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Abstract

Computational microporomechanics for phase-changing geological materials

Hyoung Suk Suh

Global challenges associated with extreme climate events and increasing energy demand
require significant advances in our understanding and predictive capability of coupled multi-
physical processes across spatial and temporal scales. While classical approaches based on
the mixture theory may shed light on the macroscopic poromechanics simulations, accu-
rate forward predictions of the complex behavior of phase-changing geomaterials cannot
be made without understanding the underlying coupling mechanisms among constituents
at the microstructural scale. To precisely predict the multi-physical behaviors originated
by smaller scales, fundamental understandings of the micromechanical interactions among
phase constituents are crucial. Hence, this dissertation discusses mathematical and com-
putational frameworks designed to capture coupled thermo-hydro-mechanical-fracture pro-
cesses in phase-changing porous media that incorporate necessary microscopic details. To
achieve this goal, this dissertation aims to introduce a practical way to investigate how phase
transition and evolving microstructural attributes at small scales affect the applicability of
meso- or macroscopic finite element simulations, by leveraging the phase field method to
represent the regularized interfaces of phase constituents.

Firstly, a multi-phase-field microporomechanics model is presented to model the growth
and thaw of ice lenses. In specific, we extend the field theory for ice lens that is not restricted
to one-dimensional space. The key idea is to represent the state of the pore fluid and the
evolution of freezing-induced fracture via two distinct phase field variables coupled with
balance laws, which leads to an immersed approach where both the homogeneous freezing
and ice lensing are distinctively captured. Secondly, a thermo-hydro-mechanical theory
for geological media with thermally non-equilibrated constituents is presented, where we
develop an operator-split framework that updates the temperature of each constituent in an

asynchronous manner. Here, the existence of an effective medium is hypothesized, in which



the constituents exhibit different temperatures while heat exchange among the phases is cap-
tured via Newton’s law of cooling. Thirdly, an immersed phase field model is introduced
to predict fluid flow in fracturing vuggy porous media, where crack growth may connect
previously isolated voids and form flow conduits. In this approach, we present a framework
where the phase field is not only used as a damage parameter for the solid skeleton but also
as an indicator of the pore space, which enables us to analyze how crack growth in vuggy
porous matrix affects the flow mechanism differently compared to the homogenized eftec-
tive medium while bypassing the needs of partitioning the domain and tracking the moving
interface. Finally, we present a new phase field fracture theory for higher-order contin-
uum that can capture physically justified size effects for both the path-independent elastic
responses and the path-dependent fracture. Specifically, we adopt quasi-quadratic degrada-
tion function and linear local dissipation function such that the physical size dependence
are insensitive to the fictitious length scale for the regularized interface, which addresses
the numerical needs to employ sufficiently large phase field length scale parameter without

comprising the correct physical size effect.
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Chapter 1: Introduction

1.1 Motivation and objective

Climate change has been observed for more than several decades, and has caused substan-
tial impacts on the Earth’s environment. In particular, the Intergovernmental Panel on Cli-
mate Change (IPCC)’s Sixth Assessment Report (AR6) [1] indicates that the global surface
temperature has risen 1.1°C since early 20th century (Figure 1.1), causing changes in at-
mospheric circulation and precipitation patterns [2—-5], which in turn affects underground

moisture content and thermal cycles [6—8]. Combination of such changes are considered
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Figure 1.1: Changes in global surface temperature (from the IPCC Climate Change 2021:
The Physical Science Basis Summary for Policymakers [9]).



as external factors of geo-hazards such as landslides, rockfalls, and snow avalanches [10—
13], while the key internal factors are the coupled thermo-hydro-mechanical properties of
geomaterials governed by the phase transition of the pore fluid [14, 15]. These changes
have also brought increasing attention to the freeze-thaw action of phase-changing geolog-
ical media, not only because it contributes to a positive feedback loop in climate change
due to the fact that the permafrost region contains twice as much carbon in the atmosphere
[16—18], but also results in abrupt frost heaving or thawing settlement that cause damages
to the infrastructures [19, 20].

The IPCC ARG [1] also states that human influence through greenhouse gas emissions
on the climate is unequivocal. Although world population growth rate between 2010 and
2020 remained almost identical to the previous five decades [21], nevertheless, global ur-
banization has been accelerating as a consequence of sharp economic growth, which led to

significantly increased energy demands (Figure 1.2). Since energy production that involves
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Figure 1.2: Energy consumption by region: history and projections (from the International
Energy Outlook 2021 (IEO2021), U.S. Energy Information Administration [22]).

greenhouse gas emissions from fossil fuel combustion is by far the largest contributor of
human-caused greenhouse gas emissions [1, 23, 24], clean and renewable energy, such as

geothermal energy, has been emerging as an effective alternative technology [25, 26], while

2



carbon capture and storage (CCS) technology has gained attention since it allows the con-
tinued use of fossil fuels and at the same time reduces the amount of CO, in the atmosphere
[27, 28].

Due to the emerging global challenges associated with climate change and increasing
energy demand, geotechnical engineering has expanded its area into the fields of energy
and environmental geotechnics, where computer models are indispensable since they re-
quire accurate forward predictions. While traditional geomechanics approach dedicated to
constitutive models enjoyed partial success in replicating the behavior of fluid-infiltrating
deformable porous media [29-31], precisely capturing multi-physical coupled processes
remains a great challenge due to the complex interplay between solid deformation, fluid
diffusion, heat transfer, phase transition, and evolution of the defects [32—34]. Since propos-
ing a phenomenological constitutive model alone may not be sufficient to meet the current
and future technological needs in geo-energy applications and climate change adaptations,
incorporating multi-physics components into a computer simulation has become a neces-
sary which requires fundamental understanding of the micromechanical interactions among
phase constituents, in addition to the macroscopic poromechanics theory.

Given this background, this dissertation aims to present mathematical and compu-
tational frameworks designed to capture coupled thermo-hydro-mechanical-fracture pro-
cesses in phase-changing porous media that incorporate necessary microscopic details. By
leveraging continuous phase fields to represent interfaces of constituents, this study at-
tempts to provide a practical way to analyze how phase transition and evolving microstruc-
tures at the small scales affect the applicability of mixture theory and effective stress princi-
ple at the macroscopic scale that is relevant to engineering designs. Evolution of the phase
fields are coupled with balance principles such that the coupling among solid and fluid mo-
tions, heat transfer, phase transition, and crack growth can be observed numerically. Nu-
merical techniques and solution schemes are also explored to handle the different growth

rates of the boundary layers in a stable and computationally efficient manner. Numerical



examples including verification and validation exercises are provided to demonstrate the

predictive capabilities of the proposed model.

1.2 Outline of dissertation

This dissertation focuses on studying coupled thermo-hydro-mechanical-fracture processes
in phase-changing geomaterials, and at the same time, exploring the necessary microp-
oromechanical approaches to capture their details. The outline of this dissertation is sum-
marized as follows.

In Chapter 2, a multi-phase-field microporomechanics model is introduced to simulate
the growth and thaw of ice lenses and the resultant frost heave and thawing settlement in
multi-constituent frozen porous media. In this model, the growth of segregated ice inside
the freezing-induced fracture is implicitly represented by the evolution of two phase fields
that indicate the locations of ice and the damaged zone, respectively. The evolution of two
phase fields is induced by their own driving forces that capture the physical mechanisms of
ice and crack growths, respectively, while the phase field governing equations are coupled
with the balance laws for the microporomechanical problem. Unlike phenomenological
approaches that indirectly captures the freezing influence on the shear strength, this chapter
introduces an immersed approach where both the homogeneous freezing and the ice lens
growth are distinctively captured by the freezing retention function and the driving force
accordingly.

Chapter 3 presents the mathematical framework and the asynchronous finite element
solver that captures the brittle fractures in multi-phase fluid-infiltrating porous media at
the mesoscale where the constituents are not necessarily in a thermal equilibrium state.
Specifically, this model incorporates a dual-temperature effective medium theory in which
the distinct constituent temperatures are homogenized independently whereas the heat ex-

change among the constituents is captured via Newton’s law of cooling in analog to the



dual-permeability theory. In addition, a computationally efficient time integrator is pro-
posed and implemented in an operator-split algorithm that updates the displacement, pore
pressure, phase field, and temperature of each constituent in an asynchronous manner.

In Chapter 4, an immersed phase field fracture model is introduced to predict the
fracture-induced fluid flow due to the brittle fracture in vuggy porous media. Due to the mul-
tiscale nature of pores in the vuggy porous material, crack growth may connect previously
isolated pores, which leads to flow conduits. To understand the detailed microporomechan-
ics that causes fracture-induced flow, this chapter introduces a new phase field framework
where the phase field is not only used as an indicator function for damage of the solid skele-
ton but also used as an indicator of the pore space. By coupling the Stokes equation that
governs the fluid transport in the voids, cavities, and cracks, and the Darcy’s flow in the
deformable porous media, this model enables us to capture the fluid-solid interaction of the
pore fluid and solid constituents during crack growth.

Chapter 5 presents a phase field fracture model for higher order continuum, which in-
tends to introduce a unified treatment that correctly captures the size effect of the mate-
rials in both elastic and damaged regimes. By introducing a cohesive micropolar phase
field fracture theory, this chapter explores the interacting size-dependent elastic deforma-
tion and fracture mechanisms exhibits in materials of complex microstructures. To achieve
this goal, this chapter introduces the distinctive degradation functions of the force-stress-
strain and couple-stress-micro-rotation energy-conjugated pairs for a given regularization
profile such that the macroscopic size-dependent responses of the micropolar continua are
insensitive to the length scale parameter of the regularized interface. Here, the governing
equations are derived based on the variational principle, from the micropolar stored energy
and dissipative functionals.

Finally, in Chapter 6, a summary of contributions and concluding remarks are provided,

and potential future research directions are discussed as well.



1.3 Notations and symbols

As for notations and symbols, bold-faced and blackboard bold-faced letters denote tensors
(including vectors which are rank-one tensors); the symbol ’-” denotes a single contraction
of adjacent indices of two tensors (e.g., a - b = a;b; or ¢ - d = ¢;;d;;); the symbol 2’
denotes a double contraction of adjacent indices of tensor of rank two or higher (e.g., C : €
= Cyjrier); the symbol ‘®’ denotes a juxtaposition of two vectors (e.g., a ® b = a;b;) or
two symmetric second-order tensors [e.g., (o ® B);j; = «;;Pr]. We also define identity
tensors: I = 0,5, I = 0,105, and T = 010k, where ¢;; is the Kronecker delta. As for sign
conventions, unless specified, the directions of the tensile stress and dilative pressure are

considered as positive.



Chapter 2: Multi-phase-field microporomechanics model

for ice lens growth and thaw in frozen porous media

This chapter is under review as: H.S. Suh, W.C. Sun, Multi-phase-field microporomechanics

model for simulating ice lens growth and thaw in frozen soil.

2.1 Introduction

Ice lens formation at the microscopic scale is a physical phenomenon critical for understand-
ing the physics of frost heave and thawing settlement occurred at the field scale under the
thermal cycles. Since ice lens may affect the freeze-thaw action and cause frost heave and
thawing settlement sensitive to the changing climate and environment conditions, knowl-
edge on the mechanism for the ice lens growth is of practical value for many civil engineer-
ing applications in cold regions [35-39]. For example, substantial heaving and settlement
caused by the sequential formations and thawing of ice lenses lead to uneven deformation of
the road which also damages the tires, suspension, and ball joints of vehicles. In the United
States alone, it was estimated that two billion dollars had been spent annually to repair
frost damage of roads [40]. Moreover, extreme climate change over the last few decades
has brought increasing attention to permafrost degradation, since unusual heat waves may
cause weakening of foundations and increase the likelihood of landslides triggered by the
abrupt melting of the ice lens [41-45]. Under these circumstances, both the fundamental

understanding of the ice lens growth mechanisms and the capacity to predict and simulate



the effect beyond the one-dimensional models becomes increasingly important.

Since the pioneering work on the ice lens by Stephan Taber in the early 20th century
[46, 47], there has been a considerable amount of progress in the geophysics and fluid me-
chanics community to elucidate the mechanisms in the ice segregation process (e.g., [48]
and references cited therein). During the freezing phase, it is now known that the crystal-
lized pore ice surrounded by a thin pre-melted water film develops a suction pressure (i.e.,
cryo-suction) that attracts the unfrozen water towards the freezing front [49-51]. These
films remain unfrozen below the freezing temperature and form an interconnected flow net-
work that supplies water to promote ice crystal growth. Accumulation of pore ice crystals
accompanies the void expansion and micro-cracking of the host matrix, which may result
in the formation of a horizontal lens of segregated ice. However, despite these substantial
amounts of work, the criterion for the ice lens initiation and its detailed mechanism still
remains unclear. Based on the thermo-hydraulic model proposed by Harlan [52], Miller
[53-55] introduces a concept of stress partitioning and assumed that an ice lens starts to
form if the solid skeleton experiences tensile stress. This idea has been further adopted
and further generalized in [56, 57] via an asymptotic method. Gilpin [58] suggests that
the ice lens formation takes place when the ice pressure reaches the particle separation
pressure depending on the particle size and the interfacial tension between the water and
ice, whereas Zhou and Li [59] propose the idea of separation void ratio as a criterion for
the ice lensing. Konrad and Morgenstern [60] present an alternative approach that can
describe the formation and growth of a single ice lens based on segregation potential, of
which the applicability has been demonstrated in [61-63]. On the other hand, Rempel [64,
65] develops regime diagrams that delineate the growth of a single lens, multiple lenses,
and homogeneous freezing. In this line of work, the one-dimensional momentum and mass
equilibrium equations are coupled with the heat flow in a step-freezing Stefan configura-
tion to calculate the intermolecular force that drives the premelted fluid to the growing ice

lenses. While the proposed method is helpful for estimating the lens thickness and spacing,



the one-dimensional setting is understandably insufficient for the geo-engineering applica-
tions that require understanding of the implication of ice lenses on the shear strength. More
recently, Style et al. [66] propose a new theory on the ice lens nucleation by considering
the cohesion of soil and the geometric supercooling of the unfrozen water in the pore space.
Although the aforementioned studies formed the basis to shed light on explaining the ice
lens formation, they are limited to the idealized one-dimensional problems and often ideal-
ized soil as a linear elastic material and hence not sufficient for applications that require a
more precise understanding of the constitutive responses of the ice-rich soil.

Meanwhile, within the geomechanics and geotechnical engineering community, a num-
ber of theories and numerical modeling frameworks have been proposed based on the mix-
ture theory and thermodynamics principles [67—70] with a variety of complexities and de-
tails. By adopting the premelting theory and considering the frozen soil as a continuum
mixture of the solid, unfrozen water, and ice constituents, the freezing retention behavior
of frozen soil can be modeled in a manner similar to those for the unsaturated soil. The
resultant finite element implementation of these models enables us to simulate freeze-thaw
effects in two- or three-dimensional spaces often with more realistic predictions on the solid
constitutive responses. Nevertheless, the presence of crystal ices in the pores and that in-
side the expanded ice lens are often represented via phenomenological laws [70, 71]. Since
the morphology, physics, and the mechanisms as well as the resultant mechanical charac-
teristics of the ice lens and ice crystals in pores are profoundly different, it remains difficult
to develop a predictive phenomenological constitutive law for an effective medium that
represents the multi-constituent frozen soil with ice lenses [72].

This study is an attempt to reconcile the fluid mechanics and geotechnical engineering
modeling efforts on modeling the frozen soil under changing climates. Our goal is to (1)
extend the field theory for ice lens such that it is not restricted to one-dimensional problems
and (2) introduce a framework that may incorporate more realistic path-dependent con-

stitutive laws. As such, the coupling mechanism among phase transition, fluid diffusion,



heat transfer, and solid mechanics can be captured without solely relying on phenomeno-
logical material laws. In particular, we introduce a mathematical framework and a corre-
sponding finite element solver that may distinctively capture the physics of ice lens and
freezing/thawing. We leverage the implicit representation of complex geometry afforded
by a multi-phase-field framework to first overcome the difficulty of capturing the evolv-
ing geometry of the ice lens. By considering the ice lens as segregated bulk ice inside the
freezing-induced fracture, we adopt two phase field variables that represent the state of the
fluid phase constituent and the regularized crack topology, respectively. This treatment en-
ables us to take account of the brittle fracture that may occur during ice lens growth and ex-
plicitly incorporate the addition and vanishing shear strength and bearing capacity of the ice
lens under different environmental conditions. The phase transition of the fluid is modeled
via the Allen-Cahn equation [73, 74], while we adopt the phase field fracture framework
to model brittle cracking in a solid matrix [75—77]. The resultant framework may provide
a fuller picture to analyzing the growth of the ice lens in the frozen soil, while verification
exercises also confirm that the model may reduce to a classical thermo-hydro-mechanical
model and isothermal poromechanics model under limited conditions.

The rest of the paper is organized as follows. Section 2.2 summarizes the necessary
ingredients for the mathematical framework, while we present the multi-phase-field mi-
croporomechanics model that describes the coupled behavior of a fluid-saturated phase-
changing porous media in Section 2.3. For completeness, the details of the finite element
formulation and the operator splitting solution strategy are discussed in Section 2.4. Finally,
numerical examples are given in Section 2.5 to verify, validate, and showcase the model
capacity, which highlights its potential by simulating the growth and melting of multiple

ice lenses.
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2.2 Kinematics and effective stress principle for frozen
soil with ice lens

In this section, we introduce the ingredients necessary to derive the field theory for the phase
field modeling of frozen soil presented later in Section 2.3. Similar to the treatments in [67],
[68], and [69], we first assume that the frozen soil is fully saturated with either water or ice
and therefore idealize the frozen soil as a three-phase continuum mixture that consists of
solid, water, and ice phase constituents whereas the ice lens is a special case in which the
solid skeleton no longer holds bearing capacity. This treatment enables us to formulate a
multi-phase-field approach to employ two phase field variables as indicator functions for
the state of the pore fluid (in ice or water form) [74, 78, 79] and that of the solid skeleton
(in damage or intact form) [75—77]. We then extend the effective stress theory originated
from damage mechanics [80] to incorporate the internal stress of ice lenses caused by the
deformation of the effective medium into the Bishop’s effective stress principle for frozen
soil where the introduction of phase field provide smooth transition of the material states
for both the pore fluid and the solid skeleton. This procedure allows us to incorporate both
the capillary pressure of the ice crystal surrounded by the water thin film as well as the

volumetric and deviatoric stresses triggered by the deformation of the ice lens.

2.2.1 Continuum representation and kinematics

Based on the mixture theory, we idealize our target material as a multiphase continuum
where the solid, water, and ice phase constituents are overlapped. For simplicity, this study
assumes that there is no gas phase inside the pore such that the pore space is either occupied

by water or ice. The volume fractions of each phase constituent are defined as,

dV. dV, . dV;
=—2 ¢ =—2 ¢+ Y =1, (2.1)

U=y Ty AV

a={w,i}
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where the indices s, w, and 7 refer to the solid, water, and ice phase constituents, respectively,
while dV = dV, + dV,, + dV; denote the total elementary volume of the mixture. Note that
an index used as a subscript indicates the intrinsic property of a phase constituent, while it
is used as a superscript when referring to a partial property of the entire mixture. By letting
Ps» Pw, and p; denote the intrinsic mass densities of the solid, water, and ice, respectively,

the partial mass densities of each phase constituent are given by,

=0 s P =0 P = P Y =0, (22)
a={w,i}
where p is the total mass density of the entire mixture. We also define the saturation ratios
for the fluid phase constituents o = {w, i} as:
¢w

SV=—; 8'=—; E S =1 2.3
¢7 Qb’ ) ( )

a={w,i}

where ¢ = 1 — ¢° is the porosity.

Since the solid (s), water (w), and ice (i) phases do not necessarily follow the same
trajectory, each constituent possesses its own Lagrangian motion function that maps the
position vector of the current configuration « at time ¢ to their reference configurations. In
this study, we adopt a kinematic description that traces the motion of the solid matrix by fol-
lowing the classical theory of porous media [81-84]. Hence, the motion of the solid phase
is described by using the Lagrangian approach via its displacement vector u(x, t), whereas
the fluid phase (v = {w, i}) motions are described by the modified Eulerian approach via

relative velocities v,, and v;, instead of their own velocity fields v,, and v;, i.e.,
Vy =V, — 0, (2.4)

where v = 1 is the solid velocity, while (e) = d(e)/dt is the total time derivative following

the solid matrix.
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2.2.2 Multi-phase-field approximation of freezing-induced crack

In this current study, we assume that the path-dependent constitutive responses of the frozen
soil is due to the fracture in the brittle regime and the growth/thaw of the ice lens in the void
space that could be opened by the expanded ice. While plasticity of the solid skeleton as
well as the damage and creeping of the segregated ice may also play important roles on
the mechanisms of the frost heave and thaw settlement, they are out of the scope of this
study. As such, this study follows Miller’s theory which assumes that a new ice lens may
only form if and only if the compressive effective stress becomes zero or negative [53—
55, 85]. Since opening up the void space is a necessary condition for the ice lens to grow
inside, we introduce a phase field model that captures the crack growth potentially caused
by the ice lenses growth. In this work, our strategy is to adopt diffuse approximations
for both the phase transition of the pore fluid and the crack topology, where each requires a
distinct phase field variable. As illustrated in Fig. 2.1, introducing two phase fields not only
enables us to distinguish the homogeneous freezing from the ice lens growth but also leads

to a framework that can be considered as a generalization of a thermo-hydro-mechanical

model.
c=0 c=1
4 N\ 4 N\
Je0 Homogeneously Intact and
frozen water-saturated
g ~ - — : Damage evolution (A)
l / l — : Phase transition (B)
P N - - ~N —>:A+B
de1 Ice lens (Hydraulically)
formation ) L fractured

Figure 2.1: Schematic of multi-phase-field approach coupled with a thermo-hydro-
mechanical model.

The first phase field variable ¢ € [0, 1] used in this study is an order parameter that
models the freezing of water (melting of ice) in a regularized manner [78, 79]. In other

words, we employ a diffuse representation of the ice-water interface using variable c that is
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a function of & and ¢:

c=0 : completely frozen,

c=c(x,t) with ¢ c =1 : completely unfrozen, (2.5)

c e (0,1) : diffuse ice-water interface,
\

which is the solution of the Allen-Cahn phase field equation [73, 74] that will be presented
later in Section 2.3.1. Based on this setting, we consider the degree of saturation of water as
an interpolation function of the phase field ¢, i.e., S* = S"(c), that monotonically increases
from 0 to 1 as,

S¥(c) = (10 — 15¢ + 6¢2), (2.6)

which guarantees smooth variation of different material properties between ice and water
and at the same time enables us to properly include the latent heat effect in the energy
balance equation in Section 2.3.1. Note that the evolution of the phase field variable c itself
does not necessarily imply the ice lens growth since both the homogeneously frozen region
and segregated ice can reach ¢ = 0, regardless of the level of the effective stress or stored
energy that drives the crack growth (Fig. 2.1).

The second phase field variable d € [0, 1] adopted in this study is a damage parameter
that treats the sharp discontinuity as a diffusive crack via implicit function [75-77, 86]. In

particular, we have:

d=20 : intact,

d=d(x,t)with ¢ ¢ =1 : damaged, (2.7)

kal € (0,1) : transition zone,

to approximate the fracture surface area A as Ar,, which is the volume integration of crack
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surface density I'4(d, V d) over a body B, i.e.,

2 1
Ar ~ Ar, = / Fa(d,Vd)dV ; To(d,Vd) = 5 + Ed(Vd Vd), (2.8
B d

where [, is the length scale parameter that controls the size of the transition zone. In this

case, the crack resistance force R, can be expressed as,

oW,
Ra= 35

ow,

where G, is the critical energy release rate that quantifies the resistance to cracking. As
hinted in Fig. 2.1, in order to guarantee crack irreversibility, the thermodynamic restriction
I'; > 0 must be satisfied [76, 87—89] unlike the reversible freezing and thawing process.
In other words, we require non-negative crack driving force F,; based on the microforce
balance. Among multiple options, this study adopts the most widely used quadratic degra-
dation function g4(d) = (1—d)? following [87], that reduces the thermodynamic restriction

into d > 0 [34, 90] and satisfies the following conditions:

dg4(1)
od

3gd(d)
od

9a(0)=1: gao(1)=0 ; < 0ford € [0,1]. (2.10)

Based on this setting, we define an indicator function x* € [0, 1] for the segregated ice

inside the freezing-induced fracture as follows:

X'(e;d) = [1 = S*(c)][1 — ga(d)], (2.11)

such that x* = 1 implies the formation of the ice lens, which is different from the in-pore

crystallization of the ice phase constituent.
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2.2.3 Effective stress principle

Leveraging the similarities between freezing/thawing and drying/wetting processes, Miller
and co-workers [53—55, 85] proposed the concept of neutral stress that partitions the net

pore pressure p into the pore water and pore ice pressures (p,, and p;), respectively:

p=5Y(c)pw + [1 = 5(c)]pi- (2.12)

Clearly, Eq. (2.12) alone cannot capture the deviatoric stress induced by the deformation of
the ice lens. Previous efforts on modeling frozen soil often relies on an extension of critical
state theory that evolves the yield function according to the degree of saturation of ice (and
therefore introduces the dependence of the tensile and shear strength on the presence of ice)
[67, 69]. However, this treatment is not sufficient to consider the soil that may become
brittle at low temperature due to the low moisture content and the influence of ice lens on
the elasticity. Hence, this study extends Miller’s approach into a phase field framework by
decomposing the effective stress tensor 6 into two partial stresses for the solid and ice lens

via the damage phase field doubled as a weighting function, i.e.,

o' = ga(d)oip + [1 = ga(d)] o gopn- (2.13)

where the second term on the right hand side of Eq. (2.13) depends on the saturation S™(c).

/

Specifically, the effective stress contribution from the solid skeleton o,

degrades due to the
damage when the ice lens grows, but may also evolve by the change of o7, ,, in the presence
of ice lens [for instance, see Eq. (2.29) in Section 2.3.2]. From a physical point of view,
we propose Eq. (2.13) based on the assumption that there is no relative motion between the
solid skeleton and the ice lens in the sense that the ice lenses cannot be squeezed out from

the host matrix, which also has a benefit of ensuring continuous displacement field. Similar

models that capture the constituent responses of porous media consisting of multiple solid
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constituents can also be found in [91]. In addition, this study also considers the volumetric
expansion due to the phase transition from water to ice while neglecting the thermal expan-
sion or contraction of each phase constituent. Specifically, we incorporate an additional
term for the total Cauchy stress tensor o that describes phase-transition-induced volumet-
ric expansion, which stems from the Helmholtz free energy functions of the solid and ice
phase constituents postulated in [92, 93]. Hence, similar to [67, 69], as a modification of

the Bishop’s equation, the total Cauchy stress tensor can be expressed as follows:
o=a—pI —¢[1 —5"Cc)a,KI, (2.14)

where &, = g4(d) int + [1 — ga(d)] @t gam 18 the net volumetric expansion coefficient which
is influenced by the evolution of the fracture. In particular, we assume that the volumetric
expansion coefficient of the ice lens «, 4am 1S greater than that of the pore ice crystal a, jnt

due to the degradation of the solid skeleton.

2.3 Multi-phase-field microporomechanics model for
phase-changing porous media

This section presents the balance principles and constitutive laws that capture the thermo-
hydro-mechanical behavior of the phase-changing porous media. We first introduce the
coupled field equations that govern the heat transfer and the ice-water phase transition pro-
cesses which involve the latent heat effect. Unlike previous studies that model the phase
transition of the pore fluid by using the semi-empirical approach which links either the
Gibbs-Thomson equation [68] or the Clausius-Clapeyron equation [67, 69] with the van
Genuchten curve [94], we adopt the Allen-Cahn type phase field model [73, 74] with a
driving force that depends both on the temperature and the damage. We then present micro-

poromechanics and phase field fracture models that complete the set of governing equations,
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which is not only capable of simulating freeze-thaw action but also the freezing-induced or
hydraulically-driven fractures. The implications of our model will be examined via numer-

ical examples in Section 2.5.

2.3.1 Thermally induced phase transition
Heat transfer

Since underground freezing and thawing processes may span over long temporal scales,
this study employs a single temperature field 6 by assuming that all the phase constituents
reach a local thermal equilibrium instantly [34]. We also neglect thermal convection by
considering the case where the target material possesses low permeability. Let e denote the
internal energy per unit volume and q the heat flux. Then, the energy balance of the entire

mixture can be expressed as [34, 95],

e=-V-q+i, ;e=e+ Y e (2.15)
a={w,i}

where 7 indicates the heat source/sink, e = p°c,0 and e* = p®c,0 are the partial ener-
gies for the solid and fluid phase constituents, respectively, while ¢, and ¢, are their heat
capacities. Although the freezing temperature of water (melting temperature of ice) de-
pends on the curved phase boundaries due to the intermolecular forces, i.e., freezing point
depression [96], for simplicity, we assume that the freezing temperature of water remains
constant 0, = 273.15 K, so that the internal energy of the entire mixture e in Eq. (2.15) can

be rewritten as,

€= pscse + (pwcw + plcl)(Q - em) + (pwcw + plcz)em (216)
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From the relations shown in Egs. (2.1)-(2.3), substituting Eq. (2.16) into Eq. (2.15) yields

the following:
(p°cs + p cw + p'c)0 + & [(pucw — pici) (0 — Om) + piLo] SV(c) + V-q =7, (2.17)

where:

Lo = (p—wcw — ci> 0., (2.18)

is the latent heat of fusion which is set to be Ly = 334 kJ/kg for pure water [67, 78, 97, 98].
Notice that the second term on the left-hand side of Eq. (2.17) describes the energy associ-
ated with the phase change of the fluid phase constituent &« = {w, i}, which is responsible
for the constant temperature during the transformation processes, i.e., where c is changing
with time since S (c) = {95 (c)/dc}¢. For the constitutive model that describes the heat
conduction, this study adopts Fourier’s law where the heat flux can be written as the dot

product between the effective thermal conductivity and the temperature gradient, i.e.,

g=— ¢kt > ¢ka |-V, (2.19)
a={w,i}

where x; and k, denote the intrinsic thermal conductivities of the solid and fluid phase
constituents, respectively. This volume-averaged approach, however, is only valid for the
case where all the phase constituents are connected in parallel. Although there exists al-
ternative homogenization approaches such as Eshelby’s equivalent inclusion method [99—
101], determination of correct effective thermal conductivity often requires knowledge of
the pore geometry and topology [100, 102, 103]. Since the information is not always readily

approachable, this extension will be considered in the future.
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Phase transition

By using the phase field variable ¢ defined in Eq. (2.5), we adopt the Allen-Cahn model
that is often used to simulate dendrite growth or multi-phase flow [73, 104, 105]. Following

[74], we consider one of the simplest forms of the Gibbs free energy functional V..

2
mz/%mv:/ﬁ@@+%Wd%M (2.20)
B B

where f.(0, ¢) is the free energy density that couples the heat transport with the phase transi-
tion, while ¢, is the gradient energy coefficient. From Eq. (2.20), we consider the evolution
of the phase field c over time, which yields the well-known Allen-Cahn equation or time-

dependent Ginzburg-Landau equation, i.e.,

1.:0%_v(6%):8ﬁ

¢ oVe dc

— 2V? 2.21
M. de Ve (2.21)

where V?(e) = V-V (e) is the Laplacian operator and M, is the mobility parameter. Since
this study does not consider solute transport or any other chemical effects, we focus on the

pure water-ice phase transition such that the free energy density f.(6, c) can be written as,

fc = chc(c) + Sjc<9)pc<c>a (222)

where g.(c) = ¢*(1 — ¢)? is the double well potential [Fig. 2.2(a)] that can be regarded as
an energy barrier at the ice-water interface with the height of W, and p.(c) = S¥(c) =
3(6¢® — 15¢+10) is the interpolation function [Fig. 2.2(b)] that ensures minima of the free
energy density f.atc = 0 and ¢ = 1, respectively. The driving force F.(#) that induces ice-
water phase transition should describe the thermodynamically equilibrated state of water

and ice phase constituents, which can be derived from the following relation [106]:

; de
dp; = &dpw — piLlo—. (2.23)
Pw 0
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Then, integrating Eq. (2.23) yields the Clausius-Clapeyron equation:

Di — P = (ﬁ - 1) Pu — piyln -, (2.24)

w 9m

Eq. (2.24) suggests that the surface tension develops along the ice-water interface, establish-
ing the relation among water pressure (p,,), ice pressure (p;), and temperature (¢). However,
as pointed out in [67], the ice-water phase transition is mainly governed by the temperature
while the influence of pressure on the ice saturation S° is relatively minor. Hence, for sim-
plicity, we define the driving force F.(f) as an approximation of the pressure difference, by
neglecting the effect of pore water pressure and adopt its first-order Taylor approximation

following [74] as follows:

9
pi — Pw = Fe(0) = piLg (1 - 9—). (2.25)
m
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Figure 2.2: (a) The double well potential g.(c), and (b) the interpolation p.(c) functions.
Thin colored curves correspond to the values outside the range of the phase field c.

As pointed out in [74, 78], since Eq. (2.21) captures the evolution of the regularized ice-

water interface, numerical parameters €., W, and M, can be related to the ice-water surface
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tension -;,,, the interface thickness d., and the kinetic coefficient v, as,

371'11) I/cem
c = 6 iw(;c ; Wc = ; Mc = . 2.26
Cem VT 5, 61 Lyo, (2.26)

However, physical range of the width of the ice-water interface is at the atomic scale, i.e.,
10~'° m, which makes macro-scale simulations unfeasible [79, 107]. In addition to the
interfacial tension ;,,, this study therefore treats the interface thickness ¢, and the gradient
energy coefficient €. as input material parameters, since they could be increased according
to the mesh size without significantly influencing the interface evolution [78, 108, 109].
Furthermore, since the existence of segregated ice governs the heave rate of frozen soil
[70, 110], this study considers different rates between homogeneous freezing and ice lens
growth. Specifically, while employing different volumetric expansion coefficients for the
in-pore crystallization and the formation of ice lens [Eq. (2.14)], we replace the driving
force F.(0) with F%(6, d) that contains an additional term that describes the intense growth
of ice lenses similar to the kinetic equation proposed by Espinosa et al. [111], which is

often used to model salt crystallization in porous media [88, 112, 113]:

F2(0,d) = pil (1 - Qi) 1 - guld)]K; (1 - Qi) N (2.27)

where K7 > 0 and g; > 0 are the kinetic parameters. The effect of the additional term
in Eq. (2.27) is illustrated in Fig. 2.3, where we simulate the water-ice phase transition by
placing a heat sink at the center while the kinetic parameters are set to be K = 5.0 GPa and
g: = 1.2. By considering two different cases where the entire 1 mm? large water-saturated
square domain remains intact and is completely damaged, Fig. 2.3 shows that the modified
driving force J7 is capable of capturing different growth rates depending on the damage

parameter d.
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Figure 2.3: Different growth rates of the ice phases when a heat sink of 7 = —10° W/m? is
placed at a small region at the center with the area of A, = 1071 m?

2.3.2 Freezing-induced fracture in microporoelastic medium
Microporomechanics of the phase-changing porous medium

Focusing on the ice lens formation that involves a long period of time up to annual scales
[114, 115], this study neglects the inertial effects such that the balance of linear momentum

for the three-phase mixture can be written as,

V-0 +pg = 0. (2.28)

Based on the observation that geological materials remain brittle at a low temperature [116,
117], we assume that the evolution of the damage parameter d replicates the mechanism

of brittle fracture. In this case, undamaged effective stress o . can be considered linear

nt

elastic, while the stress tensor inside the damaged zone should remain o}, = O unless
the temperature is below 6,,, to form bulk ice. Moreover, since the ice flow with respect to

the solid phase is negligible compared to that of water [68, 69], both o7, and &7, , can be

int

related to the strain measure € = (Vu + V u')/2 by approximating ©; ~ 0. Given these

considerations, we define the constitutive relations for o/, and o7, as,

int

ol = K"l +2Ge™ ; o), = [1— SY()](Kie"'T + 2G;e), (2.29)
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where ¥ = tr (¢) and €%¥ = ¢ — (¢"°!/3)1I, while K and K; are the bulk moduli; and G
and G are the shear moduli for the solid skeleton and the ice, respectively. Based on this
approach, o}, - can be interpreted as a developed stress due to the ice lens growth, since it

not only depends on the fracturing process but also on the state of the fluid phase.

Remark 1. Since we consider the phase field model for brittle fracture, this approach may
not fully capture the realistic thawing soil behavior. One possible approach would be to
consider both the constitutive model and finite strain theory that can capture subsequent
settlement which involves the drainage of large amount of pore water [19, 69, 118], but this
extension is out of scope of this study and will be considered in the future.

The net pore pressure p, on the other hand, is a driver of deformation and fracture due
to the formation of ice crystal that exerts significant excess pressure on the premelted water
film. This pressure is referred to as cryo-suction sy, that induces the ice pressure p; to be far
greater than the water pressure p,,. As shown in Egs. (2.12) and (2.24), the net pore pressure
can be rewritten as p = [1 — 5" (¢)]Seryo — Puw» While Seryo = p; — pyy can be determined based
upon the Clausius-Clapeyron equation. In practice, however, the Clausius-Clapeyron equa-
tion is typically replaced by an empirical model, such as the exponential [119] or the van
Genuchten [94] curves, which is considered to be more accurate, since freezing retention
characteristics are affected by both the pore size distribution and the ice-water interfacial

tension [120-123]:

1

S = exp (b5(0 — O)_) & Styo = Pret [{Sw(c)}—m _ 1] ™ (2.30)

where bg, Pref, Mua, and n,¢ are empirical parameters while (). = (e = | @ |)/2 is the
Macaulay bracket. Note that we use a superscripted symbol * to indicate that the correspond-
ing variables are empirically determined. Yet, these empirical models still yield unrealistic

results in some cases. For example, the derivative of the exponential model possesses a

*

discontinuity at the freezing temperature 6,,,, while sg,

approaches infinity if S*(c) — 0
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if adopting the van Genuchten model. Hence, in this study, we combine the two models to

obtain the freezing retention curve that bypasses such issues (Fig. 2.4):

1

Sivo = Pre { [{exp (b (8 = 6))}] 76 =1}, @31)

*

and we replace seryo With sg

for the net pore pressure such that: p = [1— 5" (c)]styo — Puw-

For all the numerical examples presented in Section 2.5, we adopt the same values used in

[69, 123]: bp = 0.55 KL, prr = 200 kPa, m,c = 0.8, and n,¢ = 2.0.

6
10 x10

b = 0.55 K™, pres = 200 kPa,
mya = 0.8, nyg = 2.0

0 ‘ ‘
260 265 270 275
Figure 2.4: Freezing characteristic function [Eq. (2.31)] used in this study.
Recall Section 2.2 that our material of interest is a fluid-saturated phase-changing

porous media. Thus, this study considers the balance of mass for three phase constituents

(i.e., solid, water and ice) as follows:

0+ p* Vv = 1, (2.32)
P PN+ V- 0, = 1y, (2.33)
ot P Vw4 Ve, = i, (2.34)

where 1, 11, and m; indicate the mass production rate for each phase constituent [68, 69,
88]. Here, we assume that only the water and ice phase constituents exchange mass among

constituents (i.e., ms = 0 and m,, = —m;). Hence, summation of Egs. (2.33) and (2.34)
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yields:
O 15" ()pu + [L = 5(c)]pi} + 65 () (pw — i)

(2.35)
b 9SO + 1~ (o) T+ -5 =0
since ¥; ~ 0, while Eq. (2.32) can be rewritten as,
b=(1-¢)V-v. (2.36)

Substituting Eq. (2.36) into (2.35) yields the mass balance equation for the three-phase

mixture:

¢S () (puw — pi) + {5 (C)pu + [L = 5*(O)|pi} V-0 + V- p", = 0. (2.37)

In this study, we focus on the case where the water flow inside both the porous matrix
and the fracture obeys the generalized Darcy’s law while considering the pore blockage
due to the water-ice phase transition [124—126]. In other words, we adopt the following

constitutive relation between v,, and p,,:

k. k

w

(va - pwg)7 (238)

wy = —

where w,, = ¢v,, is Darcy’s velocity, k is the permeability tensor, s, is the water viscosity,

and £, is the saturation dependent relative permeability:

k, = S%(c)/? {1 -[1- SW(C)l/va}m”G}Q. (2.39)
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Damage evolution

Following [34], this study interprets cracking as the fracture of the solid skeleton. In other

words, we define the crack driving force F; > 0 as,

dga(d)

3’:
d od

wlnt ) wlnt K(e VOI) +G(e dev dev)> (2.40)

such that the damage evolution equation can be obtained from the balance between the crack

driving force J, and the crack resistance R, [34, 127, 128]:

3951( ) G4

Ry —Fg= Yho+ = 3 (d—1V3d) = 0. (2.41)

Recall Section 2.2.2 that our choice of degradation function g4(d) reduces the thermody-
namic restriction into d > 0, which requires additional treatment to ensure monotonic crack
growth. In this study, we adopt the same treatment used in [90, 129]. By considering the

homogeneity V d = 0, Eq. (2.41) yields the following expression:

— 2 s K= Vi (2.42)
T2 T T G/l '

implying that non-negative d is guaranteed if 5{ > 0. Here, notice that we adopt the
volumetric-deviatoric splitting scheme proposed by Amor et al. [130] to avoid crack growth

under compression. Specifically, we decompose the elastic strain energy into two parts, i.e.,

mt djlnt + wmt 2

1 1
Vi = (S + G 1 6%) 5 iy = SR, (2:43)

and only degrade the expansive volumetric and deviatoric parts, while (e). = (e 4| e |)/2.
To ensure H > 0, as a simple remedy, we replace H with J{* which is defined as the

pseudo-temporal maximum of normalized strain energy, while considering a critical value
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Herit that restricts the crack to initiate above a threshold strain energy [90, 131-133]:

H = H - z}_Ccri ) 2.44
max 0 (2.44)
such that Eq. (2.41) accordingly becomes:
0ga(d
ggé ) g0 + (d—12V2d) = 0. (2.45)

For either partially or fully saturated soils, crack healing may occur during the thawing
process. In specific, when ice lenses melt in a highly plastic clayey soil, cracks may heal
due to the interactions between water molecules, whereas in a less cohesive soil, relocation
of eroded particles result in the clogging of cracks or cavities [134-136]. One possible
approach to model the crack healing process is to allow crack driving force to decrease
and incorporate constitutive model that can capture the thaw-weakening process properly.
For example, Ma and Sun [137] assumed that the healing process is activated when the
material experiences volumetric compression, while the stiffness recovery rate becomes
slower along the healing process. This extension is out of scope of this study, and hence,
we assume that cracking is irreversible.

In order to model the fracture flow in a fluid-infiltrating porous media, we adopt the
permeability enhancement approach that approximates the water flow inside the fracture as

the flow between two parallel plates [138—141]:

k= kmat + kd = kmatI + dzkd(I —Nng X nd>7 (246)

where ki, is the effective permeability of the undamaged matrix, ng = V d/|| V d|| is the
unit normal of crack surface, and ky = w?2/12 describes the permeability enhancement due
to the crack opening which depends on the hydraulic aperture w, based on the cubic law.

However, freezing-induced fracture involves different situations where the pore ice crystal
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growth drives fracture but at the same time blocks the pore that may hinder the water flow
therein. Hence, we adopt the approach used in [88] which assumes a linear relationship

between the hydraulic aperture w, and the water saturation S™(c):
Wq = Sw(c)lL(nd - E - nd), (247)

where [ is the characteristic length of a line element perpendicular to the fracture which
is often assumed to be equivalent to the mesh size [138, 142]. Furthermore, by assuming
that the crack opening leads to complete fragmentation of the solid matrix, we adopt the

following relation for the porosity [34, 143]:

¢ =1—ga(d)(1 = ¢o)(1=V-u), (2.48)

such that the porosity approaches 1 if the solid skeleton is completely damaged.

2.4 Finite element implementation

This section presents a finite element discretization of the set of governing equations de-
scribed in Section 2.3, and the solution strategy for the resulting discrete system. We first
formulate the weak form of the field equations by following the standard weighted residual
procedure. In specific, we adopt the Taylor-Hood element for the displacement and pore wa-
ter pressure fields, while employing linear interpolation functions for all other variables in
order to remove spurious oscillations. We then describe the operator split solution scheme
that separately updates {0, c} and {u, p,, }, while the damage parameter d is updated in a

staggered manner for numerical robustness.
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2.4.1 Galerkin form

Let domain B possesses boundary surface 9B composed of Dirichlet boundaries (displace-

ment 0B,,, pore water pressure 0B,,, and temperature 9By) and Neumann boundaries (trac-

tion 0B,, water mass flux 0B, and heat flux 0B,) that satisfies:

0B =0B,U0B, =0B,U 0B, =0ByUIB,,

0 = 0B, N OB, = B, N IB,, = IBy N OB,

Then, the prescribed boundary conditions can be specified as,

(
u=u
pw:ﬁw
0=10
\

on 0B,,
on 0B,, ;

on 0By,

oc-n=t on 0B,
—W, N =11, ondB,,
—q-n=4 on 0B,

\

(2.49)

(2.50)

where n is the outward-oriented unit normal on the boundary surface 9B. Meanwhile, the

following boundary conditions on OB are prescribed for the phase fields ¢ and d:

Ven=0; Vd-n=0.

(2.51)

For model closure, the initial conditions for the primary unknowns {w, p,,, 0, ¢, d} are im-

posed as:

U=Uy; Pw=Duwo ; 0 =0y ; c=co; d=dy,
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attime ¢t = 0. We also define the trial spaces V,,, V,,, Vi, V., and V; for the solution variables

as,
V,={u:B =R ue[H(B), uly, =a},

Vo= {pu:B >R pu € H(B), pulys, = bu } -
Vo={0:B > R|0 € H(B), 0y, =0}, (2.53)
V.={c:B>R|ceH (B},

Vo={d:B—R|de H(B)},

which is complimented by the admissible spaces:

Vo={n:B—=R*|ne[H(B) nly, =0},
Ve={¢:BoR|e H'(B), &y, =0}
Vi ={¢C:B—-RI|(e€H(B), (lys, =0}, (2.54)
V,={7v:B—=R|yeH(B)},
Vo={w:B—->R|we H(B)},
where H'! indicates the Sobolev space of order 1. By applying the standard weighted resid-
ual procedure, the weak statements for Eqgs. (2.17), (2.21), (2.28), (2.37), and (2.45) are

to: find {u,p,,0,c,d} € V, x V, x Vo x V. x V, such that for all {n,&,(,v,w} €
Viy X Ve x Ve x V, X'V,

G,=G,=0Gyp=G.=G3=0, (2.55)
where:

Gu:/Vn:adV—/n~png—/ n-tdl =0, (2.56)
B B 0By

Gy = [ €[5 @pu—p)] aV+ [ €57 a1 5" (@p} VvV
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- [ Ve awdv = [ epuiv) ar=o. (2.57)
B 0Bw

Gy = /B C(pPes + pcy + ple)f dV + /B C{61(pucu = pic) (O = 0u) + piLo] $*(0)} AV

—/vg.qu—/gde— CGdl =0, (2.58)
B 0B
B 1. 0fc 9 B
Gc—/vM T dV+/V7-(eCVc)dV—O, (2.59)
G, — [ 29ald )}C*dV ddv v 2V d) dV = 0. 2.60
q= . 9 + Bw + w- (I3 ) (2.60)

2.4.2 Operator-split solution strategy

Although one may consider different strategies to solve the coupled system of equations
[Egs. (2.56)-(2.60)], the solution strategy adopted in this study combines the staggered
scheme [76] and the isothermal operator splitting scheme [144, 145]. Specifically, we first
update the damage field d via linear solver while the variables {u, p,,, 0, ¢} are held fixed.
We then apply the isothermal splitting solution scheme that iteratively solves the thermally-
induced phase transition problem to advance {6, ¢}, followed by a linear solver that updates

{u, p,,} by solving an isothermal poromechanics problem [34], i.e.,

Iterative solver
7\

Un Uy Uy Up41
pw,n pw,n pw,n pw,n-i-l
9 Ga=0 . 0 Gy=G.=0 0 Gu=Gp=0 0
7 7
N Su=0, 5pw=0, 50=0, 5¢=0 N 5u=0, 5pw=0,5d=0 | "1 s9=0, 5c=0, 5d=0 n+l 10
Cn Cn Cn+1 Cnt1
L dn | _dn—i-l_ _dn+1_ B dn+1 |
~ o A ~~ g
Linear solver Linear solver
2.61)

where we adopt an implicit backward Euler time integration scheme. The implementation
of the model including the finite element discretization and the solution scheme relies on

the finite element package FEniCS [146—148] with PETSc scientific computational toolkit
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[149].

2.5 Numerical examples

This section presents three sets of numerical examples to verify (Section 2.5.1), validate
(Section 2.5.2), and showcase (Sections 2.5.3 and 2.5.4) the capacity of the proposed model.
Since the evolution of two phase fields c and d requires a fine mesh to capture their sharp
gradients, we limit our attention to one- or two-dimensional simulations while considering
the diffusion coefficient ¢, as an individual input parameter independent to the interface
thickness 0. which may additionally reduce the computational cost [79, 150]. We first
present two examples that simulate the latent heat effect and 1d consolidation to verify the
implementation of our proposed model. As a validation exercise, we perform numerical
experiments that replicate the physical experiments conducted by Feng et al. [151], which
studies the homogeneous freezing of a phase change material (PCM) embedded in metal
foams. We then showcase the performance of the computational model for simulating the
ice lens formation and the thermo-hydro-mechanical processes in geomaterials undergoing
freeze-thaw cycle, and also its capacity to simulate non-planar ice lens growth that follows

the crack trajectory.

2.5.1 Verification exercises: latent heat effect and 1d consolidation

Our first example simulates one-dimensional freezing of water-saturated porous media to
investigate the phase transition of the fluid phase &« = {w, i} and the involved latent heat
effect. By comparing the results against the models presented by Lackner et al. [152] and
Sweidan et al. [79], this example serves as a verification exercise that ensures the robust
implementation of the heat transfer model involving phase transition [i.e., Egs. (2.58) and
(2.59)]. Hence, this example considers a rigid solid matrix while neglecting the fluid flow,

following [152]. As illustrated in Fig. 2.5(a), the problem domain is a fully saturated
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rectangular specimen with a height of 0.09 m and a width of 0.41 m. While the initial
temperature of the entire specimen is set to be 6y = 283.15 K, the specimen is subjected to
freezing with a constant heat flux of ¢ = 100 W/m? on the top surface, whereas all other
boundaries are thermally insulated. Here, we choose the same material properties used in
[152] and [79] as follows: ¢y = 0.42, p, = 2650 kg/m?, p,, = 1000 kg/m?, p; = 913 kg/m3,
cs = 740 J/kg/K, c,, = 4200 J/kg/K, ¢; = 1900 J/kg/K, ks = 7.694 W/m/K, k,, = 0.611
W/m/K, and x; = 2.222 W/m/K. In addition, we set v, = 0.001 m/s, 7. = 0.03 J/m?,
§e = 0.005 m, and e, = 1.25 (J/m)*/? for the Allen-Cahn phase field model, while we use

the structured mesh with element size of h, = 0.6 mm and choose the time step size of

At = 100 sec.
285
G = 100W/m? 275+ N
N O N S N S N S
A _ 26571
0.03 m =)
B- 0.09 m SS
0.03 m 2851
C. A B C @\
| o 2 o Lackneretal. [2005] EANNY
‘ 2451 . Sweidan et al. [2020] ¢ \
0.41 m — — — This study @%;\
235 ‘ : ‘
0 0.5 1 1.5 2
t [sec] x10°
(a) (b)

Figure 2.5: (a) Schematic of geometry and boundary conditions for the 1d freezing example;
(b) Temperature evolution at points A, B, and C.

As shown in Figure 2.5(b), measured temperatures at points A, B, and C during the
simulation first linearly decrease due to the applied heat flux ¢ until they reach the freezing
temperature of 0,, = 273.15 K. As soon as the phase transition starts, the freezing front
propagates through the specimen while the release of the energy associated with the phase
transition prevents the temperature decrease (i.e., latent heat effect). Once the phase change

is complete, the temperature linearly decreases over time again since the heat transfer pro-
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cess is no longer affected by the latent heat. More importantly, a good agreement with the
results reported in [79, 152] verifies that our proposed model is capable of capturing the

thermal behavior of the phase-changing porous media.
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Figure 2.6: (a) Schematic of geometry and boundary conditions for Terzaghi’s problem; (b)
Time-dependent pore water pressures along the height of the specimen.

Q
(@)

For the second verification exercise, we choose the classical Terzaghi’s 1d consolidation
problem since it possesses an analytical solution [153], which can directly be compared
with the results obtained via poromechanics model [Egs. (2.56) and (2.57)]. Our problem
domain shown in Fig. 2.6(a) consists of a 10 m high water-saturated linear elastic soil mass.
While a 1 MPa compressive load £, is imposed on the top surface, we replicate the single-
drained condition by prescribing zero pore water pressure at the top (p,, = 0) and a no-slip
condition at the bottom. By assuming that the temperature of the soil column remains
constant during the simulation (# = 293.15 K), we only focus on its hydro-mechanically
coupled response while the material parameters are chosen as follows: ¢g = 0.4, ps = 2650
kg/m3, p,, = 1000 kg/m?, K = 66.67 MPa, G = 40 MPa, ko = 10712 m?, and p1,, = 1073
Pa-s. Here, we choose h, = 0.1 m and At = 20 sec.

Fig. 2.6(b) illustrates the pore water pressure profile during the simulation at ¢ = 50,
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150, 350, and 750 s. The results show that the applied mechanical load ¢, builds up the pore
water pressure, affecting the pore water to migrate towards the top surface, which leads to
the dissipation of the excess pressure over time (i.e., consolidation). By comparing the
simulation results (circular symbols) to the analytical solution (solid curves), Fig. 2.6(b)

verifies the reliability of our model to capture the hydro-mechanically coupled responses.

30 mm
Pw=0 290 :
T o Feng et al. [2015]
TC4 b This study
285
Foam 1:
¢o = 0.96 080
ks = 62.855 W/m/K
Foam 2: MESc 50 mm & 075
¢o = 0.98 SS A
Ko = 44.48 Wim/K pro fh o Oax = 20.8¢701VE 4 26475 K
TC2 . 265 | o o |
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— 0 = 264.15 K
(a) (b)

Figure 2.7: (a) Schematic of the experimental setup for the unidirectional freezing test
conducted in [151]; (b) Temperature boundary condition applied at the bottom surface of
the copper foam (AA’) for the numerical simulation.

2.5.2 Validation example: homogeneous freezing

This section compares the results obtained from the numerical simulation against the phys-
ical experiment conducted by Feng et al. [151]. This experiment is used as a benchmark
since it considers the unidirectional freezing of distilled water filled in porous copper foams,
which does not involve a fracturing process and yields a clear water-ice boundary layer due
to the microstructural attributes of the host matrix. As schematically shown in Fig. 2.7(a),
a 30 mm wide, 50 mm long water-saturated copper foam is mounted on a 4 mm thick cop-
per block. While the initial temperature is measured to be 6, = 285.55 K, the experiment

is performed by applying a constant temperature of 6 = 264.15 K at the bottom part of
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the copper block at t = 0. Temperature measurements during the experiment are made by
three thermocouples (TC2-TC4) located at 10 mm, 28 mm, and 46 mm from the bottom
of the foam (AA’), whereas TC1 records the temperature of the block. For the numerical
simulation, instead of considering the problem domain as a layered material, we only focus
on the water-saturated copper foam and apply time-dependent Dirichlet boundary condition
on AA’ by using the temperature measured by TC1 [Fig. 2.7(b)]. We also assume an unlim-
ited water supply from the top surface by imposing p,, = 0 and applying a fixed boundary
condition at the bottom part of the foam. Moreover, we consider two different types of
copper foams (Foam 1 and Foam 2) with different initial porosity and thermal conductiv-
ity [Fig. 2.7(a)]. As summarized in Table 2.1, our numerical simulation directly adopts
the same thermal properties compared to the physical experiment whereas the solid phase
thermal conductivities of the foams are computed based upon the effective properties re-
ported in [151]. For all other material parameters that are not specified in [151], we choose
the properties that resemble those of the water-saturated copper foam. In this section, the
Allen-Cahn parameters are chosen as: v, = 0.0001 m/s, v, = 0.065 J/m?, §, = 0.0001 m,
and e, = 0.75 (J/m)'/2, while adopting a structured mesh with h, = 2.5 mm and At = 60

S€C.

t = 120 min t = 180 min

Experiment %
(Feng et al. [2015]) o

This study

Ice saturation ()

Figure 2.8: Comparison between the physical and numerical experiments on the evolution
of the water-ice interface.
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Table 2.1: Material parameters for the validation exercise.

Parameter Description [Unit] Value Reference
s Intrinsic solid mass density [kg/m?] 7800.0 -

Pw Intrinsic water mass density [kg/m?] 1000.0 [151]
i Intrinsic ice mass density [kg/m?] 920.0 [151]
Cs Specific heat of solid [J/kg/K] 0.385 x 10 -

Cu Specific heat of water [J/kg/K] 4.216 x 10> [151]
c; Specific heat of ice [J/kg/K] 2.040 x 10> [151]
Ks Thermal conductivity of solid [W/m/K]  62.855,44.48 [151]
K Thermal conductivity of water [W/m/K] 0.56 [151]
Ki Thermal conductivity of ice [W/m/K] 1.90 [151]
K Bulk modulus of solid skeleton [Pa] 93.75 x 10° -

K; Bulk modulus of ice [Pa] 5.56 x 10° -

G Shear modulus of solid skeleton [Pa] 33.58 x 10 -

G; Shear modulus of ice [Pa] 4.20 x 10? -

b0 Initial porosity [-] 0.96, 0.98 [151]
Emat Matrix permeability [m?] 3.25 x 1077 -

Yoo Viscosity of water [Pa-s] 1.0 x 1073 -

Oy int Volumetric expansion coefficient [-] 5.0 x 1073 -

Fig. 2.8 illustrates the evolution of the freezing front within a water-saturated copper
foam (Foam 2). In both the physical and numerical experiments, water freezing starts from
the bottom (AA’) and migrates towards the upper part of the foam over time, depending
on the conductive heat transfer process. While it shows a qualitative agreement between
the two, Fig. 2.9 quantitatively confirms the validity of our model, where we use the cir-
cular symbols to indicate the experimental measurements whereas the solid curves denote
the numerical results. As shown in Fig. 2.9(a), since Foam 1 possesses higher solidity
(lower porosity) compared to Foam 2, the water-ice interface tends to grow relatively faster
because it exhibits higher effective thermal conductivity. In addition, temperature varia-
tions illustrated in Fig. 2.9(b) clearly show the interplay between the thermal boundary
layer growth and the latent heat, resulting in a nonlinear evolution of the freezing front. Al-
though has not been measured experimentally, we further investigate the time-dependent

hydro-mechanical response of the specimen from the simulation results shown in Fig. 2.10.
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Based on the freezing retention curve [Eq. (2.31)] adopted in this study, positive suction
starts to develop if 6 < 6,,, while the region where s, > 0 evolves over time following
the same trajectory of that of the freezing front [Fig. 2.10(a)]. This process also involves a
volumetric expansion of the specimen that leads to an increase of the vertical displacement
as shown in Fig. 2.10(b), due to the difference between water (p,,) and ice densities (p;).
Since our framework idealizes the material as a multiphase mixture of the solid, water, and
ice phase constituents, notice that relatively small displacement compared to the volume
expansion due to the ice-water phase transition is because of the mechanical properties of
the host matrix, which is less compressible compared to geological materials. It should be
also noted that the freezing front always exhibits the largest vertical displacement, imply-
ing that the water migration towards the freezing front induced by the suction triggers the
consolidation process above the frozen area, resulting in a small volumetric compression
therein. This observation agrees with the explanation in [154] where the consolidation front
of a frozen soil has been observed experimentally, which corroborates the applicability of

our proposed model.
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Figure 2.9: (a) Evolution of the freezing front over time; (b) Temperature variation within
Foam 2 measured from TC2, TC3, and TC4.
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Figure 2.10: Hydro-mechanical response of Foam 2 subjected to freezing: (a) cryo-suction
(Seryo) and (b) vertical displacement (u,) profiles.

2.5.3 Freeze-thaw action: multiple ice lens growth and thawing in
heterogeneous soil

In this section, we showcase the capability of our proposed model by simulating the forma-
tion and melting of multiple ice lenses inside a heterogeneous clayey soil specimen. As il-
lustrated in Fig. 2.11(a), the problem domain is 0.04 m wide and 0.1 m long soil column that
possesses a random porosity profile along the vertical axis with a mean value of ¢..s = 0.4
such that the specimen possesses layered microstructure. In addition, we introduce a set of
heterogeneous material properties that solely depends on the spatial distribution of initial
porosity ¢q. Specifically, we adopt a phenomenological model proposed by [155] for the
shear modulus GG, while we use a power law for the critical energy release rate G, similar

to [140, 156]:

3/1-2 1—¢o\™
o=} < - Vy) exp [10(1 — ¢o)] [MPa] ; Sy = Sarer (1_—5(1) . (2.62)

Here, we assume that the Poisson’s ratio remains constant v = (.25 throughout the entire

domain while we set Ggr = 1.5 N/m and ny = 50. Based on this setting, we attempt to
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incorporate ice lens initiation criterion proposed by Zhou and Li [59], where a separation
void ratio determines the positions of the ice lenses. For all other material properties that are
homogeneous, as summarized in Table 2.2, we choose values similar to those of the clayey
soil. It should be noted that we adopt a,, 4am = 0.08 which is identical to the theoretical value
of 1—p; / p, for the expansion coefficient, whereas we set av, i, = 0.005 due to the existence
of thin water film between the intact solid and the pore ice. Meanwhile, the parameters for
the Allen-Cahn phase field equation are chosen as: v, = 0.0001 m/s, 7. = 0.065 J/m?,

5. = 0.0001 m, and e, = 1.0 (J/m)*/2, whereas we set h. = 0.5 mm and At = 60 sec.
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Figure 2.11: (a) Schematic of geometry and boundary conditions for the numerical freeze-
thaw test; (b) Temperature boundary condition applied at the top surface.

While we set the initial temperature as 6, = 276.15 K, the numerical freeze-thaw test
is performed by applying a time-dependent temperature boundary condition at the top, rep-
resented by a sinusoidal function. As shown in Fig. 2.11(b), the freezing process starts at
t = 3.75 hr and continues until the top surface temperature reaches the melting temper-
ature of 0,, = 273.15 K at £ = 11.25 hr, where the frozen soil begins to thaw. During
the simulation, the bottom part of the specimen is held fixed while we prescribe zero pore
water pressure boundaries (p,, = 0) at both the top and the bottom surfaces. The left and
right boundaries, on the other hand, are subjected to zero water mass flux and heat flux

conditions. Based on this setting, the water is supplied from the bottom during the freezing
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Table 2.2: Material parameters for the numerical freeze-thaw test.

Parameter Description [Unit] Value

Ps Intrinsic solid mass density [kg/m?] 2650.0

Puw Intrinsic water mass density [kg/m?] 1000.0

i Intrinsic ice mass density [kg/m?] 920.0

Cs Specific heat of solid [J/kg/K] 0.75 x 10?
Cu Specific heat of water [J/kg/K] 4.20 x 103
¢ Specific heat of ice [J/kg/K] 1.90 x 103
K Thermal conductivity of solid [W/m/K] 7.69

K Thermal conductivity of water [W/m/K] 0.56

K Thermal conductivity of ice [W/m/K] 2.25

K; Bulk modulus of ice [Pa] 5.56 x 10°
G Shear modulus of ice [Pa] 4.20 x 10°
Gret Reference porosity [-] 0.4

Emat Matrix permeability [m?] 1.0 x 10713
Lo Viscosity of water [Pa-s] 1.0 x 1073
Gd.ret Reference critical energy release rate [N/m] 1.5

la Regularization length scale parameter [m] 1.0 x 1073
Heit Normalized threshold strain energy [-] 0.05

Oy int Volumetric expansion coefficient (intact) [-] 5.0 x 1073
Oty dam Volumetric expansion coefficient (damaged) [-] 80.0 x 1073
K} Kinetic parameter [Pa] 5.0 x 10°
gx Kinetic parameter [-] 1.25

phase, while the water expulsion towards the top surface during the melting phase leads to
a thawing settlement of the specimen.

Fig. 2.12 shows the formation and melting of multiple ice lenses and the evolution of the
fracture phase field during the numerical freeze-thaw test. Here, we use a scaling factor of
5 while the color bar illustrated in Fig. 2.12(a) represents the value of the indicator function
X defined in Eq. (2.11). As illustrated in Fig. 2.13, the water freezes from the top to the
bottom during the freezing phase (3.75 hr < ¢ < 11.25 hr), which leads to the development

of'the cryo-suction and a volumetric expansion due to the phase transition. Since the applied

*

aryo tends to decrease

temperature at the top starts to increase after reaching its minimum, s
after ¢ = 7.5 hr due to the freezing characteristic function in Eq. (2.31) although the freezing

front still propagates towards the bottom. Also, during the freezing phase, soil specimen
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Figure 2.12: (a) Formation and melting of multiple ice lenses and (b) evolution of the
fracture phase field d during the numerical freeze-thaw test.

tends to exhibit a constant temperature distribution at the region below the freezing front
due to the latent heat effect, similar to our previous example shown in Section 2.5.2. More
importantly, we observe a sequential development of the ice lenses at y = 0.092 m, y =
0.066 m, and y = 0.042 m, respectively, which implies that separation void ratio (escp)
can be approximated as ~0.75 [59]. This result is expected, since those regions possess
relatively high initial porosity compared to the other regions [Fig. 2.11(a)]. If the freezing
front reaches the porous zone where the critical energy release rate is relatively low, both
the cryo-suction and the exerted stress due to the phase transition initiate the horizontal
crack.

Once the freezing-induced fracture is developed, segregated bulk ice tends to form in-
side the opened crack at higher growth rates that lead to an abrupt volume expansion therein
(Fig. 2.12). As illustrated in Fig. 2.14, we observe the opposite response during the thaw-
ing phase (11.25 hr < ¢ < 15 hr). Att¢ = 11.25 hr, once the applied temperature at the top

again reaches the melting temperature 6,, = 273.15 K, the soil specimen stops freezing and
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begins to thaw from the top to the bottom. During the thawing process, the melting front
tends to move downwards whereas the freezing front remains unchanged since the bottom
surface is thermally insulated. As the melted region where ¢ > 6,, evolves, the vertical
displacement tends to decrease over time due to both the volume contraction during the

phase transition and the water expulsion towards the top surface.
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Figure 2.13: Thermo-hydro-mechanical response of the specimen during the freezing phase:
(a) vertical displacement (u,), (b) cryo-suction (s, ), (c) temperature (¢), and (d) ice satu-
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Figure 2.14: Thermo-hydro-mechanical response of the specimen during the thawing phase:
(a) vertical displacement (uy), (b) cryo-suction (sgy,), (¢) temperature (¢), and (d) ice satu-
ration (S%) profiles along the central axis.

Fig. 2.15 shows the evolution of the vertical displacement of the top surface during

the freeze-thaw test (black curve). For comparison, we introduce a control experiment
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where the phase field solvers for both ice lens and damage are disabled but otherwise the
material parameters are identical (blue curve). Hence, the numerical specimen in the control
experiment may exhibit homogeneous freezing and thawing but not ice lens formation and
melting. The frost heave and thawing settlement for both experiments are compared to
assess the impact of the ice lenses on the material responses.

In the prime numerical experiment, ice lenses sequentially develop at y = 0.092 m,
y = 0.066 m, and y = 0.042 m (see Fig. 2.12), respectively. Each time the ice lens
begins to form, the soil expands more rapidly and hence the steeper slope of the black curve,
which indicates the rapid expansion of the numerical specimen, att = 4.2 hr, ¢ = 6.2 hr, and
t = 8.8 hr. During the thawing phase, the prescribed temperature of the top surface increase.
This temperature increase leads to abrupt settlement within the first 2 hours of the thawing
phase. As the ice lenses melt and subsequently drain out from the domain, the numerical
specimen shrinks (black curve). In contrast, homogeneous freezing and thawing result in
considerably less amount of frost heaving and thawing settlement, due to the absence of
cracks where ice lenses may form.

The significant difference between the two simulations has important practical impli-
cations. It is presumably possible to use an optimization algorithm to identify the material
parameters such that the control experiment may match better with the observed frost heave
and thawing settlements of soil vulnerable to ice lens formation. However, the apparent
match obtained from such an excessive calibration is fruitless as it may lead to material
parameters that are not physics and therefore lead to a model weak at forward predictions.
Results of these numerical experiments again suggest that the ice lenses play a key role in
frost heaving and the subsequent settlement of soils. This example also highlights that our
proposed model is capable of simulating the ice lens growth and thaw in a fluid-saturated
porous media, which may not be easily captured via a classical thermo-hydro-mechanical

model.
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Figure 2.15: Vertical displacement (u,) evolution of the top surface during the numerical
freeze-thaw test. The black curve is obtained from a thermo-hydro-mechanical simulation
that enables ice lensing; the blue curve is obtained from the control experiment that takes
out the ice lensing capacity.

2.5.4 Vertical ice lens growth in edge notched specimen

While numerical example presented in Section 2.5.3 demonstrated horizontal ice lens for-
mation perpendicular to the freezing direction, in this section, we simulate vertical ice lens
growth which is parallel to the freezing direction, by leveraging the proposed driving force
[Eq. (2.27)] for the Allen-Cahn equation. Specifically, our objective is to demonstrate the
formation of an ice lens that follows the crack trajectory that leads to a non-planar ice
growth. Hence, as shown in Fig. 2.16, the problem domain is a 0.06 m wide and 0.02 m
long rectangular globally undrained porous specimen that contains a 0.005 m long initial
vertical edge notch along the central axis, while considering an ideal case where o7,,, = 0
and &, = 0 to focus on the ice lens growth along the crack by decoupling the interactions
between the two. By setting the initial temperature as ¢y = 274.15 K, the numerical experi-
ment is performed by applying a constant heat flux of § = 25 W/m? that induces conductive
vertical cooling from the top surface, with prescribed vertical displacement w at a rate of
—107% mm/s to promote crack growth from the notch tip. Here, we assume that the material

is homogeneous while the material parameters are chosen as follows: ¢y = 0.2, ps = 2500
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kg/m3, p,, = 1000 kg/m3, p; = 920 kg/m3, E = 2.5 GPa, v = 0.3, ke = 10715 m?,
te = 1073 Pass, ¢, = 0.9 x 103 J/kg/K, ¢, = 4.2 x 10® J/kg/K, ¢; = 1.9 x 10® J/kg/K,
ks = 7.55 W/m/K, K, = 0.5 W/m/K, r; = 2.25 Wm/K, G4 = 2.25 N/m, [; = 1.0 x 1073
m, K* = 5.0 x 10° Pa, and g* = 1.25. In addition, we set v. = 0.0001, 7. = 0.05 J/m?,
5. = 0.0001 m, and ¢, = 0.5 (J/m)'/? for the Allen-Cahn phase field model while adopting
the structured mesh with element size of h, = 0.25 mm and the time step size of At = 1
min.
¢ = 25 W/m®

[@) Q Q ~
U
| JLO.OOE) m
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Figure 2.16: Schematic of geometry and boundary conditions for the single edge notched
test.

Based on this setting, as shown in Fig. 2.17, prescribed compression results in tensile
stresses perpendicular to the loading direction that stimulates crack growth, while perme-
ability enhancement [Eq. (2.46)] and relative permeability [Eq. (2.39)] yield relatively low
pore water pressure inside the notch similar to the results shown in [141]. The phase transi-
tion process of pore water begins once the temperature at the top surface reaches the freezing
temperature 6,,, in both the damaged and undamaged regions, however, since the proposed
driving force for the Allen-Cahn equation in Eq. (2.27) leads to an intense growth of ice
inside the fracture (i.e., ice lens) such that the phase field ¢ tends to evolve faster inside the
damaged region [Fig. 2.17(a) and Fig. 2.17(d)].

As evidenced in Fig. 2.17(d), ice phase tends to continuously grow along the pre-
existing notch until crack initiates from the tip. Then, as illustrated in Fig. 2.18, once
crack starts to propagate due to the combined effect of ice-water phase transition and the

applied load, ice lens tends to follow the crack trajectory. We can also see from Fig. 2.18
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Figure 2.17: Transient response of porous specimen at ¢ = 45 min. (a) fracture phase field
d; (b) z-displacement u,; (c) pore water pressure p,,; and (d) Allen-Cahn phase field c.

that crack opening leads to complete fragmentation of the solid matrix due to the relation
shown in Eq. (2.48), which results in more realistic ice lens simulations since it possesses
zero solidity, i.e., 1 — ¢. More importantly, the results indicate that our proposed framework
is not only restricted to simulating planar ice lenses but also capable of modeling non-planar
ice lenses that are not necessarily perpendicular to the freezing direction, which may have
a more profound impact on microporomechanical problems that involve water adsorption
processes which can affect microscopic fluid motion inside the heterogeneous matrix and

hence the freezing patterns.

2.6 Conclusion

In this work, we introduce a multi-phase-field microporomechanics theory and the corre-
sponding finite element solver to capture the freeze-thaw action in a frozen/freezing/thaw-
ing porous medium that may form ice lenses. By introducing two phase field variables

that indicate the phase of the ice/water and damaged/undamaged material state, the pro-
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Figure 2.18: Evolution of ice lens (%) and porosity (¢) during vertical freezing of edge
notched specimen.

posed thermo-hydro-mechanical model is capable of simulating the freezing-induced frac-
ture caused by the growth of the ice lens as segregated ice. We also extend the Bishop’s
effective stress principle for frozen soil to incorporate the effects of damage and ice growth
and distinguish them from those of the freezing retention responses. This treatment en-
ables us to take into account the shear strength of the ice lenses and analyzes how the
homogeneous freezing process and the ice lens growth affect the thermo-hydro-mechanical
coupling effects in the transient regime. The model is validated against published freezing
experiments. To investigate how the formation and thawing of ice lens affect the frost heave
and thaw settlement, we conduct numerical experiments that simulate the climate-induced
frozen heave and thaw settlement in one thermal cycle and compare the simulation results
with those obtained from a thermo-hydro-mechanical model that does not explicitly cap-
ture the ice lens. The simulation results suggest that explicitly capturing the growth and
thaw of ice lens may provide more precise predictions and analyses on the multi-physical
coupling effects of frozen soil at different time scales. Accurate and precise predictions on

the frozen heave and thaw settlement are crucial for many modern engineering applications,

49



from estimating the durability of pavement systems to the exploration of ice-rich portions
of Mars. This work provides a foundation for a more precise depiction of frozen soil by
incorporating freezing retention, heat transfer, fluid diffusion, fracture mechanics, and ice
lens growth in a single model. More accurate predictions nevertheless may require suffi-
cient data to solve the inverse problems and quantify uncertainties as well as optimization
techniques to identify material parameters from different experiments. Such endeavors are

important and will be considered in the future studies.
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Chapter 3: Asynchronous phase field fracture model for

porous media with thermally non-equilibrated constituents

This chapter is published as: H.S. Suh, W.C. Sun, Asynchronous phase field fracture model
for porous media with thermally non-equilibrated constituents, Computer Methods in Ap-

plied Mechanics and Engineering, Volume 387, 2021, doi.org/10.1016/j.cma.2021.114182.

3.1 Introduction

The thermo-hydro-mechanical responses of porous media are critical for many geothermal
and geomechanics applications such as underground radioactive waste disposal, geother-
mal energy recovery, oil production, and CO, geological storage [157-165]. For instance,
frictional heating may lead to the temperature increase of both the solid skeleton and the
pore fluid through heat exchanges [133]. Geological storage of CO, and oil recovery often
require the injection of the pore fluid in a supercritical state such that the thermal convection
may play an important role both for the fluid transport and the fluid-driven fracture. The
combination of temperature, pressure, and loading rate are also critical for the brittle-ductile
transition of geological materials [166—168]. Heat exchange is an important mechanism for
selecting the candidate materials for the nuclear waste geological disposal such as clay and
salt. Long-term disposal such as the Yucca Mountain Project in New Mexico, for instance,
relies on the combination of low permeability, high thermal conductivity, and self-healing

mechanisms to ensure the isolation of the radioactive wastes [137, 169, 170].
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Traditionally, large-scale reservoir simulators that simulate thermo-hydro-mechanical
responses of porous media, such as TOUGH-FLAC [171] and OpenGeoSys [172], often
assume that different constituents of the porous media share the same temperature. This as-
sumption could be valid when (1) the representative elementary volume is sufficiently large
for the macroscopic porous continua to function as an effective medium for the multiphase
materials, and (2) when the time scale considered in the simulations is much larger than the
time it takes for the constituents to reach equilibrium locally. This assumption may lead
to discrepancy to experimental observation when the constituents have significant differ-
ence in specific heat capacity and thermal conductivity, and when the temporal and spatial
scales of interest are sufficiently small such that the homogenized temperature may yield
erroneous results that violates the thermodynamic principle [69, 101, 173—-180].

Low conductivity
High conductivity

t=50.0 t =100.0 t =1000.0 t = 2500.0 4 I

Temperature

Exemplary unit cell Thermal I
Thermal non-equilibrium equilibrium Low

Figure 3.1: Longitudinal heat transfer on an exemplary unit cell that consists of two different
materials with different thermal conductivities.

As a thought experiment, we construct a heat conduction problem of which the domain
is occupied by a two-phase material where the host matrix exhibits four orders higher ther-
mal conductivity than that of the inclusion. As demonstrated in Fig. 3.1, this leads to a
period of transition in which the heat transfer among the constituents dominates the overall
thermal responses. While it is possible to obtain effective thermal conductivity through
homogenization, doing so may not be suitable to capture the thermo-hydro-mechanical
responses where the difference in the thermal expansion among the constituents and the
thermal-softening of the solid skeleton may both affect the residual stress of the constituents.
This issue has also been captured in experiments. For example, Truong and Zinsmeister

[181] showed that the one-temperature approach may not yield physically consistent re-
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sults if thermal conductivities of the constituent differ significantly, which corroborates our
simulation in Fig. 3.1, while He, Jin, and Zhang [182] pointed out that the local thermal
equilibrium assumption is only valid when the interstitial heat transfer coefficient between
the constituents is sufficiently large or the specific surface area of the porous medium is
high enough. Furthermore, Jiang et al. [183] showed that the effect of local thermal non-
equilibrium becomes more significant in fractured media where the convective heat flow
inside the fracture plays a crucial role in its coupled behavior. Accordingly, it has been
widely recognized that the thermo-hydro-mechanical responses of the porous media can
be captured more precisely for the problems at the temporal and spatial scales if the heat
transfer among the constituents can be explicitly captured [184—190]. This is particularly
important for strain localization and fracture simulations where small perturbations in tem-
perature may lead to significantly different path-dependent behaviors.

Solving the thermo-hydro-mechanical problems with non-equilibrated constituents is
nevertheless not trivial. Thermal convection, Soret diffusion, and the orders of difference
in thermal diffusivities all require complicated and sophisticated treatments in designing
the algorithm. While stabilization procedures such as streamline upwind Petrov-Galerkin
(SUPG) scheme may help resolving the numerical issues related to the sharp gradient of
temperature and/or pore pressure, capturing the boundary layers of multiple constituent
temperature fields remain a great numerical challenge [69, 88, 191, 192] and yet may have
a profound impact on the brittle or quasi-brittle fracture of porous media [76, 77, 86].

The goal of this study is to fill this knowledge gap by (1) proposing a thermo-hydro-
mechanical theory for deformable porous media with non-equilibrated constituents and
(2) introducing an asynchronous operator-split framework that enables us to capture the
coupling mechanisms among the constituents without spurious numerical oscillations or
over-diffusion. To achieve the first goal, we hypothesize that the existence of an effective
medium where constituents may exhibit different temperature while the heat transfer among

different constituents are captured by an interface constitutive law in analog with the dual-
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permeability theory. Meanwhile, we assume that the material may exhibit fracture and this
fracture is captured by a phase field that provides a diffusive representation of the crack
location and therefore does not require embedded discontinuities. The governing equations
derived from the balance principles of the solid and fluid constituents are then discretized
in both spatial and time domains to establish numerical algorithm for computer simulations.
In particular, we adopt the staggered scheme for the phase field fracture while enabling
an asynchronous dual-temperature isothermal splitting scheme that updates the displace-
ment, the pore pressure, the constituent temperature, and the phase field sequentially and
asynchronously.

The rest of the chapter is organized as follows. In Section 3.2, we introduce the the-
oretical framework that enables us to consider the heat transfer among constituents in a
two-phase effective medium or mixture. We present the balance principles (Section 3.3)
and constitutive relations (Section 3.4) that describe the thermo-hydro-mechanically cou-
pled behavior of fluid-saturated porous media undergoing brittle fracture. We then propose
a special time integration scheme that updates the field variables in an asynchronous man-
ner in Section 3.6. Finally, numerical examples are given in Section 3.7 to highlight the
computational efficiency of the proposed scheme, and to showcase the model capacity by
simulating the mechanically driven and hydraulically induced fracture propagation during

the transient period where the solid and fluid constituents are thermally non-equilibrated.

3.2 Modeling approaches

In this section, we introduce the necessary ingredients for the conservation laws and the
constitutive relations that will be presented later in Sections 3.3 and 3.4. We first present
the homogenization strategy for the solid and fluid temperatures that allows us to consider
non-isothermal effects in a two-phase porous medium with thermally non-equilibrated con-

stituents. Kinematic assumptions based on the mixture theory are also stated, where ther-
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mal expansion of the solid skeleton is considered to be isotropic and solely depends on the
solid temperature. We then summarize the smooth approximation of crack topology that
adopts an implicit function, in which the phase field variable serves as a damage parameter
while the regularization length scale parameter controls the size of the diffusive crack zone.
Based on this setting, we define the effective stress by following the scenario from Miehe
and Mauthe [138], which decomposes the free energy functional into multiple parts includ-

ing the effective strain energy stored in the solid skeleton and the energy stored in the pore

fluid.

3.2.1 Kinematics and homogenization strategy

Consider a fully saturated porous element {2 composed of solid (s) and fluid ( f) constituents,
ie., 2 = Q;U Q. In small scale, the spatial distribution of each constituent in {2 can be

represented by indicator functions 7*(y) and 7 (y):

1 ifyeQ,, 1 ify e Qy,
r*(y) = s rl(y) = 3.1)

0 otherwise, 0 otherwise,
where y denotes the position vector associated with small-scale configuration. By assuming
that {2 can be regarded as a representative volume element (RVE), the mixture theory states
that the material of interest can be idealized as a homogenized continuum mixture B in
which the solid and fluid constituents occupies a fraction of volume at the same material
point P [32, 193, 194]. In this case, the volume fractions of each phase constituent are

defined as,

dVv. 1 av, 1

where dV = [,,[r*(y) + r/(y)] dQ indicates the total elementary volume of the mixture,

such that ¢* + ¢/ = 1. Similarly, the total mass of the mixture at P is defined by the mass
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from each constituent, i.e., dM = dM, + dMy, and the intrinsic mass densities for the

i-phase is given by p; = dM;/dV;. Hence, the total mass density of the mixture reads,

p=1p"+p" =&+ ¢ py, (3.3)

where p' = dM;/dV is the partial mass density for the i-phase constituent.

While previous studies on thermo-hydro-mechanics often employ a single temperature
field at meso- or macro-scales (6,,,) [69, 101, 177-180], this study adopts a different ho-
mogenization strategy for each constituent. This approach not only allows us to model
detailed non-isothermal processes in porous media but also to avoid the need to construct
the mapping between small- and large-scale temperature fields. Having defined the indica-
tor functions in Eq. (3.1), we define the intrinsic large-scale solid and fluid temperatures

(05 and 0, respectively) as follows:

1 1

_ s . _ f
0, = v /QT (y)0(y)dQY ; 0 = av; Qr (y)0(y) d9, (3.4)

where 0(y) is the small-scale temperature field. Here, if the solid and fluid temperatures
at the same material point are different from each other, the constituents are said to be
in local thermal non-equilibrium (LTNE), where the heat exchange between two phases
should be taken into account [188, 189, 195-197]. On the other hand, for the case where
two temperatures are identical to each other at the same material point, two constituents
are said to be in local thermal equilibrium (LTE), implying a zero heat exchange between
the phases. Note that the previous works that adopt a single temperature field (i.e., one-
temperature model) often rely on the assumption that the solid and fluid temperatures reach
a local equilibrium instantly (i.e., 0, = 0y = 0,,,). In this case, the homogenized large-scale

temperature 6,, may no longer depend on the volume fraction of the constituents nor their
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microstructural attributes, i.e.,

1

O = ——
v Jq

0(y) ds. (3.5)

For the kinematic assumptions, we follow the classical theory of porous media [81-84,
198] and directly adopt the macroscopic descriptions. Specifically, we assume that the solid
constituent forms a deformable skeletal structure (i.e., solid skeleton or solid matrix) at the
RVE scale so that the evolution of our target porous material can be described in terms of the
deformation of its solid skeleton. Since this study considers distinctive temperature fields
for each phase constituents, the volume-averaged thermal expansion of the constituents
is not used to compute thermal expansion of the porous medium [199-201]. Instead, we
assume that the solid skeleton is linear thermoelastic, while the thermal expansion of solid
skeleton solely depends on the solid temperature 6. Considering a body of two-phase
continuum mixture B with material points identified by the large-scale position vectors
x € B, we denote the displacement of the solid skeleton by u(x,t) at time ¢, so that the

strain measure € can be defined as follows:
e Os 1 T
e=¢ —I—s°:§(Vu+Vu), (3.6)

where £¢ is the elastic component of the strain tensor and €% = o, (05 — 0, er) I is its thermal
component, where 6, ¢ is the reference temperature and c is the linear thermal expansion
coefficient of the solid constituent. Notice that, as pointed out in Khalili, Uchaipichat, and
Javadi [202], the linear thermal expansion coefficient of the solid skeleton is solely con-
trolled by and is equivalent to that of solid phase constituent. In other words, by revisiting
the homogenization strategy in Eq. (3.4), it implies that the macroscopic temperature of the

solid phase 6, can be considered to be equivalent to that of solid skeleton.
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3.2.2 Phase field approximation of crack topology

This study adopts the diffuse representation of fracture by using the phase field approach
[75-77]. By letting I' be the sharp crack surface within a body of mixture B, the total
fracture surface area Ar can be approximated as Ar,, which is the volume integral over

body B of the surface density I';(d, V d). In other words,
Ap ~ Ap, = / T, (d,Vd) dv, (3.7)
B

where d € [0, 1] is the phase field that serves as a damage parameter in which d = 0
indicates the intact region while d = 1 denotes the completely damaged region. Here, the
approximation Ap, must be able to recover Ar by reducing the regularization length scale
parameter [, to zero (i.e., ['-convergence), while the generalized form of the corresponding

crack density functional [203] reads,

Pa(d,Vd) =~ lw(d)%—lc(Vd-Vd)} ; 00:4/1\/w(s)d8, (3.8)

Co lc

where ¢y is the normalization constant, and w(d) is the monotonically increasing local dis-
sipation function that controls the shape of the regularized profile of the phase field [204—
206]. Note that a linear local dissipation along with a quadratic stiffness degradation yields
a threshold energy model (existence of a linear elastic phase before the onset of damage),
which is contrary to the quadratic model for which damage starts at zero loading. However,
the threshold energy model can be converted to a critical stress which is dependent of the
length scale parameter /.. Both approaches have been used to model brittle fracture as two
alternative regularizations of the variational theory of brittle fracture of [207]. Meanwhile,
previous work, such as Suh and Sun [132], Lorentz [208], Geelen et al. [209], and Suh,
Sun, and O’Connor [210], have used non-quadratic degradation function which may yield

a critical stress independent of /...
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In this study, we adopt the quadratic local dissipation model, so that the crack resistance
force R¢ can be expressed as [128]:
G, [d® I2

owe . B
v <avcz) W= (4 V) =S+

Cowe

x od

(Vd-Vd)|, (39

where G, = G.(0;) is the critical energy release rate that quantifies the resistance to cracking,

which will be explicitly defined in Section 3.4.2.

3.2.3 Free energy and effective stress principle

We adopt the effective stress principle that decomposes the total macroscopic stress o into
the effective stress o’ and the contribution due to the pore fluid pressure p;. As the effective
stress is solely caused by the macroscopic deformation of the solid skeleton, it constitute a
energy-conjugate relationship with the strain measure [211, 212]. As such, the free energy

(1)) of the porous media may take the following form (cf. Miehe and Mauthe [138]):

V= (e,0,,d) + " (e,9%,d) + " (0,) + % (0;). (3.10)

Note that the energy required for crack growth [i.e., W€ in Eq. (3.9)] is dissipatve by nature
and hence not included in this stored energy function v [88, 128, 168]. Our definition of
free energy will be used for constructing the energy balance equations based on the first law
of thermodynamics in Section 3.3.1, while this section defines all the terms in detail first,
and then presents the effective stress principle.

The effective part of the strain energy density ¢’(g, 0,, d) can be viewed as a stored
energy density due to the intergranular stress acting on the solid skeleton that leads to its
deformation. In particular, we assume that the effective part of the strain energy density

' (e, 05, d) is composed of the fictitious undamaged thermoelastic strain energy (e, 0;)
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and the degradation function g(d) € [0, 1] [131, 170, 213], i.e.,
1
V' (g,0s,d) = g(d)ii(g,0s) ; (g, 0s) = € C®:e —3asK(0s — Ospe) tr(e), (3.11)

where C° is the elastic moduli and K is the bulk modulus of the solid skeleton. This ap-
proach allows us to interpret the cracking in a saturated porous material as the fracture of
the solid matrix.

Following Miehe and Mauthe [138], and by assuming that the effect of thermal ex-
pansion (or contraction) of the pore fluid is negligible (i.e., its linear thermal expansion
coefficient oy = 0), the contribution of pore fluid to the free energy ¢* (e, ¥*, d) can be

defined as follows:

. L * €12 . gk _ D= p
U (e, 0" d) = S M (d) [B*(d) r () — 0] ,ﬁ_B(ﬁu@+JP@y (3.12)

where the expression for ¢* is similar to Eq. (2.12) in [214], while B*(d) and M*(d) are

the modified Biot’s coefficient and the modified Biot’s modulus, respectively:

B*d)=1- : = + (3.13)

Here, K*(d) = g(d)K, while K and K; denote the bulk moduli of the solid and fluid
phases, respectively. As shown in Eq. (3.13), this study assumes that the damage of the solid
skeleton degrades the elastic bulk modulus K*(d), so that B*(d) and M*(d) may evolve
according to the deformation. In other words, if the solid skeleton remains undamaged,
the modified coefficient recovers the classical definition of Biot’s coefficient (i.e., B* =
1 — K/K,) that is often less than 1 for rock [177, 215, 216], while we have B*(1) = 1
for the case where the solid skeleton is completely damaged, which has been accepted in
previous studies on hydraulic fracture [138, 139, 217]. Following Heider and Sun [143],

we assume that crack opening leads to a complete fragmentation of the solid skeleton, such
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that we adopt the following relation for the porosity (i.e., the volume fraction of fluid phase
constituent ¢f):

¢f =1—g(d)(1 - ¢L)(1 - V-u), (3.14)

ref’

where gbfe

- 1s the reference porosity. We also define ¢ = ¥* — B*(d) tr (¢) for convenience,
which is related to the variation of the fluid content and is the energy conjugate to the pore

fluid pressure py. In this case, Eq. (3.12) can be re-written in a simple quadratic form:

V(e 0%, d) = ¥ (p,d) = M (D) G.15)

The pure thermal contribution on the stored energy density 1% (6;) may have the simple

form as [131, 170, 213, 218],

W (0;) = ple; |(0; — Oiner) — 0;In ( b )} : (3.16)

ei,ref

where ¢ = {s, f}, while ¢; indicates the specific heat capacity and 0, s is the reference
temperature for the i-phase constituent. Note that, as shown in Eq. (3.16), we simplify
the coupled thermo-mechanical-fracture problem by assuming that the thermal part of the
stored energy densities 1% (6) and 1%/ (0;) are not affected by the fracture (cf. [128, 138,
170]).

Having defined all the terms for the free energy, we now present the effective stress
principle based on the hyperelastic relations. From Egs. (3.10), (3.11), and (3.12), the total
stress o can be found by taking the partial derivative of the total energy density ) with

respect to the strain €:

w9 D
0= G = eV (E b d) + g e ). (3.17)

' g

=o' =—B*(d)psI

A similar decomposition can be found in a number of studies on theories of porous media
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[81-84, 198], where the first term of the right hand side in Eq. (3.17) becomes the effective
stress o/, while the second term indicates the contribution of the pore pressure which is as-
sumed to produce a hydrostatic stress state [138]. From Eqgs. (3.11) and (3.17), the effective

stress tensor can also be expressed as,
o' =0+ B*(d)psI = g(d)oy, (3.18)

where o, = 01/ 0e is the fictitious undamaged effective stress.

3.3 Conservation laws for thermally non-equilibrated
porous media

In this section, we derive the balance principles that govern the brittle fracture in saturated
porous media with constituents of different temperatures. While previous work such as
[127, 131, 170, 180] has introduced a framework to address the thermal effect of brittle or
quasi-brittle fracture in porous media, our new contribution here is to introduce the heat
exchange between the two thermally connected constituents, such that the multi-scale na-
ture of the heat transfer can be considered. Since our homogenization strategy enables us to
consider two macroscopic temperatures for each constituent, we derive two distinct energy
balance equations by assuming that the thermodynamic state of each phase is measured by
their own temperature, internal energy, and entropy. Our derivation in Section 3.3.1 shows
that the two-temperature approach can be reduced into a classical heat equation with a single
temperature field if we consider the special case where two constituents are thermally equi-
librated. Then, in addition to two energy equations, we present a thermodynamically con-
sistent phase field model and the balances of linear momentum and mass, that complete the
set of governing equations which not only describes the thermo-hydro-mechanical behavior

of porous media in local thermal non-equilibrium, but also the evolution of the fracture.
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3.3.1 Balance of energy

In contrast to the models that employ a single temperature field, i.e., one-temperature model,
[175, 178, 179], our approach requires two energy balance equations for each phase con-
stituent in order to account for the transient period, i.e., local thermal non-equilibrium [95,
188, 189]. Hence, following Gelet, Loret, and Khalili [95], we assume that thermodynamic
states of the solid skeleton and pore fluid can respectively be measured by their own tem-
perature 6;, internal energy E; and entropy H; per unit mass. Based on the assumption, the

internal energy per unit volume e can additively be decomposed as follows,
e=e"+el ;e =)pF;, (3.19)

where i = {s, f} so that ¢’ is the partial quantity. Similarly, entropy per unit volume of the

mixture 7 can also be decomposed into,
n=n°+n'; o' =p'H, (3.20)

where we assume that each partitioned entropies satisfy:

i oY
T T8,

(3.21)

Here, by revisiting Section 3.2.3, we define ° as,

U =9 (e, 65, d) + 9% (6),
=9+ (3.22)

W =", d) + 4% (),

such that ¢)* and v/ are the partial free energy of the solid and fluid phase constituents,
respectively. As shown in Eq. (3.22), this study assumes that the effects of the skeletal

structure of the solid phase constituent (e.g., effective stress and degradation) on the free
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energy is solely stored in 1*, while ¥/ only includes the contribution of its intrinsic pressure
and temperature. Furthermore, we postulate that the partial quantities of internal energy e’

and entropy 7" can be subjected to a Legendre transformation, i.e.,
P =e" -0’ (3.23)

so that the following classical relation [219-221] can be recovered if two constituents are

in thermal equilibrium (i.e., 05 = 07 = 6,,,):

p= > W= > (e —0m) =e— b, (3.24)
i={s,f} i={s,f}

On the other hand, the energy exchange between the constituents can be described by intro-
ducing the rates of energy transfer x*, in which energy conservation requires the following
constraint to be satisfied:

'+ x! =0. (3.25)

Based on the first law of thermodynamics, the balance of energy for the solid constituent
that accounts for the flux of thermal energy due to heat conduction (g®), the rate of energy

exchange (), and the heat source (7*) can be written as,
=0 :e—-V-q¢°+x*+7° (3.26)

where (o) = d(e)/dt is the total material time derivative following the solid phase. Al-
though will be discussed later in Section 3.3.2, we briefly show that the second law of
thermodynamics (i.e., Clausius—Duhem inequality) yields the following expression for the

dissipation functional D*:

;O o\ oYL 1
s o : - s o s > )
D (a’ a€> é (77 + 893)05 SV 020, (3.27)
Ds
~ “int =D
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where the entropy input is assumed to be related to the heat flux across the boundary and
the heat source [127, 170]. From the relations defined previously [Egs. (3.17) and (3.21)],
dissipation functional in Eq. (3.27) can be reduced into,

D = D+ DE > 0. (3.28)

n con

Finally, from Egs. (3.23) and (3.26), the solid phase energy balance equation in Eq. (3.26)

becomes:

W — & 0P = 04 — D Voq® — x* — 7 =0, (3.29)

By substituting the explicit expression for n° [i.e., from Egs. (3.20) and (3.22)], Eq. (3.29)

can be re-written as follows, where similar form can be found in [69, 144, 170].

plebs = [Di, — Hy,| —V-q@° + x° +7°. (3.30)

In this study, to simplify the equation, we assume that structural heating/cooling is negligi-
ble (i.e., Hy, = 0) compared to the internal dissipation D;y.

We now repeat the same procedure for the fluid phase. Again, from the first law, the
internal energy for the pore fluid that accounts for the heat flux due to the conduction (q/),
the rate of energy exchange ('), the heat convection (A7), and the heat source (7/) can be
written as,

e =—prp— A —V-q/ + ]+, (3.31)

where we take A/ = pyc;(w-V 0;) with w denoting Darcy’s velocity, by assuming that the
advection process is governed by the movement of the pore fluid relative to that of the solid
skeleton [95, 101]. Recall that from Egs. (3.12), (3.15) and (3.21) we have: p; = —M~*p
and n/ = —07 /00;. Thus, from Egs. (3.23) and (3.31), the fluid energy balance equation
reads,

W —ef+oml =0mf + A +V-q/ —xT -, (3.32)
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where we assume that the contribution of the phase field on v/ is negligible. Then, by
substituting the explicit expression for 1/, the fluid phase energy balance equation can be
re-written as,

plesby = —pses(w -V 05) = Vg +x7 +#7, (3.33)

where Eq. (3.33) is similar to the form that seen in [222-224].

Remark 2. Egs. (3.30) and (3.33) describes the heat transfer process in porous media under
LTNE condition, however, one may obtain a different form of governing equations if adopt-
ing either different form of the free energy functional or different decomposition scheme
on the internal energy. Based on our approach, for the situation where the material is un-
damaged (d = 0) and is under LTE condition (i.e., ¢; = 07 = 0,,), adding Eqgs. (3.30) and

(3.33) yields the classical one-temperature model [84, 175, 177, 178]:

P = —pscs(w -V ,,) —V-q+7, (3.34)

where pc,, = pcs + ples, q = ¢° + qf, and # = 7° + #/. Here, Eq. (3.34) not only
demonstrates the connection between one- and two-temperature approaches but also implies
that the classical model assumes a special case where all the phase constituents instantly

reach a local thermal equilibrium.

3.3.2 Dissipation inequality and crack evolution

By revisiting the expression for the dissipation functional D* in Eq. (3.28), the following

thermodynamic restriction must be satisfied:

D5

nt

= F°d > 0, (3.35)
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s
con

since the dissipation due to heat conduction D is guaranteed positive by the Fourier’s

law, while:
oy

T = =

—g'(d)ig (3.36)

indicates the crack driving force [127, 128]. Notice that a sufficient condition for the in-
equality in Eq. (3.35) is that all the components F¢ and d are individually non-negative.
By adopting the quadratic degradation function, i.e., g(d) = (1 — d)?, that satisfies the

following conditions [210, 225]:
9(0)=1; g(1)=0; ¢'(d) <0ford € [0,1], (3.37)

the non-negative crack driving force F° is automatically guaranteed since ¢, > 0. In this

case, the thermodynamic restriction in Eq. (3.35) becomes:
d > 0. (3.38)

While the stored energy functional in the microforce approach often contains the frac-
ture energy [170, 226, 227], recall Section 3.2.3 that our energy functional ) does not
include the energy used to create a fracture. Again, it allows us to consider crack growth as
a fully dissipative process, resulting in the solid phase energy balance equation [Eq. (3.30)]
that contains the internal dissipation Dj,. Based on this setting, we adopt a concept sim-
ilar to the variational framework for fracture that characterizes the crack propagation pro-
cess by energy dissipation [75, 87, 207]. By assuming that the viscous resistance is ne-

glected, thermodynamic consistency requires the balance between the crack driving force

¢ in Eq. (3.36) and the crack resistance R in Eq. (3.9), i.e.,

R — F° = ¢'(d)yy + %(d —12V%d) =0, (3.39)

where VZ(e) = V-V () indicates the Laplacian operator. Here, we adopt the volumetric-
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deviatoric split proposed by Amor, Marigo, and Maurini [130], which is the stored energy

that may contribute as the driving force for crack growth, i.e.,

1
= §K<5V°1>3 + (€% %) — B, K (0, — Oy re) (V) (3.40)

1
Yy = 5K<5V°‘>2_ — 3, K (05 — Oy rer) () _, (3.41)

where £V = tr(g), €% = & — (¢"°!/3)I, and (). = (e £ |e|) /2 indicates the Macaulay
bracket operator. To prevent healing of the crack, we adopt a normalized local history field

H > 0 of the maximum positive reference energy, i.e.,

H = max v (3.42)
T7€[0,] 90/10 ’

which satisfies the following Karush—Kuhn—Tucker condition [77, 168]:
WH—H<0; H>0;: H(WH—H) =0, (3.43)

where W+ = " /(G./l.) denote the portion of nondimensional v, that contributes to
cracking.
By replacing the stored energy term in Eq.(3.39) by (S./l.)H, the governing equation

for the phase field d can be re-written as follows:
g (d)H + (d — 12V3d) = 0. (3.44)

Note that Eq. (3.44) is based on balance of the material force (cf. [77]) and is not a Euler-

Lagrangian equation obtained from the minimization of an energy functional.
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3.3.3 Balance of linear momentum

By neglecting the inertial force, the balance of linear momentum for the solid-fluid mixture
can be written as,

V-0 +pg =0, (3.45)

where o = 0 + o/ is the total Cauchy stress that can be obtained from the sum of partial
stresses o for i-phase constituents [228, 229]. Hence, from Eq. (3.18), the mean pressure

p can be expressed as:
1
b= —gtr (0') = ¢Sps + ¢fpf =-K"V-u + 3058K*(‘93 - es,ref) + B*pf7 (346)

where p, and p; are the intrinsic pressures defined in dV, and dV/, respectively, while the

detailed constitutive model for the solid skeleton will be presented in Section 3.4.2.

3.3.4 Balance of mass

Assuming that there is no phase transition between two constituents, the balance of mass

for the solid skeleton and the pore fluid reads,

4 Vv =0, (3.47)

pl+p! Vv + V- [pf (vy — v)] = pys, (3.48)

where p5 is the rate of prescribed fluid mass source/sink per unit volume, while v and
vy indicate the solid and fluid velocities, respectively. Since the change of dV; depends
on both the intrinsic pressure p, and the temperature ¢, the total time derivative of partial

density p° can be expanded as,

. — . dps . dps - . 1 . .
s s s S — iss S _ o 4
p ¢ pS ¢ ps ¢ (dpsps d@s 08) pS ¢ ps ( {:Tsps 3 898> ) (3 9)
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so that the solid phase mass balance equation in Eq. (3.47) can be re-expressed as,

S

_Q.SS - %ps - 3as¢sés + gbs V-v. (350)

Also, from Eq. (3.46), the total time derivative of mean pressure p yields:
p=ps + ¢fpp = —K*V-v + 30, K*0, + B*py. (3.51)

Following Sun, Ostien, and Salinger [230], we assume that the change of porosity at an
infinitesimal time is small (i.e., gzﬁlpZ is relatively small compared to ¢'p;), so that Eq. (3.51)
reduces into,

¢°ps = —K*V-v + 3a,K*0, + (B* — ¢')p;. (3.52)

By substituting Eq. (3.52) into Eq. (3.50), the solid phase mass balance equation now reads,

. B* — ¢f s KT\ . K7
—¢" = Kf Py — 30 (qs - Ks)m (¢ - KS>V""' (3.53)

Similar to Eq. (3.50), the fluid phase mass balance equation in Eq. (3.48) can also be

expanded as,

: f :
¢f+£_fpf_3af¢f9f+¢fv.v+v.w:g, (3.54)

where K is the bulk modulus of the fluid, w = ¢/ (v; — v) indicates Darcy’s velocity, and
as 1s the linear thermal expansion coefficient of the pore fluid which has been assumed to
be zero in Section 3.2.3. Recall that Eq. (3.2) yields the condition ¢* + ¢/ = 1, which leads
to: ¢/ = —¢*. Thus, we substitute Eq. (3.53) into the first term in Eq. (3.54) that gives the

following expression for the fluid phase mass balance equation:

1
M*

Py — 3as(B* — ¢")0, — 3a;070; + B*V-v + V-w = 5. (3.55)

Remark 3. 1f we assume that the solid and fluid temperatures are locally equilibrated (i.e.,
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0s = 05 = 0,,) and 5§ = 0, Eq. (3.55) can be reduced into a similar form that is shown in
[84, 178, 201]:

1 .
M*pf — 30,0 + B*V-v+V-w =0, (3.56)

where v, = (B*—¢’)as+¢f ay is the coefficient of linear thermal expansion for thermally
equilibrated medium. Furthermore, if we consider a special case where thermal expansion
is negligible and each constituent is incompressible (i.e., K; — o0), Eq. (3.56) further

reduces to the form identical to that seen in [101, 230, 231]:
V-v+V-w=0, (3.57)

since B* = 1 and 1/M* = 0 in this case, regardless of the damage parameter d.

3.4 Constitutive responses

The goal of this section is to identify constitutive relations that capture thermo-hydro-
mechanically coupled behavior of the material of interest. We begin this section by the
constitutive relationships for partial heat fluxes for each phase, where we assume both the
solid and fluid constituents obey Fourier’s law. We also present the explicit expression for
the heat exchange x* between the solid skeleton and pore fluid based on Newton’s law of
cooling. We then briefly summarize the linear thermoelasticity for the undamaged solid
skeleton, while the hydraulic responses in both the bulk and crack regions are modeled by
the Darcy’s law, where we adopt permeability enhancement approach in order to account
for the anisotropy due to the crack opening. In addition, this study adopts an empirical two-
parameter model for the pore fluid viscosity, which is capable of predicting the temperature-

dependent viscosity of typical liquids in geomaterials.
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3.4.1 Thermal responses and heat exchange model

In this section, we adopt the homogenization strategy that we previously described in Sec-
tion 3.2.1. Similar to the large-scale temperatures, by letting f(y) the small scale heat flux

vector, the large-scale heat flux g can be expressed as,

g = %/Qf(y) a0 — % Qrs(y)vf(y)+ff(y)vf(yl ds2

=f(y) =ff(y)
L . . X (3.58)

1 » avil 1 [ oy
& [ rw dgb\dv 7 [ dﬂ]/,

:qf

_ ]
AV

so that ¢ = q° + q’. For the constitutive model that describes the heat conduction, we
assume that both the solid and fluid constituents obey the Fourier’s law, such that their

partial heat flux q° (i € {s, f}) can be written as,

qi = ¢iqi = —¢i/€i Vv b;, (3.59)

where k; indicates the intrinsic thermal conductivity of the ¢-phase constituent [232-234].
Notice that the volume-averaged approach is only valid for the case where solid and fluid
constituents are connected in parallel while computing the correct partial heat fluxes in
Eq. (3.59) requires the geometric and topologic information of the pore structure obtained
from 3D X-ray CT images [101-103, 230, 235, 236]. Since the detailed geometrical at-
tributes of the target porous media are not readily available, this extension will be consid-
ered in the future.

Let us now consider a small scale problem V- f(y) = 0, while homogeneous energy
balance requires V- g* = 0 and V- ¢/ = 0 from Egs. (3.30) and (3.33), respectively. Since

f (y) can be additively decomposed into two parts, i.e., *(y) and f7(y), the volume aver-
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age of V- f(y) can also be decomposed as,

LV/Qv.f( dQ—_/VfS dQ+—/fo ) dQ = 0. (3.60)

Then, the averaging theorem [237] allows us to express the volume average of V- f'(y)

(1 €{s, f}) as,

1 i
/V fi(y)dQ = V- [dv/f dﬂ} av pnf(y)'"z'dF, (3.61)

. (. "

_v q :_Xi

where n; is the outward unit normal vector from (2;, which satisfies n, = —n;, while I'q
indicates the interface between the solid and fluid within a porous element 2. Here, the
second term on the right hand side of Eq. (3.61) is related to the rate of energy exchanges
such that substituting both equations into the small scale problem in Eq. (3.61) yields the
constraint x* 4+ x/ = 0 in Eq. (3.25). It underscores that the energy transfer between the
constituents occurs at their interface ['g, implying that the macroscopic level description
of heat exchange should be related to the specific surface area of the material. Hence, this

study adopts the model proposed by [195, 237], which is based on Newton’s law of cooling:

av Jr
o (3.62)

X' = di/ ff( ) -y dl = amhi (05 — 0y),
where a,, is the specific surface area of the porous matrix, and h,, is the interfacial heat
transfer coefficient. Since we assumed that crack opening leads to complete fragmenta-
tion of solid skeleton, this study adopts the following relation for the specific surface area

which assumes a,,, = @, max Inside the fracture to replicate the case where fragmented solid

particles are in suspension:

Ay = g(d)am,ref + [1 - g(d)]am,mam (363)
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where a,, . 1s the reference specific surface area of the material of interest, while we use
Apmax = 9.0 X 10* m~! which is a typical value for coarse sands [238]. Although the
interfacial heat transfer coefficient may not only depend on the pore space geometry but
also the flow velocity, as we focus on low Reynolds number flow in both the bulk and
crack regions, this study regards h,, as an independent material parameter for simplicity,

following [95, 223].

3.4.2 Hydromechanical responses in bulk and crack regions

At this point, we explicitly define the constitutive law that relates the fictitious undamaged
effective stress o, and the strain measure €, and also the temperature-dependent critical en-
ergy release rate G.. For porous medium with thermoelastic solid skeleton, the constitutive
moduli can be defined as C¢ = A\(I ® I) + (I + I), where A and p are lamé constants,

while undamaged effective stress in Eq. (3.18) becomes:
oy = Atr(e)I +2ue — 3, K(0s — O er) L. (3.64)

As previous studies [167, 239, 240] have shown the relationship between fracture toughness
and the temperature for rock, this study adopts the following constitutive model that can

describe the 6,-dependent G, since we interpret cracking as the fracture of the solid skeleton

Se = Geer {1 — . (99_—“)} : (3.65)

s,ref

[127]:

where G .ris the critical energy release rate at the reference temperature 0; ¢, and a, > 0is
the model parameter that accounts for temperature-dependent decrease of crack resistance.

In this study, the fluid flow within both undamaged porous matrix and fracture is as-
sumed to be similar to the laminar flow of a Newtonian fluid that possesses a low Reynolds
number. This approach has been widely accepted in modeling hydraulic fracture in porous

media [139, 140, 142, 241, 242] such that the laminar fracture flow is approximated as the
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flow between two parallel plates which leads to an increase in permeability along the flow
direction (i.e., cubic law). Hence, we assume that the fluid flow inside both the host matrix

and the fracture obeys the generalized Darcy’s law, i.e.,

k
w=——(Vpr—prg), (3.66)
1273

where k is the permeability tensor and p1; = f17(6y) is the dynamic viscosity of the pore
fluid. Here, the permeability tensor can be idealized as the summation of the isotropic
matrix permeability and the part that accounts for the anisotropic enhancement due to the

crack opening [88, 139, 140, 217]:
kE=k™ +k° = kpad + k(I — n.®@n,), (3.67)

where Ky, is the permeability of the undamaged porous matrix, n. = V d/|| V d|| is the
unit normal of crack surface, and k. is the fracture permeability that depends on the fracture

aperture w,:

2 0 ifd <0.5,
ke=— 1 we=H(d)[l;(1+n.-e-n)| ; H(d)= (3.68)
1 ifd> 0.5,

with [; denoting the characteristic length that is often assumed to be equivalent to the size
of typical finite element (i.e., [; = h.) [138, 139, 142], while H(d) is the Heaviside func-
tion that explicitly defines the fractured zone based on the assumption that fracture flow is
initiated if the material is half-damaged [143]. By revisiting Eq. (3.14), notice that semi-
empirical porosity-permeability relation may not be applicable in this study since ¢/ = 1
if the host matrix is completely damaged. In this case, precise prediction of matrix perme-

ability may require other geometrical features such as formation factor, tortuosity, or shape

of pores [103, 243-246]. This extension is out of the scope of this study, and hence, we
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consider k., as a constant.

As the viscosity of many fluids are temperature-dependent, numerical results drawn
from the fluid flow with constant viscosity are often not applicable in the non-isothermal
state [247-249]. Specifically, the temperature dependence of pore fluid viscosity affects
the diffusion coefficient in Eq. (3.66) which may lead to different flow patterns compared
to the idealized case where viscosity is assumed to be a constant. In this study, we adopt
the most popular empirical formula that consists of two parameters (A, and B),) as follows
[250, 251]:

iy = Ayexp (B0 ). (3.69)

Even though there is no one formula that works for all fluids, the two-parameter exponential
model is capable of predicting the temperature-dependent viscosity of water and crude oil
as shown in Fig. 3.2, which are the two most common types of pore fluids in geomaterials.
Note that the circular symbols in Figs. 3.2(a) and 3.2(b) denote experimentally measured
data for water [252] and A-95 crude oil [253], respectively, while solid curves indicate the

curve-fitted results from Eq. (3.69).

x107

O Measured [Korson et al., 1969] O  Measured [Tang et al., 1997]
Two-parameter model

Two-parameter model

0.06 |
53 2
< <
A P+ 0.04
~ ~
X X
0.02+
o0 o
A, = 1.1 x107% [Pa-s]; B, = 2005.3 [K] / A, =86 %1075 [Pass]; B, = 24755 [K] /*  ————
0 ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘
0 20 40 60 80 100 0 20 40 60 80 100
0r [°C] 0y [°C]
(@) (b)

Figure 3.2: Temperature-dependent viscosity of (a) pure water, and (b) A-95 crude oil.
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3.5 Finite element discretization

In this section, we present the weak form of the governing field equations, and then develop
a semi-discrete formulation for the numerical solution of the thermo-hydro-mechanical and
phase field fracture model we described in Sections 3.3 and 3.4. We start by summarizing
the governing equations and the relevant initial boundary value problem, and then follow
the standard weighted residual procedure to recover the weak form. For robust spatial dis-
cretization of the coupled problem, we use the Taylor-Hood finite element space for the dis-
placement and pore pressure fields, and standard linear interpolation for the solid and fluid
temperatures, while adopting streamline upwind Petrov-Galerkin (SUPG) stabilization for
the fluid phase energy balance equation. Meanwhile, the phase field is also interpolated by
linear function to ensure the efficiency of the staggered solver which sequentially updates

the phase field and non-isothermal poromechanics problem.

3.5.1 Weak form

By revisiting Sections 3.3 and 3.4, the governing field equations with primary unknowns

{u,py, 05,0, d} are summarized as follows:

V.o +pg =0,

1 .
by = 30s(B" = ¢N)0. + B'V- 0+ Vow =35,
pocsls — Di + V- q° + amh (05 — 05) = 7, (3.70)

plesbs + pres(w -V 05) + V- g/ + anmhn (0 — 05) = 77,

LG ()H + (d—12V?d) = 0,
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and the prescribed boundary conditions can be specified as,

( (

u=1u on 0B, oc-n=t on 0B,

pr=p; ondB, —w-n=w ondB,
0, =60, on 0By, 7 —q°-n=¢g; ondB,
0;=0; on 0By, \—qf ‘n=q; ondBy

(3.71)

Here, n is the outward-oriented unit normal on the boundary surface 9B that consists of

Dirichlet boundaries (displacement boundary 9B,,, pore pressure boundary 9B, solid tem-

perature boundary 9By, , and fluid temperature boundary 9B,,) and Neumann boundaries

(traction boundary 0B, fluid flux boundary 9B, solid heat flux boundary 9B, and fluid

heat flux boundary 9B,/ ) satisfying:

OB = 0B, UOB, — 9B, U DB, — 0By, U0B, — 0By, UOB,;,

0= 0B, N OB, = 9B, NIB, = 9By, N By = 9By, NIBys,

while the following boundary condition on 9B is prescribed for the phase field d:

Vd-n=0.

For model closure, the initial conditions are imposed as,

U=Uy ; Pr=Pfo ; 0s = 050 ; 9f:9f03 d = dy,
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at time ¢ = 0. Then, we define the trial spaces V,, V;, Vp,, Vp, and V; for the solution

variables as follows:

Vi={u:B =R |uc [H(B)", uly =a},

Vp = {pf :B = R|ps € H(B), pslyg, :ﬁf}a

Vo.={0s: B R0, € H'(B), Oy, = 0.}, (3.76)
Vo, = {9f B =R [0 € H(B), Orlos,, = éf}7
Vi={d:B—-R|de H(B)},

where ngiy, is the spatial dimension while H'! indicates the Sobolev space of order 1. Simi-

larly, the corresponding admissible spaces for Eq. (3.76) are defined as,

={n:B >R [n € [H(B)"™, nly, =0},
Ve={€:B o R[E € H(B), Elps, =0},
‘/csz{CS:B%RlcseHl( , Glom,, = } (3.77)
Vé“f:{gf3fB_>R|CfEH( ) Cilos,, 0}

Vo={w:B—-R|lwe H'(B)}.

Applying the standard weighted residual procedure, the weak statements for Eq. (3.70)
is to: find {w, py, 05, 05,d} € Vi, x V,, x Vg x Vy, x Vg such that for all {n, &, ¢, (5, w} €
Vi x Ve x Ve, % Vi, % Vi

Gy =Gy =Gy, =Gy, =Ga=0, (3.78)
where:

G :/vn odV — /n-png—/ n-tdl =0, (3.79)
B B 0By
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1 .
G, = ) dV — J(B* =N 0, dv
o= [ s av = [ ¢ Boun =)
+/§(B*v-v)dV—/vg-de—/gng—/ Ewdl =0,  (3.80)
B OBw

G, = / Copesbs dV — / ¢Ds dV — / Vg
B B

— / o dV+/§S [amhm (05 — 05)] dV — ¢G5 dl =0, (3.81)
0Bgys
/CSUPG ey dv+/ngPprcf(w Vo) dV — /VCSUPG q’ av
/g;UPG fdv+/gf amh 0,)] dV — / ;g" dl = 0, (3.82)
OB s
Gd:/wg/(d)%dV+/wddV+/Vw-(lde) dV = 0. (3.83)
B B B

Here, (?Y*¢ indicates the modified weighting function:

(U0 = ¢+ Tsura(w - V (), (3.84)

while Tsypg 1s the stabilization coefficient which is explicitly defined in Section 3.6.

3.5.2 Galerkin form

By letting N, N,,, N, N¢, and Ny be the shape function matrices for the displacement, pore
pressure, solid temperature, fluid temperature, and phase field respectively; and n, &, ¢, Gy,
and w be the nodal values of the corresponding test functions, the following approximations

are adopted:

u~ u" =N,u n~n"=Nm
pf%p?:Npp g’&jgh:Npa
0, ~ 0" =NT, 5 G~ =N » (3.85)

0y ~ 0f = NiT¢ (r ~ (= Nilg

d

Q

d" = Nyd \w%wh:Ndw
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and we define the following transformation matrices:
Bi=VN,; bj=V-N;; i={up,s,f,d}. (3.86)

Similarly, for the modified weighting function C?UPG, we also define the following matrices:

C?UPG ~ N?UPGcf : B?UPG — VN?UPG : b?UPG —-V. N?UPG. (387)

Then, by following the standard procedure, we obtain the semi-discrete forms that we sum-
marized in Egs. (3.90)-(3.94), while the detailed expressions for all the vectors and matrices
are as follows:
( ~
K= / B.CB, dV
B
G= / b, B*N, dV
B

P:/b§(3asK*)Ns dV
B

1
_ T
C= /BNPWNP dVv

H= / NI [Ba(B* — ¢/)] Ny dV
b , (3.88)
Lk
¢ :/Bp—Bp dV
B Hf

S, = / NSTpscsNS dV
B

QS = / BZ¢SHSBS av
B

E, = / N! @y Ny dV
B

D:/M%%MW
\ B
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Sf:/(N§UPG)TprfodV

B

A= /(N?UPG)Tprf’UJdeV
B

Q= / (BP9 T ki By dV
B

E;= / Nf @y Ne dV
B

I
—

A Ny (2K + 1)Ng dV + / B} I’By dV
B

A , (3.89)
NIt dl + / Nlpg dV — / b, (3as K*0 er) dV
B, 3 3

Ngwdr+/
B

=
I

. k
N, 3 dv+/Bg—(pfg) dv
By B Hf

f, = / NI G® dl + / NI dV + / NIDg, dV
0Bys B B

fr = / Nig/ dT’ + / (NPT av
9B ; B

q

fd:/Ng(zH) dV
\ B

where C indicates the tangential stiffness [i.e., matrix form of g(d)C*].

3.6 Asynchronous time integration scheme

This section focuses on the solution strategy for the coupled problem. We introduce a spe-
cial time integration scheme that adopts different time step sizes for the solid and fluid
temperatures by using the concept of isothermal operator split and subcycling method [ 144,
254, 255]. Compared to two other solution strategies (i.e., monolithic and isothermal split
solvers with a single time step), numerical analysis in Section 3.7.1 hints that our approach
yields consistent results while being computationally more efficient. We also conduct a
stability analysis for the multi-time-step integration through investigating the generalized
eigenvalue problem, while we suggest the optimal time step size and cycling period for

the implicit time integration scheme by adopting more restrictive conditions: the discrete
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maximum and the monotonicity principles [256-259].

3.6.1 Operator splitting and multi-time-step integration

By letting u, p, T, Ty, and d be the nodal vectors for the displacement, pore pressure, solid
temperature, fluid temperature, and phase field, respectively, the semi-discrete form of the

governing field equations [Egs. (3.79)-(3.83)] can be expressed as follows:

Ku — Gp — PT, = f, (3.90)
G'u+Cp—HT, + pp =T, (3.91)

ST, + (Qs + E\) Ty — DTy = £, (3.92)

STy — DT, + (A + Q¢+ Ef)T¢ = fy, (3.93)
Ad =1y, (3.94)

while the complete procedure including detailed expressions for all the vectors and matrices
are summarized in Egs. (3.88) and (3.89). In this study, we adopt the staggered scheme
that updates the phase field d and all other variables {u, p, T, Ts} separately, which may
potentially be more robust compared to the solution scheme that simultaneously solves the
complete system of equations [i.e., Egs. (3.90)-(3.94)] with a single solver [76, 132, 210,
260, 261]. Thus, by regarding the staggered scheme for the phase field d as a default
setting, we will use the term monolithic to indicate the case where we use a single solver to
solve Egs. (3.90)-(3.93), while the term operator split will indicate the case where the field
variables u, p, Ts, and Ty are updated separately even if they are advanced in a staggered
manner.

To solve the semi-discrete form of the governing equations numerically, it is required
to choose a time-stepping integrator that leads to a different structure of the algebraic prob-
lem [144, 145, 179, 262, 263]. Although one may choose different strategies to solve the

same system, this study focuses on three different time integration methods as shown in
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Fig. 3.3. The first method, i.e., case (a), is often referred to as monolithic or simulta-
neous solution scheme and can be obtained by adopting a single time integrator which
updates {u, p, T, T¢} simultaneously, while the second case (b) adopts a time integration
scheme that requires decoupling of the semi-discrete field equations into two parts: isother-
mal poromechanics problem that solves {u, p} and heat transfer problem that advances
{Ts, T¢}. This strategy is often referred to as an isothermal operator split [144, 145, 264].
Our new contribution here is to develop a third strategy (c) that uses different time steps for
solid and fluid constituents that are thermally non-equilibrated. Similar to the subcycling
method [254, 255, 265, 266], this approach eliminates the need to update the entire set of
variables {Ts, T¢} with a single time step, while it allows us to adopt different time step

sizes for T and Ty that may be computationally more efficient compared to the cases (a)

and (b).
(a) Monolithic
T. T At A A A ~ Non-isothermal
u,p, T, Ty O o o i ~ O poromechanics
(b) Isothermal split
At Isothermal
u,p Q O Q O O ’O poromechanics
) ) ) ) Synchronized
Ts,Tf O 19 14 N ~ O heat transfer

(c) Asynchronous isothermal split

At Isothermal
u,p O n n f\ f:\ 'Q poromechanics
T, O O O O O fo}
i Asynchronous
: ] ! ! heat transfer
Tf 3 O ; i O :
**** ‘ mAt
Sync. Sync.

Figure 3.3: Time integration schemes: (a) monolithic, (b) isothermal split, and (c) asyn-
chronous isothermal split.

The first method (a) shown in Fig. 3.3 is the simplest approach that monolithically
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solves the following block-partitioned system:

0O Of |u

0 0 K -G —P Ol |u f,
G C -H 0] |p 0 o 0 ol | p f
g = | ", (3.95)
0 0 S Of |T; 0 0 Q,+E -D| |T; f,
0 0 0 S |T¢ 0 O DT A+ Qi +E| |T; fp
~— _V - -," - ~ _V — v - -,"-
=Mmono =Xmono =Kimono =Xmono =fmono
with the following stabilization parameter [267—269]:
~1/2
2\ (2wl (A
=||l——= —_— 9( ——= . 3.96
o (At) i (Pfcfhe I\ preh2 (390

From Eq. (3.95), the generalized trapezoidal rule [e.g., x™F1 = x2 + (1 — B)Atx .+

mono mono

BAEXEL 7 yields the following system that needs to be solved:

mono

(a) (Mm@no + /BAthOHO)XFnt;O
(3.97)

- [Mmono + (]- - B)AthOﬂO] XE]OHO + At [(1 - B)i‘r]nono + ﬂf?n—gio} Y

where X0 = Xmono(t") = Xmono(nAt), and the parameter § determines the integration
algorithm, e.g., 5 = 0 yields a forward Euler and 5 = 1 recovers a backward Euler method.
Note that the integration is implicit without any restriction on At if 5 > 1/2.

On the other hand, the isothermal operator split used for the cases (b) and (c) requires

the following block-partitioned systems that are decoupled:

0 0| |u K -G| |u £, + PT,

+ - e (3.98)
G" C| |p 0 &| |p f, + HT,

N———

:Mup =Xup :Kup =Xup :fup
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S, 0| |T, . Q, + E; -D| |T, f,

| _ (3.99)
0 S¢| |T; D" A+Q¢+Ef| |T¢ fr
=Mg¢ =Xsf =Ksr =Xsf —Isf

Here, the superimposed hat in Eq. (3.98) indicates that corresponding nodal vectors are
readily determined since isothermal splitting solution scheme implies that T and T¢ are no
longer unknown variables for the poromechanics problem under isothermal condition [144,
270-272].

For case (b) illustrated in Fig. 3.3, the isothermal poromechanics problem and the heat
transfer problem share the same At. Specifically, as indicated with red dashed lines with
arrows in Fig. 3.3, omitting the Gauss-Seidel iteration, T, and "i’s in Eq. (3.98) are updated
from Eq. (3.99) (i.e., T, = T! and "i“s — T, In this case, the stabilization parameter
Tsupg remains unchanged compared to case (a), while the generalized trapezoidal rule yields

the following system:

(M + BupAtK )X
o = My + (1 — Bup) AtKyp) X3 + At [(1 = Bup)Bl, + Bupflr '] (3.100)
(Mgt + BorAtKp)x !
| = M+ (1= Boo) AtK ] x5 + At [(1— Boo) e + Buefy] (3.101)

where the parameters 3, and [y indicate that the isothermal operator splitting in case (b)
requires two distinct time integrators.

For case (c) where we adopt the mixed time integration for the heat transfer problem
(i.e., asynchronous heat transfer), we assume that the nodal groups T and Ty in a column
vector Xgr are integrated with different time steps At and mAt, respectively (Fig. 3.3),
where m > 1 is an integer. Here, time step mAt is called cycle [254, 273] that corresponds

to the synchronized step in this study where both T and T are updated simultaneously. The
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integration cycle for X can be defined by re-writing the generalized trapezoidal rule as,

X = X+ AWK+ AtWoxD (3.102)
with, i
181 0
( Bir) ifl<n<m-—1,
00
W1 = -
(1 — Bl o
ifn =m,
L 0 m(l — ﬁsf)l
] (3.103)
ol
e ifl<n<m-—1,
00
W2 = -
Bl 0
' ifn=m,
0 mﬁsfl

where I is the unit matrix that is different from the identity tensor I. Substituting Eq. (3.102)
into Eq. (3.99) yields the following set of equations that needs to be solved, while we assume
that the solution for the isothermal poromechanics problem is advanced by At, such that

the system in Eq. (3.104) remains the same compared to Eq. (3.100), i.e.,

( (Mup + ﬁUPAtKup)XE; !
© = [Mup +(1- Bup)AtKup] Xgp + At [(1 - Bup)ﬁlp + 511;&?1;1} ) (3.104)
C
(Mgt + AtWoKp)x"H
[ = (Mg — AtW Kp)x + AW 5+ Wo ) (3.105)

while the stabilization parameter is redefined accordingly for this case:

~1/2
2 2 9 2 4 f 2

(—) + (M> +9(¢—F”f2) . (3.106)

mAt prcrhe prcyh?
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Note that Egs. (3.104) and (3.105) summarizes the solution scheme in a single cycle for
case (c¢), while the entire code structure for the mixed time integration is illustrated in Fig.
3.4, where the gray blocks denote the initialization steps, the red blocks represent time-
marching procedure, and blue blocks indicate the Gauss-Seidel iteration. Here, if we set
the maximum number of iterations to be 1, the Gauss-Seidel iteration reduces to a series of

staggered solution schemes.

Initialization

- Time step: n = 0
- No. of iteration: iter =0

l

Incremental loading
ant+l ant+l 40+l antl
ST P T T

5 +1 +1 +1 +1
G e

l

Solve phase field equation

S, = A
- Update: g(d),n.

n%m=0
No
Yes
Solve heat transfer equation Solve heat transfer problem
. Tg‘zter - T?‘zf,er+l : T‘S“zter - T:lmter+1 . g +1
- Update: G, *Tliger = T?literﬂ ther = tter
- Update: G, pus

!

Solve poromechanics problem

n n n n
W = 01 P e = P it
- Update: ¢°, ¢f7 Kmat, H, we

‘n=n+1

-iter =0

Figure 3.4: Flowchart of the asynchronous operator splitting scheme for phase field fracture
in fluid-saturated porous media under local thermal non-equilibrium.
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3.6.2 Stability of mixed time integration

As previous studies [264, 274, 275] have investigated the stability and convergence for the
hydro-mechanically coupled problem, we focus on the stability analysis on the mixed time
integration in Eq. (3.105) since it reduces to a standard isothermal split setting for case
(b) shown in Fig. 3.3 if m = 1. In specific, this section focuses on the case where the
stabilization parameter 7sypg is small, so that the matrices S, A, and Qy are considered
symmetric.

Considering the homogeneous case, Eq. (3.105) reduces into,

(Msf + AtWQKSf) Xlsl;rl = (Msf — AtW1K5f> Xlslf, (3107)

. S (. J

N 4
=As =A;

which leads to the following generalized eigenvalue problem that is essential to investigate

the stability characteristics:

_ _ ¥s
A1Ysr = AsfAoYsr 3 Vst = ; (3.108)

ye

where the vector y, is composed of total N3' = N* + N components so that its ith element
corresponds to ys that is related to the solid temperature, if 1 < 7 < NJ; while corresponds
to yr (i.e., the fluid temperature) if N5 + 1 < i < NL,

For the non-synchronized step where 1 < n < m — 1, we get the following by substi-

tuting Eq. (3.103) into Eq. (3.108):

Qs + Es -D o 1— )\Sf M
B B Yst = \(1 — Bsf)At + )\sfﬂsztj sfYsf
=%t (3.109)

(Qs + ES)ys — Dys = Y6£SsYs,

0 = Sty
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Following Smolinski, Belytschko, and Neal [254], due to the positive definiteness of S,
the second row in Eq. (3.109) implies either s = 0 or y¢r = 0. In specific, if 1 < i < N},
we have v = 0; whileyy = O for N; +1 < i < N,if. Considering the first case where
vst = 0, the first row in Eq. (3.109) yields y, = [(Qs + E;)~'D] ys, such that the vector y¢
Ny,

spans R™» since Qg + Eg is a symmetric and non-singular matrix, i.e.,

Q, +E,) 'D]y
Fer = ( )" Dly if1<i< NS, (3.110)

¥y

where the superposed tilde indicates the prospective eigenvectors that correspond to s = 0.

On the other hand, for the second case where y; = 0, vector y¢ spans R™» and is given by,

Y= || ifNS+1<i<N (3.111)
0

Here, the superposed check symbol in Eq. (3.111) denotes the prospective eigenvectors that
correspond to the case where y = 0. Notice that Eqgs. (3.110) and (3.111) hints that the
set of vectors (V¢ and V) span RY It implies that we have two sets of eigenvectors that
correspond to the case where the eigenvalues are either 75 = 0 or s # 0, respectively,

since they are orthogonal with respect to K. Specifically, the vectors y; are B-orthogonal

to each other [276-278]:

) Qs + Es -D ys,j
: DT A+Qr+E; 0

ysTf,z‘styst = )V’STJ o'
1 1(Qs + Es)ysd (3.112)
- _DTys,j

= ysT,z(Qs + Es)ys,j = VSf,iéij if {Z,j} € [17 NZ])

= S’ST,Z' o'

since the first row in Eq. (3.109) gives (Qs + Es)ys = 7sSs¥s, such that y can be orthog-
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onalized with respect to Qs + Eg and S, whereas the vectors y¢ are orthogonal to ys with

respect to Ky

. _ [ i Qs + Es -D [(Qs + Es)_lD] S’f,'
y;rf,istysf,j = y; o’ ’
- . -D" A+ Q:+Es ¥Vij
' ; 0 (3.113)
- y'sl:z OT _ - 0
- - [_DT(QS + ES)D + (A + Qf + Ef)] ny‘

if {i,7} € [NS + 1, N*.

Therefore, the non-synchronized solution at time step n can be expanded in terms of eigen-
vectors as,

Xgr = Ci¥sti + CjYst (3.114)

where ¢; and ¢; are constants, while the repeated indices imply the summation following
the Einstein’s notation [221, 279]. Then, substituting Eq. (3.114) into Eq. (3.107) yields the

following expression for the updated solution:
X = G AeaVsti + CiYsts (3.115)
where A\ = 1 for ygf since ¢ = 0. By defining the norm Fi as,

1 ..
Eg= §x§stfxsf, (3.116)

the B-orthogonality shown in Egs. (3.112) and (3.113) gives the following expression for

time step n:

EY = (&sti + ¢¥st5) Kt Cu¥stp + EYsta) = G + ¥ KaeVser, (3.117)
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while E';" at time step n + 1 reads,

EN = (&hsti¥sti + &Ysts) Kat(CrdstrYser + Q¥sta) = N ivsti 1 G KtYst-
(3.118)
Comparing Egs. (3.117) and (3.118), notice that the stability E;‘f“ < E% is ensured if the

following condition is satisfied:

1 — 71— Byp) A
Yl — B)At| (3.119)

\oe| =
| Sf| 1 + stﬁszt o

If v > 0, Eq. (3.119) reduces into,

2
ANt< — —n 3.120
N 75f(1 - 2Bsf) ( )

For the synchronized step where n = m, Egs. (3.107) and (3.108) yield the following

expression with some rearrangements:

Kiysr = L= X S 0 Yet, (3.121)
m[(L=B)A+XNBA | g
:‘;s/f D —
=M,

where N, v/; and M, designate the quantities associated with the synchronized step. Here,
since K and M;f are symmetric and non-singular based on the assumption 7sypg — 0,
the values 7., are real and possess distinct eigenvectors yy that are B-orthogonal [276—
278]. Thus, following the similar procedure that is used for the non-synchronized step [i.e.,

Egs. (3.116)-(3.119)], the stability condition reads,

a4l =

1 — mr/ (1 — Bo) At
mal(l = Be)At) (3.122)
1+ m B At
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Similarly, if v/; > 0, Eq. (3.122) reduces into,

A< 2 (3.123)

- m'yéf(l - 25sf) .

This stability analysis highlights that our mixed time integration is unconditionally sta-
ble if we adopt implicit schemes. For example, if we employ the backward Euler method
(i.e., B¢ = 1), the stability conditions are automatically satisfied since both | Ay and |\

are less than 1, i.e.,

1
I+ 'stAt

1

Aot = -
[Ast ' 1+ mnLAt

‘<1;Mg:‘ ‘<L (3.124)

3.6.3 Time step size and cycling period for implicit algorithm

As pointed out in Liu et al. [280], even though we adopt quadratic interpolation for the
displacement and linear interpolations for all other fields, the solution may still result in
oscillatory results if At is small. In this section, by employing the implicit backward Euler
method (i.e., By = Bsr = 1), we suggest the optimal sizes for A¢ and the cycling period
m for the mixed time integration scheme that may completely avoid the spurious oscilla-
tions by adopting more restrictive conditions. The first condition is the discrete maximum
principle (DMP) that requires the positivity (or negativity) of an incremental solution if the
right hand side in Egs. (3.128)-(3.130) is positive (or negative), while the second condition
requires the monotonicity of the solution, which is called the monotonicity principle (MP)
[256-258]. For a system of equation, e.g., Ax = b, Li and Wei [259] pointed out that
both DMP and MP are satisfied if the coefficient matrix A is an M-matrix [281, 282] that
satisfies:

In other words, in order to ensure non-oscillatory results, the diagonal components of the

coefficient matrices should be positive while the off-diagonal terms should be non-positive.
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Since the asynchronous isothermal split scheme [i.e., case (¢) in Fig. 3.3] solves the de-
coupled systems separately, we apply the criteria in Eq. (3.125) to each coefficient matrices
to suggest the optimal time step size and the cycling period. By revisiting Egs. (3.90)-(3.93)
and Eq. (3.104), the backward Euler method yields the following expression for the isother-

mal poromechanics problem:

Ku™t! = Gp™*! + ! 4+ PT,, (3.126)

GTu™! + (C + Atd)p™ = GTu" + Cp" + A + HT,). (3.127)
Substituting Eq. (3.126) into Eq. (3.127) yields,

(G'K™'G + C + At¢) p™™
i (3.128)

=G"u"+Cp" — G'K (i + PT,) + At(f™ + Hfs).

Similarly, the heat transfer problem can be re-expressed as follows:

[Ss + AH(Qs + E()] TM = S,T? + A¢(DTFH + 211, (3.129)
—As
[St + mAL(A + Q¢+ E)] TH = S¢TF + mAH(DTT + £, (3.130)
Y

Here, although we solve for { T, T¢} simultaneously at the synchronized step (Fig. 3.4), we
consider the decoupled situation to investigate their coefficient matrices separately. In this
case, Egs. (3.128)-(3.130) are discrete linear equations to be solved, where the coefficient
matrices are: Aup, A,, and A;. Notice that the diagonal components of the coefficient matrix
are positive so that the first criterion in Eq. (3.125) is automatically satisfied.

In order to illustrate the idea behind our suggestions, we explore the most simple one-
dimensional case, while we neglect the heat convection term for simplicity. Since we

adopt the Taylor-Hood finite element for the displacement and pore pressure, and linear
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element for the solid and fluid temperatures, exact Gauss quadrature yields the follow-
ing off-diagonal terms of element coefficient matrices Aﬁp’ij, A;ij, and A?,ij (1 # j), if

TSUPG — 0:

_ h heB*? k

Ae = T At 3.131
up,zj 6 M * 6C'* (he,uf) ’ ( )
= hep®cs heamhm kg

Al = At - 3.132

$,2] 6 + ( 6 he >’ ( )

<. hep'c hetmhm 'K

Ay =~ ! +mAt( e hef : (3.133)

where C* and k indicate the scalar stiffness and permeability coefficients, respectively.

Then, applying the second criterion in Eq. (3.125) to Egs. (3.131)-(3.133), we get:

h? 1 B
At > = <6M* = 60*), (3.134)

~~
:Atup,min

h?psc
At > e’ =
= 60°Kks — h2amhy,’

J

(3.135)

~~
:Ats,min

h2pfc;
At > e
M = 66Tk — R2amhy’

~
:Atf,min

(3.136)

respectively. This 1D example underscores that the minimum time step size At for the
mixed time integration should satisfy Eqs. (3.134)-(3.136) at the same time. Also notice
that, unless employing a different interpolation strategy, the criteria remain the same in two-
or three-dimensional cases, while Aty min, Atsmin, and Atgyin may have different expres-
sions depending on the spatial dimension.

Overall, for the asynchronous isothermal splitting scheme shown in Fig. 3.4, we pro-

pose the following general criteria for the cycling period m as:

o a PICERS

, (3.137)
PsCsh f
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so that mALg min & Atgmin, While the time step size can be chosen as,
At > max (Atupmin, Atsmin)- (3.138)

To be conservative, we set At one to two orders of magnitudes larger than

max (Atypmin, Atsmin) for all the numerical examples in Section 3.7.

Remark 4. The phase field approach to fracture requires a mesh that is locally refined along
the potential crack path, where element sizes may substantially vary over the domain. For
a thermo-hydro-mechanical-fracture problem that involves high pressure or temperature
gradients near the crack, Aty min and At min in Eqs. (3.134) and (3.135) can be determined
by using the minimum element size, i.e., min (k. ), in order to capture the detailed coupled

processes near damaged regions.

3.7 Numerical examples

This section presents three sets of numerical examples to showcase the capacities of the
proposed model, focusing on transient problems that involve heat exchange between the
solid and fluid constituents. We limit our attention to one- or two-dimensional simulations
at cm-scale and neglect the gravitational effects (i.e., g = 0), while adopting implicit back-
ward Euler time integration scheme with a Newton-Raphson solver. As a preliminary study,
the first example compares three different time integration schemes illustrated in Fig. 3.3
by simulating one-dimensional heat transfer process in a water-saturated porous column
to demonstrate the computational efficiency of the asynchronous isothermal split solution
scheme. In the second numerical example, we compare the one-temperature model that
considers local thermal equilibrium (LTE) state with the two-temperature model where the
solid and fluid constituents are in local thermal non-equilibrium (LTNE). Specifically, we
focus on the effect of the different growth rates of thermal boundary layers on the fracture

pattern by simulating a mechanically driven crack propagation on an oil-saturated double-
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edge-notched specimen. Finally, the third example highlights the modeling capacity of
capturing the coupled thermo-hydro-mechanical-fracture processes by simulating the inter-
action of two cracks that are hydraulically stimulated by injecting hot fluid into pre-existing
flaws. The implementation of the model including the finite element discretization and the
solution scheme relies on the finite element package FEniCS [146—148] with PETSc scien-
tific computational toolkit [149], while all the numerical simulations rely on meshes that
are sufficiently refined around the potential crack trajectory in order to capture the damage

field around crack surfaces properly.

3.7.1 Comparative study: one-dimensional heat transfer

This example simulates the one-dimensional heat transfer process in a porous column by
prescribing a raised temperature at the top surface. Assuming that the solid and fluid con-
stituents are in LTNE state and remain undamaged, this numerical example serves as a
preliminary study that compares the performance between three different time integration
schemes shown in Fig. 3.3.

In this example, we choose the material properties of the problem domain similar to a
typical water-saturated sandstone, which is summarized in Table 3.1. As illustrated in Fig.
3.5, our 0.1 m long porous column with initial temperatures of 050 = 079 = 20°C is sub-
jected to thermal loading of 6, =60 ¢ = 50°C at the top, while we impose fixed temperature
boundary conditions 0, =0 ¢ = 20°C at the bottom. During the simulation, the bottom part
of the porous column is held fixed and is subjected to a zero pore pressure boundary condi-
tion, whereas no fluid flux is allowed at the top. Within this setup, we conduct a number of
numerical experiments by using three different time integration schemes (i.e., monolithic,
isothermal split, and asynchronous isothermal split). By spatially discretizing the domain
into uniform elements with i, = 0.4 mm, we have: Aty min ~ 0.09 sec and At in = 0.02
sec from Egs. (3.134)-(3.135). Hence, from Eq. (3.138), we choose At = 5 sec for all

three solution schemes, while we set the cycling period as m = 10 for the asynchronous
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Table 3.1: Material parameters for one-dimensional heat conduction problem.

Parameter Description [Unit] Value

Ps Intrinsic solid mass density [kg/m?] 2700.0

pr Intrinsic fluid mass density [kg/m?] 1000.0

K, Bulk modulus of solid [Pa] 40.0 x 10°
Ky Bulk modulus of pore fluid [Pa] 2.1 x 10°
Cs Specific heat of solid [J/kg/K] 1.0 x 103
cr Specific heat of pore fluid [J/kg/K] 4.2 x 103
Ks Thermal conductivity of solid [W/m/K] 4.2

Kf Thermal conductivity of pore fluid [W/m/K] 0.6

Qg Linear thermal expansion coefficient of solid [1/K] 10.0 x 10~¢
A, Viscosity parameter [Pa-s] 1.1 x 107
B, Viscosity parameter [K] 2005.3

T ref Reference solid temperature [K] 293.15

E Elastic modulus of solid skeleton [Pa] 18.0 x 10?
v Poisson’s ratio of solid skeleton [-] 0.2

Emat Matrix permeability [m?] 1.0 x 1077
ol Reference porosity [-] 0.2

Qo ref Reference specific surface area [1/m] 20.0

. Heat transfer coefficient [W/m?-K] 4.7

isothermal splitting scheme since prcrr,s/pscsky = 10.88.

Fig. 3.6 shows the variations of displacement, pore pressure, solid temperature, and
fluid temperature along the height of the column. Here, circular and triangular symbols indi-
cate the results obtained from the monolithic and isothermal splitting solvers, respectively,
whereas square symbols denote the simulation results from the asynchronous isothermal
split solver. As illustrated in Figs. 3.6(c) and 3.6(d), the solid constituent tends to conduct
heat better than the fluid phase, while the fluid heat transfer process is accelerated as time
proceeds due to the heat exchange between two constituents. Also, due to the thermal loads,
the porous matrix experiences thermal expansion that leads to the build-up of pore pressure
which dissipates over time, as shown in Figs. 3.6(a) and 3.6(b). Although the good agree-
ment between the solutions obtained by different time integration schemes confirms the

validity of the proposed solution strategy, there exists a noticeable time lagging error for 0
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Figure 3.5: Schematic of geometry and boundary conditions for the one-dimensional heat
transfer problem.

att = 100 sec [Fig. 3.6(d)]. As illustrated in Fig. 3.7, this time lagging error may lead to
inaccurate results at an earlier stage if we use large m even though it becomes marginal as
time goes on. However, it should be noted that choosing a cycling period smaller than our
suggestion in Eq. (3.137) may either prevent proper utilization of computational efficiency
of the asynchronous time integration scheme, or result in spurious oscillations since it may
violate the discrete maximum principle (DMP) or monotonicity principle (MP) even if the
time step size is greater than max (At min, Atsmin)-

Based on this experimental setup, we further quantitatively analyze the computational
efficiency of the asynchronous isothermal splitting scheme. In order to do so, we repeat
the same set of numerical experiments with different spatial and temporal discretizations,
and record their CPU times. Specifically, by adopting a cycling period of m = 10, we
investigate the effect of element size h. by using different meshes with the same At = 10
sec, whereas the effect of time stepping size is examined by conducting the simulations with

different At while element size is set to be h, = 0.04 mm. Here, the numerical simulations
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Figure 3.6: Transient responses of porous column. (a) displacement; (b) pore pressure; (c)
solid temperature; and (d) fluid temperature.

are conducted on a single core of Intel 19-9880H processor with 16 GB memory at 2667
MHz (DDR4), while we use the same convergence tolerances for all the Newton-Raphson
iterations.

Fig. 3.8 illustrates the measured computational costs for the monolithic (circular sym-
bols), isothermal split (triangular symbols), and asynchronous isothermal split (square sym-
bols) solution schemes. As illustrated in Figs. 3.8(a) and 3.8(b), the observed CPU times
are inversely proportional to both the element size h. and the time step size At, indicating
that both the spatial and temporal refinements increase computational costs. In both two

cases, we observe that the monolithic scheme is the most computationally expensive ap-
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Figure 3.7: Evolution of 0y obtained from the asynchronous isothermal split solution
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Figure 3.8: Performance comparison between different time integration schemes. (a) CPU
time vs. 1/h,., and (b) CPU time vs. 1/At.

proach, while the isothermal split and asynchronous isothermal split schemes require ~ 72
% and ~ 60 % less CPU times, respectively, compared to the monolithic solver. This time
saving can be attributed to the reduced number of calculation afforded by the asynchronous
time steps. On the other hand, it can also be related to the larger system of equation and
the higher condition number of the tangential matrix of the monolithic solver. The results
highlight that our proposed asynchronous isothermal splitting scheme yields similar results

compared to the other two approaches, while being computationally more efficient.
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3.7.2 Interaction of two mechanically driven cracks

This numerical example investigates the effect of thermally non-equilibrated constituents
(i.e., LTNE) on the fracture pattern due to different growth rates of thermal boundary layers
compared to the one-temperature model that assumes LTE state. For the case where two
constituents are in LTE state, we replace Egs. (3.30) and (3.33) with Eq. (3.34) by adopting
an isothermal splitting scheme with a single time step, while two-temperature approach

adopts the proposed asynchronous isothermal operator split.

o
T —p;=0; 6, =100°C | T
0.0046 m 0.0054 m
0.0054 m 0.0046 m
y P =0; 5 =100°C

0.01 m

Figure 3.9: Schematic of geometry and boundary conditions for the tension test.

As illustrated in Fig. 3.9, the problem domain is 0.01 m wide and 0.01 m long square
plate with two 0.002 m long asymmetric horizontal edge notches, while we choose the
material properties similar to a oil-saturated rock which is summarized in Table 3.2. While
the initial temperatures are set to be 20°C (i.e., 6,,,0 = 20°C for the one-temperature model
and 04 = 09 = 20°C for the two-temperature model), we impose zero pore pressure and
fixed temperature boundary conditions at the top (i.e., 6,, = 100°C for the one-temperature
model and 6, = 100°C for the two-temperature model) and the bottom (i.e., 6,, = 100°C for
the one-temperature model and 6 ¢ = 100°C for the two-temperature model). Within this

setup, we conduct numerical experiments, where the crack growth from the pre-existing
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Table 3.2: Material parameters for the tension test.

Parameter Description [Unit] Value

Ps Intrinsic solid mass density [kg/m?] 2600.0

pr Intrinsic fluid mass density [kg/m?] 880.0

K, Bulk modulus of solid [Pa] 38.0 x 10?
Ky Bulk modulus of pore fluid [Pa] 1.3 x 10°
Cs Specific heat of solid [J/kg/K] 1.0 x 103
cr Specific heat of pore fluid [J/kg/K] 2.0 x 103
Ks Thermal conductivity of solid [W/m/K] 4.2

Kf Thermal conductivity of pore fluid [W/m/K] 0.15

Qg Linear thermal expansion coefficient of solid [1/K] 12.0 x 10~¢
A, Viscosity parameter [Pa-s] 8.6 x 107
B, Viscosity parameter [K] 2475.5

T ref Reference solid temperature [K] 293.15

E Elastic modulus of solid skeleton [Pa] 18.0 x 10?
v Poisson’s ratio of solid skeleton [-] 0.25

Emat Matrix permeability [m?] 2.5 x 10716
ol Reference porosity [-] 0.3

Qo ref Reference specific surface area [1/m] 20.0

. Heat transfer coefficient [W/m?-K] 4.7

Ge ref Reference critical energy release rate [N/m] 20.0

Qe Model parameter [-] 1.0

le Regularization length scale parameter [m] 0.45 x 1074

Fig. 3.10 illustrates the crack trajectories at t = 1.8 sec for both cases where the con-

m = 20 since prcrk,s/pscsky = 18.95.
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notches is mechanically driven, by prescribing vertical displacement at the top at a rate of
0.75 x 10~° m/s whereas the bottom part is held fixed during the simulation. The problem
domain is spatially discretized with a mesh which is refined along the potential crack path
with min (h.) = 1.5 x 107° m, while we use max (h.) = 2.0 x 10~ m near the external
boundaries. Hence, we choose At = 0.005 sec > max (At yp min, Atsmin) for both two cases

(i.e., LTE and LTNE), while the cycling period for the two-temperature model is set to be

stituents are in LTE and LTNE states. As shown in Fig. 3.11(a), two models exhibit a

different growth rates of thermal boundary layers, since the two-temperature model is capa-
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Figure 3.10: Snapshots of the phase fields obtained from the tension tests by using the
one-temperature (LTE) and two-temperature (LTNE) models at ¢t = 1.8 sec.
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Figure 3.11: (a) Distribution of the temperatures along the center axis of the specimen at
t = 1.5 sec, and (b) force-displacement curves from the tension tests.

ble of imposing separate temperature boundary conditions for each constituent. In specific,
the limitation of the LTE assumption yields the symmetric thermal boundary layer growth
of equilibrated temperature 6,,, that leads to symmetric crack growth, while the asymmet-
ric distributions of two temperatures in LTNE state tend to break the symmetry of crack
propagation from the notches and eventually coalescence toward each other, resulting in
different global responses shown in Fig. 3.11(b). In addition, as illustrated in Fig. 3.12,
due to the discrepancy between the peaks shown in Fig. 3.11(b), the LTE model tends to
exhibit higher negative pore pressure compared to the LTNE model at £ = 1.8 sec, even

though the LTE assumption may underestimate the temperature-dependent viscosity /..
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Figure 3.12: Snapshots of the pore pressure fields obtained from the tension tests obtained
from the one-temperature (LTE) and two-temperature (LTNE) models at ¢ = 1.8 sec.
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3.7.3 Interaction of two hydraulically induced cracks

This section simulates the interaction of two hydraulically induced cracks by injecting hot
fluid into pre-existing notches. As illustrated in Fig. 3.13(a), the 0.2 m x 0.1 m sized
rectangular domain possesses two 0.02 m long edge notches that are perpendicular to each
other with a distance of 0.01 m. The crack growth from the notches is triggered by injecting
hot water (é ¢ = 100°C) with a rate of A.5 into a cold water-saturated medium with initial
temperatures of 050 = 07y = 0°C. Here, the total area of the pre-existing notches is set to
be A. = 16 mm? while the applied fluid source varies with time, i.e., § = 5(t), as shown
in Fig. 3.13(b). This scenario is designed to capture both the hydraulic fracturing process
and the post-cracking behavior of the material. We first apply the fluid source at a constant
rate of § = 0.1 sec™! during the fracturing stage (¢ < 1 sec), and then smoothly reduce the
injection rate by applying § = 0.05+0.025/ (¢t —0.5) sec™! at the injecting stage (f > 1 sec).
During the simulation, all the external boundaries are held fixed and are subjected to zero
pore pressure and zero temperature boundary conditions, i.e., py = 0 and és = éf = 0°C,
while the chosen material parameters are summarized in Table 3.3.

Similar to Section 3.7.2, we compare the one- and two-temperature models within this
experimental setup. Since this example relies on a mesh that possesses min (h.) = 0.36

mm, we choose At = 0.01 sec > max (Atypmin, Atsmin) for both two models, i.e., LTE and
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Figure 3.13: (a) Schematic of geometry and boundary conditions for the injection problem,
and (b) applied fluid source along the pre-existing cracks.

LTNE, and we set the cycling period m = 10 for the two-temperature model as the chosen

material parameters yield: prcrks/pscsky = 10.88.
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Figure 3.14: Evolution of the phase field due to fluid injection obtained from the one-
temperature (LTE) and two-temperature (LTNE) models.

Fig. 3.14 shows the crack patterns at different time steps, obtained from both the LTE
and LTNE models, while corresponding pore pressure fields are shown in Fig. 3.15. The
crack growth simulated by both the one- and two-temperature models reach their final con-
figurations at ¢ ~ 1.4 sec as we reduce the injection rate after £ = 1 sec. As illustrated in
Fig. 3.16, for the case where two constituents are in LTNE state, the boundary layer of the
solid temperature grows at a much slower rate compared to the fluid temperature since the

heat transfer process is convection-dominant. On the other hand, the LTE model tends to
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Table 3.3: Material parameters for the injection problem.

Parameter Description [Unit] Value

Ps Intrinsic solid mass density [kg/m?] 2700.0

ps Intrinsic fluid mass density [kg/m?] 1000.0

K Bulk modulus of solid [Pa] 40.0 x 10°
Ky Bulk modulus of pore fluid [Pa] 2.1 x 10°
Cs Specific heat of solid [J/kg/K] 1.0 x 10°
cr Specific heat of pore fluid [J/kg/K] 4.2 x 10°
K Thermal conductivity of solid [W/m/K] 4.2

Kf Thermal conductivity of pore fluid [W/m/K] 0.6

Qg Linear thermal expansion coefficient of solid [1/K] 10.0 x 10~6
A, Viscosity parameter [Pa-s] 1.1 x10°¢
B, Viscosity parameter [K] 2005.3

T ref Reference solid temperature [K] 273.15

E Elastic modulus of solid skeleton [Pa] 25.0 x 10°
v Poisson’s ratio of solid skeleton [-] 0.3

Emat Matrix permeability [m?] 1.25 x 10716
ol Reference porosity [-] 0.2

Qo ref Reference specific surface area [1/m] 20.0

hom Heat transfer coefficient [W/m?-K] 4.7

Ge ref Reference critical energy release rate [N/m] 20.0

Qe Model parameter [-] 1.0

l. Regularization length scale parameter [m] 1.25 x 1073

convect heat similar to the LTNE model, while it overestimates the diffusivity due to the dif-
ference in the diffusion coefficients, resulting in different patterns of temperature evolution.
More importantly, Eq. (3.11) hints that the two-temperature model accumulates the effec-
tive strain energy ¢’ around the cracks at a higher rate compared to the one-temperature
model. The cracks therefore start to propagate at earlier time steps in LTNE state (Fig.

3.14), resulting in a faster rate of pore pressure dissipation (Fig. 3.15).

3.8 Conclusion

In this study, we present a phase field framework that captures the coupled thermo-hydro-

mechanical processes of brittle porous media and propose an asynchronous time integrator
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Figure 3.15: Pore pressure evolution due to the field injection obtained from the one-
temperature (LTE) and two-temperature (LTNE) models.
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Figure 3.16: Evolution of temperature fields due to the fluid injection obtained from the
one-temperature (LTE) and two-temperature (LTNE) models.
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to handle the diffusion process that spans different time scales. To the best of the authors’
knowledge, this is the first mathematical framework that captures the brittle fracture in
multi-phase fluid-infiltrating porous media where the constituents are in a local thermal
non-equilibrium state. By introducing a new effective medium theory that independently
homogenizes the constituent temperatures, we provide a theoretical basis for distinctive en-
ergy balance equations for each deformable constituent, while capturing the heat exchange
between the two thermally connected constituents. The two-temperature poromechanics

model presented in this work is a generalization of the one-temperature model in the sense
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that the results of the classical one-temperature model can be recovered by assuming that all
the constituents instantly reach a local thermal equilibrium. By explicitly modeling the heat
transfer of the two constituents, we bypass the need to homogenize the intrinsic specific heat
capacities and thermal conductivities of each constituent. This treatment simplifies the cali-
bration process, which is by no mean trivial for porous media where the motions of the fluid
and solid constituents do not coincide and the conductivity of the effective medium are not
necessarily isotropic. In addition, we propose a new time integration scheme that updates
the field variables in an asynchronous manner, for which we also suggest an estimated opti-
mal time step size and cycling period by adopting the discrete maximum and monotonicity
principles. The asynchronous time integrator greatly reduces the computational cost, while
being capable of reproducing physically consistent results with the synchronous counter-
part.

Note that a more precise and accuracy calculation of heat transfer will have a even more
profound effect on poromechanics problems with phase transitions of either/both the solid
and fluid constituents, such as the freeze-thaw action, crystallization induced damage and
injection of supercritical CO,. The proposed work may lay the groundwork for a more
precise predictions for those important problems without the necessity of additional cali-
brations of the thermal diffusivity of the effective medium. Another important future work
of this study is to simulate three dimensional cases. A major challenge for 3D simulations
of the phase field fracture in the non-equilibrium porous media is the computational effort.
Accurately representing the crack growth via phase field will require a sufficiently high
mesh resolution and small time step, which can be computationally demanding. At this
point we are considering a more efficient parallelism that involves GPGPU as well as adap-
tive finite element that involves proper way to project the driving force. Works in these

areas are currently in progress.
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Chapter 4: An immersed phase field fracture model for

microporomechanics with coupled Darcy—Stokes flow

This chapter is published as: H.S. Suh, W.C. Sun, An immersed phase field fracture model
for microporomechanics with Darcy—Stokes flow, Physics of Fluids, Volume 33, 2021,
doi.org/10.1063/5.0035602.

4.1 Introduction

Geomaterials such as carbonate rocks, sandstone or limestone often contain geometrical
features such as cracks, joints, vugs or cavities. When the defects are partially or fully
saturated with pore fluid, the geometry of the features may affect effective stiftness, per-
meability, water retention characteristics and drained or undrained shear strength of the
material [140, 244-246, 283—-285]. Furthermore, brittle fracture in materials that possess
geometrical features may lead to pore fluid in cavities migrate into the flow channels and
cause flow conduits that lead to often undesirable outcomes. Modeling geometrical features
in porous media are thus highly important and at the same time challenging subject for the
hydromechanically coupled analysis in geomechanics problems like hydrocarbon resources
recovery or development of enhanced geothermal energy reservoirs [286—292].

One possible modeling choice is to consider a fictitious effective medium at a scale
where representative elementary volume exists. In this case, the geometrical features of

the material are not explicitly modeled but the influences of the these geometrical fea-
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tures are incorporated in the constitutive relations by treating defects as a different pore
system that interacts with the matrix pores [293-296]. The upshot of the multi-porosity
and multi-permeability models is mainly the simple numerical treatment since there is no
need for complex meshing techniques or embedded strong discontinuities, and the compu-
tational efficiency compared to pore-scale models that require extremely large domain in
order to reproduce hydromechanical behavior at large scales [103, 297-302]. However, the
drawback of this approach is that the homogenized effective medium may not sufficiently
represent the microstructural details. This makes the identification of material parameters
more complicated since the effective permeability of multiple interacting systems are not
isotropic and the constitutive law for the fluid mass exchanges inherently depends on the
microstructure.

Another common alternative to model the interaction between the cavities and the crack
growth is to conduct simulations via a fracture network model [303-306]. However, the
obvious drawback is that the fracture in those models must either be straight line (in the
two-dimensional case) or a plane (in the three-dimensional case) and hence the geometrical
effect on the porous media can not be captured precisely.

In this research, we introduce a phase field framework that allows us to enable a uni-
fied treatment to simulate the evolving geometry of cracks and the cavities. By introduc-
ing the phase field as an unified representation of the void space that is not suitable to be
treated as as an effective medium, we introduce a framework that enables us to analyze
how crack propagation in vuggy porous media may affect the flow mechanism differently
than the porous media with pores well distributed in the host matrix. Our result indicates
that interaction between the propagating cracks of the cavities is important for capturing
the hydromechanical responses of the porous media and that existing effective medium ap-
proach which characterizes the pore space with a single hydraulic model such as cubic law
and Kozeny-Carmen model may not be sufficient to capture the cavity-crack-host-matrix

interactions.
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4.2 The model problem

We consider a fully saturated Biot-Stokes system (Fig. 4.1) that consists of two regions
(intact porous matrix Bp, and cracks or cavities Bg) separated by the sharp interface '™,
where we assume that the solid phase in B, forms a deformable porous matrix while solid
particles in B are in suspension. In this case, both the solid and fluid phases coexist in both
regions. By considering our material of interest as a multi-phase continuum, we utilize the
effective stress principle for the intact porous matrix where the fluid flow is modeled with
the Darcy’s law, while the motion of solid-fluid mixture is modeled by the Stokes equation
[307]. Two distinct regions are then coupled by properly imposing three transmissibility
conditions at the interface. The model problem with the sharp interface will be later on

extended into a diffuse Biot-Stokes model by introducing the phase field in Section 4.3.

0Bp

Bp

Solid-fluid mixture

e Liquefied solid
o Free fluid Bs

AT,

0Bs

Figure 4.1: Schematic representation of Biot-Stokes system that possesses sharp interface
.

4.2.1 Continuum representation

Although Biot-Stokes system only contains two immiscible solid and fluid phases, for math-
ematical convenience, we idealize the material of interest as a three-phase continuum where
each constituent [i.e., solid (s), pore fluid (fp), and free fluid (fs)] occupies a fraction of

volume at the same material point. By letting dV' = dV + dV; denote the representative
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elementary volume of the material, we define the volume fractions for the constituents as,

v

o a=1s/}, (4.1)

o =

where the index s refer to the solid phase and f indicates the fluid phase. Since the sharp
interface separates our system of interest into two regions, the volume fraction of the pore

and free fluids can be expressed as:

dV, dV,
F = (1= Hp )22 L g = s 4.2
~ - Y N——
;:¢fD ;:¢fs
where Hp- is the Heaviside function that satisfies,
0 in BD,
Hp« = 4.3)
1 n Bs.

In addition, by letting p, and p; denote the intrinsic mass densities of solid and fluid, respec-
tively, the partial mass densities for each constituent (p®, where o« = s, fp, fs) are given
by,

pri=0ps 5 pP = 0Tpp s pIS =0T s =t T P (44

where p is the mass density of the entire system. In this study, we assume that both the solid
and fluid phases are incompressible, so that intrinsic mass densities p, and p s are considered

as constants.

4.2.2 Governing equations

This section briefly reviews the balance principles, constitutive laws in the bulk volume of
a porous medium, the region where solid-fluid mixture flows freely, and the sharp interface

between two regions.
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Conservation laws for an intact porous matrix

For the region where the solid forms an intact porous matrix, we adopt the effective stress
principle [211, 308] so that the external loading imposed on the matrix is assumed to be
carried by both the solid skeleton and the pore fluid. In this case, the region B is governed

by the following system of equations [230, 231, 309]:

V'(a/—BprI)—l—pg:O il’l'BD7 (45)

1 )
Mpr +V-v, +V-ws, =0 inBp, (4.6)

where o is the effective stress, B = 1 — K /K is the Biot’s coefficient, M is the Biot’s
modulus, py, is the pore pressure, g is the gravitational acceleration, v, is the intrinsic
velocity of constituent «, and wy, = ¢/P (v, — v,) is the Eulerian relative flow vector of
the pore fluid (i.e., Darcy’s velocity). Here, we assume that B ~ 1and 1/M = 0 to simplify
the formulation. Note that the Biot’s coefficient of many sandstone and shale specimens
are often less than one, whereas it is more reasonable to assume Biot’s coefficient equal to
1 for granite (e.g.. Westerly granite) [177, 216, 310]. In either cases, the damage of the
solid skeleton may reduce the elastic bulk modulus of the solid skeleton. Therefore both
the Biot’s coefficient and modulus may evolve according to the solid deformation. This
nonlinear effect is not considered in this study but will be considered in the future. We also
assume that the behavior of intact matrix in B, is linear and isotropic elastic and hence only
two independent elastic modulii are needed to capture the elastic response. The constitutive

relation for the solid skeleton can therefore be written as follows:
oy = Atr(e)I + 2ue in Bp, 4.7)

where o, indicates the effective stress of the undamaged matrix. The actual and undam-

aged effective stress are related by a degradation function, which will later be discussed in
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Section 4.3.2. Furthermore, € = (V u, + Vul)/2 is the infinitesimal solid strain tensor
that depends on the solid displacement u,, and parameters A\ and p are the Lamé constants.
For the constitutive equation that describes laminar pore fluid flow in B, we use the gener-
alized Darcy’s law that linearly relates the relative velocity wy,, and pore pressure gradient
Vg, ie.,

k

Wy, = _,u_f(vpr - pfg) inBp, (4.8)

where /17 1s the dynamic viscosity of the pure fluid phase, and & is the effective permeability
of the porous matrix. Additionally, in order to incorporate the effect of deformation of the
matrix on the porous medium flow [311, 312], this study adopts the Kozeny-Carman equa-
tion to empirically capture the porosity-permeability relation [140, 313, 314]. Note that
the Kozeny-Carmen equation is often considered a rough approximation of the porosity-
permeability relation. A more precise predictions of permeability may requires new geo-
metrical attributes such as tortuosity [243, 244], formation factor [246, 315], and percola-
tion threshold [316]. This extension is out of the scope of this study but will be considered
in future work.

Recall Section 4.2.1 that ¢* + ¢/ = 1 in Bp. Then, by letting ¢ := ¢/ the porosity

of the matrix, the Kozeny-Carman equation reads,

o [ [ 8

7 [aser] mee @)

where kg and ¢, denote the reference permeability and porosity, respectively.

Conservation laws for solid-fluid mixture

This study attempts to model suspension flow in B, where mass and linear momentum bal-

ances for both solid and fluid phases should be satisfied. We therefore write the governing
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balance equations for By as,

V-o's + pfsg =0 in Bg, (4.10)
V-0° +p°g =0 in Bg, (4.11)
V-v, + V-wys, =0 in Bg, (4.12)

where o is the Cauchy stress tensor of « constituent, and the relative flow vector of the
free fluid can be defined as wy, = ¢/5 (v}, —v,). By assuming that the free fluid resides in
B with low Reynolds number (i.e., Re < 1), we adopt a simplified version of the Navier-
Stokes model, i.e., the Stokes equation. The Stokes model for the steady-state motion of an

incompressible fluid yields the following relationship for the free fluid stress tensor o/ as,

ols = _pst + /leff<v Vfs t+ VU}S) in Bs, (.13)

where py, is the free fluid pressure and i is the effective viscosity of the solid-fluid mix-

ture [317, 318], i.e.,

2.5¢
= ure ———— | inB 4.14
Heff = 1 f EXP (1 — C/Cmax) S5 (4.14)
where ¢ := 1 — ¢/s indicates the solid particle concentration, and ¢,y denotes its upper

bound. Again, notice that we introduce only one solid constituent for the entire system since
it is convenient for us to later on impose interface conditions and further adopt the phase
field fracture model that simulates evolving interface. This approach may not be suitable
for modeling complete suspension flow where v; = vy,. However, we assume that solid
particles in Bg follows the same constitutive relations as the free fluid in order to replicate

the suspension flow as close as possible, i.e.,

0° = —prd + per(Vvs + Vol) inBg. (4.15)
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Conservation laws for the sharp interface between intact matrix and solid-fluid

mixture

In order to properly model the interaction between the porous matrix (Bp) and the vugs
or cavities (Bg), complete mass conservation and force equilibrium for the entire system
should be satisfied. Since we have two different constituents for the same type of fluid
(fp and fs) while considering only one solid constituent (s), coupling two subsystems thus
requires the enforcement of fluid transmissibility conditions at the sharp interface I'* that
models the coupled Stokes-Darcy flow [319-323].

The first interface condition is the fluid continuity that ensures the mass conservation.
Since we assume that the fluid phase is incompressible, the interfacial fluid fuxes for each

subsystem (M7 and M7,_) can be expressed as follows:

M}D :/ wy, -np dl M}S :/ wy, -ng dl, (4.16)
T* h\,_/ T* h\,—/
::m;D ;:m;s

where 1}, and n§ denote the outward-oriented normal vectors from B and Bg, respec-
tively. From Eq. (4.16), mass continuity (M} + M}, = m} + mj, = 0) yields the

following transmissibility condition:

wy, Ny +wyp -ng = (wp, —wyp,) -n" =0 onl", (4.17)

where we take n* = ny = —n], for notational convenience (Fig. 4.1). Here, Eq. (4.16)
implies that the normal component of the fluid velocities (w ¢, and wy,,) should be identical
in order to guarantee that the exchange of fluid mass between Bg and B is conservative.

The second condition is the force equilibrium at the interface ['*. From each subsystem,
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total forces acting on the interface (37, and F,) may be written as,

}D - /F* pr'I’I,* ar 3:}5 - /* \Ufs "I’L*, dr’, (4.18)
':t* 'Zt;s
fp

where ¢} and ¢} indicate the tractions at the interface. The force equilibrium requires
1y +Fp, = t;, + 1}, = 0, implying that the normal and shear components should be

balanced at the same time. By decomposing the traction vectors as,

2

tr=(t n )"+ (& -mHm] ; i={fp. fs}, (4.19)

Jj=1

where m] and m; are the interfacial tangent vectors, we get two more transmissibility

conditions that describe normal and shear force equilibrium, respectively:

ti,-n" +pp, =0 onl", (4.20)

tfs-mj—i-,ufﬁ(wfs—wf]))-mj =0 onI™. (4.21)

Eq. (4.21) is the Beavers-Joseph-Saffman condition [320, 324-326]. This idealized condi-
tion relates the slip velocity and the shear stress through the dimensionless slippage coeffi-
cient augp, which depends on the microstructural attributes of the interfaces, such as surface
roughness, irregular patterns, as well as the flow velocity [324, 327, 328]. The validity and
limitations of the Beavers-Joseph-Saffman condition are documented in a number of litera-
ture such as Auriault [329], Mikelic and Jager [330], and Monchiet, Ly, and Grande [331]
and will not repeated here. Possible extensions of the interface conditions to turbulent and
multiphase flows are an active research area that is clearly out of the scope of this study but

will be considered in the future.
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4.3 The phase field Biot-Stokes model with evolving
fractures

This section introduces the mathematical model that uses smooth implicit function, i.e.,
the phase field, to approximate evolving sharp interfaces due to damage. We first review
the general procedure that employs an implicit function to approximate sharp interfaces
(Section 4.3.1) shown in Fig. 4.2. Since the phase field is a smooth representation of the
Heaviside function, we derive the corresponding mathematical model that approximates in-
terfacial transmissibility conditions suitable for the diffuse representation of the interface.
To capture crack growth according to the Griffith’s theory, we adopt the classical variational
fracture model to allow crack growth represented by the evolution of the phase field defined
over the spatial domain (Section 4.3.2). These techniques are then applied into the deriva-
tion shown in Section 4.3.3 in which a mathematical model to capture the hydromechanical
coupling of pore fluid flows in both the host matrix and evolving interfaces in brittle porous
media. The resultant model does not require locally defined enrichment function or remesh-

ing and can be implemented in a standard finite element or finite element/volume solver.

damaged

Figure 4.2: Diffuse representation of the interface where exemplary 1D domain consists of
Bginz/L € [0.4,0.6] sandwiched between undamaged porous matrix B p.
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4.3.1 Diffuse interface approximation

This study employs a diffuse approximation for the sharp interface I'* by introducing a
phase field variable d € [0, 1] which varies smoothly from 0 in B, to 1 in Bg. Specifically,
we approximate the interfacial area Ap- as Ar-, which can be expressed in terms of volume

integration of surface density functional I'}(d, V d) over B = Bp U Bg [76, 77, 132, 210]:

Aps = Ary = / (d,Vd)dv. (4.22)
B
Here, the size of diffusive zone [i.e., transition zone where d € (0, 1)] is controlled by the
regularization length scale parameter [* such that Ap+ I'-converge to Ar« [203], i.e.,

A[‘* = lim AF*. (423)

*—0

Based on this approach, phase field d and its gradient V d can be regarded as smooth ap-
proximations of the Heaviside function Hr+ and the Dirac delta function dr«, respectively
[292, 332]. Therefore, the volume integrals of an arbitrary function G over B p and Bg can

respectively be approximated as,

/ GM’l/Gl—HpﬁW_Jm,(ﬁ —d)dV =~ /@U—JMM (4.24)
B B

/ GdV = /GHF dV = lim/GddV /GddV (4.25)
Bs

*—0

Similarly, the surface integral of the function G along the sharp interface I'* can be approx-

imated as,

/éﬂ:/éwﬂhﬂm/ﬂVMWx/@WWMi (4.26)
T* T* 1*—0 B B
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and we also approximate the normal vector n* as,

vd
Nt - (4.27)
|V d|

4.3.2 Crack growth approximated by evolving phase field

For completeness, this section reviews the phase field model for brittle fracture. We con-

sider the following surface density functional, which is widely used in modeling brittle or

quasi-brittle fracture [75-77, 90, 210] that possesses quadratic local dissipation function:
> I

o=t (Vd-Va. (4.28)

(d,V d) =

At this point, we highlight that the evolution of the phase field (i.e., propagation of cavities
or cracks) is a mechanical process driven by the effective stress o’. In other words, we
assume that the solid skeleton is completely damaged in the liquefied zone Bg, whereas in
Bp, the solid skeleton remains undamaged. We thus omit the terms that are unrelated to
the deformation and fracture in this section. Having critical energy G. that is required to
create new free surfaces, potential energy density 1) reads,

Y =g(d)y] () + ¥ () +G.L5(d, V d), (4.29)

/

R

Youlk (€,d)

where Ypu (€, d) is the degrading elastic bulk energy and g(d) = (1—d)? is the degradation
function that induces energy dissipation. Following Amor, Marigo, and Maurini [130], we
adopt additive decomposition scheme that splits the elastic energy 1), into compressive (1, ),
and tensile and deviatoric (1)) modes, where we only degrade ¢ in order to avoid crack

propagation under compression [143, 170, 333], i.e.,

1 vo 2 cV eV
T 5K<5 DL A (™ e, (4.30)
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b = %K<5V01>2_, 4.31)

where K' = A + 2p/3 is the bulk modulus of the porous matrix, and (), = (e £ |e|)/2
is the Macaulay bracket operator. In this case, the effective stress tensor o’ can also be
decomposed as follows:

o' = g(d)o + oy, (4.32)

where oi" = 01 /Oe is the fictitious undamaged effective stress, in which we previously

assumed o to be linear elastic [Eq. (4.7)].
Based on the fundamental lemma of calculus of variations, the damage evolution equa-
tion can be obtained by seeking the stationary point where the functional derivative of

Eq. (4.29) with respect to d vanishes, i.e.,

oY oy
ad Y ava " (4.33)
where:
M G o O
8d—g(d)¢e+l*d,Van—SclVd. (4.34)

Here, the superposed prime denotes derivative with respect to d and V() = V-V (e) is
the Laplacian operator. Furthermore, by following the treatment used in Miehe, Hofacker,
and Welschinger [76], we introduce a history function J which is the pseudo-temporal max-

imum of the positive energy density (¢)") in order to ensure crack irreversibility constraint:
H = max ). (4.35)
T€[0,t]

By replacing ¢ in Eq. (4.34) with 3, Eq. (4.33) finally yields the following phase field

equation that governs the evolution of the interface:

g (d)H + %(d —1"V?%d) =0 in B. (4.36)
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Note that we can obtain the diffuse representation of the interface by solving Eq. (4.36), as
shown in Fig. 4.2.

In this study, we leverage the phase field not only as an indicator function for the lo-
cation of cracks but also for other defects such as cavities or geometrically complicated
voids that does not fit for computational homogenization. This approach may efficiently
couple the Stokes flow inside the vugs (‘Bg) that interact with pore fluid in the intact porous
matrix (Bp) while both regions are evolving due to the crack growth. A major advantage
of this work is that free flow inside the fracture is explicitly replicated and hence there is
no need to introduce permeability enhancement models (e.g., cubic law) [334-336]. This
explicit treatment enables the simulations to remain physical even in the situations (e.g.,
high Reynolds number, rough surface, aperture variation) where the validity of the cubic
law is questioned [88, 138, 140, 163, 242, 291, 334, 337].

Verification and experimental validation of the phase field fracture model for brittle
solid has been well documented in the literature. For brevity, similar studies are not pro-
vided in this paper. Interested readers may refer to, for instance, such as Nguyen et al. [338]

and Pham, Ravi-Chandar, and Landis [339].

4.3.3 Variational formulation of the phase field Biot-Stokes model

We present a immersed phase field Biot-Stokes model designed to simulate the coupled
hydro-mechanical behaviors of flow of vuggy porous media with evolving fractures in the
brittle regime. This section omits the gravitational effects for brevity (i.e., g = 0).

The model problem with the sharp interface (Section 4.2) in which the system possesses
two distinct boundaries 9B, and 0Bg that can both be decomposed into Dirichlet (0BY,,

0BY,, 0BY and 0BY) and Neumann (0B, 0BY,, 0B and 0BY) boundaries satisfying,

OBp = 0BYE UOBL = 0BL UOBYL ; 0= 0BYL NIBL, = 9BL NaBYL,  (437)

0Bs = 0BY UOBL = 0BLUOBL ; ) =0BYNOB, =9BLNIBL,  (4.38)
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where the union of Bg and B, is B and the boundary domain follows the same treatment.
Here we capture the transition of the constitutive responses of the solid constituent in the
intact and liquefied states through a partition of unity argument in the local constitutive
responses. As such, we adopt only one solid constituent and the balance of linear momen-
tum equations in the sub-domains B, and B [Eqs (4.5) and (4.11)] are combined into one
set of equations over the domains B. The governing equations for the model problem are

summarized as follows:

(

(1—d)[V-(o' —ps, )] +d(V-0°) =0 in B, (4.39)
V-vs +V-w;s, =0 in Bp, (4.40)

V-o/5 4 plsg =0 in Bg, (4.41)

V-vs + V-wys, =0 in Bg, (4.42)

g (d)FH + %(d —1"*V?%d) =0 in B, (4.43)

(wy, —wy,)-n" =0 onl™, (4.44)

ty.-n"+psp, =0onl", (4.45)

ty, -m;f—l—uf%(wfs —wy,) -m; =0 onl", (4.46)

\

where the natural and essential boundary conditions are not included for brevity. Follow-
ing the standard weighted residual procedure, we multiply Egs. (4.39)-(4.43) with proper
weight functions (1, {¢,,, Ns4, {fs and (), and integrating over their corresponding domain.

The resultant weighted-residual statement reads [321, 332],

/Vnsz(cr'—prI)(l—d)dV+/Vns:a’sddV—/ Ns-tpdl =0, (4.47)
B B o

Bb

ng (v 115) dV — / vng Wy dv

BD BD
— ngdD dl’ + / ng ’lUfD . (—n*) dl' = 0, (448)
68% T* D e —
:m’}D
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vnfs:adeV—LBgnfs-isdr—/r*nfs- o’s . n* dl =0, (4.49)

fs

Bs

£fS(V ug) dV + ffS(V‘ 'wfs) av =0, (4.50)

Bs

/g{ %+—d] dv+/vg-9cz*vczdvzo, (4.51)
B

where £ and G is the prescribed traction and flux at the porous matrix, respectively; and
ts is the fluid traction. Then, we directly impose the interfacial transmissibility conditions
[Egs. (4.44)-(4.46)] into the field equations Egs. (4.48) and (4.50). Due to the fluid mass

continuity (i.e., m}, +mj_ = 0), the fourth term on the left hand side of Eq. (4.48) becomes:
/ é’fD'wa ) (_n*) dl' = — ngwfs -n*dl, (4.52)
I r=

while normal and shear force equilibrium (i.e., £3, + ¢}, = 0) can be imposed at the third

term on the left hand side of Eq. (4.49), i.e.,

—/ N - o' - dl
F*

2
* «Q * *
= / N¢s - (pppym™) dl + Z/ Mg * [ufﬂ(wfs —wy,) -mi|m;dl.  (4.53)
I = Jr Vk

Finally, we apply Eqgs. (4.24)-(4.27) in order to convert subdomain integrals (Bp and Byg)
into integral over the entire domain (B), and to also transform the interface equations
[Egs. (4.52)-(4.53)] into a set of immersed boundary conditions. As a result, we get the

weak statements for a phase field Biot-Stokes model, which s to: find {ug, ps,, wyg, prs, d}

such that for all {n,, &, n¢s, &g, C

G'=G)H=G¢=G,=G"=0, (4.54)
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where:

Gu:/V’nS:(U'—prI)(l—d)dV+/VnS:a’sddV—/ N, - tp dl, (4.55)
B B oBt

D

GIZ):/Bng(v'usxl_d)dv_/iav€fD'wa(l_d) dv

+ / pp(wyg - Vd)dV — rpqp dl, (4.56)
B

a8,

gv):/vnfsZUdedV—/BT]fS'(prVd)dV
B P

2
DS [ s 2 g, = ) v v @57)
—/ Ny - tsdl,
B,
G% :/ngs(v.us)ddv+/Bgfs(v.wfs)ddv, (4.58)
Gd:/BC [g’(d)f}fjt%d] dV+/BVC-9J*VddV. (4.59)

Here, as pointed out in Stoter et al. [332], the ['-convergence ensures that the immersed
boundary conditions imposed in Eqgs. (4.56)-(4.57) are consistent with the interface condi-
tions [Egs. (4.44)-(4.46)] if [* — 0, which in turn confirms the mass conservation and force

equilibrium for the entire system B.

4.4 Numerical examples

This section highlights the capacities of the immersed phase field model to capture the
hydromechanical interactions among the pore fluid in the cavities, cracks and the homoge-
nized pore space and the host matrix in two numerical experiments. Our focus is on mod-
eling the problems that involve the mechanically-driven pore fluid migration due to defor-
mation and crack growth inside the solid skeleton. The first example simulates the con-
solidation process of the porous material that contains a semi-circular cavity at the bottom

that serves as a pore fluid outlet, while the second problem showcases the fracture-induced
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Stokes-Darcy flow in vuggy porous medium.

In order to solve Egs. (4.55)-(4.59) numerically, we adopt standard finite element
method where the solution procedure is based on the operator-split [76, 210, 260] that suc-
cessively updates the field variables. In other words, the phase field d is updated first by
solving G¢ = 0, while all other field variables are held fixed, and the solver then advances
the remaining variables by solving {G*, G¥,, G¥,G%}T = 0. The implementation of our
proposed model including finite element discretization and the solution scheme relies on
the finite element package FEniCS [147, 148, 340]. It is noted that there exists multiple dif-
ferent strategies to solve the same system of equations. Since the exploration of different
solution schemes are out of the scope of this study, we omit the details for the implementa-

tion for brevity.

4.4.1 Consolidation of porous matrix with a semi-circular cavity

We first simulate a consolidation problem, which has always been one of the key problems in
geotechnical engineering. While classical consolidation problem considers time-dependent
water expulsion from the homogeneous porous material, as illustrated in Fig. 4.3, this nu-
merical example explores the case where the system includes a cavity at the bottom that
serves as a pore fluid outlet. This specific setting is designed to simulate mechanically
driven Stokes-Darcy flow without significant changes in microstructural attributes.

The problem domain is a water-saturated 1 m x 2 m sized rectangular porous matrix
(B p) that contains a semi-circular cavity (Bg) whose diameter is 0.2 m. We prescribe a 1
kPa compressive mechanical traction at the top, while zero pressure boundary is imposed
at the bottom of the cavity so that the time-dependent dissipation of pore pressure can be
observed. The material parameters for this example are chosen as follows. Intrinsic mass
densities for the solid and fluid: p; = 2700 kg/m? and p; = 1000 kg/m?; Young’s modulus
and Poisson’s ratio of the solid skeleton: £ = 100 MPa and v = 0.25; initial permeability

and initial porosity of the matrix: ky = 1.0 x 1078 m? and ¢y = 0.4; dynamic viscosity
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Figure 4.3: Schematic of geometry and boundary conditions for the consolidation problem.

of the fluid phase: 11y = 1.0 x 1073 Pa-sec; slippage coefficient asp = 0; and regulariza-
tion length for the interface [* = 0.002 m. Furthermore, we assume that solid constituent
remains intact in B throughout the simulation while free fluid inside the cavity has zero
particle concentration (i.e., ¢ = 0).

Fig. 4.4 shows the spatial distributions for the prime variables at t = 1.0 x 1073
sec. Here, we compute fluid pressure and relative fluid velocity for the entire system as:
pr = (1—d)ps, +dpss and wy = (1 — d)wy, + dwy,, respectively, since we have sepa-
rate degrees of freedoms for pore and free fluids residing in each regions B and Bg. The
results imply that applied mechanical load £, at t = 0 builds up the pore pressure which
in turn affects the pore fluid to migrate towards the cavity. Furthermore, free fluid inside
the cavity tends to exhibit higher velocity and lower pressure compared to those of pore
fluid, because of different constitutive relations (i.e., Stokes equation and Darcy’s law) in
each region. As illustrated in Fig. 4.5, we also investigate the time-dependent response of

the system that clearly describes the consolidation process and at the same time highlights
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Figure 4.4: Spatial distributions of the (a) phase field d; (b) solid displacement ||us|| [m];
(c) fluid pressure p; = (1 — d)py, + dpy, [Pa]; and (d) relative fluid velocity ||w;|| =
(1 = d)wy, + dwy,]|| [m/s],att =1.0 x 1073

the continuous pressure and velocity fields along y-axis (i.e., from the center point of the
cavity to the top-central point of the external boundary). At ¢ = 0, the entire load is taken
by the incompressible pore water which triggers the fluid flow inside the medium. This
fluid flow is accompanied by a dissipation of pore pressure over time and an increase in
the compression of the entire system, which is consistent with previous studies on homo-
geneous materials [275, 309, 341, 342]. In addition, the continuous pressure and velocity
profiles imply that our model is capable of imposing mass continuity and force equilibrium
at the interface as a set of immersed boundary conditions, which confirms the validity of

the model.

4.4.2 Comparison studies on fracture-induced flow in vuggy porous

media

In the second set of experiment, we conduct numerical simulations within two different
types of domains that possess horizontal edge crack (Fig. 4.6): one explicitly captures the

geometry of the large cavities in the porous media; another one captures the influence of
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the cavities by increasing the porosity of the homogenized effective medium. While the
former approach adopt a more explicit representation of the pore geometry and hence may
provide more detailed information on the interactions between the vugs and the propagating
cracks, the latter approach could be numerically more efficient. Our objective is to demon-
strate, quantitatively, the difference of the two approaches such that a fuller picture on the

trade-off between computational efficiency, accuracy and precision of the predictions ca be

established.
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Figure 4.6: Schematic of geometry and boundary conditions for the fracture problem. (a)
The domain with explicitly modeled cavities; and (b) its homogenized counterpart.

Modeling vuggy porous media

As illustrated in Fig. 4.6(a), we first consider a domain that consists of porous matrix with
explicitly modeled cavities. Our first representation consists of total nine cavities with
different major and minor radii (Table 4.1) that share the same aspect ratio of 2:1 and are
tilted by 45°, such that the volume fraction of the cavities 6,, is 0.056. Here, we assume
that the solid skeleton inside the cavities are completely damaged (i.e., d = 1), while the
porous matrix initially remains completely undamaged (i.e., d = 0). The material properties
for this case is chosen as follows: p, = 2700 kg/m®, p; = 1000 kg/m®, E = 20 GPa,
v =02,k =10x10""?m? u; = 1.0 x 1072 Pa-sec, agp = 0.1, §. = 20 J/m?, and
[* = 0.125 x 1072 m. In addition, the initial particle concentration is chosen as ¢y = 0.6 and
its upper bound as ¢.x = 0.7, in order to mimic the mudflow inside the cracks or cavities
[343, 344].

In contrast, our second domain in Fig. 4.6(b) is a homogenized representation of Fig.
4.6(a), where all the cavities are considered as a part of matrix pores. In this case, the

porosity of the homogenized medium is determined as: ¢nom = (1 — Ocay) Po + Oeay = 0.433.
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Table 4.1: The major and minor radii [mm] of the explicitly modeled elliptical cavities in
Fig. 4.6(a).

Index 1 2 3 4 5 6 7 8 9
Major radius 7, 0.400 0.600 0.500 0.500 0.820 0.800 0.580 0.700 0.650
Minor radius 7 0.200 0300 0.250 0.250 0.410 0.400 0.290 0.350 0.325

It is noted the correct homogenized effective properties often depend on the geometry of the
vugs or inclusions, which can be determined from computed tomographic images or directly
obtained from the experiment [ 102, 243, 244, 345]. Since the micro-structural attributes are
not always available, this study adopts an alternative approach where the effective material
properties are determined by using the equivalent inclusion method [346—-348]. Following
Ramakrishnan and Arunachalam [348] and by assuming that the matrix shares the same
material properties of those chosen for Fig. 4.6(a), the effective bulk modulus (K}op,) and

shear modulus (pnom) for the homogenized representation [Fig. 4.6(b)] are determined as

follows:
K(l - ecav)z (1 - ecav)
hom = 7= 141, ,  » Mhom = T 1119, , (4.60)
L+ 5055 20) = 1+ 11(1—}—1/ Ocav’

so that the effective Young’s modulus Ey,, = 16.50 GPa and Poisson’s ratio v, = 0.206.
Assuming that the inclusion permeability is much higher than the matrix permeability, we
approximate the effective permeability (kpom) by following Markov et al. [349] which is

obtained based on the Maxwell’s formula, i.e.,

T+ 20cay _
Knom = W =1.18 x 1072 [m?]. (4.61)

In addition, since all the cavities in Fig. 4.6(a) are completely isolated, we adopt the fol-
lowing effective critical energy G.nom proposed by Jelitto and Schneider [350] for the ho-
mogenized representation, which depends on the volume fraction of the cavities, i.e.,

Senom = Ge(1 — 623) = 17.07 [J/m?]. (4.62)

cav
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Mechanically driven fracture-induced flow

As illustrated in Fig. 4.6, we conduct two different types of simulations within each domain:
the tension tests with prescribed vertical displacement rate of 0.01 x 10~3 m/s, and the shear
tests with horizontal displacement rate of 0.01 x 10~3 m/s. In both tension and shear tests,
the displacements are prescribed at the upper boundary, whereas the bottom part of the
domain is held fixed. We also impose hydraulically insulated boundary conditions for the
left and right boundaries while we permit water intake from the upper and lower boundaries

by imposing py, = 0.

Explicitly modeled cavities Homogenized
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Figure 4.7: Evolution of the phase field of the specimens subjected to the numerical tension
and shear tests.

Fig. 4.7 illustrates the evolution of the phase field for both tension and shear tests in a
computational domain where the cavities are explicitly modeled, compared with the crack
trajectories obtained from the homogenized domain. The domain without cavities exhibits
the crack patterns that are similar to the results of previous studies on homogeneous solids
[76, 77, 90, 210], while the domain with explicitly modeled cavities exhibit distinct crack
patterns. More importantly, Fig. 4.8 and Fig. 4.9 reveals that neglecting the interaction
between the cavity and crack in the homogenized model may lead to over-simplified global
responses that lacks the distinctive characteristics of the cavity-crack coalescence.

During the numerical experiments, the porous matrix initially undergoes linear elas-
tic deformation until the crack nucleation takes place. At this point, since tensile loading

directly influences the volume change of the material, both specimens under tensile load
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exhibit higher fluid influx at the top, compared to those measured from the shear tests. Af-
ter the first peaks shown in Fig. 4.8(a) and Fig. 4.8(b), cracks start to initiate from the tips
of the pre-existing flaw since they experience higher stress concentration compared to the
matrix-cavity interface.

In both tensile and shear experiments performed on the vuggy specimen, the crack nu-
cleation increases the surface influx rate at the permeable boundaries as pore fluid starts to
leak from the intact matrix to the damaged regions regardless of the spatial homogenization.
The two numerical specimens, nevertheless, begin to behave differently when the cracks
propagate towards the adjacent vugs and coalesce with each other in both tension and shear
tests in the vuggy specimen (Fig. 4.7) [292, 351]. These changes in surface influx cannot
be replicated in the homogenized porous specimen as the homogenization takes away the
possibility of simulating the coalescence between the cavity and the crack.

After the coalescence of the cavity and the crack in the vuggy specimen, the reaction
force in both cases increases again with lower influx rates until it reaches the second peak
(i.e., where crack nucleation takes place at the matrix-cavity interface), and the crack even-
tually reaches both end of the specimens. This result implies that the existence of vugs or
cavities has a profound impact on the material behavior that cannot be easily replicated in
the homogenized effective medium. Consequently, either a more effective macroscopic the-
ory or a suitable multiscale technique is needed to incorporate the cavity-crack interaction
into the predictions.

Fig. 4.10 illustrates the pressure (ps) and x-directional velocity (wy,) fields from a
domain with explicitly modeled cavities under tensile and shear loadings, at ¢ = 0.476
sec and ¢t = 1.012 sec, respectively, where cracks start to propagate from the cavities.
Here, the superimposed arrows in Fig. 4.10 indicate the direction of the velocity vector
wy = (1 — d)wy, + dwy,. In both cases, the leakage of pore fluid takes place towards
the interconnected cracks and cavities at the middle, while free fluid in B¢ tends to migrate

towards the center, the region where large crack opening displacement occurs. However,
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Figure 4.9: Fluid influx at the top surface over time measured from (a) tension and (b) shear
tests.

it is worthy to note that the fluid flow occurs from the region that has negative pressure
to the damaged zone where p;, ~ 0. Unlike previous studies that use the cubic law to
predict the hydraulic responses of the flow conduit [139, 140, 242, 291], the pore pressure
distribution inside the void space is governed by the Stokes equation directly. This set of
numerical experiments again highlight that our proposed model is capable of simulating
fracture-cavity interaction with evolving interface, which may not be easily captured either

by using hydraulic phase field fracture models or by adopting classical Biot-Stokes model
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with sharp interface.

To assess the computational efficiency of the proposed model, we record the CPU time
for both simulations. A laptop with a Intel Core 19-9880H Processor CPU with 16 GB mem-
ory at 2667MHz (DDR4) is used to run both simulation on a single core. Both simulations
are solved by the same Scalable Nonlinear Equation Solver (SNES) available in FEniCS. In
the case where vuggy pores are explicitly modeled, the time taken to assemble the system
of equation is 1.13 second and the averaged time taken to advance one time step with (on
average) 5 Newton-Raphson iteration is 35.69 seconds. Meanwhile, in the homogenized
case, it takes 1.17 second to assemble the system of equation and 33.34 seconds to advance
one time step with also (on average) 5 Newton-Raphson iteration. In general, simulations
with the explicitly captured vuggy pores require about 7% more CPU time to run the same
simulation.

Future work may consider flow with higher Reynold’s number suitable for the Navier-
Stokes equation in the fluid domain. Such an extension is nevertheless out of the scope of

the current study.

4.5 Conclusion

This article presents a new immersed phase field model that captures the hydro-mechanical
coupling mechanisms in vuggy porous media where brittle cracks filled with water may
coalescence with pores that trigger both redistribution of flow and macroscopic softening
that cannot be captured without the Stokes-Darcy flow. By generalizing the phase field as
an indicator of defects, we introduce a simple and unified treatment to handle the evolving
geometries due to crack growths and the resultant changes of constitutive responses with-
out the need of re-meshing or introduction of enrichment functions. By directly simulating
the flow inside the cracks, we bypass the need of introducing phenomenological perme-

ability enhancement model to replicate the flow conduit. This explicit approach can be
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Figure 4.10: Snapshots of the pressure py = (1 —d)py, + dpy, [Pa] and velocity w s, [m/s]
fields obtained from the tension (¢ = 0.476 sec) and shear (t = 1.012 sec) tests.

advantageous over the embedded discontinuity approach when there is a substantial crack
opening and a flow near the locations with void-crack interaction where a homogenized
pore pressure jump would not be sufficient to capture the pattern of the pore pressure field
in the defects. Future work may include the extension of the proposed model to three-
dimensional cases as well as extending the Stokes-Darcy flow model for the generalized

Navier-Stokes-Darcy flow for injection and other problems with higher Reynolds numbers.
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Chapter 5: Phase field model for cohesive fracture in

higher-order continua

This chapter is published as: H.S. Suh, W.C. Sun, D. O’Connor, A phase field model for
cohesive fracture in micropolar continua, Computer Methods in Applied Mechanics and

Engineering, Volume 369, 2020, doi.org/10.1016/j.cma.2020.113181.

5.1 Introduction

The size effect and the corresponding length scale parameter associated with the phase field
fracture model for brittle or quasi-brittle materials have been a subject of intensive research
in recent years [75, 88, 90, 140, 207, 351-356]. Due to the fact that the phase field approach
employ regularized (smoothed) implicit function to represent sharp interface, the physical
interpretation of the length scale parameter (and in some cases, the lack thereof) has become
a hotly debated topic among the computational fracture mechanics community. The lack of
consensus on the definition of length scale has also been sometimes perceived as a weakness,
especially when compared with the embedded discontinuity approaches such as XFEM or
assumed strain models [296, 337, 357-359].

The early attempt to justify the introduction of the length scale parameter for phase field
fracture models can be tracked back to the first variational fracture model in Francfort and
Marigo [207] where the variational fracture model is expected to exhibit I'—convergence

and therefore may converge to the sharp interface model as the mesh size and the length
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scale parameter approaches zero. While this line of work (e.g., Bourdin, Francfort, and
Marigo [75] and May, Vignollet, and De Borst [360]) provides a theoretical justification,
in practice, the length scale parameter must still be sufficiently large compared to the mesh
size in order to solve the phase field governing equation. This could be problematic if the
simulations are designed for boundary value problems at the large scales (e.g., hydraulic
fracture, faulting of geological formation) where the small mesh size, even concentrated at
a local regions, become impractical.

One strategy to overcome this issue is to decouple or eliminate the effect of the length
scale parameters on the constitutive responses such that a relatively large length scale pa-
rameter can be used for numerical purposes without compromising the accuracy of the
constitutive responses. To derive a phase field fracture model that exhibits macroscopic re-
sponses independent or at least not sensitive to the length scale parameters, Wu and Nguyen
[354] and Geelen et al. [209] both introduce new crack surface density functionals and the
corresponding degradation function derived from cohesive zone models such that the un-
derlying traction-separation law is independent of the length scale parameter. Their sim-
ulations have shown that the resultant fracture patterns and the macroscopic constitutive
responses are both insensitive to the length scale parameters in the sub-critical regime.

Another strategy to circumvent the length scale issue is to determine the underlying
relationship among the length scale parameters and other material parameters (e.g., Young’s
modulus, tensile strength) that can be obtained from a specific set of experimental tests [ 168,
338, 339]. However, these previous works also show that the analytical expression of the
length scale parameter may vary in according to the chosen inverse problems and hence the
length scale parameter is likely only valid for backward calibration for a specific problem
but cannot be used for general-purposed forward predictions. Furthermore, identifying the
correct length scale parameter for a given inverse problem does not imply that such a length
scale parameter is sufficiently large to ensure the solvability of the discretized governing

equation(s).
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Nevertheless, one key aspect that is often overlooked in the phase field fracture model-
ing is that materials with internal structures that enables size effects on damage and frac-
ture may likely exhibit size effect in the elastic regimes. Examples of these materials include
concrete, composite, particulate materials as well as some metamaterials [361-365]. Since
these materials exhibit large internal length scales compared to the length scale of damage
or fracture, suitable size effect must be carefully incorporated in both the elastic and path-
dependent regimes to capture the size-dependence properly. This paper is the first attempt
to formulate a new cohesive micropolar phase field fracture theory that leads to a physically
justified/identifiable size-dependent effect for both the path-independent elastic responses
and the path-dependent damage and fracture in a higher-order continuum undergoing in-
finitesimal deformation. By extending the length-scale-parameter insensitive formulation
that approximates cohesive-type of response to the micropolar materials, we introduce a
third strategy where one may employ sufficiently large phase field length scale parameters
to address the numerical needs without comprising the correct size effect that should exhibit
in the numerical simulations. In order words, the resultant model is the best of both worlds,
one that benefits from the physical justification of having a consistent size effect in both
the elastic and damage regimes and yet retains the convenience of the approach in Wu and
Nguyen [354], Geelen et al. [209], and Wu, Mandal, and Nguyen [366].

The rest of the chapter is organized as follows. We first briefly summarize the theory
of micropolar elasticity, and introduce the strain energy split approach that enables one
to explore the effects of the partitioned energy densities. We then extend the regularized
length-scale-insensitive phase field formulation to the micropolar material models such that
the length scale parameter for the phase field is insensitive to the macroscopic responses.
This treatment then enables us to replicate the size effect characterized by the higher-order
material parameters (e.g., bending and torsion stiffnesses) that can be experimentally sought.
Furthermore, by enforcing the macroscopic responses not sensitive to the phase field length

scale parameter, it enables us to conduct simulations in a spatial domain without the size
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constraint imposed by the ratio between the phase field length scale and mesh. For com-
pleteness, the details of the finite element discretization and operator-split solution scheme
are discussed. Numerical examples are given to verify the implementation, provide evi-
dences on how micropolarity affects the macroscopic behaviors for quasi-brittle materials,

and showcase the applicability of the proposed models.

5.2 Theory of micropolar elasticity

In this section, we briefly summarize the kinematic and constitutive relations of an isotropic
micropolar elastic materials undergoing infinitesimal deformation. In this case, the kinemat-
ics of micropolar materials is characterized by both the displacement field and the micro-
rotations. The resultant strain tensor is no longer symmetric due to the higher-order kinemat-
ics. We thus decompose the strain tensor into symmetric and skew-symmetric parts, which
consequently enables us to split the stored energy density into three different parts. This
energy split approach opens the door for us to explore the effects of distinct degradation of

partitioned energy conjugated pairs, which will be discussed later in this study.

5.2.1 Kinematics

Let us consider a micropolar elastic body B C R? with material points P identified by the
position vectors € B that undergoes infinitesimal deformation. As illustrated in Fig. 5.1,
unlike the classical non-polar (Boltzmann) approach, each material point experiences micro-
rotation 6(x, t), in addition to the translational displacement w(x, t) at time t. The micro-
rotation represents the local rotation of the material point &, which is independent of the
displacement field. Consequently, the rotational part of the polar decomposition of the

displacement gradient (i.e., macro-rotation) is also independent of the micro-rotation. The
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micropolar strain € and micro-curvature K can be defined as follows [367-372]:

3
u' - E-0, (5.1)

L]

-V
~ Ve, (5.2)

X

33
where E = F;;;, is the Levi-Civita permutation tensor. The definition of micropolar strain

in Eq. (5.1) implies that the normal strains (i.e., diagonal entries of the micropolar strain
tensor) that contributes to the stretching are equivalent to those in the classical approach,
whereas the shear strains (i.e., off-diagonal entries of the micropolar strain tensor) are depen-
dent on the micro-rotation. Since the micropolar strain tensor is non-symmetric, we there-
fore decompose the micropolar strain tensor into symmetric (€%™) and skew-symmetric

parts (£5V), i.e.,

(VJ—V@—%ﬂ. (5.3)
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Notice that €™ is equivalent to the Boltzmann strain tensor in classical non-polar approach.
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Figure 5.1: Kinematics of a micropolar continuum.

5.2.2 Constitutive model and strain energy split

To ensure stable elastic responses, the micropolar strain energy must fulfill strong elliptic-

ity condition. To fulfill this requirement, we consider a micropolar strain energy density
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(€, k) that takes a quadratic form:
k:D:KR. (5.4)

Here, C and ID are constitutive moduli that possess the major symmetry (i.e., C = Cjji; =

Cklij: and D = Dz‘jkl = Dklz‘j)i
C=XAIRD)+(p+r)I+ul; D=a(II)+BL+41, (5.5)

where A, u, K, a, (3, and v are the material constants. The strong ellipticity of the strain
energy density defined in Eq. (5.4) implies that the following inequalities must be hold
[370, 373, 374]:

3AN+2u+k>0; 2u4+k>0; K>0;
(5.6)

3a+B+v=>0; ~+p5=>0; v—-p2=>0.

These material constants, including the size-dependent ones are related to the following

material parameters that have been individually identified via experiments [371, 375, 376]:

( 2 2
E = (Rp A+ r) (3A+ 2 + £) Young’s modulus,
2 N+ 2u+ K
2
G = ﬂ; " shear modulus,
A
V= —-— Poisson’s ratio,
2 N+ 2u+ K
¢ = characteristic length in torsion, 5.7
l B+ h istic length . 5.7)
2u+ K
¥ - . .
ly=, ] ——— characteristic length in bending,
"=\ 2@u+ ) 8 8
B+~ :
= olar ratio,
X= o +B8+7 P
K
N=,/—— coupling number, N € |0, 1].
\ ”2W+n) pling [0,1]
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The relations in Eq. (5.7) indicates that the size-dependence of the elasticity responses are
related to the higher-order kinematics and kinetic. Although identification of the material
parameters that characterize the size effect remains challenging as demonstrated in Bigoni
and Drugan [377] and Neff, Jeong, and Fischle [378], these micropolar material parameters
are obtainable through well-documented inverse problems or analytical solutions, at least
for a subset of micropolar materials such as porous media [377]. This unambiguity is helpful
for practical purposes.

In Eq. (5.7), the characteristic lengths /; and [, imply the nonlocal nature of micropolar
material by quantifying the range of couple stress through their relationship to the micro-
curvature. The coupling number /V, on the other hand, quantifies the level of shear stress
asymmetry that represents the degree of micropolarity of the material, e.g., N = 0 cor-
responds to the classical elasticity while N = 1 corresponds to the couple-stress theory
[379-381]. In the remainder of this paper, unless specified, we set N = 0.5 for micropolar
continuum simulations.

Since this study aims to develop a framework that explores the interaction between size-
dependent micropolar elasticity and fracture mechanisms, we split the strain energy density
into three different parts [based on the decomposition of the micropolar strain, cf. Eq. (5.3)]:
(1) the Boltzmann part 1)Z (£5¥™); (2) the micro-continuum coupling part 1/ (£%%°%); and (3)

the pure micro-rotational part '*(%), i.e.,

Ve(€,R) = Y2 (V™) + S (%) + ¢ F(R), (5.8)

where the partitioned strain energy densities can be written as:

WB(evm) — % ™ I) 4 (2u+ 1) €™ : &™) (5.9)
¢66'<éskew> — %IiESkew . éSkeW, (510)
Q/Jf(l%):%[a(f?;:[)?—l—ﬁk:k + kR (5.11)

145



The force stress o can be found by taking partial derivative of the energy density with
respect to the micropolar strain. By using Eq. (5.3), the force stress can also be partitioned
into ¥ and 6, which are the results of the pure non-polar deformation and the micro-

continuum coupling effects, respectively:

= _ 81/% _ 9 B Cy _ =sym —sym —skew
o= = ae_(z/ze + ;) —\)\(e .I)I—i(2u—|—/<o)€ +li_ic . (5.12)

=

Similarly, the couple stress m* that is caused by the pure micro-rotation can be obtained

as follows:

R
mR ad} awe —

OR OR

alk: DI + BR" + k. (5.13)
Based on the split approach, notice that the partitioned energy densities in Egs. (5.9)-(5.11)
can be recovered by:

1
— B . =sym . c _ —C . =skew . R
o”ev Y, =-6" € ;Y =

5 mh g, (5.14)

N =
N | —

yE =

where (6 = 68 +6%,& = &Y™ 4&%¥) and (m’, k) are the energy-conjugated pairs. This
partition of energy then provides a mean to introduce different degradation mechanisms for

different kinematic modes.

5.3 Phase field model for damaged micropolar continua

This section presents a variational phase field framework to model cohesive fracture in
micropolar materials. Our starting point is the energy split introduced in Section 5.2. We
introduce distinct degradation for the Boltzmann, coupling and micro-rotational energy-
conjugated pairs and derive, for the first time, the action functional for the variational phase
field fracture framework for micropolar continua. The governing equations are then sought

by seeking the stationary point, i.e., the Euler-Lagrange equation. To ensure that the size
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effect exhibited in the simulations are originated from the micropolar effect, we adopt the
crack surface density functional originally proposed by Wu and Nguyen [354] and Geelen
et al. [209] to eliminate the sensitivity of the regularization length scale for the phase field
fracture in Boltzmann continua. Our 1D analysis in Section 5.3.5 and numerical results in
Section 5.5.1 suggest that this same crack surface density functional may also eliminate the

sensitivity of the regularization length scale parameter for the micropolar framework.

5.3.1 Phase field approximation of cohesive fracture

This study adopts a phase field approach to represent cracks via an implicit function [75—
77, 382]. Let I' be the discontinuous surface within a micropolar elastic body B. We
approximate the fracture surface area Ar as Ar,, which is the volume integration of crack

surface density 'y (d, V d) over B,
Ar ~ Ap, = / Ty (d,Vd) dV, (5.15)
B

where d is the phase field which varies from 0 in undamaged regions to 1 in completely
damaged regions. In this study, we consider the following crack surface density functional,
which is originally used to introduce elliptic regularization of the Mumford-Shah functional
for image segmentation [203], i.e.,

1
[y(d,Vd)= L lw(d) +1.(Vd- Vd)} ;o= 4/ Vw(s) ds, (5.16)
0

Co lc

where . is the regularization length scale that governs the size of the diffusive crack zone,
co > 0 is a normalization constant, and w(d) is one of the function that controls the shape
of the regularized profile of the phase field [204-206]. I'—convergence requires that the

sharp cracks can be recovered by reducing the length scale parameter /. to zero such that
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[354, 382],
lc—0

The local dissipation function w(d) should be a monotonically increasing function of d, and

we distinguish between the following two choices for this function:

wid) ={ . (5.18)

The quadratic local dissipation w(d) = d? is the most widely used approach in simulating
brittle fracture, and has become the standard in the phase field approximation [75-77, 87,
90, 131, 168, 242, 353, 383, 384]. The major disadvantage of the quadratic local dissipation
is that the damage evolution initiates as soon as the load is applied so that there is no pure
elastic response. However, the linear model w(d) = d, combined with suitable degradation
functions, describes the cohesive fracture that possesses a threshold energy that is indepen-
dent of the regularization length [. [205, 208, 209, 385]. Also, in this case, the material is
characterized by an elastic phase until the stored energy density reaches the threshold value.
Since this study aims to decouple the regularization length [.. for large-scale simulations, we
adopt the linear dissipation function to take advantage of the aforementioned characteristics.

The expression for the crack surface energy density in Eq. (5.16) then becomes:

3 3l
Lo (d,Vd) = grd+ " (Vd-Vd). (5.19)

5.3.2 Free energy functional

It should be noted that the crack propagation within a body B corresponds to the creation
of new free surfaces ['. This implies that the rate of change of the internal energy should
be equal to the rate of change of the surface energy that contributes to the crack growth.

By assuming that this concept can be applied to the micropolar elastic material as well, the
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total potential energy W can be defined as follows [209, 333]:

U= /B be(&, k) dV + /F S, dr, (5.20)

where G, is critical energy release rate that quantifies the resistance to cracking. Then,

revisiting Egs. (5.8) and (5.15), we approximate the functional by
v z/wd‘/, (5.21)
B
with

¥ = gp(d)7 " (EY") + go(d)ye (%) + gr(d)¥ (B) + 47 (€¥") +G.La (d, V d),

S/

'
=thpuk (EY™, &5V &, d)

(5.22)
where Yy (Y™, €%V, k&, d) is the degrading elastic bulk energy, and g;(d) are the stiffness
degradation functions for the corresponding fictitious undamaged energy density parts ¢’
(i = B, C, R). Here, notice that we decompose ¥ (€%™) into a positive and negative parts,
and degrade only the positive part in order to avoid crack propagation under compression,
1e.,

Y =0t (5.23)

In this study, we adopt the spectral decomposition scheme of Miehe, Hofacker, and

Welschinger [76], so that each part can be written as:

3
™ I 4 (2t )€™ 2] 5 €M = S (), (na @ma), (5.24)

a=1

1
B+ _ +
1/J6 _2

where (o) = (o + |o|) /2is the Macaulay bracket operator, Y™ is the principal Boltzmann
strains, and n,, are the corresponding principal directions.

In order to investigate the effects of each energy density part, one may assume that the
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partitioned strain energy densities can either be degraded (i € ©) or remain completely

undamaged (i € ), i.e.,

g(d) ified
gi(d) = ; DUU={B,C,R} ; DNuU=10. (5.25)
1 ifi ey

Here, g(d) is a monotonically decreasing function that satisfies the following conditions
[225]:
g(0)=1; g(1)=0; ¢(d) <0ford € [0,1], (5.26)

where the superposed prime denotes derivative with respect to d. Explicit form of this
function is provided in Section 5.3.4. Notice that this general approach can be tailored to
many different situations. For example, one may only degrade the pure Boltzmann part of

the strain energy, i.e., ® = {B}, U = {C, R}:

Youk (8™, €Y, &, d) = g(d)7 (EY™) + U7 (€5Y) + U (R) + ¢ (€¥™),  (5.27)

or degrade the entire strain energy density, i.e., ® = {B,C, R}, U = (:

Yo7, 5%, £, ) = g(d) [92H (™) +yC (%) + YR(R)] + 02~ (€™). (528)

5.3.3 Derivation of Euler-Lagrange equations via variational
principle

Let V denote an appropriate function space. Then, based on the fundamental lemma of
calculus of variations, the necessary condition for the energy functional ¥ : V. — R in

Eq. (5.21) to have a local extremum at a point xo € V is that,

—(x0) =0, (5.29)
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where 1 is the energy density that is previously defined in Eq. (5.22), x = {u,0,d}

indicates the field variables, and §(e)/dx denotes the functional derivative with respect

to x. Notice that Eq. (5.29) is the so-called Euler-Lagrange equations, which yield the

governing partial differential equations to be solved.

The linear momentum balance equation can be recovered by seeking the stationary point

where the functional derivative of ¢ with respect to w vanishes. By assuming no body forces

and by only considering the single derivative, we have,

v _ v o

-~ - V- — =0

ou  Ou oV u

By revisiting Eq. (5.22), we get:

oy
u
and by Eq. (5.12),
o vy ove | _ _B e

since the decomposition of the micropolar strain in Eq. (5.3) yields the following:

L R T
avU_aésym'avU_aésym'é(HH)_ =9
a¢g B 81Deo ‘aETSkeW o %f l(ﬂ—]l) - 0¢f c
OVu 08 OVu  0a%w 2 -

(5.30)

(5.31)

(5.32)

(5.33)

(5.34)

Similarly, assuming no body couples, the balance of angular momentum can be obtained

by searching the local extremum where the functional derivative of ) with respect to the

micro-rotation 8 vanishes, i.e.,

o0 _ o

oy —_—0

56 00 ove
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The partial derivative of ¢ with respect to 0 is:

oy

_ e

O (& aéskew 3
— gc(d) we .

i g~ B loc(d)e]. (5.36)

By Eq. (5.13), the partial derivative of ¢ with respect to V 8 becomes:

= V- [gr(d)m"]. (5.37)

The damage evolution equation (i.e., functional derivative of ¢ with respect to the phase

field d) can also be recovered as follows:

N
54 ad Van—O, (5.38)

where, by revisiting Eq. (5.19),

a¢ 0 i 390
57 =9 [Z ve| + 5 (539)
1€D
and
oy _ (3G,
VooV (—4 Vd>. (5.40)

Finally, collecting the terms from Egs. (5.30)-(5.40), we obtain the following coupled sys-

tem of partial differential equations to be solved:

V- [gs(d)a” + gc(d)&o} =0 balance of linear momentum, (5.41)
V- [gr(d)m™] + B [9c(d)“] = 0 balance of angular momentum, (5.42)
g (d)F + g (1—212Vv2d) =0 nondimensionalized damage evolution equation,

(5.43)

where VZ(e) = V-V (e) is the Laplacian operator, and JF is the degrading nondimension-
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alized strain energy density:

>

=<2 5.44
5./l (5.44)

5.3.4 Crack irreversibility and degradation function

As far as © # (), we prevent crack healing by following the treatment used in [90, 129,
168] which ensures the irreversibility constraint by enforcing the driving force to be non-
negative. Although the stored energy density is split into three different parts, we simply
introduce one distinct history function or driving force H{ which is the pseudo-temporal
maximum of the degrading nondimensionalized energy density. Inserting our definition
into Eq. (5.43) gives:

g (d)H + g (1—22Vv2d) = 0. (5.45)

Revisiting Section 5.3.1, the term cohesive denotes that the model should possess a thresh-
old for the loading, where damage does not develop below this value. Therefore, we par-
ticularly restrict the crack growth to initiate above a threshold energy density ¢ by using

the following history function, in order to approximate the cohesive response:

F ¢crit
H= Srcri Srcri — =1 ) 9:cri = 5 /7 5.46
g[aoi] { o t <~rfcrit >+} t gc/lc ( )

where J;; is the nondimensionalized threshold energy. Note that Eq. (5.45) is the field
equation that is actually solved for the phase field in this study.

We complete our formulation by specifying the degradation function g(d). This study
adopts a quasi-quadratic degradation function [209, 385, 386], which is a rational function
of the phase field d. The quasi-quadratic degradation function has an associated upper

bound on the regularization length /., and is defined as:

(1—d)? < 38
(1—d)2—|—md(1+pd)’ 0_8(p+2>¢crit7

g(d) = (5.47)
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where m > 1 is constant, and p > 1 is a shape parameter that controls the peak stress and
the fracture responses.

Recall that this study restricts the damage evolution to initiate above a threshold energy.
In other words, below the threshold (i.e., F/JF;; < 1), the driving force and the phase
field should satisfy H{ = F; and d = 0, respectively. In this case, the damage evolution

equation [Eq. (5.45)] becomes:

3
G (0)Ferie + 3= 0. (5.48)

Since the degradation function [Eq. (5.47)] yields ¢’(0) = —m, we require

3
B 89:crit’

m (5.49)

in order to trivially satisfy Eq. (5.48). Again, the most common choice for the degradation
function would be a simple quadratic function, i.e., g(d) = (1 — d)?. A phase field model
that adopts the quadratic degradation function requires a particular critical energy ).;; that
depends on [, to satisfy Eq. (5.48). However, by using the quasi-quadratic degradation
function in Eq. (5.47) with Eq. (5.49), it is noted that the threshold energy density ). is
no longer dependent on /.., since the degradation function itself is designed to automatically
satisfy Eq. (5.48). It reveals that the elastic response (i.e., if stored energy is below the
threshold) is regularization length independent. The regularization length insensitivity of
the model, for the case where the stored energy exceeds the threshold, will be discussed in

Section 5.3.5.
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5.3.5 One-dimensional analysis on phase field regularization length
sensitivity

In order to gain insights on the regularization length insensitive response, we consider a sim-
iliar 1D boundary value problem previously used in Wu and Nguyen [354] and Geelen et al.
[209] for length scale analysis. Our major departure is that the material is now an analog to
the micropolar material where an length scale dependent state variable (which replaces the
micro-rotation due to the low-dimensional kinematics) is introduced to replicate the size
effect of the elasticity response. Consider a one-dimensional bar = € [— L, L] subjected to
a tensile loading on both ends. We assume that the length 2L is sufficiently long enough
so that the any possible boundary effects can be neglected. We define the strain measures
as ¢ = du/dx, and & = [.(df/dx), where [, is the length scale. Our goal here is to check
whether the size-dependent responses in the damaged zone is sensitive to the regularization
length scale for the phase field /.. Note that this formulation does yield size-dependent re-
sponses in both elastic and damage zones, but the kinematics in 1D does not permit rotation.
Hence, 0 and < no longer indicate micro-rotation and micro-curvature respectively. Thus,
analogous to Eq. (5.8), we introduce a 1D size-dependent model of which the strain energy

density takes a quadratic form as:

1, (du\® 1, [(du  dO\* 1 o\’
e==-Cp|— —Co| — —le— —Crl*(—) , 5.50
¥ 2 B(dx) +2 C(dx dx> +2 Re(dx) (5:50)
where Cz > 0, Cc > 0 and C'g > 0 are the material parameters. Notice that (1) this stored
energy functional does not admit non-trivial zero-energy mode provided that C'z + C¢ > 0
and Cg > 0 and (2) if the length scale [, vanishes, Eq. (5.50) reduces to an energy functional

for the classical Boltzmann continuum. In this setting, the stress measures can be obtained

as,

e _ -
gi_ =Cge+Ce (6—/‘1), (5.51)

Qi
I
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m =

By = Crk — C¢ (5_ — I_i) , (5.52)

where both ¢ and m are [.-dependent. Assuming all energy density parts can be degraded,

the Lagrangian for the damaged state where v, > 1. then becomes:

2
d+12 (%) ] , (5.53)
dz

where g(d) is previously defined in Eq. (5.47). The first variation of Eq. (5.53) yields the

39,

Y = g(d)e + L

following set of Euler-Lagrange equations:

d
i l9(d)a] =0, (5.54)
d
o lg(d)m] = 0, (5.55)
. d2d
g'(d) 91/}/lc + 2 (1 — 2l§@> =0, (5.56)

where Egs. (5.54) and (5.55) are the balance equations, and Eq. (5.56) is the nondimen-
sionalized damage evolution equation. Following Geelen et al. [209], we apply a specific
amount of & at both ends while the boundaries remain m-free, such that Eq. (5.54) and
Eq. (5.55) yields:

9(d)a = a9 ; g(d)m =0, (5.57)

where 7 is the responding stress on the boundary (x = +L). By the constitutive relation-

ships in Egs. (5.51)- (5.52), we can now express the strain measures & and k as,

Cp(Co — CRr) — CcCrg(d) ’ Cp(Ce — Cr) — CcCrg(d) '

Thus, the energy density functional in Eq. (5.50) can be rewritten as:

_ % o~ 2Cs(Cc — Cr) — CcCr)”
C*g(d)2 ’ CB(CC - CR)2 + C'CC'R(C'(; + CR) ’

(5.59)
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Substituting Eq. (5.57) and Eq. (5.59) into Eq. (5.56), we get,

, 1 os 3/, pd’d)
g'(d) [SC/ZC C*g(d)2] +3 (1 216@) = 0. (5.60)

By multiplying Eq. (5.60) with dd/dz, we can obtain the following differential equation:

d |3 , [(dd\? 1 a2 |
& {g ld -2 () ] L 20*g<d>} -0 oo

Following Wu and Nguyen [354] and Geelen et al. [209], we focus on the damaged zone

[—1.,1.] with [, < L, where the outer edge of the zone is related to the parameter d*, the
maximum value of the damage across the bar (i.e., d* = 1 if the bar is fully broken). Then,

by symmetry, at + = 0 we have:

dd
d(d*,0)=d" 5 T (d",0) =0, (5.62)

while the boundary conditions at the outer edge « = [, are given by,

dd
d(d*, 1) =0 ; —(d*,1,) = 0. 5.63
(d*,1.) 3 @) (5.63)

By introducing the parameter d*, notice that our goal is to find the expression for the re-
sponding stress o as a function of the maximum damage d*, or vice versa. Integration of

Eq. (5.61), using boundary conditions in Eq. (5.63) admits the following:

3 dd\> 1 &2 _
3 [d—zg (@) ] =5 263* (9@ —1). (5.64)

Applying the symmetry conditions [Eq. (5.62)], Eq. (5.64) becomes:

a5 3G d*

—_— = 5.65
20% 8l g(d) -1 (5.69)
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Substituting the expression of the degradation function in Eq. (5.47) and the expression for

the degradation parameter m in Eq. (5.49), we finally get:

o9 = \/ 2C*¢cmw. (5.66)

1+ pd*

Observe that the resultant stress oy can be expressed in terms of d* but independent of
the phase field regularization length [.. Eq. (5.66) highlights that the proposed model is
capable of replicating the global response insensitive to regularization length [, for the phase
field, while preserving the size effect introduced by the micropolar elasticity. This result is
important, as this insensitivity to /. enables us to simulate cohesive fracture in large spatial
domain composed of micropolar materials. Extending this analysis for 2D and 3D cases is

out of the scope of this study but will be considered in the future.

Remark 5. Previous works on phase field and gradient damage models for cohesive fracture
in Cauchy continuum, such as Lorentz, Cuvilliez, and Kazymyrenko [385], Cazes et al.
[387], and Wu [388], have established a connection between the cohesive zone models and
the phase field and gradient damage models that represent cracks via implicit function. In
principle, it is possible that similar connection can be established between the micropolar
phase field model presented in this paper and the established micropolar cohesive zone
models such as Larsson and Zhang [389], Zhang et al. [390], and Hirschberger, Sukumar,
and Steinmann [391]. Such an endeavor is obviously out of the scope of this study due to

the extensive length, but will be considered in future studies.

5.4 Finite element implementation

In this section, we describe the finite element discretization, followed by the solution strat-
egy to solve the system of nonlinear equation incrementally. Starting from the strong

form, we follow the standard procedure to recover the variational form while employing
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the Taylor-Hood finite element space for the displacement and micro-rotation fields, and
standard linear interpolation for the phase field. This finite element space is chosen to
match the design of the operator-split algorithm. The displacement and micro-rotation are
updated in a monolithic manner, where we use Taylor-Hood element such that the displace-
ment field is interpolated by quadratic polynomials and the micro-rotation is interpolated
by linear polynomials. Meanwhile, the phase field is also interpolated by linear function to
ensure the efficiency of the staggered solver that updates the phase field while holding the
displacement and micro-rotation fixed. The operator-split solution scheme (i.e., staggered

scheme) that successively updates the field variables is described in Section 5.4.2.

5.4.1 Galerkin form

We derive the weak form and introduce the finite dimensional space to introduce the numer-
ical scheme for the boundary value problems described in Egs. (5.41)-(5.42) and Eq. (5.45).
We consider a micropolar elastic domain B with boundary 9B composed of Dirichlet bound-
aries (displacement 0B, and micro-rotation 9By) and Neumann boundaries (traction 0B,

and moment 0B, ) satisfying,

0B =B, U0B, =0By UdB, : 0=0B,NIB, =dByNIB,.. (567

The prescribed boundary conditions can be specified as:

u=1u on 0B,
0=20 on 0By,

Q [gs(d)a” + gc(d)&C]T n=t, ondB,, (5.68)
[gR(d)mR}T ‘n=t, on 0By, ,

\V d-n=0 on 0B,
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where n is the outward-oriented unit normal on the boundary surface 0B; w, é, t,.t,, are
the prescribed displacement, micro-rotation, traction and moment, respectively; and the
degradation functions ¢;(d) (i = B, C, R) are previously defined in Eq. (5.25). For the

model closure, the initial conditions are imposed as,

u = ug ; 0= 00, (569)

att = 0.

We define the trial spaces V,,, Vj, and V for the solution variables:

Vi={u:B =R |uec [H(B), uly = a} : (5.70)
Vp = {e . B R0 € [H(B)P, 0], = (5.71)
Vi={d:B—R|de H(B)}, (5.72)

where H'! denotes the Sobolev space of order 1. Notice that this study adopts Taylor-Hood
finite element (i.e., quadratic interpolation for displacement and linear for micro-rotation)
following Verhoosel and Borst [392], which showed that the cohesive fracture model ex-
hibits stress oscillation when equal order polynomials are used for the solution field, while
the discretization with high order interpolation function for the displacement and first or-
der functions for the auxiliary field and the phase field seems to eliminate this oscillation.
Similarly, the corresponding admissible spaces for Egs. (5.70)-(5.72) with homogeneous

boundary conditions are defined as,

Vo={n:B—=R’|ne[H(B), nlys, =0}, (5.73)
Ve={¢:B—=R’[£c[H(B)] &|ys, =0}, (5.74)
={C:B—-R|(€eH(B)}. (5.75)

Applying the standard weighted residual procedure, the weak statements for Eqs. (5.41)-
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(5.42) and Eq. (5.45) is to: find {u,0,d} € V, x V x V such that for all {n,&,(} €
Vyx Ve x Vi,

Gu(u,0,d,m) = Gy(u,0,d,&) = G4(u,0,d,() = 0. (5.76)
Here, G, — R is the weak statement of the balance of linear momentum:

Gy = / Vn:lgs(d)a” + go(d)gC] av —/ n -ty dA =0, (5.77)
B OBy,

Gy — R is the weak statement of the balance of angular momentum:

G(;:/%Vﬁtg}z(d)deV—/Bg.%: [90(d)5°] dv_/a €4, dA=0. (578)

Bt

and G, — R is the weak statement of the damage evolution equation:

Gdz/Bg-g'(d)szVJrg UBHQ@(W-VCZ) dV} =0, (5.79)

where H and g(d) are previously defined in Egs. (5.46) and (5.47), respectively.

5.4.2 Operator-split solution scheme

As previous studies on the phase field model showed that the operator splitting (i.e., stag-
gered scheme) may potentially be more robust compared to the monolithic approach [76,
260, 261], this study adopts the solution procedure based on the operator-split scheme to
successively update three field variables {u, 6, d}. In this operator-split setting, the damage
field is updated first while the displacement and micro-rotation fields are held fixed. A new
damage field d,+ 1s obtained iteratively once the algorithm converges within a predefined
tolerance. Then, the linear solver holds the damage field fixed and advances the displace-

ment and the micro-rotation fields {w,+1, 04+ }. The schematic of the solution strategy can
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be summarized as follows:

Linear solver
N\

Uy Uy Un+1

R(d)=0 R(u,0)=0
| = | 6, | = |0 | (5.80)
dn dn+1 dn+l

~
Iterative solver

where R(u, ) and R(d) are the residuals that are consistent with Eqgs. (5.77)-(5.79):

/V’n: [95(dw1)T 0, + go(dui)T ] dV—/ n- i"}n-%—l dA,
5 9B,

R(u,0) : 5 )
/ng - gr(dnr)m R, dV—/Bg-E: [9c(dnir) G5 ] dV—/%tmg- bl ,, dA
(5.81)
R(d) : {/Bg-g’(dnﬂ)}cn dv+§ M(Jrzzg (V- Vdg) dV] : (5.82)

It should be noticed that one may choose other strategies to solve the same system of equa-
tions, however, the exploration of different schemes are out of the scope of this study.

The implementation of the numerical models including the finite element discretiza-
tion and the operator-split solution scheme rely on the finite element package FEniCS
[146—-148, 340] with PETSc scientific computation toolkit [149]. The scripts devel-
oped for this study are open-sourced (available at https://github. com/hyoungsuksuh/

micropolar_phasefield), in order to aid third-party verification and validation [132].

5.5 Numerical examples

This section presents numerical examples to showcase the applicability of the proposed
phase field model for damaged micropolar elastic material. For simplicity, we limit our

attention to two-dimensional simulations in this section. Based on the 2D setting, the kine-
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matic state of the micropolar elastic body can be described by two in-plane displacements
u = [u1, us]" and one out-of-plane micro-rotation angle 3. Since the material elasticity
now only depends on bending characteristic length, we now require only four engineering
material parameters (e.g., F, v, N, and ;).

The first example serves as a verification test that highlights the regularization length
insensitive response of the phase field model with quasi-quadratic degradation function in
Eq. (5.47). We then investigate the effect of scale-dependent elasticity on the crack patterns,
by simulating asymmetric notched three-point bending tests with different coupling num-
bers IV and single edge notched tests with different characteristic lengths [, respectively.
Finally, we exhibit the applicability of the proposed energy split scheme by considering
different degradation functions on the partitioned energy densities. All the numerical sim-
ulations rely on meshes that are sufficiently refined to properly capture the damage field
around crack surfaces. Unless specified, we especially adopt the element size of h¢ ~ [./10

around the potential crack propagation trajectory.

5.5.1 Verification exercise: the trapezoid problem

We first examine a problem proposed by Lorentz, Cuvilliez, and Kazymyrenko [385] that
has a trapezoidal-shaped symmetrical domain with an initial notch. Since we prescribe
the displacement w in order to consider pure Mode I loading, as illustrated in Fig. 5.2, this
specific geometry helps us to avoid crack kinking and to facilitate straight crack propagation.
The aforementioned characteristics of the trapezoid problem makes it suitable for verifying
the regularization length insensitive response of the cohesive phase field model with quasi-
quadratic degradation. This example thus performs a parametric study for three different
regularization lengths (I. = 7.5, 15, and 30 mm, as depicted in Fig. 5.2), with two different
shape parameters p = 2.5 and 10.

The material is assumed to be similar to the concrete studied in Lorentz, Cuvilliez,

and Kazymyrenko [385]. The material parameters for this example are chosen as follows:
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Figure 5.2: Schematic of geometry and boundary conditions for a trapezoidal domain and
the observed crack patterns at « = 0.325 mm with different regularization lengths.

Young’s modulus £/ = 30 GPa, Poisson’s ratio v = 0.2, critical energy release rate G. = 0.1
N/mm, and threshold energy density /. = 0.1 kJ/m®. We also set coupling number N = (
and bending characteristic length /[, = 0 mm in order to avoid all the micropolar effects,
and at the same time damage only the pure Boltzmann part, i.e., ® = {B}, 4 = {C, R}.
We prescribe A, = 0.5 x 1072 mm on the left boundaries, while all other boundaries are
maintained traction-free during the simulations.

Fig. 5.3 shows the force—displacement curves for the trapezoid problem, corroborated
by other numerical observations [209, 385]. The results indicate that the shape parameter
p is able to influence the peak force and the overall global force-displacement responses.
In fact, the quasi-quadratic degradation function enables us to not only tailor the threshold
for the elastic region by controlling 1), but also tune the peak stress by varying shape
parameter p. As pointed out in Geelen et al. [209], higher value of p tend to significantly
elongate the length of the fracture process zone, such that the stresses in the process zone
can effectively be smeared over a large distance. As a result, we can observe that an in-

creasing value of p yields the global force-displacement response where the effect of using
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Figure 5.3: The force-displacement curves obtained from the trapezoid problem with dif-
ferent regularization lengths: non-polar case: (a) p = 2.5 and (b) p = 10.0.

different length scale parameters /. becomes negligible, as previously reported in Geelen

et al. [209], Wu and Nguyen [354], Wu, Mandal, and Nguyen [366], and Lorentz, Cuvilliez,
and Kazymyrenko [385].
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Figure 5.4: The force-displacement curve obtained from the trapezoid problem with differ-
ent regularization lengths: micropolar case, p = 10, [, = 50 mm, and N = 0.5.

We then repeat the same problem with the micropolar material, i.e., the case where
D = {B,C,R}, sl = (). Recall Section 5.3.5 that the regularization length insensitive
response is expected for the micropolar material as well. For this problem, we set coupling

number N = (.5, and bending characteristic length [, = 50 mm, while we choose the
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shape parameter as p = 10 which produced regularization length insensitive results in
Fig. 5.3(b). As illustrated in Fig. 5.4, the force-displacement curve confirms that our choice
p = 10 yields the regularization length insensitive global response for micropolar material
as well. From this numerical example, we again spotlight the fact that the high value of the
shape parameter p yields the regularization length insensitive response in both non-polar

and micropolar material.

5.5.2 Single edge notched tests

We now consider the classical boundary value problem, which serves as a platform to in-
vestigate the size effect of elasticity and energy dissipation on the crack nucleation and
propagation. The problem domain is a square plate that has an initial horizontal edge crack
placed at the middle from the left to the center (Fig. 5.5). Similar to the previous studies
[76, 77], we choose material parameters as: £ = 210 GPa, v = 0.3, §. = 2.7 N/mm,
l. = 0.008 mm, and 1) = 10 MJ/m3. Numerical experiments are conducted with differ-
ent bending characteristic lengths: [, = 0.0, 0.01, 0.05, and 0.25 mm while the coupling
number is held fixed as N = 0.5. Also, for this problem we damage all the energy density
parts, i.e., © = {B,C, R}, {{ = (). As illustrated in Fig. 5.5, two different types of simula-
tions are conducted with the same specimen: the pure tensile test with prescribed vertical
displacement Az, = 2.0 x 1075 mm; and the pure shear test with prescribed horizontal
displacement A, = 2.0 x 1075 mm. In both cases, the displacements are prescribed along
the entire top boundary, while the bottom part of the domain is fixed.

Fig. 5.6 illustrates the crack trajectories at the completely damaged stages for both ten-
sion and shear tests with different the bending characteristic lengths. The results clearly
show that pure tensile loading exhibits the same crack pattern regardless of /,. This result
is expected, as introducing the micro-polar effect should not break the symmetry of the
boundary value problems in pure Mode I loading. Interestingly, the higher-order constitu-

tive responses have a profound impact on the crack propagation direction in the Mode 11
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Figure 5.5: Schematic of geometry and boundary conditions for the single edge notched
tests.

simulations. As shown in Fig. 5.6, the micropolar effect leads to a propagation direction
bends counterclockwise. As the driving force for the phase field is affected by the micro-
rotation induced by the coupling between shear and micro-rotation, this affect the energy
dissipation mechanism and ultimately the energy minimizer of the action functional that
provides the deformed configuration and crack patterns.

As pointed out in Yavari, Sarkani, and Moyer [375], the particles near crack tip resist
micro-rotation and separation (i.e., interlocking), and the crack propagation mechanism
in micropolar continuum therefore consists of the following steps. First, micro-rotational
bonding between adjacent particles at the crack tip breaks and the particles starts to rotate
with respect to each other. Second, the particles then move apart and the adjacent set of
particles become the next crack-tip particles. Based on the mechanism, the crack path that
minimizes the effort on breaking the micro-rotational bond (i.e., the path that maximizes
the dissipation) is equivalent to the shortest path towards the boundary if the material is
isotropic and homogeneous (e.g., a horizontal crack growth from the notch tip for the pure
tensile loading case). The observed crack patterns shown in Fig. 5.6 is consistent with
this interpretation. Furthermore, Fig. 5.6 also provides evidence to support that the non-

polar model is a special case of the micropolar model in which [, ~ 0. With a sufficiently
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small bending characteristic length [, the difference in crack patterns for the non-polar
and micropolar cases are negligible. The coupling and the micro-rotational parts ()¢ and
1) then become significant enough to play a bigger role for crack growth as the bending

characteristic length [, increases.

non-polar micropolar (I, > 0.0)
o = = =
- . . .
I, = 0.0 mm I, = 0.01 mm I, = 0.05 mm I, = 0.25 mm

Phase field
0.0 02 04 0.6 08 1.0

D ee—

Figure 5.6: Fracture patterns for single edge notched tests under different micropolar char-
acteristic length /.

As illustrated in Fig. 5.7, separated particles tend to rotate in opposite directions since
they are no longer interlocked after crack formation. By revisiting Eq. (5.7) and Eq. (5.13),
notice that the material constant  that relates the fictitious undamaged couple stress m?
to the micro-curvature K is proportional to the square of the characteristic lengths. The
relationship implies that larger characteristic length leads to higher rigidity of the microp-
olar material, so that the separated particles tend to experience greater micro-rotation with
smaller bending characteristic length.

Fig. 5.8 shows the load-deflection curves obtained from both tension and shear tests.
The colored curves indicate the results with nonzero [, whereas the transparent gray curves
denote the non-polar case. Since the force stress can be decomposed into two parts, e.g.,

o = 6246, micropolar material that possesses a large characteristic length tend to exhibit
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Figure 5.7: Resultant micro-rotation field for single edge notched shear tests where @; =
0.0072 mm.

stiffer response compared to those with smaller characteristic lengths, due to the micro-
continuum coupling effect. Unlike the tension test results in Fig. 5.8(a), the reaction forces
reach their peak values under different strain level from the shearing tests [Fig. 5.8(b)]. This
again highlights that the micropolar bending characteristic length affects the crack pattern,

which in turn reflects different global response for the same boundary value problem.
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Figure 5.8: The force-displacement curves from the single edge notched (a) tension and (b)
shear tests with regularization length /. = 0.008 mm.
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5.5.3 Asymmetric notched three-point bending tests

This section examines a problem originally designed by Ingraffea and Grigoriu [393], which
involves a three-point bending of a specimen with three holes. The domain of the problem is
illustrated in Fig. 5.9. Since previous studies [76, 351, 393, 394] have shown that different
crack patterns can be observed depending on the notch depth and its position, we only focus

on the case where the notch depth is set to be 25.4 mm.

152 mm 102 mm

—— =

32 mm

+ O
51 mm

+O

+ O 113mm

102 mm

| T25.4 mm

457 mm

508 mm

Figure 5.9: Schematic of geometry and boundary conditions for the three-point bending
tests.

We consider a specimen composed of a micropolar material and choose Boltzmann
material parameters close to the properties of Plexiglas specimen tested by Ingraffea and
Grigoriu [393]: £ = 3.2GPa, v = 0.3, §. = 0.31 N/mm, [, = 1.0 mm, and ¢ = 7.5
kJ/m3. For this problem, we assume that all the energy density parts can be degraded, i.e.,
D ={B,C,R}, 4 =0.

Within the problem domain (Fig. 5.9), we first attempt to investigate the effect of cou-
pling number on the crack trajectory by conducting multiple numerical tests with different
values: N = 0.1, N = 0.5, and N = 0.9, while bending characteristic length is held fixed
as [, = 10.0 mm. The numerical simulation conducted under a displacement-controlled

regime where we keep the load increment as Aty = —2.0 x 1074 mm.
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Figure 5.10: Crack topologies for asymmetric notched three-point bending test: (a) exper-

imentally obtained pattern by Ingraffea and Grigoriu [393]; (b)-(d) numerically obtained
parttern with different coupling number N.
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Figure 5.11: Load-CMOD curves from the three-point bending test.

Fig. 5.10 illustrates the crack trajectories obtained by numerical experiments with dif-
ferent coupling number /N in comparison to the experimental result [393], while Fig. 5.11
shows the measured reaction forces as a function of crack-mouth-opening-displacement
(CMOD). Similar to the experimental results in Fig. 5.10(a), numerical results [Fig. 5.10(b)-

(d)] show that the cracks tend to deflect towards the holes, eventually coalescing with the
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intermediate one. However, taking a closer look at Fig. 5.10(b)-(d), one can observe the
slight differences on the concavity of the crack topologies especially when the crack passes
close to the bottom hole. As we highlighted in Section 5.5.2, the crack tends to propagate
through the path where the energy that takes to break the micro-rotational bond is mini-
mized. At the same time, based on Saint-Venant’s principle, the crack trajectory can also
be affected by the bottom hole due to an increase of the singularity [351]. In this specific
platform, it can thus be interpreted that the crack propagation may result from the competi-
tion between the two, based on the obtained results. Since the material that possesses higher
degree of micropolarity requires more energy to break the micro-rotational bond, the bot-
tom hole effect on the crack trajectory becomes negligible as coupling number N increases
[Fig. 5.10(b)-(d)]. In addition, Fig. 5.11 implies that if more energy is required to break the
micro-rotational bond, it results in higher material stiffness in the elastic regime, supporting
our interpretation.

We then conduct a brief sensitivity analysis with respect to the time discretization (i.e.,
prescribed displacement increment As) within the same problem domain, while we set
the coupling number to be N = 0.9 during the analysis. Fig. 5.12 illustrates the simulated
crack patterns for asymmetrically notched beam with three holes, with different prescribed
displacement rates, varying from Az, = —4.0 x 107 mm to —16.0 x 10~* mm. Since
meaningful differences in the crack trajectories are not observed, the result confirms the
practical applicability of the explicit operator-splitting solution scheme, if the load incre-

ment is small enough.

5.5.4 Double edge notched tests

This numerical example investigates the effect of partial degradation of the strain energy
density on the crack patterns. As illustrated in Fig. 5.13, the problem domain is a 100
mm wide and 100 mm long square plate with two 25 mm long symmetric initial horizontal

edge notches at the middle. We assign the following material properties for this problem:
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Figure 5.12: Observed crack patterns for asymmetric notched three-point bending tests: (a)
Aty = —2.0 x 1074 mm; (b) Aty = —4.0 x 10~* mm; (c) Aty = —8.0 x 10~* mm; (d)
Aty = —16.0 x 107* mm.

E =30GPa, v = 0.2, G, = 0.1 N/'mm, I, = 0.75 mm, and 9y = 1.0 kJ/m3. Numerical
experiments are simulated with bending characteristic length /, = 30.0 mm and the coupling
number is set to be N = 0.5. While the bottom part of the domain is held fixed, we prescribe
the displacement along the entire top boundary at an angle of 45 degrees to the horizontal
direction: A#i; = Atip = 5.0 x 10~ mm, such that the domain is subjected to combined
tensile and shear loads.

Regarding partial degradation, recall Eq. (5.25) that energy density parts that corre-
sponds to the set {l remains completely undamaged, such that g;(d) = 1 for i € 4, where
DUU ={B,C,R} and © N4 = (). Within this platform, we first explore the effects of
each individual energy density part by considering three different settings: (a) © = {B};
(b) ® = {C}; and (¢c) ©® = {R}. Fig. 5.14 shows the fracture patterns for double edge
notched tests for three aforementioned cases where %, = 4y = 0.05 mm. Under the same
threshold energy density v, partial Boltzmann degradation case shown in Fig. 5.14(a)

undergoes crack propagation, whereas degrading ¢ [Fig. 5.14(b)] or 17 [Fig. 5.14(c)] ex-
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Figure 5.13: Schematic of geometry and boundary conditions for the double edge notched
tests.

hibit small amount of damage accumulation at the crack tip, without complete rupturing. It
reveals that in either force or displacement-driven setup, most of the elastic energy is stored
in non-polar constituent; the amount of stored energy density parts: 2 > ¢ > F. As
illustrated in Fig. 5.15, only the fictitious undegraded Boltzmann energy density part lo-
cally exceeds the prescribed threshold i = 1.0 kJ/m? through the cracks when ® = {B}.
Even though ¢ and ¥ do not exceed the threshold energy except the flaw tip region, the
results also indirectly evidence that the coupling and pure micro-rotational energy density
parts affect crack kinking, while the pure Boltzmann part mainly drives the crack to grow.

Since the pure Boltzmann part mainly drives the crack propagation, we now focus on
the combined partial degradation with B € ©, also by considering three different settings
within the same platform: (a) © = {B,R}; (b) ® = {B,C}; and (¢) ©® = {B,C, R}.
Fig. 5.16 shows the crack patterns for double edge notched tests for three different com-
binations of partial degradation compared with the case where © = { B}, while Fig. 5.17
illustrates the obtained load-deflection curves. The results confirms that degradation of the
energy density parts /¢ and 1 affects the crack kinking and curving.

The combined degradation with ©® = { B, R} tend to stimulate similar fracture patterns

compared to the partial Boltzmann degradation case until 4; = 4, = 0.04 mm, and then
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Figure 5.14: Crack patterns for double edge notched tests obtained by considering different
degradation functions [i.e., g;(d) = g(d) if i € D; g;(d) = 1 otherwise] on each energy
density part, where 4, = 4o = 0.05 mm.
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Figure 5.15: Fictitious undegraded energy density part ¢’ (i € D), where u; = iy = 0.05
mm.
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the cracks start to propagate towards the notches. Revisiting Fig. 5.15, this again indicates
that the crack trajectories tend to follow the path that maximizes the energy dissipation (i.e.,
crack growth towards the adjacent flaw when the stored 1/ ? at the tip becomes high enough).
Similarly, the combined degradation with © = {B, C'} leads the cracks to grow towards
the adjacent tip. In this case, however, the cracks tend to kink towards the adjacent notch

from the beginning, and then two cracks coalescence toward each other after sufficient
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Figure 5.16: Crack patterns for double edge notched tests with different combination of
degrading energy density parts at several load increments.

loading. Since the amount of stored coupling energy ¢ is greater than the pure micro-
rotational part 1), we speculate that the coupling energy part influences the crack pattern
more significantly compared to the micro-rotational energy part, so that we thus observe
similar fracture pattern when ® = {B,C, R}. In summary, this numerical experiment
highlight that the pure Boltzmann energy density drives the crack growth, while the micro-

continuum coupling energy density mainly influences the kinking direction.

5.6 Conclusion

This study presents a phase field fracture framework to model cohesive fracture in microp-
olar continua. To the best of the authors’ knowledge, this is the first ever mathematics

model that employs the phase field fracture framework to simulate crack growth in mate-
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Figure 5.17: The force-displacement curves from the double edge notched tests with differ-
ent combination of degrading energy density parts.

rials that exhibit size effect in both elastic and damaged regimes. To replicate a consistent
size effect for both the elastic deformation and crack growth mechanisms, we introduce a
method to incorporate distinctive degradation mechanisms via an energy-split approach for
the non-polar, coupling and micropolar energies, while adopting the pair of degradation and
regularization profiles that enables us to suppress the sensitivity of the length scale param-
eter that regularizes the phase field. One-dimensional analysis and numerical experiments
demonstrate that the quasi-quadratic degradation function combined with linear local dissi-
pation function successfully suppress the sensitivity of the length scale parameter for phase
field while successfully incorporate the size effect with a length scale parameter that can be
measured via standard inverse problems for micropolar materials. This result is significant,
as the insensitivity of the length scale parameter will allow one to use coarser mesh to run
simulations for a scale relevant to field applications (e.g. geological formations, structural
components), while still able to replicating the size effect exhibited by materials of internal

structures.
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Chapter 6: Closure

6.1 Scope and contribution

This dissertation explores and introduces a series of mathematical and computational
frameworks that incorporate small scale information to predict coupled thermo-hydro-
mechanical-fracture processes in phase-changing porous media at meso- and macro-scales.
Specifically, this study adopts diffuse interface approaches that represent small scale fea-
tures coupled with thermo-hydro-mechanics, and includes the development of correspond-
ing finite element solvers. The author’s main contribution in the field of computational
microporomechanics presented in this dissertation are summarized as follows.

In Chapter 2, for the first time, we present a multi-phase-field framework to capture
freeze-thaw action in a porous medium that may form ice lenses. Unlike previous studies
that are restricted to one-dimensional space, the proposed model is capable of simulating
freezing-induced fracture and phase transition in two- and three-dimensional spaces, by
introducing two phase fields that represent the state of the pore fluid and the damaged/un-
damaged material state. We also extend the Bishop’s effective stress principle for frozen
porous media in order to distinguish crystallized ice inside the pore space and ice lenses,
which induces deviatoric stress. As a result, this chapter opens the door for us to analyze
how the homogeneous freezing process and the ice lens formation affect the coupled behav-
ior of water-saturated porous medium in the transient regime.

Chapter 3 considers the case where the solid and fluid phase constituents are in thermal
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non-equilibrium locally, which may have profound impact in microporomechanics prob-
lems with phase transitions. To the best of the author’s knowledge, this is the first attempt
to model brittle fracture in multi-phase fluid-infiltrating porous media that incorporates heat
exchange mechanism between constituents. By introducing a new homogenization strategy
that distinguishes the solid and fluid temperatures, this chapter provides a foundation for
distinctive energy balance laws for each constituent. We show that this two-temperature
approach is a generalization of the classical one-temperature model, since it can be recov-
ered by assuming that all the phase constituents reach thermal equilibrium instantly. This
approach bypasses the need to homogenize the intrinsic thermal properties of each compo-
nent, which may simplify the calibration process since they are not necessarily isotropic. By
proposing an asynchronous time integrator that updates solid and fluid temperatures with
different time steps, numerical examples show that it greatly reduces the computational cost
while reproducing physically consistent results compared to the synchronous counterpart.
Chapter 4 focuses on the case where fluid-saturated cracks may coalescence with exist-
ing voids that trigger redistribution of fluid flow, which cannot be captured without the cou-
pled Stokes-Darcy flow. This approach leads to more accurate forward prediction of fluid
motion, which may significantly affect the coupled behavior of phase-changing porous me-
dia. By considering the phase field variable as a damage parameter and at the same time
an indicator of large voids, this chapter introduces a unified treatment that handles evolv-
ing microstructures without the needs of domain partitioning or introduction of enrichment
functions. Smooth approximation of the interface between the free and porous medium flow
regions enables us to incorporate transmissibility conditions as a set of immersed boundary
conditions, where phenomenological permeability enhancement approach is no longer re-
quired. This approach enables us to explicitly model dual-porosity media, while being ad-
vantageous over the embedded discontinuity models in simulating crack-cavity interactions
where homogenized pore pressure jump may not be sufficient to capture the flow patterns.

Finally, in Chatper 5, we introduce a simple phase field fracture framework that can

180



correctly capture the physical size effects in both micropolar elastic and damaged regimes.
Specifically, elastic stored energy functional is decomposed into the pure Boltzmann, cou-
pling, and pure micro-rotational parts while introducing distinctive degradation mecha-
nisms with a specific regularization profile that is insensitive to the fictitious phase field
length scale parameter. We also conduct one-dimensional analysis to demonstrate the regu-
larization length scale independence, and our numerical examples show that this model can
successfully incorporate the micropolar size effects. This work may have significant im-
plications for phase-changing geological materials that possesses microstructural attributes
as well as other field scale applications where the material characteristic lengths are much

smaller than the regularization length scale.

6.2 Future perspective

While Chapter 2 attempts to construct a solid foundation in modeling phase-changing geo-
materials, and Chapters 3, 4, and 5 introduce techniques that are crucial for incorporating
small scale details in heat transfer, fluid mass transport, and microstructural size effects,
rescpectively, this section now discusses the extension of the current family of proposed
methods to address a larger class of energy and environmental techniques problems that in-
volve phase transition. Based on the aforementioned advancements and progresses, future
studies that can be further explored beyond this dissertation are summarized as follows.
For either partially or fully saturated soils, crack healing may occur during the thawing
process since soil experiences compressive stress in this case. Melting of ice lenses in a
highly plastic soil, such as clays, cracks may heal due to the interactions between water
molecules, while in a less cohesive soil, relocation of eroded particles result in clogging of
cracks and cavities. Furthermore, water adsorption on clay particles may have a profound
impact on fluid motion inside the heterogeneous matrix, which can affect the freezing pat-

terns and hence the microporomechanical responses. One possible approach is to allow
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crack driving force to decrease by assuming that the healing process is activated if the mate-
rial experiences volumetric compression, while incorporating adsorption process as a mass
exchange process between the clay mineral and pore water. The work presented in Chapter
2 can be considered as a starting point for a new mathematical framework that incorpo-
rates these effects, which may have significant impacts in studying microporomechanical
behavior of phase-changing geomaterials.

Since solid and fluid constituents may not be in thermal equilibrium state at small scales,
two-temperature model presented in Chapter 3 will have more profound importance for the
case where temperature difference does not only trigger thermal expansion but also lead
to phase transition. For instance, CO, sequestration induced fracture simulations often in-
jects supercritical carbon dioxide that stimulates rapid change in mechanical behavior of
the fluid for different pressure-temperature combination, especially when near the critical
point or at the phase transition regime. Incorporating thermal- or pressure-induced phase
transition of the fluid constituent into the proposed two-temperature model will be consid-
ered in the future, since it may result in significant differences compared to the classical
one-temperature approach.

Besides, freeze-thaw action in geological materials that contains large voids or size
effects may exhibit different freezing patterns, compared to homogeneous medium. In this
case, it is essential to incorporate its microporomechanical behavior by considering either
coupled Stokes-Darcy flow (Chapter 4) or higher order continuum theory (Chapter 5) or
both. Chapters 4 an 5 in this dissertation can serve as potential starting points for further
development of computational frameworks to model meso- or macro-scale applications
without sacrificing necessary details, which may be advantageous over particle/pore-scale
or multi-scale simulators since they require significant amounts of computing resources.

As predictive computer simulations of phase-changing porous materials have become
more critical for numerous energy and environmental geotechnics applications, my future

research will continuously focus on theoretical and computational microporomechanics of
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multi-phase media. Based on a series of mathematical and computational frameworks pre-
sented this dissertation, the following research topics can be further explored in the future:
(1) micro-freezing patterns and hydrochemical processes in phase-changing clay materi-
als, (2) development of frozen-soil-structure interaction model to investigate the effect of
ice lenses on the pavements, (3) characterization of microthermoporomechanical behavior
and/or multi-scale modeling of shallow and deep geothermal energy systems, and (4) in-
vestigation of hydro-chemo-mechanically coupled behavior of carbonate precipitated soils

and numerical evaluation of environmental-friendly soil improvement techniques.
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