ and lost if we considered the population as a whole, rather than separating the

users into two groups. Since cycle and period length statistics are constant within groups across

app usage, we are confident that median CLD is not merely capturing spurious correlations

related to the length of time the user stays with the app.

3.3.4 Symptom tracking differences

We find that there exists a relationship between median CLD and symptom tracking be-

havior — despite CLD only ostensibly being a measure of cycle length variability, it can also

provide information about symptom experiences. Firstly, we find that womxn located at differ-

ent ends of the menstrual variability spectrum exhibit different symptom patterns. Specifically,

we observe that while users in the different variability groups exhibit similar tracking frequen-

cies (i.e., the total number of times they track certain symptoms over their history) per category

(as in Table 3.1), their symptom tracking patterns (i.e., how they track throughout history)

are distinct. We assess the degree to which these symptom tracking patterns differ by using
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Figure 3.9: For each user’s cycles (indexed by cycle ID), we average cycle (a) and period

length (b) across three different groups: the entire user cohort (top, purple), the consistently

not highly variable user cohort (middle, teal), and the consistently highly variable user cohort

(bottom, orange). This allows us to visualize how cycle and period length vary over time

for each group on average and in terms of standard deviation (for illustrative purposes, we

restrict the cycle ID to 20). Cycle and period length statistics are stationary over the app

usage timeline within each plot. We note that the top and middle plots look similar in each

figure (i.e., the consistently not highly variable group looks similar to the overall population

in terms of both cycle and period length), but the wider shaded orange spread of the bottom

plot demonstrates the higher degree of variability in the consistently highly variable group. In

addition, this spread is consistently wider for the orange plot over time. This showcases that

the consistently highly variable group represents a large degree of the variability that we see

in the data overall.

the KS test to evaluate how the population-level distributions of ‘proportion of cycles with

symptom out of cycles with category’ (as in Equation 3.2) differ for each symptom. We find

that these distributions differ between the user groups across most categories, and that these

differences are significant for all symptoms within the period, pain, and emotion categories.
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This result may prove clinically useful for assessing menstrual conditions and overall wellness,

and the KS test results for symptoms within these categories are presented in Table A.10.

We also find that womxn in the consistently highly variable group display more hetero-

geneous behavior. In other words, their behavior is more unpredictable. For instance, we

consider the symptoms encompassing period flow — womxn in the consistently highly variable

group are significantly more likely not to report heavy periods throughout their cycle history

(odds ratio of 1.734 on the low extreme end of the proportion range in Table A.11). For the

symptom of ‘spotting,’ the tracking pattern is more heterogeneous for the consistently highly

variable group, as shown by the higher odds ratios on both extremes of the proportion range,

(i.e., either in all or none of their cycle history) shown in Tables A.11 and A.12.

In addition, we find that consistently highly variable users have generally more hetero-

geneous experiences for non-bleeding related symptoms like pain. One particularly interest-

ing finding is that those who are consistently highly variable are much more likely to track

headaches and tender breasts in at least 95% of their cycles, with odds ratios of 1.663 and

1.715, respectively (see Table A.12).

3.4 Significance

By exploring the large-scale Clue dataset, we are able to quantitatively interrogate an-

tiquated notions of menstrual regularity, gain insight into how cycle length experiences are

related to symptomatic ones, and showcase the utility of self-tracked mobile health datasets

(when handled with care). We characterize the menstrual experience as a broad spectrum and

validate that variability is the norm. In addition, we identify statistically significant relation-

ships between cycle timing and symptoms like period flow and pain, which can prove useful to
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clinicians and users (such symptoms are frequently leveraged for diagnosis of health-relevant

conditions like endometriosis and polycystic ovary syndrome (PCOS)). On a broader scale, the

methodology we’ve developed for identifying potential self-tracking artifacts can be applied to

other menstrual self-tracking datasets (or similar datasets where cyclic behavior is expected).

This research sets the groundwork for modeling and prediction of menstrual phenomena, which

we will explore in Chapters 4 and 5.

Our work quantitatively solidifies prior claims of menstrual variability. In Appendix A we

provide a comparison of our summary statistics against those of related studies that use self-

tracked menstrual cycle data [49; 50]; although our studies differ slightly in terms of population

demographics, we believe they provide a reasonable basis for comparison. Overall, our period

and cycle length statistics are similar, and we draw similar conclusions about cycle lengths

having slightly higher values (median of 29 in our dataset) and wider ranges than previously

commonly believed (see Appendix A for full details). Our high-level cycle statistics also align

well with previous clinical studies [1; 2; 74].

By proposing a definition of variability based on fluctuations between cycle lengths rather

than on cycle lengths themselves (e.g., mean cycle length), we are able to depict a more nuanced

view of the range of menstrual experiences. In particular, studies on menstrual variability have

shown that even when cycle lengths appear consistent based on mean cycle length, this is a

misconception, as womxn with such cycles still experience significant cycle variability [74].

Utilizing median CLD to define variability allows us to meaningfully separate users into two

groups that differ significantly in their cycle and symptom tracking behaviors; we are unaware

of any single figure of merit that can likewise helpfully separate users into distinct segments.

Although cycle length has been proposed as a biomarker of menstrual health (e.g., very long
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and very short cycles are associated with a higher risk of infertility), our work suggests that

cycle variability may also be a useful biomarker. Clue uses the International Federation of

Gynecology and Obstetrics (FIGO) definitions for clinically irregular cycles in the app [78],

but has not found connections with differences in tracking.

The discovery of associations between cycle timing and symptoms, and more specifically, the

distinct expressions of symptom experiences between user groups, enables further investigation

of clinical associations and can potentially aid in diagnosing menstrual health conditions. This

is a step forward in studying the relationship between menstrual patterns and symptomatic

variables, which has been limited — there is ample work on how hormone levels change during

the cycle [79; 80; 81; 82], but relatively much less on how the broad array of symptoms are

related. Recent work using self-tracked data has explored this concept, but over a limited

set of symptoms [83] and without discriminating by age or birth control usage (which can

bias results) [48]. A method for estimating ovulation timing based on Fertility Awareness

Method observations (i.e., basal body temperature (BBT), cervical mucus, cervix position,

and vaginal sensation) has been presented [50], but such data are inaccessible to us due to

data privacy concerns (the sharing of sensitive fields such as pregnancy tests and BBT) and the

European Union’s General Data Protection Regulation. In contrast to existing work, we explore

symptoms of interest explicitly and comment quantitatively and qualitatively on a broad set of

symptoms. Our study provides insight into which high-signal self-tracked symptom patterns

can be potentially useful either for predicting each other (e.g., predicting cycle variability from

symptoms) or health consequences (e.g., PCOS).

Despite the strength of our results, we must bear in mind several mitigating factors. Most

prominently, in this work we take tracking behavior as a proxy for true, physiological experi-
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ence. However, there are multiple reasons why self-tracked data can be unreliable or inaccurate,

such as ambiguous symptomatic language or inconsistent user engagement. With respect to

the former, there is the possibility of overlap in symptom or category names, such as the symp-

toms ‘low energy’ or ‘exhausted’ — a user could reasonably elect to track one or the other

for arbitrary reasons. While the Clue app provides explanatory infotexts for each tracking

category, users are ultimately influenced by their own interpretations and how they use the

app to meet their own needs; each category may not necessarily mean the same thing to each

user. Relatedly, the Clue app was designed based on scientific literature and research on which

categories users deemed important, and therefore to cater to a broad array of experiences and

needs, the tracking categories are treated as equally important. While this allows for users to

track a variety of individual needs, the symptoms in the app are not based on validated scales

or designed with specific diagnoses in mind, meaning the symptom names may not be granular

or targeted enough to make definite, condition-specific claims.

In addition to the risk of imperfect category and symptom descriptions, users may also

engage inconsistently with the app; we consider two forms of inconsistent user adherence:

tracking an unequal number of cycles or forgetting to track period. For the former matter,

we observe that the consistently highly variable group tracked a lower number of cycles on

average (see Table 3.2), but that the number of users who only tracked two cycles (after our

preprocessing steps) is small across all users; such instances represent 2.62% and 0.57% in

the consistently highly and not highly variable groups, respectively. Therefore, although the

number of cycles tracked may differ among users, we argue that the extreme cases of only two

cycles tracked is low enough to be negligible. For the latter issue, we utilize our procedure

of excluding unexpectedly long cycles to ameliorate the impact of inaccurate cycle lengths
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due to skipped period tracking. However, we acknowledge that even with this effort in place,

it is complicated, if not impossible, to know what the true physiological experience is based

on self-tracked data, since there is no access to ground truth. In addition to engagement

artifacts, there could be unforeseen factors like cultural differences [84] impacting individual

experiences and how they are tracked. While we have utilized preprocessing techniques to

reduce the likelihood of self-tracking artifacts, we recognize that limitations nonetheless remain.

Regardless, examining such datasets remains useful to better understanding both womxn’s

menstrual experiences at scale and how to improve self-tracking technologies to enable clearer,

more interpretable datasets in the future.

Significance to users: This work provides concrete evidence from a large-scale, self-

tracked database that variability in menstrual cycles and symptoms not only exists, but is the

norm. In this sense, it is a step forward in validating each womxn’s own unique and diverse set

of experiences. The fact that we utilize self-tracked data is important, not only from a research

method standpoint, but because it also demonstrates to the user that such self-tracking can be

useful in a broader sense to understanding menstruation, and that such research can be done

in an ethical and nuanced manner.
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Chapter 4

A hierarchical, generative model for menstrual cycle

lengths that models skipped period tracking

In this chapter, we propose a hierarchical, generative model for menstrual cycle lengths that

characterizes each user by per-individual parameters for typical cycle length and propensity

to skip tracking. We showcase this model’s ability to aid in detection of self-tracking artifacts

(i.e., instances where users skip tracking of their cycles) and the utility of accounting for such

artifacts in our model by showcasing its performance relative to baselines over time.

4.1 Introduction

4.1.1 User adherence to mobile health apps

The rise of data-powered health has enabled high-resolution views into large, highly diverse

populations over time [27; 28; 29; 30]. In particular, mobile health (mHealth) tracking apps

enable users to self-manage their personal health by giving them the ability to instantaneously

and flexibly track information anytime, anywhere [25; 27]. Such mHealth solutions provide in-

sights into a broad range of conditions and behaviors, from compliance and chronic diseases [85;

86] to endometriosis [87] and fertility care [88] to asthma [31], giving users increased awareness
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of and autonomy over various facets of their individual health. In addition, the existence of

such apps provide researchers with new, large-scale datasets to obtain detailed observations of

chronic conditions [32; 33; 34; 35; 36; 37; 38; 39; 40] that were previously unavailable at such

size and scope.

However, while such apps have expanded the opportunities for self-management of health

and related research objectives, they also present risks. In particular, self-tracking apps are

dependent on user adherence (i.e., insights from an app can only be based on what the user

actually tracks); therefore, if a user engages inconsistently with the app, the representation

of their health may be skewed or inaccurate. Studies have shown that the design of an app

is crucial to user engagement [89; 90], and that engagement can vary widely between users.

Factors like the app’s user interface and notification system, as well as device fatigue [91; 92;

93], can influence how often and how consistently users interact with the app. Apps that

provide predictions and analytics to the user can only derive such learnings from what they

track — the existence of imperfect tracking therefore raises the question of how to distinguish

true health phenomena from tracking behavior in order to provide the most accurate picture

of an individual’s health.

4.1.2 Menstrual trackers as use case

We ground our exploration of this issue in the context of menstrual trackers, a cate-

gory of mobile tracking apps that have become increasingly common: they are the second

most popular app for adolescent girls and the fourth most popular for adult womxn [41;

42]. Menstrual trackers [43; 44; 45; 46; 47] serve as a rich source of temporal, heterogeneous

data from millions of womxn worldwide. Access to such large-scale, longitudinal datasets has
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enabled quantitative investigation into menstrual cycle characteristics and dynamics, including

studies describing menstrual cycles and related symptoms [94; 49; 50; 95] and efforts to better

understand ovulation [96]. The user populations for these datasets vary in their intention for

utilizing such apps (for instance, some may be looking to simply track their menstrual cycle,

while others may be interested in fertility awareness and family planning); however, most users

are interested in knowing when their next period will occur and what symptoms to expect. To

meet this need, many apps provide users with insight into their individual menstrual behavior,

fertility, and more, giving them a deeper understanding of their menstrual experience [97].

However, while such predictions are available, they may fall short in accuracy [51]. In par-

ticular, aforementioned adherence artifacts resulting from inconsistent tracking may obfuscate

health-related conclusions. For menstrual trackers, this manifests as inflated cycle length com-

putations if a user forgets to track their period.

As mentioned in Chapter 3, the menstrual experience is inherently variable, rendering

prediction of a user’s next cycle start difficult (even assuming tracked information is exactly

representative of each user experience). Self-tracking data introduces an additional source of

variability due to differing user tracking behavior (e.g., some users may track their information

consistently, while others may skip tracking, whether intentionally or by accident). Since

multiple sources of uncertainty must be taken into account, modeling menstruation is especially

difficult when utilizing such data. Therefore, in order to properly harness the power of mobile

app data sources, researchers must be able to develop accurate predictive models that can

address the specific nature of such data. While we utilize menstrual trackers as a use case, this

issue will be prevalent in any kind of self-tracked data.
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4.2 Methods

4.2.1 Data cohort

We leverage the same de-identified self-tracked dataset from Clue as in Chapter 3, focusing

on period self-tracking events only. Recall that a ‘self-tracking event’ refers to when a user

logs a symptom in the app, and period self-tracking events refer to instances when a user self-

reports days where they have experienced period flow; we use these events to compute cycle

lengths (i.e., the number of days between subsequent periods).

We utilize the same data exclusion criteria as in Chapter 3, focusing our analysis on users

aged 21-33 with natural cycles only, excluding user-identified anomalous cycles, and removing

cycles longer than 90 days. We utilize cycle length information only as the input to our

proposed model, taking the first 11 cycles for all 186,106 menstruators with more than 11

cycles tracked (since 11 is the median number of cycles tracked in the full dataset).

See Table 4.1 for comparison of summary statistics for all cycles of users in the selected

cohort versus the first 11 cycles only for the same users. We see that cycle length and period

length statistics differ very minimally between these two sets of cycles, indicating that using

the first 11 cycles is a reasonable representation of user history.

4.2.2 Definition of adherence artifact

Since period tracking exactly determines cycle length, it is crucial to consider the possibility

that users may not always track their period accurately, and therefore their observed cycle

length may not reflect their true experience. Here, we refer to a ‘self-tracking (or adherence)

artifact’ as a mismatch between the self-tracked event and the true, experienced physiological
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Table 4.1: Summary statistics for selected self-tracked menstruator dataset

Summary statistic Selected cohort Selected cohort (first 11 cycles

only)

Total number of users 186,106 186,106

Total number of cycles 3,857,535 2,047,166

Number of cycles (mean±sd, me-

dian)

20.73±8.35, 18.00 11.00±0.00, 11.00

Cycle length (mean±sd, median) 30.45±7.73, 29.00 30.71±7.90, 29.00

Period length (mean±sd, median) 4.07±1.76, 4.00 4.13±1.80, 4.00

Age (mean±sd, median) 26.07±3.56, 26.00 25.59±3.61, 25.00

Summary statistics for selected self-tracked menstruator dataset for the whole dataset, as well

as the selected first 11 cycles only. Total number of users and age are the same for the selected

cohort and selected cohort’s first 11 cycles only, since they represent the same set of users. We

see that cycle length and period length statistics differ very minimally between the selected

cohort and the selected cohort’s first 11 cycles only, indicating that using the first 11 cycles is

a reasonable representation of each user’s history.
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phenomenon (focusing on period self-tracking events) — for instance, a user may experience

period flow on one day, but not report it in the app. We investigate the impact that such self-

tracking artifacts can have on modeling and prediction of next menstrual cycle start date. In

particular, we examine how they inflate cycle length computation and result in the appearance

of apparent cycle ‘skips.’ We provide an illustrative example of this phenomenon in Figure 4.1.

1 2 3 4
//

28 29 30…

1 2 3 4

cycle length: 30

1 2 3 4
//

25 26 27…

1 2 3 4

1 2 3 4
//

33 34 35…

1 2 3 4

cycle length: 27 cycle length: 35

period day

cycle day

user tracks period consistently

user skips tracking period

1 2 3 4
//

28 29 30…

1 2 3 4

cycle length: 30

1 2 3 4
//

25 26 27…

1 2 3 4

1 2 3 4
//

60 61 62…

1 2 3 4

cycle length: 62

period day

cycle day

cycle start date
skipped period tracking

Figure 4.1: Example cycle tracking history for the same user, demonstrating two scenarios:

where they track all of their periods (top) and where they skip tracking of one of their periods

(bottom). Cycle start dates are highlighted in green and skipped period tracking is highlighted

in red. The bottom panel showcases how skipping tracking of one period can result in inflated

observed cycle lengths — instead of two subsequent cycles of length 27 and 35, respectively,

because the user skips tracking of a period, it appears that they have one cycle of length 62.

This is because cycle length is determined by the number of days between tracked periods.

This phenomenon holds analogously if a user skipped more than one period (in which case

three subsequent cycle lengths would appear as if it were a single, inflated cycle length).

4.2.3 Proposed generative model

We propose a probabilistic machine learning model with three main features: 1) it accounts

explicitly for self-tracking artifacts by probabilistically factoring in the possibility that users
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may have skipped period tracking and have inflated observed cycle lengths; 2) it dynamically

updates predictions of cycle length and skipping probability as the cycle proceeds, providing

insight into how these predictions evolve over time; and 3) it prioritizes the unique nature of

each user’s menstrual experience by modeling individual cycle length histories and providing

individual predictions, while also incorporating population-wide knowledge.

Figure 4.2: Hierarchical graphical model for proposed generative process. In our graphical

model, variables within the outer plate are replicated for users i = 1, · · · , I, variables within

the inner plate are replicated for each per-user cycle c = 1, · · · , Ci, and variables within the

innermost plate are replicated for each skipped cycle j = 0, · · · , si,c. Individual-level param-

eters λi (average cycle length without skipping) and πi (probability of skipping a cycle) are

drawn from population-level distributions characterized by hyperparameters u = [κ, γ, α, β].

si,c represents number of skipped cycles for user i and cycle number c; di,c represents observed

cycle length. We model observed data (cycle lengths di,c) as the sum of true (unobserved)

cycle lengths di,j,c skipped si,c times (so that an observed cycle length di,c contains 1 + si,c

unobserved cycle lengths di,j,c).

Since our model is generative, we hypothesize the distributions from which each of our

proposed variables is drawn and describe their relationships to one another [98]. We showcase

the proposed generative process (i.e., candidate probabilistic model for generating the observed
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data) as a probabilistic graphical model in Figure 4.2.

In particular, our model posits that each user can be characterized by two latent quantities

that govern the observed data: λi, their typical cycle length patterns; and πi, their propensity

to skip tracking. The observed cycle lengths di,c for user i and cycle c are modeled as the sum

of the latent, true (unobserved) cycle lengths di,j,c, which are skipped si,c times (j indexes the

skipped cycles).

Specifically, we provide details on the generative process for cycle lengths di,j,c, which draws

per-user specific parameters from population level shared priors:

• Observed variables: Observed cycle length di,c, with c = {1, · · · , Ci} cycle lengths for

each individual i = {1, · · · , I}. Each true cycle length (for user i, cycle c, out of the

number of skipped cycles j) is drawn from a Poisson distribution, di,j,c ∼ p(di,j,c|λi) =

Pois(di,j,c|λi). The sum of independent Poissons is a different Poisson distribution, so

the observed cycle length (di,c =
∑si,c+1

j=0 di,j,c) is also drawn from a Poisson, conditioned

on the number of skipped cycles,

di,c ∼ Pois(λi(si,c + 1)) . (4.1)

• Latent variables: si,c denotes the number of skipped (not reported) cycles, with c =

{1, · · · , Ci} cycle lengths for each individual i = {1, · · · , I}. The number of skipped

cycles is drawn from a truncated Geometric distribution with a maximum number of

skipped cycles S,

si,c ∼ p(s|πi) =
πsi (1− πi)∑S
s=0 π

s
i (1− πi)

=
πsi∑S
s=0 π

s
i

=
πsi (1− πi)

(1− π(S+1)
i )

for s ∈ N . (4.2)

• Parameters λi: the Poisson rate parameters for each individual i = {1, · · · , I}. Per-user
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Poisson rate parameters λi are drawn from a population-level Gamma distribution

λi ∼ p(λ|κ, γ) =
γκ

Γ(κ)
λκ−1e−γλ for λ > 0 and κ, γ > 0. (4.3)

• Hyperparameters of the Poisson rate parameter: κ, γ of a Gamma distribution

prior for the Poisson rate at the population level.

• Parameters πi: the probability of skipping a cycle for each individual i = {1, · · · , I}.

The probability of an individual skipping a cycle is drawn from a population-level Beta

distribution

πi ∼ p(π|α, β) =
Γ(α+ β)

Γ(α)Γ(β)
πα−1(1− π)β−1 , for π ∈ [0, 1] and α, β > 0. (4.4)

• Hyperparameters of the geometric distribution parameters: α, β of the popu-

lation level Beta distribution prior on skipping probabilities.

Proposing separate probability distributions from which each of the per-user parameters

(λi and πi) are drawn enables us to disentangle true, per-user cycle behavior from self-tracking

adherence. Therefore, we can gain intepretable insight into not only per-user cycle length

behavior, but also per-user cycle skipping behavior. To do so, we learn our per-user parameters

on the basis of observed self-tracked cycle lengths, accommodating the latent (unobserved)

variables via marginalization of their uncertainties.

In addition to being generative, our model is also hierarchical — we are able to borrow infor-

mation between users, taking advantage of population-wide knowledge, while also computing

individual-level parameters and predictions. This is ideal for a model of menstruation, since

it maintains the integrity of each individual’s unique experience. As seen above, we represent
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individual-level information with the aforementioned individual-level variables for typical cy-

cle patterns and self-tracking adherence and incorporate population-wide characteristics in the

form of hyperparameters that are learned at the population level. These hyperparameters then

influence the populations from which the individual-level quantities are drawn. For instance, if

the most likely cycle length is around 30 days for the whole user base, the population-wide dis-

tribution will represent this. However, when individual-level typical cycle length is drawn from

population-wide distribution, it will be influenced by each user’s own cycle tracking history.

In this way, we are able to consider common patterns that exist among users and individual

differences.

4.2.4 Parameter inference

Specifically, given a dataset of Ci cycle lengths for I users, we perform hyperparame-

ter inference via type-II maximum likelihood estimation. We compute a Monte Carlo (MC)

approximation to the negative log-likelihood: − ln(p(d|u)) = − ln(
∑

i p(di|u)). Due to the im-

possibility of integrating out the number of skipped cycles si,c analytically, we compute a MC

approximation to each cycle length likelihood p(di|u) with M samples,

p(di|u) =
1

M

∑
m

p(di|θm) , θm ∼ p(u) (4.5)

where u represents the hyperparameters [α, β, κ, γ] of the distributions from where samples

θm, representing the parameters [λm, πm], are drawn. We compute the probability p(di|θm)

by integrating out the probability of skipping si,c, which is drawn from a truncated geometric
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distribution as in Eqn. (4.2):

p(di|θm) =

Ci∏
c=1

p(di,c|θm) =

Ci∏
c=1

S∑
s=0

p(di,c|λm, s)p(s|πm) (4.6)

=

Ci∏
c=1

S∑
s=0

((λm(s+ 1))di,ce−λm(s+1)/di,c!)

(
πsm(1− πm)∑S
s=0 π

s
m(1− πm)

)
(4.7)

=

Ci∏
c=1

λ
di,c
m e−λm

di,c!

S∑
s=0

((s+ 1)di,ce−λms)

(
πsm∑S
s=0 π

s
m

)
(4.8)

=

Ci∏
c=1

φ(λm)

∑S
s=0(s+ 1)di,c(πme

−λm)s∑S
s=0 π

s
m

(4.9)

=

Ci∏
c=1

φ(λm)

∑S
s=0(s+ 1)di,c(πme

−λm)s

1−πS+1
m

1−πm

(4.10)

=

Ci∏
c=1

1− πm
1− πS+1

m

φ(λm)

S∑
s=0

(s+ 1)di,c(πme
−λm)s (4.11)

where di,c represents one cycle length c for a given user i, Ci is the number of cycles for user

i, S is the maximum value of s, and φ is the Poisson density.

4.2.5 Computing predictions

The generative nature of our model enables us to update predictions as the cycle proceeds;

we refer to each day of the next cycle as ‘current day.’ For instance, we can predict on current

day 0 (when the next cycle first starts), day 1, and so on. We can update our predictions

of both when the next period will occur (i.e., cycle length) and how likely the user is to

have skipped tracking of a period. Furthermore, since our model is generative and we have

specified the number of skipped cycles s as a latent quantity, we can consider two possibilities

when computing predictions: we can assume the next reported cycle length will be truth

(i.e., the next observed cycle will not be skipped), setting s = 0; or we can assume the next

reported cycle may not be truth (i.e., accounting for the user possibly skipping their next cycle
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tracking), setting s ≥ 0. Assuming s ≥ 0 allows us to account for as many skipped cycles as

desired, allowing us to assess the impact of accounting for self-tracking artifacts on predictive

performance.

That is, in order to update our predictions of per-user cycle length as each subsequent day

passes, we are interested in the posterior of the next reported cycle length d∗, conditioned on

previous cycle lengths di for a user i and the day of the current cycle dcurrent,

p(d∗|d∗ > dcurrent, di, û) =
p(d∗, d∗ > dcurrent|di, û)

p(d∗ > dcurrent|di, û)
=
p(d∗|di, û)[d∗ > dcurrent]

p(d∗ > dcurrent|di, û)
(4.12)

where we explicitly indicate that p(d∗, d∗ > dcurrent|di, û) = 0 if d∗ ≤ dcurrent.

In addition to characterizing the full distribution, we are interested in computing the ex-

pectation of the conditional predictive posterior as a point estimate for the next cycle length,

E[p(d∗|d∗ > dcurrent, di, û)] =
∑
d∗

d∗p(d∗|d∗ > dcurrent, di, û) (4.13)

=
∑
d∗

d∗
p(d∗|di, û)[d∗ > dcurrent]

p(d∗ > dcurrent|di, û)
(4.14)

=

∑
d∗ d
∗p(d∗|di, û)[d∗ > dcurrent]

p(d∗ > dcurrent|di, û)
(4.15)

=

∑
d∗>dcurrent

d∗p(d∗|di, û)

p(d∗ > dcurrent|di, û)
(4.16)

=

∑D
d∗=dcurrent+1 d

∗p(d∗|di, û)∑D
d∗=dcurrent+1 p(d

∗|di, û)
. (4.17)

The key term above is p(d∗|di, û):

p(d∗|di, û) =

∫
dλdπq(λ)b(π)

∑
s∗ p(s

∗|π)p(d∗|s∗, λ)p(di|λ, π)∫
dλdπq(λ)b(π)p(di|λ, π)

, (4.18)

where di are the cycle lengths for a user i and si are the number of skipped cycles for a user,

and d∗, s∗ are the next reported cycle length and next number of skipped cycles, respectively.
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For the truncated geometric distribution on skipping probabilities, we compute the above as

p(d∗|di, û) =

∑M
m=1

1−πm
1−πS+1

m

∑S
s∗=0 π

s∗
mp(d

∗|s∗, λm)p(di|λm, πm)∑M
m=1 p(di|λm, πm)

. (4.19)

We compute p(d∗|di, û) for a range of cycle length days d∗ = {0, · · · , D}, normalizing

appropriately over d∗ for each value of dcurrent, using p(di|λm, πm) (as specified in Eqn. (4.6)

of the description of inference) and p(d∗|s∗, λm) = Pois(λ(s∗ + 1)) (i.e., the Poisson PMF),

where we must also normalize p(d∗|s∗, λ) over d∗ = {0, · · · , D}.

4.2.6 Model training, prediction task, and evaluation

We evaluate the average prediction accuracy of our model across all users with root mean

square error (RMSE). This RMSE between true cycle lengths di and predicted cycle lengths d̂i

is computed for a given model and N users at each current day of the next cycle, where each

of the N users as their own prediction, as RMSE =

√∑N
i=1(di−d̂i)2

N .

To evaluate model accuracy on a per-user basis, we use absolute error and median absolute

error (MAE), where absolute error between an actual data point di and a prediction d̂i is

computed as |di − d̂i|.

To evaluate menstrual regularity, we use the metric median cycle length difference (CLD),

based on previous work on characterizing menstruation [95], as seen in Chapter 3. Recall that

CLDs are computed per-user as the absolute differences between consecutive cycle lengths —

if we define a user’s C cycle lengths as d = [d0, d1, d2, . . . , dC ], then the CLDs are computed as

[|d1 − d0|, |d2 − d1|, . . . , |dC − dC−1|]. In this way, CLDs measure variability from one cycle to

the next, and a higher median CLD indicates users with generally more volatile cycle tracking

histories (and vice versa) [95].

Note that in discussing prediction below, we denote a user’s cycle history as di, the predicted
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next cycle length as d∗, the predicted number of skips in the next cycle as s∗, the learned

hyperparameters as û, and the current day of the next cycle (on which we are computing the

predictions) as dcurrent.

4.2.7 Alternative baselines

To evaluate the predictive performance of our proposed model, we consider summary

statistic-based and neural network-based baselines:

• Mean and median baselines: the predicted next cycle for each user is the average (or

median) of their previously observed cycle lengths.

• CNN: a 1-layer convolutional neural network with a 3-dimensional kernel.

• RNN: a 1-layer bidirectional recurrent neural network with a 3-dimensional hidden state.

• LSTM: a 1-layer Long Short-Term Memory neural network with a 3-dimensional hidden

state.

As with the proposed model, we train these baselines on the first 10 cycle lengths and

predict next cycle start for the 11th cycle. Since these are not generative models and their

output is only next cycle start date, we cannot predict the likelihood of skipped tracking or

update predictions dynamically. We also test other neural network architectures (changing

kernel or hidden state dimensionality and number of layers) and find no meaningful difference

in performance; see Appendix B for details.

Although menstrual trackers utilize proprietary solutions for cycle prediction (and therefore

we cannot exactly compare our predictions to theirs), we believe our baselines provide a rea-

sonable and fair picture of alternative approaches for our predictive task. We choose summary
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statistic-based baselines because they represent the common conception that menstruation is

‘regular,’ and that consequently the mean or median of several cycle lengths could reasonably

estimate the next cycle length. In addition to this simplified predictive approach, we choose

neural network-based baselines since they have been shown to be powerful predictive models

in many healthcare applications.

4.3 Results

In this section, we demonstrate the key results of our work. We start by showcasing our

model’s successful detection of self-tracking artifacts, which can be utilized in mHealth apps

to alert users of potential missed tracking. Next, we present our model’s posterior predictive

distribution for cycle length, which is interpretable and representative of the data.

We then discuss our model’s predictive performance. In particular, we highlight our model’s

optimal performance relative to alternative baselines in predicting next cycle start, especially

on later days of the cycle and most prominently when typical cycle length has passed, which

demonstrates the benefit of dynamically updating beliefs about both cycle length and cycle

skips. These insights can help users better understand cycle behavior as the cycle evolves.

Finally, we showcase the effect of individual variability on cycle length predictions, which

highlights the importance of modeling unique experiences.

4.3.1 Detecting self-tracking artifacts

We showcase our model’s ability to detect when a user has skipped period tracking on

simulated data (i.e., where we know the ground truth of when a user has skipped tracking in

their history). We train on the first 10 cycles and predict the likelihood of skipping during the
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11th cycle (as in our real menstruator data experiments) and provide details on the simulated

data in Appendix B. As demonstrated in Figure 4.1, identifying when a user has skipped

tracking of their period is vital to modeling self-tracked cycle lengths accurately; otherwise,

there is a risk of mistaking observed, artificially inflated cycle lengths for true ones.

We start with a simple example in Figure 4.3, which showcases how our individual posterior

predicted probability of skipping the upcoming cycle (i.e., pi (s∗ = 1|dcurrent), where s∗ is the

predicted number of skipped cycles in the upcoming cycle) evolves over the current day of the

11th cycle for a selected simulated user. We draw vertical lines at days 30 and 40 of the next

cycle, and the markers represent the predicted probability of having skipped one cycle on those

days. We choose these days because 30 days is around the average cycle length for this user,

and day 40 represents when the user has surpassed their typical cycle length.

We see that for this user who has skipped a cycle before (in their set of 10 training cycle

lengths), their probability of skipping a cycle in the 11th (unseen) cycle is low up until around

current day 30 of that cycle, but increases substantially afterward (e.g., on day 40, the proba-

bility of skipping rises to around 0.8). Therefore, our model predicts that before the average

cycle length of this user (30 days) has passed, the user is unlikely to have skipped tracking their

period (i.e., the probability is low); however, when the typical cycle length is exceeded, the

likelihood of skipping spikes. This increased probability as time proceeds demonstrates how

our model accurately detects when a user is likely to have skipped upcoming period tracking

based on their individual cycle length history and updates these beliefs over time.

In Figure 4.3, we only showcase the probability of the user skipping tracking of one cycle

(i.e., skipping one period tracking, or s∗ = 1) in the upcoming cycle. However, we can compute

probabilities of skipping any number of cycles — we can model the likelihood that a user has
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Figure 4.3: Predicted probability of skipping one cycle over time for a simulated user. Orange

curve represents probability of user having skipped one cycle; markers indicate probability of

having skipped one cycle on day 30 or 40 of the upcoming cycle. We see that the probability

of having skipped one cycle in the upcoming cycle is low until day 30. However, past day 30,

we see that this probability increases; on day 40, it is around 0.8 (versus 0.2 on day 30). Thus,

the model detects that the user is likely to have skipped a cycle on day 40, when their typical

cycle length has been passed. Because data in this experiment are simulated, we know that

this user has skipped a cycle before in their history and does actually skip the next cycle. Our

inferred probabilities recover this, showing that our model can accurately detect when a user

is likely to have skipped an upcoming cycle based on their individual cycle length histories and

update these beliefs over time.

skipped zero cycles, one cycle, two cycles, and so on in the upcoming reported cycle. To

demonstrate this more deeply, in Figure 4.4 we showcase the probabilities of possible cycle
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skips, shorthanded as p (s∗|dcurrent), for s∗ = 0 and s∗ = 1 on simulated data for two different

users: (a) showcases a simulated user who has skipped in their history, and (b) showcases a

simulated user who has never skipped in their history. We again draw vertical lines at days 30

and 40 of the next cycle (to represent before and after the typical cycle length has passed) and

use markers to represent the predicted probability of skipping zero or one cycle on those days.

By comparing these users, we see how our model is able to incorporate historical information

to detect differences in skipping behavior as the cycle proceeds. For the user who has skipped

in their history (a), as the typical cycle length is passed without tracking (e.g., on day 40),

their probability of skipping one cycle is around 0.8, and their probability of skipping zero

cycles on that day is around 0.2, a significant drop from a near 0.8 probability on day 30.

Thus, as we saw in Figure 4.3, the model incorporates knowledge that the user has skipped

before in their tracking history into its prediction of how likely they are to have skipped in

this unseen cycle. In contrast, for the user who has never skipped in their tracking history (b),

their probability of skipping zero or one cycle on day 40 hovers around 0.5 — in other words,

it is less clear whether this user may have skipped a cycle, because they have never skipped

before. For instance, the model recognizes that for this user (b), it’s more likely that this is

a true long cycle (which may occur across menstruators in response to internal or external

stimuli) than for user (a).

While Figures 4.3 and 4.4 focus on s∗ ∈ {0, 1}, note that this behavior holds analogously

for s∗ = 2 and beyond. For instance, p (s∗ = 2) is low early in the next cycle and peaks past

day 60, just as p (s∗ = 1) starts low and peaks past day 30. This is because 60 represents

two typical cycle lengths. Our model’s ability to detect and alert users of potential tracking

artifacts is important not only to accurately predicting when the next cycle will occur, but also
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to improving the design of mHealth apps and the quality of their data for menstrual health

research.

(a) (b)

Figure 4.4: Individual posterior predictive probability of skipping upcoming cycle,

pi (s∗|dcurrent), over current day of next cycle dcurrent for two users from simulated data: one

who has skipped a cycle in their history (a) and one who has never skipped a cycle (b). Our

personalized model detects differences in predicted skipping behavior for the two users. Blue

and orange curves represent probabilities of skipping zero or one cycle, respectively; markers

indicate probability of skipping zero or one cycle on day 30 or 40 of the upcoming cycle. Note

that users can also skip more than one cycle. For both example users, we see that the probabil-

ity of having skipped zero cycles in the upcoming cycle (pi (s∗ = 0|dcurrent)) is high until day

30. However, past day 30, the model detects that the user (a) who has skipped in their history

is more likely to have skipped the upcoming cycle than for the user (b) who has never skipped.

This demonstrates how the model takes into account the previous non-skipping behavior of

this user. Because data in this experiment are simulated, we know that the user in (a) does

actually skip the next cycle, while the user in (b) does not. Our inferred probabilities recover

this, showing that our model can accurately detect when a user is likely to have skipped an

upcoming cycle based on their individual cycle length histories and update these beliefs over

time.
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4.3.2 Representing multimodality in cycle length distribution

One key advantage of our model is that we are able to explicitly represent the skipping

behavior of users, which is reflected in the posterior predictive distribution for cycle length.

In particular, this distribution is multimodal, which aligns with the idea that users who skip

tracking of cycles appear to have artificially inflated cycle lengths (in the case of skipping one

cycle, effectively doubled), and that therefore the probability of certain cycle lengths peak

as time passes without tracking. We showcase this in Figure 4.5, where we plot our model’s

posterior predictive distribution for cycle length p(d∗|û, di, d∗ > dcurrent). This represents

the probabilistic next cycle predictions for a specific user based on their previous cycle length

history as the next cycle proceeds (as denoted by dcurrent). Specifically, we show the probability

(z-axis) of a user’s next cycle being a specific length (x-axis) for the current day of the next

cycle (y-axis), assuming that their next observed cycle (a) is truth (no skipped cycles, s = 0)

or (b) may contain skipped cycles (possible skipped cycles, s ≥ 0).

We notice how in scenario (a) (assuming the next cycle is truth), the posterior predictive

distribution is unimodal, reflecting how the probability of the next cycle length being an

increased length is consistently increasing as time passes. In contrast, in scenario (b) (assuming

the next cycle may not be truth), the posterior predictive distribution is multimodal, with

peaks around d∗ = 30, 60, 90. This demonstrates our model’s ability to update its beliefs about

likelihood of skipping over time in order to provide more accurate cycle length predictions. In

particular, such multimodality is the result of (i) conditioning on the day of the next cycle

dcurrent and (ii) the explicit modeling of cycle skips, s. By doing so, our posterior predictive

distribution (when s ≥ 0) mirrors the skipping phenomena seen in the dataset — when a
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user passes their ‘typical’ cycle length (i.e., around 30 days in this instance), their likelihood of

having skipped tracking increases. This multimodal distribution is not only easily interpretable,

but is also crucial to representing self-tracking artifacts in mHealth data and providing accurate

cycle length predictions.

(a) (b)

Figure 4.5: Posterior predictive distribution for cycle length over prediction day d∗ (i.e., what

the next reported cycle is predicted to be) and current day dcurrent (i.e., day in next cycle) for

the same user from menstruator data, assuming either that next observed cycle is truth (a)

or that next observed cycle may contain skipped cycles (b). (a) When we assume the next

observed cycle is true as reported (s = 0), our posterior predictive distribution is unimodal.

The probability of the next cycle length is peaked around 30 until around day 30 of the

next cycle, after which the peak moves consistently to the right, indicating that our cycle

length predictions are consistently increasing past day 30 and not adjusting for the likelihood

of skipped cycles. (b) When we account for the possibility of skipped cycles with s ≥ 0,

our posterior predictive distribution is multimodal. Prior to day 30 of the next cycle, the

distribution is similarly peaked around 30 days, as with the s = 0 case. However, when the

cycle passes day 30, the distribution shows a peak around day 60, indicating the possibility

that a user may have skipped a cycle. This behavior holds analogously past day 60. Our

explicit modeling of cycle skips allows us to identify when a user may have missed tracking a

cycle.
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4.3.3 Model performance as cycle proceeds

Our model outperforms the studied baselines in prediction accuracy, particularly as the

cycle proceeds; we showcase performance over ‘current day’ in Figure 4.6. We also showcase

specific RMSE values on particular days of the next cycle in Table 4.2.

Figure 4.6: Prediction RMSE for proposed model and baselines over current day of the next

cycle on the menstruator data, averaged over all users. Both models’ superior performance is

magnified past around day 30 of the next cycle; they are able to update predictions dynamically,

as compared to static baselines. In particular, accounting for skipped cycles (‘full’ version of our

proposed model, blue line) proves especially beneficial to prediction accuracy versus assuming

the next reported cycle is truth (‘alternative’ version of our proposed model, gray line) —

by anticipating the possible presence of skipped cycles, we are able to make more accurate

predictions and avoid the bump in RMSE seen in the gray line.
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As seen in Table 4.2, our model outperforms all alternative baselines on day 0 (the first

day of the next cycle), and in particular as the cycle evolves past day 29 — this superior

performance is also demonstrated in Figure 4.6, where our models (gray line, s = 0 and blue

line, s ≥ 0) display much lower RMSE than baselines. Specifically, accounting for potential

skipped cycles becomes increasingly important as the cycle proceeds; this model (blue line) is

advantageous to the one assuming the next observed cycle contains no self-tracking artifacts

(gray line).

Accounting for skipped cycles is increasingly crucial to predictive accuracy as the cycle

proceeds past day 29 because the likelihood of skipped cycles increases as the typical cycle

length passes with no tracking activity. Our model is able to incorporate this scenario into

its predictions, whereas baselines cannot — although the likelihood of a cycle skip increases

over time, not all models can account for this when computing cycle length predictions. Con-

sequently, a benefit offered by our proposed generative model is that it can both account for

this phenomenon and dynamically update predictions; this value is reflected in its superior

performance relative to baselines.

To evaluate the robustness of our training and predictive performance with respect to

different modeling choices, we tested different dataset sizes and ordering of cycle lengths. We

find that our model’s performance is generally stable across different training set sizes and

reordering of cycle lengths. In particular, we shuffled the order of each user’s cycles to account

for possible time dependency of tracked cycles. See Appendix B for details.
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Table 4.2: Prediction RMSE results by model on day 0 and day 40

Model Day 0 Day 40

37K 186K 37K 186K

Mean 7.602 7.497 22.276 21.915

Median 7.586 7.489 23.675 23.394

CNN 8.102 8.027 24.741 24.506

LSTM 7.548 7.402 23.025 22.681

RNN 7.597 7.763 23.474 22.954

Proposed model (predict with s = 0) 7.712 7.562 15.114 14.778

Proposed model 7.483 7.382 11.840 11.774

Prediction RMSE for proposed model and baselines on day 0 and day 40 for a subset of the

menstruator data (I = 37, 222) and the full menstruator data (I = 186, 106). Note that here

we train on C = 10 cycles and predict the next one. ‘Proposed model (s = 0)’ indicates an

alternative version of our proposed model, assuming the next observed cycle contains no self-

tracking artifacts; ‘Proposed model’ indicates the full version of our proposed model, accounting

for the presence of potential self-tracking artifacts. Our model outperforms summary statistic-

based and neural network-based baselines on day 0 when we account for skipped cycles and

does so on only a subset of the data.
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4.3.4 Impact of cycle variability

It is imperative for models relating to menstruation to consider the inherent variability

of the menstrual experience between and within users. In order to account for the role that

menstrual variability may play in producing accurate predictions, we examine our predictive

results on an individual level (in addition to averaging them over the whole population). The

ability to learn population-wide information and make individualized predictions is a direct

benefit of our hierarchical modeling approach.

In particular, we showcase a violin plot of per-user median cycle length difference (CLD)

versus absolute error in predicted cycle length in Figure 4.7. For each variability group (as

defined by the median CLD value on the x-axis), the middle white point represents its cor-

responding median absolute error, and the thick gray bar represents its interquartile range.

This plot demonstrates how variability impacts prediction accuracy — more variable users are

generally more difficult to predict, underscoring the importance of taking into account each

individual’s experience.

We also note that outliers within a user’s cycle length history (e.g., instances where users

may have never skipped in their history, but skip the last cycle), which represent a small

proportion of the user base, can greatly skew RMSE computations. For instance, users with

very consistent cycle lengths (i.e., a median CLD of 0) have a median absolute error (or MAE)

as low as 1.5 days, even though the RMSE for this group is 6.15.
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Figure 4.7: Violin plot of per-user absolute error of predicted next cycle length, stratified by

user median cycle length difference (CLD) on the menstruator data. We see from the increasing

trend in absolute error with median CLD that more variable users are typically more difficult

to predict, showcasing that consideration of per-individual behavior is vital to the integrity of

our model.

4.4 Significance

By proposing a generative, probabilistic model for menstrual cycle lengths, we are able

to characterize the underlying mechanisms of menstruation as collected via mobile tracking

apps, a step to better understanding menstruation as a whole. In particular, our model of-

fers the advancement of flexibly accounting for adherence artifacts by explicitly considering

the possibilities that users track their information inconsistently and separating this cycle-

skipping behavior from typical cycle length patterns. Although heuristics for identifying such
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self-tracking artifacts have been proposed (for instance, locating cycle lengths that are anoma-

lous on a per-user basis [95]), these definitions can be limiting. In contrast, we are able to

examine the likelihood of skipped cycles in a specific, probabilistic manner, which enables us to

distinguish true cycle lengths from self-tracking adherence. Consequently, we can gain insight

into both menstrual tracking behavior, as well as learn practical implications for mHealth users

and designers.

By computing dual productions (i.e., predictions of both cycle length and possible cycle

skips), we are able to provide users with a more accurate, detailed picture of when their next

cycle will occur, even when they may not be consistent with their tracking. In addition,

rather than providing an option for users to exclude self-identified faulty cycles after the fact,

our methodology provides the possibility of proactively alerting users when they may have

skipped tracking, allowing users to better self-manage their menstruation. Specifically, users

could be alerted when their cycle skipping probability is high, such as at the peak of the

skipping probability distribution shown in Figure 4.3. Furthermore, it is important to note

that since cycle variability is common, longer cycle lengths can also be due to true physiological

phenomena and not just skipped tracking; our model captures this context, which can also be

provided to users in these alerts. Implementing this type of informed alerting increases efficacy

and accuracy of self-reporting and helps reduce user notification fatigue (which can occur if,

for example, everyday alerts are sent out instead of targeted ones); both of these factors are

crucial to creating more reliable datasets for the future.

Our model demonstrates the importance of considering the specific nature of mHealth data,

which can subsequently aid researchers and users in better understanding menstruation and

the underlying structure behind observed cycle lengths. Furthermore, the insights it provides
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to mHealth app developers can be used to add nuance to user alerting systems. As self-tracking

apps become increasingly popular among users and important among researchers as a source

of information for healthcare interventions, these insights can aid in improving the quality of

mHealth data and ensuring it is being treated responsibly.

Other efforts to model user-reported menstrual cycle lengths focus on issues like how to

represent between-womxn and within-womxn variability, including utilizing hierarchical mod-

els [99], linear random effects models [100] that account for how menstrual cycle behavior

evolves with age [101], and mixture models of standard cycles (cycles 43 days and shorter) and

nonstandard cycles (cycles longer than 43 days) [102]. These studies capture many important

aspects of menstruation, like the vitality of considering each user’s individual cycle behavior,

and include exclusion criteria for users who may not have reported their cycles accurately.

However, they fail to explicitly address the user adherence issues inherent in self-reported

mHealth data, rendering it difficult to determine whether the observed nonstandard cycles

actually resulted from skipped tracking. Furthermore, these studies may be limited in their

definition of a standard or nonstandard cycle, the size of the dataset, and the scope of the

information available — one advantage of our analysis is that we are able to utilize a large

dataset of natural menstrual cycles only, alleviating issues regarding confounding factors like

hormonal birth control.

Additionally, since sparsity is a prevalent issue with self-tracked data, a performant model

with the minimal type of information needed is beneficial. In this case, cycle length information

is both the minimal type of information and the data most commonly recorded by users who

use menstrual tracking apps. With observed cycle lengths as our only model input, we are able

to achieve error comparable to prior studies. For instance, an RMSE of 1.6 was achieved in a
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related study [103]. This error, however, is based on standard cycles only and uses self-tracking

data from a mHealth app designed for female athletes (a specific subset of individuals that

does not necessarily represent the diversity of womxn). If we similarly consider non-variable

cycles only (based on the definition of menstrual regularity as represented in Figure 4.7), our

model achieves a comparable median absolute error of 1.5 days. Therefore, we are able to

achieve reasonable performance with the whole dataset of cycle lengths only, and even more so

when we restrict it to more standard cycles. As compared to other menstrual tracking apps,

Clue has a broader target audience, and therefore may be prone to the presence of outliers

(due to unexpected cycle skips) that increase the RMSE.

Our study has limitations. Firstly, a risk inherent to our work (and any study that utilizes

self-tracking data) is the lack of access to ground truth: knowledge of what the true, experi-

enced cycle lengths are. Relatedly, we do not have explicit user information about events that

may disrupt menstruation, like pregnancy or miscarriage. To account for this, we conserva-

tively remove cycles longer than 90 days, as well as those self-identified by the user as being

anomalous. Another limitation of this work is that it does not leverage any menstrual symp-

tom information. However, such observations offer great potential to extend this model — our

previous work [95] demonstrated how cycle timing and symptom experiences are related, and

other studies have included symptom covariates, like cramps and period flow in their models,

to examine how these impact reported menstrual cycle length [103]. Including symptomatic

information in addition to cycle lengths is crucial to understanding menstrual variability more

holistically [68] and may impact cycle prediction accuracy.

By demonstrating our model’s ability to successfully detect self-tracking artifacts and out-

perform alternative baselines in predicting next cycle start, we have showcased the potential
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that self-tracking data holds to advance understanding of previously enigmatic physiological

processes. Our fully generative model allows for interpretable insight into the mechanisms

behind self-tracking behavior, and specifically, skipping behavior. In Chapter 5, we explore ex-

tending this fully generative model to a deep generative model that incorporates symptomatic

information.

Significance to users: Our results showcase the impact that skipped period tracking can

have on accurately anticipating next cycle length (assuming that menstrual cycle tracking apps

utilize past cycle lengths to predict the next one, as we have done here). If these results are

leveraged by menstrual cycle tracking apps, they can be used to build features that would assist

users in tracking their data more consistently and accurately (for instance, with an intelligent

tracking alert feature based on the probability of skipped tracking, as discussed in Figure 4.4).

Moreover, these insights can be used to not only help users track more effectively, but can

also be used to help users understand the mechanisms behind the predictions they may see in

apps — for example, a probability of next cycle length could be shown alongside the predicted

length itself.
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Chapter 5

A hierarchical, deep generative model for menstrual

symptoms that accounts for skipped tracking

5.1 Introduction

In Chapter 3, we explored the complex experience of menstruation, which spans symptoms

beyond bleeding to impact social, emotional, and physical well-being. In Chapter 4, we hy-

pothesized a fully generative model for reported menstrual cycle length using cycle lengths

only as input and predicting next reported cycle length. In this chapter, we will leverage deep

learning, which holds potential for greater predictive power than simpler, more interpretable

statistical models. In particular, we utilize symptomatic information from the Clue dataset to

develop a hierarchical, deep generative model that takes as input per-user time series repre-

sentations of symptom tracking (including, but not limited to, bleeding tracking) and predicts

next occurrence of the tracking event.

In addition to utilizing time series information (which allows us to leverage real-time track-

ing information and use incomplete cycles, as opposed to only complete cycle lengths), we

also learn a population-wide distribution distribution for likelihood of adherence, from which

per-user likelihoods are drawn, allowing us to retain the modeled mechanism that tracked in-

75



formation may not always match with actual experienced behavior. Incorporating available

symptom information showcases the flexibility of our model to not only predict bleeding events,

but also related symptoms. Modeling these phenomena with a deep generative model, which

separates a complex model of symptom dependence from an interpretable model of user ad-

herence, allows for interpretability while also harnessing the power of deep learning. We train

our model on bleeding information only, as well as bleeding and other symptom information,

utilizing an RNN that learns across symptoms.

5.2 Methods

5.2.1 Data cohort

We utilize the same Clue dataset cohort as described in Chapter 3, leveraging the first

I = 20, 000 users with T = 180 days of symptom tracking information per user. We focus

on the four most commonly tracked symptom categories — ‘bleeding,’ ‘pain,’ ‘emotion,’ and

‘energy.’ In Table 5.1, we provide a summary of how many users have tracked these symptoms

in the cohort, as well as the proportion of tracking events to total events.

5.2.2 Data preprocessing

Whereas in the previous chapter we utilized cycle lengths (i.e., the number of days between

subsequent periods) as data input to our model, here we utilize a time series representation of

our tracking data, where a user tracking an event on a given day results in a ‘1’ and absence of

tracking results in a ‘0.’ This allows us to more flexibly and accurately represent the symptom

tracking experience. For each category, we combine symptoms at the category level, i.e.,

‘bleeding’ represents whether a user has tracked any of ‘light,’ ‘medium,’ or ‘heavy’ on a given
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Table 5.1: Overview of dataset

Symptom No. of users tracked Prop. of users tracked Prop. of tracking events to total

Bleeding 19,942 0.997 0.145

Pain 15,342 0.767 0.072

Emotion 12,977 0.649 0.100

Energy 11,681 0.584 0.105

Summary of number of users who tracked a given symptom category in the training set, the

proportion of users who tracked out of the total number of users, and the proportion of

tracking events to total (i.e., (1/IT )
∑

I,T xi,t).

day (see Table 3.1 for symptoms associated with each category). Our model acknowledges

the possibility that a ‘0’ can represent either true lack of physiological event, or lack of user

tracking.

5.2.3 Proposed hierarchical, deep generative model

Our proposed hierarchical, deep generative model learns per-user and per-symptom tran-

sition probabilities as the output of a deep RNN and learns population-wide hyperparameters

for a population-wide distribution from which per-user likelihoods of adherence are drawn

(similarly to the model in Chapter 4). We also learn per-user parameters for likelihood of

tracking on the first day of the dataset. The graphical model for this proposed model is shown

in Figure 5.1.

Specifically, we propose that xi,t = zi,tgi,t, where

• xi,t is the observed (binary) data for user i, day t
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• zi,t is the true (binary) data for the same day

• gi,t is an indicator that represents whether or not the user skipped tracking on that day

Intuitively, if gi,t = 1, then the user has not skipped tracking on that day (and hence

xi,t = zi,t).

We propose that gi,t ∼ Bern(bi), where bi represents the probability of adherence for

user i. Note that for this model, we assume the probability of adherence is per user, and

this probability is utilized across time to generate gi,t (i.e., if bi = 1, then gi,t = 1 for all

t, and therefore the user has not skipped tracking). In this model, we also propose that

bi ∼ Beta(α, β), a population-wide prior distribution for user-level adherence.

Finally, we also define the marginal distribution for the initial zi,0 by θ0,i, where p(zi,0 =

1) = 1− p(zi,0 = 0) = θ0,i. That is, whereas zi,t for t ≥ 1 is dependent on zi,t−1, initial zi,0 is

dependent only on θ0,i. We denote θ0 as a vector where each entry is θ0,i per user i. We wish

to infer α, β, θ0, and p(zi,t|zi,t−1).

The proposed observation likelihood model (based on a Bernoulli indicator gi,t) results in

the following probabilities:

p(gi,t|bi) = b
gi,t
i (1− bi)1−gi,t (5.1)

and xi,t:

p(xi,t|zi,t, gi,t) =


xi,t = zi,t, gi,t = 1

xi,t = 0, gi,t = 0

(5.2)

= [xi,t = zi,t]
gi,t(1− xi,t)(1−gi,t). (5.3)
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bi

α,β

xi,t−1

zi,t−1

gi,t−1

xi,t+1

zi,t+1

gi,t+1

· · · · · ·

I

Figure 5.1: Graphical model for deep generative model. xi,t represents observed binary data

for user i at time t (0 if tracking is not observed, 1 if tracked is observed), gi,t is an indicator of

whether tracking was skipped, bi represents the probability that a user adhered to tracking, and

zi,t represents the true binary data. bi are drawn from a population-wide Beta distribution,

Beta(α, β). True data zi,t ranges from t = 0, · · · , T , observed data xi,t ranges from t =

1, · · · , T , and user index i ranges from 1, · · · , I. Note: initial emission probability p(zi,0 =

1) = θ0,i is not pictured, but is learned per-user.

5.2.4 Description of RNN

In order to learn the desired latent transition probabilities p(zi,t|zi,t−1), we leverage a deep

recurrent neural network (RNN). Note that in the following descriptions, we drop per-user

dependence i for conciseness and refer to these transition probabilities as p(zt|zt−1) (i.e., when

we refer to zt, this includes a dimension of size I, the number of users). Each layer of an RNN
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computes the hidden state

ht = tanh(θw,khzt−1 + θb,kh + θw,hhht−1 + θb,hh) (5.4)

where ht is the hidden state at time t, zt−1 is the input at time t, and ht−1 is the hidden state

of the RNN at time t− 1 (or, at time 0, the initial hidden state). k indexes the input size (i.e.,

the number of features in the input zt−1, which is the number of symptoms S). We refer to

the weights and biases of the RNN collectively as θh =[θw,kh, θw,hh, θb,kh, θb,hh], where

• θw,kh represents the learnable input-hidden weights, applied to the input, zt−1 and is of

shape (hidden size, S)

• θb,kh represents the learnable input-hidden biases and is of shape (hidden size)

• θw,hh represents the learnable hidden-hidden weights, applied to the previous hidden

state, ht−1 and is of shape (hidden size, hidden size)

• θb,hh represents the learnable hidden-hidden biases and is of shape (hidden size)

We can then refer to the computation of the hidden state as

ht = tanh(θw,khzt−1 + θb,kh + θw,hhht−1 + θb,hh) (5.5)

= fh(zt−1;ht−1, θh) (5.6)

The final (output) layer of the model applies a linear transformation to the final hidden

state of the RNN (i.e., Linear(x,A, b) = xAT + b) and utilizes a log sigmoid function (i.e.,

LogSigmoid(x) = log
(

1
1+exp(−x)

)
) to provide the the output of interest at time t, i.e., the

transition probabilities. A small detail here is that the output is computed in log space, which

we then exponentiate.

To summarize, the desired latent quantities to be learned are θ = [θ0, θh, θt, α, β], where
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• θ0 represents the initial emission probabilities, i.e., p(zi,0 = 1), which are per-user.

• θh represents the weights and biases of the neural network.

• α and β represent the population-wide hyperparameters for the population-wide Beta

distribution for adherence probabilities, i.e., bi ∼ Beta(α, β). These bi can be referred to

as θe, the emission probabilities.

The transition probabilities p(zi,t = 1|zi,t−1) (represented as θt) are the output of the RNN:

p(zi,t = 1|zi,t−1) = fp(zi,t−1;ht−1, θh) (5.7)

where fp is a deep RNN, as described above; ht−1 is the last hidden state of the RNN; and θh are

the weights and biases of the neural network. That is, our transition probabilities p(zi,t|zi,t−1)

are the output of an RNN that takes as input zi,t−1, the previous hidden state ht−1, and the

previous learned parameters θh. The RNN learns across symptoms and returns per-symptom

and per-user transition probabilities. The remaining quantities θ0, α, and β (which are used

to draw θe, i.e., bi) are parameters of the hierarchical, deep generative model that are learned

via backpropagation. We utilize PyTorch for our RNN implementation [104].

5.2.5 Inference using the approximate expected log likelihood

It may be useful to consider our model from the paradigm of a Hidden Markov Model

(HMM) [105], where the latent state space is z ∈ {0, 1} (for each symptom), the observed data

are x ∈ {0, 1}, the emission probabilities are θe (drawn from a Beta(α, β), where α and β are

learned population-wide hyperparameters), and the transition probabilities are θt.

To infer the desired parameters of an HMM, we can use expectation-maximization, or

EM [105]. In EM, we first compute the expected log likelihood of the model parameters θ
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with respect to the current posterior distribution of the latent states z0:T given some observed

sequence x1:T (i.e., p(z0:T |x1:T )) and the current parameter estimates (this is the expectation, or

E step), and then find the parameters θ that maximize this quantity (this is the maximization,

or M step). In order to compute the expected log likelihood as our loss function, which we

refer to as Q, we begin by writing the joint likelihood as:

p(x1:T , z0:T |θ) =
∑
g1:T

p(x1:T , g1:T , z0:T |θ) (5.8)

=
∑
g1:T

(
p(z0|θ0)

T∏
t=1

p(xt, gt, zt|θ, zt−1, ht)

)
(5.9)

=
∑
g1:T

(
p(z0|θ0)

T∏
t=1

p(zt|ht; θt)
T∏
t′=1

p(xt′ , gt′ |zt′ ; θe)

)
(5.10)

= p(z0|θ0)
T∏
t=1

p(zt|ht; θt)
∑
g1:T

(
T∏
t′=1

p(xt′ , gt′ |zt′ ; θe)

)
(5.11)

= p(z0|θ0)
T∏
t=1

p(zt|ht; θt)

(
T∏
t′=1

p(xt′ |zt′ , θe)

)
(5.12)

where the hidden state of the RNN at time t is represented as ht = fh(ht−1, zt−1; θh) and fh

represents the hidden layer computation (we utilize fp to refer to the full RNN, including the

output layer, whereas fh refers to the hidden layer computation only).

We then write the expected log likelihood Q as

Q(θ) = Ez0:T |x1:T ,θlog p(x1:T , z0:T |θ) (5.13)

=
∑
z0:T

p(z0:T |x1:T , θ) log

(
p(z0|θ0)

T∏
t=1

p(zt|ht; θt)

(
T∏
t′=1

p(xt′ |zt′ , θe)

))
(5.14)

=
∑
z0:T

p(z0:T |x1:T , θ)

(
log p(z0|θ0) +

T∑
t=1

log p(zt|ht; θt) +
T∑
t′=1

log p(xt′ |zt′ , θe)

)
(5.15)

where again, ht = fh(ht−1, zt−1; θh).

Note that our model differs from an HMM in that our transition from one state to the next
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at time t is implicitly dependent on all time points prior to t through the hidden state of the

RNN, ht−1 (i.e., ht depends on ht−1, which subsequently depends on the previous one and so

forth). That is, from a generative standpoint, in order to generate zt, we would need to not

only know zt−1, but also [z0, . . . , zt−2], and we cannot sum over all of the possible paths of z0:T ,

since there are 2S (where S is the number of symptoms) possible states at each timestep t, and

this sum would explode exponentially (for instance, if there are two symptoms, the possible

states at a timestep are [0, 0], [0, 1], [1, 0], and [1, 1], since zt can be 0 or 1 for each symptom).

We can approach this by instead approximating the sum using the Viterbi path, i.e., the

most probable path of latent z̃1:T based on p(z1:T |x1:T ), as computed by iterating forward in

time through the data x1:T , and then updating estimates backwards. In addition to computing

the most likely latent states, we also need to keep track of the hidden states ht associated with

these latent states.

We can then write our Viterbi path-based approximation to Q as

Q̂(θ) =
∑
z0:T

[z0:T = z̃0:T ]

(
log p(z0|θ0) +

T∑
t=1

log p(zt|ht; θt) +
T∑
t′=1

log p(xt′ |zt′ , θe)

)
(5.16)

= log p(z̃0|θ0) +

T∑
t=1

log p(z̃t|ht; θt) +

T∑
t′=1

log p(xt′ |z̃t′ , θe) (5.17)

where z̃ represents the Viterbi path; we provide details for computing z̃ below. In order to learn

our parameters θ (via the M step), we optimize Q̂ numerically, updating θ̂ = arg maxθ Q̂(θ) at

each iteration. We provide optimization details later on in subsection 5.2.8.

5.2.6 Computing the Viterbi path, the most probable path it-

erating forward and backward through x

For the RNN-based model, we have
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• Hidden states as deterministic functions of previous hidden state ht−1 and previous latent

state zt−1 = s′, where s′ ∈ {0, . . . , 2S − 1} (S is the number of symptoms, and there are

2S possible states; for the reduced case of one symptom, s′ ∈ {0, 1}):

ht = fh(zt−1 = s′, ht−1; θh) (5.18)

• The time-varying transition probabilities as computed using the RNN:

p(zt = s|zt−1 = s′, ht−1) = p
(
zt = s|ht = fh(zt−1 = s′, ht−1; θh)

)
(5.19)

= fp(zt−1;ht−1, θh) (5.20)

For the Viterbi algorithm, the key quantities to compute are

• Tprob[s, t], which keeps track of the maximum probability of being at state s at time t

Tprob[s, t] = max
zt−1=s′

(
Tprob[zt−1 = s′, t− 1]p(zt = s|zt−1 = s′)p(xt|zt = s)

)
(5.21)

• Tstate[s, t], which keeps track of the state zt=1 = s′ at t− 1 that leads to the most likely

probability Tprob[s, t]

Tstate[s, t] = arg max
zt−1=s′

(
Tprob[zt−1 = s′, t− 1]p(zt = s|zt−1 = s′)p(xt|zt = s)

)
(5.22)

• Thidden[s, t], which keeps track of the hidden state ht(s
′) at t that leads to the most likely

probability Tprob[s, t]

Thidden[s, t] = ht(Tstate[s, t]) = ht(zt−1 = Tstate[s, t], Thidden[Tstate[s, t], t− 1])). (5.23)

As such, we can compute the Viterbi path z̃ by iterating forward and backward through

time, as shown in Algorithm 1. Note that since some of our models are trained on multi-

ple symptoms, the Viterbi path is over states of size 2S , where S represents the number of

symptoms.
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Algorithm 1 Algorithm for computing Viterbi path z̃ by first iterating forward through time,

for t = 1, · · · , T to compute most likely zt and associated hidden states, then iterating back-

wards through time T, · · · , 1 to update predictions of zt as final path z̃. States are represented

by s′, where s′ ∈ {0, . . . , 2S − 1} (S is the number of symptoms, and there are 2S possible

states).

1: Input: θ0, h0, p(xt|zt)

2: Input: Sequence of observations x0:T

3: Initialization for each possible latent state s′

• Initialize Tprob[s, 0] for observation x0

Tprob[s = s′, 0] = p(z0 = s′) · p(x0|z0 = s′) (5.24)

• Initialize Tstate[s, 0]

Tstate[s = s′, 0] = 0 (5.25)

• Initialize Thidden[s, 0]

Thidden[s = s′, 0] = h0 (5.26)

4: for t = 1, · · · , T do

5: Compute hidden state for each possible latent state zt−1 = s′

ht(s
′) = ht(zt−1 = s′, ht−1(s

′) = Thidden[s′, t− 1]) (5.27)

6: Compute Tprob[s, t] for observation xt over possible latent states at prior timestep zt−1 =

s′ for each latent state s∗

Tprob[s = s∗, t] = max
zt−1=s′

(
Tprob[zt−1 = s′, t− 1]p(zt = s∗|zt−1 = s′, ht−1(s

′))p(xt|zt = s∗)
)

(5.28)

= max
zt−1=s′

(
Tprob[zt−1 = s′, t− 1]p(zt = s∗|ht(s′)p(xt|zt = s∗)

)
(5.29)

85



7: Keep track of Tstate[s, t] over possible latent states at prior timestep zt−1 = s′ for each

latent state s∗

Tstate[s = s∗, t] = arg max
zt−1=s′

(
Tprob[zt−1 = s′, t− 1]p(zt = s∗|zt−1 = s′, ht−1(s

′))p(xt|zt = s∗)
)

(5.30)

= arg max
zt−1=s′

(
Tprob[zt−1 = s′, t− 1]p(zt = s∗|ht(s′))p(xt|zt = s∗)

)
(5.31)

8: Keep track of Thidden[s, t] for each latent state s∗

Thidden[s = s∗, t] = ht(Tstate[s = s∗, t]) = ht(zt−1 = Tstate[s = s∗, t], ht−1(Tstate[s = s∗, t]))

(5.32)

9: end for

10: Select final most likely state z̃T = arg maxs Tprob[s, T ]

11: for t = T, · · · , 1 do

12: Recover state sequence

z̃t−1 = Tstate[z̃t, t] (5.33)

13: end for
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5.2.7 Simulated periodic data

In order to evaluate the ability of our model to recover true tracking adherence, we generate

simulated periodic data, in which each user follows roughly the same regular tracking pattern

with some variance, reporting tracking events for a given reported duration (i.e., a given number

of days in a row) followed by a length of days with no tracking. In basic terms, the data for

each symptom will be a string of 0s and 1s, repeated with roughly the same periodicity. For

each generated symptom, we define the length of days with no tracking as a set periodicity

(i.e., 28) divided by the symptom number. For instance, if we generated two symptoms, the

first symptom would have a periodicity of about 28 (about 28 days in a row with no tracking),

whereas the second would have a periodicity of about 14. We then generate the indicator for

whether a user tracked the true event (gi,t) according to a true tracking adherence probability

bi and compute xi,t = zi,tgi,t to generate the observed data x.

Specifically, each user’s first spike is random within the first 5 days (drawn from a uniform)

and their per-symptom length of no tracking (i.e., number of 0s in a row) varies from a set

periodicity (for instance, 28 days for symptom 1, or 14 days for symptom 2) plus a random

variance of up to 2 days. The reported duration for each symptom (i.e., the number of 1s that

are tracked in a row) is the set periodicity length (for instance, 2) plus a random variance of

up to 2 days. This allows us to generate a simulated dataset that is fairly regular, but with

some variation between users, symptoms, and cycles.

5.2.8 Data selection, training, and optimization

We split our data x into training and testing based on time; if Ttrain represents the number

of training days and Ttest represents the number of testing days (where Ttrain + Ttest = T , the

87



total number of days per user in the dataset), then

xtrain = xi=1:I,t=1:Ttrain (5.34)

xtest = xi=1:I,t=Ttrain+1:T (5.35)

In addition, we implement an option to check whether users have tracked a given symptom

in their training set, i.e., in xtrain, otherwise we utilize the full I = 20, 000. If we are utilizing

more than one symptom, we check that the user has tracked all symptoms at least once in

their training set.

We utilize the Adam optimizer [106] with −Q̂(θ) as our loss function, running the opti-

mization procedure to 2000 epochs with a loss epsilon convergence criteria of 1e−6, a learning

rate of 0.0001, and a batch size of 1000. We utilize a 3-layer RNN with a hidden size of 30 and

utilize two initializations for α and β, and since weights and biases for the neural network are

initialized randomly, we run each experiment for 3 distinct, random seeds. For all experiments,

we initialize the initial emission parameter θ0 = 0.5.

5.2.9 Prediction by day

We compute our predictions per-user and per-symptom by day, i.e., we update our predic-

tions at each timestep. We initialize our predictions ẑi,0 at time t = 0 with our learned θ0, i.e.,

ẑi,0 = [θ0 ≥ 0.5]. In other words, if θ0 ≥ 0.5, then ẑi,0 = 1.

For subsequent predictions, we first update our prediction ẑi,t by computing the most

likely Viterbi path including the observed data point xi,t (and utilizing the last timestep in the

updated path as ẑi,t). We then utilize this updated estimate of the most likely last latent state

as the input to our RNN (along with the updated most likely hidden state) and utilize the
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output p(zt|zt−1) to compute the most likely next zt. As with ẑi,0, ẑi,t = [p(zi,t = 1|zi,t−1) ≥

0.5].

On each day of the dataset, we predict 40 days into the future for each user (based on our

transition probabilities and the Viterbi path updated with the data for that day). That is,

for each day of prediction, we compute the Viterbi path including the new observed day xt,

and then compute predictions from day t : t + 40. This results in a prediction matrix of size

(I, T, S, 40), where I is the number of users, T is the number of days per-user in the dataset, S

is the number of symptoms, and 40 is the prediction window (the number of days we predict

into the future on each day). Our prediction approach is outlined in Algorithm 2. This extends

the predictions from Chapter 4, which represented updating cycle length predictions on each

day (i.e predicting one day out into the future).
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Algorithm 2 Algorithm for computing predictions on each day of the dataset for a prediction

window of size 40. We omit the subscript over i for clarity, but predictions are made per-user.

1: Initialize predictions ẑi,0 at time t = 0 with ẑi,0 = [θ0 ≥ 0.5]

2: for t = 1, · · · , T do

3: Compute an updated Viterbi path z̃1:t and associated hidden states based on including

new observation xt

4: Set ẑt as the last latent state in the updated Viterbi path, i.e., ẑt = z̃t

5: for w = 1, · · · , 40 do

6: Pass ẑt+w−1 and last hidden state as input to trained RNN; output transition prob-

abilities p(zt+w|zt+w−1) and last hidden state

7: Update ẑt+w based on current transition probabilities, ẑt+w = [p(zt+w =

1|zt+w−1) ≥ 0.5] and keep track of transition probabilities to later predict x

8: end for

9: end for

10: Predict x̂t = [p(xt = 1|zt−1) ≥ 0.5]

We then compute our predictions for x̂i,t by first computing p(xi,t = 1|zi,t−1), marginalizing

over zi,t, i.e.,

p(x̂i,t = 1|zi,t−1) =
∑
zi,t

p(xi,t = 1|zi,t)p(zi,t|zi,t−1) (5.36)

= p(xi,t = 1|zi,t = 0)p(zi,t = 0|zi,t−1) + p(xi,t = 1|zi,t = 1)p(zi,t = 1|zi,t−1)

(5.37)

= p(xi,t = 1|zi,t = 1)p(zi,t = 1|zi,t−1) (5.38)

= bip(zi,t = 1|zi,t−1). (5.39)

Then, as with our predictions on zi,t, we choose to threshold the probability in order to

compute our prediction, i.e., x̂i,t = [p(xi,t = 1|zi,t−1) ≥ 0.5].

Note that we have two options for the predicted outcome — we can predict ẑi,t, i.e., the
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true experienced event, or x̂i,t, the tracked event. We focus on comparing x̂i,t to observed xi,t,

since this comparison is one-to-one when we only have access to data xi,t (on simulated data,

for instance, we can compare ẑi,t to true zi,t).

Since we learn a prior on bi, when we compute predictions, we would like to use the posterior

bi (after observing xtrain). To do so, we compute the approximate expected posterior bi given

observed xtrain and z̃train (based on the Viterbi path having observed xtrain), Ê(b|xtrain, z̃train)

with a Monte Carlo estimate. While we omit the subscripts for conciseness, this is computed

per user and symptom.

Specifically, we start by writing out the desired expectation:

E(b|xtrain, z̃train) =

∫
b
b · p(b|xtrain, z̃train)db. (5.40)

Since we cannot compute this analytically, we approximate it with a sum, starting first

by writing the posterior for b (based on observing the training set, xtrain, and computing the

most likely latent state path z̃train) as

p(b|xtrain, z̃train) =
p(xtrain|b, z̃train)p(b)

p(xtrain|z̃train)
(5.41)

∝ p(xtrain|b, z̃train)p(b). (5.42)

We can then approximate this with a Monte Carlo estimate, where

Ê(b|xtrain, z̃) =

M∑
m=1

w̄(m)b(m) (5.43)

In order to compute the weights, w̄(m), we first draw M = 100 samples of b(m) from our

learned prior, i.e., b(m) ∼ Beta(α̂, β̂), and compute w(m) = p(xtrain|b(m), z̃train). We then

normalize our weights, computing w̄(m) = w(m)∑
m w(m) . This normalization ensures that the

weights sum to 1, and that therefore the approximate posterior probability distribution for
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b also sums to 1 over the drawn samples. Again, note that we compute these posteriors per

individual and symptom.

5.2.10 Evaluation

In order to evaluate predictions, we align user data and predictions on ‘day 0’ of the cycle

in their test set, i.e., the first day of bleeding in the test set that is at least 7 days away from

the last day of bleeding in the train set. Then, to compute the predicted next cycle start for

each user, we look at the first day of predicted bleeding that is at least 7 days away from ‘day

0.’

We evaluate our models by computing the AUC (area under the receiving operator char-

acteristic, or ROC, curve) [107], which evaluates our ability to distinguish true / false neg-

atives and positives at different false positive rate thresholds. We refer to this metric as

AUC(xi,t, p(x̂i,t = 1|zi,t−1)) (computed across time t and users i). We evaluate this AUC over-

all in order to compare it with a baseline, as well as on specific days (for instance, we can

compute the AUC of predicting day 29 of the cycle). Since we have a window of 40 predictions

for each day of the cycle, we can showcase this AUC as we approach the desired day. For

instance, to evaluate predictions of day 26, we can look at prediction on day 1 for a window of

25, day 2 for a window of 24, and so on. AUC allows us to evaluate our model across prediction

thresholds, and our prediction cutoff of 0.5 corresponds to a particular true positive and false

positive rate (therefore corresponding to a specific point on the ROC curve).

In addition to AUC, we compute RMSE of our predicted next cycle start versus true

(observed) next cycle start. Again, we can showcase this RMSE as a function of prediction

day (day of the test data, aligned at day 0 per user).
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5.2.11 Alternative baseline

We utilize a one-day lag baseline, which predicts x̂i,t = xi,t−1. Note that for this baseline,

we cannot provide a window of predictions on a given day (since this model relies on seeing

each day in order to predict the next).

5.3 Results

In this section, we demonstrate the key results of our work. Firstly, we provide loss plots

over epochs for different optimization methods, showcasing Adam’s superior performance rel-

ative to alternatives. We then showcase our model’s ability to correctly learn the empirical

adherence b (where lack of adherence indicates that x 6= z, i.e., not considering cases of

x = z = 0) on simulated data, which demonstrates proper parameter inference. Next, we

outline our model’s performance on the real data (based on results averaged across 3 seeds),

focusing on two main prediction tasks: predicting events in the future and predicting the next

cycle start. For the former task, we showcase AUC of predicting a day where the event is most

likely to have happened for that symptom. We also showcase the AUC of predicting day 29

of bleeding, which is the most likely day of the next cycle start in our dataset. Note that in

plots of AUC, we label the y-axis as ‘AUC future’ to represent the AUC of predicting into

the future. For the latter task, we showcase RMSE (and predictions) of next cycle start over

prediction day for a model that uses only bleeding, bleeding and emotion, bleeding and pain,

and bleeding and energy, assessing how additional symptoms affect performance.

Note that we see minimal differences between initializing prior α = 2, β = 2 (uninformative)

and α = 5, β = 1 (informative), so for conciseness we focus here on the results for initializing
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α = 5, β = 1. In all experiments, we fit and evaluate on users who have tracked the given

symptom(s) in their training data (i.e., ensuring that there are no users for whom their training

data are all 0s).

5.3.1 Evaluation of optimization

In order to assess the viability of different optimization methods, we test our model’s

learning using three popular methods for training deep models [56]: stochastic gradient descent

(SGD) and two adaptive gradient methods, Adadelta [108] and Adam [106] on a simulated

dataset of I = 5, 000 and T = 180. We find that Adam learns the quickest and is able to reach

an optimal minimum compared to the other two methods, as seen in Figure 5.2.

5.3.2 Inference of b on simulated periodic data

In order to assess our model’s ability to correctly learn b, we generate simulated data for

I = 5, 000 and T = 180, as described in the Methods section above. Utilizing a generative

b = 0.8, we evaluate our model’s learning of b in Figure 5.3 across two initializations (α = 2,

β = 2 and α = 5, β = 1) by examining the learned prior and posterior values. We choose

these initializations since (2, 2) represents an uninformative prior (with an expected value of

E(b) = 0.5) and (5, 1) represents an informative prior (with an expected value of E(b) = 0.83).

Based on our results in Chapter 3 with excluding suspected cycle tracking artifacts, our belief

is that user adherence will be above 0.5.

Additionally, note that we compare these learned values to ‘adherence b,’ which we define

as

n[xt=1,zt=1]

n[xt=0,zt=1] + n[xt=1,zt=1]
(5.44)
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(a) Loss over epochs using SGD optimization
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(b) Loss over epochs using Adadelta optimiza-

tion method.
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(c) Loss over epochs using Adam optimization

method.

Figure 5.2: Loss (−Q̂(θ)) over epochs for different optimization methods.

where n[xt=i,zt=j] represent the number of instances in the observed data where xt = i and

zt = j. This effectively means that instances of x 6= z indicate lack of adherence and differs

from typical empirical b, since it does not consider instances where x = z = 0 to be skipped

tracking (even if the generated g = 0, since we do not know what the true z is in this case). The

lower bound of adherence b is determined by the proportion of 0s to 1s in the observed data.

Our simulated dataset has a high proportion of 0s to 1s, since this mirrors the true dataset

most closely, which means that the adherence b will generally be high. For an explanation of
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computing the MLE of b, i.e., maximizing p(x|z, b), and why this MLE is the adherence b (not

the generative b), see Appendix C.

Figure 5.3 showcases that across the two initializations, our learned posterior b matches

the true adherence b (and that we are able to learn this regardless of where the prior is

initialized). Therefore, our model is able to successfully recover the truth on simulated data.

See Figure C.1 of Appendix C for example plots of learned α and β values for bleeding only

model with initializations of (2, 2) and (5, 1) on real data.
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(a) Prior initialized to (2, 2); adherence b ver-

sus learned prior. Scatter plot of learned prior

versus empirical adherence b.
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(b) Prior initialized to (2, 2); adherence b ver-

sus learned posterior. Scatter plot of learned

posterior versus empirical adherence b.
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(c) Prior initialized to (5, 1); adherence b ver-

sus learned prior. Scatter plot of learned prior

versus empirical adherence b.
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(d) Prior initialized to (5, 1); adherence b ver-

sus learned posterior. Scatter plot of learned

posterior versus empirical adherence b.

Figure 5.3: Learned prior and posterior bi vs. true adherence bi on simulated data with different

initializations of (α, β). We see that the learned prior bi values have more spread across users,

whereas the learned posterior bi values cluster around the adherence b, showcasing our model’s

ability to successfully recover the truth (i.e., the value on the y-axis).
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5.3.3 Predicting future event

In this section, we examine our model’s ability to predict the occurrence of a future event.

First, we provide overall per-symptom test AUC for our model (based on predicting the next

day out) versus the one-day lag baseline in Table 5.2. We see that across symptom models,

our model outperforms the baseline.

Table 5.2: Overall test AUC vs. baseline, evaluated per symptom. Models are either trained

on bleeding only or bleeding and another symptom.

Input symptom(s) Model AUC per symptom Baseline AUC per symptom

Bleeding 0.95 0.85

Bleeding and pain 0.95, 0.89 0.84, 0.73

Bleeding and emotion 0.95, 0.92 0.84, 0.79

Bleeding and energy 0.95, 0.92 0.84, 0.81

Note that as mentioned previously, we choose a prediction threshold of 0.5. For a visual

of how this threshold can impact predictions, see Figure 5.4, where we showcase an example

of computed per-user p(x̂i,t = 1|zi,t−1) (labeled as p(x̂ = 1) in the plot for brevity) over day

of the dataset, based on the learned transition probabilities p(zi,t|zi,t−1) and adherence bi.

These predictions are based on updating predictions by day (and predicting one day out).

The vertical blue lines indicate where the observed data xi,t is 1, the dotted red line indicates

the prediction threshold of 0.5, and the blue triangles indicate the computed p(x̂i,t = 1|zi,t−1)

based on learned parameters at the last epoch (in this case, epoch 249). We see that while in
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general our prediction threshold allows us to capture tracking successfully, in this instance, a

slightly lower prediction threshold would’ve allowed for the identification of a few more true

positives, such as the 1s before day 140. This is not the case across all users, but can be a

useful consideration for interpreting our reported metrics.
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Figure 5.4: Computed prediction probabilities p(x̂t = 1) (more precisely, p(x̂i,t = 1|zi,t−1)) over

time for a particular user and particular seed, utilizing the bleeding only model and predicting

one day out. Vertical lines represent where the observed data contains a 1, i.e., where the user

tracked an event, and the dotted red line indicates our prediction threshold of 0.5. We see how

our model captures prediction probabilities over time in a multimodal manner — probabilities

generally increase when a tracking event is coming up and decrease after the tracking period

has finished. In this instance, a lower prediction threshold may have allowed for us to identify

more true positives.

Next, we showcase our model’s ability to predict a future symptom event (other than

bleeding) in Figure 5.5 — for each symptom, we choose a day in the test set (aligned at day 0)
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for which there is a high proportion of tracking and plot the AUC of predicting that day as a

function of prediction day (i.e., as the test set approaches the day we are trying to predict). We

see that across all symptoms, our model achieves an AUC of between 0.72 and 0.88, and that

this AUC increases as a function of prediction day, indicating that our performance improves as

we approach the event day. Consequently, for models where we include a symptom in addition

to bleeding, we can provide the user with an accurate sense of when that symptom will occur

in the next cycle.

We also examine the AUC of predicting day 29 of bleeding for all models in Figure 5.6,

since this is the most common day of the next cycle start. We see that for all models, AUC

increases over prediction day, indicating that as we approach the day of the bleeding event,

our models are able to more accurately predict its occurrence. Between models, we see minor

differences between AUC on this particular day (this effect changes slightly depending on the

day in question). However, bear in mind that the user sets differ between models (and that

therefore the proportion and distribution of bleeding events also differs). For instance, the

bleeding only model has 16, 672 eligible users, i.e., users with day 0 at least 29 days before

the end of the test set; the model with energy has 9, 776; the model with emotion has 10, 841;

and the model with pain has 12, 845. We see that for models with a symptom included, the

variance of the AUC between seeds is lower than that of the bleeding only model.
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(a) AUC of predicting day 26 of energy with

bleeding and energy model.
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(b) AUC of predicting day 26 of emotion with

bleeding and emotion model.

0 5 10 15 20 25
Prediction day

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

AU
C_

fu
tu

re

Avg num users: 13591, prop ones on day 27: 0.08255463093519211

(c) AUC of predicting day 27 of pain with

bleeding and pain model.

Figure 5.5: AUC of predicting future symptom events for each model with a symptom in

addition to bleeding as input. We see that across models, we are able to predict future symptom

events well, and that this performance improves as the prediction day approaches the day of

the event we are trying to predict.
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(a) AUC of predicting day 29 of bleeding with

bleeding only model.
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(b) AUC of predicting day 29 of bleeding with

bleeding and energy model.
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(c) AUC of predicting day 29 of bleeding with

bleeding and emotion model.
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(d) AUC of predicting day 29 of bleeding with

bleeding and pain model.

Figure 5.6: AUC of predicting day 29 of bleeding across models. We see that across models,

we are able to predict day 29 of bleeding (the most common cycle length in the dataset) well,

with an AUC of about 0.7 as we approach day 29.

5.3.4 Predicting next cycle start

5.3.4.1 Bleeding only model

We start by utilizing bleeding as the only input symptom, checking for users who have

tracked bleeding in the training set. In Figure 5.7, we showcase the RMSE of predicted next

cycle start over prediction day (aligned with day 0 per user), with specific values presented in
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Table C.1 of Appendix C. We see that the RMSE starts high early in the cycle, but declines

rapidly past around day 10 of the test set (on day 10, the RMSE is 7.26). This performance

continues to improve as we proceed in the test set, dropping to an RMSE of 2.36 on day 20.

See Figure C.2 of Appendix C for RMSE of predicting next cycle start with initialization of

(2, 2) for α and β.

In comparison to our prior generative model for cycle lengths in Chapter 4, this model’s

predictive performance is a significant improvement — when we are within about 10 days of

the typical next cycle start, we are able to predict its occurrence within 2 or 3 days. We

provide a histogram of observed cycle lengths in Figure 5.7b, which shows that cycle lengths

are peaked around day 29, demonstrating why we see a drop in RMSE as we approach this

typical next cycle start day.

Although our model performs well as the cycle proceeds, the RMSE in the beginning of

the test set is high — this is due to the fact that in the beginning of the cycle, the model is

not yet confident about predicting next cycle start (in Appendix C, we provide the number of

predictions available on each day of the prediction window — in the beginning of the cycle, next

cycle start predictions are relatively few). Instead, the model is predicting ‘current’ bleeding

(not next bleeding); that is, the first day of predicted bleeding may not fall within the criteria

of being considered ‘next’ cycle start (i.e., within 7 days of day 0). This is reasonable, because

the cycle has not proceeded far enough at this point where the model is predicting next cycle

(instead, it is predicting the bleeding of the current cycle).
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(a) RMSE of predicted next cycle start over prediction day for

model with bleeding only.
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(b) Histogram of observed cycle length on full dataset.

Figure 5.7: RMSE of predicted next cycle start, using model with bleeding only over prediction

day (a), and histogram of observed cycle length for the full dataset (b). We see that cycle

lengths are peaked around day 29, and that prediction RMSE drops past around day 10 of

prediction. This RMSE decreases as we approach the typical cycle length.
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We showcase this effect by presenting tables of AUC for predicting early days of bleeding

in the test set (days 2 and 3) in Tables 5.3 and 5.4. We can see that our model is making

accurate predictions of bleeding early in the test set; however, early in the cycle, these are

predictions of bleeding for the current cycle, not the next one. For AUC of predicting bleeding

on days 4, 5, 6, and 7, see Appendix C.

The histogram of number of events per day in the test set in Figure 5.8b further showcases

how early in the cycle, we have bleeding events for the current cycle, while from days 7 to

about day 20, there are not many bleeding events observed. Therefore, we can consider that

in the beginning of the cycle, our model is not confident yet in predicting the next cycle start

(and that consequently, there are few users for whom we have a predicted next cycle start early

on). However, our predictions for next cycle start become increasingly common and accurate

as we proceed and observe more events closer to when the next cycle is expected to begin.

Table 5.3: AUC of predicting bleeding on day 2 of the test set over prediction day (aligned at

day 0) for bleeding only model. The average and SD are computed across 3 seeds.

Prediction day Mean AUC SD AUC

0 0.67 0.04

1 0.73 0.03
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Table 5.4: AUC of predicting bleeding on day 3 of the test set over prediction day (aligned at

day 0) for bleeding only model. The average and SD are computed across 3 seeds.

Prediction day Mean AUC SD AUC

0 0.64 0.04

1 0.7 0.05

2 0.76 0.04

5.3.4.2 Bleeding and additional symptom model

In this section, we explore the impact of adding a symptom in addition to bleeding. Specif-

ically, we test adding energy, emotion, and pain symptoms.

In general, we find that including a symptom in addition to bleeding does not have a

significant impact on predicting next cycle start. Looking at prediction RMSE over prediction

day as in Figure 5.8, we see that past day 15, the models converge to about the same point,

reaching an RMSE of 2-3 days as the cycle proceeds (see Tables C.3, C.2, and C.4 in Appendix C

for specific values).
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(a) RMSE of predicted next cycle start, using model with bleeding

only and bleeding with another symptom over prediction day.

(b) Histogram of observed number of events per symptom on each

day of the test set.

Figure 5.8: RMSE of predicted next cycle start, using model with bleeding only and bleeding

with another symptom over prediction day (a), and histogram of observed number of events per

symptom on each day of the test set (b). We see that predictive performance is similar among

models (i.e., whether we include another symptom or not), due to the fact that symptom events

are aligned with when bleeding events occur, as seen in the histogram of tracking events.
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There are a few considerations to bear in mind with this result; the first is that we are

learning a more complex model with multi-symptom input. Secondly, the predictions made for

different symptom models represent different user sets, in the sense that we can only compute

the RMSE based on users who are eligible (i.e., for users who have a predicted next cycle start

on a given day), which varies depending on the symptom we are considering. For instance,

for the dataset where we check for tracking of pain in the training set, there are 9, 501 eligible

users, i.e., users with an observed next cycle start; for emotion, there are 8, 007; and for energy,

there are 7, 225. Therefore, there may be variation in the user sets we are comparing between

results. Finally, as observed in Figure 5.8b, the other symptom events are generally aligned

with bleeding, i.e., inclusion of these symptoms may not be adding additional information

beyond what is offered when considering bleeding alone. We also provide a normalized version

of Figure 5.8b in Figure C.3 of Appendix C.

In summary, when we train the model on bleeding and another symptom, predictive per-

formance mirrors that of the model trained on bleeding only. That is, we are able to learn

a more complex model without sacrificing performance in predicting next cycle start (and

without needing to train separate models per symptom, which would be computationally less

efficient). Earlier we also presented how including additional symptoms allows us to predict

future symptom events (for the input symptom that we included) with high accuracy. This is

beneficial because in a real-world setting, bleeding is the most commonly tracked information,

and we have seen how using symptom-level bleeding information (instead of cycle lengths)

allows us to predict next cycle start with high accuracy. Furthermore, if there is also access to

other symptom information, including that in the model as well both allows us to still predict

bleeding reliably, but also predict the other symptom.
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5.4 Significance

The results of our proposed hierarchical, deep generative model for symptom tracking

events showcase the potential that self-tracked data holds to inform users of future events,

even with the presence of self-tracking artifacts (i.e., instances where a user does not track an

event that they actually experienced). This natural extension of our fully generative model

in Chapter 4 allows us to leverage more nuanced information from the dataset, while still

providing estimates of next symptom occurrence and likelihood of adherence. Specifically,

we capture the menstrual experience with ‘bleeding’ symptoms, rather than cycle lengths,

and add nuance by utilizing symptoms beyond ‘bleeding.’ Furthermore, by using day-by-day

information, we can use incomplete cycles, rather than being restricted to complete, observed

cycle lengths.

Specifically, we are able to provide more accurate predictions (in comparison to the cycle

length model in Chapter 4) and nuanced predictions as a function of prediction day for bleeding

and other symptoms. We find that our predictions of next cycle start and next symptom event

become increasingly accurate as we proceed in the test set, and notably, our prediction RMSE

for next cycle start drops to around 2 about 10 days before the anticipated cycle start across

all models. In addition, we find that we can predict next symptom occurrence with an AUC of

around 0.72− 0.88 for symptoms and around 0.55− 0.7 for bleeding, with this AUC increasing

as we approach the day we are trying to predict. Although we have focused on predictions

of x̂ in this chapter (since we can compare this to the observed data x), we can also use our

model to generate predictions of ĝ (the indicator of tracking adherence) to provide the user

with predictions of skipped tracking. Furthermore, we can also provide the user with their
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learned posterior b to give an overall sense of their tracking adherence, or use this to develop

informed alerting on a per-user basis, as in Chapter 4. Finally, we find that when we learn a

more complex model with multi-symptom input, we maintain our predictive performance for

next cycle start while also generating these accurate predictions for next symptom occurrence.

In considering further exploration of a multi-symptom model for menstruation, a few key

paths come to mind: the first is consider symptoms on a more granular level. That is, when

we consider symptoms at the category level, we are benefited by less data sparsity, but may be

losing more specific information about the cycle. For instance, it may be the case that certain

symptoms can provide more anticipatory information for next cycle start (as compared to being

synced with the next cycle start, which is what we have seen in our experiments). In addition,

as we have discussed above, when we currently compare the bleeding only model against others,

we are comparing different user sets (and for instance, since the bleeding only dataset is more

inclusive, the population-wide hyperparameters have more users to learn from). In order to

evaluate the models in a more one-to-one fashion, we could consider training the model for

bleeding only on the users for whom there is both bleeding and the symptom in question

(therefore, when comparing bleeding only to bleeding and symptom, we are considering fitting

and evaluating on the same user set). Additionally, we could consider evaluating only those

who have tracked the symptom in the test set as well, to further isolate the impact of including

additional symptoms. Finally, we currently make predictions based on a probability threshold

of 0.5 — changing this threshold to a lower one would allow for more predictions of 1s, which

could impact our next cycle start prediction and favor more ‘early’ cycle start predictions; this

threshold could also be based on user behavior or preference. From a metric perspective, this

would increase our false positive rate (which is currently low for our model), but from a user
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point of view, this may be desirable. Relatedly, while AUC is useful from a model validation

perspective, we can also consider metrics that may be useful to the user (other than RMSE of

next cycle start). For instance, we can consider the accuracy of predicting next cycle start or

symptom occurrence within a window. The question of which metrics most benefit the user

merits further investigation.

Significance to users: While other models exist for predicting the onset of menstruation

(and related information, such as menstrual phases or period length), our model also focuses

on predicting symptoms outside of bleeding. That is, the user can get an accurate sense not

only of when their next period bleeding event will occur, but also what other symptoms to

expect. Since menstruation is a multi-faceted experience, providing this nuance to the user can

help them feel informed and prepared for upcoming symptom events. Additionally, we have

developed a model that is flexible to symptom input. That is, if bleeding is the only symptom

that is available, we can provide users with a dependable idea of when their next bleeding

event (or next cycle start) will occur. However, if other symptoms are also available, we can

include them in the model and predict them well, too, without sacrificing bleeding predictive

performance. Since we provide a window of predictions on each day, we can continually update

users with when we think the next cycle will occur. We have seen that these predictions improve

over time and that at least 7 days before the expected cycle start, the prediction RMSE is

between 2− 3 days. Finally, in comparison to other deep learning approaches, the generative

component of our model facilitates interpretability by modeling user adherence and per-user

temporal dynamics explicitly.
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Chapter 6

Conclusions and future work

Understanding the physiological mechanisms behind menstruation and how they manifest

in womxn will continue to be an important task for researchers, the broad population of

menstruators this research impacts, and clinicians responsible for diagnosing and advising

patients on issues related to menstruation. While there have been advancements in recent

years (particularly with the rise of access to data and the increased interest in understanding

womxn’s health), there is still more progress to be made. In this dissertation, we’ve not only

showcased how to understand and handle the nuances of self-tracked mobile health data, but

we’ve also proposed two models for predicting menstrual cycle lengths and related symptoms

that show promising results. Importantly, we’ve taken a holistic approach to investigating

menstruation — we’ve integrated concerns related to data reliability, effective mobile app

design, and the needs of menstruators with powerful statistics to produce models that are

realistic, effective, and interpretable.

The results from our investigation of the data and our design of these flexible models provide

quantitative insight into understanding how menstruation is not a ‘regular’ process for most

womxn (nor should it be expected to be one): we saw that for our dataset spanning millions of

womxn, users occupied different ends of the variability spectrum for cycle lengths. In addition,
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we found that users who experience more variable cycles also generally experience more variable

symptoms — i.e., knowledge about cycle length volatility can inform our understanding of

symptom experiences. Furthermore, since we explicitly considered the possibility of skipped

cycles with a parameter representing the likelihood of skipping tracking in our models, we

were able to accurately detect when a cycle length may not have been accurately tracked

by the user (i.e., when period tracking may have been missed), which can be useful to app

designers to help proactively alert users who may be prone to missed tracking. Finally, we

proposed a fully generative model that uses cycle lengths as the only input, which outperforms

alternative baselines using only the most commonly tracked type of information, as well as

a hierarchical, deep generative model that utilizes time series representations of symptom

information, providing a more nuanced and flexible approach to tracking event prediction.

In doing so, we achieved high predictive ability for next symptom tracking event without

sacrificing interpretability — we proposed a generative process for the data and can provide

learned parameter values in addition to predictions. That is, while the mechanism for learning

these parameters is a deep one, their meaning is interpretable.

This work is significant to users because it quantitatively shows that menstrual variabil-

ity is more common than not, revamping prior definitions of what is normal. Furthermore,

it provides practical considerations to users: for users who have a typical (median) between-

cycle length variability that is greater than 9 days, they may expect greater variance in their

symptom experiences as well. For healthcare professionals, this 9 day variability threshold can

also serve as an updated, more nuanced guideline for discussing menstrual variability with pa-

tients. In addition to these considerations for variability of the menstrual experience, this work

also provides practical predictive models for next cycle length and next symptom occurrence,
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which can be applied in many different data availability scenarios: cycle length information

only, bleeding symptom information only, or bleeding and other symptom information. More-

over, since these models have a generative component, they can provide more interpretable

insight behind the predictions; for instance, since we account for the possibility of self-tracking

artifacts, we can provide the user with their learned self-tracking adherence, in addition to

their cycle length or symptom predictions. This flexibility and interpretability means that the

user can gain personalized insight into their cycle across a variety of settings. In addition, since

we learn population-wide distributions for self-tracking adherence, this can provide a view into

how a large population of mobile health users adheres at-large.

We’ve laid the groundwork for future research into prediction of menstrual cycle lengths

and related symptoms. While we have shown the great potential of learning from individual

symptoms (whether that be cycle lengths, bleeding events, or other symptoms), we would like

to extend this work to develop models that leverage insight across symptoms by exploring a

larger set of symptoms in addition to bleeding that may offer anticipatory signal for next cycle

start. We also aim to further examine evaluation metrics that may be useful to the user (and

how modeling choices, such as prediction thresholds, can impact these metrics). In doing so,

we hope to further showcase the utility that self-tracked mobile health data holds to improve

individual-level and broader understanding of menstruation and deliver these insights to the

user in an impactful way.
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Appendix A

Supplementary information for Chapter 3

A.1 Supplementary Information: Cohort and dataset

A.1.1 Study dataset

Table A.1: Summary statistics of this study’s cohort dataset, compared with state of the art

references on menstrual health studies through mobile apps.

Variable This cohort Cohort in [49] Cohort in [50]

Number of users 378,694 (100.00%) 124,646 (32.92%) 212,967 (56.24%)

Number of observations 117,014,597 (100.00%) NA 7,496,316 (6.41%)

Number of days of ob-

servation

34,056,343 (100.00%) NA 33,675,453 (98.88%)

Number of cycles 4,881,697 (100.00%) 612,613 (12.55%) 2,732,424 (55.97%)

A.1.2 User demographics
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Table A.2: High-level characteristics for this study’s cohort dataset, compared with state of

the art references on menstrual health studies through mobile apps.

Full cohort Cohort in [49] Cohort in [50]

Variable Mean ± sd Median Mean ± sd Median Mean ± sd Median

Age 25.49 ± 3.66 25 30.3 NA 30 ± 6 NA

Number of cycles 12.89 ± 9.11 11.00 8.6 NA 12.83 (NA) NA

Cycle length 29.73 ± 5.73 29.00 29.3 ± 5.2 NA NA 28

Period length 4.08 ± 1.76 4.00 4.0 ± 1.5 NA NA NA
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Table A.3: Per-age number of users and cycles for the full cohort, as well as for the consistently

not highly variable and consistently highly variable user groups.

Full cohort Consistently not highly variable Consistently highly variable

Age Number users Number cycles Number users Number cycles Number users Number cycles

21 71,511 557,083 65,520 526,413 5,991 30,670

22 36,723 500,736 33,338 478,394 3,385 22,342

23 33,943 466,999 30,984 447,498 2,959 19,501

24 32,225 442,053 29,529 424,706 2,696 17,347

25 30,651 422,465 28,191 406,519 2,460 15,946

26 29,377 402,905 27,066 388,306 2,311 14,599

27 27,757 380,662 25,802 368,043 1,955 12,619

28 25,257 353,535 23,518 342,245 1,739 11,290

29 22,991 325,875 21,535 316,637 1,456 9,238

30 20,744 297,814 19,462 289,725 1,282 8,089

31 18,424 269,125 17,358 262,045 1,066 7,080

32 16,444 244,483 15,521 238,957 923 5,526

33 12,647 217,962 11,782 212,206 865 5,756
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Table A.4: Per-country user count in the full cohort, as well as for the consistently not highly

variable and consistently highly variable user groups.

Country Full cohort Consistently not highly variable Consistently highly variable

United States 97955 6911 91044

United Kingdom 32676 2486 30190

Mexico 32155 3102 29053

Brazil 27275 2535 24740

Germany 21538 1360 20178

France 19106 1371 17735

China 16529 1435 15094

Canada 15507 963 14544

Australia 14211 1103 13108

Spain 13574 804 12770

Italy 12775 685 12090

Japan 8716 692 8024

Denmark 7520 580 6940

Russia 7203 396 6807

Taiwan 5192 538 4654

Colombia 5024 475 4549

India 3976 424 3552

Switzerland 3380 216 3164

Sweden 3190 167 3023

Philippines 2876 346 2530

Argentina 2783 211 2572

Hong Kong 2706 266 2440

Singapore 2635 220 2415
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Country Full cohort Consistently not highly variable Consistently highly variable

South Korea 1910 205 1705

New Zealand 1902 171 1731

Peru 1897 205 1692

Netherlands 1832 135 1697

Austria 1512 117 1395

Portugal 1257 110 1147

Indonesia 1187 96 1091

Malaysia 1127 104 1023

Ireland 1115 84 1031

Chile 1080 100 980

Ecuador 1041 105 936

Turkey 835 78 757

Poland 710 43 667

Venezuela 690 51 639

Finland 482 44 438

Belgium 389 38 351

Saudi Arabia 387 27 360

Ukraine 382 29 353

Vietnam 299 42 257

Guatemala 82 12 70

South Africa 76 6 70
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A.1.3 Cycle statistics per user age

Table A.5: Per-age average number of cycles per user for the full cohort, as well as for the

consistently not highly variable and consistently highly variable user groups.

Full cohort Consistently not highly variable Consistently highly variable

Age Mean ± sd (95% CI) Median Mean ± sd (95% CI) Median Mean ± sd (95% CI) Median

21 7.79 ± 3.88 (1.00,14.00) 8.00 8.03 ± 3.88 (1.00,14.00) 8.00 5.12 ± 2.63 (1.00,11.00) 5.00

22 7.74 ± 3.92 (1.00,14.00) 8.00 7.97 ± 3.92 (1.00,14.00) 8.00 4.77 ± 2.52 (1.00,11.00) 4.00

23 7.77 ± 3.94 (1.00,14.00) 8.00 8.00 ± 3.93 (1.00,14.00) 8.00 4.73 ± 2.48 (1.00,10.00) 4.00

24 7.78 ± 3.96 (1.00,14.00) 8.00 7.99 ± 3.96 (1.00,14.00) 8.00 4.74 ± 2.46 (1.00,10.00) 4.00

25 7.82 ± 3.97 (1.00,14.00) 8.00 8.03 ± 3.96 (1.00,14.00) 8.00 4.71 ± 2.47 (1.00,10.00) 4.00

26 7.85 ± 3.99 (1.00,14.00) 8.00 8.05 ± 3.98 (1.00,14.00) 8.00 4.68 ± 2.40 (1.00,10.00) 4.00

27 7.86 ± 4.02 (1.00,14.00) 8.00 8.05 ± 4.02 (1.00,14.00) 8.00 4.68 ± 2.48 (1.00,10.00) 4.00

28 7.93 ± 4.03 (1.00,14.00) 8.00 8.11 ± 4.03 (1.00,14.00) 8.00 4.70 ± 2.43 (1.00,10.00) 4.00

29 8.00 ± 4.06 (1.00,14.00) 8.00 8.18 ± 4.05 (1.00,14.00) 8.00 4.61 ± 2.41 (1.00,10.00) 4.00

30 8.08 ± 4.09 (1.00,15.00) 8.00 8.26 ± 4.08 (1.00,15.00) 9.00 4.60 ± 2.36 (1.00,10.00) 4.00

31 8.13 ± 4.11 (1.00,15.00) 8.00 8.28 ± 4.11 (1.00,15.00) 9.00 4.81 ± 2.42 (1.00,10.00) 4.00

32 8.23 ± 4.15 (1.00,15.00) 8.00 8.39 ± 4.13 (1.00,15.00) 9.00 4.56 ± 2.46 (1.00,10.00) 4.00

33 8.85 ± 3.85 (3.00,15.00) 9.00 9.05 ± 3.80 (3.00,15.00) 9.00 4.88 ± 2.25 (2.00,10.00) 4.00
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Table A.6: Per-age average cycle length per user for the full cohort, as well as for the consis-

tently not highly variable and consistently highly variable user groups.

Full cohort Consistently not highly variable Consistently highly variable

Age Mean ± sd (95% CI) Median Mean ± sd (95% CI) Median Mean ± sd (95% CI) Median

21 30.24 ± 6.23 (20.00,45.00) 29.00 29.86 ± 5.25 (21.00,42.00) 29.00 36.83 ± 13.66 (13.00,69.00) 34.00

22 30.16 ± 6.02 (20.00,44.00) 29.00 29.85 ± 5.20 (21.00,42.00) 29.00 36.82 ± 13.67 (13.00,69.00) 34.00

23 30.10 ± 5.95 (21.00,44.00) 29.00 29.81 ± 5.17 (21.00,42.00) 29.00 36.88 ± 13.67 (13.00,69.00) 34.00

24 30.03 ± 5.84 (21.00,44.00) 29.00 29.74 ± 5.09 (21.00,42.00) 29.00 36.96 ± 13.62 (13.00,68.00) 34.00

25 29.95 ± 5.81 (21.00,44.00) 29.00 29.66 ± 5.06 (21.00,42.00) 29.00 37.14 ± 13.76 (13.00,69.00) 34.00

26 29.85 ± 5.74 (21.00,44.00) 29.00 29.58 ± 5.00 (22.00,41.00) 29.00 37.25 ± 13.76 (13.00,69.00) 35.00

27 29.71 ± 5.65 (21.00,43.00) 29.00 29.44 ± 4.92 (22.00,41.00) 29.00 37.38 ± 13.92 (13.00,71.00) 35.00

28 29.57 ± 5.56 (22.00,43.00) 29.00 29.32 ± 4.88 (22.00,41.00) 29.00 37.27 ± 13.60 (13.00,69.00) 35.00

29 29.42 ± 5.45 (22.00,42.00) 29.00 29.18 ± 4.80 (22.00,41.00) 28.00 37.34 ± 13.99 (13.00,71.00) 34.00

30 29.24 ± 5.35 (22.00,42.00) 28.00 29.01 ± 4.71 (22.00,40.00) 28.00 37.37 ± 13.81 (14.00,70.00) 35.00

31 29.06 ± 5.23 (22.00,42.00) 28.00 28.84 ± 4.62 (22.00,40.00) 28.00 37.21 ± 13.45 (13.00,67.00) 35.00

32 28.85 ± 5.08 (22.00,41.00) 28.00 28.66 ± 4.53 (22.00,39.00) 28.00 37.10 ± 13.71 (14.00,68.00) 34.00

33 28.66 ± 5.05 (22.00,40.00) 28.00 28.45 ± 4.39 (22.00,39.00) 28.00 36.57 ± 13.74 (13.00,70.00) 33.00
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Table A.7: Per-age average period length per user for the full cohort, as well as for the consis-

tently not highly variable and consistently highly variable user groups.

Full cohort Consistently not highly variable Consistently highly variable

Age Mean ± sd (95% CI) Median Mean ± sd (95% CI) Median Mean ± sd (95% CI) Median

21 4.18 ± 1.74 (1.00,7.00) 4.00 4.18 ± 1.70 (1.00,7.00) 4.00 4.23 ± 2.33 (1.00,8.00) 4.00

22 4.17 ± 1.76 (1.00,7.00) 4.00 4.16 ± 1.71 (1.00,7.00) 4.00 4.36 ± 2.59 (1.00,9.00) 4.00

23 4.14 ± 1.76 (1.00,7.00) 4.00 4.13 ± 1.72 (1.00,7.00) 4.00 4.29 ± 2.55 (1.00,9.00) 4.00

24 4.12 ± 1.75 (1.00,7.00) 4.00 4.12 ± 1.71 (1.00,7.00) 4.00 4.32 ± 2.55 (1.00,9.00) 4.00

25 4.11 ± 1.75 (1.00,7.00) 4.00 4.10 ± 1.71 (1.00,7.00) 4.00 4.32 ± 2.53 (1.00,9.00) 4.00

26 4.09 ± 1.77 (1.00,7.00) 4.00 4.08 ± 1.73 (1.00,7.00) 4.00 4.34 ± 2.62 (1.00,9.00) 4.00

27 4.06 ± 1.75 (1.00,7.00) 4.00 4.05 ± 1.73 (1.00,7.00) 4.00 4.34 ± 2.39 (1.00,9.00) 4.00

28 4.04 ± 1.75 (1.00,7.00) 4.00 4.03 ± 1.72 (1.00,7.00) 4.00 4.28 ± 2.57 (1.00,9.00) 4.00

29 4.01 ± 1.76 (1.00,7.00) 4.00 4.00 ± 1.73 (1.00,7.00) 4.00 4.22 ± 2.61 (1.00,9.00) 4.00

30 3.99 ± 1.77 (1.00,7.00) 4.00 3.98 ± 1.72 (1.00,7.00) 4.00 4.28 ± 2.88 (1.00,10.00) 4.00

31 3.97 ± 1.77 (1.00,7.00) 4.00 3.97 ± 1.74 (1.00,7.00) 4.00 4.19 ± 2.73 (1.00,9.02) 4.00

32 3.95 ± 1.78 (1.00,7.00) 4.00 3.95 ± 1.76 (1.00,7.00) 4.00 4.14 ± 2.47 (1.00,9.00) 4.00

33 3.91 ± 1.78 (1.00,7.00) 4.00 3.91 ± 1.76 (1.00,7.00) 4.00 4.01 ± 2.52 (1.00,9.00) 4.00
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Table A.8: Per-age average median CLD per user for the full cohort, as well as for the consis-

tently not highly variable and consistently highly variable user groups.

Full cohort Consistently not highly variable Consistently highly variable

Age Mean ± sd (95% CI) Median Mean ± sd (95% CI) Median Mean ± sd (95% CI) Median

21 4.49 ± 5.07 (1.00,19.00) 3.00 3.38 ± 2.39 (1.00,9.00) 3.00 16.82 ± 9.00 (5.19,40.00) 14.00

22 4.32 ± 4.83 (1.00,17.00) 3.00 3.40 ± 2.56 (1.00,9.50) 3.00 16.32 ± 9.36 (4.00,42.00) 13.50

23 4.23 ± 4.72 (1.00,17.00) 3.00 3.36 ± 2.52 (1.00,9.00) 3.00 16.42 ± 9.23 (4.00,41.00) 14.00

24 4.10 ± 4.53 (1.00,16.00) 3.00 3.30 ± 2.51 (1.00,9.00) 2.50 16.03 ± 8.98 (3.00,39.35) 13.50

25 4.07 ± 4.57 (1.00,16.00) 3.00 3.26 ± 2.44 (1.00,9.00) 2.50 16.50 ± 9.30 (4.00,41.29) 13.50

26 3.99 ± 4.61 (1.00,16.00) 3.00 3.19 ± 2.48 (1.00,9.00) 2.50 16.59 ± 9.67 (3.00,43.00) 13.50

27 3.86 ± 4.43 (0.50,15.50) 2.50 3.13 ± 2.37 (0.50,9.00) 2.50 16.59 ± 9.54 (3.34,42.66) 14.00

28 3.81 ± 4.38 (1.00,15.00) 2.50 3.10 ± 2.39 (0.50,9.00) 2.50 16.60 ± 9.49 (4.00,43.00) 13.50

29 3.70 ± 4.25 (1.00,14.50) 2.50 3.05 ± 2.38 (0.50,9.00) 2.50 16.60 ± 9.45 (4.00,42.00) 13.50

30 3.59 ± 4.16 (1.00,14.00) 2.50 2.95 ± 2.18 (0.50,8.50) 2.00 16.73 ± 9.65 (3.00,41.00) 13.50

31 3.52 ± 4.04 (0.50,14.00) 2.50 2.92 ± 2.28 (0.50,8.50) 2.00 16.42 ± 9.00 (4.00,37.95) 14.00

32 3.42 ± 4.01 (0.50,13.00) 2.00 2.87 ± 2.22 (0.50,8.50) 2.00 16.87 ± 10.05 (3.00,43.00) 13.50

33 3.44 ± 4.25 (1.00,14.00) 2.00 2.73 ± 1.99 (1.00,8.00) 2.00 17.58 ± 9.49 (7.00,45.00) 14.00

123



Table A.9: Per-age average maximum CLD per user for the full cohort, as well as for the

consistently not highly variable and consistently highly variable user groups.

Full cohort Consistently not highly variable Consistently highly variable

Age Mean ± sd (95% CI) Median Mean ± sd (95% CI) Median Mean ± sd (95% CI) Median

21 9.48 ± 7.29 (1.00,30.00) 8.00 8.18 ± 5.34 (1.00,21.00) 7.00 23.81 ± 10.10 (9.00,51.00) 22.00

22 9.14 ± 6.91 (1.00,28.00) 7.00 8.08 ± 5.26 (1.00,21.00) 7.00 23.05 ± 10.14 (7.00,50.00) 21.00

23 8.97 ± 6.84 (1.00,28.00) 7.00 7.96 ± 5.23 (1.00,21.00) 7.00 23.10 ± 10.19 (7.00,50.00) 21.00

24 8.70 ± 6.65 (1.00,27.00) 7.00 7.76 ± 5.11 (1.00,20.00) 7.00 22.78 ± 10.16 (5.00,49.00) 21.00

25 8.67 ± 6.72 (1.00,28.00) 7.00 7.72 ± 5.12 (1.00,20.00) 7.00 23.39 ± 10.26 (7.00,51.00) 22.00

26 8.51 ± 6.64 (1.00,27.00) 7.00 7.59 ± 5.09 (1.00,20.00) 6.00 23.15 ± 10.29 (6.00,50.00) 21.00

27 8.26 ± 6.47 (1.00,26.00) 7.00 7.40 ± 4.93 (1.00,19.00) 6.00 23.22 ± 10.48 (6.00,50.32) 21.00

28 8.17 ± 6.40 (1.00,26.00) 6.00 7.35 ± 4.94 (1.00,19.00) 6.00 23.09 ± 10.17 (7.00,49.15) 21.00

29 8.01 ± 6.35 (1.00,26.00) 6.00 7.24 ± 4.94 (1.00,19.00) 6.00 23.42 ± 10.31 (6.00,50.35) 22.00

30 7.82 ± 6.13 (1.00,25.00) 6.00 7.07 ± 4.71 (1.00,18.00) 6.00 23.16 ± 10.29 (7.00,50.00) 21.00

31 7.71 ± 6.04 (1.00,25.00) 6.00 7.00 ± 4.74 (1.00,18.00) 6.00 23.00 ± 9.65 (8.00,48.00) 22.00

32 7.54 ± 5.88 (1.00,24.00) 6.00 6.91 ± 4.64 (1.00,18.00) 6.00 22.94 ± 10.35 (5.00,52.00) 21.00

33 7.72 ± 6.21 (2.00,26.00) 6.00 6.90 ± 4.63 (1.00,18.00) 6.00 24.01 ± 10.10 (11.00,51.92) 22.00
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Figure A.1: For users with cycles at a specific age, we average cycle (left) and period length

(right) across three different groups: the entire user cohort (top, purple), the consistently not

highly variable user cohort (middle, teal), and the consistently highly variable user cohort

(bottom, orange). This allows us to visualize how cycle and period length vary with age for

each group, on average and in terms of standard deviation. We observe that cycle and period

length statistics are stationary over the studied age range within each plot. We note that the

the top and middle plots look similar in each figure (i.e., the consistently not highly variable

group looks similar to the overall population in terms of both cycle and period length), but the

wider shaded orange spread of the bottom plot demonstrates the higher degree of variability

in the consistently highly variable group. In addition, this spread is consistently wider for all

ages in the orange plot. This showcases that the consistently highly variable group represents

a large degree of the variability that we see in the data overall.
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A.2 Supplementary Information: Results

A.2.1 Assessing differences in reported symptoms across user

groups

The following table provides the Kolmogorov-Smirnov statistic for the empirical cumulative

distributions of the proportion of cycles with symptom out of cycles with category (λs) for the

different user groups.

Table A.10: Kolmogorov-Smirnov test results for symptoms per-group

Category Symptom KS statistic (95% CI) p-value

Period flow heavy 0.181 (0.178,0.183) < 0.000000

Stool health normal 0.135 (0.130,0.140) < 0.000000

Period flow medium 0.134 (0.132,0.137) < 0.000000

Social behavior sociable 0.127 (0.121,0.132) < 0.000000

Mental state distracted 0.123 (0.118,0.127) < 0.000000

Period flow light 0.121 (0.118,0.124) < 0.000000

Food cravings sweet craving 0.120 (0.115,0.125) < 0.000000

Energy level low energy 0.118 (0.114,0.121) < 0.000000

Motivation level unproductive 0.117 (0.112,0.122) < 0.000000

Digestive health bloated 0.116 (0.111,0.122) < 0.000000

Emotional state sensitive 0.115 (0.112,0.118) < 0.000000

Digestive health gassy 0.114 (0.109,0.119) < 0.000000

Emotional state happy 0.108 (0.105,0.111) < 0.000000

Mental state calm 0.104 (0.099,0.108) < 0.000000

Type of pain experienced cramps 0.101 (0.097,0.104) < 0.000000

Hours of sleep 3-6 0.100 (0.097,0.103) < 0.000000
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Category Symptom KS statistic (95% CI) p-value

Food cravings carbs craving 0.098 (0.094,0.103) < 0.000000

Motivation level motivated 0.098 (0.094,0.103) < 0.000000

Motivation level unmotivated 0.098 (0.092,0.103) < 0.000000

Type of pain experienced ovulation pain 0.096 (0.093,0.099) < 0.000000

Skin health acne skin 0.093 (0.088,0.098) < 0.000000

Social behavior withdrawn 0.093 (0.087,0.098) < 0.000000

Skin health oily skin 0.093 (0.089,0.096) < 0.000000

Hair health bad hair 0.092 (0.087,0.097) < 0.000000

Vaginal discharge type creamy 0.091 (0.086,0.095) < 0.000000

Type of pain experienced headache 0.089 (0.087,0.092) < 0.000000

Hair health good hair 0.089 (0.083,0.095) < 0.000000

Period flow spotting 0.089 (0.087,0.092) < 0.000000

Emotional state pms 0.086 (0.083,0.089) < 0.000000

Digestive health great digestion 0.085 (0.081,0.089) < 0.000000

Skin health good skin 0.085 (0.081,0.088) < 0.000000

Food cravings salty cravings 0.084 (0.080,0.089) < 0.000000

Method for period collection pad 0.083 (0.077,0.090) < 0.000000

Type of pain experienced tender breasts 0.082 (0.080,0.084) < 0.000000

Hours of sleep 6-9 0.079 (0.076,0.083) < 0.000000

Mental state stressed 0.079 (0.074,0.083) < 0.000000

Stool health constipated 0.078 (0.074,0.083) < 0.000000

Sexual health unprotected sex 0.078 (0.074,0.081) < 0.000000

Physical maladies cold/flu 0.077 (0.067,0.087) < 0.000000

Method for period collection tampon 0.076 (0.070,0.083) < 0.000000

Type of medication taken cold/flu 0.076 (0.067,0.085) < 0.000000

Emotional state sad 0.076 (0.073,0.079) < 0.000000
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Category Symptom KS statistic (95% CI) p-value

Social behavior supportive 0.075 (0.071,0.079) < 0.000000

Physical exercise running 0.074 (0.067,0.081) < 0.000000

Party-related experiences cigarettes 0.074 (0.067,0.081) < 0.000000

Stool health diarrhea 0.071 (0.066,0.076) < 0.000000

Motivation level productive 0.071 (0.067,0.075) < 0.000000

Food cravings chocolate cravings 0.071 (0.066,0.075) < 0.000000

Mental state focused 0.069 (0.066,0.073) < 0.000000

Vaginal discharge type atypical 0.069 (0.065,0.074) < 0.000000

Sexual health protected sex 0.069 (0.065,0.073) < 0.000000

Method for period collection menstrual cup 0.067 (0.063,0.072) < 0.000000

Skin health dry skin 0.067 (0.063,0.072) < 0.000000

Hair health dry hair 0.067 (0.061,0.073) < 0.000000

Hair health oily hair 0.067 (0.062,0.072) < 0.000000

Vaginal discharge type sticky 0.066 (0.062,0.070) < 0.000000

Energy level exhausted 0.066 (0.063,0.069) < 0.000000

Stool health great 0.065 (0.060,0.071) < 0.000000

Digestive health nauseated 0.064 (0.059,0.069) < 0.000000

Energy level high energy 0.063 (0.061,0.066) < 0.000000

Party-related experiences big night party 0.063 (0.057,0.071) < 0.000000

Social behavior conflict 0.062 (0.059,0.068) < 0.000000

Vaginal discharge type egg white 0.062 (0.058,0.067) < 0.000000

Physical exercise yoga 0.062 (0.055,0.068) < 0.000000

Physical maladies allergy 0.061 (0.053,0.069) 0.000001

Hours of sleep > 9 0.061 (0.057,0.064) < 0.000000

Method for period collection panty liner 0.057 (0.053,0.061) < 0.000000

Physical exercise biking 0.056 (0.049,0.062) < 0.000000
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Category Symptom KS statistic (95% CI) p-value

Party-related experiences hangover 0.055 (0.051,0.063) < 0.000000

Energy level energized 0.052 (0.049,0.055) < 0.000000

Sexual health high sex drive 0.052 (0.051,0.055) < 0.000000

Type of medication taken pain 0.046 (0.041,0.054) 0.000548

Sexual health withdrawal sex 0.045 (0.044,0.048) < 0.000000

Physical maladies fever 0.044 (0.037,0.054) 0.001015

Type of medication taken antibiotic 0.044 (0.036,0.053) 0.001040

Party-related experiences drinks party 0.042 (0.037,0.050) 0.000028

Hours of sleep 0-3 0.041 (0.039,0.044) < 0.000000

Physical maladies injury 0.040 (0.034,0.049) 0.003686

Physical exercise swimming 0.040 (0.034,0.045) 0.000003

Type of medication taken antihistamine 0.032 (0.029,0.041) 0.032955

Table A.11: Likelihood of low proportion (λs < 0.05) of cycles with symptom out of cycles

with category per group, with the associated odds ratio of how likely users in the consistently

highly variable group to the consistently not highly variable group are not to track a symptom

throughout their cycle history (i.e., in very few of their cycles). 95% confidence intervals

attained via bootstrapping with 100,000 samples are shown in parentheses.

Category Symptom High variability group Low variability group Odds ratio

Period flow medium 0.009 (0.009,0.009) 0.003 (0.003,0.003) 3.140 (2.826,3.522)

Period flow light 0.036 (0.036,0.036) 0.014 (0.013,0.015) 2.568 (2.445,2.700)

Period flow heavy 0.170 (0.169,0.170) 0.098 (0.096,0.100) 1.734 (1.703,1.766)

Type of pain experienced cramps 0.105 (0.104,0.105) 0.073 (0.071,0.074) 1.436 (1.404,1.470)

Skin health acne skin 0.174 (0.173,0.176) 0.132 (0.129,0.135) 1.319 (1.286,1.353)

Period flow spotting 0.314 (0.313,0.315) 0.239 (0.237,0.241) 1.314 (1.300,1.328)

Mental state stressed 0.243 (0.242,0.245) 0.186 (0.182,0.189) 1.312 (1.286,1.340)

Type of medication taken pain 0.212 (0.209,0.215) 0.167 (0.160,0.174) 1.274 (1.220,1.334)

Emotional state sad 0.348 (0.346,0.349) 0.273 (0.270,0.276) 1.273 (1.260,1.287)

Emotional state pms 0.395 (0.394,0.396) 0.310 (0.307,0.313) 1.273 (1.261,1.286)

Motivation level unmotivated 0.168 (0.167,0.170) 0.133 (0.129,0.136) 1.271 (1.237,1.307)
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Category Symptom High variability group Low variability group Odds ratio

Party-related experi-

ences

drinks party 0.166 (0.164,0.168) 0.131 (0.126,0.136) 1.270 (1.219,1.325)

Emotional state sensitive 0.176 (0.175,0.177) 0.143 (0.140,0.145) 1.234 (1.214,1.254)

Stool health diarrhea 0.369 (0.367,0.371) 0.299 (0.295,0.304) 1.234 (1.213,1.255)

Social behavior withdrawn 0.215 (0.213,0.216) 0.176 (0.172,0.180) 1.218 (1.188,1.249)

Hours of sleep 6-9 0.161 (0.160,0.162) 0.133 (0.130,0.135) 1.218 (1.196,1.240)

Type of pain experienced headache 0.326 (0.325,0.327) 0.269 (0.266,0.272) 1.212 (1.199,1.225)

Energy level exhausted 0.312 (0.311,0.313) 0.258 (0.255,0.261) 1.208 (1.194,1.223)

Vaginal discharge type egg white 0.359 (0.357,0.361) 0.298 (0.293,0.303) 1.206 (1.186,1.226)

Physical maladies cold/flu 0.234 (0.231,0.238) 0.195 (0.187,0.202) 1.204 (1.158,1.254)

Social behavior conflict 0.379 (0.377,0.381) 0.318 (0.313,0.323) 1.194 (1.174,1.215)

Digestive health gassy 0.219 (0.217,0.221) 0.184 (0.180,0.188) 1.189 (1.162,1.217)

Motivation level unproductive 0.207 (0.205,0.208) 0.175 (0.171,0.179) 1.179 (1.152,1.207)

Energy level low energy 0.129 (0.128,0.130) 0.110 (0.108,0.112) 1.174 (1.151,1.198)

Digestive health nauseated 0.427 (0.425,0.429) 0.365 (0.360,0.370) 1.170 (1.153,1.187)

Digestive health bloated 0.151 (0.150,0.153) 0.130 (0.126,0.133) 1.165 (1.133,1.199)

Stool health constipated 0.358 (0.356,0.360) 0.309 (0.304,0.314) 1.160 (1.141,1.180)

Food cravings chocolate craving 0.350 (0.348,0.351) 0.302 (0.297,0.306) 1.159 (1.142,1.178)

Motivation level level productive 0.354 (0.352,0.356) 0.308 (0.304,0.313) 1.148 (1.130,1.167)

Food cravings salty craving 0.295 (0.293,0.296) 0.257 (0.253,0.261) 1.147 (1.127,1.168)

Food cravings sweet craving 0.144 (0.143,0.146) 0.126 (0.123,0.129) 1.146 (1.116,1.178)

Type of pain experienced tender breasts 0.366 (0.365,0.367) 0.320 (0.317,0.322) 1.145 (1.134,1.156)

Food cravings carbs craving 0.310 (0.309,0.312) 0.271 (0.267,0.276) 1.144 (1.125,1.164)

Physical exercise running 0.250 (0.248,0.253) 0.219 (0.214,0.224) 1.144 (1.116,1.174)

Sexual health protected sex 0.533 (0.531,0.534) 0.466 (0.462,0.469) 1.143 (1.134,1.152)

Type of pain experienced ovulation pain 0.721 (0.720,0.722) 0.633 (0.630,0.636) 1.139 (1.133,1.144)

Party-related experi-

ences

big night party 0.522 (0.519,0.525) 0.460 (0.452,0.468) 1.136 (1.116,1.156)

Hair health oily hair 0.363 (0.361,0.365) 0.320 (0.314,0.325) 1.135 (1.114,1.157)

Method for period collec-

tion

tampon 0.630 (0.628,0.633) 0.557 (0.551,0.563) 1.131 (1.119,1.144)

Physical exercise yoga 0.551 (0.548,0.553) 0.489 (0.483,0.496) 1.125 (1.110,1.141)

Hair health good hair 0.217 (0.215,0.219) 0.194 (0.189,0.199) 1.120 (1.091,1.150)

Party-related experi-

ences

hangover 0.512 (0.509,0.515) 0.458 (0.450,0.465) 1.119 (1.100,1.139)

Stool health great 0.595 (0.593,0.597) 0.533 (0.527,0.538) 1.118 (1.106,1.130)

Hours of sleep 3-6 0.259 (0.258,0.260) 0.232 (0.229,0.235) 1.117 (1.102,1.131)

Sexual health high sex drive 0.469 (0.467,0.470) 0.420 (0.417,0.424) 1.115 (1.105,1.124)

Hours of sleep > 9 0.587 (0.586,0.588) 0.530 (0.526,0.533) 1.108 (1.101,1.115)

Vaginal discharge type sticky 0.439 (0.437,0.441) 0.399 (0.394,0.404) 1.101 (1.086,1.115)

Hair health bad hair 0.324 (0.322,0.326) 0.295 (0.289,0.300) 1.099 (1.078,1.121)

Mental state distracted 0.204 (0.202,0.205) 0.187 (0.183,0.190) 1.091 (1.069,1.115)
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Category Symptom High variability group Low variability group Odds ratio

Skin health good skin 0.384 (0.382,0.386) 0.352 (0.348,0.357) 1.091 (1.076,1.105)

Vaginal discharge type creamy 0.342 (0.340,0.344) 0.315 (0.310,0.319) 1.087 (1.071,1.105)

Sexual health unprotected sex 0.378 (0.376,0.379) 0.348 (0.344,0.351) 1.086 (1.075,1.097)

Energy level high energy 0.394 (0.393,0.395) 0.363 (0.360,0.367) 1.085 (1.075,1.095)

Physical exercise biking 0.715 (0.712,0.717) 0.660 (0.654,0.666) 1.083 (1.072,1.093)

Method for period collec-

tion

menstrual cup 0.880 (0.879,0.882) 0.814 (0.809,0.818) 1.082 (1.075,1.088)

Mental state focused 0.407 (0.405,0.409) 0.377 (0.372,0.381) 1.081 (1.067,1.095)

Type of medication taken cold/flu 0.569 (0.565,0.573) 0.527 (0.517,0.536) 1.080 (1.060,1.101)

Motivation level motivated 0.299 (0.297,0.301) 0.278 (0.273,0.282) 1.075 (1.057,1.094)

Sexual health withdrawal sex 0.596 (0.595,0.598) 0.556 (0.552,0.559) 1.073 (1.065,1.080)

Social behavior supportive 0.412 (0.410,0.414) 0.386 (0.380,0.391) 1.069 (1.054,1.085)

Physical maladies fever 0.704 (0.701,0.708) 0.661 (0.653,0.670) 1.065 (1.050,1.080)

Hair health dry hair 0.441 (0.439,0.443) 0.415 (0.409,0.421) 1.063 (1.047,1.079)

Type of medication taken antibiotic 0.712 (0.709,0.716) 0.671 (0.662,0.680) 1.061 (1.047,1.076)

Skin health dry skin 0.493 (0.491,0.494) 0.464 (0.460,0.469) 1.060 (1.049,1.072)

Physical maladies injury 0.732 (0.728,0.735) 0.692 (0.684,0.701) 1.057 (1.044,1.071)

Energy level energized 0.625 (0.624,0.626) 0.593 (0.590,0.596) 1.054 (1.047,1.060)

Method for period collec-

tion

panty liner 0.553 (0.551,0.555) 0.525 (0.519,0.531) 1.053 (1.040,1.066)

Skin health oily skin 0.372 (0.371,0.374) 0.355 (0.351,0.360) 1.048 (1.034,1.062)

Physical exercise swimming 0.841 (0.840,0.843) 0.803 (0.798,0.808) 1.047 (1.040,1.054)

Hours of sleep 0-3 0.762 (0.761,0.763) 0.731 (0.728,0.734) 1.043 (1.038,1.047)

Type of medication taken antihistamine 0.767 (0.763,0.770) 0.736 (0.727,0.744) 1.042 (1.030,1.055)

Social behavior sociable 0.218 (0.217,0.220) 0.210 (0.206,0.215) 1.038 (1.015,1.062)

Physical maladies allergy 0.581 (0.578,0.585) 0.560 (0.551,0.569) 1.037 (1.019,1.056)

Emotional state happy 0.281 (0.280,0.282) 0.275 (0.272,0.278) 1.024 (1.013,1.035)

Mental state calm 0.293 (0.292,0.295) 0.290 (0.286,0.295) 1.010 (0.995,1.027)

Digestive health great digestion 0.388 (0.386,0.390) 0.388 (0.383,0.393) 1.002 (0.988,1.016)

Stool health normal 0.181 (0.179,0.182) 0.181 (0.177,0.185) 0.998 (0.975,1.022)

Vaginal discharge type atypical 0.664 (0.662,0.666) 0.673 (0.668,0.678) 0.986 (0.978,0.993)

Party-related experi-

ences

cigarettes 0.581 (0.578,0.585) 0.608 (0.601,0.616) 0.956 (0.943,0.969)

Method for period collec-

tion

pad 0.214 (0.212,0.216) 0.236 (0.231,0.241) 0.907 (0.886,0.929)
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Table A.12: Likelihood of high proportion (λs > 0.95) of cycles with symptom out of cycles with

category per group, with the associated odds ratio of how likely users in the consistently highly

variable group to the consistently not highly variable group are to consistently track a symptom

throughout their cycle history (i.e., in almost every cycle where they track the category). 95%

confidence intervals attained via bootstrapping with 100,000 samples are shown in parentheses.

Category Symptom High variability group Low variability group Odds ratio

Hours of sleep 0-3 0.035 (0.034,0.035) 0.020 (0.019,0.021) 1.750 (1.667,1.839)

Period flow spotting 0.067 (0.066,0.067) 0.039 (0.037,0.040) 1.729 (1.679,1.782)

Type of pain experi-

enced

tender breasts 0.193 (0.192,0.194) 0.113 (0.111,0.115) 1.715 (1.684,1.746)

Vaginal discharge type atypical 0.100 (0.099,0.101) 0.059 (0.056,0.061) 1.706 (1.636,1.780)

Energy level energized 0.075 (0.074,0.075) 0.044 (0.043,0.046) 1.686 (1.633,1.741)

Type of pain experi-

enced

headache 0.218 (0.217,0.219) 0.131 (0.129,0.133) 1.663 (1.636,1.691)

Skin health dry skin 0.155 (0.154,0.157) 0.096 (0.093,0.098) 1.626 (1.579,1.676)

Type of medication

taken

cold/flu 0.179 (0.176,0.182) 0.112 (0.107,0.118) 1.590 (1.506,1.681)

Skin health oily skin 0.250 (0.248,0.251) 0.159 (0.155,0.162) 1.575 (1.540,1.611)

Hair health dry hair 0.170 (0.169,0.172) 0.109 (0.105,0.113) 1.565 (1.510,1.624)

Digestive health great digestion 0.241 (0.239,0.243) 0.158 (0.154,0.162) 1.528 (1.490,1.567)

Social behavior supportive 0.215 (0.213,0.216) 0.141 (0.138,0.145) 1.519 (1.477,1.562)

Emotional state happy 0.307 (0.306,0.308) 0.202 (0.200,0.205) 1.518 (1.498,1.538)

Skin health good skin 0.242 (0.241,0.244) 0.160 (0.156,0.163) 1.518 (1.485,1.552)

Hair health bad hair 0.266 (0.264,0.268) 0.175 (0.171,0.180) 1.514 (1.474,1.557)

Digestive health nauseated 0.170 (0.168,0.171) 0.112 (0.109,0.116) 1.511 (1.466,1.558)

Stool health great 0.101 (0.100,0.102) 0.068 (0.065,0.071) 1.487 (1.428,1.549)

Emotional state sad 0.171 (0.170,0.172) 0.115 (0.113,0.117) 1.486 (1.459,1.513)

Method for period col-

lection

panty liner 0.174 (0.172,0.175) 0.118 (0.114,0.122) 1.471 (1.422,1.523)

Stool health constipated 0.246 (0.244,0.248) 0.169 (0.165,0.173) 1.454 (1.420,1.491)

Mental state focused 0.218 (0.216,0.219) 0.150 (0.147,0.153) 1.451 (1.417,1.486)

Mental state calm 0.327 (0.325,0.328) 0.225 (0.221,0.229) 1.450 (1.424,1.477)

Vaginal discharge type sticky 0.214 (0.212,0.216) 0.148 (0.145,0.152) 1.442 (1.406,1.479)

Type of medication

taken

antihistamine 0.099 (0.096,0.101) 0.069 (0.064,0.074) 1.437 (1.337,1.548)

Hours of sleep 3-6 0.322 (0.321,0.324) 0.225 (0.222,0.228) 1.431 (1.413,1.450)

Motivation level motivated 0.321 (0.319,0.322) 0.225 (0.220,0.229) 1.428 (1.401,1.457)

Hours of sleep > 9 0.093 (0.092,0.094) 0.065 (0.064,0.067) 1.425 (1.388,1.464)

Physical exercise swimming 0.061 (0.060,0.062) 0.043 (0.040,0.045) 1.423 (1.339,1.516)

Motivation level unproductive 0.387 (0.386,0.389) 0.272 (0.268,0.277) 1.422 (1.398,1.447)
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Category Symptom High variability group Low variability group Odds ratio

Mental state distracted 0.407 (0.405,0.409) 0.286 (0.282,0.290) 1.422 (1.400,1.444)

Type of pain experi-

enced

ovulation pain 0.044 (0.043,0.044) 0.031 (0.030,0.032) 1.419 (1.369,1.473)

Emotional state sensitive 0.380 (0.378,0.381) 0.269 (0.266,0.272) 1.411 (1.395,1.426)

Food cravings carbs craving 0.334 (0.332,0.336) 0.238 (0.234,0.242) 1.403 (1.378,1.429)

Energy level high energy 0.214 (0.213,0.215) 0.153 (0.150,0.155) 1.400 (1.377,1.423)

Social behavior conflict 0.208 (0.206,0.210) 0.149 (0.145,0.153) 1.399 (1.362,1.438)

Vaginal discharge type creamy 0.314 (0.312,0.316) 0.224 (0.220,0.228) 1.399 (1.372,1.427)

Social behavior sociable 0.444 (0.442,0.446) 0.320 (0.315,0.325) 1.388 (1.365,1.411)

Sexual health withdrawal sex 0.159 (0.158,0.160) 0.115 (0.112,0.117) 1.386 (1.358,1.415)

Energy level exhausted 0.235 (0.234,0.236) 0.170 (0.167,0.172) 1.382 (1.361,1.403)

Stool health normal 0.475 (0.473,0.477) 0.344 (0.339,0.349) 1.381 (1.361,1.402)

Digestive health gassy 0.400 (0.398,0.402) 0.290 (0.285,0.294) 1.381 (1.358,1.405)

Hair health oily hair 0.244 (0.242,0.246) 0.178 (0.173,0.183) 1.368 (1.332,1.407)

Physical maladies fever 0.119 (0.116,0.121) 0.087 (0.082,0.092) 1.368 (1.285,1.458)

Emotional state pms 0.160 (0.159,0.161) 0.117 (0.115,0.119) 1.367 (1.342,1.393)

Food cravings chocolate craving 0.263 (0.261,0.264) 0.194 (0.190,0.198) 1.357 (1.329,1.386)

Motivation level productive 0.266 (0.264,0.267) 0.197 (0.193,0.201) 1.347 (1.318,1.376)

Physical maladies injury 0.105 (0.102,0.107) 0.078 (0.073,0.083) 1.346 (1.260,1.442)

Type of medication

taken

antibiotic 0.123 (0.120,0.126) 0.092 (0.086,0.097) 1.345 (1.264,1.433)

Party-related experi-

ences

hangover 0.200 (0.198,0.203) 0.149 (0.144,0.155) 1.343 (1.293,1.397)

Physical maladies allergy 0.236 (0.233,0.239) 0.176 (0.169,0.183) 1.343 (1.289,1.402)

Party-related experi-

ences

big night party 0.215 (0.212,0.217) 0.160 (0.154,0.166) 1.342 (1.293,1.393)

Party-related experi-

ences

cigarettes 0.290 (0.287,0.293) 0.217 (0.211,0.223) 1.337 (1.297,1.379)

Stool health diarrhea 0.225 (0.223,0.226) 0.169 (0.165,0.173) 1.330 (1.298,1.363)

Food cravings salty craving 0.331 (0.330,0.333) 0.249 (0.245,0.253) 1.330 (1.307,1.353)

Energy level low energy 0.489 (0.488,0.491) 0.376 (0.373,0.379) 1.302 (1.290,1.314)

Social behavior withdrawn 0.397 (0.395,0.399) 0.307 (0.302,0.312) 1.294 (1.272,1.317)

Sexual health high sex drive 0.224 (0.223,0.226) 0.174 (0.171,0.176) 1.292 (1.271,1.313)

Digestive health bloated 0.502 (0.500,0.504) 0.390 (0.385,0.395) 1.287 (1.270,1.305)

Food cravings sweet craving 0.527 (0.526,0.529) 0.411 (0.406,0.416) 1.283 (1.268,1.299)

Mental state stressed 0.353 (0.351,0.354) 0.276 (0.272,0.280) 1.277 (1.257,1.298)

Sexual health unprotected sex 0.354 (0.353,0.356) 0.279 (0.276,0.282) 1.271 (1.256,1.286)

Motivation level unmotivated 0.446 (0.444,0.448) 0.352 (0.347,0.356) 1.270 (1.251,1.288)

Hair health good hair 0.421 (0.419,0.424) 0.336 (0.331,0.342) 1.253 (1.231,1.276)

Period flow light 0.250 (0.249,0.251) 0.203 (0.200,0.205) 1.233 (1.219,1.248)

Skin health acne skin 0.489 (0.487,0.491) 0.400 (0.395,0.405) 1.222 (1.207,1.237)

Vaginal discharge type egg white 0.298 (0.297,0.300) 0.244 (0.240,0.249) 1.222 (1.199,1.245)
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Category Symptom High variability group Low variability group Odds ratio

Type of pain experi-

enced

cramps 0.529 (0.528,0.530) 0.442 (0.439,0.445) 1.198 (1.189,1.206)

Sexual health protected sex 0.219 (0.218,0.220) 0.183 (0.181,0.186) 1.196 (1.178,1.215)

Physical exercise biking 0.129 (0.128,0.131) 0.109 (0.105,0.113) 1.188 (1.144,1.235)

Hours of sleep 6-9 0.474 (0.473,0.476) 0.400 (0.396,0.403) 1.188 (1.177,1.198)

Physical exercise yoga 0.262 (0.260,0.265) 0.223 (0.217,0.228) 1.179 (1.151,1.209)

Physical maladies cold/flu 0.529 (0.525,0.533) 0.453 (0.444,0.462) 1.169 (1.144,1.194)

Method for period col-

lection

pad 0.583 (0.581,0.585) 0.505 (0.499,0.511) 1.155 (1.141,1.170)

Physical exercise running 0.563 (0.560,0.566) 0.490 (0.484,0.496) 1.149 (1.133,1.164)

Period flow medium 0.388 (0.387,0.389) 0.345 (0.342,0.347) 1.126 (1.117,1.136)

Party-related experi-

ences

drinks party 0.635 (0.632,0.638) 0.594 (0.587,0.602) 1.069 (1.055,1.084)

Type of medication

taken

pain 0.597 (0.593,0.601) 0.561 (0.552,0.571) 1.063 (1.044,1.082)

Method for period col-

lection

tampon 0.210 (0.209,0.212) 0.218 (0.213,0.223) 0.967 (0.943,0.991)

Period flow heavy 0.078 (0.077,0.079) 0.096 (0.094,0.097) 0.817 (0.802,0.833)

Method for period col-

lection

menstrual cup 0.075 (0.074,0.076) 0.100 (0.096,0.103) 0.755 (0.726,0.785)

The following figures showcase the empirical cumulative distributions of the proportion of

cycles with symptom out of cycles with category between different user groups — the consis-

tently highly variable group is indicated in orange, and the consistently not highly variable

group is indicated in teal. Figures are organized based on their Kolmogorov-Smirnov test value,

in descending order. The mean (dotted line) and 95% confidence interval (shaded region) of

the bootstrapped CDF with 100,000 samples is also shown.
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(a) Heavy period flow.
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(b) Tender breasts pain.
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(c) Spotting period flow.

Figure A.2: Empirical CDFs of proportion of cycles with symptom out of cycles with category

between different user groups for ‘heavy’, ‘tender breasts’, and ‘spotting’.
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Appendix B

Supplementary information for Chapter 4

B.1 Supplementary Information: Methods

B.1.1 Simulated data

In order to assess the ability of our model to recover skipped cycles, we separately train our

model on simulated cycle length data for 10,000 users (with C = 10 cycles each), generated from

our proposed generative process. We then take two cohorts of users: those who have never

skipped a cycle in their history, and those who have skipped a cycle in their history. Note

that we have access to ground truth cycle length and skipping information in this simulated

case. For a sample user from each of these cohorts, we predict their probabilities of possible

cycle skips p (s∗|û, di, d∗ > dcurrent) for the 11th cycle, utilizing the inferred population-wide

hyperparameters û and individual cycle length histories di.

B.1.2 Implementation details

We optimize the negative log-likelihood − ln(p(d|u)) = − ln(
∑

i p(di|u)) with p(di|u) as in

Eqn. (4.6) with respect to hyperparameters u via stochastic gradient descent. Specifically, we

utilize Adam [106], an adaptive gradient method. All models have been implemented using
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PyTorch, and trained with minibatches of size 100. All neural network-based models are

trained (with dropout) on the observed cycle lengths for the whole cohort. Predictions are

based on each per-user available cycle lengths.

Since we sequentially predict next cycle length, our train-test split is over the number of

cycle lengths available, i.e., we train the models on C cycles and predict the C + 1th cycle,

where C = {2, · · · , 10}.

For reproducibility, we provide the settings for priors, learning rate, and other details for

each of the models below:

• CNN: number of layers = 1, kernel size = 3, stride = 1, padding = 0, dilation = 1,

nonlinearity = tanh, dropout = 0.9, training criterion = MSE, epoch convergence criteria

as maximum number of epochs = 1000, loss convergence criteria εloss = 1e−3, optimizer

= Adam, learning rate = 0.01.

• RNN: number of layers = 1, hidden size = 3, nonlinearity = tanh, dropout = 0.9, epoch

convergence criteria as maximum number of epochs = 1000, loss convergence criteria

εloss = 1e− 3, optimizer = Adam, learning rate = 0.01.

• LSTM: number of layers = 1, hidden size = 3, nonlinearity = tanh, dropout = 0.9, epoch

convergence criteria as maximum number of epochs = 1000, loss convergence criteria

εloss = 1e− 3, optimizer = Adam, learning rate = 0.01.

• Proposed model: u0 = [κ0 = 180, γ0 = 6, α0 = 2, β0 = 20], S = 100 (for both inference

and prediction), M = 1000 (for both inference and prediction), epoch convergence criteria

as maximum number of epochs = 1000, loss convergence criteria εloss = 1e−3, optimizer

= Adam, learning rate = 0.01.
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• Proposed model (s=0): same as above, with S = 100 in inference but S = 0 for next-

cycle length prediction.

B.2 Supplementary Information: Results

B.2.1 Performance stability across different priors

For the results presented in the main text, we utilize a prior u0 = [κ0 = 180, γ0 = 6, α0 =

2, β0 = 20], from which we draw our initial θ = [λ, π]. This is informed by expert knowledge

about average cycle length (around 30 days) and the likelihood of skipping (relatively low) in

our dataset.

In order to assess the impact of the prior, we also test training the model on different ones,

namely a uniform prior on π (no prior knowledge on skipping likelihood), as well as a less

informative (i.e., flatter) prior on both λ and π. We showcase the prediction RMSE results on

day 0 of the next cycle for both priors in Figures B.1 and B.2, where the blue line represents

results for s ≥ 0 and the green line represents results for s = 0. Note that these results look

similar in magnitude and spread as the prior we have chosen, and we therefore conclude that

our method is stable to different choices of priors.

B.2.2 Performance stability across different dataset sizes and

ordering of cycles

To demonstrate our model’s robustness across different dataset sizes, we showcase pre-

diction RMSE results across different numbers of individuals, I (left) and training cycles, C

(right) in Figure B.3. We see that our model performance is robust to different I and C values

– our model’s prediction RMSE remains around 7.5 even with relatively small I or C.
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Figure B.1: Prediction RMSE over number of training individuals for a less informative (i.e.,

a more uncertain) prior on λ and π, u0 = [60, 2, 0.01, 0.1].
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Figure B.2: Prediction RMSE over number of training individuals for a less informative prior

on λ and a completely uninformative (i.e., uniform) one on π, u0 = [60, 2, 1, 1].

While our model performance is generally stable to dataset size as in Figure B.3, we note

also that there is some very small magnitude fluctuation in performance with C = 10. This is

due to data randomness – that is, since we utilize the first C cycles in each training subset,

there may be users who happened to have less adherent tracking near the end of their tracking

history (i.e., with C = 10), resulting in a small uptick in prediction RMSE. To showcase

this, we perform an experiment utilizing I = 10, 000 users across 10 runs of our model; for

each run, we randomly draw I = 10, 000 users from the full dataset, train our model, and

compute predictions. The results of this experiment averaged over the 10 runs are shown in
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Figure B.3: Prediction RMSE for proposed model and baselines on day 0 over number of

individuals, I (a) and number of training cycles, C (on the full set of I) (b). C = 2 means 2

input cycles were used to predict the third and so on. (a) Our model outperforms summary

statistic-based and neural network-based baselines on day 0 when we account for skipped cycles

(blue line), across all subsets of I. In addition, our model produces sharper estimates (lower

variance) and is stable across I – with less than 40, 000 users, we have an RMSE less than 7.5.

(b) Our model is robust to different C, as shown by consistent RMSE with at least 4 training

cycles. Note that all models experience some fluctuations in RMSE depending on number of

training cycles; this is due to data randomness, see Figure B.4.

Figure B.4, where we see that there is some fluctuation in prediction RMSE across C (not just

for C = 10), verifying that the small fluctuation for C = 10 on the full dataset is an artifact

of data randomness.
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Figure B.4: Prediction RMSE over number of training cycles, averaged over 10 runs of different

randomly-drawn datasets of I = 10, 000 users.
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To further test the dependency of model predictive performance on the ordering of the

observed training cycles, we also run the same experiment with a random shuffling of a user’s

cycle history before selecting the first C cycles for training. We showcase these results in

Figure B.5 and see again that there are small fluctuations in performance across C, verifying

further the impact of data randomness. This also showcases the negligible effect of choosing

to either take the first C cycles without shuffling (as in Figure B.4) or with shuffling (as in

Figure B.5).
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Figure B.5: Prediction RMSE over number of training cycles, averaged over 10 runs of different

randomly-drawn datasets of I = 10, 000 users. Here, before we take the first C cycles from

each user, we randomly shuffle them.

B.2.3 Baseline results with different neural network settings

In the results of our main text, we utilize neural network-based baselines with one layer and

a kernel size or hidden size of 3. To assess the performance of neural network-based baselines

with different settings, we test (i) different numbers of layers and (ii) different kernel and

hidden sizes (using a kernel or hidden size equal to the number of training cycles C instead of

fixed at 3). Figures B.6, B.7, and B.8 showcase the performance RMSEs across I for 1, 2, 5,
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and 10-layer CNNs, LSTMs, and RNNs, respectively (with fixed kernel or hidden size of 3).

Figures B.6, B.7, and B.8 showcase the performance RMSEs across I for 1, 2, 5, and 10-layer

CNNs, LSTMs, and RNNs, respectively (with kernel or hidden size of C = 10). We see that

across the number of layers and kernel or hidden size of 3 or C = 10, the prediction RMSE

is stable, with average differences of at most 0.5 between different settings. Therefore, we

conclude that one-layer neural networks, with fixed kernel or hidden size of 3, are reasonable

baselines.
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Figure B.6: Prediction RMSE over number of individuals for CNNs with 1, 2, 5, and 10 layers

(blue, green, red, and purple lines, respectively) and a kernel size of 3.
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Figure B.7: Prediction RMSE over number of individuals for LSTMs with 1, 2, 5, and 10 layers

(blue, green, red, and purple lines, respectively) and a hidden size of 3.
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Figure B.8: Prediction RMSE over number of individuals for RNNs with 1, 2, 5, and 10 layers

(blue, green, red, and purple lines, respectively) and a hidden size of 3.
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Figure B.9: Prediction RMSE over number of individuals for CNNs with 1, 2, 5, and 10 layers

(blue, green, red, and purple lines, respectively) and a kernel size of C = 10.
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Figure B.10: Prediction RMSE over number of individuals for LSTMs with 1, 2, 5, and 10

layers (blue, green, red, and purple lines, respectively) and a hidden size of C = 10.

144



40000 60000 80000 100000 120000 140000 160000 180000
Number of training individuals

7.5

7.6

7.7

7.8

7.9

8.0

8.1

8.2

8.3

ro
ot

_m
ea

n_
sq

ua
re

d_
er

ro
r

root_mean_squared_error for C=10 over training individuals
rnn_dropout_nnet
rnn_dropout_nnet_2
rnn_dropout_nnet_5
rnn_dropout_nnet_10

Figure B.11: Prediction RMSE over number of individuals for RNNs with 1, 2, 5, and 10 layers

(blue, green, red, and purple lines, respectively) and a hidden size of C = 10.
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Appendix C

Supplementary information for Chapter 5

C.1 Supplementary Information: Methods

C.1.1 Computing the MLE of b

We want to compute the MLE of b, given true latent z1:T and data x1:T , for which we will

maximize the likelihood of data x1:T given z1:T :

p(x1:T |z1:T , b) =

(
T∏
t=1

p(xt|zt, b)

)
(C.1)

=
T∏
t=1

([xt = 0, zt = 0]p(xt|zt, b) + [xt = 1, zt = 0]p(xt|zt, b) (C.2)

+[xt = 0, zt = 1]p(xt|zt, b) + [xt = 1, zt = 1]p(xt|zt, b)) (C.3)

= p(xt = 0|zt = 0, b)n[xt=0,zt=0] + p(xt = 1|zt = 0, b)n[xt=1,zt=0] (C.4)

+ p(xt = 0|zt = 1, b)n[xt=0,zt=1] + p(xt = 1|zt = 1, b)n[xt=1,zt=1] (C.5)

(C.6)

For the values of p(xt|zt, b), we marginalize adherence indicators gt as follows:
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p(xt|zt, b) =
∑
gt

p(xt, gt|zt, b) =
∑
gt

p(xt|gt, zt)p(gt|b) (C.7)

= p(xt|gt = 0, zt)p(gt = 0|b) + p(xt|gt = 1, zt)p(gt = 1|b) (C.8)

= p(xt|gt = 0, zt) · (1− b) + p(xt|gt = 1, zt) · b (C.9)

which result in the following 4 cases

p(xt = 0|zt = 0, b) = p(xt = 0|gt = 0, zt = 0) · (1− b) + p(xt = 0|gt = 1, zt = 0) · b (C.10)

= 1 · (1− b) + 1 · b (C.11)

= 1 (C.12)

p(xt = 1|zt = 0, b) = p(xt = 1|gt = 0, zt = 0) · (1− b) + p(xt = 1|gt = 1, zt = 0) · b (C.13)

= 0 · (1− b) + 0 · b (C.14)

= 0 (C.15)

p(xt = 0|zt = 1, b) = p(xt = 0|gt = 0, zt = 1) · (1− b) + p(xt = 0|gt = 1, zt = 1) · b (C.16)

= 1 · (1− b) + 0 · b (C.17)

= (1− b) (C.18)

p(xt = 1|zt = 1, b) = p(xt = 1|gt = 0, zt = 1) · (1− b) + p(xt = 1|gt = 1, zt = 1) · b (C.19)

= 0 · (1− b) + 1 · b (C.20)

= b (C.21)
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and therefore, we are dealing with a likelihood of

p(x1:T |z1:T , b) = p(xt = 0|zt = 0, b)n[xt=0,zt=0] + p(xt = 1|zt = 0, b)n[xt=1,zt=0] (C.22)

+ p(xt = 0|zt = 1, b)n[xt=0,zt=1] + p(xt = 1|zt = 1, b)n[xt=1,zt=1] (C.23)

= 1n[xt=0,zt=0] + 0n[xt=1,zt=0] (C.24)

+ (1− b)n[xt=0,zt=1] + (b)n[xt=1,zt=1] (C.25)

= 1n[xt=0,zt=0] + (1− b)n[xt=0,zt=1] + (b)n[xt=1,zt=1] (C.26)

(C.27)

To compute the MLE, we maximize with respect to b:

b̂ = arg max
b

log p(x1:T |z1:T , b) (C.28)

= arg max
b

(
n[xt=0,zt=1] log(1− b) + n[xt=1,zt=1] log(b)

)
(C.29)

which only depends on nxt=0,zt=1 and nxt=1,zt=1, i.e., it’s based on the ratio between when

xt = 0 or xt = 1 ONLY when zt = 1. More precisely, by looking at gradients

∂ log p(x1:T |z1:T , b)
∂b

=
∂
(
1n[xt=0,zt=0] + 0n[xt=1,zt=0] + n[xt=0,zt=1](1− b) + n[xt=1,zt=1](b)

)
∂b

(C.30)

= n[xt=0,zt=1]
∂ log(1− b)

∂b
+ n[xt=1,zt=1]

∂ log(b)

∂b
(C.31)

= n[xt=0,zt=1]
−1

(1− b)
+ n[xt=1,zt=1]

1

b
(C.32)
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By equating gradients to 0

0 = n[xt=0,zt=1]
−1

(1− b)
+ n[xt=1,zt=1]

1

b
(C.33)

n[xt=0,zt=1]b = (1− b)n[xt=1,zt=1] (C.34)

b(n[xt=0,zt=1] + n[xt=1,zt=1]) = n[xt=1,zt=1] (C.35)

(C.36)

Resulting in

b̂ =
n[xt=1,zt=1]

n[xt=0,zt=1] + n[xt=1,zt=1]
(C.37)
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C.2 Supplementary Information: Results

C.2.1 Learned α and β values
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(a) Learned α over epochs, initialized at (2, 2).
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(b) Learned β over epochs, initialized at (2, 2).
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(c) Learned α over epochs, initialized at (5, 1).
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(d) Learned β over epochs, initialized at (5, 1).

Figure C.1: Learned α and β values over epochs for bleeding only model for a particular seed,

across different initializations of (2, 2) and (5, 1).

C.2.2 RMSE over prediction day
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Table C.1: RMSE of predicted next cycle start over prediction day (aligned at day 0 per user)

for model using bleeding only.

Prediction day Mean RMSE SD RMSE Number of users

1 19.73 0.0 59.67

2 20.48 0.0 53.67

3 20.68 0.0 49.67

4 20.77 0.0 41.67

5 22.16 1.05 44.0

6 23.48 1.64 32.0

7 24.12 1.66 15.67

8 25.3 3.43 9.0

9 12.15 7.22 9.0

10 7.26 7.24 9.0

11 6.81 6.6 9.67

12 7.11 6.55 13.67

13 7.19 5.9 11.0

14 5.77 4.89 16.33

15 4.83 3.27 18.33

16 3.75 2.39 26.33

17 3.59 2.11 35.0

18 3.31 1.38 49.0

19 3.14 1.28 56.67

20 2.63 0.6 84.67

21 2.62 0.51 108.67

22 2.47 0.31 153.67

23 2.41 0.3 244.33
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Prediction day Mean RMSE SD RMSE Number of users

24 2.23 0.32 449.67

25 2.1 0.3 842.67

26 2.14 0.19 1546.33

27 2.18 0.12 2512.67

28 2.32 0.1 3620.0

29 2.45 0.07 4443.67

30 2.64 0.04 4655.67

31 2.85 0.02 4377.0

32 2.99 0.04 3773.33

33 3.09 0.06 3048.33

34 3.15 0.06 2445.33

Table C.2: RMSE of predicted next cycle start over prediction day (aligned at day 0 per user)

for model using bleeding and energy.

Prediction day Mean RMSE SD RMSE Number of users

1 21.89 0.0 5.0

2 17.87 3.87 6.33

3 20.72 0.0 5.0

4 19.3 2.27 7.67

5 21.54 0.82 20.67

6 23.45 1.78 21.33

7 24.34 0.38 12.33

8 25.37 2.59 7.0

9 15.91 9.89 10.0

10 14.45 8.8 13.0
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Prediction day Mean RMSE SD RMSE Number of users

11 14.28 8.72 12.33

12 12.96 7.76 16.0

13 10.97 5.85 16.33

14 7.78 4.08 16.33

15 6.1 2.2 17.33

16 3.59 1.02 21.33

17 3.1 1.08 28.67

18 3.14 0.65 40.33

19 3.29 0.6 46.0

20 2.9 0.38 62.33

21 2.81 0.47 68.67

22 2.63 0.4 96.0

23 2.37 0.21 157.67

24 2.32 0.26 273.0

25 2.25 0.24 515.0

26 2.2 0.21 932.0

27 2.25 0.11 1524.0

28 2.41 0.1 2190.67

29 2.57 0.1 2636.33

30 2.78 0.08 2785.67

31 2.95 0.07 2646.33

32 3.1 0.08 2230.67

33 3.33 0.17 1796.67

34 3.43 0.11 1412.67
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Table C.3: RMSE of predicted next cycle start over prediction day (aligned at day 0 per user)

for model using bleeding and emotion.

Prediction day Mean RMSE SD RMSE Number of users

1 19.18 0.18 103.67

2 20.13 0.18 102.67

3 19.79 0.35 95.33

4 20.97 0.15 91.33

5 21.52 0.32 80.33

6 22.5 0.57 49.67

7 22.9 0.17 26.67

8 22.05 0.65 18.0

9 20.61 0.23 20.0

10 19.56 0.35 24.0

11 18.96 0.74 25.67

12 18.85 0.44 25.0

13 16.25 0.45 23.33

14 13.36 0.35 24.67

15 9.86 0.51 26.33

16 6.87 0.61 33.0

17 5.95 0.13 45.33

18 3.97 0.35 61.33

19 3.64 0.01 68.0

20 3.3 0.06 89.67

21 3.44 0.06 90.33

22 3.18 0.02 121.67

23 2.95 0.03 191.33
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Prediction day Mean RMSE SD RMSE Number of users

24 2.56 0.07 318.67

25 2.57 0.01 561.0

26 2.37 0.04 1057.0

27 2.35 0.04 1696.67

28 2.5 0.02 2434.33

29 2.66 0.03 2930.0

30 2.85 0.05 3088.33

31 3.05 0.03 2945.0

32 3.18 0.02 2503.0

33 3.48 0.01 2012.67

34 3.54 0.03 1593.0

Table C.4: RMSE of predicted next cycle start over prediction day (aligned at day 0 per user)

for model using bleeding and pain.

Prediction day Mean RMSE SD RMSE Number of users

1 19.36 0.0 34.0

2 19.73 0.0 34.67

3 19.51 0.0 30.33

4 20.86 0.93 23.67

5 22.01 0.71 34.33

6 23.27 0.9 28.0

7 23.91 0.64 16.0

8 21.67 1.38 8.67

9 17.81 3.38 14.33

10 14.64 5.49 12.33
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Prediction day Mean RMSE SD RMSE Number of users

11 11.49 6.64 13.33

12 14.4 1.05 13.67

13 9.81 5.38 13.0

14 8.64 4.69 15.0

15 6.86 3.22 16.67

16 5.01 1.59 26.33

17 4.24 1.49 38.67

18 3.04 0.69 49.67

19 3.19 0.62 55.33

20 2.79 0.48 77.67

21 2.7 0.53 91.33

22 2.47 0.24 121.67

23 2.36 0.3 201.67

24 2.1 0.16 346.0

25 2.08 0.18 651.33

26 2.12 0.09 1205.67

27 2.16 0.06 1938.0

28 2.34 0.03 2827.0

29 2.51 0.03 3453.67

30 2.71 0.03 3657.33

31 2.9 0.04 3461.0

32 3.07 0.05 2935.0

33 3.3 0.08 2357.0

34 3.32 0.12 1852.0
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C.2.3 AUC of predicting bleeding on days 4− 7 of test set

Table C.5: AUC of predicting bleeding on day 4 of the test set over prediction day (aligned at

day 0) for bleeding only model. The average and SD are computed across 3 seeds.

Prediction day Mean AUC SD AUC

0 0.61 0.04

1 0.67 0.08

2 0.66 0.1

3 0.72 0.06

Table C.6: AUC of predicting bleeding on day 5 of the test set over prediction day (aligned at

day 0) for bleeding only model. The average and SD are computed across 3 seeds.

Prediction day Mean AUC SD AUC

0 0.59 0.04

1 0.66 0.08

2 0.65 0.1

3 0.68 0.07

4 0.74 0.05
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Table C.7: AUC of predicting bleeding on day 6 of the test set over prediction day (aligned at

day 0) for bleeding only model. The average and SD are computed across 3 seeds.

Prediction day Mean AUC SD AUC

0 0.58 0.04

1 0.62 0.06

2 0.6 0.06

3 0.61 0.06

4 0.65 0.06

5 0.76 0.03

Table C.8: AUC of predicting bleeding on day 7 of the test set over prediction day (aligned at

day 0) for bleeding only model. The average and SD are computed across 3 seeds.

Prediction day Mean AUC SD AUC

0 0.55 0.04

1 0.64 0.03

2 0.59 0.04

3 0.59 0.04

4 0.57 0.09

5 0.57 0.18

6 0.83 0.04
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C.2.4 RMSE of predicting next cycle start for (2, 2) initializa-

tion
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(a) RMSE of predicted next cycle start, using

bleeding only.
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(b) RMSE of predicted next cycle start, using

bleeding and energy.
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(c) RMSE of predicted next cycle start, using

bleeding and emotion.
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Figure C.2: RMSE of predicting next cycle start across models using (2, 2) initialization for α

and β.
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C.2.5 Normalized histogram of events per day

Figure C.3: Histogram of observed number of events per symptom on each day of the test set,

normalized by total number of events per symptom, i.e., the proportion of tracking events per

symptom on each day.
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