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Abstract

Utilizing Prediction Analytics in the Optimal Design and Control of Healthcare Systems

Yue Hu

In recent years, increasing availability of data and advances in predictive analytics

present new opportunities and challenges to healthcare management. Predictive models are

developed to evaluate various aspects of healthcare systems, such as patient demand, pa-

tient pathways, and patient outcomes. While these predictions potentially provide valuable

information to improve healthcare delivery, there are still many open questions considering

how to integrate these forecasts into operational decisions. In this context, this disserta-

tion develops methodologies to combine predictive analytics with the design of healthcare

delivery systems.

The first part of dissertation considers how to schedule proactive care in the presence

of patient deterioration. Healthcare systems are typically limited resource environments

where scarce capacity is reserved for the most urgent patients. However, there has been

a growing interest in the use of proactive care when a less urgent patient is predicted to

become urgent while waiting. On one hand, providing care for patients when they are less

critical could mean that fewer resources are needed to fulfill their treatment requirement.

On the other hand, due to prediction errors, the moderate patients who are predicted to

deteriorate in the future may self cure on their own and never need the treatment. Hence,

allocating limited resource for these patients takes the capacity away from other more ur-

gent ones who need it now. To understand this tension, we propose a multi-server queue-



ing model with two patient classes: moderate and urgent. We allow patients to transition

classes while waiting. In this setting, we characterize how moderate and urgent patients

should be prioritized for treatment when proactive care for moderate patients is an option.

The second part of the dissertation focuses on the nurse staffing decisions in the emer-

gency departments (ED). Optimizing ED nurse staffing decisions to balance the quality of

service and staffing cost can be extremely challenging, especially when there is a high level

of uncertainty in patient demand. Increasing data availability and continuing advancements

in predictive analytics provide an opportunity to mitigate demand uncertainty by utilizing

demand forecasts. In the second part of the dissertation, we study a two-stage prediction-

driven staffing framework where the prediction models are integrated with the base (made

weeks in advance) and surge (made nearly real-time) staffing decisions in the ED. We

quantify the benefit of having the ability to use the more expensive surge staffing. We also

propose a near-optimal two-stage staffing policy that is straightforward to interpret and

implement. Lastly, we develop a unified framework that combines parameter estimation,

real-time demand forecasts, and capacity sizing in the ED. High-fidelity simulation exper-

iments for the ED demonstrate that the proposed framework can reduce annual staffing

costs by 11%–16% ($2 M–$3 M) while guaranteeing timely access to care.
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Introduction

Healthcare delivery systems face convoluted operational challenges different from those

in conventional service systems. On the micro level, patients can experience complex dis-

ease progression and interact simultaneously or sequentially with a myriad of heteroge-

neous resources. On the macro level, healthcare systems are typically networks of many

interacting elements that exert mutual influence on each other and on the system as a whole.

These complexities result in significant uncertainties in demand, supply, and patient path-

ways. In the era of burgeoning information and data science, predictive analytics have

revealed inspiring opportunities to mitigate uncertainties in various aspects of healthcare

delivery and revolutionize traditional operations. For example, to increase throughput in the

emergency department (ED), tests can be ordered proactively for patients at triage based

on their likelihood of needing them. In addition, patients can be advanced to the inpa-

tient ward before having official admission orders if their disposition can be accurately

predicted. These prediction-based practices have the potential to improve operational effi-

ciency without comprising quality of care.

In this dissertation, we aim to develop methodologies to combine predictive analytics

with the design and control of healthcare delivery systems. The dissertation has two parts.

Part I (Chapter 1) focuses on designing the optimal scheduling policy of proactive care in

the presence of predicted patient deterioration and improvement. Part II (Chapters 2 and 3)

addresses the nurse staffing problem in the ED based on demand forecasts.

In Part I (Chapter 1), we begin with the observation that in healthcare systems, it is
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typical that scarce medical resources are reserved for the most severe patients. In recent

years, there has been a growing interest in the use of proactive care when a less urgent

patient is predicted to become urgent while waiting. On one hand, advancing care for

patients when they are less critical could mean that fewer resources are needed to fulfill

their treatment requirement. On the other hand, utilizing limited resources for patients who

are less critical may take capacity away from the more critical ones. Moreover, due to

prediction errors, some of these less critical patients may self cure on their own without

ever needing critical care. Thus, providing proactive care to them may end up generating

more workload for the system.

In Chapter 1, we aim to develop a better understanding of the key tradeoffs in providing

preventative care. To this end, we propose a multi-class queueing system that explicitly

models patients’ deterioration and improvement behavior, and study the optimal scheduling

policy for proactive care. We analyze both the long-run and transient performance, with

the focus on developing structural insights on the optimal policy. The long-run average

optimization problem provides guidance on scheduling proactive care when the system is in

its “normal" state of operation. The transient analysis further sheds light on the most cost-

effective way to bring the system back to normal after a surge in demand due to random

shocks such as disease outbreaks and mass casualty events. Our analysis quantifies the

merits of proactive care and the impact of prediction errors on the optimal scheduling

policy. Since the tradeoffs for proactive care can be similarly observed in other service

sectors, the exposition of Chapter 1 is applicable to service systems in general and not

limited to healthcare settings. There, “customer" and “proactive service" can be understood

as the counterpart for “patient" and “proactive care," respectively.

During the global pandemic caused by coronavirus disease (COVID-19) in 2020, criti-

cal care physicians from New York and Florida reached out to us with the question of when

to apply different levels of respiratory support for patients with COVID-19-associated res-

piratory failure. We applied insights from Chapter 1 to help the physicians derive allocation
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policies of high-flow nasal cannula and mechanical ventilators based on projected patient

deterioration. Results of this application are summarized in Gershengorn et al. (2021).

In Part II (Chapters 2 and 3), we focus on the ED nurse staffing problem. ED crowding

is a significant problem across the world, leading to adverse effects on patient outcomes,

patient satisfaction, and staff morale. Nurses provide a substantial portion of patient care

and are often a bottleneck resource in the ED. Despite its central role in reducing patient

waiting time, the nurse staffing problem has been a time-honored challenge for hospitals,

especially because there is a high level of demand uncertainty and staffing decisions have

to be made ahead of time. In recent years, rapid progress of machine learning provides

an opportunity to mitigate demand uncertainty by building advanced prediction models for

ED demand.

In Chapter 2, we evaluate the effectiveness of rich real-time information in predicting

shift-level ED patient volume. We aim to understand which real-time information has pre-

dictive power, and what prediction techniques are appropriate for forecasting ED demand.

To this end, we conduct a retrospective study in an ED site in a large academic hospital

in New York City. We examine various prediction techniques including linear regression,

regression tree, extreme gradient boosting, and time series models. By comparing models

with and without real-time predictors, we assess the potential gain in prediction accuracy

from real-time information. We find that real-time predictors improve prediction accuracy

upon models without contemporary information. Among extensive real-time predictors

examined, recent patient arrival counts, weather, Google trends, and concurrent patient

comorbidity information have significant predictive power. Out of all the forecasting tech-

niques explored, SARIMAX (Seasonal Auto-Regressive Integrated Moving Average with

eXogenous factors) achieves the smallest out-of-sample RMSE (Root-Mean-Square Error)

of 13.803 and MAPE (Mean Absolute Percentage Error) of 8.482%. Linear regression is

the second best with out-of-sample RMSE and MAPE equal to 14.089 and 8.633%, respec-

tively.
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In Chapter 3, we propose a two-stage staffing framework that integrates the prediction

models developed in Chapter 2 into ED nurse staffing decisions. In particular, the base

staffing decision is determined weeks in advance, when the demand information is rela-

tively crude. The surge staffing decision is set hours before the beginning of the nursing

shift, when the demand forecast is much more accurate. We find that when the ED faces

significant demand uncertainty, reasonably accurate demand prediction leads to significant

cost savings (11%–16% or $2 M–$3 M) while guaranteeing timely access to care. Our pro-

posed prediction-driven staffing rule lends to itself an intuitive interpretation and achieves

near-optimal performance. Preliminary results have been presented to ED management in

New York for the possibility of running a pilot study of our proposed prediction model and

two-stage staffing rule.
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Chapter 1: Optimal Scheduling of Proactive Service with Customer

Deterioration and Improvement

1.1 Introduction

With recent advancements of predictive analytics and data availability, considerable efforts

have been made to develop predictive tools for service systems. For example, in health-

care settings, predictive models have been created to evaluate the risk of ICU admission

(Churpek et al., 2014), hospital acquired infection (Chang et al., 2011), Cardiovascular

events (Rumsfeld et al., 2016), and various other adversarial patient deterioration. In call

centers, predictive models have been developed to identify customers who are likely to

contact their insurance company based on past claims data (Jerath et al., 2015).

From the operations perspective, predictive information on customers’ future service

needs brings the opportunity of developing approaches to provide effective proactive ser-

vice and, potentially, improve system performance. In healthcare, there is well-documented

evidence that delayed treatment can lead to worse medical outcomes such as longer length

of stay or higher mortality rate (Chan et al., 2008; Chalfin et al., 2007; Chan et al., 2016).

Proactive care, with the help of the predictive models that forecast patient deterioration,

can help reduce treatment delays and improve patient outcomes (Hu et al., 2018). In the

insurance company call center example, Jerath et al. (2015) advocate reaching out proac-

tively to customers who have a high probability of calling to increase customer satisfaction

and reduce peak demand.

Isolating the potential impact of proactive service is not straightforward. On one hand,

advancing service for customers when they are less urgent could mean that fewer resources

are needed to fulfill their service requirement. This has the potential benefit of reducing the

5



overall workload of the system. On the other hand, utilizing limited capacity for customers

who are less critical may take capacity away from other more critical customers whose

service needs are more urgent. Moreover, some of these less critical customers may be sat-

isfied without ever needing the critical service. Thus, providing proactive service to them

may end up generating more workload for the system. In this chapter, to develop a better

understanding of the key tradeoffs in proactive service, we propose a multi-class queue-

ing system that explicitly models customers’ deterioration and improvement behavior, and

study the optimal scheduling policy for proactive service based on the model.

While proactive service has long been considered in manufacturing settings where pre-

ventative maintenance effectively reduces the demand for future repair services (McCall,

1965; Pierskalla and Voelker, 1976), in service systems, there are very few works analyzing

proactive service with predictive information about customers’ future needs (see Section

1.1.1 for a detailed review of some related works). Our modeling approach aims to provide

a systematic way to capture the key tradeoffs in the limited resource environment: the po-

tential benefit of serving customers early on with fewer resources versus the potential cost

of delaying service for the more urgent customers and generating more overall workload to

the system. Moreover, our analysis provides insights on how the accuracy of the predictive

information affects the prioritization of services.

We conduct analysis on both the long-run average performance and the transient perfor-

mance, with the focus on developing structural insights into the optimal scheduling policy.

The long-run average performance analysis provides guidance on scheduling proactive ser-

vice when the system is in its “normal" state of operation. That said, service systems

often operate in a highly non-stationary environment. A surge in demand due to random

shocks, e.g., disease outbreaks or mass casualty events for hospitals and insurance com-

panies, weather patterns resulting in mass flight cancellations for airline call centers, etc.,

can bring the system far from its normal state of operation. It is thus important to study the

transient optimal control and to develop an understanding of the most cost-effective way to
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bring the system back to normal.

Our analysis quantifies the merits of proactive service. We are able to characterize

settings where proactive service can be beneficial and others where it is better to focus all

resources on the most urgent customers. Our main contributions can be summarized as

follows.

Queueing model with dynamic class types. We propose a Markovian multi-server

queue with two customer classes: urgent and moderate. The key feature we incorporate is

that a moderate customer who does not receive timely service may resolve their problem

and leave without requiring service, or may deteriorate and become an urgent customer.

Similarly, an urgent customer who does not receive service may leave the system, e.g.,

through adversarial events such as abandonment, or may improve to the moderate class.

If we assume there is a classifier (e.g. an early warning system) that classifies potentially

risky customers into the moderate class, then the proportion of moderate customers who

will actually deteriorate into the urgent class measures the true positive rate of the classifier.

Our analysis, which builds on a deterministic fluid approximation of this queueing model,

provides insights on how different model parameters affect the optimal scheduling policy

for proactive service.

Equilibrium analysis. To minimize the long-run average cost for the fluid model, we

show that the decision to prioritize the urgent class versus the moderate class is governed

by what we refer to as the modified cµ/θ -rule. In particular, the corresponding modified

cµ/θ -index accounts for the class-transition dynamics in addition to the holding costs,

service rates, and abandonment rates. The exact expression of this index lends itself to a

very intuitive interpretation of which parameters – pre or post transition of class types –

impact the performance.

Transient optimal control. To minimize the cumulative transient cost (until reaching

the equilibrium point with zero queue) for the fluid model, we show that the optimal policy

may switch priority depending on the interplay between two indices: the cµ-index and the
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modified cµ/θ -index. In particular, it is optimal to schedule according to the modified

cµ/θ -rule when the system state is far away from the equilibrium, and follow the cµ-rule

when the state gets close to the equilibrium. Furthermore, if the same class is prioritized

by both the cµ-rule and the modified cµ/θ -rule, then it is optimal to assign strict priority

to this class throughout the transient time horizon. On the other hand, if one class is prior-

itized near the equilibrium and the other is prioritized far away from the equilibrium, then

the optimal scheduling policy switches priority at most once along the trajectory. After

characterizing the structure of the optimal scheduling policy, calculating the optimal policy

curve where priority switches can be done relatively easily. We conduct sensitivity analysis

on the policy curve and quantify the effect of prediction accuracy on the optimal scheduling

policy.

Our transient analysis also provides a paradigm for solving transient control problems

in queues. In particular, the analysis can be summarized by three steps: (i) Approximate

the transient dynamics using a proper fluid model; (ii) Derive the structure of the optimal

scheduling policy for the fluid model. As the fluid model is a deterministic dynamical

system, this step is done utilizing Pontryagin’s Minimum Principle and special techniques

to deal with state constraints; (iii) Based on the structure of the optimal policy, solve a

simpler version of the optimal control problem, i.e. solve for the optimal policy curve.

The rest of the chapter is organized as follows. We conclude this section with a brief

review of related literature (Section 1.1.1). The model and detailed problem formulation

are introduced in Section 1.2. We derive the optimal scheduling policy to minimize the

long-run average cost in Section 1.3, and the optimal scheduling policy to minimize the

cumulative transient cost until reaching the equilibrium point in Section 1.4. Section 1.5

considers some model extensions. Lastly, we conclude in Section 1.6. All the proofs are

provided in the appendix.
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1.1.1 Related Literature

Our work is mainly related to three streams of literature. From the problem context, our

problem is related to i) proactive service for managing service systems and ii) scheduling

in multi-class queues, especially queues with dynamic class types. From the methodology

perspective, our work is related to iii) transient queueing control. In what follows, we

briefly review related works in these areas.

Proactive Service. There are a number of works on proactive service in service systems,

most of which focus on optimal screening strategies in healthcare. For example, Özekici

and Pliska (1991) study the optimal scheduling of inspection in the context of screening

for cancerous tumors. They take false positives into account but not the limited resource

environment, i.e. they do not consider the externality each patient places on other patients.

Örmeci et al. (2015) study the optimal scheduling of screening where the screening service

shares resources with the more urgent diagnostic service. They model the benefit of screen-

ing through its effect on improving the “environment". Sun et al. (2017) study whether to

perform triage under austere conditions, where triage occupies scarce resources but can

provide more information on how to prioritize patients. Hu et al. (2018) take an empiri-

cal approach to examine the cost and benefit of proactively transferring “risky" patients to

the ICU. In various service settings, there are also works modeling proactive service when

providers have advance information about customers’ future service needs, but they do not

model the dynamic change of customer class types as we do. Examples include Xu and

Chan (2016), Yom-Tov et al. (2018), Delana et al. (2019) and Cheng et al. (2019). Our

work complements this literature by providing a general modeling framework that takes

several key aspects of proactive service into account. These aspects include a limited re-

source environment, customer deterioration and amelioration, different service needs, and

different waiting costs. We also derive structural insights on the optimal scheduling policy

for proactive service.
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Optimal scheduling of multi-class queues. Our modeling approach falls into the cate-

gory of multi-class queues. There is a growing literature on optimal scheduling of multi-

class queues; see, for example, Mandelbaum and Stolyar (2004); Harrison and Zeevi

(2004); Stolyar et al. (2004), and Puha and Ward (2019) for a recent review of works

on scheduling multi-class queues with impatient customers. Due to the linear structure in

system dynamics, in a lot of cases, a simple index-based policy can be shown to be opti-

mal. For example, the cµ-rule is shown to be optimal for a single server queue without

abandonment (Cox and Smith, 1991). The cµ/θ -rule is shown to be asymptotically opti-

mal for multi-class queues with exponential patience time distribution in the many-server

overloaded regime (Atar et al., 2011). We also note that due to the prohibitively large state-

space and policy-space for these problems, approximation techniques are often employed

to develop structural insights on the optimal policy, (e.g., Van Mieghem (1995); Tezcan

and Dai (2010); Gurvich and Whitt (2010)).

The most relevant multi-class queueing models to ours are queues with dynamic class

types. Sharing similar motivation to our work, Akan et al. (2012) model the wait list for do-

nated organs as a multi-class overloaded queue. Disease evolution is captured by allowing

customers to transition between different classes representing different health levels. Xie

et al. (2017) conduct performance analysis for systems where delayed customers may re-

nege the current queue and transfer to a higher-priority class. Cao and Xie (2016) derive the

optimal scheduling policy for a single-server two-class model with holding and transferring

costs. Down and Lewis (2010) study an N-model in which customers from the class with

flexible servers (low-priority) can be upgraded to the one with dedicated servers (high-

priority). Most of these works rely on exact or numerical analysis of the corresponding

Markov decision process (MDP), where the analysis can become prohibitively challenging

when the scale of the system becomes large or more features are added to the model. In

this chapter, we adopt a fluid approximation approach, which borrows insights from the

conventional heavy-traffic asymptotic analysis under the fluid scaling (Whitt, 2002).
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Transient Queueing Control. Analyzing transient queueing dynamics is often very chal-

lenging, even without the added complexity of optimizing over different control policies.

Only a limited set of numerical and approximation techniques have been developed for

transient performance analysis. These include inverting Laplace transforms (Abate and

Whitt, 1988, 2006), heavy-traffic asymptotics (Honnappa et al., 2015), etc. Our study uses

a fluid approximation and employs tools from the optimal control theory for dynamical

systems to derive the optimal transient scheduling policy; see (Sethi and Thompson, 2000;

Grass et al., 2008) for an overview of continuous-time control theory and its wide applica-

tions. In particular, we utilize Pontryagin’s Minimum Principle (Hartl et al., 1995), which

is a common methodology used for both linear and nonlinear continuous control prob-

lems. The most relevant works to ours are Larrañaga et al. (2013) and Larrañaga (2015),

where they consider a multi-class single-server queue with abandonment but static (fixed)

class types. Aiming to minimize the cumulative transient holding cost for the fluid ap-

proximation, the authors show that the optimal policy may switch priority depending on

the interplay between the cµ-index and the cµ/θ -index. We note that adding the compo-

nent of dynamic class types is a highly nontrivial extension due to the more complicated

boundary behavior (when the state constraints are binding). Moreover, the optimal trajec-

tories in our case cannot be characterized in closed form. We highlight that the analysis

laid out in Section 1.4 substantially extends the framework for navigating optimal control

problems with state constraints; this approach may shed insights for other queueing control

problems.

1.2 The Model

To explore the potential benefits of proactive service, we propose a Markovian two-class

multi-server queueing system as depicted in Figure 1.1. Customers (jobs) are defined by

their need for service. Without loss of generality, we refer to Class 1 as the urgent class:

those with immediate need for service. Focusing resource allocation to just these customers

is a common approach in the service operations literature. In this work, we also consider
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a moderate class (Class 2): those who currently do not need as high level of service as

Class 1, but are at risk of becoming urgent. The novel feature we incorporate is dynamic

class types. We allow Class 2 customers to transition to Class 1 while waiting and refer

to this as a degradation. Proactive service (preventive service), i.e. providing service

to Class 2 customers, can prevent Class 2 customers from becoming Class 1 customers.

We also allow Class 1 customers to transition to Class 2 while waiting, and refer to this

as improvement. Note that, mathematically, our model is symmetric. We differentiate

customers as urgent and moderate to better facilitate discussions of real-world applications

and derive managerial insights.

These type of dynamics may arise in a lot of service operations applications. For ex-

ample, in hospitals, Class 1 customers may correspond to patients who are physiologically

unstable and in need of care in an Intensive Care Unit (ICU), while Class 2 customers may

correspond to patients in the general medical ward who are at risk of deteriorating. Those

who are in the general medical ward, but are known to have no risk of needing ICU care,

would be outside of our modeling framework. Many patients in the general medical ward

will never need ICU care, while others may decompensate and be transferred up to the

ICU. With improving accuracy of early warning systems, proactive ICU admission before

a patient is severely critical is becoming a reality (Hu et al., 2018). What remains is to

understand when and how such care should be utilized.

Another example is airline call centers following massive flight cancellations, e.g. due

to severe weather issues. In this case, urgent customers are those with complicated and

urgent travel needs, and thus require immediate assistance from the agents. Moderate cus-

tomers are those who can either rebook through an agent or rebook online themselves.

However, some moderate customers may develop negative emotions while trying to find

another flight themselves and may require more service time to satisfactorily address their

needs once they have joined the urgent queue for agent assistance (Altman et al., 2019).

We consider a system with s identical servers, i.e. they offer the same quality of service.
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Class i customers, i = 1,2, arrive to the system according to a time-homogeneous Poisson

process with rate λi. Class 1 customers have independent and identically distributed ser-

vice requirements following an exponential distribution with mean 1/µ1. While waiting

to receive service, a Class 1 customer may improve and transition to the Class 2 queue

according to an exponentially distributed clock with rate γ1. A Class 1 customer can also

abandon the queue if its waiting time exceeds its patience time. The patience time is ex-

ponentially distributed with mean 1/θ1 and is independent of everything else. For Class

1 customers, one can interpret this abandonment as an undesirable event. For example, in

the healthcare setting, urgent patients could be placed in an off-service unit, transferred to

another hospital, or even die. In a call center setting, customers may abandon and their

patronage may be lost.

Class 2 customers can either be proactively served (i.e. before transitioning to Class 1),

abandon the system, or deteriorate into Class 1. Should the system administrator choose to

provide proactive service to a Class 2 customer, its service time is exponentially distributed

with mean 1/µ2. Deterioration and abandonment happen according to two independent ex-

ponential clocks with rate γ2 and θ2, respectively. For Class 2 customers, one can interpret

the abandonment as a desirable outcome. For example, in the healthcare example, the

abandonment for moderate patients can be the event that the patient is no longer at risk for

deterioration, i.e., the patient self-cures.

Remark 1. We make two remarks about our modeling assumptions. First, the Markovian

assumption on system primitives, including exponential deterioration and upgrade times,

is quite common in the literature; see, for example, Down and Lewis (2010); Cao and Xie

(2016); Xie et al. (2017). This is in part because the assumption greatly facilitates the

theoretical analysis of system dynamics. Second, in practice, it is natural to assume that

the service times while in Class 1 and Class 2 for the same customer should be correlated.

This can be achieved by assuming that the “base" service requirement for a customer is

characterized by a rate 1 exponential random variable, V0. When the customer is served
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as Class i, i = 1,2, its service time is V0/µi. In this case, we keep the marginal service

time distribution in Class i as exponential with rate µi while maintaining the order of

the service times, e.g., if µ1 < µ2, then V0/µ1 > V0/µ2 with probability 1. Due to the

memoryless property of exponential random variables, introducing such correlation will

not affect the dynamics of the system. For simplicity in the subsequent development, we

treat these service times as independent random variables.

Figure 1.1: Two-class queue
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We next provide a useful interpretation for the ratio φ := γ2/(θ2 + γ2). Note that if no

proactive service is provided to Class 2 customers, γ2/(θ2+γ2) of them will deteriorate into

the urgent class. Suppose Class 2 customers are identified via a classifier that determines

customers who are “at risk" of deteriorating (e.g., Escobar et al. (2012)), then γ2/(θ2 +

γ2) can be interpreted as the true positive rate of this classifier. That is, it measures the

accuracy of the classifier. For example, if we know with certainty that Class 2 customers

will eventually deteriorate into Class 1 customers, then θ2 = 0 and γ2/(θ2 + γ2) = 1.

To understand the key tradeoffs we are trying to capture with this model, we start by

discussing the extreme case where γ1 = θ1 = θ2 = 0. In this case, if no service is provided

to Class 2 customers, each Class 2 customer generates an average workload of γ2/(µ1(θ2+

γ2)) to the system. This is because γ2/(θ2 + γ2) of the Class 2 customers will deteriorate

into Class 1 and all Class 1 customers must be served. On the other hand, if we can

provide proactive service to all Class 2 customers, then each Class 2 customer will generate
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an average workload of 1/µ2. The magnitude of γ2/(θ2 + γ2) impacts whether it may

be more or less beneficial, from a workload perspective, to provide proactive service to

Class 2 customers. Of course, the actual problem we are facing is more complicated than

minimizing the system workload. In particular, the different waiting, abandonment, and/or

class-transition costs incurred by the two classes can also have a substantial impact on the

optimal scheduling policy.

Let Xi(t) denote the number of Class i customers in the system at time t, t ≥ 0. We

denote by Zi(t) the number of servers assigned to Class i customers, and by Qi(t) the queue

length of Class i at time t. Clearly, Z1(t)+Z2(t) ≤ s and Xi(t)−Zi(t) = Qi(t) ≥ 0 for i =

1,2. We also write X(t) = (X1(t),X2(t)), Z(t) = (Z1(t),Z2(t)), and Q(t) = (Q1(t),Q(t)).

Note that the state of the system at time t can be described by (X(t),Q(t)). A scheduling

policy Π is defined as a rule for allocating servers to customers, i.e. Zi’s are the control

variables. We consider Markovian policies under which the server allocations are made

based on the current state (X ,Q) only. In particular, the policy is non-anticipating. Under

this class of scheduling policies, which we denote by set S , {(X(t),Q(t)) : t ≥ 0} forms a

Markov process.

As the process {(X(t),Q(t)) : t ≥ 0} actually depends on the scheduling policy Π, we

can more explicitly mark the dependence by writing the stochastic process as {(XΠ(t),QΠ(t)) :

t ≥ 0}. We also denote RΠ
i (t) as the cumulative number of the customers that have aban-

doned the Class i queue by time t, and ΓΠ
i (t) as the cumulative number of customers that

have changed type from Class i to the other by time t. In what follows, we shall drop the

superscript Π when it can be understood from the context.

We incur costs for all customers who wait, abandon, or transition classes. In particular,

for each Class i customer, we denote hi as the holding cost per unit time waiting in queue,

αi as the fixed cost of abandonment, and νi as the fixed cost of changing class types. Our
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goal is to minimize the aggregated cost incurred, namely,

E

[∫ T

0
∑

i=1,2
hiQi(t)dt + ∑

i=1,2
(αiRi(T )+νiΓi(T ))

]
. (1.1)

Note that under the Markovian modeling assumption, we have

E [Ri(T )] = θiE
[∫ T

0
Qi(t)dt

]
and E [Γi(T )] = γiE

[∫ T

0
Qi(t)dt

]
, i = 1,2.

Thus, (1.1) can be equivalently written as

E
[∫ T

0
(c1Q1(t)+ c2Q2(t))dt

]
, where ci = hi +αiθi +νiγi for i = 1,2.

This implies that we can incorporate the abandonment costs and the class-transition costs

into the holding costs. In what follows, we shall use c1 and c2 to denote the “generalized"

holding costs. Note that we defined Class 1 as the urgent class in order to facilitate inter-

pretation and draw managerial insights. For example, this can correspond to defining Class

1 customers as those having a higher generalized holding cost, i.e., c1 > c2.

Remark 2. Due to our Markovian assumptions and our holding cost criteria, the system

performance is agnostic to the order customers are served within a class. The policy de-

velopment focuses on which class to prioritize; customers within the same class can be

served in any order, e.g., first-come-first-served. That said, when looking at individual cus-

tomers, depending on the transition dynamics and scheduling policies, it is possible that a

customer’s waiting time may increase or decrease after changing class. Indeed, our policy

development leverages the fact that customers may be able to afford to wait longer after

transition (due to the smaller holding cost) and so we can focus resources to the higher pri-

ority customers. If we wanted to take waiting-time related fairness into account, we would

need to modify our objective function to add some cost of fairness or adapt the optimiza-

tion problem to incorporate a fairness constraint. Quantifying the fairness of a scheduling

policy is an interesting and challenging problem which is outside the scope of this work.

We refer to Wierman (2011) for more discussions on the topic.
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In this chapter, we focus on two cost measures. One is the long-run average cost; the

other is the cumulated transient cost. The two cost formulations have different focuses and

are both relevant in practice. The long-run average cost formulation involves minimizing

the cost when the system is in its “normal” state of operation. When shocks bring the sys-

tem far from its normal state of operation, the transient cost formulation aims to minimize

the cost incurred to bring the system back to normal. More precisely, the long-run average

cost minimization problem is

min
Π∈S

limsup
T→∞

1
T
E
[∫ T

0

(
c1QΠ

1 (t)+ c2QΠ
2 (t)

)
dt
]
. (S1)

It is significant that the long-run average problem is not capacity specific, namely, the sys-

tem can be staffed to operate in an underloaded or overloaded regime. For the cumulated

transient cost minimization problem, we define

T := inf{t ≥ 0 : Q1(t)+Q2(t) = 0} .

That is, T is the time until the total queue is emptied. We assume that for the tran-

sient problem, we have ample capacity such that E [T ] < ∞ for any fixed initial state

(X(0),Q(0)) = (x0,q0). Then the transient optimization problem can be written as

min
Π∈S

E
[∫ T

0

(
c1QΠ

1 (t)+ c2QΠ
2 (t)

)
dt
]
. (S2)

These cost minimization problems are MDP’s. Due to the large (infinite) state-space

and policy-space, they are prohibitively hard to solve from a computational standpoint.

Even if we solve it numerically, limited insights about the optimal policy can be gained.

Various approximation techniques have been developed in the literature to solve large-scale

MDPs. With the goal of gaining structural insights into the optimal scheduling policy, we

employ a fluid approximation approach; a similar method has been used in, for example,

Whitt (2006a); Perry and Whitt (2009); Atar et al. (2010).
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1.2.1 The Fluid Model

To construct the fluid model, we replace the stochastic arrival, service, abandonment and

class-transition processes by their corresponding deterministic flow rates. We use the low-

ercase q to denote the fluid queue length process, and a fluid scheduling policy π specifies

the service capacity allocation process (z1,z2). Under π , the fluid dynamics take the form

q̇1(t) = λ1− z1(t)µ1−θ1q1(t)− γ1q1(t)+ γ2q2(t)

q̇2(t) = λ2− z2(t)µ2−θ2q2(t)− γ2q2(t)+ γ1q1(t).
(1.2)

Let F denote the set of fluid admissible scheduling policies. We say that a policy belongs

to F if the server allocation only depends on the current state of the system (Markovian),

and satisfies the following constraints:

zi(t)≥ 0, i = 1,2, t ≥ 0

z1(t)+ z2(t)≤ s, t ≥ 0

q̇i(t)≥ 0 whenever qi(t) = 0, i = 1,2, t ≥ 0.

(1.3)

The first and second constraints in (1.3) require that a non-negative amount of service

capacity is assigned to each class, and the total amount of allocated resource does not

exceed service capacity. The third constraint guarantees that the resulting queue length

process qi(t) is non-negative for all t ≥ 0. Note that the queue length process {q(t) : t ≥ 0}

actually depends on the scheduling policy π . We can more explicitly mark the dependence

by writing it as {qπ(t) : t ≥ 0}. To keep the notation concise, we shall drop the superscript

when it can be understood from the context.

We comment that the fluid dynamics capture the mean dynamics of the stochastic sys-

tem well, as we will demonstrate later with numerical experiments. In addition, this type of

fluid model often arises in the literature as the functional law of large numbers limit for a

sequence of properly scaled stochastic systems under the conventional heavy traffic scaling

(Whitt, 2002; Reed and Ward, 2008). In this limiting regime, we scale up the arrival rates

and the service rates while scale down the space (Alternatively, we can scale up time while
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scale down the abandonment rates, the class-transition rates, and the space). The number

of servers is held fixed1.

1.2.2 Problem Formulation

In this section, we introduce the fluid counterparts of the stochastic cost minimization

problems. Note that for the long-run average optimization problem, we only require that

the amount of service capacity is non-negative, s≥ 0.

Fluid long-run average cost optimization problem:

min
π∈F

limsup
T→∞

1
T

∫ T

0
(c1qπ

1 (t)+ c2qπ
2 (t))dt. (F1)

For the transient optimization problem, let τ := inf{t ≥ 0 : q1(t)+ q2(t) = 0}, which

is the first time when the total fluid queue reduces to 0. We assume that there is ample

capacity s such that for any q(0) = q0, τ < ∞. As will be explained in Section 1.4, the

precise condition is s > λ1/µ1 +λ2/µ2.

Fluid transient optimization problem:

min
π∈F

∫
τ

0
(c1qπ

1 (t)+ c2qπ
2 (t))dt. (F2)

Our analysis relies on understanding the long-run regularity of the fluid model. We thus

provide the following definition.

Definition 1. Consider the autonomous dynamical system q̇(t) = f (q(t)) with q(0) = q0.

Suppose f has an equilibrium point qe, i.e. f (qe) = 0. Let || · || be the Euclidean norm in

R2. Then

(1) qe is locally asymptotically stable if there exists δ > 0, such that if ||q0−qe||< δ ,

then limt→∞ ||q(t)−qe||= 0.

(2) qe is globally asymptotically stable if for any initial condition q0, limt→∞ ||q(t)−

qe||= 0.

1In particular, we do not scale up the number of servers as in the many-server heavy traffic regime.
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We shall start by solving the long-run average cost minimization problem (F1) in Sec-

tion 1.3. We then solve the transient cost minimization problem (F2) in Section 1.4.

1.3 Optimal Long-Run Scheduling Policy

In this section, we solve the fluid long-run average cost minimization problem. To en-

sure system stability for any arrival rates and service capacity, we impose the following

assumption on the abandonment and class-transition rates.

Assumption 1. (i) θ1 + γ1θ2 > 0 and θ2 + γ2θ1 > 0. (ii) 1
µ2
6= 1

µ1

γ2
θ2+γ2

and 1
µ1
6= 1

µ2

γ1
θ1+γ1

.

Part (i) of Assumption 1 requires that the system has the “necessary" abandonment

for stability even with no service. For example, if the abandonment rate from Class 1 is

zero (θ1 = 0), then a Class 1 customer can leave the system by converting to Class 2 and

eventually abandoning the Class 2 queue (γ1θ2 > 0). Part (ii) of the assumption requires

that there is a workload difference based on when (i.e. before versus after class-transitions

occur) service is provided. This imposes a tradeoff when deciding which class to prioritize

(see, Appendix A.1.1 for more details).

The long-run average cost minimization problem can be explicitly written as

min
z1,z2,q1,q2

limsup
T→∞

1
T

∫ T

0
(c1q1(t)+ c2q2(t))dt

s.t. q̇1(t) = λ1−µ1z1(t)−θ1q1(t)− γ1q1(t)+ γ2q2(t)

q̇2(t) = λ2−µ2z2(t)−θ2q2(t)− γ2q2(t)+ γ1q1(t)

z1(t)+ z2(t)≤ s, t ≥ 0

z1(t),z2(t),q1(t),q2(t)≥ 0, t ≥ 0.

This is an infinite dimensional linear program (LP). We first make an important obser-

vation that allows us to reformulate the problem as a finite dimensional LP. This observa-

tion will be made rigorous in Theorem 1. If the fluid dynamical system converges to an

equilibrium point as t→∞, then minimizing the long-run average cost can be reformulated

as finding the optimal equilibrium point. In particular, we have the following alternative
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problem formulation.

min
ze
1,z

e
2,q

e
1,q

e
2

c1qe
1 + c2qe

2

s.t. λ1−µ1ze
1−θ1qe

1− γ1qe
1 + γ2qe

2 = 0

λ2−µ2ze
2−θ2qe

2− γ2qe
2 + γ1qe

1 = 0

ze
1 + z2

2 ≤ s

ze
1,z

e
2,q

e
1,q

e
2 ≥ 0.

(1.4)

Note that the first two constraints in (1.4) characterize the equilibrium point: rate-in equals

rate-out. By rearranging (1.4), we have an equivalent optimization problem:

max
ze

1,z
e
2

(
c1

θ1 + γ1
θ2

γ2+θ2

+
c2

γ1
γ1+θ1

θ2 + γ2
θ1

γ1+θ1

)
µ1ze

1 +

(
c2

θ2 + γ2
θ1

γ1+θ1

+
c1

γ2
θ2+γ2

θ1 + γ1
θ2

θ2+γ2

)
µ2ze

2

s.t. ze
1 + ze

2 ≤ s

(θ2 + γ2)λ1 + γ2λ2

(θ2 + γ2)θ1 + γ1θ2
− (θ2 + γ2)µ1

(θ2 + γ2)θ1 + γ1θ2
ze

1−
γ2µ2

(θ2 + γ2)θ1 + γ1θ2
ze

2 ≥ 0

(θ1 + γ1)λ2 + γ1λ1

(θ1 + γ1)θ2 + γ2θ1
− (θ1 + γ1)µ2

(θ1 + γ1)θ2 + γ2θ1
ze

2−
γ1µ1

(θ1 + γ1)θ2 + γ2θ1
ze

1 ≥ 0

ze
1,z

e
2 ≥ 0.

(1.5)

It is easy to see that the optimal solution to (1.5) tends to assign a larger value to the ze
i

with a larger coefficient in the objective function. Motivated by this observation, we define

the modified cµ/θ -index as follows: The modified cµ/θ index for Class 1 is

r1 :=

(
c1

θ1 + γ1
θ2

γ2+θ2

+
c2

γ1
γ1+θ1

θ2 + γ2
θ1

γ1+θ1

)
µ1, (1.6)

and the modified cµ/θ index for Class 2 is

r2 :=

(
c2

θ2 + γ2
θ1

γ1+θ1

+
c1

γ2
θ2+γ2

θ1 + γ1
θ2

θ2+γ2

)
µ2. (1.7)

From (1.6) and (1.7), we observe that when γi = 0 we recover the standard cµ/θ -index

(Atar et al., 2010). When γi 6= 0, the extra terms are to account for the class-transition
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dynamics. To interpret the index r1 in (1.6) (r2 in (1.7) follows by symmetry), we note

that the first term corresponds to the standard cµ/θ -structure for Class 1 customers. In

particular, these customers incur a cost at rate c1. The effective abandonment rate is

θ1 + γ1θ2/(θ2 + γ2). This is because “abandonment" in this case consists of the nomi-

nal abandonment, which happens at rate θ1, as well as the improvement. The improvement

happens at rate γ1, but we also have to adjust for the fact that γ2/(γ2 + θ2) of those cus-

tomers may deteriorate and transition back to Class 1. Thus, the net improvement rate is

γ1θ2/(γ2 +θ2). The second term takes into account the Class 1 customers who improve to

Class 2. These customers will incur a cost at rate c2 when in Class 2. Because the propor-

tion of Class 1 customers who improve to Class 2 is γ1/(θ1 + γ1), the expected cost rate

is c2γ1/(θ1 + γ1). When in Class 2, these customers abandon at rate θ2, and deteriorate at

rate γ2 with a feedback probability γ1/(θ1 + γ1).

Formally, we have the following theorem characterizing the optimal scheduling policy

based on the modified cµ/θ -index.

Theorem 1. Under Assumption 1, giving strict priority to the class with a higher modified

cµ/θ -index minimizes the long-run average cost (F1). That is, if r1 ≥ r2, for r1,r2 defined

in (1.6) and (1.7), then it is optimal to give strict priority to Class 1. Otherwise, it is optimal

to give strict priority to Class 2.

To prove Theorem 1, we need to ensure that the fluid dynamical system converges to

the desired equilibrium point under the strict priority rule implied by the modified cµ/θ -

index. We provide detailed analysis on the long-run regularity of the fluid model under the

strict priority rules in Appendix A.1. These convergence analyses are interesting in their

own right, as they reveal important characteristics of the system dynamics. Moreover, we

show that an interesting bi-stability phenomenon, i.e. the presence of two equilibria, can

arise when the sub-optimal strict priority rule is employed. We provide more discussions

about this phenomenon in Section 1.3.1.
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We next numerically compare the long-run average costs of the fluid models to those of

the corresponding stochastic systems under different strict priority rules. We denote P1 as

strict priority to Class 1 and P2 as strict priority to Class 22. Figure 1.2 plots the long-run

average costs for systems with different numbers of servers s. The fluid costs are plotted

in dashed lines while the costs for the stochastic systems are plotted in solid lines. As the

long-run average costs for the stochastic systems are estimated using simulation, we also

provide the corresponding 95% confidence interval. Figure 1.2a illustrates the scenario

where the modified cµ/θ -index suggests prioritizing Class 1, while Figure 1.2b has the

modified cµ/θ -index suggesting prioritizing Class 2. We first note that the long-run aver-

age fluid cost approximates the long-run average cost of the stochastic system reasonably

well, especially when s is small (the system is in the so-called overloaded regime) and

when s is large (the system is in the so-called underloaded regime). Second, we observe

that when comparing the strict priority rules, prioritizing the class with a larger modified

cµ/θ -index always leads to a lower cost in the stochastic system. Thus, even when the

cost of fluid system may deviate from that of the corresponding stochastic system, the re-

sulting policy recommendations are consistent. Lastly, we note that in Figure 1.2b, when

18≤ s≤ 22, the fluid model under strict priority to Class 1 has two different equilibria (bi-

stability). Which equilibrium the fluid system converges to depends on its initial condition.

For the corresponding stochastic system, it will fluctuate around one equilibrium point for

a while before transitioning to the region around the other equilibrium point. Thus, the

corresponding long-run average cost is a weighted average of the costs around the two

equilibria.

1.3.1 Bi-Stability

Due to the dynamic class types, applying the strict priority rule that does not agree with

the modified cµ/θ -index can lead to a bi-stability phenomenon. Motivated by proactive

2Throughout this manuscript, all numerical experiments for the stochastic system are conducted with
preemption, though we emphasize this has no impact on the fluid analysis.
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Figure 1.2: Optimal long-run scheduling policy
((a): λ1 = 10,λ2 = 20,µ1 = 1.5,µ2 = 3,γ1 = 0.1,γ2 = 0.1,θ1 = 0.1,θ2 = 0.4,c1 = 5,c2 = 3
(b): λ1 = 10,λ2 = 20,µ1 = 1,µ2 = 2.5,γ1 = 0.2,γ2 = 0.4,θ1 = 0.1,θ2 = 0.2,c1 = 5,c2 = 1)
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(a) The modified cµ/θ -rule: P1
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(b) The modified cµ/θ -rule: P2

service applications, in this section, we study in more depth a special case where bi-stability

arises. Specifically, we consider the system parameters for which Theorem 7 in Appendix

A.1.1 suggests that if we prioritize the urgent class, the system exhibits bi-stability. While,

in this parameter regime, following the modified cµ/θ -rule is the optimal policy, from a

practical standpoint, the service provider may prefer to give priority to the urgent class,

as long as it does not degrade system performance. We explore whether it is reasonable

to (sometimes) give priority to the urgent class even though one of the optimal long-run

average policies indicates priority should be given to the moderate class.

The parameter regime we are interested in is when the urgent class (Class 1) has a

higher cµ-index, i.e., c1µ1 > c2µ2, but µ1 <
γ2

θ2+γ2
µ2, which implies that the moderate class

(Class 2) has a higher modified cµ/θ -index, i.e., r2 ≥ r1. In this case, from the workload

perspective, it is more efficient to serve moderate customers before they deteriorate, i.e.,

1
µ2

<
γ2

γ2 +θ2

1
µ1

.

Additionally, the capacity is in the critical region

λ1

µ1
+

λ2

µ2
< s≤ λ1

µ1
+

γ2

θ2 + γ2

λ2

µ1
. (1.8)

Figure 1.3 provides an illustration of the vector field under bi-stability. We note that
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there are two locally asymptotically stable equilibrium points. Which equilibrium point

the queue process converges to depends on its initialization.

Figure 1.3: Vector field under bi-stability
(λ1 = 10,λ2 = 20,s = 20,µ1 = 1,µ2 = 2.5,γ1 = 0.2,γ2 = 0.4,θ1 = 0.1,θ2 = 0.2)
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Intuitively, the bi-stability arises because if we delay service for moderate customers,

they will end up generating more workload on average when they deteriorate into the urgent

class. When the system is critically loaded as in (1.8), even though we have enough capac-

ity to serve both classes when service is provided in a timely manner, i.e., λ1/µ1+λ2/µ2 <

s, we do not have enough capacity to serve all the customers when service for Class 2 is

delayed, i.e.,

s ≤ λ1

µ1
+

γ2

θ2 + γ2

λ2

µ1
.

Under bi-stability, we note that one of the equilibrium points leads to very good per-

formance – zero holding cost, while the other equilibrium point has positive queues for at

least one class (Figure 1.3 and Theorem 7). Ideally, we want to avoid the “bad" equilib-

rium regardless of where we start. One way to ensure global convergence to the “good"

equilibrium is to switch priority to the moderate class as suggested by the modified cµ/θ -

rule. However, there are many systems where it may be preferable to give priority to the

urgent class for obvious administrative reasons. Thus, we propose an alternative inter-

vention, which we refer to as the bi-stability control. For a fixed threshold α0 > 0, when

q̄1(t)+ q̄2(t) ≤ α0, we prioritize the urgent class; otherwise, we prioritize the moderate
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class. Following a similar Lyapunov argument as in Appendix A.1.1, when α0 is suffi-

ciently small, q(t) will converge to (0,0) regardless of its initialization q0, i.e., (0,0) is a

globally asymptotically stable equilibrium under this control. As such, both the modified

cµ/θ rule and the bi-stability control with properly chosen threshold lead to the same opti-

mal long-run average cost in this case. However, when studying the transient cost, i.e., the

cost incurred to restore system to zero when it is initialized far from zero, the bi-stability

control can lead to a lower cost than the modified cµ/θ rule as we will explain in Section

1.4.

We next elaborate on the implications of the fluid bi-stability phenomenon for the

stochastic system. When bi-stability arises in the fluid system, the queue length process

of the corresponding stochastic system will fluctuate around one equilibrium for a while

before transitioning to the region around the other equilibrium. Figure 1.4a shows a typical

sample path of the stochastic queue length process, i.e., we plot Q2(t) for t ∈ [0,1000]. Fig-

ure 1.4b provides the histogram of Q2(t). We observe that it follows a bi-modal distribution

where the two peaks are around the two fluid equilibria.

Figure 1.4: Bi-stability in the stochastic system
(λ1 = 10,λ2 = 20,µ1 = 1,µ2 = 2.5,γ1 = 0.2,γ2 = 0.4,θ1 = 0.1,θ2 = 0.2,s = 20)
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(a) Sample path of Q2(t)
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(b) Histogram of Q2(t)

Figure 1.5 plots the long-run average cost for the stochastic system under the bi-stability

control for different values of α0 (point estimates together with the corresponding 95%

confidence intervals). In the stochastic system, if Q1(t)+Q2(t) ≤ α0, we prioritize the
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urgent class. Otherwise, we prioritize the moderate class. Note that α0 = 0 is equivalent to

assigning strict priority to the moderate class, i.e., the modified cµ/θ -rule. Interestingly,

we observe that for certain values of α0, the bi-stability control achieves a smaller long-run

average cost than the modified cµ/θ -rule. As surprising as the observation may seem at

first glance, this phenomenon is due to stochastic fluctuations that bring the system away

from the equilibrium, i.e., zero queue. To restore the system to zero in the most cost-

effective way, the experiments suggest that we should prioritize the moderate class when

the queues are large, and prioritize the urgent class when the queues are small. We explore

this more formally in our transient analysis in Section 1.4.

Figure 1.5: Long-run average cost under the bi-stability control
(λ1 = 10,λ2 = 20,µ1 = 1,µ2 = 2.5,γ1 = 0.2,γ2 = 0.2,θ1 = 0.1,θ2 = 0.2,s = 19,c1 = 10,c2 = 1)
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1.4 Optimal Transient Scheduling Policy

Service systems often operate in highly non-stationary environments. In healthcare set-

tings, for example, random shocks like disease outbreaks or mass casualty events can push

the system far from its normal state, i.e., equilibrium. When such a demand shock happens,

the key question we wish to address is how to bring the system back to its normal state of

operation in the most cost-effective way. In this section, we study the transient optimal

control problem (F2) to find the optimal clearing of backlogs. In particular, we derive the

optimal scheduling policy to help the system recover from demand shocks.

We start by focusing on the after-shock control. In particular, we assume q(0) = q0 > 0
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3 but we now have abundant capacity to bring the fluid queues to zero in a finite amount of

time under some admissible control. In particular, we make the following assumption on

the capacity s.

Assumption 2. s > λ1/µ1 +λ2/µ2.

Later in Section 1.5.1, we generalize the arrival-rate pattern to include the period of

demand shock in our planning horizon. In particular, the shock raises the arrival rates

for a fixed amount of time, during which the service capacity is insufficient and so the

backlogs increase. Importantly, the arrival rates during the demand shock period can be

time-varying and violate Assumption 2. After the initial shock, the arrival rates restore to

normal and satisfy Assumption 2. It is significant that the structure of the optimal control

does not change under this more general arrival-rate model (see Theorem 3). The after-

shock control studied in this section builds the basis for the cases with more general arrival

rates.

Recall that τ = inf{t ≥ 0 : q1(t)+q2(t) = 0} is the first time both of the fluid queues are

emptied. Based on Theorem 7, Assumption 2 implies that there exists a scheduling policy

π , under which, for any q(0) = q0 > 0, τ < ∞. We also note from our long-run regularity

analysis in Appendix A.1.1 that under Assumption 2, both strict priority to Class 1 and

strict priority to Class 2 lead to the same long-run average holding cost – zero. However,

our following analysis will reveal important differences in their transient performance.

The optimal transient scheduling policy depends on the interplay between two index

rules. We define the cµ-rule as a policy that prioritizes the class with a higher ciµi value,

i = 1,2, i.e., the cµ-index. Similarly, the modified cµ/θ -rule is a policy that prioritizes

the class with a higher ri value, i = 1,2, i.e., the modified cµ/θ -index as defined in (1.6)

and (1.7). To capture the differential effect of each of these rules, we impose the following

assumption on the indices.

3We define a vector a > 0 if all its components are nonnegative and there is at least one component that
is strictly positive.
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Assumption 3. c1µ1 6= c2µ2 and r1 6= r2.

We next introduce a few more notations to simplify the presentation of the problem.

From the fluid dynamics (1.2), we define f (q,z) = ( f1(q,z), f2(q,z)) where f1(q,z) =

λ1− z1µ1− θ1q1− γ1q1 + γ2q2 and f2(q,z) = λ2− z2µ2− θ2q2− γ2q2 + γ1q1. From the

constraints on the admissible controls (1.3), we define g(q) = (g1(q),g2(q)), where gi(q) =

−qi, for i = 1,2, and h(z) = (h1(z),h2(z),h3(z)), where h1(z) = z1 + z2− s, h2(z) = −z1,

and h3(z) = −z2. We also define F(q) = c1q1 + c2q2. Then the transient optimal control

problem can be explicitly written as:

min
z

∫
τ

0
F (q(t))dt

s.t. q̇(t) = f (q(t),z(t))

g(q(t))≤ 0

h(z(t))≤ 0.

(F2′)

In optimal control theory, optimization problems of the form (F2′) are referred to as

optimal control with state constraints. Despite a rich body of literature in optimal control,

problems with state constraints are, in general, very difficult to solve explicitly as they

impose extra boundary conditions (Trélat, 2012). While some results can be derived in

special cases, there is no systematic way to deal with these problems; we refer to the survey

paper Hartl et al. (1995) for an overview.

We combine several techniques from optimal control theory to derive the optimal tran-

sient control. Our solution strategy is to first derive the structure of the optimal scheduling

policy. In particular, as we shall explain in Theorem 2, the optimal scheduling policy

switches priority at most once and priorities can be characterized by two simple index

rules. Then solving for the optimal scheduling policy reduces to finding the policy curve

that governs where in the state space the switch in priority happens. We provide a closed

form characterization of the policy curve in Proposition 4 for a special case, and provide

an efficient numerical scheme to construct the policy curve for the other cases.
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The next theorem characterizes the structure of the transient optimal scheduling policy.

Let τ∗ denote the time to empty the queue under the optimal policy.

Theorem 2. Under Assumptions 1, 2, and 3, for the transient optimal control problem

(F2′):

I. If the cµ-rule and the modified cµ/θ -rule both prioritize Class i, i = 1,2, then the

strict priority rule to Class i is optimal for any t ∈ [0,τ∗].

II. If the cµ-rule prioritizes Class i but the modified cµ/θ -rule prioritizes Class j, for

i 6= j, i, j = 1,2, then there exist positive real numbers ε and M with 0 < ε < M, such

that it is optimal to prioritize Class i when q1(t)+ q2(t) < ε and prioritize Class j

when q1(t)+q2(t)> M. Furthermore, the optimal scheduling policy switches priority

at most once over the transient time horizon [0,τ∗].

Based on Theorem 2, if the cµ-rule and the modified cµ/θ -rule agree with each other,

it is optimal to give strict priority to the class with a higher cµ-index (and correspondingly

a higher modified cµ/θ -index) for any q ∈ R2
+. If the two index rules do not agree, we

will follow the cµ-rule when we are close enough to the equilibrium point (0,0); when we

are far from the equilibrium point, we should follow the modified cµ/θ -rule. Moreover, in

this case, we switch priority at most once, and the time at which the switch occurs depends

on the value of q0. This indicates that there exists a policy curve {q : u(q) = 0}, where we

switch from the modified cµ/θ -rule to the cµ-rule.

The remaining task is to characterize the policy curve. In Figure 1.6, we provide a

numerical illustration of the optimal trajectory of the queue length process. Figure 1.6a

shows the case where the modified cµ/θ -rule prioritizes Class 1 while the cµ-rule prior-

itizes Class 2. We plot four optimal fluid trajectories starting from different initial values

(derived by solving the a discretized version of (F2′)). We also plot the corresponding

policy curve (dashed line). Figure 1.6b shows the case where the modified cµ/θ -rule pri-
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oritizes Class 2 while the cµ-rule prioritizes Class 1. We will provide more discussions

about the policy curve in Section 1.4.3.3.

Figure 1.6: Optimal transient queue length trajectory
((a): λ1 = 10,λ2 = 20,µ1 = 1.5,µ2 = 3,γ1 = 0.1,γ2 = 0.1,θ1 = 0.1,θ2 = 0.4,s = 17,c1 = 5,c2 = 3
(b): λ1 = 10,λ2 = 20,µ1 = 1,µ2 = 2.5,γ1 = 0.2,γ2 = 0.4,θ1 = 0.1,θ2 = 0.2,s = 26,c1 = 5,c2 = 1)

P1

P2

(a) The cµ-rule: P2, the modified cµ/θ -rule: P1

P2

P1

(b) The cµ-rule: P1, the modified cµ/θ -rule: P2

Remark 3. Even though Theorem 2 is stated under Assumption 1, following the same

lines of analysis, we can show that if θ1 = θ2 = γ1 = γ2 = 0, we can recover the well-

known optimality of the cµ-rule throughout the transient time horizon (see Corollary 3

in Appendix A.4). Furthermore, if γ1 = γ2 = 0 but θ1,θ2 > 0, we should follow the cµ-

rule when we are close to the origin and the ordinary cµ/θ -rule when we are far from

the origin (This is a special case of Theorem 2). In this case, we recover the results in

Larrañaga (2015). Nevertheless, the approaches utilized in literature to study the special

cases are not directly generalizable to our setting with dynamic class types.

We next provide the general strategy of proving Theorem 2. It includes three main

parts. We first provide some formal definitions to describe the boundary behavior and rule

out some “irregular" behaviors in Section 1.4.1. We then establish the optimal scheduling

policy when q1 +q2 < ε for ε sufficiently small in Section 1.4.2. This is done by solving

the optimal control problem directly. Lastly, we establish the optimal scheduling policy for

the rest of the state space in Section 1.4.3, utilizing Pontryagin’s Minimum Principle. We
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believe this framework can be applied to derive the structure of the optimal policy for other

transient control problems for queues.

1.4.1 Boundary Behavior

The main challenge in dealing with an optimal control problem of the form (F2′) is to

characterize the system behavior on the boundary where the state constraints hold tight. In

our case, the state constraint g(q(t)) =−q(t)≤ 0 requires the queue length process q(t) to

stay non-negative for all t ∈ [0,τ].

To characterize the boundary behavior, we would ideally like to identify when the tra-

jectory enters the boundary and when it exits the boundary. In particular, we would like to

characterize the time points tk’s when gi(q(tk)) = 0 for some i = 1,2, but for any δ > 0,

there exists t ∈ (tk− δ , tk + δ ) such that gi(q(t)) > 0. An important class of points of this

type is known as the junction time (Hartl et al., 1995). We next provide some formal defini-

tions to characterize the junction times. An interval I := [t1, t2]⊆ [0,τ] (or [t1, t2), (t1, t2],

(t1, t2)) is called an interior arc if g(q(t))< 0 holds for all t ∈I . Correspondingly, an in-

terval I := [t1, t2]⊆ [0,τ] (or [t1, t2), (t1, t2], (t1, t2)) is called a boundary arc if gi(q(t)) = 0,

for some i = 1,2, holds for all t ∈I . A time instant t1 is called an entry time if an interior

interval ends at and a boundary interval starts at t1. A time instant t2 is called an exit time if

a boundary interval ends and an interior interval starts at t2. Furthermore, if the trajectory

of qi(t), i = 1,2, only “touches" the boundary at time t3, i.e., qi(t3) = 0, but there exists

δ > 0 such that qi(t) > 0 for any t ∈ (t3− δ , t3 + δ ) and t 6= t3, then t3 is called a contact

point. Entry, exit, and contact times taken together are called junction times. Figure 1.7a

provides a pictorial illustration of different types of junction times for q1(t). In particular,

t1, t2, and t3 in Figure 1.7a are an entry, exit, and contact point respectively. In addition, the

interval [t1, t2] is a boundary arc, and the interval [0, t1) is an interior arc.

Not all boundary trajectories can be characterized by the junction times. A class of

boundary behaviors that is often hard to deal with is known as chattering, which happens

when the trajectory qi(t), i = 1,2, oscillates between zero and positive values infinitely
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fast. Specifically, a time instant t4 is said to be a chattering point of the state trajectory qi,

if qi(t4) = 0, and for any δ > 0 there exists s′ and s′′ ∈ (t4−δ , t4 +δ ) such that qi(s′)> 0

and qi(s′′) = 0. In addition, an interval is said to be a chattering interval if any sub-interval

of it contains at least one chattering point. Figure 1.7b provides an example where the state

trajectory has a chattering point t4, and Figure 1.7c provides an example of a chattering

interval.

Figure 1.7: Different types of junction times and chattering behavior
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Chattering behavior can arise in many different optimal control problems. One classical

example is Fuller’s problem (Fuller, 1963). Noticeably, for non-constrained linear control

problems with compact polyhedral control space, it has been shown that there always ex-

ists an optimal solution that switches finitely many times among the vertices of the control

polyhedron; see, for example, Chapter 2.8 in Schättler and Ledzewicz (2012). However,

the pathological situation of chattering has not been ruled out for linear systems with state

constraints, which is the case of our problem (F2′). We overcome the difficulty here by

showing that for (F2′), it is without loss of optimality to consider trajectories without chat-

tering points or chattering intervals.

Lemma 1. For the transient optimal control problem (F2′), it is without loss of optimality

to consider state trajectories without chattering behavior.

1.4.2 The cµ-Rule Near the Origin

When the state is close enough to the origin (0,0), which is also an equilibrium point for the

fluid system under Assumption 2 and an appropriate control, we establish that the cµ-rule
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is optimal.

Proposition 1. Under Assumptions 1, 2, and 3, for the transient optimal control problem

(F2′), if q1(t),q2(t) ∈ [0,ε), with ε > 0 sufficiently small, then the cµ-rule is optimal on

the transient time interval [t,τ∗].

The result in Proposition 1 is derived based on the observation that when the queue

length is sufficiently small, the dominant dynamic for the system comes from service com-

pletion, which has an order ε effect. The effect of abandonment and class-transition is

only second-order, namely, order ε2. Focusing on service completion only, ciµi is the rate

at which we can reduce the holding cost per unit time and per unit capacity allocated to

serving Class i jobs, i = 1,2. In order to reduce holding cost as fast as possible, the class

with a larger cµ-index should be prioritized.

1.4.3 The Optimal Policy for the Rest of the State Space

When the states are far away from the origin, we have to take abandonment and class-

transition into account, and these substantially complicate the analysis. To develop struc-

tural insights in this region, we utilize a necessary characterization for the optimal solution

to the control problem, which is known as Pontryagin’s Minimum Principle (Hartl et al.,

1995).

To understand the underlying mechanism, we first note that if we view the optimal

control problem (F2′) as an infinite dimensional linear program, then we can write down

its dual problem and study the optimal primal-dual structure. There are two classes of “dual

variables". One is referred to as the adjoint vectors (also known as the co-state vectors),

which are the dual variables for the fluid dynamics, i.e. q̇(t) = f (q(t),z(t)). The other is

called the Lagrangian multipliers, which are the dual variables for the state constraints, i.e.

g(q(t)) ≤ 0, and the pure-control constraints i.e. h(z(t)) ≤ 0. More precisely, let p ∈ R2

denote the adjoint vector, and η ∈R2 and ξ ∈R3 denote the Lagrangian multipliers for the

state and control constraints, respectively. The Hamiltonian H : R2×R2×R2→ R of the
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system is defined as:

H(q(t),z(t), p(t)) := p(t)T f (q(t),z(t))+F (q(t))

= p1(t)q̇1(t)+ p2(t)q̇2(t)+ c1q1(t)+ c2q2(t)

= p1(t)(λ1−µ1z1(t)−θ1q1(t)− γ1q1(t)+ γ2q2(t))

+ p2(t)(λ2−µ2z2(t)−θ2q2(t)− γ2q2(t)+ γ1q1(t))+ c1q1(t)+ c2q2(t).

The augmented Hamiltonian L : R2×R2×R2×R2×R3→ R is defined as

L(q(t),z(t), p(t),η(t),ξ (t))

:= H(q(t),z(t), p(t))+η(t)T g(q(t))+ξ (t)T h(z(t))

= p1(t)(λ1−µ1z1(t)−θ1q1(t)− γ1q1(t)+ γ2q2(t))

+ p2(t)(λ2−µ2z2(t)−θ2q2(t)− γ2q2(t)+ γ1q1(t))+ c1q1(t)+ c2q2(t)

−η1(t)q1(t)−η2(t)q2(t)+ξ1(t)(z1(t)+ z2(t)− s)−ξ2(t)z1(t)−ξ3(t)z2(t).

Pontryagin’s Minimum Principle states a number of necessary conditions which the op-

timal solution to the optimal control problem (F2′) satisfies. The actual theorem can be

found in Appendix A.2.3. Here we provide a brief overview of the conditions.

1) Ordinary Differential Equation condition (ODE) specifies the dynamics of the “op-

timal primal trajectory" q∗(t):

q∗(0) = q0, q̇∗(t) = f (q∗(t),z∗(t)) . (ODE)

2) Adjoint Vector condition (ADJ) specifies the dynamics of the “optimal dual trajec-

tory" p∗(t):

ṗ∗1(t)= (θ1+γ1)p∗1(t)−γ1 p∗2(t)−c1+η
∗
1 (t), ṗ∗2(t)= (θ2+γ2)p∗2(t)−γ2 p∗1(t)−c2+η

∗
2 (t).

(ADJ)

In general, we cannot fully characterize p∗(t) due to the fact that p∗i (0) and η∗i (t) are

“unspecified", i.e., we cannot fully specify their values or dynamics based on the necessary

conditions.
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3) Minimization condition (M) characterizes the optimal control z∗(t) as a minimizer

of the Hamiltonian:

H(q∗(t),z∗(t), p∗(t)) = min
z
{H(q∗(t),z(t), p∗(t))}. (M)

As H(q∗(t),z(t), p∗(t)) is linear in z(t), it is easy to see from (M) that the optimal control

strictly prioritizes one class at any given time. As z∗1(t)+ z∗2(t) = s for t ∈ [0,τ∗], we can

write z∗1(t) = s− z∗2(t). Then, we define

ψ(t) :=
∂H(q∗(t),s− z2(t),z2(t), p∗(t))

∂ z2
= µ1 p∗1(t)−µ2 p∗2(t).

ψ(t) is referred to as the switching curve, because the sign of ψ(t) determines which class

we should give priority to. In particular, to minimize H, when ψ(t)> 0, priority should be

given to Class 1 at time t, i.e.,

z∗1(t) =


s if q∗1(t)> 0

min
{

s, λ1+γ2q∗2(t)
µ1

}
if q∗1(t) = 0,

and z∗2(t) = s− z∗1(t). (1.9)

When ψ(t)< 0, priority should be given to Class 2, i.e.,

z∗1(t) = s− z∗2(t), and z∗2(t) =


s if q∗2(t)> 0

min
{

s, λ2+γ1q∗1(t)
µ2

}
if q∗2(t) = 0.

(1.10)

However, when ψ(t) = 0, the optimal control is undetermined. We also note that ψ(t) can

be fully characterized by p∗i (t)’s, i = 1,2. Thus, analyzing the structure of the optimal dual

trajectory p∗(t) can reveal important information about the optimal scheduling policy z∗(t).

4) For optimal control problems with state constraints, if F, f ,g,h do not depend on t

explicitly, Hamiltonian condition (H) requires that H(q∗(t),z∗(t), p∗(t)) is a constant for

all t ∈ [0,τ∗]. Further, if the problem has a fixed termination state but free termination

time, as in our case, then the constant is equal to zero (Cristiani and Martinon, 2010). In

particular, we have

H(q∗(t),z∗(t), p∗(t)) = 0. (H)
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5) Transversality condition (T) requires that

−µ1 p∗1(t)+ξ
∗
1 (t)−ξ

∗
2 (t) = 0, −µ2 p∗2(t)+ξ

∗
1 (t)−ξ

∗
3 (t) = 0. (T)

6) Complementarity condition (C) requires that

C1) η∗1 (t) = 0 if q∗1(t)> 0; η∗1 (t)≥ 0 if q∗1(t) = 0.

C2) η∗2 (t) = 0 if q∗2(t)> 0; η∗2 (t)≥ 0 if q∗2(t) = 0.

C3) ξ ∗1 (t) = 0 if z∗1(t)+ z∗2(t)< s; ξ ∗1 (t)≥ 0 if z∗1(t)+ z∗2(t) = s.

C4) ξ ∗2 (t) = 0 if z∗1(t)> 0; ξ ∗2 (t)≥ 0 if z∗1(t) = 0.

C5) ξ ∗3 (t) = 0 if z∗2(t)> 0; ξ ∗3 (t)≥ 0 if z∗2(t) = 0.

7) Jump condition (J) characterizes the potential discontinuity of the adjoint vector

p∗(t) and the Hamiltonian H(q∗(t),z∗(t), p∗(t)) at junction times or in the boundary arcs.

Specifically, For any time β in a boundary arc or a junction time, the adjoint vector p∗(t)

and the Hamiltonian H(q∗(t),z∗(t), p∗(t)) may have a discontinuity, but they must satisfy

the following jump conditions: There exits a vector ω∗(β ) = (ω∗1 (β ),ω
∗
2 (β )) ∈ R2, such

that

(J1) : p∗(β−) = p∗(β+)+ω
∗
1 (β )∇qg1(q∗(β ))+ω

∗
2 (β )∇qg2(q∗(β ))

(J2) : H(q∗(β−),z(β−), p∗(β−)) = H(q∗(β+),z(β+), p∗(β+))−ω
∗
1 (β )∇tg1(q∗(β ))

−ω
∗
2 (β )∇tg2(q∗(β ))

(J3) : ω
∗(β )≥ 0, ω

∗(β )T g(q∗(β )) = 0,

(J)

where ∇xg denote the derivative of g with respect to x.

From the discussion of the necessary conditions, we highlight that if we can charac-

terize the switching curve ψ(t), then we will be able to unfold the corresponding optimal

policies. However, this is a highly nontrivial task, as we are not able to fully characterize

p∗(t).
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1.4.3 The Modified cµ/θ -Rule Far from the Origin

We now derive several key properties of the switching curve ψ(t) from Pontryagin’s Min-

imum Principle. These properties together allow us to establish the optimal scheduling

policy when the states are large (far from the origin).

The first property characterizes the switching curve on the boundary arc.

Lemma 2. Let [t1, t2] be a boundary arc along the optimal state trajectory with entry point

t1 and exit point t2. For any t ∈ (t1, t2), the switching curve ψ(t) = 0.

The second property establishes the continuity of the switching curve.

Lemma 3. The switching curve ψ(t) is continuous over [0,τ∗].

Assume there exists an optimal control to problem (F2′) under which the state trajec-

tory only has a finite number of junction points. Let N denote the total number of entry and

contact points in the optimal state trajectory q∗1(t) and q∗2(t) before τ∗. These N entry or

contact points are ordered and denoted by τ j, j = 1, ...,N. In particular, τ1 is the first time

when one of the queues gets emptied from the initial queue length q0; τN is the last time be-

fore τ∗ when one of the queues gets emptied. Naturally, the queue that gets emptied at time

τN is maintained at zero until the other queue reaches zero at time τ∗. From Lemmas 2 and

3, we know that ψ(τ j) = 0 for entry/exit point τ j. To this end, we examine the switching

curve backward in time from each entry point and derive the following characterization of

the switching curve.

Lemma 4. For any entry and contact point τ j, j = 1, ...,N, there exists an interval (0,α j),

0 < α j < τ j, such that for t ∈ (0,α j), the backward switching curve ψ(τ j− t) takes the

form

ψ(τ j− t) = r1− r2 +
(
µ1A1(τ j)−µ2A2(τ j)

)
eυ1(τ j−t)−

(
µ1A1(τ j)−µ2A2(τ j)

)
eυ2(τ j−t),

where r1,r2 are defined in (1.6) and (1.7), υ1,υ2 are positive constants that depend on γi’s

and θi’s, and A1(τ j),A2(τ j) are constants that depend on the values of τ j and p∗(τ j).
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Following Lemma 4, we define the pseudo switching curve backward from τ j as

Dτ j(t) := r1− r2 +
(
µ1A1(τ j)−µ2A2(τ j)

)
eυ1(τ j−t)

−
(
µ1A1(τ j)−µ2A2(τ j)

)
eυ2(τ j−t), for t ≥ 0, j = 1, ...,N.

In particular, the pseudo switching curve removes the constraint that t ∈ (0,α j) from

Lemma 4 and it agrees with the switching curve ψ(τ j − t) as long as the multipliers

η∗1 (τ j− t) and η∗2 (τ j− t) stay at zero. However, if one of the multipliers becomes strictly

positive at some time β , i.e., η∗i (τ j−β ) > 0 for some i = 1,2, the switching curve may

deviate from the pseudo switching curve for t ≥ β .

The significance of Lemma 4 is that even though the constants A1(τ j) and A2(τ j) are

unspecified, there are only a very few possibilities for the shape of Dτ j(t), and thus for the

part of ψ(τ j− t) that coincides with Dτ j(t). Now, consider the first (forward in time) entry

point τ1. By the definition of τ1, both classes have strictly positive queues before τ1, so the

multipliers η∗1 (τ1− t) and η∗2 (τ1− t) are zero for all t ∈ (0,τ1]. In this case, the backward

switching curve ψ(τ1− t) and the pseudo switching curve Dτ1(t) coincide over the interval

t ∈ (0,τ1]. Note that for t > τ1, the queue length trajectory is beyond its initialization, and

thus ψ(τ1− t) is not defined. On the other hand, the pseudo switching curve Dτ1(t), as a

function of t, is well-defined for all t ≥ 0. Sending t to infinity in the pseudo switching

curve Dτ1(t), we get

lim
t→∞

Dτ1(t) = r1− r2, for r1,r2 in (1.6) and (1.7). (1.11)

The sign of the right-hand-side of (1.11) is governed by the modified cµ/θ -index,

which is positive if the modified cµ/θ -index for Class 1 is larger. It is important to correctly

interpret the limit in (1.11) for the backward switching curve ψ(τ1− t) . Because ψ(τ1− t)

only equals to Dτ1(t) on (0,τ1] and is not defined for t > τ1, one may hypothesize that if

the initial queue lengths, q0, are large enough, then τ1, the amount of time needed to empty

one of the queues, is also large, and we might be able to send t large enough such that the

sign of ψ(τ1− t) will be governed by the modified cµ/θ -index. However, we need to note
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that the constants A1(τ1) and A2(τ1) also depend on q0 through τ1 and p∗(τ1). We thus

need to rigorously establish that A1(τ1) and A2(τ1) are properly bounded. Putting all these

analyses together, we are able to establish the following result.

Proposition 2. Under Assumptions 1, 2, and 3, for the transient optimal control problem

(F2′), there exists a positive real number M such that when q1(t)+q2(t)> M, the modified

cµ/θ -rule is optimal at time t, t ≥ 0.

1.4.3 Number of Priority Switches

Propositions 1 and 2 imply that the cµ-rule is optimal when the states are close enough to

the origin, and the modified cµ/θ -rule is optimal when the states are far away from the

origin. We now specify what happens in between these two extreme regions. By analyzing

possible shapes of the switching curve characterized in Lemma 4, we are able to establish

the following proposition.

Proposition 3. Under Assumptions 1, 2, and 3, for the transient optimal control problem

(F2′), if the cµ-rule and the modified cµ/θ -rule prioritize the same class, the optimal tran-

sient scheduling policy does not switch priority. If the two index rules prioritize different

classes, the optimal transient scheduling policy switches priority at most once over the

transient time horizon [0,τ∗].

Figure 1.8 illustrates the interaction between the switching curve and the optimal tran-

sient system dynamics. In particular, we plot the switching curve ψ(t) and the correspond-

ing optimal state trajectory q∗(t) for t ∈ [0,τ∗] backward in time. In this example, over the

initial time interval [0,τ1), ψ(t) is negative, so strict priority is given to Class 2 (following

the modified cµ/θ -rule). Class 2 queue empties at time τ1 and is given priority to be main-

tained at zero over the interval [τ1,β ). Immediately after β , the switching curve becomes

strictly positive and priority is switched to Class 1 (following the cµ-rule). Note that the

Class 1 queue decreases and the Class 2 queue increases over [β ,τ2). Lastly, priority is

kept at Class 1 on [τ2,τ
∗] to maintain its queue at zero.
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Figure 1.8: Example backward switching curve and state trajectory
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1.4.3 The Policy Curve

In this section, we first focus on the special case where there is only one-way transition

from Class 2 to Class 1, namely, γ1 = 0. From Theorem 2, the optimal scheduling rule

switches priority at most once. This implies there exists a policy curve P that divides the

state space and governs where the priority switches. Note that this curve is distinct from,

but intimately related to, the switching curve ψ(t). Suppose the cµ-rule prioritizes Class 2

and the modified cµ/θ -rule prioritizes Class 1. By utilizing the Hamiltonian condition (H),

we are able to characterize (and approximate) the policy curve P for switching from P1

to P2 explicitly. Namely, if the states are initialized “above" P , then the server prioritizes

Class 1 until q(t) ∈P at some t. From time t onwards, the server prioritizes Class 2 until

the system is emptied at τ∗.

Proposition 4. Under Assumptions 1, 2, and 3, for the transient optimal control problem

(F2′) with γ1 = 0, if c1µ1 < c2µ2 and r1 > r2, the policy curve P for switching from P1 to
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P2 is given by

P :=
{
(a1,a2) ∈ R2

+ :
1
µ2

(
c1(λ1µ1 +(λ1− sµ1)µ2)

θ1
+

B1(a2)B2(a1,a2)

B3(a1,a2)

)
= 0
}
,

where

B1(a2) := (c1(−a2(θ2 + γ2)+λ2)µ1 + c2a2θ1µ2 + c1(a2γ2 +λ1− sµ1)µ2)

B2(a1,a2) :=

(
−µ2(a2γ2θ1 +a1θ1(γ2−θ1 +θ2)− γ2λ1 +θ1λ1−θ2λ1− γ2λ2 + sγ2µ2)

+(λ2− sµ2)((γ2−θ1 +θ2)µ1− γ2µ2)

(
1+

a2(θ2 + γ2)

−λ2 + sµ2

) θ1
θ2+γ2


B3(a1,a2) := (γ2−θ1 +θ2)(θ1(a2(θ2 + γ2)−λ2)µ1 +θ1(−a2γ2 +a1θ1−λ1 + sµ1)µ2) .

If γ2 = 0, c1µ1 > c2µ2 and r1 < r2, we can derive the policy curve P for switching

from P2 to P1 by symmetry from Proposition 4.

If c1µ1 > c2µ2 and r1 < r2 (still with γ1 = 0), the policy curve for switching from P2 to

P1 cannot be characterized in closed form. This is due to the class-transition dynamics. In

particular, we lack information of the Lagrange multiplier η∗1 (t) on the boundary arc when

q∗1(t) = 0. Due to the deterioration, η∗1 (t) not only affects p∗1(t) but also p∗2(t) through

p∗1(t), see (ADJ). As such, the condition that H(q∗(t),z∗(t), p∗(t)) = 0 is not enough to pin

down the value of policy curve. Note that this is not the case in Proposition 4, because on

the boundary arc when q∗2(t) = 0, η∗2 (t) affects p∗2(t) only. See Appendix A.2.10 for a more

detailed discussion.

We note that the policy curve characterized in Proposition 4 is close to being, but not

exactly, linear. More generally, to characterize the policy curve for switching from the

modified cµ/θ -rule to the cµ-rule in the presence of transitions from both class types, i.e.,

γ1,γ2 > 0, we propose the following numerical scheme:

Step 1. Construct n optimal trajectories q∗(t) starting from different initial conditions that

are far from the origin. This can be done by solving a discretized version of (F2′). Record

the n corresponding switching points.

Step 2. Fit the best curve that goes through the n switching points.
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We conduct extensive numerical experiments on P for different system parameters. In

all cases, the curve appears to be close to linear. Thus, we suggest setting n to be around

5, setting the discretization step size to be around 0.1µ1, and fitting the best line to the n

switching points.

We next provide some sensitivity analysis on the policy curve through numerical exper-

iments. In particular, we use the numerical scheme outlined above to construct the policy

curve. For simplicity of illustration, we focus on the case where the cµ-rule prioritizes the

urgent class, Class 1, and the modified cµ/θ -rule prioritizes the moderate class, Class 2,

i.e., c1µ2 > c2µ2 and r1 < r2.

Our first group of numerical experiments is on the value of φ := γ2/(θ2 + γ2). As

mentioned earlier, if Class 2 patients are identified by a classifier, e.g., an early warning

system, φ measures the true positive rate of the classifier. Figures 1.9 and 1.10 illustrate

how the policy curve changes as φ decreases. Since γ2 and θ2 both affect the value of φ ,

we first keep θ2 fixed and vary the value of γ2 (Figure 1.9). Then, we keep γ2 fixed and

vary the values of θ2 (Figure 1.10). In both figures, we vary the values of φ from 0.7 to

0.4 in increments of size −0.1. We first observe that the policy curve contracts inwards

as φ increases. In the example of a classifier, this observation suggests that as the quality

of the classifier improves, the region in which the optimal scheduling policy prioritizes

Class 2 increases. When φ = 1, the size of the region where it is optimal to prioritize Class

1 is minimized, but the region is still non-trivial. On the other hand, as φ decreases, a

phase transition in the prioritization rule occurs because r1 will become larger than r2. In

particular, there exists a threshold φ0 such that once φ < φ0, r1 > r2 and the policy curve

“vanishes", namely, we should give strict priority to Class 1 for all states. We also note that

given the complex nature of system dynamics, the effect of increasing θ2 and decreasing

γ2 would be different. In particular, when comparing Figure 1.9 to Figure 1.10, we observe

that even for the same value of φ , the policy curves in the two figures are different. To look

further into this, in Figure 1.11, we fix φ = 0.6 and vary θ2 and γ2 simultaneously. We
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observe that as θ2 and γ2 decrease, the policy curve contracts outwards. This is because as

abandonment and class-transition occur at slower rates, the effect of service completion is

more dominant. Thus, the region in which we adopt the cµ-rule increases.

Similar to the above sensitivity analysis on the policy curve with respect to φ via θ2 or

γ2, we also conduct sensitivity analysis for different values of capacity s; see Figure 1.12.

We observe that the policy curve contracts inwards as s decreases. Define the nominal

traffic intensity as

ρ := (λ1/µ1 +λ2/µ2)/s.

Figure 1.12 indicates that as the system becomes more heavily loaded (i.e., as ρ increases),

the region where we prioritize according to the cµ-rule shrinks.

Figure 1.9: Sensitivity analysis of the policy curve with respect to γ2/(θ2 + γ2) by varying γ2
(λ1 = 10,λ2 = 20,µ1 = 1,µ2 = 2.5,γ1 = 0.2,θ1 = 0.1,θ2 = 0.2,s = 26,c1 = 5,c2 = 1)

P2

P1

(a) φ = 0.5,γ2 = 0.2

P2

P1

(b) φ = 0.4,γ2 = 0.13

as 𝜙 decreases

(c) Decreasing φ = 0.7, 0.6, 0.5, 0.4

Figure 1.10: Sensitivity analysis of the policy curve with respect to γ2/(θ2 + γ2) by varying θ2
(λ1 = 10,λ2 = 20,µ1 = 1,µ2 = 2.5,γ1 = 0.2,γ2 = 0.4,θ1 = 0.1,s = 26,c1 = 5,c2 = 1)

P2

P1

(a) φ = 0.5,θ2 = 0.4

P2

P1

(b) φ = 0.4,θ2 = 0.6

as 𝜙 decreases

(c) Decreasing φ = 1, 0.7, 0.6, 0.5,
0.4
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Figure 1.11: Sensitivity analysis of the policy curve with respect to γ2 and θ2 for fixed γ2/(θ2+γ2)
(λ1 = 10,λ2 = 20,µ1 = 1,µ2 = 2.5,γ1 = 0.2,θ1 = 0.1,φ = 0.6,s = 26,c1 = 5,c2 = 1)

P2

P1

(a) γ2 = 0.2,θ2 = 0.13

P2

P1

(b) γ2 = 0.1,θ2 = 0.07

as 𝛾2, 𝜃2 decrease

(c) Decreasing γ2 = 0.4, 0.3, 0.2, 0.1

Figure 1.12: Sensitivity analysis of the policy curve with respect to s
(λ1 = 10,λ2 = 20,µ1 = 1,µ2 = 2.5,γ1 = 0.2,γ2 = 0.4,θ1 = 0.1,θ2 = 0.2,c1 = 5,c2 = 1)

P2

P1

(a) s = 30, ρ = 0.6

P2

P1

(b) s = 22, ρ = 0.8

as 𝑠 decreases

(c) Decreasing s = 30, 26, 22, 20;
increasing ρ = 0.6, 0.7, 0.8, 0.9

1.4.4 Numerical Experiments for the Stochastic System

We conclude this section by generalizing the insights from the fluid model analysis to the

original stochastic system. The quality of the generalization depends how closely the fluid

model approximates the corresponding stochastic system.

As mentioned in Section 1.2.1, the fluid model can arise as a functional law of large

numbers limit for a sequence of properly scaled stochastic systems in the conventional

heavy traffic regime. In what follows, we first elaborate on the scaling under heavy traffic

and then conduct numerical comparisons between the fluid trajectory and scaled stochastic

sample paths.

Consider a sequence of stochastic systems indexed by n, n ∈ N. For Class i in the nth

system, the arrival and service rates satisfy λ n
i := λin, µn

i := µin, i = 1,2. Moreover, we

scale down space by considering the fluid-scaled queue length process Q̄n
i (·) := Qn

i (·)/n

for the nth stochastic system. Given the initial fluid queue length q0, the nth system has
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initial queue length Qn(0) := dq0ne. Given the fluid policy curve P , for the nth stochastic

system, a switch in priority will happen at time t if Q̄n(t) ∈Pn, where

Pn :=
{
(Q̄n

1, Q̄
n
2) : Q̄n

1 ∈ [q1−1/n,q1 +1/n] , Q̄n
2 ∈ [q2−1/n,q2 +1/n] ,(q1,q2) ∈P

}
.

Figure 1.13 compares the fluid trajectory with a simulated sample path for the corre-

sponding stochastic system for different values of n. We observe from the plots that for

a relatively small scaling parameter, e.g., n = 10, the stochastic sample path is already

well approximated by the fluid model. Furthermore, if we plot the trajectory of the aver-

age queue length over multiple sample paths of the stochastic system, the behavior of the

“average trajectory" mimics the fluid model even more closely.

For systems with a very small number of servers, we can solve the MDP (S2) numeri-

cally; see Appendix A.5 for details about our solution method. In Figure 1.14, we plot the

MDP solutions together with the fluid policy curves for four 3-server systems with the nom-

inal traffic intensity ρ varying from 0.6 to 0.9. We observe that for lightly and moderately

loaded systems (with ρ = 0.6,0.7,0.8), the optimal scheduling policy for the stochastic

system shares the same structure as the optimal fluid control, i.e., it switches priority once

from the modified cµ/θ -rule to the cµ-rule. We also plot the corresponding fluid policy

curve (solid line in Figure 1.14). We observe that when the system is lightly loaded, i.e.,

ρ = 0.6,0.7, the policy curve of the MDP solution matches the fluid policy curve well. For

critically loaded system (with ρ = 0.9), the optimal policy follows the modified cµ/θ -rule

throughout; namely, the neighborhood near the origin where the cµ-rule is optimal does

not exist. In addition, note that the region where the fluid policy employs the cµ-rule is

also very small in this case. Despite some slight deviations between the MDP solution and

the fluid-translated policy, in all cases, the optimality gap of the fluid-translated policy is

very small, as shall be seen next.

For each of the four stochastic systems in Figure 1.14, we randomly select a set J

of initial points; see Appendix A.5 for details on this initialization. For each initialization

q0 ∈J , we compare the average transient cost under (i) the MDP policy (the optimal
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policy), (ii) the fluid-translated policy with an approximating linear policy curve P , (iii)

strict priority to Class 1, P1, and (iv) strict priority to Class 2, P2. Each cost is estimated

based on 1000 independent sample paths. In Table 1.1, we present the average, minimum

and maximum optimality gap for polices (ii), (iii), and (iv). We observe that the fluid-

translated policy has a very small optimality gap in all cases. In particular, the maximum

optimality gaps are less than 3.8% and the mean optimality gaps are less than 1.6%.

Figure 1.13: Comparison of the transient fluid trajectory and the stochastic sample path
((a) 2 servers: λ1 = 1,λ2 = 2,µ1 = 1.5,µ2 = 3,γ1 = 0.1,γ2 = 0.1,θ1 = 0.1,θ2 = 0.4
(b) 3 servers: λ1 = 1,λ2 = 2,µ1 = 1.4,µ2 = 2.5,γ1 = 0.2,γ2 = 0.4,θ1 = 0.1,θ2 = 0.2)

0 2 4 6 8 10 12 14 16 18 20
Length of queue 1 (q1)

0
2
4
6
8

10
12
14
16
18
20

Le
ng

th
 o

f q
ue

ue
 2

 (q
2)

n = 5
n = 10
n = 20
fluid trajectory

(a) The cµ-rule: P2, the modified cµ/θ -rule: P1
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(b) The cµ-rule: P1, the modified cµ/θ -rule: P2

Table 1.1: Stochastic optimality gap of different policies (percentage gap to the MDP)
((a) 3 servers: λ1 = 1,λ2 = 2,µ1 = 1.28,µ2 = 2.0,γ1 = 0.2,γ2 = 0.4,θ1 = 0.1,θ2 = 0.2,c1 = 5,c2 =
1
(b) 3 servers: λ1 = 1,λ2 = 2,µ1 = 1.09,µ2 = 1.7,γ1 = 0.2,γ2 = 0.4,θ1 = 0.1,θ2 = 0.2,c1 = 5,c2 = 1
(c) 3 servers: λ1 = 1,λ2 = 2,µ1 = 0.95,µ2 = 1.48,γ1 = 0.2,γ2 = 0.4,θ1 = 0.1,θ2 = 0.2,c1 = 5,c2 =
1
(d) 3 servers: λ1 = 1,λ2 = 2,µ1 = 0.84,µ2 = 1.32,γ1 = 0.2,γ2 = 0.4,θ1 = 0.1,θ2 = 0.2,c1 = 5,c2 =
1)

Fluid policy curve P1 P2 Fluid policy curve P1 P2 

Mean gap 0.22% 0.69% 8.34% Mean gap 1.11% 2.43% 4.27%
Min gap 0.01% 0.17% 3.92% Min gap 0.01% 0.88% 0.33%
Max gap 0.41% 1.74% 14.74% Max gap 2.85% 4.60% 16.51%

Fluid policy curve P1 P2 Fluid policy curve P1 P2 

Mean gap 1.53% 6.92% 0.77% Mean gap 0.95% 17.31% 0.00%
Min gap 0.25% 4.19% 0.10% Min gap 0.09% 12.41% 0.00%
Max gap 3.74% 10.28% 1.70% Max gap 1.76% 24.71% 0.00%

Case (c) 𝜌 = 0.8 Case (d) 𝜌 = 0.9

Case (a) 𝜌 = 0.6 Case (b) 𝜌 = 0.7
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Figure 1.14: Exact MDP solutions (Solid line is the corresponding fluid policy curve)
((a) 3 servers:
λ1 = 1,λ2 = 2,µ1 = 1.28,µ2 = 2.0,γ1 = 0.2,γ2 = 0.4,θ1 = 0.1,θ2 = 0.2,c1 = 5,c2 = 1
(b) 3 servers:
λ1 = 1,λ2 = 2,µ1 = 1.09,µ2 = 1.7,γ1 = 0.2,γ2 = 0.4,θ1 = 0.1,θ2 = 0.2,c1 = 5,c2 = 1
(c) 3 servers:
λ1 = 1,λ2 = 2,µ1 = 0.95,µ2 = 1.48,γ1 = 0.2,γ2 = 0.4,θ1 = 0.1,θ2 = 0.2,c1 = 5,c2 = 1
(d) 3 servers:
λ1 = 1,λ2 = 2,µ1 = 0.84,µ2 = 1.32,γ1 = 0.2,γ2 = 0.4,θ1 = 0.1,θ2 = 0.2,c1 = 5,c2 = 1)
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(a) ρ = 0.6
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(b) ρ = 0.7
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(c) ρ = 0.8
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(d) ρ = 0.9

1.5 Model Generalizations

In this section, we consider two generalizations of the model. In the first one, we consider

the case with time-varying arrival rates to capture the full demand shock period. In partic-

ular, we assume the arrival rates are high for a certain period of time before returning to

the “normal" level, and study the transient optimal control problem in this setting. In the

second one, we study a system with more than two classes where transition can happen
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between adjacent classes. We generalize the modified cµ/θ -index to this setting. As we

will demonstrate subsequently, many of the insights we derived in the previous sections

still hold in these generalizations.

1.5.1 Time-Varying Transient Arrival Rate

The transient optimal control problem is motivated by demand shock scenarios. The analy-

sis in Section 1.4 focuses on an after-shock optimal control problem where the arrival rates

satisfy λ1/µ1 +λ2/µ2 < s, but the system can have an arbitrarily large initial backlog. In

this section, we consider a generalization where we include in our analysis the period of

time during the shock. The shock raises the arrival rates for a fixed amount of time, dur-

ing which the service capacity falls short and the queue increases. After the initial shock,

the arrival rates restore to normal, i.e., the service capacity is able to meet demand and

eventually empty the system. Formally, we impose the following assumption on the arrival

rates.

Assumption 4. The arrival rates to the system, {λ1(t) : t ≥ 0} and {λ2(t) : t ≥ 0}, are

non-negative, and there exists some T ≥ 0 such that

(1) λ1(t) and λ2(t) are continuously differentiable with respect to t over the time interval

[0,T );

(2) q1(t)> 0 and q2(t)> 0 for all t ∈ [0,T ] under any admissible scheduling policy π ∈F ;

(3) λ1(t) = λ1 and λ2(t) = λ2 for some λ1,λ2 that satisfy λ1/µ1+λ2/µ2 < s, for all t ≥ T .

Under Assumption 4, λ1(t) and λ2(t) can be any continuously differential functions

with argument t over the initial interval [0,T ) (condition (1)). The demand shock needs to

be high enough such that neither queues empties during the shock (condition (2)). Lastly,

after the shock, we have enough resources to bring the queue all the way back to zero

(condition (3)). With a slight abuse of notation, we define

τ := inf{t ≥ T : q1(t)+q2(t) = 0}−T
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Under Assumption 4 condition (3), τ < ∞.

Recall that the fluid dynamics are defined via f (q,z)= ( f1(q,z), f2(q,z)), where f1(q,z)=

λ1(t)− z1µ1−θ1q1− γ1q1+ γ2q2 and f2(q,z) = λ2(t)− z2µ2−θ2q2− γ2q2+ γ1q1. For the

initial period [0,T ) with potentially time-varying arrival rate, we will add a time component

to f , i.e., f (q,z, t), to reflect the time dependence. The transient fluid optimization prob-

lem can be formulated as a two-stage optimal control problem. In particular, the first-stage

problem (over the initial time period [0,T )) is expressed as

min
{z(t) :0≤t<T}

∫ T

0
F (q(t))dt +Ξ(q(T ))

s.t. q̇(t) = f (q(t),z(t), t)

h(z(t))≤ 0,

(1.12)

where Ξ(q(T )) is the terminal cost and is the optimal objective value for the second-stage

problem

min
{z(t) :T≤t≤T+τ}

∫ T+τ

T
F (q(t))dt

s.t. q̇(t) = f (q(t),z(t))

g(q(t))≤ 0

h(z(t))≤ 0.

(1.13)

Note that the first-stage problem (1.12) is “explicit" without the state constraint g(q(t))≤ 0,

because under Assumption 4, there does not exist an admissible control under which either

of the queues gets emptied during [0,T ]. Let q∗(T ) denote the optimal queue length at

the end of the initial time horizon in problem (1.12). The second-stage problem (1.13) is

the same as (F2′) if we shift the time from [T,T + τ] to [0,τ] and set the initial condition

q(0) := q(T ). Due to this connection, the structural insights from the case of constant

arrival rates in Section 1.4 is maintained in this time-varying case.

Theorem 3. Under Assumptions 1, 3, and 4, for the transient optimal control problem

(1.12)–(1.13):
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I. If the cµ-rule and the modified cµ/θ -rule both prioritize Class i, i = 1,2, the strict

priority rule to Class i is optimal for any t ∈ [0,T + τ∗].

II. If the cµ-rule prioritizes Class i but the modified cµ/θ -rule prioritizes Class j, for

i 6= j, i, j = 1,2, there exist positive real numbers ε and M with 0 < ε < M, such

that for t ∈ [T,T + τ∗], it is optimal to prioritize Class i when q1(t)+ q2(t) < ε and

prioritize Class j when q1(t)+q2(t)>M. Furthermore, the optimal scheduling policy

switches priority at most once over the entire transient time horizon [0,T + τ∗].

Theorem 3 indicates that for time-varying arrival rates satisfying Assumption 4, the

optimal control switches priority at most once from the modified cµ/θ -rule to the cµ-

rule. However, different from the case of fixed arrival rates, the modified cµ/θ -rule can be

optimal during the demand shock (i.e. [0,T )), even for very small queues if the demand

rate and/or the duration of the shock are sufficiently large. This indicates that when the

priority switches is not only state-dependent but also time-dependent. As a simple conse-

quence of Theorem 3, the following corollary characterizes the optimal transient control

for sufficiently large demand shocks.

Corollary 1. For the two-stage transient control problem, let P be the policy curve from

the second-stage problem, and M ∈R+ be defined in Theorem 3. If the arrival rates {λ1(t) :

t ≥ 0} and {λ2(t) : t ≥ 0} are such that q1(T )+q2(T )> M under any admissible control,

the optimal control employs the modified cµ/θ -rule over the interval [0,T ], and switches

to the cµ-rule when t > T and the state crosses the policy curve P , namely, when q1(t)+

q2(t) ∈P .

With general time-varying arrival rates, characterizing when and where the priority

switches can be very complicated and highly case-dependent. For example, the switching

point depends on where the system is initialized, how long the demand shock lasts, etc. As

such, we leverage the insights from Theorem 3 and Corollary 1, and propose two heuristic

policies. In both heuristics, we first derive the policy curve based on the optimal control
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problem (F2′) with the normal arrival rates, i.e., λ1 and λ2 (ignoring the demand shock). In

Heuristic 1, we apply a time-homogeneous policy where we follow the cµ-rule when the

queues are “below" the policy curve, and follow the modified cµ/θ -rule when the queues

are “above" the policy curve. In Heuristic 2, we modify the policy to be time-dependent. In

particular, we employ the modified cµ/θ -rule for the initial demand-shock period [0,T ).

Then, for t ≥ T , we follow the cµ/θ -rule when the queue is “above" the policy curve,

and follow the cµ-rule when the queues are “below" the policy curve. In Table 1.2, we

compare the performance of (i) Heuristic 1, (ii) Heuristic 2, (iii) the cµ-rule, and (iv) the

modified cµ/θ -rule. The problem instances we consider have piecewise constant arrival

rates where the arrival rates switch from a fixed high level to a fixed low level, and we vary

the duration of the high demand period, T . We observe that when the demand shock lasts

for a sufficiently long time, i.e., T ≥ 0.4, Heuristic 2 performs near optimal. However,

when the demand shock lasts for only a short period of time, i.e., T = 0.1,0.2, Heuristic 1

performs very well. This is because, in the later case, the queues barely build up during the

demand shock, and it is optimal to apply the cµ-rule throughout.

Table 1.2: Fluid optimality gap of different policies (percentage gap to (1.12))
(λ1 = 10,λ2 = 20,µ1 = 1,µ2 = 2.5,γ1 = 0.2,γ2 = 0.4,θ1 = 0.1,θ2 = 0.2,s = 26,c1 = 5,c2 =
1,q(0) = (1,1),λi(t) = sµi for t ∈ [0,T ), i = 1,2)

Demand shock duration T Heuristic 1 Heuristic 2 𝑐𝜇 Modified 𝑐𝜇/𝜃
0.1 0.00% 18.90% 0.00% 46.15%
0.2 0.00% 10.15% 0.00% 27.41%
0.4 6.14% 0.00% 18.48% 6.84%
0.6 9.29% 0.00% 72.19% 3.43%
0.8 10.20% 0.00% 127.39% 2.05%
1.0 10.33% 0.00% 160.89% 1.41%
1.2 10.27% 0.00% 179.99% 1.22%
1.4 10.08% 0.00% 190.41% 1.03%
1.6 9.54% 0.00% 195.29% 0.77%

1.5.2 Multi-Class System

Thus far, our analysis has focused on a two-class system. We next discuss an extension

to a multi-class system with K customer classes as depicted in Figure 1.15. The customer

classes can be interpreted as having different urgency levels, with Class 1 being the most
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urgent and Class K being the least. Class i is associated with its arrival rate λi, service rate

µi, abandonment rate θi, and cost rate ci, i = 1, ...,K. To capture class-transitions, delayed

Class i customers degrade into Class i− 1 at rate γi,i−1, and improve to Class i+ 1 at rate

γi,i+1, where γ1,0,γK,K+1 := 0. Note that this multi-class model can capture the case where

some customers never transition type by setting the corresponding transition rates to 0.

Figure 1.15: Multi-class queueing network
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1.5.2 Long-Run Average Analysis

Following similar lines of analysis as in Section 1.3, we first optimize over the set of

equilibrium points. In particular, we have the following linear program:

min
{ze

i , i=1,...,K}

K

∑
i=1

ciqe
i

s.t. λi−µize
i − (γi,i−1 + γi,i+1 +θi)qe

i + γi+1,iqe
i+1 + γi−1,iqe

i−1 = 0, i = 1, ...,K

K

∑
i=1

ze
i ≤ s

ze
i , qe

i ≥ 0, i = 1, ...,K.

(1.14)

53



Set γ̃K,K+1 := 0, and for i decreasing from K− 1 to 1, we define the modified class

improvement rates sequentially as

γ̃i,i+1 := γi,i+1
θi+1 + γ̃i+1,i+2

γi+1,i +θi+1 + γ̃i+1,i+2
. (1.15)

Similarly, set γ̃1,0 := 0, and for i increasing from 2 to K, the modified class deterioration

rates are sequentially defined by

γ̃i,i−1 := γi,i−1
θi−1 + γ̃i−1,i−2

γi−1,i +θi−1 + γ̃i−1,i−2
, (1.16)

The modified improvement and deterioration rates in (1.15) and (1.16) can be un-

derstood as the effective class-transition rates adjusted for potential feedback. For ex-

ample, the nominal deterioration rate from Class 2 to Class 1 is adjusted from γ2,1 to

γ̃2,1 = γ2,1θ1/(θ1 + γ1,2). Intuitively, if no service is provided, out of the customers that

have degraded to Class 1, a proportion θ1/(θ1+γ1,2) will be fed back to Class 2. Thus, the

effective degradation rate is γ̃2,1.

Rearranging the terms in (1.14), we can derive that the optimal solution to (1.14) assigns

the maximum value to the ze
i with a larger modified cµ/θ -index, ri, where

ri := µi

(
ci

θi + γ̃i,i−1 + γ̃i,i+1
+

i−1

∑
j=1

c j

θ j + γ̃ j, j−1 + γ̃ j, j+1

i

∏
k= j+1

γk,k−1

γk,k−1 + γ̃k,k+1 +θk

+
K

∑
j=i+1

c j

θ j + γ̃ j, j−1 + γ̃ j, j+1

j−1

∏
k=i

γk,k+1

γk,k+1 + γ̃k,k−1 +θk

)
, for i = 1, ...,K.

Note that while the expression is more complex, this index has similar interpretation to that

when there are only two classes.

To establish the optimality of the modified cµ/θ -rule for the long-run average cost,

we also need to verify that the optimal equilibrium point in (1.14) is an asymptotically

stable equilibrium under the modified cµ/θ -rule. This requires extending the Lyapunov

argument in Appendix A.1 to the multi-class setting. We note that this task will become

prohibitively tedious, especially for a large number of classes, K.
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1.5.2 Transient Analysis

The transient analysis for the two-class system can also be partially generalized to multi-

class systems.

First, based on the insights from the two-class case, when the states are arbitrarily close

to the origin, the effect of class-transition and abandonment on the system dynamics is only

second-order. Focusing on the service completions, we can show that such that the cµ-rule

is optimal in the ε-neighborhood around the origin, i.e., when qi(t) ∈ [0,ε) for i = 1, ...,K,

for ε sufficiently small.

Second, applying Pontryagin’s Minimum Principle for the multi-class case, we see that

at any time t, the optimal policy prioritizes the class with a larger p∗i (t)µi value, where p∗i is

the optimal adjoint vector associated with Class i. Let τ1 be the first time after initialization

when one of the queues gets emptied. Using a similar backward construction as in Lemma

4, we can characterize p∗i (τ1− t) and show that limt→∞ p∗i (τ1− t)µi = ri (assuming we

can extend the function to t > τ1), where ri is the modified cµ/θ -index for Class i. This

suggests that the modified cµ/θ -rule is likely to be optimal when the queues are far enough

from the origin. However, we emphasize that this is only a heuristic argument. Rigorously

establishing such a result requires highly non-trivial derivations.

Lastly, the optimal scheduling policy for areas between the ε-neighborhood of the ori-

gin and the far from the origin region remains unclear. Noticably, it is not necessarily true

that the optimal policy switches priority at most once along the trajectory, as in the case of

a two-class system. We perform extensive numerical experiments for a three-class model.

The solutions to (F2′) confirm that the optimal solution follows the modified cµ/θ -rule

when the state q is sufficiently far from the origin, and the cµ-rule near the origin. In many

problem instances, the optimal scheduling policy switches priority rule at most once. How-

ever, there are also instances where the optimal scheduling policy switches priority more

than once, and it follows neither the modified cµ/θ -rule nor the cµ-rule during part of the

transient horizon.
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To facilitate implementations, we propose a one-switch policy, where we switch priority

at most once, and follow the the modified cµ/θ -rule when the system state is far from the

equilibrium and the cµ-rule when the state is close to the equilibrium. Table 1.3 compares

the performance of the one-switch policy, the modified cµ/θ -rule, and the cµ-rule. For the

one-switch policy, we find the optimal policy curve when imposing that at most one switch

is allowed. According to the system parameters, the modified cµ/θ -rule and the cµ-rule

prioritize in the order of Classes 3,2,1 and Classes 1,2,3 respectively. In these systems,

the optimal LP solution may, under certain initial conditions, prioritize Class 2 over part

of the transient horizon. Nevertheless, the sub-optimality gap of the one-switch policy is

fairly small, i.e., less than 2.6%, while applying the modified cµ/θ -rule or the cµ-rule

throughout can sometimes lead to very large sub-optimality gaps. In general, we expect

the one-switch policy to be a reasonable heuristic policy when the modified cµ/θ -index

and the cµ-index are relatively aligned.

Table 1.3: Fluid optimality gap of different policies (percentage gap to (F2′))
(λ1 = 10,λ2 = 20,λ3 = 30,µ1 = 4,µ2 = 5,µ3 = 6,θ1 = 0.2,θ2 = 0.1,θ3 = 0.1,γ2,1 =
0.1,γ1,2 = 0.2,γ3,2 = 0.1,γ2,3 = 0.3,s = 30,c1 = 20,c2 = 15,c3 = 10,cµ-index =
{80,75,60},modified cµ/θ -index = {433,583,650})

Initialization One-switch Modified 𝑐𝜇/𝜃 𝑐𝜇
(5, 5, 5) 0.00% 15.83% 0.00%

(10, 10, 10) 0.00% 14.80% 0.00%
(50, 50, 50) 0.60% 9.39% 0.60%

(100, 100, 100) 2.21% 6.56% 2.21%
(250, 250, 250) 2.57% 2.84% 5.09%
(500, 500, 500) 0.95% 1.04% 7.13%

(1000, 1000, 1000) 0.36% 0.42% 8.11%

1.6 Conclusion

In this work, we propose a novel multi-class queueing model to capture the class-transition

behavior (e.g., degradation or improvement) in service systems. Our analysis provides

insights into how proactive service should be utilized. We identify an important metric,

the modified cµ/θ -index, which plays a critical role in specifying the optimal scheduling

policy and lends itself to a very intuitive interpretation. In particular, as in the case of the
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conventional cµ/θ -index, the modified cµ/θ -index balances the relative importance of

holding costs, service times, and abandonment rates. Moreover, it augments the standard

cµ/θ -index by several important additional terms that account for class-transitions.

We study both the long-run average cost and the transient cost minimization problem.

When planning the system in the long run, we show that following the modified cµ/θ -rule

is optimal. When considering the most cost-effective way to clear backlogs created by

demand shocks, one should employ the modified cµ/θ -rule when the system has a very

large backlog (i.e., when it is essential to account for the abandonment and class-transition

dynamics), and follow the cµ-rule when the system has a sufficiently small backlog (i.e.,

when cost minimization is driven by service completions).

We assume, throughout the chapter, that class-transitions and abandonment happen ac-

cording to independent exponential clocks, i.e., class-transition and abandonment have

constant failure rates. It has been shown in a number of service settings, the patience

times may have increasing or decreasing failure rates (Puha and Ward, 2019). One can

potentially extend the long-run average cost minimization problem to incorporate non-

exponential class-transitions and abandonments. In particular, characterizing the fluid

equilibrium points in these cases follows similar lines of analysis as in Whitt (2006a).

However, since the optimality of the conventional cµ/θ -rule may no longer hold for non-

exponential patience-time distributions (Puha and Ward, 2019), we expect the optimality

of the modified cµ/θ -rule may also not hold with general class-transitions. We leave this

as an interesting direction for future research.
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Chapter 2: Use of Real-Time Information to Predict Future Arrivals

in the Emergency Department

2.1 Introduction

2.1.1 Background and Importance

Among the numerous operational and logistical challenges facing Emergency Departments

(ED), ED overcrowding has been an endemic and unfortunately growing challenge across

many acute care centers across the United States and globally. A large body of work has

established that ED overcrowding is associated with adverse patient outcomes (Johnson

and Winkelman, 2011) including reduced quality of care (Ball et al., 2017), reduced hospi-

tal revenue (Pines et al., 2011), increased mortality (Jo et al., 2012; McCusker et al., 2014)

and even clinician burnout (Lall et al., 2021). As patient volumes continue to increase both

in the acute care and inpatient setting (Lin et al., 2018), limited ability to scale or increase

inpatient bed capacity dynamically in most hospital settings makes patient utilization fore-

casting critical. Past research indicates that ED crowding can be reduced by appropriate

re-allocation of physician and nursing resources Joseph and White (2020). However, this

approach relies on adequate, short-term, patient demand forecasting.

Forecasting Emergency Department (ED) arrivals and volumes offers the opportunity

to improve efficient matching of clinical and operational resources with actual patient vol-

ume. Past work has used a variety of quantitative and statistical modeling to forecast ED

arrivals. Several studies have utilized time-series models to forecast future arrivals based

on recent arrival count information (Tandberg and Qualls, 1994; Morzuch and Allen, 2006;

Schweigler et al., 2009; Boyle et al., 2012; Asheim et al., 2019; Choudhury, 2019). Addi-

tional work has tried other prediction models and found that other features such as day of
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the week, time of the year, holidays, and weather are effective in predicting ED demand

Holleman et al. (1996); Batal et al. (2001); Zibners et al. (2006); Jones et al. (2008); Mar-

cilio et al. (2013). There are also recent efforts that explore techniques to combine these

aforementioned features with time-series models (Calegari et al., 2016; Whitt and Zhang,

2019).

Most of the existing literature utilizes classic predictors such as lagged arrival counts,

temporal and seasonal variations, holidays, and weather. A few other studies have exam-

ined limited real-time information beyond weather and lagged arrival counts such as am-

bulance diversion status, chief complaints, and physician capacity (Brillman et al., 2005;

McCarthy et al., 2008; Chase et al., 2012). However, to the best of our knowledge, little

research has explored the vast amount of patient-level and regional data that are made avail-

able in near-real time by sources such as electronic health records of recent ED arrivals and

Google trends (i.e., relative search volumes on Google for certain keywords).

2.1.2 Goals of This Investigation

The goal of this study was to explore and evaluate rich real-time information (including

lagged arrival counts, temporal and seasonal variations, holidays, weather, electronic health

records, and Google trends) to predict shift-level ED patient volumes. We sought to explore

whether real-time information had predictive power, and what forecasting methods would

be most appropriate for predicting ED demand. We also aimed to compare real-time infor-

mation models to models that did not utilize real-time information, allowing an assessment

of any potential gain in prediction accuracy from real-time information.

2.2 Methods

2.2.1 Study Setting and Objective

We conducted a retrospective study using data obtained from the electronic health records

for an adult ED in a large academic hospital in New York City. A total of 164,858 adult

patients who arrived at the ED from 12:00 AM January 1, 2018, through 11:59 PM August
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26, 2019, are included in the analysis.

At the hospital, each day was divided into two main 12-hour nursing shifts that start

at 7:00 AM and 7:00 PM, respectively. To facilitate relevant operational decision making

(e.g., nurse staffing decisions), the subject of prediction was the shift-level arrival count

defined as the total number of patients who arrived at the ED during each shift.

Model fitting and selection was performed using one year of data from January 1, 2018

to January 31, 2019, which we hereafter refer to as the training set. The performance of

the prediction model was tested using the remaining data from February 1, 2019 to August

26, 2019, which we hereafter refer to as the test set. This study was approved by Columbia

University Institutional Review Board: Protocol IRB-AAAT6452.

2.2.2 Data Source

We utilized three sources of data: patient electronic health records, weather data published

by National Centers for Environmental Information (2020), and Google Trends (2020).

These data sources were selected based on past work, extant models, and our own novel

hypotheses. While the importance of weather information is well established in the lit-

erature as discussed in the Introduction section, the prediction power of real-time patient

electronic health records and Google trends is relatively underexplored. The data extracted

from the electronic patient tracking system specify for each patient: (i) the patientâĂŹs

clinical time stamps in the ED, including arrival time, first evaluation time, admission de-

cision time, and departure time; (ii) the arrival source of the patient, e.g., walking in or

by ambulance; (iii) the patientâĂŹs chief complaint(s) (i.e., reason of visit); (iv) the pa-

tientâĂŹs Emergency Severity Index (ESI); (v) lab and imaging ordered: indicators for

whether or not lab, CT, MRI, US, and XR were ordered; (vi) indicator for whether the

patient was admitted into the hospital; (vii) the Charlson comorbidity index (CCI) of the

patient based on a list of 17 comorbidities; (viii) age; and (ix) indicator for whether the

patient left without being seen. In addition to the patient-level data, we obtain retrospective

weather information for each day between January 1, 2018 and August 26, 2019, which
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includes the minimum temperature, precipitation, snow, wind, and a hot-weather indica-

tor for whether the maximum temperature exceeds 86ÂřF (30ÂřC). The last source of data

comes from the Google trends, which specifies, for each week between January 1, 2018 and

August 26, 2019, the relative Google search volume for the words “flu", “weather", “de-

pression", “heart attack", “hospital", “emergency room", “abuse", and “disorder" in New

York State. We hypothesized that (i) the search volume for “flu", “weather", “depression",

and “heart attack" signaled certain weather-triggered illnesses in the neighborhood; (ii) the

search record for “hospital" and “emergency room" was directly correlated with ED de-

mand; and (iii) the more search volume was for “abuse" and “disorder", the more demand

the ED would see in the next few days, because studies had demonstrated that patients with

a history of alcohol and substance abuse were more likely to return to the ED within 72

hours.19-20 When selecting the data sources and compiling them into shift-level predic-

tors (see the Data Processing section below), we tried to be comprehensive by including as

much potentially relevant information as possible. Later in the Model Training and Feature

Selection section, we discuss procedures to train different prediction models and identify

relevant predictors.

2.2.3 Data Processing

We processed the data into shift-level features to be used for prediction. The basic (not

real-time) predictors included day vs. night, day of week, month, season, and near-holiday

(within 3 days before and after a national holiday) indicators. With regards to real-time in-

formation, weather, Google trends data, and patient-level data were collected. For analytic

purposes, we processed and classified the patient records into three categories to be used

for prediction.

The first category was the previous-shift counts, which specified for each shift, the

arrival count 1 day ago and 7 days ago, as well as the moving average of the shift-level

arrival count over the last 30 days. More precisely, the arrival count on the previous day

was the total number of patients who arrived during the previous 24 hours. The arrival
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count on the previous nth day was the two shifts between the previous 24× (n−1)th and

24×nth hour. For example, if the goal was to predict the arrival count for a Tuesday night

shift, then the arrival count on the previous day was the sum of the arrival counts during

the Tuesday day shift and Monday night shift.

The second category of predictors was the patient comorbidity information, which we

processed into the following three sets. The first set specified for each comorbidity, the

total number of patients with that comorbidity on the previous day, i.e., during the previous

two shifts. The first set also included the sum and weighted sum of CCIs for all patients on

the previous day. The second set contained similar information as the first set, but instead

of considering the previous-day count, calculated the average daily number of patients with

each comorbidity over the last 3 days, as well as the average daily sum and weighted sum

of CCIs for all patients over the last 3 days. The third set calculated for each comorbidity,

the percentage of patients with that comorbidity over the last 3 days, as well as the average

sum and weighted sum of CCIs per patient over the last 3 days. Note that the difference

between the second and third sets was that the third set considered average comorbidity

measures on the individual level, and was not influenced by how many patients arrived

over the last 3 days. The motivation to consider comorbidity information over the last

3 days was due to the existing findings that patients with certain comorbidities are more

likely to be readmitted to the ED within 72 hours (Wang et al., 2007; Hong et al., 2019);

see the Discussion section for more details. With the comorbidity information specified in

multiple forms above, these three sets of information were likely to be correlated. Since

it was a priori unclear which specification had the most predictive power, we left it to

the model training and feature selection procedures to sift out redundant information and

identify important features.

Lastly, the third category of predictors was the recent ED volume and patient severity

information. This included the total number of patients who arrived by ambulance on the

previous day, the total number of patients with ESI from 1 to 5 on the previous day, the total
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number of labs, CT, MRI, US, and XR ordered on the previous day, the total number of

patients admitted to the hospital on the previous day, the total number of patients whose age

exceeds 65 years old on the previous day, the total number of patients whose age exceeds

80 years old on the previous day, the total number of patients who left without being seen

on the previous day, the average waiting time (from arrival time to first evaluation time)

on the previous day, the average treatment time (from first evaluation time to discharge

decision time) on the previous day, and the average boarding time (from discharge decision

time to departure time) on the previous day. Intuitively, the waiting and boarding times

captured how busy the ED was on the previous day. Formally, we defined the dataset with

features including day vs. night, day of week, month, season, and holidays as the base

dataset, i.e., dataset without real-time information. We refer to the dataset with real-time

information as the full dataset, which contains all the predictors described above.

2.2.4 Model Evaluation

We focused on two measures of forecast accuracy for shift-level arrival counts—the root

mean square error (RMSE) and the mean absolute prediction error (MAPE). Let (y1,y2, ,yn)

be the vector of observed arrival counts for a total of n shifts, and let (ŷ1, ŷ2, , ŷn) be the cor-

responding vector of predicted arrival counts given by the prediction model. The RMSE

was calculated as the normalized distance between the predicted and observed values:

RMSE =

√
n

∑
i = 1

(ŷi − yi)
2

n
.

The MAPE was defined as the average percentage error of the prediction:

MAPE =
1
n

n

∑
i = 1

|ŷi − yi|
yi

.

Hereafter, we refer to the RMSE (MAPE) calculated on the training set as the training

RMSE (MAPE), and on the testing set as the testing RMSE (MAPE).
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2.2.5 Model Training and Feature Selection

Using the predictors developed in the Data Processing section, we employed state-of-the-

art prediction models and feature selection tools. For the benchmark model without real-

time information, as we had relatively few features in the base dataset, we trained simple

linear regression models and regression tree models, only. When we incorporated real-

time information in the full dataset, in addition to linear regression and regression tree, we

also trained more sophisticated models including extreme gradient boosting (XGBoost),

seasonal autoregressive integrated moving average (SARIMA), and SARIMA embedded

with linear regression (SARIMAX).

Linear Regression To train the linear regression model, we used a two-way stepwise

model selection method based on the Akaike’s information criterion (AIC). In particular,

we started by including all the predictors in consideration, and in each step, we excluded or

included one predictor that gave the largest reduction of the AIC, until the AIC could not

be further reduced (Neter et al., 1996). We refer to the model that did not utilize real-time

information as LR1, which included general shift-level information such as day vs. night,

day of the week, month, and holidays. In comparison, we refer to the model that utilized

real-time information as LR2, which could potentially include all the covariates described

in the Data Processing section. Because the stepwise heuristic could be impeded by the

extremely large number of predictors at initialization, in order to identify the covariates

with the highest predictive power, we repeated the above procedure for different categories

of covariates. In particular, we used the day vs. night, day of the week, season, and

holidays as the base predictors, and respectively added the predictors in category of (i)

weather, (ii) google trends, (iii) patient comorbidity information, (iv) previous-shift counts,

and (vi) recent ED volume and patient severity information. For each of the five small-scale

regression models, we performed the stepwise selection procedure as above and identified

the significant covariates in each category. Covariates that were highly correlated were
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sifted out by comparing the correlation matrix. We refer to the model that combined all the

remaining covariates from the small-scale regressions as LR2.

Regression Tree Regression tree model was implemented via the rpart package in R

(Therneau et al., 2015). The following hyperparameters were tuned: (i) complexity pa-

rameter (cp) ranging from 0 to 0.08 in increment of 0.01, and (ii) maximum depth of any

node of the final tree (maxdepth) ranging from 1 to 10 in increment of 1. The other hy-

perparameters are set to their default values (https://stat.ethz.ch/R-manual/

R-devel/library/rpart/html/rpart.control.html). For each specifica-

tion of hyperparameters, we evaluated the modelâĂŹs performance using 10-fold cross-

validation on the training set and referred to the resulting average RMSE (MAPE) as the

validation RMSE (MAPE). The hyperparameters that gave the smallest validation RMSE

was selected. The final model was then trained with these hyperparameters on the training

set and evaluated on the test set. We refer to the final model without real-time information

as TR1, and to that with real-time information as TR2.

XGBoost XGBoost model was implemented via the xgboost package in python (https:

//xgboost.readthedocs.io/en/latest/python/index.html). The fol-

lowing hyperparameters were tuned: (i) number of boosting rounds (num_round) ranging

from 10 to 200 in increment of 10, (ii) maximum tree depth for base learners (max_depth)

ranging from 1 to 9 in increment of 1, (iii) boosting learning rate (eta) ranging from 0.1

to 0.5 in increment of 0.1, (iv) L1 regularization term on weights (alpha) ranging from 0.2

to 1 in increment of 0.2, and (v) L2 regularization term on weights (lamba) ranging from

0.2 to 1 in increment of 0.2. The other hyperparameters were set to their default values

(https://xgboost.readthedocs.io/en/latest/parameter.html). For

each specification of hyperparameters, we evaluated the model’s performance using 10-fold

cross-validation on the training set. The hyperparameters that gave the smallest validation

RMSE was selected, and the final model was then trained with these hyperparameters on

the training set and evaluated on the test set. Different from the other prediction models
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considered, XGBoost is a “black-box" model that does not specify explicitly how each co-

variate drives the prediction. We used relative importance, a measure that quantifies the

improvement in prediction accuracy of a tree-based algorithm (including XGBoost) from

a split based on a given covariate, to identify relevant predictors (Hastie et al., 2009). Note

that relative importance does not specify directionality, but instead only indicates the pre-

dictive power of a covariate.

SARIMA and SARIMAX To train the SARIMA model, we set the seasonal term to

14 (i.e., s = 14), in order to distinguish the day vs. night and day of the week effects.

In addition, since the time series had a stationary increasing trend (Figure 2.1), it was

reasonable to conduct a difference for the original series. However, whether to conduct

the difference directly (i.e., setting d = 1, D = 0) or seasonally (i.e., setting d = 0, D = 1)

needed to be determined. For each of these two options, we conducted the Dickey-Fuller

test to check whether the differenced time series was stationary. The resulting p-values

were both 0.01, which suggested at 99% confidence level that the differenced time series

under each option did not have a unit root and was therefore stationary. We then used a

variation of the Hyndman-Khandakar algorithm (Hyndman and Athanasopoulos, 2018) to

determine the hyperparameters. In particular, for each differencing method, we varied the

AR term (p), the seasonal AR term (P), the MA term (q), and the seasonal MA term (Q)

from 1 to 7 in increment of 1. We considered models where the highest-order AR and MA

terms were statistically significant. The final model was then selected based on AIC on

the training set and evaluated on the test set. As for the SARIMAX model, we used the

same covariates in the selected linear regression model LR2 as external regressors, except

that we excluded the previous-day arrival count in the covariates to avoid double counting

the lag information. Since the embedded linear regression model already took into account

the day vs. night and day of the week variations, as well as the lag information over the

last 7 and 30 days, we set the seasonal hyperparameters (P, Q, s) in the SARIMAX model

to 0 to avoid overfitting, which leads to an ARIMAX model. The explicit expression of
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the SARIMA and ARIMAX models is provided in Appendix A, which later facilitates

interpretation of the estimated hyperparameters and covariates.

Figure 2.1: Shift-level arrival count from January 1, 2018 to August 26, 2019
The solid blue line is the best regression line where yt = 134.4+0.00339t, and the dashed red line
is the average arrival count.

2.3 Results

2.3.1 Models without Real-Time Information

After the stepwise selection procedure, the remaining covariates in LR1 were day vs. night,

day of the week, month, and holidays. Without real-time information, LR1 achieved an R2

value of 0.8998 and an adjusted R2 value of 0.8959. On the test set, LR1 achieved an

RMSE of 14.8840 and an MAPE of 9.3226%. Table 2.1 lists the estimated coefficients

for the covariates in LR1. The final tree model TR1 had hyperparameters cp = 0.01 and

maxdepth = 7. Figure 2.2 illustrates the structure of TR1 estimated on the training set,

where the final tree was split by day vs. night indicator, and further by day of the week

among all day shifts. Overall, TR1 performed similarly as LR1 on the test set and achieved

test RMSE of 14.7560 and test MAPE of 9.5967%.

2.3.2 Models with Real-Time Information

Linear Regression The final linear regression model LR2 contained real-time predictors

identified by the small-scale regressions, including day vs. night, day of the week, season,
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Table 2.1: Estimated coefficients for LR1 without real-time information

Estimate (standard error)

Monday day 119.674∗∗∗ (2.970)
Tuesday day 97.095∗∗∗ (2.981)
Wednesday day 96.109∗∗∗ (2.955)
Thursday day 94.747∗∗∗ (2.948)
Friday day 84.401∗∗∗ (2.961)
Saturday day 56.539∗∗∗ (2.960)
Sunday day 51.558∗∗∗ (2.931)
Monday night 9.347∗∗∗ (2.970)
Tuesday night 6.095∗∗ (2.981)
Wednesday night 2.878 (2.955)
Thursday night 4.728 (2.948)
Friday night 5.920∗∗ (2.961)
Saturday night 3.597 (2.960)
January 5.853∗∗ (2.692)
February 9.174∗∗∗ (2.757)
March −2.939 (2.699)
April −2.449 (2.723)
May 2.457 (2.688)
June −0.030 (2.721)
July 6.665∗∗ (2.687)
August 3.531 (2.701)
September 2.604 (2.709)
October 5.513∗∗ (2.688)
November −3.527 (2.714)
Holiday −22.565∗∗∗ (3.530)
Holiday −1 day −10.360∗∗∗ (3.527)
Holiday +1 day 15.788∗∗∗ (3.526)
Intercept 88.460∗∗∗ (2.793)

Observations 730
R2 0.900
Adjusted R2 0.896
Residual Std. Error 14.944 (df = 702)
F Statistic 233.428∗∗∗ (df = 27; 702)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 2.2: Structure of TR1 and TR2

Day of the week

Day Night 

207 189 187 185 175 147 141

95

Mon Tue Wed Thur Fri Sat Sun

Day v.s. night

holidays, weather, the total number of arrivals 1 and 7 days ago, the moving average of

daily arrival count over the last 30 days, google trends for the words “depression" and

“flu", and the average weighted sum of comorbidity indices per patient over the last 3 days.

Overall, LR2 achieved an R2 value of 0.9084 and an adjusted R2 value of 0.9045. On the

test set, LR2 achieved an RMSE of 14.0893 and an MAPE of 8.6335%. Table 2.2 lists the

estimated coefficients for the covariates in LR2.

Regression Tree Among models that utilized real-time information, the hyperparame-

ters cp = 0.01 and maxdepth = 7 again led to the smallest validation RMSE. In this case,

TR1 and TR2 are identical, though TR1 was trained on the base dataset without real-time

information, and TR2 was trained on the full dataset with real-time predictors. Figure

2.2 illustrates the structure of the final model estimated on the training set. Overall, TR2

achieved test RMSE of 14.7560 and test MAPE of 9.5967%.

XGBoost The final model with the smallest validation RMSE had the following hyper-

parameters: number of boosting rounds (num_round) equal to 90, (ii) maximum tree depth

for base learners (max_depth) equal to 1, (iii) boosting learning rate (eta) equal to 0.5, (iv)

L1 regularization term on weights (alpha) equal to 0.2, and (v) L2 regularization term on

weights (lamba) equal to 0.6. Figure 2.3 illustrates the top 20 most informative predictors

identified by the selected model (estimated on the training set), including day vs. night,

day of the week, the arrival count on the previous day, the moving average of daily arrival
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Table 2.2: Estimated coefficients for LR2 with real-time information

Estimate (standard error)

Monday day 119.972∗∗∗ (2.855)
Tuesday day 97.307∗∗∗ (3.421)
Wednesday day 96.277∗∗∗ (3.174)
Thursday day 93.560∗∗∗ (3.125)
Friday day 83.007∗∗∗ (3.170)
Saturday day 57.421∗∗∗ (3.327)
Sunday day 53.682∗∗∗ (3.242)
Monday night 9.599∗∗∗ (3.333)
Tuesday night 6.170∗ (3.195)
Wednesday night 2.755 (3.183)
Thursday night 3.963 (3.160)
Friday night 5.650∗ (3.306)
Saturday night 5.496∗ (3.244)
Winter 3.021 (2.262)
Summer −1.574 (2.034)
Fall −2.355 (1.923)
Holiday −22.392∗∗∗ (3.512)
Holiday −1 day −10.137∗∗∗ (3.419)
Holiday +1 day 16.840∗∗∗ (3.445)
Min temperature 0.532∗∗∗ (0.114)
Precipitation −0.160∗∗∗ (0.054)
Snow −0.169∗∗∗ (0.033)
Wind 0.078∗∗ (0.037)
Max temperature ≥ 86◦F −5.761∗∗∗ (2.146)
1-day lag 0.013 (0.026)
7-day lag 0.038 (0.024)
30-day moving average 0.012 (0.032)
Google trend “depression" −0.098 (0.081)
Google trend “flu" 0.270∗∗ (0.111)
Average weighted comorbidity score

per patient over the last 3 days 14.848∗ (8.817)

Intercept 57.365∗∗∗ (20.894)

Observations 730
R2 0.908
Adjusted R2 0.904
Residual Std. Error 14.316 (df = 699)
F Statistic 231.112∗∗∗ (df = 30; 699)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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count over the last 30 days, holidays, weather, the average waiting time on the previous day,

the average weighted sum of CCIs per patient over the last 3 days, and the percentages of

patients with comorbidity “MSLD" (moderate or severe liver disease) and “METACANC"

(metastatic solid tumor) over the last 3 days, respectively. The final model achieved test

RMSE of 15.9276 and test MAPE of 9.5842%.

Figure 2.3: Top 20 informative predictors in the final XGBoost model

SARIMA and SARIMAX Among all SARIMA models, SARIMA(6,0,5)(7,1,7)14 was

selected as the final model, achieving test RMSE of 14.980 and test MAPE of 9.080%.

After incorporating the external regressors and setting the seasonal term to 0, the final

ARIMAX(1,1,4) model achieved test RMSE of 13.803 and test MAPE of 8.482%. Table

2.3 lists the estimated coefficients for the variables in the ARIMAX(1,1,4) model. It was

well expected that the coefficients for the covariates in the embedded linear regression

model had the same signs (i.e., directional trends) as those for the final linear regression

model (LR2). Moreover, as explicitly derived in Appendix A, the model suggests a positive

correlation between the arrival count during the current shift and the arrival counts during

the previous two shifts.
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Table 2.3: Estimated coefficients for the selected ARIMAX model

Estimate (standard error)

Monday day 121.172 ∗∗∗ (4.138)
Tuesday day 99.495∗∗∗ (4.137)
Wednesday day 98.342∗∗∗ (4.147)
Thursday day 95.473∗∗∗ (4.152)
Friday day 84.982∗∗∗ (4.190)
Saturday day 59.392∗∗∗ (4.352)
Sunday day 55.298∗∗∗ (4.388)
Monday night 10.417∗∗∗ (2.606)
Tuesday night 6.889∗∗ (2.775)
Wednesday night 3.481 (2.814)
Thursday night 4.751∗ (2.843)
Friday night 6.331∗∗ (3.055)
Saturday night 5.808∗ (2.976)
Winter 3.064 (2.298)
Summer −1.635 (2.077)
Fall −2.152 (1.964)
Holiday −22.732∗∗∗ (3.280)
Holiday −1 day −10.604∗∗∗ (3.237)
Holiday +1 day 16.338∗∗∗ (3.287)
Min temperature 0.525∗∗∗ (0.112)
Precipitation −0.157∗∗∗ (0.050)
Snow −0.170∗∗∗ (0.031)
Wind 0.074∗∗ (0.035)
Max temperature ≥ 86◦F −5.482∗∗∗ (2.089)
7-day lag 0.042∗ (0.023)
30-day moving average 0.009 (0.033)
Google trend “depression" −0.101 (0.082)
Google trend “flu" 0.261∗∗ (0.112)
Average weighted comorbidity score

per patient over the last 3 days 13.128 (8.852)

AR1 (φ1) −0.987∗∗∗ (0.014)
MA1 (θ1) −0.054 (0.041)
MA2 (θ2) −0.862∗∗∗ (0.041)
MA3 (θ3) 0.013 (0.039)
MA4 (θ4) −0.098∗∗ (0.039)
σ2 198.9

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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2.4 Discussion

Our novel model included a rich collection of real-time and operational-level factors to

predict ED arrivals. There are many studies that apply different prediction techniques to

forecast ED arrivals (Gul and Celik, 2020), but the majority of these studies only make

use of classic predictors such as day vs. night, day of the week, month, holidays, weather,

and previous-shift arrival counts (Jing et al., 2020). The predictive power of other rich

real-time information has been relatively unexplored. Our work builds on this previous

work by exploring a novel large set of real-time predictors from the concurrent patient

electronic health records and Google trends. We demonstrated how real-time patient-level

information could be processed into shift-level features and identify the relevant ones that

were predictive of future patient volume. The estimation results of the selected models also

lent themselves to intuitive interpretation about how various trends in the calling population

affected future arrivals.

2.4.1 Implications for Emergency Department: Operations Level and Pairing of Re-

sources

Real-time information was effective in improving prediction accuracy of ED arrivals. The

linear regression model (LR2) identified previous-shift arrival counts, weather, Google

trends, and patient comorbidity as informative covariates. According to the estimated co-

efficients in Table 2.2, ED arrivals were positively correlated with the patient volume 1

day and 7 days prior, as well as with the moving average of daily arrival count over the

last 30 days. Severe weather such as snow, precipitation, and extremely cold or hot tem-

perature could reduce ED arrivals. Nevertheless, the ED tended to see more patients on

days with strong wind. In addition, ED arrivals increased during the weeks when there

were more Google search records for the word “flu". Intuitively, the search volume for

“flu" can be seen as the concurrent flu trend information in New York State. In contrast,

ED arrivals lessened during the weeks when the Google trend for the word “depression"
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was higher. Thus, we infer that fewer patients arrived to the ED during the time periods

when mental health issues (e.g., seasonal affective disorder) were salient. Moreover, the

average weighted sum of CCIs per patient over the last 72 hours was positively correlated

with the incoming patient volume. This trend could be corroborated by the findings that

patients with higher weighted sum of CCIs, a history of chronic heart failure (CHF) or

chronic obstructive pulmonary disease (COPD), and a history of alcohol and substance

abuse were more likely to return to the ED within 72 hours (Wang et al., 2007; Hong et al.,

2019). The estimated coefficients for the ARIMAX model in Table 2.3 further confirmed

the aforementioned trends. The selected XGBoost model identified similar significant pre-

dictors as LR2 (Figure 2.3), with several new features such as the percentages of patients

with comorbidities of moderate or severe liver disease (MSLD) and metastatic solid tumor

(METACANC) over the last 3 days, as well as the numbers of patients with ESI 3 and 4 on

the previous day. We remark that the percentages of patients with each type of comorbid-

ity was correlated with (and thus could be partially captured by) the weighted sum of the

CCIs. Similarly, the numbers of patients with ESI 3 and 4 on the previous day were highly

correlated with the previous-day arrival count. Hence, the recommendations of informative

features by LR2 and the XGBoost model were coherent.

2.4.2 Considerations for Staffing Other Dynamic Resources

Overcrowding due to lack of staffing capacity and other factors has been identified as a

significant issue in EDs throughout the United States for over a decade and continues to

deteriorate (Institute of Medicine Committee on the Future of Emergency Care in the US

Health System, 2006). Appropriate staffing matched to demand, driven by both arrivals

and ED census, is associated with improved patient safety and quality of care (Ball et al.,

2017). Clinician wellbeing and risk for burnout is directly correlated with levels of over-

crowding among other modifiable factors (Curtis and Puntillo, 2007; Anderson et al., 2021;

Recio-Saucedo et al., 2015; Chang et al., 2018b). The ability to predict with some de-

gree of certainty variations in ED volume would enable thoughtful and innovative staffing
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paradigms that would meet anticipated demand when it surges past capacity. As seen in

this manuscript, real-time information can certainly be utilized to predict ED volumes,

however, this must be matched by real-time resources that are available to be deployed on

an ad hoc basis. Similarly, staffing paradigms should account for unanticipated low volume

days.

2.4.3 Comparison of Different Prediction Models

Based on the performance measures reported in the Results section, Table 2.4 summarizes

the RMSE and MAPE on the training and test sets for all the selected models. Among

models that did not utilize real-time information, the final tree model (TR1) performed

the best on the test set, achieving test RMSE of 14.756 and test MAPE of 8.917%. Af-

ter incorporating real-time information and using more sophisticated model, the prediction

accuracy on the test set could be further improved. Among models that were trained with

real-time information, the linear regression model (LR2) and ARIMAX model performed

the best. In particular, the ARIMAX model achieved the smallest test RMSE of 13.803

and the smallest test MAPE of 8.482%. The worse performance of the regression tree

and SARIMA models was well expected due to their relatively simple structure, e.g., the

SARIMA models only took lags information into account. On the other hand, the more ad-

vanced XGBoost model could be impeded by the limited number of observations available

for training, e.g., the XGBoost model was trained with 134 features on 730 observations

(shifts) only. Hence, when selecting effective forecast methods, we showed that the linear

regression and ARIMAX models were not only effective in applying real-time informa-

tion but also robust to avoid overfitting when the amount of data is limited. In addition,

in practice, the linear regression model and ARIMAX model are more interpretable than

XGBoost.
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Table 2.4: Comparison of the selected models

Model
Utilize real-time

information
Training
RMSE

Training
MAPE

Test
RMSE

Test
MAPE

LR1 No 14.654 9.275% 14.884 9.322%
TR1/TR2 No 15.967 9.597% 14.756 8.917%

LR2 Yes 14.009 8.960% 14.089 8.633%
XGBoost Yes 13.280 8.554% 15.928 9.584%
SARIMA Yes 13.745 7.709% 14.980 9.080%
ARIMAX Yes 13.761 8.738% 13.803 8.482%

2.4.4 Limitations

Several limitations of the study include the limited amount of data. The training set only

contained one year of data that provides 730 observations, which limited the performance

of more sophisticated models that requires substantial hyper-parameter tuning such as the

XGBoost. In addition, our study was performed for one ED in New York City at a quater-

nary care facility. An interesting future direction is to apply our analysis to multiple ED

sites and compare the prediction accuracy and trends. Lastly, our analyses primarily fo-

cused on predicting ED demand in terms of patient arrival counts. An interesting extension

is to apply similar approaches to explore the predictive power of real-time information on

patient severity and patient length of stay.

2.5 Conclusion

We constructed and evaluated predictions models with rich real-time information to fore-

cast ED patient volume. In alignment with the nursing shift structure in an ED site at a

quaternary care facility in New York City, we aimed to predict the shift-level patient arrival

count. Various prediction techniques were examined, including linear regression, regres-

sion tree, XGBoost, SARIMA, and (S)ARIMAX. Based on the data from our partner ED

site, linear regression and ARIMAX when combined with real-time information achieved

the highest prediction accuracy measured by RMSE and MAPE. Comparing to prediction

models without real-time predictors, we found that contemporary information was able to
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improve prediction accuracy in near-real time. Among the extensive list of real-time pre-

dictors tested, recent patient arrival counts, weather, Google trends, and concurrent patient

comorbidity information had the highest predictive power. The effectiveness of real-time

information in improving demand forecast has policy implications for staffing. In par-

ticular, ED management can utilize real-time demand updates provided by the prediction

model to make timely adjustments to staffing levels, which in turn can effectively mitigate

ED overcrowding.
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Chapter 3: Prediction-Driven Surge Planning with Application in the

Emergency Department

3.1 Introduction

Emergency department (ED) crowding is a significant problem in many countries around

the world, leading to adverse effects on patient outcomes, patient satisfaction, and staff

morale (Bernstein et al., 2009). Nurses provide a substantial portion of patient care and are

often a bottleneck resource in the ED (Green, 2010). Inadequate nurse staffing is found as

a major contributor to significant increase in the waiting time experienced by patients and

the percentage of patients who leave without being seen (LWBS) (Ramsey et al., 2018).

In addition, nursing costs comprise a substantial fraction of hospital operating budgets.

Therefore, developing effective nurse staffing policies to ensure timely access to care is of

great importance.

Optimally balancing the ED nurse staffing levels to ensure good quality of service ver-

sus increasing staffing costs can be extremely challenging. One of the major complication

comes from the high level of uncertainty in patient demand and the relative static nature of

ED staffing decisions. Poisson processes have been standard assumptions in modeling the

arrival processes in service systems due to their analytical tractability. Their validity has

also been statistically verified in some healthcare settings (Kim and Whitt, 2014). How-

ever, several recent empirical studies suggest the presence of a higher level of uncertainty

(dispersion) relative to standard Poisson processes in real ED arrival data (Maman, 2009;

Armony et al., 2015), and in other service systems such as call centers (Brown et al., 2005;

Steckley et al., 2009; Zhang et al., 2014). Random events such as weather conditions, level

of flu circulation, and mass causality incidents can cause a high level of fluctuation in ED
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demand. On the other hand, ED staffing decisions are often made well ahead of time and

the staffing level is difficult (or very expensive) to change in real time (Chan et al., 2021). In

particular, it is common for EDs to divide a day into multiple nursing shifts. In the United

States, there are usually two 12-hour nursing shifts, with the day shift lasting from 7am

to 7pm, and the night shift from 7pm to 7am the next day. As a typical practice, a “base"

staffing level, which consists of the majority of the staff, is determined several weeks in

advance, when the actual demand is largely unknown. This allows the nurses to plan their

working schedule ahead of time. As time approaches to several hours before the shift, if

the ED manager senses a surge in patient volume, he/she can add an extra level of “surge"

staffing by calling in overtime or agency nurses at a higher compensation (e.g., overtime

salary). The nurse staffing level is then held more or less at a constant level throughout the

shift. The surge staffing provides some flexibility to cope with the demand surge, but there

is currently a lack of systematic guidelines in how to optimally utilize this partial flexibility.

Meanwhile, in recent years, increasing data availability and continuing development in

statistical learning tools provide an emerging opportunity to mitigate demand uncertainty

by building advanced demand forecast models. There have been considerable efforts de-

voted to developing prediction models for ED patient volume and flow (see, e.g., Marcilio

et al. (2013); Calegari et al. (2016); Chang et al. (2018a); Whitt and Zhang (2019), Bertsi-

mas et al. (2021)). However, despite the vast amount literature on demand forecasts, how to

effectively incorporate the predictive information to improve ED staffing decisions is less

studied. In particular, while advanced prediction models that utilize real-time information

generate more accurate short-term forecast of the ED demand in comparison to using tra-

ditional historical averages (Schweigler et al., 2009), it remains unclear how the increased

prediction accuracy can be translated to improved system performance (e.g., reduction in

patient waiting time and LWBS rate) and/or reduced staffing costs. In this chapter, we

study prediction-driven surge planning. The key tradeoff in this two-stage staffing problem

is the long-term staffing commitments which have a lower costs but face a higher level of
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demand uncertainty (larger prediction error) versus the short-term staffing commitments

which have a higher cost but face a lower level of demand uncertainty (smaller prediction

error).

To capture the highly uncertain demand faced by the ED, we assume that patients arrive

according to a doubly stochastic Poisson process as in Maman (2009); Bassamboo et al.

(2010); Koçağa et al. (2015). The arrival rate for a particular type of shift is a random

variable that takes the form of

Λ = λ +λ
αX , (3.1)

where λ is the mean arrival rate, α ∈ (0,1) captures the order of arrival-rate uncertainty,

and X is a random variable with zero mean. At the base-stage, our prediction model is

only able to capture the long-run average pattern that defines the type of the shift, e.g., day

of the week effect and day versus night effect. Thus, we assume the base-stage predic-

tion model predicts E[Λ] = λ accurately. At the surge stage, as we gather more real-time

information, we can build more sophisticated prediction models. Motivated by value of

real-time information identified in Chapter 2, we assume in our main model that the surge-

stage prediction model is able to predict the realized arrival rate ` = λ +λ αx where x is

a particular realization of X for the specific shift. Conditional on `, the ED operates as a

Markovian multi-server queue with Poisson arrival process, exponentially distributed ser-

vice times, and exponentially distributed patience times. Note that even with the predictive

information, we still incur a certain level of uncertainty due to the randomness in the in-

terarrival times between patients, patients’ service requirements, and their patience times

(time before abandoning).

The ED manager makes two staffing decisions for each shift: a base staffing level and a

surge staffing level. The base staffing decision is based on the base prediction, i.e., λ , and

knowledge of the arrival rate distribution, i.e., the distribution of λ αX . The surge staffing

decision is based on the surge prediction, i.e., `. The surge staff are assumed to be more

costly than the base staff. Our objective is to minimize the sum of the staffing cost and the
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performance cost which consists of the costs incurred by patients’ waiting and patients’

LWBS. Our main contributions can be summarized as:

The benefit of surge staffing. To quantify the benefit of having the more expensive

surge staff, we compare the two-stage stochastic optimization problem to a single-stage

benchmark where only base staffing is allowed. We quantify the cost saving of the opti-

mal two-stage staffing rule over the optimal single-stage policy. Our result shows that the

magnitude of cost-saving depends on the order of arrival-rate uncertainty captured by α in

(3.1). In particular, the cost saving is o(
√

λ ) if α < 1/2, O(
√

λ ) if α = 1/2, and Θ(λ α) if

α > 1/2. As we will explain in more details, the three regimes of cost saving are divided by

the interplay between the order of arrival-rate uncertainty, which is O(λ α), and stochastic

variability in patient arrival and services, which is O(
√

λ ). The cost-saving quantification

suggests that surge staffing is most beneficial when the arrival-rate uncertainty dominates

the system stochasticity, i.e., α > 1/2. In this regime, the larger the arrival-rate uncertainty,

the more cost savings we gain from the flexibility of surge staffing.

Near-optimal two-stage staffing rule. Focusing on the regime where the arrival-rate

uncertainty dominates the system stochasticity, i.e., α > 1/2, we propose a near-optimal

two-stage staffing rule that is easy to interpret and implement. In particular, at the base

stage, the base staffing level is set to meet the mean demand, together with a hedging that

is of the same order as the arrival-rate uncertainty. After the random arrival rate is realized

at the surge stage, the surge staffing level is brought up to meet the realized offered load,

together with a hedging against the stochastic variability catered to the realized arrival rate.

The parameters of the staffing rule, which dictate the amount of hedging, are the optimal

solutions to a two-stage newsvendor problem, which can be viewed as a stochastic-fluid

approximation to the optimal staffing problem, and the optimal solutions to a square-root

staffing problem based on a diffusion approximation of the queue length process. We prove

that our proposed policy has an optimality gap of o(
√

λ ) compared to the exact two-stage

optimum. We also extend the two-stage staffing rule to allow more general prediction errors
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at the surge stage. In particular, we consider the case where we are not able to predict the

realized arrival rate ` exactly. Instead, we may incur different levels of prediction error. We

quantify how prediction error affect the staffing rule and its corresponding performance.

Practical insights and ED implementation. To facilitate real-world implementation,

we propose an integrated framework to implement the two-stage staffing policy in the ED,

which includes 1) parameter estimation, 2) a two-stage prediction model, and 3) a two-

stage capacity sizing rule. Using data from the ED in New York Presbyterian Columbia

University Medical Center (NYP CUMC), we estimate its arrival-rate uncertainty to be

α = 0.769. We then build a two-stage prediction model to inform the staffing policy. At

the base stage, a simple linear regression model that incorporates the day of the week and

day v.s. night effect works well to estimate the mean arrival rates. For the surge stage,

we implement a prediction model developed in Chapter 2, which utilizes concurrent infor-

mation such as weather, patient comorbidity profile, recent arrival counts, etc. Lastly, we

extend the two-stage staffing rule developed based on the parsimonious queueing model to

accommodate various realistic patient-flow characteristics in our collaborating ED. These

features include lognormal length-of-stay distribution, hour-of-the-day variability in pa-

tient arrival rate, and transient system dynamics as the day and night shifts alternate, each

lasting for only 12 hours. We leverage the insights from our theoretical analysis to appro-

priately adapt our staffing approach to this more realistic setting. In this case, we extend

our two-stage staffing rule to make the surge staffing decision based on not only the pre-

dicted arrival rate (as is the case in the parsimonious theoretical setting) but also on the

concurrent queue length information at the beginning of each shift. These two sources of

real-time information (i.e., demand forecast and current system state) lead to significant

cost savings from the two-stage staffing policy over the benchmark single-stage policy.

For example, compared to the newsvendor solution (Bassamboo et al., 2010), our policy

achieves a reduction of 16% ($3 M) in the annual staffing cost while the average waiting

time is kept below 30 minutes.
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3.1.1 Related Literature

Classic square-root staffing rule. The standard stream of capacity planning problems for

service operations focuses on systems where model parameters are exactly known. In

this setting, the square-root staffing principle dates back to Erlang (1917) in the study of

automatic telephone exchanges. The principle is more recently explained based on an

infinite-server queue heuristic in Kolesar and Green (1998). In particular, it is shown that

the stochastic fluctuation of the system is of square root order of the offered load. Thus, the

square-root staffing can be viewed as an uncertainty hedging against system stochasticity.

Halfin and Whitt (1981) establish a formal diffusion limit for M/M/N queues under the

square-root staffing as the arrival rate goes to infinity. Borst et al. (2004) further establishes

that the square-root staffing rule optimally balances the staffing cost and the service qual-

ity. For this reason, the many-server asymptotic scaling under the square root staffing is

often referred to as the quality-and-efficiency driven (QED) regime. A few extensions have

been considered to incorporate features not captured by the M/M/N model. Garnett et al.

(2002) generalize the diffusion limit under the square-root staffing to the M/M/N +M

queue where customers abandon the system after an exponentially distributed patience

time; more general patience time distributions are considered in Mandelbaum and Zel-

tyn (2009). Jennings et al. (1996) and Liu and Whitt (2012) extend the square-root staffing

rule to systems with time-varying arrival rates. Our work extends this stream of literature

by allowing the arrival-rate to be random and considering a two-stage staffing problem in

two time scales. Relevantly, after the random arrival rate is realized at the surge stage, our

proposed two-stage QED staffing rule brings the total staffing level up to the square-root

staffing prescription if the base-stage capacity is inadequate. In addition, similar to the

literature, our theoretical analysis takes an asymptotic approach, where we send the mean

arrival rate λ to infinity and study how the optimal staffing level scales with λ .

Managing queues with parameter uncertainty. Motivated by the high level of demand

uncertainty in many service systems, more sophisticated models for arrival processes that
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account for features not captured by standard Poisson processes have been proposed in

the literature. Whitt (1999) is one of the first to study a random arrival rate for call cen-

ters and its implications on the staffing decision. Chen and Henderson (2001); Avramidis

et al. (2004); Brown et al. (2005) and Steckley et al. (2009) provide empirical evidence of

arrival-rate uncertainty and explore its modeling implications. Maman (2009) finds empir-

ical evidence of high arrival-rate uncertainty in an Israeli ED. Our work is closely related

to works that study the staffing decision in the presence of arrival-rate uncertainty. Whitt

(2006b) investigates a fluid-based staffing prescription catered to arrival-rate uncertainty

and absenteeism of servers. Harrison and Zeevi (2005) and Bassamboo et al. (2010) pro-

pose a newsvendor-based solution method whose effectiveness is pronounced when the

order of arrival-rate uncertainty is larger than stochastic variability. Their proposed staffing

rule is set to meet the mean demand plus a hedging against the arrival-rate uncertainty.

More recently, moving from single-stage to two-stage decisions, Koçağa et al. (2015) for-

mulate a joint staffing and co-sourcing problem, where the staffing decision is made before

the random arrival-rate is realized, and the co-sourcing decision is made in real time after

the arrival-rate uncertainty is resolved. Our two-stage optimization problem has similar

decision epochs to those in Koçağa et al. (2015), i.e., before and after the random demand

is realized. However, different from Koçağa et al. (2015), we consider a two-stage staffing

problem and allow the arrival-rate uncertainty to be of a larger magnitude than stochas-

tic variability. The solution method we use to solve the two-stage stochastic optimization

problem leverages the stochastic fluid approximation introduced by Harrison and Zeevi

(2005), but we considered a more refined version of this approximation, which takes the

system stochasticity into account at the surge stage.

Predictive analytics and data-driven methods in capacity sizing. Several works take

a data-driven approach for capacity sizing with demand uncertainty. Zheng et al. (2018)

and Sun and Liu (2021) propose statistical methods to estimate the arrival-rate distribution.

See also Ibrahim et al. (2016) for a comprehensive review of literature on modeling and
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forecasting for call center arrivals. Bassamboo and Zeevi (2009) develop a data-driven ap-

proach that yields staffing prescriptions that are asymptotically optimal, as both the system

scale and data size increase to infinity. There is a large literature on studying demand uncer-

tainty in inventory systems without queueing dynamics (see for example (Chen et al., 2007;

Perakis and Roels, 2008; Levi et al., 2015; Ban and Rudin, 2019; Boada-Collado et al.,

2020)). Motivated by the operations of EDs, our work takes into account the arrival-rate

distribution at the base stage, the demand visibility at the surge stage, and the stochasticity

of queueing dynamics.

ED capacity planning Our work relates to the growing literature on using queueing the-

ory to address capacity planning problems in the ED. Green et al. (2006) models the ED as

an Mt/M/s queue and use a Lag SIPP (stationary independent period by period) approach

to gain insights into the staffing prescriptions. Yankovic and Green (2011) develop a finite

source queueing model with two types of severs—nurses and beds—to study the inter-

play between bed occupancy level and demand for nursing. Véricourt and Jennings (2011)

study nurse staffing using a closed queueing model, where patients alternate between be-

ing needy of service and stable without service need. Similar patient reentrant behavior

is studied by Yom-Tov and Mandelbaum (2014) using an Erlang-R model in time-varying

environments. Chan et al. (2021) use a multiclass queue to study the dynamic assignment

of nurses to different areas of the ED at the beginning of each shift. Batt et al. (2019) em-

pirically investigate the impact of discrete work shifts on service rates and patient handoffs

(i.e., passing patients in treatment to the next care provider at the end of a shift). Compared

to the literature, we focus on studying the effect demand uncertainty on ED staffing, where

we combine demand prediction with queueing dynamics to derive good staffing strategies.

Dual sourcing problem in supply chain management. Though our work is motivated by

the staffing problem for service systems, a similar core tradeoff between cost and respon-

siveness arises in dual sourcing inventory systems, in which one supplier is cheaper but

slower, while the other is more costly but faster. In this setting, a tailored base-surge (TBS)
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sourcing policy is found to be effective in both continuous and periodic review models (Al-

lon and Van Mieghem, 2010; Janakiraman et al., 2015). Xin and Goldberg (2018) formally

prove that the TBS policy is asymptotically optimal as the lead time of the cheaper supplier

grows without bound. Different from the dual sourcing problem, our theoretical framework

further incorporates queueing dynamics into the optimization problem. We show that the

cost saving of our proposed policy increases with the order of arrival-rate uncertainty.

3.1.2 Organization

The rest of the chapter is organized as follows. In Section 3.2 we introduce the model

and formulate the two-stage staffing problem. In Section 3.3 we quantify the cost saving

from surge staffing. In Section 3.4 we propose near-optimal two-stage staffing rules that

are easy to interpret and implement. The optimality gap between the proposed policy and

the exact two-stage optimum is also derived. The performance of the two-stage staffing

rule is further illustrated through numerical experiment in Section 3.5, where we compare

the performance of our proposed staffing rule to several benchmark policies. In Section

3.6, we extend the two-stage staffing rule to accommodate more general prediction errors

at the surge stage. Lastly, in Section 3.7, we develop a holistic framework to implement

the prediction-driven staffing policy in the actual ED, which includes parameter estimation,

demand forecast, and capacity sizing that takes the transient shift effect into account. We

conclude in Section 3.8. All the proofs appear in the appendix.

3.1.3 Notation

For a sequence of positive real numbers {an : n ∈ R+} and a sequence of real numbers

{bn : n∈R+}, we write (i) bn = o(an) if |bn/an| → 0 as n→∞, (ii) bn = O(an) if |bn/an| is

bounded from above, and (iii) bn =Θ(an) if |bn/an| is bounded from above and from below

by a strictly positive real number, i.e., if m≤ |bn/an| ≤M for some 0 < m < M < ∞ for all

n > 0. For a sequence of random variables {Xn : n ∈ R+} and a sequence of positive real

numbers {an : n∈R+}, we write (i) Xn = o(an) if |Xn/an|→ 0 as n→∞ with probability 1,
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and (ii) Xn = oUI(an) if Xn = o(an) and there exists some random variable Y with E [Y ]<∞

such that |Xn/an|< Y for all n > 0.

3.2 The Model

To gain insights into the potential benefits of two-stage staffing, we start with a stylized

model of the ED using a parsimonious multi-server queueing system where patients arrive

according to a doubly stochastic Poisson process. The arrival rate for a shift Λ is a random

variable with cumulative distribution function FΛ and mean E [Λ] = λ . Conditional on Λ,

the arrival process is a homogeneous Poisson process with that rate. Customers (patients)

are served on a first-come first-served (FCFS) basis, and wait in an infinite capacity buffer

when all servers (nurses) are busy. While waiting for service, a delayed patient abandons

the system (LWBS) after an exponentially distributed amount of time with mean 1/γ . Pa-

tients have service requirements that are independently and identically distributed (i.i.d.)

exponential random variables with mean 1/µ . Hence, conditioned on Λ, the ED operates

as an M/M/N +M queue, where the staffing level N is the decision variable.

The ED manager makes two decisions: an upfront base staffing level and a surge

staffing level, both of which are non-negative integers. At the base stage, which is of-

ten a few weeks/months before the start of the actual shift, the prediction model can only

predict the average arrival rate level, λ . We assume the arrival rate distribution is known.

Thus, the base staffing level N1 := N1(FΛ) ∈ N is made before the arrival rate is realized,

based on knowledge of the arrival rate distribution, FΛ, only. At the surge stage, as we

gather more real-time information, the prediction model can predict the realized arrival

rate ` quite accurately. Thus, the surge staffing level N2(N1, `) ∈ N is made based on the

base staffing level, N1, and the realized arrival rate, `. We do not allow N2(N1, `) to take

negative values, because in reality, the ED manager cannot make a last-minute decision to

reduce the staffing level, e.g., by canceling shifts for the nurses who are staffed at the base

stage. We denote the joint staffing decision as π := (N1,N2(N1, `)), and use Π to denote

the set of all feasible staffing rules. Note that in this parsimonious model, the prediction
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at the base stage is captured by the expected arrival rate, λ := E[Λ], and the prediction

errors are captured by the distribution of Λ− λ . To start, we assume perfect prediction

at the surge stage. We will relax this assumption in Section 3.6 to explicitly incorporate

prediction errors at the surge stage.

There are costs associated with patients’ waiting, patients’ LWBS (abandonments), and

staffing. In particular, a holding cost is incurred at a rate of h per patient per unit time spent

waiting. Each abandoning patient incurs a fixed cost of a. The staffing cost is c1 per base

server per unit time, and c2 per surge server per unit time. Let Q(n, `) denote the steady-

state queue length of an M/M/n+M queue with arrival rate `. Then, we consider the

following two-stage cost minimization problem.

min
π∈Π

Cπ =min
N1

{
c1N1 +E

[
min

N2(N1,Λ)
{c2N2(N1,Λ)+(h+aγ)E [Q(N1 +N2(N1,Λ),Λ)|Λ]}

]}
.

(3.2)

For an M/M/n+M queue with arrival rate `, γE [Q(n, `)] is the steady-state abandonment

rate. Thus, aγE [Q(n, `)] captures the abandonment cost while hE [Q(n, `)] captures the

holding cost in steady state. Note that there are two expectations in (3.2). The inner

expectation is taken with respect to the stochasticity in the steady-state queue length, i.e.,

randomness in Q(n,Λ) conditional on Λ = `. The outer expectation is taken with respect

to the arrival-rate uncertainty, i.e., randomness in Λ.

3.2.1 Parameter Regime

It makes intuitive sense that if the waiting and abandonment costs are excessively lower

than the staffing costs, there is no motivation to staff any server. In addition, if the base

staffing cost is higher than the surge staffing cost, i.e., c1 > c2, it is cost-effective to staff

all servers at the surge stage when the arrival-rate uncertainty is resolved. This intuition is

formalized in Proposition 5.

Proposition 5. For the optimal solution (N∗1 ,N
∗
2 (N

∗
1 ,Λ)) to problem (3.2):

(I) If min{c1,c2}> hµ/γ +aµ , then N∗1 = 0 and N∗2 (N
∗
1 ,Λ) = 0.
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(II) If min{c1,hµ/γ +aµ}> c2, then N∗1 = 0.

(III) If c2 > hµ/γ +aµ > c1, then N∗2 (N1,Λ) = 0 for any base staffing level N1.

Based on Proposition 5, the cost parameters can be divided into four regimes as sum-

marized in Table 3.1.

Table 3.1: Optimal staffing combination for different cost parameters

Cost parameters Staffing decisions
min{c1,c2}> hµ/γ +aµ No staffing
min{c1,hµ/γ +aµ}> c2 Complete surge staffing

c2 > hµ/γ +aµ > c1 Complete base staffing
hµ/γ +aµ > c2 > c1 Base + surge staffing

In this chapter, we are interested in the non-trivial regime that provides motivation to

staff both base and surge servers.

Assumption 5. The cost rates satisfy hµ/γ +aµ > c2 > c1.

3.2.2 Arrival-Rate Uncertainty

Solving (3.2) explicitly is challenging due to the two sources of randomness. In addition,

E [Q(N1 +N2(N1, `), `)] has no closed-form expression. To gain analytical insights, we take

an asymptotic approach by sending the mean arrival rate λ to infinity and study how the

optimal staffing rule scales with λ .

To facilitate the theoretical development, we assume that the random arrival rate takes

the form

Λ = λ +Xλ
α

µ
1−α , (3.3)

for some constant α ∈ (0,1) and random variable X with E [|X |] < ∞. Note that because

E[Λ] = λ , E[X ] = 0. Note that (3.3) is equivalent to the form of arrival-rate uncertainty

introduced in (3.1) earlier; we factor out µ1−α to facilitate technical derivations. Let FX

denote its cumulative distribution function (cdf) of X . We also assume that X has a proper

probability density function (pdf). The second term in (3.3) captures the stochastic fluctu-

ation of the arrival rate around its mean. It is further decomposed into two parts: X and
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λ α µ1−α , where the second part captures the order of fluctuation in relation to λ . We re-

fer to the exponent α as the order of arrival-rate uncertainty. Random arrival rate of the

form (3.3) is proposed in Maman (2009). Similar arrival rate formula has been used in

Bassamboo et al. (2010) and Koçağa et al. (2015).

In what follow, we use the superscript λ to denote quantities that scale with λ . To

simplify notations, we sometimes suppress the superscript when it is clear from the context.

3.3 When is Surge Staffing Beneficial?

As mentioned in Section 3.1, implementing the two-stage staffing requires knowing the

realized arrival rate with high precision. In practice, this often involves investing in sophis-

ticated prediction models, which can be costly to develop and maintain. In addition, even

though surge staffing is paid at a higher rate, it may not be a desirable working mode for

nurses. Therefore, it is important to know how much cost saving we can gain by having the

flexibility of surge staffing.

In resonance with the two-stage optimization problem (3.2), we define the single-stage

optimal staffing problem as

min
π∈Π

Cπ = min
N1
{c1N1 +E [(h+aγ)Q(N1,Λ)]} . (3.4)

Note that the single-stage problem is equivalent to the two-stage staffing problem (3.2) by

imposing the surge staffing level to be N2(N1,Λ) = 0 for any base staffing level N1.

For the sequence of systems indexed by λ , we use C λ
1,∗ to denote the optimal total cost

for the single-stage optimization problem (3.4). Correspondingly, we use C λ
2,∗ to denote

the optimal total cost for the two-stage optimization problem (3.2).

Theorem 4 (benefit of surge staffing). Given the order of uncertainty α , the difference in

optimal costs for the single-stage versus two-stage optimization problem can be summa-

rized as:

(I) If α < 1/2, then C λ
1,∗−C λ

2,∗ = o(
√

λ ).
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(II) If α = 1/2, then C λ
1,∗−C λ

2,∗ = O(
√

λ ).

(III) If α > 1/2, then C λ
1,∗−C λ

2,∗ = Θ(λ α).

We next provide some intuition behind Theorem 4. We first note that when γ = µ , for

a given realization of the arrival rate, i.e., Λ = `, the steady-state number of patients in the

system follows a Poisson distribution with mean `/µ . Its standard deviation is equal to√
`/µ = O(

√
λ ). This system stochasticity cannot be resolved by the prediction model.

On the other hand, the arrival-rate uncertainty characterized by (3.3) is of order λ α . This

parameter uncertainty can be resolved by the prediction model at the surge stage. When

α < 1/2, the system stochasticity dominates the parameter uncertainty. The gain by con-

ducting two-stage staffing is restricted to o(
√

λ ). The cost saving is O(
√

λ ) if the parameter

uncertainty and system stochasticity are of the same order, i.e., α = 1/2. When α > 1/2,

the parameter uncertainty dominates the system stochasticity. This is when we gain the

most cost savings from the flexibility offered by surge staffing. In this regime, the larger

the order of arrival-rate uncertainty is, the larger magnitude of cost saving we gain from

surge staffing. Above all, Theorem 4 suggests the ED manager should only consider surge

staffing when the arrival-rate uncertainty is high.

3.4 Near-Optimal Surge Staffing Policy

As derived in Section 3.3, when the order of arrival-rate uncertainty is strictly larger than

that of system stochasticity, the cost saving of implementing the two-stage staffing opti-

mally is significant, i.e., Θ(λ α). We thus consider this regime as the most meaningful sce-

nario to execute the two-stage staffing, and assume throughout this section that α > 1/2.

We next derive solutions to the two-stage staffing problem.

Due to the convoluted system dynamics, solving the two-stage stochastic optimization

problem (3.2) explicitly is prohibitively hard. Part of the difficulty lies in characterizing the

expected steady-state queue length which depends intricately on the staffing decisions. The

two-stage decisions, before and after the realization of the arrival rate, further exacerbate
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the complexity of the problem. While the problem can be solved numerically, e.g., via sim-

ulation optimization, limited insights about the optimal policy can be generated. Hence, we

take the approach of solving more tractable approximations of the two-stage optimization

problem (3.2). These approximations can be viewed as asymptotic limits of (3.2) under

appropriate scalings as the system scale λ grows to infinity. Thus, policies derived based

on them work really well for relatively large systems and provide insights into how the

optimal policy scales with λ . We also discuss small system adaptions in Section 3.4.3.

3.4.1 Stochastic-Fluid Based Solution

Since the parameter uncertainty is of a larger order than system stochasticity, we start

by approximating the objective function in (3.2) via suppressing the system stochasticity

and focusing solely on the uncertainty in the arrival rate. This relaxation is known as the

stochastic-fluid approximation (Harrison and Zeevi, 2005; Bassamboo et al., 2010). In

particular, conditional on the arrival rate Λ, we approximate the steady-state queue length

of the M/M/n+M queue via (Λ− nµ)/γ , which is the equilibrium queue length of a

deterministic fluid model with the same arrival rate, service rate, and abandonment rate.

Before introducing the stochastic-fluid approximation for the two-stage optimization

problem (3.2), we illustrate the idea by reviewing the single-stage newsvendor policy (de-

noted by u1,NV ) proposed by Bassamboo et al. (2010). Given the staffing level N1, the

steady-state abandonment rate is approximately (Λ− µN1) and the steady state queue

length is approximately (Λ−N1µ)/γ . Then, the single-stage optimization problem (3.4)

can be approximated by

min
N1

{
c1N1 +(hµ/γ +aµ)E

[
(Λ/µ−N1)

+]} . (3.5)

Note that (3.5) is a typical newsvendor problem, with unit capacity cost c1, unit sales price

hµ/γ +aµ , random demand Λ/µ , and capacity decision N1. The optimal solution is given

by

N1 = F̄−1
Λ/µ

(
c1

hµ/γ +aµ

)
,
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where F̄Λ/µ := 1−FΛ/µ is the complementary cumulative distribution function (ccdf) of

Λ/µ , and F̄−1
Λ/µ

is its inverse. Equivalently, we can write

N1 =
λ

µ
+ F̄−1

X

(
c1

hµ/γ +aµ

)(
λ

µ

)α

, (3.6)

where F̄X is the ccdf of X . We remark that for all staffing rules discussed in the chapter,

we do not explicitly restrict N1 and N2 to satisfy the integer constraints. Since rounding

becomes immaterial as we consider the asymptotic performance of the policy as λ →∞, we

assume without loss of generality that each staffing prescription is ceiled up to its nearest

integer.

Let C λ
1,NV denote the expected total cost defined in (3.2) under the one-stage newsven-

dor solution. Recall that C λ
1,∗ is the optimal total cost for the single-stage optimization

problem (3.4). Theorem 1 in Bassamboo et al. (2010) establishes that

C λ
1,NV −C λ

1,∗ = O(λ 1−α). (3.7)

Note that when α > 1/2, O(λ 1−α) = o(
√

λ ). Thus, the single-stage newsvendor solution

works remarkably well in the single-stage optimal staffing problem.

We next extend the single-stage newsvendor solution to the two-stage newsvendor so-

lution where surge staffing is allowed after we observed the realized arrival rate. The

stochastic-fluid approximation of the two-stage optimization problem (3.2) takes the form

min
N1

{
c1N1 +E

[
min

N2(N1,Λ)

{
c2N2(N1,Λ)+(h/γ +a)(Λ−µ(N1 +N2(N1,Λ)))

+}]} . (3.8)

Given N1, Assumption 5 implies that the optimal surge-stage staffing level in (3.8) is given

by

N2(N1,Λ) = (Λ/µ−N1)
+ .

Hence, the optimal base-stage staffing level is the optimal solution to

min
N1

{
c1N1 + c2E

[
(Λ/µ−N1)

+]} . (3.9)
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Similar to (3.5), (3.9) is a newsvendor problem, with unit capacity cost c1, unit sales price

c2, random demand Λ/µ , and capacity decision N1. The optimal solution is given by

N1 = F̄−1
Λ/µ

(c1/c2) = λ/µ + F̄−1
X (c1/c2)(λ/µ)α .

Let β ∗ := F̄−1
X (c1/c2). We propose the following two-stage newsvendor solution denoted

by u2,NV .

Definition 2 (two-stage newsvendor solution). For α ∈ (1/2,1), the parameters of two-

stage newsvendor solution u2,NV are set as follows:

1. At the base stage, the base-stage staffing level is

N1 := λ/µ +β
∗(λ/µ)α +o((λ/µ)α).

2. At the surge stage, the surge-stage staffing level is

N2(N1,Λ) := (X−β
∗)+ (λ/µ)α +oUI((λ/µ)α).

In the two-stage newsvendor solution, the base-stage capacity is equal to the average

offered load, λ/µ , together with a hedging that is the same order as the arrival-rate uncer-

tainty. After the arrival rate realizes at the surge stage, the capacity is brought up to the

realized offered load if X > β ∗. Note that the surge staffing is O(λ α), which is of a smaller

order than the base staffing. Since X is a continuous random variable, by the definition

of β ∗, the probability of assigning nonzero surge staffing is equal to c1/c2. Moreover,

it follows from Assumption 5 that c1/(hµ/γ + aµ) < c1/c2. Thus, in comparison to the

single-stage newsvendor solution described in (3.6), the two-stage newsvendor solution

prescribes less capacity at the base stage. This is intuitive, because with the flexibility to

respond to surges in demand by raising the staffing level at the surge stage, the two-stage

newsvendor solution can be less aggressive in assigning base-stage servers.

Let C λ
2,NV denote the expected total cost defined in (3.2) under the two-stage newsven-

dor solution. Recall that C λ
2,∗ is the optimal total cost for the two-stage optimization prob-

lem (3.2).
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Theorem 5 (optimality gap of u2,NV ). For α ∈ (1/2,1), the two-stage newsvendor solution

in Definition 2 has C λ
2,NV −C λ

2,∗ = o(λ α).

Since α > 1/2, Theorem 4 implies that C λ
1,NV −C λ

2,∗ = Θ(λ α). This, together with

Theorem 5 and the gap in (3.7), suggests that C λ
1,NV −C λ

2,NV = Θ(λ α).

3.4.2 Refinement for The Two-Stage Newsvendor Solution

We have established in Theorem 5 that the two-stage newsvendor solution achieves an opti-

mality gap of o(λ α) compared to the exact two-stage optimum. In this section, we propose

a refinement for the two-stage newsvendor solution which further reduces the optimality

gap to o(
√

λ ). The improvement is achieved by characterizing the oUI(λ
α) term in the

two-stage newsvendor solution more carefully.

To provide intuition for the refinement, we shall ignore the o(λ α) and oUI(λ
α) terms

for now, i.e., setting them to zero, in the two-stage newsvendor solution. The key observa-

tion is that depending on the realized arrival rate, the two-stage newsvendor solution will

result in the system being either underloaded (capacity exceeding offered load), or crit-

ically loaded (capacity equal to offered load). In particular, for any realized arrival rate

`= λ + xλ α µ1−α , if x < β ∗, then

N1 +N2(N1, `)− `/µ = (β ∗− x)(λ/µ)α = Θ(λ α).

In this case, the stochastic fluctuation of the queue process becomes a secondary effect.

More specifically, as we will make clear in Appendix C.3.1 (see (C.11) in the proof of

Lemma 8), the expected steady-state queue length is o(
√

λ ). In the case where x≥ β ∗, the

total staffing level is equal to `/µ , under which the system operates in the QED regime

(Mandelbaum and Zeltyn, 2009). We can then add a square-root hedging against the

stochastic fluctuation of the queue process. In particular, consider

N1 +N2(N1, `) = `/µ +η
√

`/µ +o(
√
`/µ), for some η ∈ R. (3.10)

Under the capacity prescription in (3.10), the expected steady-state queue length is Θ(
√

λ ).

This fact is well-known and will be made rigorous for our system in the proof of Theorem
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6 in Appendix C.5. Thus, to “optimize" queue length of this magnitude, we refine the two-

stage newsvendor solution by restricting the oUI(λ
α) term to O(

√
λ )+oUI(

√
λ ), so that it

serves as effective safety capacity against system stochasticity.

A few more definitions are needed to formally introduce the refined staffing rule. Let φ

and Φ be the pdf and cdf of the standard normal distribution, respectively. The hazard rate

of the standard normal distribution is given by

H(t) = φ(t)/Φ(−t), t ∈ R.

Define

η
∗ := argmin

η∈R
c2η +

(
hµ

γ
+aµ

)√ γ

µ

[
H
(

η

√
µ

γ

)
−η

√
µ

γ

]
1+
√

γ

µ

H
(

η

√
µ

γ

)
H(−η)︸ ︷︷ ︸

(a)

. (3.11)

η∗ is the optimal solution of the square-root staffing problem in (Mandelbaum and Zeltyn,

2009). In particular, the term (a) on the right-hand side of (3.11) is the diffusion approxima-

tion (and a bona-fide limit in the QED regime) of the expected steady-state queue length of

an M/M/n+M queue with service rate µ , abandonment rate γ , staffing cost c2, abandon-

ment cost a, and staffing level prescribed in (3.10) (i.e., with square root staffing parameter

η).

We are now ready to introduce the following refinement to the two-stage newsvendor

solution. Since the system operates in the QED regime when X ≥ β ∗, we refer to this

policy as the two-stage QED staffing rule and denote it by u2,QED.

Definition 3 (two-stage QED staffing rule). For α ∈ (1/2,1), the two-stage QED staffing

rule prescribes staffing levels as follows:

1. At the base stage, the base-stage staffing level is

N1 := λ/µ +β
∗(λ/µ)α +O(

√
λ/µ).

2. At the surge stage, the surge-stage staffing level is

N2(N1,Λ) := (Λ/µ +η
∗√

Λ/µ−N1)
++oUI(

√
λ/µ).
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In the two-stage QED staffing rule, the base-stage staffing level is of the same form as

in the two-stage newsvendor solution. After the arrival rate is realized at the surge stage, we

first compute the optimal staffing level in the QED regime, and then bring up the staffing

level to meet the target. Let C λ
2,QED denote the expected total cost in (3.2) under the two-

stage QED staffing rule. The two-stage QED staffing rule guarantees a smaller optimality

gap than the two-stage newsvendor solution as quantified in the following theorem.

Theorem 6 (optimality gap of u2,QED). For α ∈ (1/2,1), the two-stage QED staffing rule

in Definition 3 has C λ
2,QED−C λ

2,∗ = o(
√

λ ).

3.4.3 Effective Translation of The Two-Stage QED Staffing Rule to Small Systems

Theorem 6 establishes that any policy that belongs to the family of the two-stage QED

staffing rules in Definition 3 achieves an optimality gap of o(
√

λ ). The specification of the

o(λ α) term in N1 and the oUI(
√

λ ) term in N2(N2,Λ), though asymptotically indistinguish-

able in the context of Theorem 6, may have non-negligible impact on system performance

for a finite system, especially when λ is small. We next numerically investigate system

performance under different specifications of the two-stage QED staffing rule.

To this end, we consider staffing prescriptions of the form

N1 = λ/µ+β
∗(λ/µ)α +k

√
λ/µ and N2(N1,Λ)= (Λ/µ+η

∗√
Λ/µ−N1)

+, for k∈R.

(3.12)

We consider systems with small arrival rates, namely, setting λ = 25,50,75,100, and vary

the value of k in (3.12) from −3 to 3 in increments of 1. In each experiment, we estimate

the steady-state cost by averaging over 1000 realizations of the random variable X . For

each mean arrival rate λ , we compare the costs under different values of k, and report the

percentage gap between each cost and the minimum one (among the seven) in Tables 3.2

and 3.3. For example, in Table 3.2, when λ = 25, the system with k = 1 achieves a cost of

39.48, which is the smallest among the seven systems corresponding to the different values

of k. The system with k = −3 achieves a cost of 49.75 and thus has a percentage gap of
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(49.75−39.48)/39.48 = 26.01%. In all experiments, the random variable X is assumed to

follow a standard normal distribution. The other system parameters and the resulting value

of (β ∗,η∗) are listed in the caption of the tables.

Table 3.2: System performance under different specifications of the two-stage QED staffing rule
with β ∗ = 0,η∗ = 0.610
(µ = 1,γ = 0.1,α = 0.75,h = 1.5,a = 3,c1 = 1,c2 = 2)

λ

k
-3 -2 -1 0 1 2 3

25 26.01% 15.88% 7.40% 2.10% 0.00% 2.03% 7.93%
50 17.70% 10.63% 5.01% 1.49% 0.00% 1.30% 5.24%
75 14.36% 8.33% 4.15% 1.20% 0.00% 0.99% 4.27%

100 11.66% 6.78% 3.11% 0.88% 0.00% 1.05% 3.90%

Table 3.3: System performance under different specifications of the two-stage QED staffing rule
with β ∗ = 1.282,η∗ =−0.140
(µ = 1,γ = 0.1,α = 0.75,h = 1.5,a = 3,c1 = 1,c2 = 10)

λ

k
-3 -2 -1 0 1 2 3

25 74.69% 33.10% 10.11% 0.00% 1.39% 9.25% 19.60%
50 45.96% 20.53% 6.52% 0.00% 0.99% 6.59% 14.33%
75 34.61% 16.61% 5.25% 0.00% 0.91% 5.72% 12.58%
100 26.28% 11.50% 3.48% 0.00% 1.65% 6.02% 11.89%

We first observe from the tables that even though all the staffing prescriptions, i.e.,

k ranging from −3 to 3, are asymptotically optimal, there are substantial differences in

the pre-limit performances. In Table 3.2, k = 1 leads to the best performance across all

system scales tested. In Table 3.3, k = 0 leads to the best performance. Second, k has

a highly nonlinear effect on the cost. Staffing too few servers tends to result in a larger

percentage gap than staffing too many servers at the base stage. In particular, in both

tables, k =−3 leads to the worst performance. In Table 3.3, when λ = 25 and k =−3, the

percentage gap can be as large as 74.69%. Lastly, we note that as the system scale grows,

the performance gap among different policies shrinks. For example, in Table 3.2, when

λ = 25, the percentage gap between k =−1 and k = 1 is 7.40%. It reduces to 3.11% when

λ = 100. This is is consistent with our optimality gap quantification.
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Besides the experiments reported in Tables 3.2 and 3.3, we also summarize a few more

sets of simulation results with different surge staffing cost in Appendix C.8.1. Among

all the numerical experiments, we find the following specification of the two-stage QED

staffing rule to be effective and robust for small-scale systems:

N1 = λ/µ +β
∗(λ/µ)α +η

∗√
λ/µ, and N2(N1,Λ) = (Λ/µ +η

∗√
Λ/µ−N1)

+.

(3.13)

The capacity prescription in (3.13) lends itself to an intuitive explanation. At the base stage,

the staffing level consists of the offered load, a hedging against arrival-rate uncertainty, and

a hedging against system stochasticity catered to the mean arrival rate λ . At the surge

stage, the staffing level is raised to reach the optimal value in the QED regime catered to

the realized arrival rate.

Remark 4. The development so far can be easily generalized to include a “commitment"

cost for the surge staff to be “on-call." That is, a compensation c0
2 ∈ R+ per nurse per

shift is paid at the base stage to staff a total of N0
2 ∈ N nurses in the on-call pool. Then at

the surge stage, the ED manager calls N2 (N2 ≤ N0
2 ) nurses from the on-call pool to serve

as surge staff in the upcoming shift. In this setting, N1 and N0
2 are decision variables at

the base stage, while N2 is the decision variable at the surge stage. Analogous results to

Proposition 5 and Theorems 4–6 can be derived in this setting. In particular, when surge

staffing is beneficial, we find that the orders of cost saving and optimality gap stay the

same as those in the original model. Since introducing the commitment cost has minimal

impact on the main insights and unnecessarily complicates exposition, we do not present

its detailed analysis.

3.5 Numerical Experiments

In this section, we perform numerical experiments to demonstrate the cost saving of the

two-stage QED staffing rule over other benchmark policies, and examine its sensitivity
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with respect to the level of arrival-rate uncertainty and cost rates. We compare the following

three staffing rules:

(I). Our proposed two-stage QED staffing rule u2,QED prescribes staffing levels

N1 = λ/µ +β
∗(λ/µ)α +η

∗√
λ/µ, and N2(N1,Λ) = (Λ/µ +η

∗√
Λ/µ−N1)

+,

for β ∗ = F̄−1
X (c1/c2), and η∗ defined in (3.11).

(II). The single-stage newsvendor solution u1,NV prescribes staffing levels

N1 = λ/µ + F̄−1
X

(
c1

hµ/γ +aµ

)
(λ/µ)α , and N2(N1,Λ) = 0.

This policy accounts for arrival-rate uncertainty, but only has one scheduling opportunity –

the base stage.

(III). The conventional single-stage square-root staffing rule, denoted by u1,QED, makes

a one-time staffing decision at the base stage, assuming a staffing cost of c1 and a deter-

ministic arrival rate of λ . In particular, the staffing levels are given by

N1 = λ/µ +η
∗
1,QED

√
λ/µ, and N2(N1,Λ) = 0,

where η∗1,QED is defined as

η
∗
1,QED := argmin

η∈R
c1η +

(
hµ

γ
+aµ

)√ γ

µ

[
H
(

η

√
µ

γ

)
−η

√
µ

γ

]
1+
√

γ

µ

H
(

η

√
µ

γ

)
H(−η)

. (3.14)

This policy ignores arrival-rate uncertainty. It is important to distinguish η∗1,QED in (3.14)

(used in the single-stage square-root staffing rule) from η∗ in (3.11) (used in the two-stage

QED staffing rule). While both serve as coefficients in front of the hedging against system

stochasticity, η∗1,QED is calculated assuming a staffing cost of c1 (base-stage cost) and η∗

is calculated assuming the a staffing cost of c2 (surge-stage cost).

3.5.1 Level of Arrival-Rate Uncertainty

In the first set of experiments, we examine the cost saving of the proposed two-stage QED

rule as we vary the magnitude of arrival-rate uncertainty. In particular, we assume that
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the random variable X is normally distributed with mean 0 and standard deviation σ . We

simulate 1000 realizations of X and calculate the expected steady-state cost (where the

expectation is taken over the stochastic fluctuations) for each realization. The expected

total cost (where the expectation is taken over the random variable X) is then averaged

over the expected steady-state costs for all realizations of X . To assess the performance of

the two-stage staffing rule with respect to the arrival-rate uncertainty, we vary the order of

arrival-rate uncertainty, α , and the standard deviation of X , σ , respectively, with everything

else held constant. Figure 3.1 illustrates the expected total costs under the three policies,

with α increasing from 0.5 to 0.8 in Figure 3.1a and σ increasing from 0.5 to 0.9 in Figure

3.1b. We observe that among the first three polices, u1,QED performs the worst, while our

proposed u2,QED performs the best. More importantly, the cost saving of u2,QED relative to

u1,NV or u1,QED grows with the level of arrival-rate uncertainty.

Figure 3.1: Sensitivity analysis with respect to the order of arrival-rate uncertainty
((a): λ = 100,µ = 1,γ = 0.1,h = 1.5,a = 3,c1 = 1,c2 = 1.5,σ = 1
(b) : λ = 100,µ = 1,γ = 0.1,h = 1.5,a = 3,c1 = 1,c2 = 1.5,α = 0.75)
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3.5.2 Cost Rates

We next investigate the performance of our proposed two-stage policy with respect to the

cost parameters. We first compare the costs of the three policies under different holding

costs, h, in Figure 3.2a. Note u2,QED outperforms u1,QED and u1,NV by a larger magnitude

as the holding cost becomes larger. This trend is not surprising, because by making staffing
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decisions at both the base and surge stages, the two-stage QED staffing rule is able to

circumvent understaffing when the realized arrival rate is excessively large. In contrast,

due to the inability to adjust the staffing level at the surge stage, the benchmark single-

stage policies can result in relatively larger queue when the realized arrival rate is large.

Figure 3.3 demonstrates the distribution of the average steady-state queue length for a

given value of X over 1000 realizations of X under u1,NV and u2,QED. We observe that

while the average steady-state queue length for a specific realization of X can be as high

as 250 under the single-stage newsvendor solution, it remains below 20 for all realizations

of X under the two-stage QED staffing rule. Besides the holding cost, we also vary the

surge-stage staffing cost, c2. Recall from Assumption 5 that the surge staffing cost is larger

than the base staffing cost c1, but smaller than the performance cost hµ/γ + aµ . In the

numerical experiment depicted in Figure 3.2b, we set c1 = 1,hµ/γ +aµ = 18, and vary c2

from 2 to 6. We see that the cost saving of the proposed two-stage policy u2,QED decreases

as c2 increases. In particular, the performance of u2,QED becomes nearly indistinguishable

from that of u1,NV when c2 reaches 6.

Figure 3.2: Sensitivity analysis with respect to the cost rates
((a): λ = 100,µ = 1,γ = 0.1,a = 2h,c1 = 1,c2 = 1.5,α = 0.75,σ = 1
(b): λ = 100,µ = 1,γ = 0.1,h = 1.5,a = 3,c1 = 1,α = 0.75,σ = 1)
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Figure 3.3: Distribution of the average steady-state queue length
(λ = 100,µ = 1,γ = 0.1,h = 1.5,a = 3,c1 = 1,c2 = 1.5,α = 0.75,σ = 1)
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(a) Single-stage newsvendor solution (mean =
19.131, std = 49.070)
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(b) Two-stage QED staffing rule (mean = 8.029,
std = 5.305)

3.6 Model Extension: Incorporation of Surge-Stage Prediction Error

In the two-stage optimization problem (3.2), we assume that the realization of the random

arrival rate Λ is known exactly at the surge stage. That is, the surge-stage prediction model

provides perfect arrival rate information. However, in practice, the surge-stage predictive

models may incur some prediction errors. In this section, we investigate a model extension

where we allow prediction error in the surge stage.

To incorporate prediction error, we further decompose the random arrival rate into two

terms: predictable and unpredictable terms. In particular, we consider random arrival rate

of the form

Λ = λ +Y λ
α

µ
1−α +Zλ

ν
µ

1−ν , (3.15)

where α ∈ (1/2,1), ν ∈ (0,α], and Y and Z are continuous random variables independent

of each other. We assume that E [Y ] = E [Z] = 0, E [|Y |] < ∞, and E [|Z|] < ∞. In (3.15),

Y and Z can be understood as the predictable and unpredictable arrival-rate uncertainty,

respectively. If there is a prediction model to forecast demand at the surge stage, then Y

is the predicted arrival rate and Z is the error (residual) of the prediction model. Then, α

captures the scale of the arrival-rate uncertainty and ν captures the scale of the prediction

error. It is reasonable to assume that the distributions of Y and Z are known at the base
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stage. The two-stage staffing problem with prediction error is then formulated as

min
N1

{
c1N1 +E

[
min

N2(N1,Y )
{c2N2(N1,Y )+(h+aγ)E [Q(N1 +N2(N1,Y ),Λ)|Y ]}

]}
. (3.16)

To differentiate notation from that of problem (3.2), we denote the optimal objective value

of (3.16) as C e,λ
2,∗ when there is prediction error at the surge stage.

Similar to problem (3.2), we again compare to the single-stage optimization problem

(3.4) for Λ in form of (3.15), and use C e,λ
1,∗ to denote its optimal objective value. To draw

connection between the arrival rates in (3.3) and (3.15), we can let X be such that

Xλ
α

µ
1−α = Y λ

α
µ

1−α +Zλ
ν

µ
1−ν . (3.17)

In this context, problem (3.2) can be seen as an “oracle" problem that knows the exact

realized arrival rate at the surge stage. We use C o,λ
2,∗ to denote the optimal objective value

of the oracle problem (3.2) for Λ in form of (3.15). In particular, the oracle problem

does not incur any unpredictable arrival-rate uncertainty (prediction error). Intuitively, the

impact of the prediction error should depend on how substantial it is. We formalize this for

“small” and “moderate/large” prediction errors in the next subsections. The error regime

depends on the relationship between the scale of the arrival-rate uncertainty and that of the

prediction error.

3.6.1 Small Prediction Error: 0 < ν < 1/2

When ν ∈ (0,1/2), the prediction error is sufficiently small to be “ignored." Doing so does

not impact performance. For problem (3.16), we propose the two-stage error policy and

denote it by u2,ERR.

Definition 4 (two-stage error policy for ν < 1/2). For α ∈ (1/2,1) and ν ∈ (0,1/2), the

two-stage error policy prescribes staffing levels as follows:

1. At the base stage, the base-stage staffing level is

N1 := λ/µ + F̄−1
Y (c1/c2)(λ/µ)α +O(

√
λ/µ).
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2. At the surge stage, the surge-stage staffing level is

N2(N1,Y ) := ((λ +Y λ
α

µ
1−α)/µ+η

∗
√
(λ +Y λ α µ1−α)/µ−N1)

++oUI(
√

λ/µ),

for η∗ defined in (3.11).

When ν ∈ (0,1/2), u2,ERR is similar to u2,QED, the latter of which is defined for the

case without prediction error. In particular, u2,ERR completely ignores the existence of

prediction error Z and makes staffing decisions based on Y only. Let C e,λ
2,ERR denote the

expected total cost under u2,ERR when the mean arrival rate is λ . Analogous results to

Theorems 4 and 6 hold for u2,ERR when prediction error is small, namely, ν ∈ (0,1/2).

Proposition 6. For α ∈ (1/2,1) and ν ∈ (0,1/2), we have

(I) Cost saving: C e,λ
1,∗ −C e,λ

2,∗ = Θ(λ α).

(II) Optimality gap: C e,λ
2,ERR−C e,λ

2,∗ = o(
√

λ ).

(III) Cost of prediction error: C e,λ
2,∗ −C o,λ

2,∗ = o(
√

λ ).

Item (III) in Proposition 6 quantifies the gap between two-stage optimal cost with pre-

diction error and the two-stage optimal cost without prediction error. We observe that when

the prediction error is small, i.e., ν < 1/2, there is not much value, from the cost-saving

perspective, to further improve the prediction accuracy.

3.6.2 Moderate to Large Prediction Error: 1/2≤ ν ≤ α

When ν ∈ [1/2,α], the prediction error is of a larger order than the system stochasticity

and thus can no longer be ignored for staffing. To derive a near-optimal solution to problem

(3.16), we consider the following stochastic-fluid optimization problem

min
N1

{
c1N1 +E

[
min

N2(N1,Y )

{
c2N2(N1,Y )+(hµ/γ +aµ)E

[
(Λ/µ−N1−N2(N1,Y ))

+ |Y
]}]}

.

(3.18)
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Let (N̄1, N̄2(N̄1,Y )) denote an optimal solution to (3.18), whose existence is rigorously

established in the proof of Proposition 7. When ν ∈ [1/2,α], we define the two-stage error

policy, u2,ERR, to prescribe staffing levels (N̄1, N̄2(N̄1,Y )).

When 1/2< ν <α (moderate prediction error), the prediction error is of a smaller order

than the predictable arrival-rate uncertainty. In this case, we still expect that resolving some

of the arrival-rate uncertainty at the surge stage can bring a cost saving as large as O(λ α)

compared to the optimal single-stage staffing rule. When ν = α (large prediction error),

the prediction error is of the same order as the predictable arrival-rate uncertainty. In this

case, the prediction error can be so large that when comparing to the optimal single-stage

staffing rule, the cost saving is no longer O(λ α). Thus, we further divide the analysis of

this case into two sub-cases as quantified by the following assumption.

Assumption 6. There exists p ∈ (0,1] such that

Y + F̄−1
Z

(
c2

hµ/γ +aµ

)
− F̄−1

Y+Z

(
c1

hµ/γ +aµ

)
> 0 with probability p.

Assumption 6 provides a relationship where the predictable arrival-rate uncertainty is

sufficiently large compared to the unpredictable arrival-rate uncertainty. Note that when

Y has a bounded support, Assumption 6 may not hold if c2 is large or Z has a large

standard deviation. For a concrete example that violates Assumption 6, consider Y ∼

Uniform[−1,1], Z ∼ Normal(0,102), hµ/γ +aµ = 1, c1 = 0.1, and c2 = 0.9. In this case,

Y + F̄−1
Z (c2/(hµ/γ +aµ)) < 0, F̄−1

Y+Z (c1/(hµ/γ +aµ)) > 0, and Assumption 6 does not

hold for all realizations of Y . The intuition is that the predictable arrival-rate uncertainty

(Y ) is so small compared to the unpredictable arrival-rate uncertainty (Z) that resolving Y

only leads to limited cost saving, which is on the order of o(λ α).

Proposition 7. For α ∈ (1/2,1) and ν ∈ [1/2,α], we have

(I) Cost saving: If ν < α , then C e,λ
1,∗ −C e,λ

2,∗ = Θ(λ α). If ν = α and Assumption 6

holds, then C e,λ
1,∗ −C e,λ

2,∗ = Θ(λ α). If ν = α and Assumption 6 does not hold, then

C e,λ
1,∗ −C e,λ

2,∗ = o(λ α).
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(II) Optimality gap: C e,λ
2,ERR−C e,λ

2,∗ = O(
√

λ ).

(III) Cost of prediction error: C e,λ
2,∗ −C o,λ

2,∗ = Θ(λ ν).

Comparing item (III) in Proposition 7 to item (III) in Proposition 6, we note that when

having a large prediction error, there is potentially more cost saving we can gain by im-

proving the prediction accuracy. In particular, when ν ≥ 1/2, the cost saving brought by a

more accurate prediction model can be as large as Θ(λ ν).

3.6.3 Numerical Experiments for Models with Prediction Error

We conduct numerical experiments in the presence of prediction error, and focus on the

case where the magnitude of prediction error is the most salient, namely, ν = α .

We compare the following five staffing rules:

(I) The two-stage error policy u2,ERR introduced in Section 3.6.2. It has near-optimal

performance as established in Proposition 7.

(II) The two-stage QED rule u2,QED, which is a straightfoward extension of the two-

stage QED rule defined in Definition 3 by ignoring the prediction error: For X defined in

(3.17) (namely, X := Y +Z), it assigns

N1 = λ/µ + F̄−1
X (c1/c2)(λ/µ)α +η

∗√
λ/µ

N2(N1,Y ) = ((λ +Y λ
α

µ
1−α)/µ +η

∗
√
(λ +Y λ α µ1−α)/µ−N1)

+.

The staffing prescription takes into account the distribution of X at the base stage, but uses

the realization of Y as a proxy for the realization of X at the surge stage. To simplify

notation, we still refer to this policy as u2,QED in the following experiments.

(III) The single-stage newsvendor solution u1,NV as defined in Section 3.5, assuming

we know the distribution of X . Note that for a fixed distribution of X , the single-stage

staffing rule and its performance will not be affected by the surge-stage prediction errors.

(IV) The single-stage square-root staffing rule u1,QED as defined in Section 3.5.

(V) To demonstrate the cost of prediction error, we also consider a policy termed

second-stage full arrival rate information (SFARI) for the oracle problem, and denote it
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by u2,SFARI . It prescribes staffing levels

N1 = λ/µ + F̄−1
X (c1/c2)(λ/µ)α +η

∗√
λ/µ and N2(N1,Λ) = (Λ/µ +η

∗√
Λ/µ−N1)

+,

for η∗ defined in (3.11). Note that u2,SFARI is identical to u2,QED when there is full arrival

rate information at the surge stage. It provides a lower bound to the performance under the

other policies.

We assume that Y and Z are normally distributed with standard deviation σY and σZ ,

respectively. We then fix the standard deviation of X to be equal to 1, i.e., σ2
Y +σ2

Z = 1,

and vary the σZ from 0.1 to 0.7 in increment of 0.2. For each policy and each value of σZ ,

we simulate 1000 independent and identically distributed realizations of the random arrival

rate, and use the average to approximate the expected total cost. Figure 3.4 compare the

costs under the six policies with different values of σZ . Note that, as expected, the single-

stage benchmark policies (u1,NV and u1,QED) and the oracle policy (u2,SFARI) are unaffected

by prediction accuracy. In contrast, the performance of our proposed two-stage policies

(u2,ERR and u2,QED) degrades as the prediction error increases. When σZ is larger than or

equal to 0.5, u2,QED yields higher expected total cost than u1,NV . On the other hand, u2,ERR,

which accounts for prediction error in its staffing approach, outperforms the benchmark

single-stage policies for all σZ . As σZ increases from 0.1 to 0.7, the expected total cost

under u2,ERR increases from 131.356 to 156.897. This further demonstrates the cost saving

we can gain by improving the prediction accuracy. In practice, this can potentially be

achieved by employing more sophisticated machine learning models or including more

relevant real-time features.

3.7 Application to the Emergency Department

In this section, we develop a unified framework to guide implementation of the proposed

two-stage staffing policy in the actual ED. Our framework consists of three key elements:

1) Estimating the arrival rate distribution, especially the order of arrival-rate uncer-

tainty. This helps us decide whether the ED operates in an environment where surge staffing
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Figure 3.4: Sensitivity analysis with respect to prediction error
(λ = 100,µ = 1,γ = 0.1,h = 1.5,a = 3,c1 = 1,c2 = 1.5,α = ν = 0.75)
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could be beneficial. In our partner hospital, α is estimated to be 0.769. According to The-

orem 4, we can gain substantial cost saving by utilizing the surge staffing in this regime.

2) Building an integrated two-stage prediction model that is synchronized with the

staffing decision epochs. At the base stage we can only capture the day-of-the-week and

day-versus-night effects, while at the surge stage, we can utilize more real-time information

such as the severity profile of patients currently in the ED, the weather condition, etc.

3) Implementing a prediction-driven surge staffing rule. For our partner hospital, we

incur significant prediction error at the surge stage. Thus, we employ u2,ERR. We also

modify u2,ERR to adjust for the transient-shift effect.

3.7.1 Background and Data

Our partner hospital, NYP CUMC, is an urban academic medical center in New York City.

We focus on the Milstein ED at NYP CUMC, which is the main adult ED of the hospital

and treats more than 90,000 patients annually. Nurses are scheduled to 12-hour shifts that

begin at 7am (day shift) or 7pm (night shift) each day. According to ED management,

nursing schedules are typically set 4–8 weeks in advance and the staffing level is difficult

to change in real time. If the ED manager anticipates a high patient volume two-to-three

hours before the start of a shift, he/she can call in extra nurses to work overtime. Currently,

there is a lack of a data-driven approach to determine the appropriate surge staffing levels.

We collect 12 months of data from February 1, 2018 to January 31, 2019. The data
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contain patient-level records that include 1) patient-flow time stamps (i.e., time stamps for

arrival, first evaluation, lab and imaging orders, admission decision, and departure), 2) pa-

tient’s demographics and severity (i.e., age, gender, arriving source, emergency severity

index, chief complaint, comorbidities, and deposition decision), and 3) patient’s lab and

imaging requests (i.e., different tests and imaging that are ordered for the patient). We also

collect data from two other sources: the weather information (i.e., temperature, precipi-

tation, snow, wind, etc.) and Google trend data (i.e., search volume for key words such

as “flu," “heart attack," “abuse," etc.). These data allow us to a) estimate arrival-rate un-

certainty, b) build a two-stage prediction model where the surge-stage prediction model

can utilize rich real-time information, and c) calibrate a high-fidelity simulation model to

evaluate different staffing policies.

We first group the shifts into 14 different types based on day of the week and day

versus night shift. Table 3.4 provides some summary statistics for different shifts. We

observe that the day shifts see more arrivals than the night shifts, and weekday day shifts

see more arrivals than the weekend day shifts. We also note that the coefficient of variation

can be as high as 14% for some shifts (e.g., Sunday night shift and Thursday night shift).

This suggests that even after we control for day-of-the-week and day-versus-night effects,

there can still be quite some uncertainty in demand.

Table 3.4: Mean and standard deviation (std) of the shift-level arrival counts

Day shift
Sun Mon Tue Wed Thur Fri Sat

Mean 141.019 207.385 188.769 186.942 185.208 175.173 147.058
Std 15.788 21.503 20.701 23.657 21.004 16.124 12.095

Night shift
Sun Mon Tue Wed Thur Fri Sat

Mean 89.462 97.058 97.769 93.711 95.189 96.692 94.115
Std 12.698 12.064 10.547 12.508 13.602 12.199 11.514

The length of stay (LOS) for each patient is defined as the time difference between the

first evaluation time and the departure time. The average LOS in our ED is 8.156 hours due
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to a long boarding time for patients who need to be admitted into the hospital. As illustrated

in Figure 3.5, patients’ LOS is best described by a lognormal distribution whose logarithm

has mean equal to 1.597 and standard deviation equal to 1.050. The average waiting time

is close to an hour, i.e., 0.975 hours, and the proportion of patients who left without being

seen is 4.35%. Properly managing congestion is a key challenge faced by the ED. In what

follows, we look into how our data-driven surge planning can help reduce congestion and

staffing costs.

Figure 3.5: Patient LOS distribution

3.7.2 Estimating Arrival-Rate Uncertainty

In this section, we introduce statistical procedures to estimate the arrival-rate uncertainty.

Because there are significant day-of-the-week and day-versus-night effects, the shifts are

classified into 14 different types as demonstrated in Table 3.4. Let λi denote the mean

arrival rate for type i ∈ I := {1, ...,14} shift. Since we have one year of data, each shift

type i has ni = 52 observations. For each type of shift, we assume that the random arrival

rate takes the form

Λi = λi +λ
α
i µ

1−αX , i ∈I ,

for µ equal to the inverse of the average LOS. In particular, the uncertainty scaling pa-

rameter α and the distribution of X is the same across different types of shifts. We

also make the parametric assumption that X ∼ N(0,σ2) for some σ ∈ R+. Then Λi ∼

N(λi,λ
2α
i µ2(1−α)σ2), i ∈I .
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Let L(k)
i denote the observed arrival count for the kth shift of type i, 1≤ k≤ ni. We also

define L̄i := 1
ni

∑
ni
k=1 L(k)

i and Σ2
i := 1

ni
∑

ni
k=1(L

(k)
i − L̄i)

2, i.e., the corresponding sample mean

and sample variance. Based on the method of moments, we have the following system of

equations for the estimators

L̄i = λ̂i, Σ
2
i = λ̂

2α̂
i µ

2(1−α̂)
σ̂

2, i ∈I . (3.19)

It follows from (3.19) that

logΣi = α̂ log L̄i + log(µ1−α̂
σ̂), i ∈I . (3.20)

Then, we can fit α̂ and σ̂ by solving the following least squares problem

min
α∈(0,1),γ∈R

14

∑
i=1

(logΣi− γ−α log L̄i)
2
. (3.21)

In particular, let γ∗ and α∗ denote the optimal solution to the least squares problem (3.21).

Then, α̂ = α∗ and µ1−α̂ σ̂ = exp(γ∗).

In Table 3.5, the first row below header (with |I |= 14) summarizes the point estimates

for α and µ1−ασ . We also report their corresponding 95% confidence intervals. Based on

our estimation, for the Milstein ED, α = 0.769 and µ1−αX ∼ N(0,0.3482).

To check the robustness of our estimation, we also run a similar analysis by dividing

the shifts into 56 different types. In particular, in addition to the day-of-the-week and

day-versus-night effects, we also incorporate the season-of-the-year effect. The second

row below header (with |I | = 56) summarizes estimation results, which are very close

to our original estimation. Lastly, we also consider a non-parametric estimation proposed

in Maman (2009), which works for α > 1/2 only (see Appendix C.7). It gives the same

results as our original estimation. Since it is a priori unclear for a real-world system whether

α > 1/2, our parametric estimation method, which allows α ∈ (0,1), is preferred.

3.7.3 Two-Stage Prediction Model

To facilitate base and surge staffing decisions, we need to develop a two-stage prediction

model that is synchronized with these decision epochs.
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Table 3.5: Estimated α and standard deviation of X

Number of shift types α̂ 95% CI for α̂ µ1−α σ̂ 95% CI for µ1−α σ̂

Day-of-week and day/night:
|I |= 14 0.769 (0.543, 0.994) 0.344 (0.114, 1.034)

Day-of-week, day/night and seasons:
|I |= 56 0.746 (0.558, 0.933) 0.362 (0.135, 0.902)

At the base stage, which is several weeks before the start of the shift, there is very

limited information we can utilize for demand forecasting. The key features based on

our analysis are the day-of-the-week effect and the day-versus-night effect. In particular,

the stratified historical averages based on these features are able to capture 88.26% of the

variability in shift-level arrival counts.

At the surge stage, which is a few hours before the start of the shift, we have access

to more real-time information. We employ a linear regression model developed in Chapter

2 to forecast the realized arrival rate. The model utilizes the following five categories of

features: (i) Time-of-the-shift information, including season of the year, day of the week,

day versus night, and whether the shift takes place on, before, or after a national holiday;

(ii) Previous-shift arrival counts, including the shift-level arrival count 1 day before the

shift, the shift-level arrival count 7 days before the shift (a week ago), and a moving average

of shift-level arrival counts over the past 30 days; (iii) Patient severity level, which is the

average of the weighted sum of a total of 17 Charlson comorbidity indices in ICD-10-CM

coding for each patient over the past 3 days; (iv) Google trends, including the Google search

volume for the key words “depression" and “flu" in New York State for the week before

the shift; (v) Weather forecast, including the minimum temperature, precipitation, snow,

wind, and whether the maximum temperature exceeds 86oF on the day of the shift. The

estimated coefficients for the covariates in the model are provided in Table 2.2 in Chapter

2. This linear regression model is able to capture 90.8% of the variability in shift-level

arrival counts.

The root mean-square error (RMSE) of the prediction model is 15.860 at the base stage,
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and 14.009 at the surge stage. From the prediction accuracy perspective, the real time

information is able to reduce the RMSE by 11.67%. That said, what we are more interested

in is the value of this gained accuracy in making staffing decisions. We shall investigate

this in the next subsection.

The residuals of the surge-stage regression model have mean equal to 0.000 and stan-

dard deviation equal to 14.009. Since the standard error of the surge stage prediction is

quite high, we use the random arrival rate model with prediction error, i.e., (3.15), and

estimate the distribution of Y and Z next. We assume that α = ν , and Y and Z are both nor-

mally distributed. Recall from the random arrival rate model that residuals for shifts of type

i at the surge stage are distributed according to λ α
i µ1−αZ, i∈I . Using the point estimates

for λi and α in Section 3.7.2, we estimate the standard deviation of Z to be 0.302. Because

Xλ α µ1−α = Y λ α µ1−α +Zλ α µ1−α , based on the estimation for the standard deviation of

X in Section 3.7.2, the standard deviation of Y is 0.111.

3.7.4 ED-Adapted Two-Stage Staffing Rule

To examine the performance of the proposed two-stage staffing rule, we build a high-

fidelity queueing model to simulate patient flow process in Milstein ED over 52 weeks

from February 1, 2018 to January 31, 2019.

3.7.4 Model Calibration

The hospital system is modeled as an Mt/G/Nt + M queue, a multi-server queue with

time-varying arrival rate at the hourly level, log-normal service time, and time-varying

staffing at the shift level, where the servers are the nurses. For shift of type i in the kth

week, we assume that the realized arrival rate for that shift is equal to the observed arrival

count in data, L(k)
i , 1 ≤ i ≤ 14, 1 ≤ k ≤ 52. The hourly arrival rate for each of the 12

hours in a shift is obtained by scaling L(k)
i proportionally to match the empirical hourly

proportion of arrivals as illustrated in Figure 3.6. In what follows, we shall refer to the L(k)
i ’s

as the realized arrival rates. The LOS for each patients follows a lognormal distribution
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whose logarithm has mean equal to 1.597 and standard deviation equal to 1.050. Note that

this is the best fitted distribution from data. While waiting in queue, patients leave the

system without being seen after an exponentially distributed amount of patience time with

mean equal to 36 hours. Patients are served in a FCFS manner and once a patient begins

service, he/she will not abandon the system. Note that in practice while patients within a

severity class (e.g., within the same ESI) are often served FCFS, this is not necessarily the

case across different classes. As we are interested in assessing impact of the new staffing

approach on system performance (e.g. average waiting time across all patients), rather

than on individual patient, FCFS is a reasonable simplification. Furthermore, we consider

a nurse-to-patient ratio of 1-to-3, which is the number of patients that an ED nurse can treat

simultaneously. We scale down the staffing levels suggested by the staffing policies by the

nurse-to-patient ratio to get the actual number of nurses needed for the shift.

At the end of each shift, patients who have not finished service are queued up in a FCFS

manner (according to their arrival times) for the nurses who are staffed for the upcoming

shift to continue treatment. These patients have priority over those who have not started

treatment, and do not abandon the system while waiting to resume service. The waiting

time for each patient includes the time he/she waits to be first evaluated by a nurse upon

arrival, as well as the period during which his/her treatment is in suspension due to the

change of shifts. We remark that while there are different ways to handle patient hand-

off at shift transitions (such as having nurses work overtime, or allowing multi-tasking),

our assumption on having the patients wait to resume service has minimal—practically

insignificant—impact on the performance measures. For the experiments shown in Figure

3.7 below, when the average waiting time is 32.608 minutes under our proposed policy

(alternatively, 34.990 minutes under the single-stage benchmark), the part patients spend

waiting to resume service only accounts for 0.113 minutes (alternatively, 6.164 minutes

under the single-stage benchmark).

In terms of the costs, we assume that the salary is $45 per hour for nurses who are
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staffed at the base stage, and $67.5 ($45× 1.5) per hour for nurses who are staffed at the

surge stage (Weiss et al., 2011). We shall vary the holding and abandonment costs in our

numerical experiments to evaluate the performance of different staffing policies.

Figure 3.6: Proportion of patient arrivals by hour within day/night shift

(a) Day shift (b) Night shift

3.7.4 Adjustment to The Staffing Rules

The queueing dynamics during each shift in the ED can be quite different from the stylized

model considered in Section 3.2. In particular, based on our model calibration in Section

3.7.4.1, i) the arrival rate is time-varying, ii) the service-time distribution is lognormal, and

iii) each shift is only 12 hours, which may not be long enough for the system to reach

stationarity. We single out these deviations and run extensive simulation experiments to

check the robustness of the performance of our two-stage error policy. It turns out that our

two-stage error policy achieves very robust performance to non-exponential service time

distributions and time-varying arrival rates within a shift (Appendix C.8.2). However, the

fact that each shift only lasts for 12 hours and the fact that the arrival rate for the day shift

can be twice as large as the arrival rate for the night shift degrades the performance of our

proposed policy.

Since the night shift has a much lower arrival rate than the day shift, the day shift

usually starts with a lower patient volume than an otherwise stationary system; namely, the

number of patients in the system at the beginning of the shift can be much lower than the
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steady-state average. Similarly, the night shift usually starts with a higher patient volume

than an otherwise stationary system. Our proposed policy based on the stylized model is

not able to capture these transient shift effects well. We next propose an adjustment to our

two-stage error policy that takes these transient shift effects into account. In particular, at

the base stage, we increase the base staffing level for night shifts and decrease the base

staffing level for day shifts based on the mean arrival rates. Then at the surge stage, we

further adjust the surge staffing level based on the current state of the system, i.e., the

number of patients in the system towards the end of the current shift, and the predicted

service rate of the next shift. Formally, the two-stage error policy is adjusted as follows:

Base Stage: For 1 ≤ i ≤ 14, let N1,i denote the base staffing level for shift of type i

under u2,ERR, which is calculated using λ̂i, α̂ , and the estimated distributions of Y and Z.

For shift of type i, calculate the expected steady-state queue length for an M/M/n+M

queue with arrival rate λ̂i and number of servers equal to N1,i, and denote it by Q̄i. Let

∆i denote the difference in the expected queue length between two consecutive shifts, i.e.,

∆i := Q̄i−1−Q̄i, where Q̄0≡ Q̄14. The adjusted base-stage staffing level is given by NAd j
1,i :=

N1,i +ξ1∆i, where ξ1 ∈ R is some base adjustment parameter to be determined.

Surge Stage: For 1≤ i≤ 14, 1≤ k≤ 52, let N(k)
2,i denote the surge staffing level for shift

of type i in the kth week under u2,ERR, which is calculated using the predicted arrival rate

ˆ̀(k)
i . For each shift, calculate the expected steady-state queue length for an M/M/n+M

queue with arrival rate ˆ̀(k)
i and number of servers equal to NAd j

1,i +N(k)
2,i , and denote it by

Q̄(k)
i . Let Q(k)

i be the number of patients in the ED at the end of the previous shift, and

let D(k)
i := Q̄(k)

i −Q(k)
i . The adjusted surge-stage staffing level is given by N(k),Ad j

2,i :=

N(k)
2,i +ξ2D(k)

i , where ξ2 ∈ R is some surge adjustment parameter to be determined.

In the adjustment above, ∆i can be understood as the difference in the expected patient

backlog between two consecutive shifts. Since day shifts have a higher expected queue

length than night shifts, the base staffing level is raised for night shifts and reduced for

day shifts. Similarly, D(k)
i can be understood as the difference between the actual backlog
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in the system towards the end of the previous shift and the expected value for the current

shift. The surge staffing level is then increased or decreased dynamically depending D(k)
i .

When determining the base and surge adjustment parameters, we see from extensive nu-

merical experiments that setting ξ1 ∈ [4,8] and ξ2 ∈ [1,2] gives consistently good system

performance. Thus, we set ξ1 = 5 and ξ2 = 1 in the subsequent numerical experiments and

suggest using these values in practice.

In what follows, we compare the ED-adapted two-stage error policy to the single-stage

newsvendor solution in the hospital setting. To make the comparison fair, similar base

adjustment is applied to the single-stage newsvendor solution, i.e., NAd j
1,i = N1,i +5∆i. For

ease of reference, we keep the same names and acronyms for these ED-adapted policies.

We remark that while it is true that the adjustment parameters, ξ1 and ξ2, can be op-

timized for system, for example, by enumerating of all possible combinations in the sim-

ulation. Calculating the exact optimal adjustment can be computationally intensive and

the optimal value can be case-dependent. In Appendix C.8.3, we show through numerical

experiments that setting ξ1 = 5 and ξ2 = 1 achieves near-optimal and robust performance.

3.7.4 Performance Evaluation

In practice, it can be challenging to calibrate the holding and abandonment costs. To cir-

cumvent this difficulty, we fix the ratio between holding and abandonment cost to be 1.5,

and calculate the staffing levels for a wide range of holding costs under each policy. In

particular, for each holding cost, we calculate the staffing levels under u2,ERR and u1,NV ,

and simulate the ED over 52 weeks to estimate various system performance measures, such

as the average waiting time, average queue length, percentage of patients left without be-

ing seen, and percentage of patients whose waiting time exceeds 60 minutes. The same

experiment is repeated 5 times using different random seeds to construct the 95% confi-

dence intervals for the performance measures. This allows us to construct a tradeoff curve

between the staffing costs and the system performances under different staffing rules; see

Figure 3.7. We observe that the tradeoff curve of u2,ERR is strictly below those of u1,NV .
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This suggests that for a fixed system performance target, we are able to achieve it with a

much lower staffing cost under the two-stage staffing policy than the single-stage staffing

policy.

Given some specific performance targets, we calculate the staffing cost needed to achieve

the desired service quality under each policy. Table 3.6 lists the saving in the annual staffing

cost of u2,ERR in comparison to u1,NV in order to guarantee that (i) the average queue length

is below 5, or (ii) the average waiting time is below 30 minutes, or (iii) the percentage of pa-

tients who left without being seen is less than 2%, or (iv) less than 20% of patients wait for

more than 60 minutes. We observe that we are able to achieve 10.67% to 15.86% ($1.791

M to $2.875 M) cost savings for different performance requirements. In a setting where

many hospitals are operating on thin margins, such savings can have a great impact to the

bottom line. Lastly, recall from Section 3.7.3 that the surge-stage linear regression model

is able to improve the prediction accuracy in terms of RMSE at the base stage by 11.16%.

Our numerical results suggest that even with this modest gain in prediction accuracy, this

information, together with the real-time queue length information, can lead to significant

cost savings while ensuring timely access to care.

Table 3.6: Annual saving in staffing cost to achieve target performance

Policy
Avg queue
length < 5

Avg waiting
time < 30 min

% patients
LWBS < 2%

< 20% patients
wait > 60 min

V.s. u1,NV
$2.704 M
(14.51%)

$2.875 M
(15.86%)

$1.791 M
(10.67%)

$2.493 M
(13.91%)

3.8 Conclusion

In this chapter, we study the prediction-driven surge staffing problem in the ED. A key

tradeoff in this problem is the base-stage staffing, which is cheaper but faces a higher level

of uncertainty versus the surge-stage staffing, which is more expensive but faces a lower

level of uncertainty. Our analysis quantifies when surge staffing is beneficial and provides

prescriptive staffing rules that are highly interpretable, easy to implement, and achieve
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Figure 3.7: Tradeoff between staffing cost and quality of service

21 22 23 24 25 26 27
Average staffing cost per shift (K)

0

5

10

15
Av

er
ag

e 
qu

eu
e 

le
ng

th
1, NV
2, Err
95% CI

(a) Average queue length

21 22 23 24 25 26 27
Average staffing cost per shift (K)

0

20

40

60

80

Av
er

ag
e 

wa
iti

ng
 ti

m
e 

(m
in

) 1, NV
2, Err
95% CI

(b) Average waiting time
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near-optimal performance. Our analysis demonstrates that the benefits of surge staffing

are substantial when the arrival-rate uncertainty dominates the system stochasticity. To

capture this benefit, our proposed policy (for the case with perfect demand forecast) first

aims to staff at the base stage by solving a newsvendor problem to serve the expected

offered load. It then incorporates a square-root hedging against the system stochasticity at

the surge stage. We then extend the analysis to account for prediction error explicitly at

the surge stage. To facilitate implementation in the actual ED setting, we develop a unified

framework that includes parameter estimation, building a two-scale prediction model that

are synchronized with the staffing decision epoches, and developing an effective prediction-

driven staffing rule. Using data from the Milstein ED in NYP CUMC, we demonstrate via

high-fidelity simulation that our proposed staffing rule achieves significant cost savings for
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the hospital.

While our theoretical model is unable to capture all features of the real ED (e.g., time-

varying arrivals, lognormal service times, etc.), we find that it is able to capture core trade-

offs to provide insights into the management of ED staffing. That said, we also find that

transient effects of the large disparity in arrival rates between night and day can have a mea-

surable impact on system performance. As such, it would be interesting as future research

to explore a transient (rather than steady-state) analysis of our system. Since closed-form

expressions for transient queuing dynamics are limited, new approximation techniques may

need to be developed. Moreover, our model considers two discrete staffing epochs with dif-

ferent levels of demand information. Our view of the two-stage decision is informed by

the current nurse staffing practice in hospitals. An interesting extension is to examine more

granular decision epochs or even a continuous-time model, where both demand informa-

tion and staffing cost increase as time approaches to the start of the shift. This requires

a more granular model of arrival-rate uncertainty, such as those developed in Zhang et al.

(2014); Daw and Pender (2018). However, increasing the granularity of decision epochs

may also come with certain implementation challenges from the practical perspective.
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Yaşar Levent Koçağa, Mor Armony, and Amy R Ward. Staffing call centers with uncertain

arrival rates and co-sourcing. Production and Operations Management, 24(7):1101–

1117, 2015.

Peter J Kolesar and Linda V Green. Insights on service system design from a normal

approximation to erlang’s delay formula. Production and Operations Management, 7

(3):282–293, 1998.

Michelle D Lall, Bernard P Chang, Joel Park, Ramin R Tabatabai, Rita A Manfredi, Jill M

Baren, and Jenny Castillo. Are emergency physicians satisfied? an analysis of opera-

tional/organization factors. Journal of the American College of Emergency Physicians

Open, 2(6):e12546, 2021.

Maialen Larrañaga. Dynamic control of stochastic and fluid resource-sharing systems. PhD

thesis, 2015.

Maialen Larrañaga, Urtzi Ayesta, and Ina Maria Verloop. Dynamic fluid-based scheduling

in a multi-class abandonment queue. Performance Evaluation, 70(10):841–858, 2013.

Retsef Levi, Georgia Perakis, and Joline Uichanco. The data-driven newsvendor problem:

new bounds and insights. Operations Research, 63(6):1294–1306, 2015.

Michelle P Lin, Olesya Baker, Lynne D Richardson, and Jeremiah D Schuur. Trends in

emergency department visits and admission rates among us acute care hospitals. JAMA

Internal Medicine, 178(12):1708–1710, 2018.

Yunan Liu and Ward Whitt. Stabilizing customer abandonment in many-server queues with

time-varying arrivals. Operations research, 60(6):1551–1564, 2012.

131



Shimrit Maman. Uncertainty in the demand for service: The case of call centers and

emergency departments. PhD thesis, Field of Statistics. Technion - Israel Institute of

Technology, Haifa, Israel., 2009.

A. Mandelbaum and A. Stolyar. Scheduling flexible servers with convex delay costs:

Heavy-traffic optimality of the generalized cµ-rule. Operations Research, 52(6):836–

855, 2004.

Avishai Mandelbaum and Sergey Zeltyn. Staffing many-server queues with impatient cus-

tomers: Constraint satisfaction in call centers. Operations research, 57(5):1189–1205,

2009.

Izabel Marcilio, Shakoor Hajat, and Nelson Gouveia. Forecasting daily emergency de-

partment visits using calendar variables and ambient temperature readings. Academic

emergency medicine, 20(8):769–777, 2013.

John J McCall. Maintenance policies for stochastically failing equipment: a survey. Man-

agement science, 11(5):493–524, 1965.

Melissa L McCarthy, Scott L Zeger, Ru Ding, Dominik Aronsky, Nathan R Hoot, and

Gabor D Kelen. The challenge of predicting demand for emergency department services.

Academic Emergency Medicine, 15(4):337–346, 2008.

Jane McCusker, Alain Vadeboncoeur, Jean-Frédéric Lévesque, Antonio Ciampi, and Eric

Belzile. Increases in emergency department occupancy are associated with adverse 30-

day outcomes. Academic Emergency Medicine, 21(10):1092–1100, 2014.

Bernard J Morzuch and P Geoffrey Allen. Forecasting hospital emergency department

arrivals. In 26th Annual Symposium on Forecasting, Santander, Spain, pages 11–14,

2006.

132



National Centers for Environmental Information. Global historical climatology network

(ghcn)-daily dataset, 2020. Available Online: https://www.ncdc.noaa.gov/

cdo-web/cart (accessed on 08 December 2020).

John Neter, Michael H Kutner, Christopher J Nachtsheim, William Wasserman, et al. Ap-

plied linear statistical models. 1996.
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Appendix A: Appendix for Chapter 1

A.1 Long-Run Regularity of the Fluid Model and Proof of Theorem 1

The key to proving Theorem 1 is to establish that the optimal solution to the long-run

average fluid optimization problem, (F1), is a globally asymptotically stable equilibrium

under the strict priority rule suggested by the modified cµ/θ -index. In this section, we first

establish the long-run regularity of the fluid model under strict priority rules. The stability

analysis of strict priority rules can be of independent interest, especially as such policies

are often used in practice. Additionally, we identify an interesting bi-stability phenomenon

for certain parameter regions under strict priority rules. We then use the long-run regularity

results to prove Theorem 1.

A.1.1 System Stability under Strict Priority Rules

Due to the symmetry of the system, we provide the analysis for strict priority to Class 1

only, i.e., the analysis for strict priority to Class 2 follows identically by symmetry. Under

P1, when q1(t)> 0, we will assign all capacity to Class 1. When q1(t) = 0, we will assign

to Class 1 the minimum amount of capacity necessary to maintain its queue at zero if there

is enough capacity; otherwise, we will assign all the capacity to Class 1. In particular, the

system dynamics are characterized as follows:

(i) If q1(t)> 0,

q̇1(t)= λ1−µ1s−θ1q1(t)−γ1q1(t)+γ2q2(t), q̇2(t)= λ2−θ2q2(t)−γ2q2(t)+γ1q1(t);

(A.1)
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(ii) If q1(t) = 0,q2(t)> 0,

q̇1(t) = λ1−µ1

(
λ1 + γ2q2(t)

µ1
∧ s
)
+ γ2q2(t),

q̇2(t) = λ2−µ2

(
s− λ1 + γ2q2(t)

µ1

)+

−θ2q2(t)− γ2q2(t);
(A.2)

(iii) If q1(t) = 0,q2(t) = 0,

q̇1(t) = λ1−µ1

(
λ1

µ1
∧ s
)
, q̇2(t) = λ2−µ2

((
s− λ1

µ1

)+

∧ λ2

µ2

)
. (A.3)

Using a Lyapunov argument, Theorem 7 characterizes the long-run regularity of the

fluid dynamical system under strict priority to Class 1.

Theorem 7. Under Assumption 1, for the dynamical system (A.1) - (A.3),

Case I. When µ1 >
γ2

θ2+γ2
µ2,

Ia If λ1
µ1

+ λ2
µ2
≤ s, the system has a globally asymptotically stable equilibrium at

qe
1 = 0, qe

2 = 0.

Ib If λ1
µ1

+ γ2
θ2+γ2

λ2
µ1
≤ s < λ1

µ1
+ λ2

µ2
, the system has a globally asymptotically stable equilib-

rium at

qe
1 = 0, qe

2 =
µ1µ2

(
λ1
µ1

+ λ2
µ2
− s
)

(θ2 + γ2)µ1− γ2µ2
> 0.

Ic If s < λ1
µ1

+ γ2
θ2+γ2

λ2
µ1

. the system has a globally asymptotically stable equilibrium at

qe
1 =

λ1 +
γ2

θ2+γ2
λ2− sµ1

θ1 + γ1
θ2

θ2+γ2

> 0, qe
2 =

λ2θ1 + γ1(λ1 +λ2− sµ1)

(θ2 + γ2)θ1 + γ1θ2
>

λ2

θ2 + γ2
.

Case II. When µ1 <
γ2

θ2+γ2
µ2,

IIa If λ1
µ1

+ γ2
θ2+γ2

λ2
µ1

< s, the system has a globally asymptotically stable equilibrium at

qe
1 = 0, qe

2 = 0.

IIb If λ1
µ1

+ λ2
µ2

< s ≤ λ1
µ1

+ γ2
θ2+γ2

λ2
µ1

, the system has two locally asymptotically stable equi-

libria

qe
11 = 0, qe

21 = 0
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and

qe
12 =

λ1 +
γ2

θ2+γ2
λ2− sµ1

θ1 + γ1
θ2

θ2+γ2

≥ 0, qe
22 =

λ2θ1 + γ1(λ1 +λ2− sµ1)

(θ2 + γ2)θ1 + γ1θ2
≥ λ2

θ2 + γ2
.

IIc If s = λ1
µ1
+ λ2

µ2
, the system has an equilibrium at (qe

11,q
e
21) = (0,0) and a locally asymp-

totically stable equilibrium at

qe
12 =

λ1 +
γ2

θ2+γ2
λ2− sµ1

θ1 + γ1
θ2

θ2+γ2

> 0, qe
22 =

λ2θ1 + γ1(λ1 +λ2− sµ1)

(θ2 + γ2)θ1 + γ1θ2
>

λ2

θ2 + γ2
.

IId If s < λ1
µ1

+ λ2
µ2

, the system has a globally asymptotically stable equilibrium at

qe
1 =

λ1 +
γ2

θ2+γ2
λ2− sµ1

θ1 + γ1
θ2

θ2+γ2

> 0, qe
2 =

λ2θ1 + γ1(λ1 +λ2− sµ1)

(θ2 + γ2)θ1 + γ1θ2
>

λ2

θ2 + γ2
.

Remark 5. We note that when µ1 = γ2µ2/(θ2+γ2), the system can have uncountably many

equilibrium points. In particular, for s = λ1/µ1+λ2/µ2, any (qe
1,q

e
2) satisfying qe

1 = 0 and

(λ1 + γ2qe
2)/µ1 < s is an equilibrium point. We do not consider this parameter regime, i.e.

µ1 = γ2µ2/(θ2 + γ2), in this chapter.

PROOF: [Proof of Theorem 7] The stability analysis for P1 divides the parameter regime

into six cases. In each case, we construct a Lyapunov function to establish the asymptotic

stability. As the proof for each case follows similar lines of analysis, we only present

the proof for Case Ia which has a globally asymptotically stable equilibrium and Case IIb

which has two locally asymptotically stable equilibria. The proofs for the rest of the cases

given the appropriate Lyapunov functions follow similarly and are thus omitted.

The Lyapunov function we utilize to prove each case differs; they are summarized in

the table below.
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Lyapunov function

Case Ia Subcase 1: 1
µ1
|q1−qe

1|+
1
µ2
|q2−qe

2|; Subcase 2: |q1−qe
1|+ |q2−qe

2|

Case Ib Subcase 1: 1
µ1
|q1−qe

1|+
1
µ2
|q2−qe

2|; Subcase 2: |q1−qe
1|+ |q2−qe

2|

Case Ic |q1−qe
1|+ |q2−qe

2|

Case IIa |q1−qe
1|+

γ

θ2+γ
|q2−qe

2|

Case IIb

Local equilibrium (0,0):

1
µ1
|q1−qe

1|+
1
µ2
|q2−qe

2| ;

Local equilibrium

(
λ1+

γ2
θ2+γ2

λ2−sµ1

θ1+γ1
θ2

θ2+γ2

, λ2θ1+γ1(λ1+λ2−sµ1)
(θ2+γ2)θ1+γ1θ2

)
:

|q1−qe
1|+ |q2−qe

2|

Case IIc |q1−qe
1|+ |q2−qe

2|

Case IId |q1−qe
1|+ |q2−qe

2|

Let V denote the Lyapunov function we constructed. To prove the asymptotic stability

of an equilibrium point qe, we need to verify that 1) V (qe) = 0 and V (q)→∞ as ||q|| →∞;

2) ∇qV (q)T f (q) < 0 for q 6= qe. In the case of local stability, the second condition is

checked locally with q restricted to be in some neighborhood of qe, i.e. 0 < ||q−qe||< δ

for some δ > 0. As 1) is straightforward from our definition of the Lyapunov function, we

focus on verifying 2) only.

Case I. γ2
θ2+γ2

< µ1
µ2

, i.e., γ2
µ1
− θ2+γ2

µ2
< 0.

Ia. If λ1
µ1

+ λ2
µ2
≤ s.

Ia.Subcase 1. γ2
θ2+γ2

< µ1
µ2

< θ1+γ1
γ1

.

Consider Lyapunov function of the form

V (q) =
1
µ1
|q1−qe

1|+
1
µ2
|q2−qe

2|,

where (qe
1,q

e
2) is the corresponding equilibrium point (0,0).
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(i) If q1(t)> 0,

q̇1(t) = λ1−µ1s−θ1q1(t)− γ1q1(t)+ γ2q2(t)

q̇2(t) = λ2−θ2q2(t)− γ2q2(t)+ γ1q1(t).

∇qV (q)T f (q) =
1
µ1

(λ1−µ1s−θ1q1(t)− γ1q1(t)+ γ2q2(t))

+
1
µ2

(λ2−θ2q2(t)− γq2(t)+ γ1q1(t))

=
λ1

µ1
+

λ2

µ2
− s+

(
γ1

µ2
− θ1 + γ1

µ1

)
q1(t)+

(
γ2

µ1
− θ2 + γ2

µ2

)
q2(t)

< 0,

where the last inequality follows from the facts that λ1
µ1

+ λ2
µ2
≤ s, and γ2

θ2+γ2
< µ1

µ2
< θ1+γ1

γ1
.

(ii) If q1(t) = 0, q2(t)> 0,

(a) if λ1+γ2q2(t)
µ1

≥ s,

q̇1(t) = λ1−µ1s+ γ2q2(t)

q̇2(t) = λ2−θ2q2(t)− γ2q2(t).

∇qV (q)T f (q) =
1
µ1

(λ1−µ1s+ γ2q2(t))+
1
µ2

(λ2−θ2q2(t)− γ2q2(t))

=
λ1

µ1
+

λ2

µ2
− s+

(
γ2

µ1
− θ2 + γ2

µ2

)
q2(t)

< 0,

where the last inequality follows from the facts that λ1
µ1

+ λ2
µ2
≤ s, and γ2

θ2+γ2
< µ1

µ2
< θ1+γ1

γ1
.

(b) If λ1+γ2q2(t)
µ1

< s,

q̇1(t) = λ1−µ1

(
λ1 + γ2q2(t)

µ1

)
+ γ2q2(t) = 0

q̇2(t) = λ2−µ2

(
s− λ1 + γ2q2(t)

µ1

)
−θ2q2(t)− γ2q2(t).

∇qV (q)T f (q) =
1
µ2

(
λ2−µ2

(
s− λ1 + γ2q2(t)

µ1

)
−θ2q2(t)− γ2q2(t)

)
=

λ1

µ1
+

λ2

µ2
− s+

(
γ2

µ1
− θ2 + γ2

µ2

)
q2(t)

< 0,
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where the last inequality follows from the facts that λ1
µ1

+ λ2
µ2
≤ s, and γ2

θ2+γ2
< µ1

µ2
< θ1+γ1

γ1
.

Ia.Subcase 2. γ2
θ2+γ2

< θ1+γ1
γ1

< µ1
µ2

.

Consider Lyapunov function of the form

V (q) = |q1−qe
1|+ |q2−qe

2|,

where (qe
1,q

e
2) is the corresponding equilibrium point (0,0).

(i) If q1(t)> 0,

q̇1(t) = λ1−µ1s−θ1q1(t)− γ1q1(t)+ γ2q2(t)

q̇2(t) = λ2−θ2q2(t)− γ2q2(t)+ γ1q1(t).

∇qV (q)T f (q) = (λ1−µ1s−θ1q1(t)− γ1q1(t)+ γ2q2(t))+(λ2−θ2q2(t)− γ2q2(t)+ γ1q1(t))

= λ1−µ1s+λ2−θ1q1(t)−θ2q2(t)

= µ1

(
λ1

µ1
+

λ2

µ1
− s
)
−θ1q1(t)−θ2q2(t)

< µ1

(
λ1

µ1
+

λ2

µ2
− s
)
−θ1q1(t)−θ2q2(t)

< 0,

where the first inequality follows from the fact that µ1 > µ2 (due to θ1+γ1
γ1

< µ1
µ2

), and the

second inequality follows from the facts that λ1
µ1

+ λ2
µ2
≤ s and q1(t)> 0.

(ii) If q1(t) = 0, q2(t)> 0,

(a) If λ1+γ2q2(t)
µ1

≥ s,

q̇1(t) = λ1−µ1s+ γ2q2(t)

q̇2(t) = λ2−θ2q2(t)− γ2q2(t).

∇qV (q)T f (q) = (λ1−µ1s+ γ2q2(t))+(λ2−θ2q2(t)− γ2q2(t))

= λ1−µ1s+λ2−θ2q2(t)

= µ1

(
λ1

µ1
+

λ2

µ1
− s
)
−θ2q2(t)

< µ1

(
λ1

µ1
+

λ2

µ2
− s
)
−θ2q2(t)

< 0,
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where the first inequality follows from the fact that µ1 > µ2, and the second inequality

follows from the facts that λ1
µ1

+ λ2
µ2
≤ s and q2(t)> 0.

(b) If λ1+γ2q2(t)
µ1

< s,

q̇1(t) = λ1−µ1

(
λ1 + γ2q2(t)

µ1

)
+ γ2q2(t) = 0

q̇2(t) = λ2−µ2

(
s− λ1 + γ2q2(t)

µ1

)
−θ2q2(t)− γ2q2(t).

∇qV (q)T f (q) = µ2

(
λ1

µ1
+

λ2

µ2
− s+

(
γ2

µ1
− θ2 + γ2

µ2

)
q2(t)

)
< 0,

where the last inequality follows from the facts that λ1
µ1

+ λ2
µ2
≤ s, and γ2

θ2+γ2
< θ1+γ1

γ1
< µ1

µ2
.

IIb. If λ1
µ1

+ λ2
µ2

< s≤ λ1
µ1

+ γ

θ2+γ

λ2
µ1

.

To check for local stability, it is sufficient to find a Lyapunov function V that satisfies

∇qV (q)T f (q)< 0 in an open neighborhood of the equilibrium point. We construct different

Lyapunov functions for different equilibrium points.

(i) Local stability of (qe
1,q

e
2) = (0,0): Consider Lyapunov function of the form

V (q) =
1
µ1
|q1−qe

1|+
1
µ2
|q2−qe

1|.

Let 0 < ε < sµ1−λ1
γ2

be such that

λ1

µ1
+

λ2

µ2
− s+

(
γ2

µ1
− θ2 + γ2

µ2

)
ε < 0. (A.4)

We know such ε exists because λ1
µ1
+ λ2

µ2
−s < 0 and γ2

µ1
− θ2+γ2

µ2
> 0. Consider states (q1,q2)

with q2 < ε .

(a) If q1(t)> 0,

q̇1(t) = λ1−µ1s−θ1q1(t)− γ1q1(t)+ γ2q2(t)

q̇2(t) = λ2−θ2q2(t)− γ2q2(t)+ γ1q1(t).
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∇qV (q)T f (q) =
1
µ1

(λ1−µ1s−θ1q1(t)− γ1q1(t)+ γ2q2(t))+
1
µ2

(λ2−θ2q2(t)− γq2(t)+ γ1q1(t))

=
λ1

µ1
+

λ2

µ2
− s+

(
γ1

µ2
− θ1 + γ1

µ1

)
q1(t)+

(
γ2

µ1
− θ2 + γ2

µ2

)
q2(t)

<
λ1

µ1
+

λ2

µ2
− s+

(
γ2

µ1
− θ2 + γ2

µ2

)
q2(t)

< 0,

where the first inequality follows from the facts that µ1
µ2

< γ2
θ2+γ2

< θ1+γ1
γ1

and q1(t)> 0, and

the second inequality follows from (A.4) and the fact that q2(t)< ε .

(b) If q1(t) = 0, q2(t)> 0 (the assumption q2(t)< ε implies that λ1+γ2q2(t)
µ1

< s),

q̇1(t) = λ1−µ1

(
λ1 + γ2q2(t)

µ1

)
+ γ2q2(t) = 0

q̇2(t) = λ2−µ2

(
s− λ1 + γ2q2(t)

µ1

)
−θ2q2(t)− γ2q2(t).

∇qV (q)T f (q) =
1
µ2

(
λ2−µ2

(
s− λ1 + γ2q2(t)

µ1

)
−θ2q2(t)− γ2q2(t)

)
=

λ1

µ1
+

λ2

µ2
− s+

(
γ2

µ1
− θ2 + γ2

µ2

)
q2(t)

< 0,

where the inequality follows from (A.4) and the fact that q2(t)< ε .

(ii) Local stability of (qe
1,q

e
2) =

(
λ1+

γ2
θ2+γ2

λ2−sµ1

θ1+γ1
θ2

θ2+γ2

, λ2θ1+γ1(λ1+λ2−sµ1)
(θ2+γ2)θ1+γ1θ2

)
: Consider Lyapunov

function of the form

V (q) = |q1−qe
1|+ |q2−qe

2|.

Consider states q such that q1 > 0 and q2 > 0.

(a) If q1(t)≥ qe
1, q2(t)≥ qe

2 and (q1(t),q2(t)) 6= (qe
1,q

e
2),

q̇1(t) = λ1−µ1s−θ1q1(t)− γ1q1(t)+ γ2q2(t)

q̇2(t) = λ2−θ2q2(t)− γ2q2(t)+ γ1q1(t).
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∇qV (q)T f (q) = (λ1−µ1s−θ1q1(t)− γ1q1(t)+ γ2q2(t))+(λ2−θ2q2(t)− γ2q2(t)+ γ1q1(t))

= λ1−µ1s+λ2−θ1q1(t)−θ2q2(t)

< λ1−µ1s+λ2−θ1qe
1−θ2qe

2

= 0,

where the inequality follows from the facts that q1(t)≥ qe
1, q2(t)≥ qe

2 and (q1(t),q2(t)) 6=

(qe
1,q

e
2).

(b) If q1(t)≥ qe
1 and q2(t)< qe

2,

q̇1(t) = λ1−µ1s−θ1q1(t)− γ1q1(t)+ γ2q2(t)

q̇2(t) = λ2−θ2q2(t)− γ2q2(t)+ γ1q1(t).

∇qV (q)T f (q) = (λ1−µ1s−θ1q1(t)− γ1q1(t)+ γ2q2(t))− (λ2−θ2q2(t)− γ2q2(t)+ γ1q1(t))

= λ1−µ1s−λ2− (θ1 +2γ1)q1(t)+(θ2 +2γ2)q2(t)

< λ1−µ1s−λ2− (θ1 +2γ1)qe
1 +(θ2 +2γ2)qe

2

= 0,

where the inequality follows from the facts that q1(t)≥ qe
1 and q2(t)< qe

2.

(c) If q1(t)< qe
1 and q2(t)≥ qe

2,

q̇1(t) = λ1−µ1s−θ1q1(t)− γ1q1(t)+ γ2q2(t)

q̇2(t) = λ2−θ2q2(t)− γ2q2(t)+ γ1q1(t).

∇qV (q)T f (q) =−(λ1−µ1s−θ1q1(t)− γ1q1(t)+ γ2q2(t))+(λ2−θ2q2(t)− γ2q2(t)+ γ1q1(t))

<−λ1 +µ1s+λ2 +(θ1 +2γ1)qe
1− (θ2 +2γ2)qe

2

= 0,

where the inequality follows from the facts that q1(t)< qe
1 and q2(t)≥ qe

2.

(d) If q1(t)< qe
1 and q2(t)< qe

2,

q̇1(t) = λ1−µ1s−θ1q1(t)− γ1q1(t)+ γ2q2(t)

q̇2(t) = λ2−θ2q2(t)− γ2q2(t)+ γ1q1(t).
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∇qV (q)T f (q) =−(λ1−µ1s−θ1q1(t)− γ1q1(t)+ γ2q2(t))− (λ2−θ2q2(t)− γ2q2(t)+ γ1q1(t))

=−λ1 +µ1s−λ2 +θ1q1(t)+θ2q2(t)

<−λ1 +µ1s−λ2 +θ1qe
1 +θ2qe

2

= 0,

where the inequality follows from the facts that q1(t)< qe
1 and q2(t)< qe

2.

A.1.2 Proof of Theorem 1

PROOF: Consider the equivalent LP formulation (1.5) for the long-run average cost min-

imization problem (F1). For any given set of parameters, we first solve the LP (1.5) to

obtain an optimal solution (ze∗
1 ,ze∗

2 ) which represents the optimal long-run average service

capacity allocated to Class 1 and Class 2. We then show that (ze∗
1 ,ze∗

2 ), and the corre-

sponding (qe∗
1 ,qe∗

2 ), is the globally asymptotically stable equilibrium under the modified

cµ/θ -rule, which corresponds to P1 or P2 depending on which class has a higher modified

cµ/θ -index. This step is based on the stability analysis for P1 (or P2 by symmetry) in Ap-

pendix A.1.1. Following similar parameter regimes examined in the stability analysis, we

divide the analysis here into different cases. For each case, the tables below list the opti-

mal LP solution (ze∗
1 ,ze∗

2 ), the corresponding (qe∗
1 ,qe∗

2 ), and the static control under which

(qe∗
1 ,qe∗

2 ) is a globally asymptotically stable equilibrium.
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Case III. γ2
θ2+γ2

< µ1
µ2

< θ1+γ1
γ1

, and λ2
µ2

+ γ1
θ1+γ1

λ1
µ2
≥ λ1

µ1
+ γ2

θ2+γ2

λ2
µ1

.

This case follows from Case 2 by symmetry.

Case IV. µ1
µ2

> θ1+γ1
γ1

. In this case, the modified cµ/θ -rule prioritizes Class 1.

This case follows from Case 1 by symmetry.

A.2 Proofs of the Results in Section 1.4

The proofs in this section are organized as follows. We start by showing that it is without

loss of optimality to restrict our analysis to solutions without chattering behavior (Lemma

1). We then establish the optimal scheduling policy when we are close to the equilibrium

(Proposition 1). Both proofs are based on solving the state trajectory q directly. Second, we

use Pontryagin’s Minimum Principle and Proposition 1 to prove Propositions 2 and 3. In

particular, we provide more details about Pontryagin’s Minimum Principle. We next prove

the auxiliary lemmas (Lemmas 2–4), which are then used to prove Propositions 2 and 3.

Note that we actually prove Proposition 3 first, because the proof of Proposition 2 utilizes

the results established in Proposition 3. Putting the results of Propositions 1–3 together, we

complete the proof of Theorem 2. Lastly, we characterize the policy curve in the special

case where γ1 = 0, c1µ1 < c2µ2, and r1 > r2 (Proposition 4).

A.2.1 Proof of Lemma 1

PROOF: We prove the lemma by first showing that the cost difference between a chatter-

ing trajectory and a properly constructed trajectory without chattering is negligible. This

implies that any admissible control policy π that yields a chattering interval can be replaced

by a cost-wise equivalent control π̃ that does not yield chattering state trajectories. Thus,

it is without loss of optimality to consider state trajectories without chattering behavior for

the transient optimal control problem (F2′).

Consider an interval I1 := [0,ε] where queue 1 is initiated at zero and receives no service

capacity for an ε > 0 amount of time. During this interval, a queue accumulates in queue

1. Following I1, I2 = (ε,ε +ε ′] is an interval of length ε ′ > 0, over which queue 1 receives
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full service capacity s and is eventually emptied at the end of I2. Suppose q2 is initiated

at level q2(0) = q20, q20 ∈ R+. We compute the state trajectory and cost over I1∪ I2, i.e.

[0,ε + ε ′].

Over the first interval I1, the state trajectories evolve as

q1(t) = (q20γ2 +λ1) t +o(ε), t ∈ [0,ε]

q2(t) = q20 +(q20(−γ2−θ2)+λ2− sµ2) t +o(ε), t ∈ [0,ε] .

Note that it is possible to ignore the boundary condition that q2(t)≥ 0 for sufficiently small

ε . At time ε , the end of time interval I1, the length of q1 and q2 are

q1(ε) = (q20γ2 +λ1)ε +o(ε)

q2(ε) = q20 +(q20(−γ2−θ2)+λ2− sµ2)ε +o(ε).

Using (q1(ε),q2(ε)) as the initial condition at the beginning of the interval I2, we can

characterize the trajectory of q1 and q2 over I2 as

q1(t) = ε (q20γ2 +λ1)+(t− ε) [λ1 + ε(−γ1−θ1)(q20γ2 +λ1)− sµ1

+γ2(q20−q20γ2ε−q20εθ2 + ελ2− sεµ2)]+o(ε), t ∈
[
ε,ε + ε

′]
q2(t) = q20−q20γ2ε−q20εθ2 + ελ2− sεµ2 +(t− ε) [γ1ε(q20γ2 +λ1)+λ2

+(−γ2−θ2)(q20−q20γ2ε−q20εθ2 + ελ2− sεµ2)]+o(ε), t ∈
[
ε,ε + ε

′] .
In addition, the value of ε ′, the time it takes to empty queue 1 from initial level q1(ε), is

ε
′ =

ε (q20γ2 +λ1)

−q20γ2−λ1 + sµ1
+o(ε).

The total holding cost over the two intervals I1 and I2 is given by

C = c1

∫
ε+ε ′

0
q1(t)dt + c2

∫
ε+ε ′

0
q2(t)dt.

In contrast, we now consider an interval with the same length, ε + ε ′, and the same

initial condition (q̃1(0), q̃2(0)) = (0,q20). Now, instead of having q1 increase from zero

and then decrease to zero, we assign strict priority to Class 1 and maintain q̃1 at zero. The
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rest of the service capacity is allocated to serve Class 2. Similarly, we characterize the

corresponding state trajectory over this interval of length ε + ε ′ as

q̃1(t) = 0, t ∈
[
0,ε + ε

′]
q̃2(t) = q20 + t [q20(−γ2µ1−θ2µ1 + γ2µ2)+λ2µ1 +λ1µ2− sµ1µ2]/µ1 +o(ε), t ∈

[
0,ε + ε

′] ,
and the total holding cost as

C̃ = c1

∫
ε+ε ′

0
q̃1(t)dt + c2

∫
ε+ε ′

0
q̃2(t)dt.

Comparing C and C̃, we get

C−C̃

=
ε2

2(q20γ2 +λ1− sµ1)2 (q20γ2 +λ1)
(
c2ε(q20γ2 +λ1)

(
q20(γ1γ2 +(γ2 +θ2)

2)+ γ1λ1− (γ2 +θ2)λ2
)

+ c2s((1+ ε(γ2 +θ2))(q20γ2 +λ1)− sµ1)µ2− c1
(
q2

20γ
2
2 ε(γ1 + γ2 +θ1 +θ2)+ γ1ελ

2
1 + εθ1λ

2
1

−γ2ελ1λ2 + sλ1µ1− s2
µ

2
1 + sγ2ελ1µ2 +q20γ2 (2γ1ελ1 + ε(2θ1 +θ2)λ1 + sµ1 + γ2ε(λ1−λ2 + sµ2))

)
= o(ε).

(A.5)

In addition, at the end of time ε + ε ′, we have q1(ε + ε ′) = q̃1(ε + ε ′) = 0, and

q2(ε + ε
′)− q̃2(ε + ε

′)

=−
ε2(q20γ2 +λ1)

(
q20(γ1γ2 +(γ2 +θ2)

2)+ γ1λ1− (γ2 +θ2)(λ2− sµ2)
)

q20γ2 +λ1− sµ1

= o(ε).

(A.6)

Importantly, (A.5) implies that the cost under the policy that has q1 first increase and then

decrease and the cost under strict priority rule to Class 1 which maintains q1 at zero differ

by o(ε). From (A.6), the queue lengths at time ε + ε ′ under the two policies also differ by

o(ε). Now for any interval of length L, suppose we divide it into O(L/ε) small triangles

(trajectories where q1 first increases for ε units of time and then decreases to zero). Each

has a cost difference o(ε) from the cost under strict priority to Class 1. Then the overall
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cost difference between the two policies (chattering versus non-chattering) is o(ε)O(L/ε),

which goes to zero for fixed L as ε goes to zero. Note that any chattering interval consists of

infinitely many such triangular trajectories with infinitesimally small intervals over which

q1 first increases above and then decreases to zero. This implies that any admissible control

policy π that yields a chattering interval where q1 fluctuates infinitesimally around zero

can be replaced by a cost-wise equivalent control π̃ that maintains q1 at zero over the same

interval and agrees with π elsewhere. The same approach applies to any chattering interval

of q2 around zero – i.e., we can show that there exists a cost-wise equivalent control under

which q2 does not chatter (stays at zero).

A.2.2 Proof of Proposition 1

PROOF: Let (q1(0),q2(0)) = (ε,ε). Since the optimal control gives strict priority to one

class at any given time, for ε > 0 sufficiently small, it is sufficient to compare the two strict

priority rules; see Larrañaga (2015) for a similar observation. Under each priority rule, we

characterize the fluid trajectory and calculate the cost. By comparing the costs under the

strict priority rules, we note that when the system is initiated close enough to the origin,

the optimal policy is to follow the cµ-rule.

We first consider strict priority to Class 1. The time horizon is divided into two

intervals with length t1 and t2 respectively. Class 1 first receives full service capacity and

gets emptied at the end of the first interval. Over the second interval, Class 1 is maintained

at zero queue and Class 2 is eventually emptied. The fluid trajectory over the first interval

is characterized by

q1(t) = ε +(−γ1ε + γ2ε− εθ1 +λ1− sµ1) t +o(ε), t ∈ [0, t1]

q2(t) = ε +(γ1ε− γ2ε− εθ2 +λ2) t +o(ε), t ∈ [0, t1] ,

and the value of t1 is

t1 =
ε

sµ1−λ1
+o(ε).

Taking the value of (q1(t1),q2(t1)) as the initial condition for the second interval, the fluid
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trajectory over the second interval is

q1(t) = 0, t ∈ [t1, t1 + t2]

q2(t) =
1

µ1(−λ1 + sµ1)
[−εθ2µ1 (−λ1 +λ2 + sµ1)+ γ2ε (λ1−λ2− sµ1)(µ1−µ2)

−(λ1− sµ1)(λ2µ1 +λ1µ2− sµ1µ2)] (t− t1)+ ε +
ελ2

−λ1 + sµ1
+o(ε), t ∈ [t1, t1 + t2] ,

and the value of t2 is

t2 =
µ1(−λ1 +λ2 + sµ1)ε

(λ1− sµ1)(λ2µ1 +λ1µ2− sµ1µ2)
+o(ε).

The cumulative holding cost under P1 over [0, t1 + t2] is given by

CP1 = c1

∫ t1

0
[ε +(−γ1ε + γ2ε− εθ1 +λ1− sµ1) t]dt + c2

∫ t1

0
[ε +(γ1ε− γ2ε− εθ2 +λ2) t]dt

+ c2

∫ t1+t2

t1

{
1

µ1(−λ1 + sµ1)
[−εθ2µ1 (−λ1 +λ2 + sµ1)+ γ2ε (λ1−λ2− sµ1)(µ1−µ2)

−(λ1− sµ1)(λ2µ1 +λ1µ2− sµ1µ2)] (t− t1)+ ε +
ελ2

−λ1 + sµ1

}
dt +o(ε2)

=
ε2

2(λ1− sµ1)

(
−c1 +

c2(λ2µ2−λ1(µ1 +2µ2)+ sµ1(µ1 +2µ2))

λ2µ1 +(λ1− sµ1)µ2

)
+o(ε2).

Next, we consider the strict priority rule to Class 2. Let CP2 denote the total cost

of clearing the fluid queue from initial backlog level (q1(0),q2(0)) = (ε,ε). It follows by

symmetry that

CP2 =
ε2

2(λ2− sµ2)

(
−c2 +

c1(λ1µ1−λ2(µ2 +2µ1)+ sµ2(µ2 +2µ1))

λ1µ2 +(λ2− sµ2)µ1

)
+o(ε2).

Comparing the total costs under P1 and P2, we get

CP1−CP2 =
ε2(c1µ1− c2µ2)

(
λ 2

1 −λ1(2λ2 + s(µ1−2µ2))+(λ2 +2sµ1)(λ2− sµ2)
)

2(λ1− sµ1)(−λ2 + sµ2)(λ2µ1 +(λ1− sµ1)µ2)
+o(ε2)

=
ε2(c1µ1− c2µ2)(λ1(λ1− sµ1)+(λ2− sµ2)(λ2 +2sµ1−2λ1))

2(sµ1−λ1)(sµ2−λ2)(sµ1µ2−λ1µ2−λ2µ1)
+o(ε2),

(A.7)

Note that as s > λ1/µ1+λ2/µ2, in (A.7), the denominator 2(sµ1−λ1)(sµ2−λ2)(sµ1µ2−

λ1µ2−λ2µ1) > 0, and in the numerator, (λ1(λ1− sµ1)+(λ2− sµ2)(λ2 +2sµ1−2λ1)) <

0. Thus, for ε sufficiently small, CP1−CP2 < 0 if and only if c1µ1 > c2µ2, and vice versa.

This indicates that if the system is initiated sufficiently close to the origin, then the cµ-rule

is optimal.
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A.2.3 Pontryagin’s Minimum Principle

In this section, we provide more details about Pontryagin’s Minimum Principle, which

will be used in the proof of Lemma 2–4 and Propositions 2–3. Consider the transient

optimization problem (F2′) (also presented below).

min
z

∫
τ

0
F (q(t))dt

s.t. q̇(t) = f (q(t),z(t))

g(q(t))≤ 0

h(z(t))≤ 0.

(F2′ revisited)

The pure state constraint g(q(t)) ≤ 0 is, in general, very hard to deal with as it does

not explicitly involve the control z(t) and can only be regulated indirectly via the ordinary

differential equation q̇(t). To quantify how “implicitly" g(q(t)) depends on z(t), define g j
i ,

j = 1,2, ..., `, i = 1,2, recursively as

g0
i (q(t),z(t)) := gi(q(t))

g1
i (q(t),z(t)) := ∇qg0

i (q(t),z(t))
T f (q(t),z(t))

...

g`i (q(t),z(t)) := ∇qg`−1
i (q(t),z(t))T f (q(t),z(t)) .

If ∇zg
j
i (q(t),z(t)) = 0 for 0≤ j ≤ `−1, and ∇zg`i (q(t),z(t)) 6= 0, then the state constraint

gi(q(t)) is said to be of order `. It is easy to see that for (F2′), each pure state constraint is

of order 1.

We next introduce a full rank assumption, often referred to as constraint qualification,

on g(q(t)) and h(z(t)). In particular, for g(q(t)) of order 1, the constraint qualification

requires that the matrices[
∂g1(q(t))

∂ z

]
and

[
∂h(z(t))

∂ z diag(h(z(t)))

]
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have full rank for all t ≥ 0. In the context of (F2′), we have

rank
[

∂g1(q(t))
∂ z

]
= rank

µ1 0

0 µ2

= 2,

and

rank
[

∂h(z(t))
∂ z diag(h(z(t)))

]
= rank


1 1 z1(t)+ z2(t)− s 0 0

−1 0 0 −z1(t) 0

0 −1 0 0 −z2(t)

= 3,

as at least one of z1(t) and z2(t) is strictly positive at all times. Hence, (F2′) satisfies the

constraint qualification.

Under the constraint qualification, Pontryagin’s Minimum Principle contains a list of

necessary conditions satisfied by any optimal solution to the control problem. The next

theorem summarizes some of the necessary conditions we utilize in our development. We

refer to the survey paper Hartl et al. (1995) for a comprehensive summary of develop-

ments regarding Pontryagin’s Minimum Principle for optimal control problems with state

constraints.

Theorem 8 (Pontryagin’s Minimum Principle (Hartl et al. (1995); Sethi and Thompson

(2000))). Assume that the constraint qualification holds. Let z∗ be an optimal solution to

(F2′), q∗ be the corresponding state trajectory, and τ∗ be the optimal hitting time. Then,

there exists a non-zero piecewise absolutely continuous adjoint vector p∗ : [0,τ∗]→ R2

with piecewise continuous derivatives, piecewise absolutely continuous Lagrangian multi-

pliers η∗ : [0,τ∗]→ R2, ξ ∗ : [0,τ∗]→ R3, and a vector ω∗(β j) ∈ R2 for each point β j of

discontinuity of p∗ such that for almost every t ∈ [0,τ∗],

1. Ordinary Differential Equation condition:

q∗(0) = q0, q̇∗(t) = f (q∗(t),z∗(t)) (ODE)

2. Adjoint Vector condition:

ṗ∗(t) =−∇qL(q∗(t),z∗(t), p∗(t),η∗(t),ξ ∗(t)) (ADJ)
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3. Minimization condition:

H(q∗(t),z∗(t), p∗(t)) = min
z
{H(q∗(t),z(t), p∗(t))} (M)

4. Hamiltonian condition:

H(q∗(t),z∗(t), p∗(t)) = 0 (H)

5. Transversality condition:

∇zL(q∗(t),z∗(t), p∗(t),η∗(t),ξ ∗(t)) = 0 (T)

6. Complementary condition:

η
∗(t)≥ 0, η

∗(t)T g(q∗(t)) = 0

ξ
∗(t)≥ 0, ξ

∗(t)T h(z∗(t)) = 0
(C)

7. Jump condition: For any time in a boundary arc or a junction time, β , the adjoint

vector p∗, and the Hamiltonian H may have a discontinuity, but they must satisfy the

following jump conditions:

(J1) : p∗(β−) = p∗(β+)+ω
∗
1 (β )∇qg1(q∗(β ))+ω

∗
2 (β )∇qg2(q∗(β ))

(J2) : H(q∗(β−),z(β−), p∗(β−))

= H(q∗(β+),z(β+), p∗(β+))−ω
∗
1 (β )∇tg1(q∗(β ))−ω

∗
2 (β )∇tg2(q∗(β ))

(J3) : ω
∗(β )≥ 0, ω

∗(β )T g(q∗(β )) = 0.

(J)

Next, we provide more explanations about the conditions in Pontryagin’s Minimum

Principle listed in Theorem 8 to complement the discussion in Section 1.4.3.

1. First, let

ζ :=
√

γ2
1 +2γ1(γ2 +θ1−θ2)+(γ2−θ1 +θ2)2

=
√

γ2
2 +2γ2(γ1 +θ2−θ1)+(γ1−θ2 +θ1)2.

(A.8)

158



Note that ζ is well-defined, because

γ
2
1 +2γ1(γ2 +θ1−θ2)+(γ2−θ1 +θ2)

2 = γ
2
1 +2γ1(γ2 +θ1−θ2)+(−γ2 +θ1−θ2)

2

≥ γ
2
1 +2γ1(−γ2 +θ1−θ2)+(−γ2 +θ1−θ2)

2

= (γ1− γ2 +θ1−θ2)
2 ≥ 0.

Solving the ordinary differential equations in (ADJ) for the dynamic of the adjoint

vectors, we get

p∗1(t) =
1
ζ

e
1
2 t(γ1+γ2+θ1+θ2)

{
ζ K1(0)cosh

(
tζ
2

)
+ sinh

(
tζ
2

)[
(γ1− γ2 +θ1−θ2)K1(0)

−2γ1K2(0)−2γ1

∫ t

0

1
2ζ

e−
1
2 (γ1+γ2+θ1+θ2+ζ )u

(
2c1γ2 + c2(γ1− γ2 +θ1−θ2−ζ )

− eζ u(2c1γ2 + c2(γ1− γ2 +θ1−θ2 +ζ ))+2(−1+ eζ u)γ2η
∗
1 (u)

+(−γ1 + γ2−θ1 +θ2 +ζ + eζ u(γ1− γ2 +θ1−θ2 +ζ ))η∗2 (u)
)

du
]

+

(
ζ cosh

(
tζ
2

)
+(γ1− γ2 +θ1−θ2)sinh

(
tζ
2

))∫ t

0

1
2ζ

e−
1
2 (γ1+γ2+θ1+θ2+ζ )u(

− c1(γ1− γ2 +θ1−θ2 +ζ )+2c2γ1 +(γ1− γ2 +θ1−θ2 +ζ

+ eζ u(−γ1 + γ2−θ1 +θ2 +ζ ))η∗1 (u)−2γ1η
∗
2 (u)

− eζ u(2c2γ1 + c1(−γ1 + γ2−θ1 +θ2 +ζ )−2γ1η
∗
2 (u))

)
du
}
,

where K1(0),K2(0) are constants that depend on p∗1(0) and p∗2(0). The expression

for p∗2(t) follows by symmetry.

The adjoint vector is connected to the value function under the optimal control. In

particular, the value function Ξ : R2
+→ R+ associated with (F2′) is defined by

Ξ(a1,a2)= inf
{∫

τ

0
F(q(t))dt

∣∣q1(0) = a1, q2(0) = a2, q is a feasible trajectory in (F2′)
}
.

There exists an adjoint vector p∗(t) such that p∗(t) =∇qΞ(q∗(t)) under the condition

that ∇qΞ(q) is well defined (Frankowska, 2010). As the cost structure is linear and

increasing in q∗(t), it follows that p∗(t)≥ 0 for all t ≥ 0.
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2. Minimization condition (M) and the optimal assignment of service capacity in equa-

tions (1.9) - (1.10) reveal important properties of the optimal control structure. First,

observe in (1.9) - (1.10) that on the interior arc when both states are strictly positive

and the switching curve is non-zero, the optimal control is “bang-bang". Namely, it

must be the case that one of the two classes is assigned full service capacity s. On

the other hand, on the boundary arc when one of the states is at zero, the optimal

control is of an “interior" type. Namely, both z∗1(t) and z∗2(t) stay strictly positive in

the interior of the control region, i.e., z∗1(t),z
∗
2(t) ∈ (0,s).

3. Consider time β , where β < τ∗, as a time on a boundary arc or a junction time. If

the adjoint vector p∗ has a discontinuity at time β , then Jump condition (J) requires

thatp∗1(β−)

p∗2(β−)

=

p∗1(β+)

p∗2(β+)

+w∗1(β )

−1

0

+w∗2(β )

 0

−1

=

p∗1(β+)−w∗1(β )

p∗2(β+)−w∗2(β )

 ,
and that

w∗i (β )≥ 0, w∗i (β )gi(q∗(β )) = 0, i = 1,2.

Note that if q∗1(β ) = 0, then q∗2(β ) > 0 and thus w∗2(β ) = 0. The same holds true

for q∗2, namely, if q∗2(β ) = 0, then q∗1(β ) > 0 and thus w∗1(β ) = 0. Hence, only the

adjoint vector associated with the queue that is at zero can have a jump, while the

other adjoint vector remains continuous at time β .

In addition, since the pure state constraint g(q) is time invariant, i.e., the function

g does not have a time argument, we have ∇tg(q∗(β )) = 0. According to Jump

condition (J), the Hamiltonian H(q∗(t),z∗(t), p∗(t)) is continuous over boundary arcs

and at junction times.

4. Pontryagin’s Minimum Principle only requires the necessary conditions to be satis-

fied “almost everywhere". In particular, q∗(t) and p∗(t) can have discontinuities at

160



countably many points. For most problems studied in the literature, jumps only hap-

pen at junction times (Hartl et al., 1995). That said, in general, we cannot rule out the

possibility of jumps on the boundary or interior arcs. In our analysis, we shall first

assume that p∗(t) is continuous on interior arcs. We then show that the continuity

assumption indeed holds by verifying a sufficient version of Pontryagin’s Minimum

Principle for the optimal control problem (F2′).

We next introduce the sufficient version of Pontryagin’s Minimum Principle. Since the

terminal state in problem (F2′) is zero and F(0) = 0, (F2′) can be equivalently formulated

as an optimal control problem without a terminal state constraint but rather over an infi-

nite time horizon. The following sufficient conditions are adapted from Theorem 8.2 and

Theorem 8.4 in (Hartl et al., 1995) for the equivalent version of (F2′) over an infinite time

horizon.

Theorem 9 (Arrow-type sufficient condition). Let (q∗,z∗) be a feasible pair for an equiva-

lent version of problem (F2′) with infinite time horizon. Assume that there exists a piecewise

continuously differentiable function p∗(t) : [0,∞)→ R2 and piecewise continuous func-

tions η∗ : [0,∞)→ R2 and ξ ∗ : [0,∞)→ R3, such that conditions (ODE), (ADJ), (M), (H),

(T), (C) hold. Assume further that at all points β of discontinuity of p∗, there exists an

ω∗(β ) ∈ R2 such that (J1) and (J3) in (J) hold. In addition, assume that the following

limiting condition holds:

lim
t→∞

p∗(t)T (q(t)−q∗(t))≥ 0 for every other feasible state trajectory q.

If the minimized Hamiltonian H(q∗(t),z∗(t), p∗(t)) = minz{H(q∗(t),z(t), p∗(t))} is convex

in q∗(t) for all (p∗(t), t), the pure state constraint g(q(t)) is quasiconvex in q(t), and the

control constraint h(z(t)) is quasiconvex in z(t), then (q∗,z∗) is an optimal pair.

We first note that the solution we derive in this chapter indeed satisfies the sufficient

conditions in Theorem 9 and is thus optimal. More specifically, first, we design the control
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by ensuring that conditions (ODE), (ADJ), (M), (T), and (C) are satisfied almost every-

where. In particular, in our proposed solution, the state trajectory q∗(t) satisfies (ODE)

at all the continuity points of the control z∗(t). The adjoint vector p∗(t) follows the or-

dinary differential equations in (ADJ) everywhere on the interior arcs. (M), (T), and (C)

hold everywhere over the transient time horizon. Second, Jump condition (J) is guaranteed

everywhere over boundary arcs and at junction times. Since p∗(t) is continuous over in-

terior arcs, conditions (J1) and (J3) in (J) indeed hold for all discontinuity points of p∗(t).

Third, for any feasible state trajectory q(t) other than q∗(t), limt→∞ p∗(t)(q(t)−q∗(t))≥ 0

holds, because p∗(t),q(t)≥ 0 for all t ≥ 0, and limt→∞ q∗(t) = 0. Lastly, following (1.9)–

(1.10), the control z∗(t) is linear in q∗(t) for all t ≥ 0. Hence, the minimized Hamiltonian

H(q∗(t),z∗(t), p∗(t)) is linear in q∗(t) for all (p∗(t), t). The convexity conditions on g(q(t))

and h(z(t)) are also satisfied as g(q(t)) and h(z(t)) are linear in q(t) and z(t) respectively.

We are now ready to prove the results in Section 1.4.3 using Pontryagin’s Minimum

Principle.

A.2.4 Proof of Lemma 2

PROOF: The proof of Lemma 2 uses Transversality condition (T) and Complementarity

condition (C) . Consider a boundary arc [t1, t2] and a time epoch t ∈ (t1, t2). First, by (1.9)–

(1.10), the control over the boundary arc is of an “interior" type, and the amount of service

capacity assigned to both classes (z∗1(t),z
∗
2(t)) is strictly positive. By Complementarity

condition (C), the multipliers satisfy ξ ∗2 (t) = 0 and ξ ∗3 (t) = 0. Then, by Transversality

condition (T), we have µ1 p∗1(t) = µ2 p∗2(t) = ξ ∗1 (t). Hence, the switching curve satisfies

ψ(t) = µ1 p∗1(t)−µ2 p∗2(t) = 0 for t ∈ (t1, t2).

A.2.5 Proof of Lemma 3

PROOF: Recall that the switching curve is characterized by ψ(t) = µ1 p∗1(t)− µ2 p∗2(t).

Since ψ(t) = 0 on the boundary arcs and by our construction, p∗(t) does not jump on

the interior arcs, the switching curve ψ(t) is continuous at all time t ∈ [0,τ∗] if p∗(t) is
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continuous at the junction times. In the rest of the proof, we establish the continuity of

p∗(t) at the junction times.

Following Proposition 4.2 in Hartl et al. (1995) and Proposition 3.63 in Grass et al.

(2008), for the optimal control problem (F2′) which has pure state constraints of order 1, the

adjoint vector p∗(t) is continuous at a junction time β , i.e., ω∗(β ) = 0, if the entry or exit

is nontangential, i.e., q̇∗i (β−)< 0 or q̇∗i (β+)> 0, respectively. Namely, the nontangential

condition requires that if β is an entry or contact point for q∗i , then q̇∗i (β−)< 0. If β is an

exit or contact point for q∗i , then q̇∗i (β+) > 0. In what follows, we use this nontangential

condition and/or Jump condition (J) to establish continuity of p∗(t) at junction times. We

prove the statement for the junction times associated with Class 1; the arguments for Class

2 follow by symmetry. The discussion is divided into three cases based on the relative level

of service capacity s.

Case I. max{λ1
µ1

+ γ2
θ2+γ2

λ2
µ1
, λ1

µ1
+ λ2

µ2
}< s.

(i) Let β be an entry or contact point for q∗1.

In order to drive q∗1 to zero, full service capacity must be assigned to q∗1 right before

β , i.e., z∗1(β−) = s. Hence,

q̇∗1(β−)= λ1−µ1z∗1(β−)−θ1q∗1(β−)−γ1q∗1(β−)+γ2q∗2(β−)= λ1−µ1s+γ2q∗2(β−).

In addition, there exists some neighborhood [β −δ ,β ), 0 < δ < β , where q̇∗1(t) < 0

for all t ∈ [β −δ ,β ). This implies that

q∗2(t)< (sµ1−λ1)/γ2 for all t ∈ [β −δ ,β ).

We next show that q̇∗1(β−) < 0. Suppose by contradiction q̇∗1(β−) = 0, then it must

be the case that q∗2(β ) = (sµ1−λ1)/γ2. On the other hand,

q̇∗2(t) = λ2−µ2z∗2(t)− (θ2 + γ2)q∗2(t)+ γ1q∗1(t)≤ λ2− (θ2 + γ2)q∗2(t)+ γ1q∗1(t),
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which is strictly negative if

q∗2(t)> λ2/(θ2 + γ2)+ γ1q∗1(t)/(θ2 + γ2).

For s > max{λ1/µ1 +λ2/µ2, λ1/µ1 +λ2γ2/((γ2 +θ2)µ1)}, it holds that

q∗2(β ) = (sµ1−λ1)/γ2 > λ2/(θ2 + γ2).

Therefore, there exists some δ ′> 0, such that q̇∗2(t)< 0 and q∗2(t)> q∗2(β ) for t ∈ (β−

δ ′,β ). It follows that q̇∗1(t) > 0 for t ∈ (β − δ ′,β ), which contradicts that q̇∗1(t) < 0

for all t ∈ [β −δ ,β ).

Therefore, q̇∗1(β−)< 0 at entry or contact point β .

(ii) Let β be an exit or contact point for q∗1. Similar arguments as in Case I(i) apply, and

we can show that q̇∗1(β+)> 0.

Since all the entry and exit trajectories are nontangential, the adjoint vectors p∗(t) are

continuous at the junction times associated with Class 1 in this case.

Case II. s = λ1
µ1

+ γ2
θ2+γ2

λ2
µ1

> λ1
µ1

+ λ2
µ2

.

(i) Let β be an entry point for q∗1(t).

First, if q̇∗1(β−)< 0, then it follows from the nontangential condition that there is no

jump in the adjoint vector p∗(t) at time β .

Second, suppose for the sake of contradiction that q̇∗1(β−) = 0. It then follows that

q∗2(β ) = (sµ1−λ1)/γ2 = λ2/(θ2 + γ2).

Note that the point (0,λ2/(θ2 + γ2)) is a locally asymptotically stable equilibrium

point for the joint queue length process under priority to Class 1, while (0,0) is the

equilibrium under priority to Class 2. Hence, priority must be switched from Class

1 to Class 2 at time β . This implies that β cannot be an entry point for q∗1(t), a

contradiction.

Therefore, q̇∗1(β−)< 0 at entry point β for q∗1.
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(ii) Let β be an exit point for q∗1.

First, if q̇∗1(β+)> 0, then it follows from the nontangential condition that there is no

jump in the adjoint vector p∗(t) at time β .

Second, suppose for the sake of contradiction that q̇∗1(β+) = 0. Then,

q∗2(β ) = (sµ1−λ1)/γ2 = λ2/(θ2 + γ2).

Following the same reasoning as in Case II(i), since the point (0,λ2/(θ2 + γ2)) is a

locally asymptotically stable equilibrium point for the joint queue length process, pri-

ority must be switched from Class 1 to Class 2 at time β . This implies that z∗1(β+)= 0

and

q̇∗1(β+) = λ1−µ1z∗1(β+)− γ1q∗1(β+)+ γ2q∗2(β+)> 0,

a contradiction.

Therefore, q̇∗1(β+)> 0 at exit point β for q∗1.

(iii) Let β be a contact point for q∗1.

First, if q̇∗1(β−) < 0 and q̇∗1(β+) > 0, then p∗(t) does not have any jump at time β

due to the nontangential condition.

Second, if q̇∗1(β−) = 0, then following the same arguments as in Case II(i) and Case

II(ii), it holds that q∗2(β ) = λ2/(θ2 + γ2) and priority is switched from Class 1 to

Class 2 at time β . In this case, Jump condition (J) requires the adjoint vector p∗(t) to

have no jump at time β . To see this, suppose for the sake of contradiction that p∗(t)

jumps at β . Then, Jump condition (J) characterizes that p∗1(β+) = p∗1(β−)+w∗1(β ),

for some w∗1(β ) > 0. Recall that the switching curve is defined as ψ(t) = µ1 p∗1(t)−

µ2 p∗2(t). Since Class 1 is prioritized right before β , it holds that ψ(β−)≥ 0. If p∗1(t)

has a jump with strictly positive size w∗1(β ) at time β , then ψ(β+)> 0. However, this

implies that priority cannot be switched to Class 2 at time β , which is a contradiction.
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Third, the case where q̇∗1(β+) = 0 can be ruled out by exactly the same arguments in

Case II(ii).

In the cases where β is an entry or exit point, we show that the trajectories are nontan-

gential. Hence the adjoint vectors p∗(t) are continuous at these junction times associated

with Class 1. In the case where β is a contact point, we have established the continuity

of the adjoint vectors p∗(t) at β by either showing that the trajectories are nontangetial or

using Jump condition (J) (in the case where priority is switched from Class 1 to Class 2 at

β )

Case III. λ1
µ1

+ λ2
µ2

< s < λ1
µ1

+ γ2
θ2+γ2

λ2
µ1

.

(i) Let β be an entry point for q∗1.

First, if q̇∗1(β−)< 0, then p∗1(t) does not jump at β due to the nontangential condition.

Second, suppose for the sake of contradiction that q̇∗1(β−) = 0. Then, q∗2(β ) = (sµ1−

λ1)/γ2 < λ2/(θ2 + γ2). Recall that the dynamic of q∗2 follows q̇∗2(t) = λ2−µ2z∗2(t)−

(θ2 + γ2)q∗2(t)+ γ1q∗1(t). Because priority is kept at Class 1 over the boundary arc

following β , there exists some δ > 0 such that q̇∗2(t) > 0 for t ∈ [β ,β + δ ). This

implies that q̇∗1(t)> 0 for t ∈ (β ,β +δ ), contradicting the fact that β is an entry point

for q∗1(t).

Therefore, q̇∗1(β−)< 0 at entry point β for q∗1.

(ii) Let β be an exit point for q∗1.

First, if q̇∗1(β+)> 0, then p∗1(t) does not jump at β due to the nontangential condition.

Second, suppose for the sake of contradiction that q̇∗1(β+) = 0. Then, priority must

be kept at Class 1 at time β and over some interval [β ,β + δ1), δ1 > 0; otherwise,

q̇∗1(β+) > 0. In addition, we have, q∗2(β ) = (sµ1− λ1)/γ2 < λ2/(θ2 + γ2). It then

follows from the dynamic of q∗2 that there further exists some δ2, 0 < δ2 < δ1, such

that z∗1(t) = s, q̇∗1(t) > 0 and q̇∗2(t) > 0 for t ∈ (β ,β + δ2). Since p∗1(t) ≥ 0, p∗2(t) ≥
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0 and q∗2(t) > 0 for t ∈ (β ,β + δ2), we have H(q∗(t),z∗(t), p∗(t)) = p∗1(t)q̇
∗
1(t) +

p∗2(t)q̇
∗
2(t) + c1q∗1(t) + c2q∗2(t) > 0 for t ∈ (β ,β + δ2). However, the Hamiltonian

condition (H) requires that H(q∗(t),z∗(t), p∗(t)) = 0 almost everywhere, which gives

a contradiction.

Therefore, q̇∗1(β+)> 0 at exit point β for q∗1.

(iii) Let β be a contact point for q∗1.

First, if q̇∗1(β−) < 0 and q̇∗1(β+) > 0, then p∗(t) does not jump at β due to the

nontangential condition.

Second, for q̇∗1(β−) = 0, we first note that if priority is switched from Class 1 to

Class 2 at time β , then Jump condition (J) requires that p∗(t) does not jump at β due

to the same reasoning as in Case II(iii). Next, suppose for the sake of contradiction

that q̇∗1(β−) = 0 and priority is kept at Class 1 over some interval [β ,β +δ1), δ1 > 0.

Then, following the same arguments as in Case III(ii), there exists some δ2, 0 < δ2 <

δ1, such that z∗1(t) = s, q̇∗1(t)> 0 and q̇∗2(t)> 0 for t ∈ (β ,β +δ2), which violates the

Hamiltonian condition (H), and thus gives a contradiction.

Third, the case where q̇∗1(β+) = 0 is ruled out by the same arguments as in Case

III.(ii).

In the cases where β is an entry or exit point, we show that the trajectories are nontangen-

tial. Hence the adjoint vectors p∗(t) are continuous at these junction times associated with

Class 1. In the case where β is a contact point, we have established the continuity of p∗(t)

at β by either showing that the trajectories are nontangetial or using Jump condition (J).

Taking Cases I, II, III together, we have shown that the adjoint vectors p∗(t) are con-

tinuous at all the junction times. This further implies that the switching curve ψ(t) is

continuous at all t ∈ [0,τ∗].
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A.2.6 Proof of Lemma 4

PROOF: By Lemma 1, we restrict to trajectories without chattering behavior. For any

entry or contact point τ j, there exists a nontrivial interval (0,α j) such that for t ∈ (0,α j),

q∗1(τ j− t) and q∗2(τ j− t) are both strictly positive. Thus, the multiplier η∗ is equal to zero

over any interior arc. Recall from (A.8) that

ζ =
√

γ2
1 +2γ1(γ2 +θ1−θ2)+(γ2−θ1 +θ2)2 =

√
γ2

2 +2γ2(γ1 +θ2−θ1)+(γ1−θ2 +θ1)2.

We get from (ADJ) that for t ∈ (0,α j),

p∗1(τ j− t) =
c1

θ1 + γ1
θ2

γ2+θ2

+
c2

γ1
γ1+θ1

θ2 + γ2
θ1

γ1+θ1

+ e
1
2 (γ1+γ2+θ1+θ2)(τ j−t)

(
K1(τ j)cosh

[
1
2

ζ (τ j− t)
]

+
1
ζ

(
(γ1− γ2 +θ1−θ2)K1(τ j)−2γ1K2(τ j)

)
sinh

[
1
2

ζ (τ j− t)
])

=
c1

θ1 + γ1
θ2

γ2+θ2

+
c2

γ1
γ1+θ1

θ2 + γ2
θ1

γ1+θ1

+ e
1
2 (γ1+γ2+θ1+θ2)(τ j−t)

[
1
2

(
K1(τ j)+

1
ζ

(
(γ1− γ2 +θ1−θ2)K1(τ j)−2γ1K2(τ j)

))
e

1
2 ζ (τ j−t)

−1
2

(
K1(τ j)+

1
ζ

(
(γ1− γ2 +θ1−θ2)K1(τ j)−2γ1K2(τ j)

))
e−

1
2 ζ (τ j−t)

]
=

c1

θ1 + γ1
θ2

γ2+θ2

+
c2

γ1
γ1+θ1

θ2 + γ2
θ1

γ1+θ1

+
1
2

(
K1(τ j)+

1
ζ

(
(γ1− γ2 +θ1−θ2)K1(τ j)−2γ1K2(τ j)

))
e

1
2 (γ1+γ2+θ1+θ2+ζ )(τ j−t)

− 1
2

(
K1(τ j)+

1
ζ

(
(γ1− γ2 +θ1−θ2)K1(τ j)−2γ1K2(τ j)

))
e

1
2 (γ1+γ2+θ1+θ2−ζ )(τ j−t).

where K1(τ j),K2(τ j) are constants that depend on p∗1(τ j) and p∗2(τ j).

Let

A1(τ j) :=
1
2

(
K1(τ j)+

1
ζ

(
(γ1− γ2 +θ1−θ2)K1(τ j)−2γ1K2(τ j)

))
. (A.9)

It is immediate that

p∗1(τ j− t) =
c1

θ1 + γ1
θ2

γ2+θ2

+
c2

γ1
γ1+θ1

θ2 + γ2
θ1

γ1+θ1

+A1(τ j)e
1
2 (γ1+γ2+θ1+θ2+ζ )(τ j−t)

−A1(τ j)e
1
2 (γ1+γ2+θ1+θ2−ζ )(τ j−t).

(A.10)
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By symmetry, for

A2(τ j) :=
1
2

(
K2(τ j)+

1
ζ

(
(γ2− γ1 +θ2−θ1)K2(τ j)−2γ2K1(τ j)

))
, (A.11)

we have

p∗2(τ j− t) =
c2

θ2 + γ2
θ1

γ1+θ1

+
c1

γ2
θ2+γ2

θ1 + γ1
θ2

θ2+γ2

+A2(τ j)e
1
2 (γ1+γ2+θ1+θ2+ζ )(τ j−t)

−A2(τ j)e
1
2 (γ1+γ2+θ1+θ2−ζ )(τ j−t).

(A.12)

The backward switching curve from time τ j over the interval (0,α j) is given by

ψ(τ j− t) =

(
c1

θ1 + γ1
θ2

γ2+θ2

+
c2

γ1
γ1+θ1

θ2 + γ2
θ1

γ1+θ1

)
µ1−

(
c2

θ2 + γ2
θ1

γ1+θ1

+
c1

γ2
θ2+γ2

θ1 + γ1
θ2

θ2+γ2

)
µ2

+
(
µ1A1(τ j)−µ2A2(τ j)

)
e

1
2 (γ1+γ2+θ1+θ2+ζ )(τ j−t)

−
(
µ1A1(τ j)−µ2A2(τ j)

)
e

1
2 (γ1+γ2+θ1+θ2−ζ )(τ j−t).

Lastly, we note that γ1 + γ2 +θ1 +θ2−ζ > 0. This is because under Assumption 1, at

least one of θ1 and θ2 is strictly positive, and then,

ζ =
√

γ2
1 +2γ1(γ2 +θ1−θ2)+(γ2−θ1 +θ2)2

<
√

γ2
1 +2γ1(γ2 +θ1 +θ2)+(γ2 +θ1 +θ2)2

= γ1 + γ2 +θ1 +θ2.

The statement follows from defining

v1 :=
1
2
(γ1 + γ2 +θ1 +θ2 +ζ ), v2 :=

1
2
(γ1 + γ2 +θ1 +θ2−ζ ).

A.2.7 Proof of Proposition 3

PROOF: The proof utilizes Proposition 1 and the possible shapes of the switching curve,

ψ(τN − t), characterized in Lemma 4. It is divided into two cases, depending on the rela-

tionship between the cµ-index and the modified cµ/θ -index.
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Case I. First, we consider the parameter regime where the cµ-rule and the modified cµ/θ -

rule prioritize the same class, namely,

(c1µ1− c2µ2)(r1− r2)> 0, for r1,r2 in (1.6) and (1.7).

For the moment, suppose Class 1 has a higher cµ-index and modified cµ/θ -index.

By Proposition 1, when the state is in an ε-neighborhood of the origin, it is optimal to

assign strict priority to Class 1. Recall that τN is the last entry or contact point (forward in

time) when one of the states hits zero. It follows that τN must be the last epoch forward

in time when q∗1 hits zero, and q∗1 is then maintained at zero after τN , i.e., q∗1(t) = 0 for

t ∈ [τN ,τ
∗]. By Lemma 4, the switching curve right before τN satisfies for some αN < τN ,

ψ(τN− t) = r1− r2 +(µ1A1(τN)−µ2A2(τN))e
1
2 (γ1+γ2+θ1+θ2+ζ )(τN−t)

− (µ1A1(τN)−µ2A2(τN))e
1
2 (γ1+γ2+θ1+θ2−ζ )(τN−t), t ∈ (0,τN−αN),

where A1(τN) and A2(τN) are constants in R. Furthermore, DτN (t), the pseudo switching

curve backward from τN , satisfies

lim
t→∞

DτN (t) = r1− r2 > 0.

The structure of DτN (t) regulates that it can have at most two zeros. With limt→∞ DτN (t)>

0, the two possible function shapes DτN (t) can take are demonstrated in Figure A.1, with

one root in Figure A.1a and two roots in Figure A.1b. Figure A.1 is comprehensive in the

sense that any DτN (t) function shares the same behavior in crossing zeros and in the limit

as t→∞. In particular, if DτN (t) has one zero as in Figure A.1a, then it must be that DτN (t)

is increasing at the zero point and eventually converges to r1− r2. Once DτN (t) crosses

zero, it will never decrease to zero again. Likewise, if DτN (t) has two zeros as in Figure

A.1b, then it must be that DτN (t) has negative slope at the first zero, has positive slope

at the second zero, and eventually converges to r1− r2. Once DτN (t) crosses the second

zero point, it will never decrease to zero again. We comment that if the values of A1(τN)

are A2(τN) are known, then there is no ambiguity in the trajectory of DτN (t), and thus no
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notion of “possible" function shapes. Nevertheless, due to the degrees of freedom inherent

to Pontryagin’s Minimum Principle, it is hard to characterize these coefficients exactly.

Therefore, the idea is to infer the structure of the optimal control from the interaction of

the coefficients without explicitly characterizing their values.

Figure A.1: Possible trajectory of Dτ1(t) with c1µ1 > c2µ2
(modified c1µ1/θ1 > modified c2µ2/θ2)

0
t

0

+

-

D
N
(t)

(a) One zero point

0(1)0(2)

t

0

+

-
D

N
(t)

(b) Two zero points

We first note that the interval [τN ,τ
∗] is a boundary arc over which q∗1 is maintained

at zero. It follows that ψ(t) = 0 for t ∈ (τN ,τ
∗) (Lemma 2), and ψ(t) is continuous in

time so that ψ(τN) = 0 (Lemma 3). Furthermore, since the optimal control is “bang-bang"

right before τN , in order to drive q∗1 to zero at time τN , strict priority must be given to

Class 1 in some non-trivial neighborhood before τN . Namely, there exists ετN > 0 such that

ψ(t) > 0 for t ∈ (τN − ετN ,τN). For DτN (t), this implies that DτN (0) = 0 and DτN (t) > 0

for t ∈ (0,ετN ). Thus for the possible structures in Figure A.1, if DτN (t) has one zero

(Figure A.1a), then DτN (0) is at this unique zero point. If DτN (t) has two zeros (Figure

A.1b), then DτN (0) is at the second zero. This implies that as long as the dynamic of the

switching curve ψ(τN − t) follows that of DτN (t), ψ(τN − t) > 0. It is important to note

that the trajectory of ψ(τN− t) agrees with DτN (t) for t in some non-degenerative interval

(0,τN−αN).

Next, taking the derivative of DτN (t) with respect to t, it is easy to see that dDτN (t)

can have at most one root. Since DτN (0) = 0 and DτN (t) > 0 for t ∈ (0,ετN ), it holds

that for any interval [0, `), ` > 0, either DτN (t) is strictly increasing over [0, `) or DτN (`)>
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limt→∞ DτN (t)−δ for some δ > 0 (which can be arbitrarily small). In either case, DτN (`)>

δ ′ for some δ ′ > 0. If η∗1 (τN− t) = 0 and η∗2 (τN− t) = 0 for t ∈ [0, `), then the same holds

true for the backward switching curve ψ(τ1− t) over the interval t ∈ [0, `). To this end,

it is only possible for ψ(τN − t) to deviate from the dynamic of DτN (t) if η∗2 (τN − β )

becomes strictly positive at some time 0 < β ≤ t. (Naturally, β ≤ αN .) Now, suppose

there exists such β > 0, i.e., η∗2 (τN −β ) > 0. Note that η∗1 (τN − t) = 0 and η∗2 (τN − t) =

0 for all t ∈ [0,β ). As DτN (β ) > δ ′ for some δ ′ > 0 and η∗2 (τN − β ) > 0, it follows

that ψ(τN − β ) ≥ δ ′ > 0. However, η∗2 (τN − β ) becomes positive only if q∗2(τN − β ) =

0, which implies that strict priority is given to Class 2 right before time (τN−β ), i.e.,

ψ((τN−β )−)≤ 0. However, due to the continuity of the switching curve, this contradicts

the fact that ψ(τN − β ) ≥ δ ′ > 0. Therefore, for all t ∈ (0,τN ], ψ(τN − t) follows the

dynamic of DτN (t) and remains strictly positive. We then conclude that strict priority to

Class 1 is optimal throughout the transient time horizon.

The proof for the case where Class 2 has a higher cµ-index and higher modified cµ/θ -

index follows similarly. In this case, strict priority to Class 2 is optimal throughout the

transient time horizon.

Case II. We consider the case where the cµ-rule and the modified cµ/θ -rule prioritize

different classes, namely,

(c1µ1− c2µ2)(r1− r2)< 0, for r1,r2 in (1.6) and (1.7).

For the moment, suppose Class 1 has a higher cµ-index and Class 2 has a higher modified

cµ/θ -index. Following similar lines of arguments as in Case I, the backward switch-

ing curve ψ (τN− t) follows the dynamic of DτN (t) for some non-trivial time interval

t ∈ (0,αN). Again, the structure of DτN (t) guarantees that it can have at most two zeros.

With Class 2 having a higher modified cµ/θ -index, the two possible shapes for DτN (t) are

demonstrated in Figure A.2, with Figure A.2a crossing zero once and Figure A.2b crossing

zero twice. In particular, if DτN (t) has one zero as in Figure A.2a, then it must be that

DτN (t) is decreasing at the zero point and eventually converges to r1− r2 < 0. Once DτN (t)
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crosses zero, it will never increase to zero again. Likewise, if DτN (t) has two zeros as in

Figure A.2b, then it must be that DτN (t) has positive slope at the first zero, has negative

slope at the second zero, and eventually converges to r1− r2. Once DτN (t) crosses the

second zero point, it will never increase to zero again.

Figure A.2: Possible trajectory of Dτ1(t) with c1µ1 > c2µ2
(modified c1µ1/θ1 < modified c2µ2/θ2)
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By Proposition 1, for c1µ1 > c2µ2, it is optimal to give strict priority to Class 1 when the

system state is close enough to the origin. Therefore, τN is the last time before τ when q∗1

hits zero. In order to empty q∗1, strict priority must be given to Class 1 for some non-trivial

time interval right before τN . This implies that there exits ετN > 0 such that DτN (0) = 0 and

DτN (t)> 0 for t ∈ (0,ετN ). In this case, we can rule out Figure A.2a. DτN (0) must be at the

first zero in Figure A.2b. Now, let time β > 0 denote the second zero in Figure A.2b, i.e.,

DτN (β ) = 0. Then, one of the following three scenarios holds.

Scenario 1. τN ≤ β . The backward switching curve ψ(τN − t) agrees with DτN (t) for all

t ∈ [0,τN ]. Because ψ(τN − t) > 0 for all t ∈ (0,τN), strict priority is given to Class 1

throughout the transient time horizon.

Scenario 2. τN > β . The backward switching curve ψ(τN−t) follows DτN (t) for t ∈ [0,β ).

Both q∗1(τN−t) and q∗2(τN−t) stay strictly positive over t ∈ (0,β ). At time t = β , priority is

switched from Class 1 to Class 2 (backward in time). In this scenario, we consider the cases

where either both queues are strictly positive at t = β as in Figure A.3a, or β is a contact

point as in Figure A.3b. In either cases, the multipliers η∗1 (τN − t) and η∗2 (τN − t) stay at
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zero (or become positive only at one point). Then the backward switching curve ψ(τN− t)

further follows DτN (t) for some non-trivial interval, (β ,β +δ ) for some δ > 0. Following

similar arguments as in Case I, once crossing zero at t = β , the backward switching curve

ψ(τN − t) remains strictly negative afterwards as shown in Figure A.3c. In this case, the

optimal control (forward in time) switches priority once from Class 2 to Class 1.

Figure A.3: Backward state trajectory and switching curve in Scenario 2
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Scenario 3. τN > β . The backward switching curve ψ(τN − t) follows DτN (t) for all t ∈

[0,β ). Both q∗1(τN− t) and q∗2(τN− t) stay strictly positive over t ∈ (0,β ). Different from

the Scenario 2, β is an exit point (forward in time) for the trajectory of q∗2; see Figure A.4a.

Correspondingly, the entry point is τN−1. At time τN−1, the switching curve ψ (τN−1) = 0.

Now, we repeat the structural derivation for the backward switching curve starting from

τN−1, namely, for the function ψ(τN−1− t). In order to drive q∗2 to zero at time τN−1, strict

priority must be assigned to q∗2 for some amount of time right before τN−1. As such, there

exits ετN−1 > 0 such that DτN−1(0) = 0 and DτN−1(t)< 0 for t ∈ (0,ετN−1). Again, following

similar arguments as in Case I, we can show that once crossing zero at τN−1, the switching

curve ψ(τN−1− t) remains strictly negative for t ∈ (0,τN−1). In this case, the optimal

control (forward in time) switches priority once from Class 2 to Class 1. The structure of

the backward switching curve in this case is illustrated in Figure A.4b.

In all the three scenarios above, the optimal control either assigns strict priority to Class

1 throughout, or switches priority once from Class 2 to Class 1.

When Class 2 has a higher cµ-index and Class 1 has a higher modified cµ/θ -index, the

proof holds in a similar fashion. In this case, the optimal control either invariantly assigns
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Figure A.4: Backward state trajectory and switching curve in Scenario 3
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strict priority to Class 2, or switches once from prioritizing Class 1 to Class 2.

A.2.8 Proof of Proposition 2

PROOF: First, as shown in Proposition 3, if the cµ-rule and the modified cµ/θ -rule pri-

oritize the same class, then the modified cµ/θ -rule (the cµ-rule) is optimal throughout the

transient time horizon and the claim follows.

Next, consider the case where the cµ-rule and the modified cµ/θ -rule prioritize differ-

ent classes, namely,

(c1µ1− c2µ2)(r1− r2)< 0, for r1,r2 in (1.6) and (1.7).

By Propositions 1 and 3, when the cµ-rule and the modified cµ/θ -rule prioritize different

classes, the optimal control follows the cµ-rule near the origin and switches priority at

most once along the trajectory. However, it remains to be shown whether or not the optimal

control will ever switch priority. Namely, the work left is to prove that there exists a set of

initial conditions from which the optimal trajectories switch priority from one class to the

other. In this proof, we establish the existence of such initial values and provide a partial

characterization of the states at which the system will follow the modified cµ/θ -rule.

For the moment, we consider the case where the cµ-rule prioritizes Class 1 and the

modified cµ/θ -rule prioritizes Class 2. We first note that by the definition of τ1, both

queues are strictly positive for t < τ1. Thus, the multipliers η∗1 (t) = η∗2 (t) = 0 for t < τ1.
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By Lemma 4, the backward switching curve before τ1 is characterized as follows

ψ(τ1− t) = r1− r2 +(µ1A1(τ1)−µ2A2(τ1))e
1
2 (γ1+γ2+θ1+θ2+ζ )(τ1−t)

− (µ1A1(τ1)−µ2A2(τ1))e
1
2 (γ1+γ2+θ1+θ2−ζ )(τ1−t),

(A.13)

where A1(τ1),A2(τ1) are constants in R, and 0≤ ζ < γ1 + γ2 +θ1 +θ2.

Note that due to class-transition, when one queue gets emptied, the other queue cannot

be arbitrarily large. In the case where Class 1 gets emptied at τ1, it holds that q∗1(τ1) = 0,

and for any ε > 0,

q∗2(τ1)< (sµ1−λ1)/γ2 + ε.

Similarly, in the other case where Class 2 gets emptied at τ1, it holds that q∗2(τ1) = 0 and

for any ε > 0, we have q∗1(τ1)< (sµ2−λ2)/γ1 + ε . Since q∗1(τ1) and q∗2(τ1) are uniformly

bounded for any initialization, using the fact that p∗(t) = ∇qΞ(q∗(t)), it holds that p∗1(τ1)

and p∗2(τ1) are bounded for any initialization.

Now, from the form of A1(τ1) and A2(τ1) in the proof of Lemma 4, in particular, (A.9)

and (A.11), we see that A1(τ1) and A2(τ1) are bounded if p∗1(τ1) and p∗2(τ1) are bounded,

uniformly for any initialization.

Lastly, if the system is initialized with a large queue, τ1, the time to empty queue 1

for the first time forward in time, is large. As t approaches τ1 in (A.13), the sign of the

backward switching curve will eventually be governed by r1− r2. In other words, for M

sufficiently large, the modified cµ/θ -rule is optimal at time t if q1(t)+q2(t)> M.

The arguments for the other case where the cµ-rule prioritizes Class 2 and the modified

cµ/θ -rule prioritizes Class 1 follow by symmetry.

A.2.9 Proof of Theorem 2

PROOF: The statement of Theorem 2 follows directly from Propositions 1, 2, and 3.

A.2.10 Proof of Proposition 4

PROOF: For c1µ1 < c2µ2 and r1 > r2, Theorem 2 indicates that a one-time switch in

priority from Class 1 to Class 2 will take place if the system is initialized far enough from
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the origin. To derive the policy curve at which (state) the switching takes place, we apply

the Hamiltonian condition (H). In particular, let (a1,a2) be a state where priority is just

switched from Class 1 to Class 2, i.e., (a1,a2) is on the policy curve, where a1 ≥ 0 and

a2 > 0. We denote the time of the switching by t1. We also denote t2 > t1 as the time Class

2 gets emptied and t3 = τ∗ > t2 as the time Class 1 gets emptied.

Starting from time t1, the dynamic of the adjoint vector for p∗(t) is specified by (ADJ)

as

p∗1(t) = K1(t1)etθ1 + etθ1

∫ t

0
e−sθ1 (−c1 +η

∗
1 (s))ds

p∗2(t) = K2(t1)et(θ2+γ2)+
K1γ2

γ2−θ1 +θ2

(
etθ1− et(θ2+γ2)

)
+

γ2

γ2−θ1 +θ2
etθ1

∫ t

0
e−sθ1 (−c1 +η

∗
1 (s))ds

− γ2

γ2−θ1 +θ2
et(θ2+γ2)

∫ t

0
es(−γ2−θ2) (−c1 +η

∗
1 (s))ds

+ et(θ2+γ2)
∫ t

0
es(−γ2−θ2) (−c2 +η

∗
2 (s))ds,

(A.14)

where K1(t1) and K2(t1) are constants that depends on p∗1(t1) and p∗2(t1). Since there is no

other switch in priority (Proposition 3) after t1, q1(t) > 0 for t ∈ (t1, t3), and q2(t) > 0 for

t ∈ (t1, t2). Then, (A.14) reduces to

p∗1(t) =
c1

θ1
+ eθ1tK1(t1) for t ∈ [t1, t3]

p∗2(t) =
c2

θ2 + γ2
+

c1γ2

θ1(θ2 + γ2)
+

eθ1tγ2K1(t1)+ e(θ2+γ2)t(−γ2K1(t1)+(γ2−θ1 +θ2)K2(t1))
γ2−θ j +θ2

,

(A.15)

for t ∈ [t1, t2].

The rest of the analysis is divided into three time intervals. For each one of the three

intervals, we characterize the state trajectory q∗(t) and the adjoint vector p∗(t). Then,

plugging the values of q∗(t) and p∗(t) into the Hamiltonian and utilizing the Hamiltonian

condition (H), we are able to characterize the constants K1(t1),K2(t1) in (A.15) as well as

the policy curve. These steps will become self-explanatory as the proof proceeds.
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Case I. q∗1 is strictly positive or has just reached zero at time t1. In this case, full service

capacity s is assigned to Class 1 at time t1−.

Interval 1: At time t1−, we assign s servers to Class 1 and 0 servers to Class 2.

q∗1(t1−) = a1

q∗2(t1−) = a2

H(q∗(t1−),z∗(t1−), p∗(t1−)) = c1a1 + c2a2 +(a2γ2−a1θ1 +λ1− sµ1)

(
c1

θ1
+K1(t1)

)
+(−a2(θ2 + γ2)+λ2)

(
c1γ2 + c2θ1

γ2θ1 +θ1θ2
+K2(t1)

)
.

Interval 2: Over [t1, t2), we assign 0 server to Class 1 and s servers to Class 2, and Class 2

gets emptied at time t2.

q∗1(t) =−
1

θ1(θ2 + γ2)(γ2−θ1 +θ2)
e−(t−t1)(γ2+θ1+θ2)(

e(t−t1)θ1γ2θ1(a2(θ2 + γ2)−λ2 + sµ2)

− e(t−t1)(θ2+γ2)(θ2 + γ2)(a2γ2θ1 +a1θ1(γ2−θ1 +θ2)

− γ2λ1 +θ1λ1−θ2λ1− γ2λ2 + sγ2µ2)

− e(t−t1)(γ2+θ1+θ2)(γ2−θ1 +θ2)(θ2λ1 + γ2(λ1 +λ2− sµ2))

)
,

q∗2(t) =
1

θ2 + γ2
e−(t−t1)(θ2+γ2)

(
a2(θ2 + γ2)+(−1+ e(t−t1)(θ2+γ2))(λ2− sµ2)

)
,

t2− t1 =
1

θ2 + γ2
log
(
−a2γ2−a2θ2 +λ2− sµ2

λ2− sµ2

)
H(q∗(t),z∗(t), p∗(t)) =

1
θ1(θ2 + γ2)

{
c1θ2λ1 + c2θ1(λ2− sµ2)+ c1γ2(λ1 +λ2− sµ2)

−θ1(θ2 + γ2)
[
a1θ1K1(t1)−λ1K1(t1)+a2θ2K2(t1)−λ2K2(t1)

+ sµ2K2(t1)+a2γ2(−K1(t1)+K2(t1))
]}
.

Putting the analysis for Interval 1 and Interval 2 together, we can solve for K1(t1) and

K2(t1) from the system of equations H(q∗(t1),z∗(t1), p∗(t1))= 0 and H(q∗(t),z∗(t), p∗(t))=
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0 for t ∈ [t1, t2). In particular,

K1(t1) =
c1(−a2(θ2 + γ2)+λ2)µ1 + c2a2θ1µ2 + c1(a2γ2 +λ1− sµ1)µ2

θ1(a2(θ2 + γ2)−λ2)µ1 +θ1(−a2γ2 +a1θ1−λ1 + sµ1)µ2

K2(t1) =−
c1γ2 + c2θ1

γ2θ1 +θ1θ2
+

(c1a1 + c2a2)µ1

a2(θ2 + γ2)µ1−λ2µ1−a2γ2µ2 +(a1θ1−λ1 + sµ1)µ2
.

(A.16)

Interval 3: Over [t2, t3], we assign enough servers to maintain Class 2 at zero and the rest

of the service capacity to Class 1. Class 1 gets emptied at time t3.

q∗1(t) =
e−(t−t2)θ1

θ1(−γ2 +θ1−θ2)

(
− (a2γ2θ1 +a1θ1(γ2−θ1 +θ2)− γ2λ1 +θ1λ1−θ2λ1− γ2λ2 + sγ2µ2)(

1+
a2(θ2 + γ2)

−λ2 + sµ2

)− θ1
θ2+γ2
− 1

µ2

(
(λ2− sµ2)(−(γ2−θ1 +θ2)µ1 + γ2µ2)

+ e(t−t2)θ1(γ2−θ1 +θ2)(λ2µ1 +(λ1− sµ1)µ2)
))

,

q∗2(t) = 0,

t3− t2 =
1
θ1

log
(

1
(γ2−θ1 +θ2)(λ2µ1 +(λ1− sµ1)µ2)

(
(λ2− sµ2)((γ2−θ1 +θ2)µ1− γ2µ2)

−µ2 (a2γ2θ1 +a1θ1(γ2−θ1 +θ2)− γ2λ1 +θ1λ1−θ2λ1− γ2λ2 + sγ2µ2)(
1+

a2(θ2 + γ2)

−λ2 + sµ2

)− θ1
θ2+γ2

))
.

Note that [t2, t3) is a boundary arc for q∗2 and an interior arc for q∗1. As q̇∗2(t) = 0, we have

H(q∗(t),z∗(t), p∗(t)) = p∗1(t)q̇
∗
1(t)+ p∗2(t)q̇

∗
2(t)+c1q∗1(t)+c2q∗2(t) = p∗1(t)q̇

∗
1(t)+c1q∗1(t).

Then, plugging the expression of q∗1(t), (A.15), into H(q∗(t),z∗(t), p∗(t)), we get

H(q∗(t),z∗(t), p∗(t))

=
K1(t1)

µ2(γ2−θ1 +θ2)

(
(λ2− sµ2)((γ2−θ1 +θ2)µ1− γ2µ2)

(
1+

a2(θ2 + γ2)

−λ2 + sµ2

) θ1
θ2+γ2

−µ2
(
a2γ2θ1 +a1θ1(γ2−θ1 +θ2)− γ2λ1 +θ1λ1−θ2λ1− γ2λ2 + sγ2µ2

))
+

c1(λ2µ1 +(λ1− sµ1)µ2)

θ1µ2
.
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Plugging the value of K1(t1), (A.16), into the equality H(q∗(t),z∗(t), p∗(t)) = 0 for

t ∈ [t2, t3) establishes the relationship (a1,a2) must satisfy. This gives the policy curve in

Proposition 4.

Case II. q∗1 is equal to zero at time t1 and has been maintained at zero over interval [t1−ε, t1]

for some ε > 0. In this case, the right amount of service capacity is assigned to Class 1 at

time t1− to maintain q∗1 at zero.

Interval 1: At time t1−, we assign (λ1 + γ2q∗2(t1−))/µ1 servers to Class 1 and the rest of

the servers to Class 2.

q∗1(t1−) = 0

q∗2(t1−) = a2

H(q∗(t1−),z∗(t1−), p∗(t1−))

= c2a2 +

(
−a2(γ2 +θ2)+λ2− sµ2 +

(a2γ2 +λ1)µ2

µ1

)(
c1γ2 + c2θ1

γ2θ1 +θ1θ2
+K2(t1)

)
Interval 2: Over [t1, t2), we assign 0 servers to Class 1 and s servers to Class 2, and Class

2 gets emptied at time t2.

q∗1(t) =−
1

θ1(θ2 + γ2)(γ2−θ1 +θ2)
e−(t−t1)(γ2+θ1+θ2)(

e(t−t1)θ1γ2θ1(a2(θ2 + γ2)−λ2 + sµ2)

− e(t−t1)(θ2+γ2)(θ2 + γ2)(a2γ2θ1− γ2λ1 +θ1λ1−θ2λ1− γ2λ2 + sγ2µ2)

− e(t−t1)(γ2+θ1+θ2)(γ2−θ1 +θ2)(θ2λ1 + γ2(λ1 +λ2− sµ2))

)
,

q∗2(t) =
1

θ2 + γ2
e−(t−t1)(θ2+γ2)

(
a2(θ2 + γ2)+(−1+ e(t−t1)(θ2+γ2))(λ2− sµ2)

)
,

t2− t1 =
1

θ2 + γ2
log
(
−a2γ2−a2θ2 +λ2− sµ2

λ2− sµ2

)
H(q∗(t),z∗(t), p∗(t)) =

1
θ1(θ2 + γ2)

{
c1θ2λ1 + c2θ1(λ2− sµ2)+ c1γ2(λ1 +λ2− sµ2)

−θ1(θ2 + γ2)
[
−λ1K1(t1)+a2θ2K2(t1)−λ2K2(t1)

+ sµ2K2(t1)+a2γ2(−K1(t1)+K2(t1))
]}
.
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Putting the analysis for Interval 1 and Interval 2 together, we can solve for K1(t1) and

K2(t1) from the system of equations H(q∗(t1),z∗(t1), p∗(t1))= 0 and H(q∗(t),z∗(t), p∗(t))=

0 for t ∈ [t1, t2). In particular, we get

K1(t1) =
c1(−a2(θ2 + γ2)+λ2)µ1 + c2a2θ1µ2 + c1(a2γ2 +λ1− sµ1)µ2

θ1(a2(θ2 + γ2)−λ2)µ1 +θ1(−a2γ2−λ1 + sµ1)µ2

K2(t1) =−
c1γ2 + c2θ1

γ2θ1 +θ1θ2
+

c2a2µ1

a2(θ2 + γ2)µ1−λ2µ1−a2γ2µ2 +(−λ1 + sµ1)µ2
.

(A.17)

Interval 3: Over [t2, t3], we assign enough servers to maintain Class 2 at zero and the rest

of the service capacity to Class 1. Class 1 gets emptied at time t3.

q∗1(t) =
e−(t−t2)θ1

θ1(−γ2 +θ1−θ2)

(
− (a2γ2θ1− γ2λ1 +θ1λ1−θ2λ1− γ2λ2 + sγ2µ2)(

1+
a2(θ2 + γ2)

−λ2 + sµ2

)− θ1
θ2+γ2
− 1

µ2

(
(λ2− sµ2)(−(γ2−θ1 +θ2)µ1 + γ2µ2)

+ e(t−t2)θ1(γ2−θ1 +θ2)(λ2µ1 +(λ1− sµ1)µ2)
))

,

q∗2(t) = 0,

t3− t2 =
1
θ1

log
(

1
(γ2−θ1 +θ2)(λ2µ1 +(λ1− sµ1)µ2)

(
(λ2− sµ2)((γ2−θ1 +θ2)µ1− γ2µ2)

−µ2 (a2γ2θ1− γ2λ1 +θ1λ1−θ2λ1− γ2λ2 + sγ2µ2)

(
1+

a2(θ2 + γ2)

−λ2 + sµ2

)− θ1
θ2+γ2

))
.

Note that [t2, t3) is a boundary arc for q∗2 and an interior arc for q∗1. As q̇∗2(t) = 0, we have

H(q∗(t),z∗(t), p∗(t)) = p∗1(t)q̇
∗
1(t)+ p∗2(t)q̇

∗
2(t)+c1q∗1(t)+c2q∗2(t) = p∗1(t)q̇

∗
1(t)+c1q∗1(t).

Then, plugging the expression of q∗1(t), (A.15) into H(q∗(t),z∗(t), p∗(t)), we get

H(q∗(t),z∗(t), p∗(t)) =
K1(t1)

µ2(γ2−θ1 +θ2)

(
−µ2

(
a2γ2θ1− γ2λ1 +θ1λ1−θ2λ1− γ2λ2 + sγ2µ2

)
+(λ2− sµ2)((γ2−θ1 +θ2)µ1− γ2µ2)

(
1+

a2(θ2 + γ2)

−λ2 + sµ2

) θ1
θ2+γ2

)
+

c1(λ2µ1 +(λ1− sµ1)µ2)

θ1µ2
.

Plugging the value of K1(t1), (A.17), into the equality H(q∗(t),z∗(t), p∗(t)) = 0 for

t ∈ [t2, t3) establishes the relationship a2 must satisfy in order for priority to be switched
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from P1 to P2 given that q∗2 is at level a2 and q∗1 has been maintained at zero for some

amount of time. It is easy to see that setting H(q∗(t),z∗(t), p∗(t)) = 0 in Case 2 retrieves

the point (0,a2) on the switching curve established in Case 1.

It is important to note that the switching point (0,a2) analyzed in Case 2 assumes that q∗1

has been maintained at zero before priority is switched. On the other hand, the switching

point (0,a2) on the policy curve derived in Case 1 assumes that q∗1 just hits zero when

priority is switched from P1 to P2. It is well expected that the switching points in the two

cases coincide with each other. Our proof rigorously verifies this.

A.3 Proof of Theorem 3

PROOF: We dissect the transient optimization problem over the entire time horizon [0,T +

τ∗] into a two-stage optimal control problem. The first-stage problem (1.12) is over the

time interval [0,T ). The second problem (1.13) is over the time interval [T,T + τ∗] and its

initial condition is equal to the terminal state in problem (1.12). We also note that (1.13)

over [T,T + τ∗] is equivalent to (F2′) over [0,τ∗] with the appropriate initial condition. In

what follows, to distinguish problems (1.12) and (F2′), we will append superscripts [1] and

[2] to the queue length processes, dual vectors, etc., associated with problems (1.12) and

(F2′), respectively. For example, we will write the time horizon for (1.12) as [0[1],T [1]) and

the time horizon for (F2′) as [0[2],τ∗[2]], where 0[1] = 0,T [1] = T,0[2] = 0, and τ∗[2] = τ∗.

We first note that for the second-stage problem (F2′) over [0[2],τ∗[2]], it follows directly

from Theorem 2 that the optimal scheduling policy follows the cµ-rule when the states

are sufficiently small, and follows the modified cµ/θ -rule when the states are sufficiently

large. The work left is to show that the optimal scheduling policy switches priority at most

once over the entire transient time horizon [0,T +τ∗]. To do this, we establish an analogous

version of Proposition 3 below.

Claim A. Under Assumptions 1 and 4, for the transient optimal control problem (1.12)

and (F2′), if the cµ-rule and the modified cµ/θ -rule prioritize the same class, then the

optimal transient scheduling policy does not switch priority. If the two index rules prioritize
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different classes, then the optimal transient scheduling policy switches priority at most once

over the transient time horizon [0,T + τ∗].

To establish Claim A, we observe that problem (1.12) over the initial period [0[1],T [1]) is

an optimal control problem with fixed time, free terminal state, terminal cost, and no state

constraints. For this type of problems, the following version of Pontryagin’s Minimum

Principle applies.

Lemma 5 (Theorem 3.4 in Grass et al. (2008)). Under Assumption 4, let z∗[1] be an optimal

solution to (1.12), and q∗[1] be the corresponding state trajectory. There exists a continuous

and piecewise continuously differentiable adjoint vector p∗[1] : [0[1],T [1]]→ R2
+ satisfying

for all t ∈ [0[1],T [1]]:

1. Ordinary Differential Equation condition (ODE):

q∗[1](0) = q0, q̇∗[1](t) = f [1]
(

q∗[1](t),z∗[1](t), t
)

2. Adjoint Vector condition (ADJ):

ṗ∗[1](t) =−∇qH [1](q∗[1](t),z∗[1](t), p∗[1](t), t)

3. Minimization condition (M):

H [1](q∗[1](t),z∗[1](t), p∗[1](t), t) = min
z
{H [1](q∗[1](t),z[1](t), p∗[1](t), t)}

4. Transversality condition (T):

p∗[1](T [1]) = ∇qΞ(q∗[1](T [1])). (A.18)

Note that as we allow for time-varying arrival rates on [0[1],T [1]], f [1] and H [1] have

an explicit time component. We draw several connections between the two versions of

Pontryagin’s Minimum Principles in Lemma 5 and Theorem 8. First, the construction of

the Hamiltonian and conditions (ODE) and (M) are essentially the same in the two versions,
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except that fluid dynamic f [1] and the Hamiltonian H [1] in Lemma 5 are time-dependent

through λ [1](t). Second, Minimization condition (M) in Lemma 5 specifies the dynamics

of the adjoint vector for problem (1.12)

ṗ∗[1]1 (t) = (θ1 + γ1)p∗[1]1 (t)− γ1 p∗[1]2 (t)− c1, ṗ∗[1]2 (t) = (θ2 + γ2)p∗[1]2 (t)− γ2 p∗[1]1 (t)− c2,

(A.19)

while the Minimization condition (M) in Theorem 8 gives that for problem (F2′)

ṗ∗[2]1 (t) = (θ1 + γ1)p∗[2]1 (t)− γ1 p∗[2]2 (t)− c1 +η
∗[2]
1 (t),

ṗ∗[2]2 (t) = (θ2 + γ2)p∗[2]2 (t)− γ2 p∗[2]1 (t)− c2 +η
∗[2]
2 (t).

(A.20)

Comparing (A.19) with (A.20), we note that the adjoint vectors for problems (1.12) and

(F2′) follow the same dynamic when the state constraints in (F2′) are not active, namely,

when both queues are strictly positive. Third, Transversality condition (A.18) holds ex-

clusively for the first-stage problem (1.12) which has fixed terminal time and no terminal

(state) constraint.

To this end, for the second-stage problem (F2′), let τ
[2]
1 denote the first time one of the

two queues hits zero. The pseudo switching curve associated with τ
[2]
1 is given by

Dτ
[2]
1 (t) = r1− r2 +

(
µ1A[2]

1 (τ
[2]
1 )−µ2A[2]

2 (τ
[2]
1 )
)

e
1
2 (γ1+γ2+θ1+θ2+ζ )(τ

[2]
1 −t)

−
(

µ1A[2]
1 (τ

[2]
1 )−µ2A[2]

2 (τ
[2]
1 )
)

e
1
2 (γ1+γ2+θ1+θ2−ζ )(τ

[2]
1 −t), for all t ≥ 0.

Since both queues are strictly positive for t ∈ [0[2],τ [2]1 ), the multiplies η
∗[2]
1 (t) = η

∗[2]
2 (t) =

0 for t ∈ [0[2],τ [2]1 ). It follows that the switching curve for problem (F2′) backward from

time τ
[2]
1 agrees with Dτ

[2]
1 (t), namely,

ψ
[2](τ

[2]
1 − t) = Dτ

[2]
1 (t) for all t ∈ (0[2],τ [2]1 ].

Now, recall that Ξ(q0) is the value function from state q0 in the second-stage problem

(F2′). Thus, it follows from Transversality condition (A.18) in Lemma 5 that

p∗[1](T [1]) = ∇qΞ(q∗[1](T [1])) = ∇qΞ(q∗[2](0[2])) = p∗[2](0[2]). (A.21)
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By (A.21), together with the fact that the adjoint vectors for problems (1.12) and (F2′)

follow the same dynamic when both queues are strictly positive, it is easy to see that

the backward switching curve for the first-stage problem ψ [1] is connected to the pseudo

switching curve for the second-stage problem Dτ
[2]
1 via

ψ
[1](T [1]− t) = Dτ

[2]
1 (τ

[2]
1 + t), for all t ∈ [0[1],T [1]]. (A.22)

It follows from (A.22) that analyzing the first-stage backward switching curve ψ [1](T [1]−t)

is equivalent to analyzing the second-stage pseudo switching curve Dτ
[2]
1 (τ

[2]
1 + t) extended

beyond the beginning epoch of the second-stage problem for another T [1] time units. It is

then straightforward to see that the arguments in the proof of Proposition 3 extend to the

first-stage problem (1.12) and Claim A follows.

A.4 The Special Cases with No Class-Transition and Abandonment

The special case where γ1 = γ2 = θ1 = θ2 = 0 is not covered in Theorem 2, as Assumption

1 does not hold in this case. However, the same lines of argument, utilizing the Pontrya-

gin’s Minimum Principle, can be use in this case to establish the optimality of the cµ-rule.

Indeed, the proof is more concise here and nicely illustrates the main idea behind our proof

strategy.

Corollary 2. If γ1 = γ2 = θ1 = θ2 = 0, and s > λ1/µ1 +λ2/λ2, the cµ-rule is optimal for

the transient fluid optimal control problem (F2′).

PROOF: Suppose without loss of generality that c1µ1 > c2µ2. The queue length pro-

cess evolves as

q̇1(t) = λ1−µ1z1(t) and q̇2(t) = λ2−µ2z2(t).

The Hamiltonian is

H(q(t),z(t), p(t)) = p1(t)q̇1(t)+ p2(t)q̇2(t)+ c1q1(t)+ c2q2(t)

= p1(t)(λ1−µ1z1(t))+ p2(t)(λ2−µ2z2(t))+ c1q1(t)+ c2q2(t).
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The augmented Halmiltonian takes the form

L(q(t),z(t), p(t),η(t),ξ (t)) = H(x,s, p)+η(t)T g(q(t))+ξ (t)T h(z(t))

= p1(t)(λ1−µ1z1(t))+ p2(t)(λ2−µ2z2(t))+ c1q1(t)+ c2q2(t)

+η1(t)(−q1(t))+η2(t)(−q2(t))+ξ1(t)(z1(t)+ z2(t)− s)

+ξ2(t)(−z1(t))+ξ3(t)(−z2(t)).

Since ṗ∗(t) =−∇qL(q∗(t),z∗(t), p∗(t),η∗(t),ξ ∗(t)), we have

ṗ∗1(t) =−c1 +η
∗
1 (t) and ṗ∗2(t) =−c2 +η

∗
2 (t). (A.23)

Hence,

p∗1(t) =−c1t +
∫ t

0
η
∗
1 (s)ds+K1 and p∗2(t) =−c2t +

∫ t

0
η
∗
2 (s)ds+K2,

where K1 and K2 are constants that depend on p∗(0).

The switching curve is

ψ(t) = µ1 p∗1(t)−µ2 p∗2(t).

Proposition 1 still holds in this case. Hence, when the queue length process is arbitrarily

close to the origin, the cµ-rule is optimal and Class 1 should be given strict priority. Let τN

be the last time epoch (forward in time) when q∗1(t) hits zero, i.e.,

τN = sup{t : q∗1(t) = 0, q∗1(t− ε)> 0 for some ε > 0} .

Following the same lines of arguments as in Lemmas 2 and 3, we have the switching curve

ψ(t) = 0 for t ≥ τN .

We next characterize the optimal control before τN . To this end, observe that by con-

struction, both queues are strictly positive before τN . Therefore, there exists a non-trivial

period [0,β ],β < τN , such that for t ∈ [0,β ], the backward switching curve is characterized

by

ψ(τN−t)=ψ(τN)+(c1µ1−c2µ2)t+
(

µ2

∫
τN

τN−t
η
∗
2 (s)ds−µ1

∫
τN

τN−t
η
∗
1 (s)ds

)
=(c1µ1−c2µ2)t.

(A.24)
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Since c1µ1 > c2µ2, the significance of (A.24) is that strict priority must be assigned to

Class 1 during this period. Moreover, as no queue has the possibility to hit zero over this

period, the characterization of the switching curve (A.24) indeed holds for all t ∈ [0,τN ].

Namely, strict priority to Class 1 is optimal throughout [0,τ∗].

A.4.1 Full Characterization of the Dual Vectors When γ1 = γ2 = θ1 = θ2 = 0

When establishing the optimal scheduling policy, we use Pontryagin’s Minimum Princi-

ple to derive structural properties of the dual vectors (p∗(t), η∗(t), ξ ∗(t)) without char-

acterizing their expressions explicitly. The latter step can be prohibitively hard for sys-

tems with convoluted dynamics, as is the case for our model with both abandonment and

class-transition. On the other hand, for simplified systems without abandonment or class-

transition, we can provide a full characterization of the dual vectors. We next illustrate the

derivation.

By Corollary 3, the cµ-rule is optimal at all time for systems without abandonment

and without class-transition. Suppose without loss of generality that the cµ-rule prioritizes

Class 1, i.e., c1µ1 > c2µ2. In this case, the value function associated with state (a1,a2) is

equal to the cost of emptying the system under P1 when the system is initialized at (a1,a2).

We can then calculate the value function by solving the state trajectory and the cost directly.

Specifically, the value function takes the form

Ξ(a1,a2)=
1

2(λ1− sµ1)

(
−c1a2

1+
c2
(
a2

2µ1(−λ1 + sµ1)+a2
1λ2µ2−2a1a2(λ1− sµ1)µ2

)
λ2µ1 +(λ1− sµ1)µ2

)
.

For a fixed initial condition, q0, let q∗(t) denote the (optimal) state trajectory under P1,

which can be solved directly. Along the optimal state trajectory, τ1 is the time epoch when

q∗1 first gets emptied. q∗1 is then maintained at zero after time τ1, until q∗2 reaches zero at

time τ∗.
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Using the fact that there exists an adjoint vector p∗(t) = ∇qΞ(q∗1(t),q
∗
2(t)), we have

p∗1(t) =
1

λ1− sµ1

(
−c1q∗1(t)+

c2(−q∗2(t)λ1 +q∗1(t)λ2 + sq∗2(t)µ1)µ2

λ2µ1 +(λ1− sµ1)µ2

)
, t ∈ [0,τ∗]

p∗2(t) =
c2(q∗2(t)µ1 +q∗1(t)µ2)

−λ2µ1−λ1µ2 + sµ1µ2
, t ∈ [0,τ∗].

(A.25)

The switching curve is then given by

ψ(t) = µ1 p∗1(t)−µ2 p∗2(t), t ∈ [0,τ∗],

where p∗(t) is calculated explicitly in (A.25).

In addition, it follows from (A.23) that at all regular points of p∗i (t) where p∗i (t) is

differentiable with respect to t, η∗i (t) = ṗ∗i (t)+ ci, i = 1,2. In this case,

η
∗
1 =


0, t ∈ [0,τ1]

c1− c2µ2/µ1, t ∈ [τ1,τ
∗]

η
∗
2 = 0, t ∈ [0,τ∗].

Lastly, we can infer from Transversality condition (T) and Complementarity condition

(C) that

ξ
∗
1 (t) = µ1 p∗1(t), t ∈ [0,τ∗]

ξ
∗
2 (t) = 0, t ∈ [0,τ∗]

ξ
∗
3 (t) =


µ1 p∗1(t)−µ2 p∗2(t), t ∈ [0,τ1]

0, t ∈ [τ1,τ
∗].

We comment that similar analysis to delineate the dual vectors is not replicable for the

general system with both abandonment and class-transition. We shall illustrate the diffi-

culty for a simplified system with one-way class-transition, namely, γ1 = 0. Consider the

scenario where the cµ-rule prioritizes Class 2 and the modified cµ/θ -rule prioritizes Class

1 (γ1 = 0). With the policy curve explicitly characterized in Proposition 4, one can poten-

tially calculate the value function (by calculating the optimal state trajectory starting from
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any state) and derive the dual vectors as above. However, due to the intertwined system

dynamics introduced by class-transition, we have not found a way to fully characterize

the optimal state trajectory analytically, particularly in the segment where strict priority is

given to Class 1. In the other scenario where the cµ-rule prioritizes Class 1 and the mod-

ified cµ/θ -rule prioritizes Class 2 (γ1 = 0), the analysis is hindered by not being able to

characterize the policy curve as well as the optimal state trajectory.

A.5 MDP Solutions in Section 1.4.4

In this section, we provide details about how we solve the transient scheduling problem

(S2) to derive the MDP policy in Figure 1.14. In addition, we elaborate on the initialization

for the simulation experiments in Table 1.1.

We use the uniformization approach with truncation to solve the MDP (S2). Let Λ :=

λ1 +λ2 +(µ1 + µ2)s+(θ1 +θ2 + γ1 + γ2)Xmax, where s = 3 in the small system we con-

sider, and the maximum number in system after truncation is Xmax = 40. To truncate the

infinite state space Markov process, the transition rates are modified such that the number-

in-system does not exceed Xmax for each class. In our setting, if X1 = 40, the arrival rate to

Class 1 is set to λ1 = 0, and the deterioration rate from Class 2 to Class 1 is set to γ2 = 0.

Similar treatment is applied to Class 2 when X2 = 40.

Define the set of feasible server allocations as

Z (X1,X2) := {(Z1,Z2) ∈ Z+×Z+ : Z1 ≤ X1, Z2 ≤ X2, Z1 +Z2 ≤ s}.
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The bellman operator for the MDP takes the form

Ξ(X1,X2) =
1
Λ

[
c1(X1−Z1)+ c2(X2−Z2)

+ min
(Z1,Z2)∈Z (X1,X2)

{
λ1Ξ(X1 +1,X2)+λ2Ξ(X1,X2 +1)

+(Z1µ1 +θ1(X1−Z1))Ξ(X1−1,X2)+(Z2µ2 +θ2(X2−Z2))Ξ(X1,X2−1)

+ γ1(X1−Z1)Ξ(X1−1,X2 +1)+ γ2(X2−Z2)Ξ(X1 +1,X2−1)

+(Λ−λ1−λ2−Z1µ1−θ1(X1−Z1)−Z2µ2−θ2(X2−Z2)− γ1(X1−Z1)

− γ2(X2−Z2))Ξ(X1,X2)

}]
if X1 +X2 > s,

and

Ξ(X1,X2) = 0 if X1 +X2 ≤ s. (A.26)

Note that (A.26) reflects the terminal cost 0 when the system reaches 0 queue (absorbing

states) in the transient control problem (S2).

In Table 1.1, when simulating the system dynamics under different policies, we select

J = 15 initial conditions by sampling X1 and X2 independently and uniformly from 3 to

20. Since the small system in consideration has 3 servers, the lower bound is set so that

there is positive queue at initialization under any server allocation. Figure A.5 illustrates

the selected initial points as red crosses.
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Figure A.5: Initialization (red crosses) for the simulation in Table 1.1 and the corresponding
optimal MDP solutions
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(a) ρ = 0.6
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(b) ρ = 0.7
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(c) ρ = 0.8
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(d) ρ = 0.9
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Appendix B: Appendix for Chapter 2

B.1 Explicit Representation of the SARIMA and ARIMAX Models

To express the SARIMA model explicitly, we let B be the backward shift operator, where

B jyt = yt− j, j = 0,±1, · · · .

In the equation above and hereafter, the subscript t is a time index for each shift. We define 

the related operators

φ(B) = 1−φ1B−φ1B2−·· ·−φpBp

Φ(B) = 1−Φ1Bs−Φ2B2s−·· ·−ΦPBPs

θ(B) = 1+θ1B+θ2B2 + · · ·+θqBq

Θ(B) = 1+Θ1B+Θ2B2s + · · ·+ΘQBQs

∆ = 1−B

∆s = 1−Bs,

where φ(B) is the non-seasonal AR polynomial, Φ(B) is the seasonal AR polynomial, θ(B)

is the non-seasonal MA polynomial, Θ(B) is the seasonal MA polynomial, ∆ is the non-

seasonal difference operator, and ∆s is the seasonal difference operator. A SARIMA(p,d,q)(P,D,Q)s

model can be formally written as

φ(B)Φ(B)∆d
∆

D
s yt = θ(B)Θ(B)εt ,

where εt is a noise term that follows a normal distribution with mean 0 and standard devi-

ation σ .

The ARIMAX(p,d,q) model combines the SARIMA(p,d,q)(P,D,Q)s model (where the

seasonal hyperparameters (P, D, Q, s) are set to 0) and a linear regression model with exter-

nal regressors. Let xt be the vector of covariates in the linear regression model, and xT
t be
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its transpose. Let β be the vector of coefficients for the covariates. Then a ARIMAX(p,d,q)

model can be formally represented as

φ(B)∆dyt = xT
t β +θ(B)εt .

For our selected ARIMAX(1,1,4) model, the above representation reduces to

yt = (x∗t )
T

β
∗+(1+φ

∗
1 )yt−1−φ

∗
1 yt−2 + ε

∗
t +θ

∗
1 ε
∗
t−1 +θ

∗
2 ε
∗
t−2 +θ

∗
3 ε
∗
t−3 +θ

∗
4 ε
∗
t−4

= (x∗t )
T

β
∗+0.0128yt−1 +0.9872yt−2 + ε

∗
t +θ

∗
1 ε
∗
t−1 +θ

∗
2 ε
∗
t−2 +θ

∗
3 ε
∗
t−3 +θ

∗
4 ε
∗
t−4,

where x∗t is the vector of covariates in the embedded linear regression model, and β ∗ is the

associated vector of estimated coefficients, whose value, together with the other estimated

parameters denoted with an asterisk in the superscript, is provided in Table 3. Note that yt−1

is the arrival count during the previous shift, and yt−2 is the arrival count the shift before

the previous shift. Their estimated coefficients suggest that yt−1 and yt−2 are positively

correlated with yt , the arrival count during the current shift. Specifically, the higher patient

count was during the previous two shifts, the more likely that the current shift sees a larger

patient volume.
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Appendix C: Appendix for Chapter 3

C.1 Roadmap for The Main Proofs

In this section, we introduce the notations used throughout the appendices, present a useful 

lemma, and give a roadmap for the organization of the main proofs.

Let α ∈ (0,1). Consider an admissible staffing policy π ∈ Π with base staffing level N1 

and surge staffing level N2(N1,Λ). For any realized arrival rate `, the total cost under π is 

denoted by

Cπ(`) := c1N1 + c2N2(N1, `)+(h+aγ)E [Q(N1 +N2(N1, `), `)] . (C.1)

We also write

Cπ(Λ) := c1N1 + c2N2(N1,Λ)+(h+aγ)E [Q(N1 +N2(N1,Λ),Λ)|Λ] , and Cπ := E [C (Λ)] .

We use the following notations, in addition to the notations introduced in the main

chapter:

1. For an M/M/m+M queue with m servers and arrival rate λ , we let P(AB,m,λ )

denote the steady-state abandonment probability, W (m,λ ) denote the steady-state

waiting time, and V (m,λ ) denote the steady-state virtual waiting time. V (m,λ ) is

the time that a patient with infinite patience would wait and W (m,λ ) is the mini-

mum of V (m,λ ) and the patient’s patience time. Let 1(AB,m,λ ) be the indicator of

whether or not a customer arriving to a system in steady-state will abandon, i.e.,

P(AB,m,λ ) = E
[
1(AB,m,λ )

]
. In what follows, we use P(AB,m,Λ) to denote the

steady-state abandonment probability conditional on the random arrival rate, i.e.,

P(AB,m,Λ) := E
[
1(AB,m,Λ)|Λ

]
. In particular, P(AB,m,Λ) is a random variable.
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Similar convention for notation has been used in the literature; see, e.g., Koçağa

et al. (2015).

2. For an M/M/m/m queue with m servers and arrival rate λ , we let P(BL,m,λ ) denote

the steady-state blocking probability, L(m,λ ) denote the steady-state loss rate, and

1(BL,m,λ ) be the indicator of whether or not a customer will be blocked in steady state.

Note that L(m,λ ) = λP(BL,m,λ ), and P(BL,m,λ ) = E
[
1(BL,m,λ )

]
. In what fol-

lows, we let P(BL,m,Λ) denote the steady-state blocking probability conditional on

the random arrival rate, i.e., P(BL,m,Λ) := E
[
1(BL,m,Λ)|Λ

]
. Similar to P(AB,m,Λ),

P(BL,m,Λ) is a random variable.

3. For functions f : R→ R and g : R→ R, we use the relation f ∼ k to denote that

limλ→∞ f (λ )/k(λ ) = 1.

The following lemma will be used in the subsequent development.

Lemma 6. For the multi-server queue with abandonment,

E [Q(N1 +N2(N1,Λ),Λ)|Λ = `]

≤max{µ/γ,1}((`/µ−N1−N2(N1, `))
++

√
4π/µ

√
`+1/ log2).

(C.2)

PROOF: We conduct the proof in three cases: µ = γ , µ < γ , and µ > γ .

Case 1: µ = γ . In this case, Lemma 3 in Bassamboo et al. (2010) directly implies that

E [Q(N1 +N2(N1,Λ),Λ)|Λ = `]≤ (`/µ−N1−N2(N1, `))
++

√
4π/µ

√
`+1/ log2,

from which (C.2) follows.

Case 2: µ < γ . In this case, we consider a sequence of auxiliary systems with aban-

donment rate µ (as opposed to γ), and every other parameter is held the same as in the

original system. Comparing the underlying Markov chains of these two sequences of sys-

tems, we see that the steady-state queue length in the auxiliary system is stochastically

larger than that in the original system. In particular, let E
[
Q̃(N1 +N2(N1,Λ),Λ)|Λ

]
denote
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the conditional expectation of the steady-state queue in the auxiliary system. It holds that

E [Q(N1 +N2(N1,Λ),Λ)|Λ = `]≤ E
[
Q̃(N1 +N2(N1,Λ),Λ)|Λ = `

]
.

We can apply the same arguments as in Case 1 to the auxiliary system, and infer (C.2).

Case 3: µ > γ . In this case, we consider a sequence of auxiliary systems with aban-

donment rate µ (as opposed to γ), and every other parameter is held the same as in the

original system. Following similar arguments as in the proof of Theorem 3 in Bassam-

boo et al. (2010), we get that the steady-state abandonment rate in the auxiliary system is

larger than that in the original system. In particular, let P
(
ÃB,N1 +N2(N1,Λ),Λ

)
denote

the steady-state abandonment rate in the auxiliary system. It holds that

P(AB,N1 +N2(N1, `), `)≤ P
(
ÃB,N1 +N2(N1, `), `

)
.

Since the steady-state abandonment rate must be equal to the steady-state arrival rate of

abandoning patients, we have

µE
[
Q̃(N1 +N2(N1,Λ),Λ)|Λ = `

]
= `P

(
ÃB,N1 +N2(N1, `), `

)
,

and

γE [Q(N1 +N2(N1,Λ),Λ)|Λ = `] = `P(AB,N1 +N2(N1, `), `) .

Therefore,

E [Q(N1 +N2(N1,Λ),Λ)|Λ = `] = (`/γ)P(AB,N1 +N2(N1, `), `)

≤ (`/γ)P
(
ÃB,N1 +N2(N1, `), `

)
= (µ/γ)E

[
Q̃(N1 +N2(N1,Λ),Λ)|Λ = `

]
.

We can apply the same arguments as in Case 1 to the auxiliary system, and (C.2) follows.

Appendices C.2–C.6 contain the proofs of the main results. In Appendix C.2, we prove

Proposition 5 which specifies the nontrivial cost parameter regime for the staffing prob-

lem. In Appendix C.3, we introduce a general family of two-stage staffing policies for all
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α ∈ (0,1). We refer to this policy as the two-stage uncertainty hedging rule, and derive

its asymptotic performance in Appendices C.3.1 (for α > 1/2) and C.3.2 (for α ≤ 1/2).

In Appendix C.3.3, we prove that the two-stage uncertainty hedging rule with properly

selected parameters achieves an optimality gap of o(λ max{1/2,α}) compared to the exact

two-stage optimum. As the two-stage newsvendor solution is a special case of the two-

stage two-stage uncertainty hedging rule when α > 1/2, the optimality gap of the two-

stage newsvendor solution (Theorem 5) follows (see Appendix C.3.4). In Appendix C.4,

we prove Theorem 4 which characterizes the cost saving of the optimal two-stage staffing

rule compared to the optimal single-stage policy. This is done by combining the cost

quantification under different near-optimal staffing rules and the corresponding optimal-

ity gap results. For example, when α > 1/2, we first compare the cost under the two-stage

newsvendor rule and the single-stage newsvendor rule. We then use the optimality gap of

the single-stage newsvendor solution (compared to the single-stage optimal) and the opti-

mality gap of the two-stage newsvendor solution (compared to the two-stage optimal) to

quantify the cost saving. In Appendix C.5, we prove Theorem 6, where we show that the

two-stage square-root staffing rule refines the two-stage newsvendor solution and further

reduces the optimality gap. Lastly in Appendix C.6, we analyze the two-stage staffing

problem with surge-stage prediction errors. The results for small prediction errors (Propo-

sition 6) are proved in Appendix C.6.1 and the results for moderate to large prediction

errors (Proposition 7) are proved in Appendix C.6.2

C.2 Proof of Proposition 5

PROOF: Consider an admissible staffing policy π ∈ Π with base staffing level N1 and

surge staffing level N2(N1,Λ). For any realized arrival rate `, we let B1(N1,N2(N1, `), `)

denote the steady-state number of busy servers among those that are staffed at the base

stage, and let B2(N1,N2(N1, `), `) denote the steady-state number of busy servers among
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those that are staffed at the surge stage. It holds that

B1(N1,N2(N1, `), `)≤ N1 and B2(N1,N2(N1, `), `)≤ N2(N1, `). (C.3)

Note that for B1(N1,N2(N1, `), `) and B2(N1,N2(N1, `), `) to be well-defined, we need to

specify the assignment policy of patients to the base and surge servers. Since the model

does not distinguish base and surge servers (i.e., they provide the same quality of service),

we assume that patients are randomly assigned to the available servers with equal proba-

bility. That said, (C.3) holds regardless of the assignment policy.

Proof of (I). Following (C.1), the total cost satisfies

Cπ(`) = c1N1 + c2N2(N1, `)+(h+aγ)E [Q(N1 +N2(N1, `), `)]

≥ c1E [B1(N1,N2(N1, `), `)]+ c2E [B2(N1,N2(N1, `), `)]

+

(
hµ

γ
+aµ

)
γ

µ
E [Q(N1 +N2(N1, `), `)]

≥min
{

c1,c2,
hµ

γ
+aµ

}(
E [B1(N1,N2(N1, `), `)]+E [B2(N1,N2(N1, `), `)]

+
γ

µ
E [Q(N1 +N2(N1, `), `)]

)
=

(
hµ

γ
+aµ

)
`

µ

=

(
h
γ
+a
)
`,

(C.4)

where the second to last equality in (C.4) follows from the steady-state balance equation:

`= µE [B1(N1,N2(N1, `), `)]+µE [B2(N1,N2(N1, `), `)]+ γE [Q(N1 +N2(N1, `), `)]

`

µ
= E [B1(N1,N2(N1, `), `)]+E [B2(N1,N2(N1, `), `)]+

γ

µ
E [Q(N1 +N2(N1, `), `)] .

(C.5)

Moreover, the cost lower bound in (C.4) can be achieved by staffing zero base and zero

surge servers. To see this, let π0 denote the “zero-staff" policy under which all customers

abandon. The long-run average cost for the realized arrival rate ` under π0 is

Cπ0(`) = c10+ c20+(h+aγ)E [Q(0, `)] = (h+aγ)E [Q(0, `)] .
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By flow balance, the steady-state rate at which abandoning customers arrive must be equal

to the abandonment rate, namely,

`= γE [Q(0, `)] ,

which gives that Cπ0(`) = (h+aγ)`/γ . Hence, π0 achieves the cost lower bound, and is

optimal to the optimization problem (3.2).

Proof of (II). Based on π , we construct another admissible policy π ′ where π ′ :=

(0,N2(N1,Λ) +N1). Namely, if π assigns N1 base servers and N2(N1,Λ) surge servers,

then π ′ assigns zero base servers and N2(N1,Λ)+N1 surge servers. By assumption, either

hµ/γ +aµ > c1 > c2 or c1 > hµ/γ +aµ > c2. It follows from (C.1) that Cπ ′(Λ)≤ Cπ(Λ).

Thus, it is optimal to set N∗1 = 0.

Proof of (III). Based on π , we construct another admissible policy π ′ where π ′ :=

(N1,0). Namely, π ′ assigns the same number of base servers as π but zero surge servers

for any realized arrival rate. Following (C.1), the total cost satisfies

Cπ(`) = c1N1 + c2N2(N1, `)+(h+aγ)E [Q(N1 +N2(N1, `), `)]

≥ c1N1 + c2E [B2(N1,N2(N1, `), `)]+

(
hµ

γ
+aµ

)
γ

µ
E [Q(N1 +N2(N1, `), `)]

≥ c1N1 +

(
hµ

γ
+aµ

)(
E [B2(N1,N2(N1, `), `)]+

γ

µ
E [Q(N1 +N2(N1, `), `)]

)
≥ c1N1 +

(
hµ

γ
+aµ

)(
E [B2(N1,0, `)]+

γ

µ
E [Q(N1, `)]

)
= c1N1 +

(
hµ

γ
+aµ

)(
0+

γ

µ
E [Q(N1, `)]

)
= Cπ ′(`),

where the last inequality follows by observing from (C.5) that

E [B1(N1,N2(N1, `), `)]+E [B2(N1,N2(N1, `), `)]+
γ

µ
E [Q(N1 +N2(N1, `), `)]

= E [B1(N1,0, `)]+E [B2(N1,0, `)]+
γ

µ
E [Q(N1, `)]

=
`

µ
,
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and that

E [B1(N1,N2(N1, `), `)]≤ E [B1(N1,0, `)] .

Thus, it is optimal to set N∗2 (N1,Λ) = 0.

C.3 Two-Stage Uncertainty Hedging Rule

For most of the theoretical development starting from this section, we consider the asymp-

totic behavior of the system as the mean arrival rate λ grows without bound. Thus, through-

out Appendices C.3–C.5, we add superscript λ to all the quantities that scale with λ . For

example, we add the superscript λ in Nλ
1 and Nλ

2 (N
λ
1 ,Λ

λ ) to denote the dependence of

the staffing levels on the mean arrival rate. We use U to denote the set of all sequences of

admissible staffing polices. The set U contains policies in form of u = {πλ : πλ ∈ Πλ},

where u is a sequence of policies that specifies a two-stage staffing decision for each sys-

tem along the sequence. Whenever needed, we add the subscript u to the costs (e.g., C λ
u )

to mark the dependence of the cost on the staffing policy explicitly.

To facilitate the asymptotic analysis, we re-center and scale the total cost by defining

Ĉ λ
u (Λ) :=

C λ
u (Λ)− c1λ/µ

(λ/µ)max{α,1/2} , and Ĉ λ
u := E

[
Ĉ λ

u (Λ)
]
. (C.6)

To simplify notation, we denote the sum of the surge-stage staffing and queueing-related

cost by

Rλ (Nλ
1 ,N

λ
2 (N

λ
1 , `

λ ), `λ ) := c2Nλ
2 (N

λ
1 , `

λ )+(h+aγ)E
[
Q(Nλ

1 +Nλ
2 (N

λ
1 , `

λ ), `λ )
]
. (C.7)

Replacing the realized arrival rate `λ with Λλ in (C.7), we define

Rλ (Nλ
1 ,N

λ
2 (N

λ
1 ,Λ

λ ),Λλ ) := c2Nλ
2 (N

λ
1 ,Λ

λ )+(h+aγ)E
[
Q(Nλ

1 +Nλ
2 (N

λ
1 ,Λ

λ ),Λλ )|Λλ

]
,

where the expectation operator on the right-hand side is with respect to the queue pro-

cess. Note that Rλ (Nλ
1 ,N

λ
2 (N

λ
1 , `

λ ), `λ ) is a constant while Rλ (Nλ
1 ,N

λ
2 (N

λ
1 ,Λ

λ ),Λλ ) is a

random variable.

The proofs of the main theorems require analyzing near-optimal staffing polices. In

this section, we propose the two-stage uncertainty hedging rules and denote it by u2,UH .
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We characterize the system performance under u2,UH as the mean arrival rate λ increases

to infinity. We also show that the two-stage newsvendor solution is a special case of the

two-stage uncertainty hedging rule. The proof of Theorem 5 follows.

Consider the following staffing policy, which we denote as u2(β1,β2(β1,X)). At the

base stage, the base staffing level is set as

Nλ
1 = λ/µ +β1 (λ/µ)max{α,1/2}+o((λ/µ)max{α,1/2}),

for β1 ∈ R. Note that the base staffing level is set to meet the mean demand, together with

a hedging that is of the same order as the arrival-rate uncertainty or system stochasticity,

whichever is larger. At the surge stage, after the random arrival rate realizes, the surge

staffing level is set to

Nλ
2 (N

λ
1 ,Λ

λ ) = β2(β1,X)(λ/µ)max{α,1/2}+oUI((λ/µ)max{α,1/2}),

where the coefficient β2(β1,X) ∈ R+ depends on both the base staffing level and the re-

alized arrival rate. Note that the surge staffing level serves as another hedging against the

larger part of arrival-rate uncertainty and system stochasticity. Importantly, the parameter

(β1,β2(β1,X)) does not scale with λ .

We also denote

Dλ
1 := Nλ

1 −λ/µ−β1 (λ/µ)max{α,1/2} = o((λ/µ)max{α,1/2})

and

Dλ
2 (N

λ
1 ,Λ

λ ) := Nλ
2 (N

λ
1 ,Λ

λ )−β2(β1,X)(λ/µ)max{α,1/2} = oUI((λ/µ)max{α,1/2}).

Note that Dλ
1 is a constant. On the other hand, Dλ

2 (N
λ
1 ,Λ

λ ) may depend on the realization

of Λλ and is thus a random variable. Recall from Section 3.1.3 that by Dλ
2 (N

λ
1 ,Λ

λ ) =

oUI((λ/µ)max{α,1/2}), we mean that Dλ
2 (N

λ
1 ,Λ

λ )/(λ/µ)max{α,1/2} → 0 as λ → ∞ with

probability 1, and there exists some random variable Y with E [Y ]< ∞ such that

|Dλ
2 (N

λ
1 ,Λ

λ )|/(λ/µ)max{α,1/2} < Y for all λ > 0. (C.8)
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We remark that (C.8) is not restrictive and allows for a wide range of capacity prescriptions.

Examples for Dλ
2 (N

λ
1 ,Λ

λ ) include (λ/µ)τ and (λ/µ)τX for τ ∈ (0,max{α,1/2}), etc.

The two-stage uncertainty hedging rule is defined by properly optimizing the staffing

parameter (β1,β2(β1,X)) in u2(β1,β2(β1,X)). In particular, we first derive a proper limit

for the scaled total cost under u2(β1,β2(β1,X)). Then, (β ∗1 ,β
∗
2 (β

∗
1 ,X)) is defined as the

optimal solution to the limiting cost function.

C.3.1 Two-Stage Uncertainty Hedging Rule for α > 1/2

For any realized arrival rate `λ = λ + xλ α µ1−α , under u2(β1,β2(β1,x)) with parameters

β1 and β2(β1,x), the total staffing level can be written as

Nλ
1 +Nλ

2 (N
λ
1 , `

λ )

= λ/µ +(β1 +β2(β1,x))(λ/µ)α +o((λ/µ)α)

=
λ + xλ α µ1−α

µ
+

(λ/µ)α (β1 +β2(β1,x)− x)(
λ/µ +(λ/µ)α x

)α

(
λ +λ α µ1−αx

µ

)α

+o((λ/µ)α)

= `λ/µ +(β1 +β2(β1,x)− x)
(
`λ/µ

)α

+o((`λ/µ)α).

(C.9)

Let β̃ := β1 +β2(β1,x)− x. We first prove an auxiliary lemma on the asymptotic behav-

ior of the steady-state probability of waiting and steady-state probability of abandonment,

which facilitates our subsequent analysis on the asymptotic behavior of Rλ . The lemma is

adapted from Theorem 4.1 and Theorem 4.2 in Maman (2009).

Lemma 7. Assume that α > 1/2. For any sequence of realized arrival rate `λ = λ +

xλ α µ1−α , under u2(β1,β2(β1,x)) with parameters β1 and β2(β1,x), the multi-server queue

with abandonment satisfies:

(i) If β1 +β2(β1,x) > x, then the delay probability converges to zero exponentially fast
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as λ → ∞. Specifically, for λ large enough,

P
(

W (Nλ
1 +Nλ

2 (N
λ
1 , `

λ ), `λ )> 0
)

<
1

β̃
√

2π

1
(Nλ

1 +Nλ
2 (N

λ
1 , `

λ ))α−1/2
exp

{
−
(`λ/µ− (Nλ

1 +Nλ
2 (N

λ
1 , `

λ ))+1)2

2((Nλ
1 +Nλ

2 (N
λ
1 , `

λ ))−1)

}
.

The probability to abandon of delayed patients decreases at rate 1/(Nλ
1 +Nλ

2 (N
λ
1 , `

λ ))α ,

i.e.,

P
(

AB,Nλ
1 +Nλ

2 (N
λ
1 , `

λ ), `λ |V (Nλ
1 +Nλ

2 (N
λ
1 , `

λ ), `λ )> 0
)
∼ 1

(Nλ
1 +Nλ

2 (N
λ
1 , `

λ ))α

γ

µβ̃
.

(ii) If β1 +β2(β1,x) < x, then the delay probability converges to 1 exponentially fast as

λ → ∞. Specifically, for λ large enough,

P
(

W (Nλ
1 +Nλ

2 (N
λ
1 , `

λ ), `λ ) = 0
)
<

1
|β̃ |µ1−α(`λ )α

exp

{
− β̃ 2

8γ
µ

2−2α(`λ )2α−1

}
.

The probability to abandon of delayed patients decreases at rate 1/(Nλ
1 +Nλ

2 (N
λ
1 , `

λ ))1−α ,

i.e.,

P
(

AB,Nλ
1 +Nλ

2 (N
λ
1 , `

λ ), `λ |V (Nλ
1 +Nλ

2 (N
λ
1 , `

λ ), `λ )> 0
)
∼ |β̃ |

(Nλ
1 +Nλ

2 (N
λ
1 , `

λ ))1−α
.

PROOF: Following (C.9), for total staffing level of the form

`λ/µ +(β1 +β2(β1,x)− x)
(
`λ/µ

)α

+ f (`),

where f (`λ ) = o(
√
`λ ), the statement of Lemma 7 follows directly from Theorem 4.1 and

Theorem 4.2 from Maman (2009). The work left is to generalize the result to staffing level

of the form in (C.9), where f (`λ ) = o((`λ )α).

To this end, we show that the proofs of Theorem 4.1 and Theorem 4.2 in Maman (2009)

can be generalized to the case where f (`λ ) = o((`λ )α). Indeed, exactly the same lines of

derivation go through when f (`λ ) = o((`λ )α) (as opposed to f (`λ ) = o(
√
`λ )). Just as in

Maman (2009), the results follow from Lemmas 4.2 and 4.3 which need to be adapted to

this more generalized setting. We next illustrate the generalization of Lemma 4.2 to the

general case where f (`λ ) = o((`λ )α). The other proofs are generalized similarly.
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In the proof of Lemma 4.2 in Maman (2009), four places utilize the fact that f (`λ ) =

o(
√
`λ ). We discuss them one by one. For the rest of this proof, we assume that β̃ > 0, as

in the proof of Lemma 4.2. All numbering of the equations refers to those in Section 4 of

Maman (2009).

First, let Ḡ(u) := e−γu denote the ccdf of the patience time distribution. Following

(4.44) and using the definition of δ in (4.40), take

γ̃ :=
1− Ḡ(δ/2)

2
> 0.

Since Ḡ(u)< 1 for all u > 0, and Ḡ(u)−1 <−2γ̃ for all u > δ/2, we get that for λ large

enough,

`λ (Ḡ(u)−1)− β̃ (`λ )α
µ

1−α − f (`λ )µ ≤−β̃ (`λ )α
µ

1−α , for all u > 0,

and

`λ (Ḡ(u)−1)− β̃ (`λ )α
µ

1−α − f (`λ )µ ≤−γ̃`λ , for all u > δ/2.

Therefore, (4.45) and (4.46) hold for the case where f (`λ ) = o((`λ )α).

Second, in (4.51), define the function

r(`λ ) :=
−β̃ (`λ )α µ1−αx− f (`λ )µx

β̃ µ1−αx
.

Note that for f (`λ ) = o((`λ )α), we still have r(`λ ) ∼ (`λ )α . Therefore, (4.51) still holds

by applying Lemma 2.1 in Maman (2009) with m = 0,k1 = α, l1 = 1,k2 = 1, l2 = 2.

Third, utilizing the same fact that r(`λ ) ∼ (`λ )α , (4.55) goes through by applying

Lemma 2.1 in Maman (2009) with m = 1,k1 = α, l1 = 1,k2 = 1, l2 = 2.

Lastly, for

n := Nλ
1 +Nλ

2 (N
λ
1 , `

λ ) = `λ/µ + β̃

(
`λ/µ

)α

+o((`λ/µ)α),

it holds that
(`λ/µ−n+1)2

2(n−1)
∼ β̃ 2

µ2α−1 (`
λ )2α−1,

so the last line in the proof of Lemma 4.2 goes through.
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Lemma 8. Assume that α > 1/2. For any sequence of realized arrival rates `λ = λ +

xλ α µ1−α , under u2(β1,β2(β1,x)) with parameters β1 and β2(β1,x), we have

1
(λ/µ)α

Rλ (Nλ
1 ,N

λ
2 (N

λ
1 , `

λ ), `λ )→ r̂(β1,β2(β1,x),x) as λ → ∞,

where the function ẑ : R×R+×R→ R+ is defined as

r̂(β1,β2(β1,x),x) :=


c2β2(β1,x) if β1 +β2(β1,x)≥ x

c2β2(β1,x)+(hµ/γ +aµ)(x−β1−β2(β1,x)) if β1 +β2(β1,x)< x.
(C.10)

PROOF: It follows from (2.8)–(2.11) in Maman (2009) that when the patience time is

exponentially distributed, we have

P
(

AB,Nλ
1 +Nλ

2 (N
λ
1 , `

λ ), `λ

)
= P

(
AB,Nλ

1 +Nλ
2 (N

λ
1 , `

λ ), `λ |V (Nλ
1 +Nλ

2 (N
λ
1 , `

λ ), `λ )> 0
)

P
(

W (Nλ
1 +Nλ

2 (N
λ
1 , `

λ ), `λ )> 0
)
.

By Lemma 7 and the flow balance equation that

`λP
(

AB,Nλ
1 +Nλ

2 (N
λ
1 , `

λ ), `λ

)
= γE

[
Q(Nλ

1 +Nλ
2 (N

λ
1 , `

λ ), `λ )
]
,

the following cases hold:

(i) If β1 +β2(β1,x)> x, then for λ large enough,

P
(

AB,Nλ
1 +Nλ

2 (N
λ
1 , `

λ ), `λ

)
<

γ

µβ̃ 2
√

2π

1
(Nλ

1 +Nλ
2 (N

λ
1 , `

λ ))2α−1/2
exp

{
−
(`λ/µ− (Nλ

1 +Nλ
2 (N

λ
1 , `

λ ))+1)2

2((Nλ
1 +Nλ

2 (N
λ
1 , `

λ ))−1)

}
.

Therefore,

lim
λ→∞

1√
λ/µ

E
[
Q(Nλ

1 +Nλ
2 (N

λ
1 , `

λ ), `λ )
]
= 0. (C.11)

(ii) If β1 +β2(β1,x)< x, then for λ large enough,

P
(

AB,Nλ
1 +Nλ

2 (N
λ
1 , `

λ ), `λ

)
∼ |β̃ |

(Nλ
1 +Nλ

2 (N
λ
1 , `

λ ))1−α
.

Therefore,

lim
λ→∞

1
(λ/µ)α

E
[
Q(Nλ

1 ,N
λ
2 (N

λ
1 , `

λ ), `λ )
]
=

µ

γ
(x−β1−β2(β1,x)). (C.12)
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Lastly, when β1 +β2(β1,x) = x, we get from Lemma 6 that

E
[
Q(Nλ

1 +Nλ
2 (N

λ
1 , `

λ ), `λ )
]

≤max{µ/γ,1}
((

`λ/µ−Nλ
1 −Nλ

2 (N
λ
1 , `

λ )
)+

+
√

4π/µ

√
`λ +1/ log2

)
= o((λ/µ)α)+max{µ/γ,1}

√
4π/µ

√
`λ +max{µ/γ,1}/ log2.

Then,

lim
λ→∞

1
(λ/µ)α

E
[
Q(Nλ

1 +Nλ
2 (N

λ
1 , `

λ ), `λ )
]
= 0. (C.13)

The statement of the lemma then follows from (C.11), (C.12), and (C.13).

Based on Lemma 8, let β ∗1 and β ∗2 (β1,X) be the optimal solution to

min
β1∈R

{
c1β1 +E

[
min

β2(β1,X)∈R+

r̂(β1,β2(β1,X),X)

]}
, for ẑ defined in (C.10).

It is straightforward to derive that

β
∗
1 = argmin

β∈R
c1β + c2E

[
(X−β )+

]
= F̄−1

X (c1/c2) , and β
∗
2 (β1,X) = (X−β1)

+.

(C.14)

Then, the two-stage uncertainty hedging rule is defined as u2(β1,β2(β1,X)) with param-

eters β ∗1 and β ∗2 (β
∗
1 ,X) in (C.14). Note that u2,UH is exactly the two-stage newsvendor

solution in Definition 2.

The next lemma establishes the asymptotic performance of u2,UH .

Lemma 9. Assume that α > 1/2. Under the two-stage uncertainty hedging rule defined in

(C.14) (equivalently, the two-stage newsvendor solution), we have

Ĉ λ → c1β
∗
1 +E [r̂(β ∗1 ,β

∗
2 (β

∗
1 ,X),X)] as λ → ∞,

for ẑ defined in (C.10).

PROOF: It follows from Lemma 8 that

Ĉ λ (Λλ )→ c1β
∗
1 + r̂ (β ∗1 ,β

∗
2 (β

∗
1 ,X),X) w.p.1 as λ → ∞.
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Hence, to prove the claim, it is sufficient to show that

lim
λ→∞

E
[
Ĉ λ (Λλ )

]
= E

[
lim

λ→∞

Ĉ λ (Λλ )

]
(C.15)

To this end, we utilize the dominated convergence theorem.

Note that

Ĉ λ (Λλ ) =c1β
∗
1 + c2β

∗
2 (β

∗
1 ,X)+

1
(λ/µ)α

(
Dλ

1 +Dλ
2 (N

λ
1 ,Λ

λ )
)

+
1

(λ/µ)α
(h+aγ)E

[
Q(Nλ

1 +Nλ
2 (N

λ
1 ,Λ

λ ),Λλ )|Λλ

]
.

(C.16)

For the first two terms on the right-hand side of (C.16), it follows from the definition of

β ∗2 (β
∗
1 ,X) that

|c1β
∗
1 |+ |c2β

∗
2 (β

∗
1 ,X)| ≤ c2 (|β ∗1 |+ |X |) ,

where recall that E [|X |]< ∞.

For the third term on the right-hand side of (C.16), note that Dλ
1 is a constant that is

o((λ/µ)α). This, together with (C.8), implies that there exists some random variable Ỹ

with E[Ỹ ]< ∞ such that

1
(λ/µ)α

(
|Dλ

1 |+ |Dλ
2 (N

λ
1 ,Λ

λ )|
)
< Ỹ .

For the last term on the right-hand side of (C.16), we utilize Lemma 6 to get that

E
[
Q(Nλ

1 +Nλ
2 (N

λ
1 ,Λ

λ ),Λλ )|Λλ

]
≤max{µ/γ,1}

((
Λ

λ/µ−Nλ
1 −Nλ

2 (N
λ
1 ,Λ

λ )
)+

+
√

4π/µ

√
Λλ +1/ log2

)
≤max{µ/γ,1}

((
Λ

λ/µ−Nλ
1

)+
+
√

4π/µ

√
Λλ +1/ log2

)
= max{µ/γ,1}

((
(X−β

∗
1 )(λ/µ)α −Dλ

1

)+
+
√

4π/µ

√
λ/µ +Xλ α µ1−α +1/ log2

)
≤max{µ/γ,1}

(
(|X |+ |β ∗1 |)(λ/µ)α + |Dλ

1 |+
√

4π/µ
√

λ/µ +
√

4π/µ

√
|X |λ α µ1−α +1/ log2

)
.

(C.17)

In (C.17), Dλ
1 = o((λ/µ)α) is a constant. In addition, for λ large enough, we have

1
(λ/µ)α

√
4π/µ

√
|X |λ α µ1−α ≤

√
4π/µ

√
|X |.
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By Jensen’s inequality, E
[√
|X |
]
≤
√
E [|X |] < ∞. Therefore, there exists some random

variable Y with E [Y ]< ∞, such that

1
(λ/µ)α

(h+aγ)E
[
Qλ (Nλ

1 +Nλ
2 (N

λ
1 ,Λ

λ ),Λλ )|Λλ

]
≤ Y.

Therefore, |Ĉ λ (Λλ )| in (C.16) is uniformly bounded by an integrable random variable,

and (C.15) is justified.

C.3.2 Two-Stage Uncertainty Hedging Rule for α ≤ 1/2

Recall that φ and Φ are the pdf and cdf of the standard normal random distribution, re-

spectively. The hazard rate of the standard normal distribution is H(t) = φ(t)/Φ(−t), for

t ∈ R.

Lemma 10. Assume that α ≤ 1/2. For any sequence of realized arrival rate `λ = λ +

xλ α µ1−α , under u2(β1,β2(β1,x)) with parameters β1 and β2(β1,x), we have

1√
λ/µ

Rλ (Nλ
1 ,N

λ
2 (N

λ
1 , `

λ ), `λ )→ r̂ (β1,β2(β1,x),x) as λ → ∞,

where the function ẑ : R×R+×R→ R is defined as

r̂ (β1,β2(β1,x),x) := c2β2(β1,x)+(
hµ

γ
+aµ

)√ γ

µ

[
H
((

β1 +β2(β1,x)− x1{α=1/2}
)√

µ

γ

)
−
(
β1 +β2(β1,x)− x1{α=1/2}

)√
µ

γ

]
1+
√

γ

µ

H
(
(β1+β2(β1,x)−x1{α=1/2})

√
µ

γ

)
H(−(β1+β2(β1,x)−x1{α=1/2}))

.

(C.18)

PROOF: For any realized arrival rate `λ = λ +λ α µ1−αx, the total staffing level satis-

fies

√
Nλ

1 +Nλ
2 (N

λ
1 , `

λ )(1−ρ
λ )→ β1 +β2(β1,x)− x1{α=1/2} as λ → ∞.
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By Theorem 4.1 in Zeltyn and Mandelbaum (2005), we have

P
(

AB,Nλ
1 +Nλ

2 (N
λ
1 , `

λ ), `λ

)
=

1+
√

γ

µ

H
((

β1 +β2(β1,x)− x1{α=1/2}
)√

µ

γ

)
H(−

(
β1 +β2(β1,x)− x1{α=1/2}

)
)

−1

1√
Nλ

1 +Nλ
2 (N

λ
1 , `

λ )

√
γ

µ[
H
((

β1 +β2(β1,x)− x1{α=1/2}
)√µ

γ

)
−
(
β1 +β2(β1,x)− x1{α=1/2}

)√µ

γ

]

+o

 1√
Nλ

1 +Nλ
2


=

√
µ

λ

√
γ

µ

[
H
((

β1 +β2(β1,x)− x1{α=1/2}
)√

µ

γ

)
−
(
β1 +β2(β1,x)− x1{α=1/2}

)√
µ

γ

]
1+
√

γ

µ

H
(
(β1+β2(β1,x)−x1{α=1/2})

√
µ

γ

)
H(−(β1+β2(β1,x)−x1{α=1/2}))

+o

(
1√
λ/µ

)
.

From the steady-state flow balance equation

γE
[
Q(Nλ

1 +Nλ
2 (N

λ
1 , `

λ ), `λ )
]
=
(
λ +λ

α
µ

1−αx
)
P
(

AB,Nλ
1 +Nλ

2 (N
λ
1 , `

λ ), `λ

)
,

we get that

1√
λ/µ

E
[
Q(Nλ

1 +Nλ
2 (N

λ
1 , `

λ ), `λ )
]

→ µ

γ

√
γ

µ

[
H
((

β1 +β2− x1{α=1/2}
)√

µ

γ

)
−
(
β1 +β2− x1{α=1/2}

)√
µ

γ

]
1+
√

γ

µ

H
(
(β1+β2−x1{α=1/2})

√
µ

γ

)
H(−(β1+β2−x1{α=1/2}))

, as λ → ∞,

and the statement follows.

Based on Lemma 10, let β ∗1 and β ∗2 (β1,X) be the optimal solution to

min
β1∈R

{
c1β1 +E

[
min

β2(β1,X)∈R+

r̂(β1,β2(β1,X),X)

]}
, for ẑ defined in (C.18). (C.19)

Then, the two-stage uncertainty hedging rule, u2,UH , is defined as u2(β1,β2(β1,X)) with

parameters β ∗1 and β ∗2 (β
∗
1 ,X), i.e.,

Nλ
1 = λ/µ+β

∗
1 (λ/µ)1/2+o((λ/µ)1/2), and Nλ

2 (N
λ
1 ,Λ

λ )= β
∗
2 (β

∗
1 ,X)(λ/µ)1/2+oUI((λ/µ)1/2).
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Remark 6. The existence of β ∗1 and β ∗2 (β
∗
1 ,X) follows from the same lines of analysis as

those for the conventional single-stage square-root staffing rule considered in the litera-

ture (see, e.g., Garnett et al. (2002); Zeltyn and Mandelbaum (2005); Mandelbaum and

Zeltyn (2009)). For completeness, we outline the key steps and omit the lengthy algebraic

derivation. Given β1 and X = x, it can be seen from (C.18) that r̂(β1,β2,x) is continuous

in β2. In addition, it can be checked that r̂(β1,β2,x)→ ∞ as β2 → ∞. Thus, an optimal

solution β ∗2 (β1,x) exists for the inner minimization problem in (C.19). The existence of β ∗1

can be argued similarly. Let g(β1) := c1β1+E [r̂ (β1,β
∗
2 (β1,X),X)]. It can be checked that

g(β1)→ ∞ as β1 → ∞. In addition, under the condition that µ > γ or (h+ aγ)µ > c1γ

(this latter condition is implied by Assumption 5), we have g(β1)→ ∞ as β1→−∞. The

existence of an optimal solution β ∗1 then follows from the continuity of g(β1) in β1.

Before we establish the asymptotic performance of u2,UH , we first prove an auxiliary

lemma.

Lemma 11. Assume that α ≤ 1/2. Under the two-stage uncertainty hedging rule defined

in (C.19), there exists a random variable X̃ such that β ∗2 (β1,X)≤ X̃ and E[X̃ ]< ∞.

PROOF: For any realized arrival rate `λ = λ + xλ α µ1−α , we start by rewriting (C.18)

as

r̂ (β1,β2(β1,x),x)

:= c2
(
β1 +β2(β1,x)− x1{α=1/2}

)
− c2

(
β1− x1{α=1/2}

)
+(

hµ

γ
+aµ

)√ γ

µ

[
H
((

β1 +β2(β1,x)− x1{α=1/2}
)√

µ

γ

)
−
(
β1 +β2(β1,x)− x1{α=1/2}

)√
µ

γ

]
1+
√

γ

µ

H
(
(β1+β2(β1,x)−x1{α=1/2})

√
µ

γ

)
H(−(β1+β2(β1,x)−x1{α=1/2}))

.

Let β̃ := β1 +β2(β1,x)− x1{α=1/2}, and denote

g(β̃ ) :=
(

hµ

γ
+aµ

)√ γ

µ

[
H
(

β̃

√
µ

γ

)
− β̃

√
µ

γ

]
1+
√

γ

µ

H
(

β̃

√
µ

γ

)
H(−β̃)

.
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It follows from Section 2.1 in the Online Appendix of Mandelbaum and Zeltyn (2009) that

the function g monotonically decreases from infinity to 0.

Define

β̃
∗ := argmin

β̃≥β1−x1{α=1/2}

c2β̃ +g(β̃ ). (C.20)

Note that by construction, we have

β
∗
2 (β1,x) = β̃

∗−β1 + x1{α=1/2}.

Corresponding to (C.20), let

β̃
† := argmin

β̃∈R
c2β̃ +g(β̃ ),

where unlike β̃ ∗, β̃ † is a global minimizer of the objective function over the real line. The

existence of β̃ † follows from the same lines of arguments as in Remark 6.

We discuss the following cases:

Case 1: If β1− x1{α=1/2} ≤ β †, then β̃ ∗ = β †, and

β
∗
2 (β1,x) = β

†−β1 + x1{α=1/2}. (C.21)

Case 2: If β1−x1{α=1/2}> β †, then let ε > 0, and let M ∈R be such that (i) M > ε/c2,

and (ii) for all x > M, we have 0≤ g(x)< ε . There are two subcases:

Case 2(i): If β1− x1{α=1/2} ≤ M, then exactly one of the following two scenarios

holds:

Case 2(i.a): β̃ ∗ ≤M, so that

β
∗
2 (β1,x)≤M−β1 + x1{α=1/2}. (C.22)

Case 2(i.b): β̃ ∗ > M. In this case, (C.20) can be rewritten as

β̃
∗ = argmin

β̃≥M
c2β̃ +g(β̃ ).
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Note that for all y > 2M, it follows from the definition of M that

c2M+g(M)< c2y+g(y). (C.23)

Therefore, β̃ ∗ ≤ 2M, and

β
∗
2 (β1,x)≤ 2M−β1 + x1{α=1/2}. (C.24)

Case 2(ii): If β1− x1{α=1/2} > M, then by definition of M, (C.23) holds for all y >

2(β1− x1{α=1/2}). Hence, β̃ ∗ ≤ 2(β1− x1{α=1/2}), and

β
∗
2 (β1,x)≤ 2(β1− x1{α=1/2})−β1 + x1{α=1/2} = β1− x1{α=1/2}. (C.25)

In summary, by (C.21), (C.22), (C.24), and (C.25), we get that

β
∗
2 (β1,x)≤ |β †|+2M+ |β1|+ |x|. (C.26)

Let X̃ := |β †|+2M+ |β1|+ |X |. The statement follows from (C.26) and E [|X |]< ∞.

The following lemma establishes the asymptotic performance of u2,UL.

Lemma 12. Assume that α ≤ 1/2. Under the two-stage uncertainty hedging rule defined

in (C.19), we have

Ĉ λ → c1β
∗
1 +E [r̂ (β ∗1 ,β

∗
2 (β

∗
1 ,X),X)] as λ → ∞,

for ẑ defined in (C.18).

PROOF: It follows from Lemma 10 that

Ĉ λ (Λλ )→ c1β
∗
1 + r̂ (β ∗1 ,β

∗
2 (β

∗
1 ,X),X) w.p.1 as λ → ∞.

Hence, to prove the claim, it is sufficient to show

lim
λ→∞

E
[
Ĉ λ (Λλ )

]
= E

[
lim

λ→∞

Ĉ λ (Λλ )

]
(C.27)

To this end, we utilize the dominated convergence theorem.
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We start by writing

Ĉ λ (Λλ ) =c1β
∗
1 + c2β

∗
2 (β

∗
1 ,X)+

1√
λ/µ

(
Dλ

1 +Dλ
2 (N

λ
1 ,Λ

λ )
)

+
1√
λ/µ

(h+aγ)E
[
Q(Nλ

1 +Nλ
2 (N

λ
1 ,Λ

λ ),Λλ )|Λλ

]
=c1β

∗
1 + c2β

∗
2 (β

∗
1 ,X)+

1√
λ/µ

(
Dλ

1 +Dλ
2 (N

λ
1 ,Λ

λ )
)

+
Λλ√
λ/µ

(h/γ +a)P
(

AB,Nλ
1 +Nλ

2 (N
λ
1 ,Λ

λ ),Λλ

)
,

(C.28)

where the last equality follows from

γE
[
Q(Nλ

1 +Nλ
2 (N

λ
1 ,Λ

λ ),Λλ )|Λλ

]
= Λ

λP
(

AB,Nλ
1 +Nλ

2 (N
λ
1 ,Λ

λ ),Λλ

)
.

Recall that P(BL,m,λ ) is the steady-state blocking probability for an M/M/m/m queue

with number of servers equal to m and arrival rate equal to λ . It follows from a simple cou-

pling argument that

P
(

AB,Nλ
1 +Nλ

2 (N
λ
1 ,Λ

λ ),Λλ

)
≤ P

(
BL,Nλ

1 +Nλ
2 (N

λ
1 ,Λ

λ ),Λλ

)
. (C.29)

Since the Erlang blocking probability is increasing in the offered load and Nλ
2 (N

λ
1 ,Λ

λ )≥ 0,

we further have

P
(

BL,Nλ
1 +Nλ

2 (N
λ
1 ,Λ

λ ),Λλ

)
≤ P

(
BL,Nλ

1 ,λ + |X |λ α
µ

1−α

)
. (C.30)

In addition, recall that L(m,λ ) is the steady-state loss rate in an M/M/m/m queue with

number of servers equal to m and arrival rate equal to λ . In particular, L(m,λ ) satisfies

L(m,λ ) = λP(BL,m,λ ), and by Theorem 1 in Smith and Whitt (1981),

L(Nλ
1 ,λ + |X |λ α

µ
1−α)≤ L(Nλ

1 −1,λ )+L(1, |X |λ α
µ

1−α). (C.31)

Combining (C.29)–(C.31), we have

Λ
λP
(

AB,Nλ
1 +Nλ

2 (N
λ
1 ,Λ

λ ),Λλ

)
≤ Λ

λP
(

BL,Nλ
1 ,λ + |X |λ α

µ
1−α

)
≤ λP

(
BL,Nλ

1 −1,λ
)
+ |X |λ α

µ
1−αP

(
BL,1, |X |λ α

µ
1−α
)

≤ λP
(

BL,Nλ
1 −1,λ

)
+ |X |λ α

µ
1−α .

(C.32)
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Dividing both sides of (C.32) by
√

λ/µ , we get that

Λλ√
λ/µ

P
(

AB,Nλ
1 +Nλ

2 (N
λ
1 ,Λ

λ ),Λλ

)
≤ λ√

λ/µ
P
(

BL,Nλ
1 −1,λ

)
+ |X |λ

α µ1−α√
λ/µ

,

(C.33)

where the first term on the right-hand side of (C.33) is a constant. By equation (17) in

Whitt (1984),

lim
λ→∞

λ√
λ/µ

P
(

BL,Nλ
1 −1,λ

)
= µ

φ(β ∗1 )

Φ(β ∗1 )
. (C.34)

Furthermore,

lim
λ→∞

|X |λ
α µ1−α√

λ/µ
=


µ|X | if α = 1/2

0 if α < 1/2.
(C.35)

By (C.33)–(C.35), we have for λ large enough,

Λλ√
λ/µ

P
(

AB,Nλ
1 +Nλ

2 (N
λ
1 ,Λ

λ ),Λλ

)
≤ µ

φ(β ∗1 )

Φ(β ∗1 )
+µ|X |.

This, together with Lemma 11, the assumption that E[|X |] < ∞, and the requirement

on Dλ
1 and Dλ

2 (N
λ
1 ,Λ

λ ), implies that |Ĉ λ (Λλ )| in (C.28) is uniformly bounded by an inte-

grable random variable, and the interchange of limit and expectation in (C.27) is justified.

C.3.3 Optimality Gap of u2,UH

In Appendices C.3.1 and C.3.2, we propose the two-stage uncertainty hedging rule, which

prescribes staffing levels

Nλ
1 = λ/µ +β

∗
1 (λ/µ)max{α,1/2}+o((λ/µ)max{α,1/2})

Nλ
2 (N

λ
1 ,Λ

λ ) = β
∗
2 (β

∗
1 ,X)(λ/µ)max{α,1/2}+oUI((λ/µ)max{α,1/2}).

When α > 1/2, β ∗1 and β ∗2 (β
∗
1 ,X) are defined in (C.14), so that the capacity prescrip-

tion is identical to that under the two-stage newsvendor solution. When α ≤ 1/2, β ∗1 and

β ∗2 (β
∗
1 ,X) are defined in (C.19). Let C λ

2,UH be the expected total cost defined under the two-

stage uncertainty hedging rules. Recall that C λ
2,∗ is the optimal total cost for the two-stage
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optimization problem (3.2). The next lemma quantifies the optimality gap of the proposed

policy to the exact two-stage optimum.

Lemma 13. For α ∈ (0,1), we have C λ
2,UH−C λ

2,∗ = o(λ max{1/2,α}).

PROOF: The key of the proof is to show that for any sequence of policies u ∈U ,

liminf
λ→∞

Ĉ λ
u ≥ lim

λ→∞

Ĉ λ
2,UH . (C.36)

Note that the limit on the right-hand side of (C.36) is well defined because of Lemma 9 and

Lemma 12.

First, it is without loss of generality to consider a sequence of policies u ∈ U under

which

liminf
λ→∞

Nλ
1 −λ/µ

(λ/µ)max{1/2,α} >−∞. (C.37)

To see this, for any sequence realized arrival rate `λ , recall from the proof of Proposition

5 that B1(Nλ
1 ,N

λ
2 (N

λ
1 , `

λ ), `λ ) and B2(Nλ
1 ,N

λ
2 (N

λ
1 , `

λ ), `λ ) denote the steady-state number

of busy servers among the base and surge staff, respectively. It follows that

E
[
Rλ (Nλ

1 ,N
λ
2 (N

λ
1 , `

λ ), `λ )
]

= c2Nλ
2 (N

λ
1 , `

λ )+(h+aγ)E
[
Q(Nλ

1 +Nλ
2 (N

λ
1 , `

λ ), `λ )
]

≥ c2

µ
µE
[
B2(Nλ

1 ,N
λ
2 (N

λ
1 , `

λ ), `λ )
]
+

(
h
γ
+a
)

γE
[
Q(Nλ

1 +Nλ
2 (N

λ
1 , `

λ ), `λ )
]

≥min
{

c2

µ
,
h
γ
+a
}(

µE
[
B2(Nλ

1 ,N
λ
2 (N

λ
1 , `

λ ), `λ )
]
+ γE

[
Q(Nλ

1 +Nλ
2 (N

λ
1 , `

λ ), `λ )
])

= min
{

c2

µ
,
h
γ
+a
}(

`λ −µE
[
B1(Nλ

1 ,N
λ
2 (N

λ
1 , `

λ ), `λ )
])

≥min
{

c2

µ
,
h
γ
+a
}(

`λ −µNλ
1

)
= c2

(
`λ

µ
−Nλ

1

)
.

Replacing `λ with Λλ , taking expectation, and recalling that E [X ] = 0 give

E
[
Rλ (Nλ

1 ,N
λ
2 (N

λ
1 ,Λ

λ ),Λλ )
]
≥ c2

(
λ

µ
−Nλ

1

)
.
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Then, the scaled cost Ĉ λ
u satisfies

Ĉ λ
u = c1

Nλ
1 −λ/µ

(λ/µ)max{1/2,α} +
E
[
Rλ (Nλ

1 ,N
λ
2 (N

λ
1 ,Λ

λ ),Λλ )
]

(λ/µ)max{1/2,α}

≥ c1
Nλ

1 −λ/µ

(λ/µ)max{1/2,α} + c2
λ/µ−Nλ

1

(λ/µ)max{1/2,α}

= (c2− c1)
λ/µ−Nλ

1

(λ/µ)max{1/2,α} .

(C.38)

If (C.37) does not hold, then it follows from (C.38) and Assumption 5 that liminfλ→∞ Ĉ λ
u =

∞. For the purpose of characterizing (near-)optimal staffing rules, we assume without loss

of generality that liminfλ→∞ Ĉ λ
u < ∞.

Now, consider a subsequence of systems indexed by λi on which the liminf in (C.36)

is obtained, namely,

lim
λi→∞

Ĉ λi
u = liminf

λ→∞

Ĉ λ
u .

Along this subsequence,

Ĉ λi
u =

c1

(
Nλi

1 −λi/µ

)
(λi/µ)max{1/2,α} +

E
[
Rλi(Nλi

1 ,Nλi
2 (Nλi

1 ,Λλi),Λλi)
]

(λi/µ)max{1/2,α} .

Since the second term is non-negative, it must be the case that

limsup
λi→∞

c1

(
Nλi

1 −λi/µ

)
(λi/µ)max{1/2,α} < ∞.

Hence,

−∞ < liminf
λi→∞

Nλi
1 −λi/µ

(λi/µ)max{1/2,α} ≤ limsup
λi→∞

Nλi
1 −λi/µ

(λi/µ)max{1/2,α} < ∞.

Then, Bolzano-Weierstrass theorem indicates that any subsequence has a further conver-

gent sub-subsequence indexed by λi j along which

N
λi j
1 −λi j/µ(

λi j/µ
)max{1/2,α} → β1 ∈ R as λi j → ∞. (C.39)
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It follows from (C.39) that

lim
λi j→∞

Ĉ
λi j
u ≥ lim

λi j→∞

c1

(
N

λi j
1 −λi j/µ

)
(
λi j/µ

)max{1/2,α} + liminf
λi j→∞

E
[
R

λi j (N
λi j
1 ,N

λi j
2 (N

λi j
1 ,Λ

λi j ),Λ
λi j )

]
(
λi j/µ

)max{1/2,α}

= c1β1 + liminf
λi j→∞

E
[
R

λi j (N
λi j
1 ,N

λi j
2 (N

λi j
1 ,Λ

λi j ),Λ
λi j )

]
(
λi j/µ

)max{1/2,α}

≥ c1β1 +E

liminf
λi j→∞

R
λi j (N

λi j
1 ,N

λi j
2 (N

λi j
1 ,Λ

λi j ),Λ
λi j )(

λi j/µ
)max{1/2,α}

 ,
(C.40)

where the last inequality follows from Fatou’s lemma.

Next, we are going to establish that for any realized arrival rate `
λi j ,

liminf
λi j→∞

R
λi j (N

λi j
1 ,N

λi j
2 (N

λi j
1 , `

λi j ), `
λi j )(

λi j/µ
)max{1/2,α} ≥ r̂ (β1,β

∗
2 (β1,x),x) . (C.41)

In (C.41), when α > 1/2, ẑ is defined in (C.10) and β ∗2 (β1,X) is defined in (C.14). In the

other case where α ≤ 1/2, ẑ is defined in (C.18) and β ∗2 (β1,X) is defined in (C.19). To see

that (C.41) holds, define

N̂
λi j
2 (N

λi j
1 , `

λi j ) := N
λi j
2 (N

λi j
1 , `

λi j )/
(
λi j/µ

)max{1/2,α}
.

Observe that the sequence {N̂
λi j
2 (N

λi j
1 , `

λi j ) : λi j > 0} satisfies exactly one of the following

three cases:

(i) N̂
λi j
2 (N

λi j
1 , `

λi j )→ β2 ∈ R+ as λi j → ∞.

(ii) N̂
λi j
2 (N

λi j
1 , `

λi j )→ ∞ as λi j → ∞.

(iii) N̂
λi j
2 (N

λi j
1 , `

λi j ) does not converge.

For case (i), (C.41) follows from Lemma 8, Lemma 10, and the definition of β ∗2 (β1,x).
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For case (ii), we have

R
λi j (N

λi j
1 ,N

λi j
2 (N

λi j
1 , `

λi j ), `
λi j )(

λi j/µ
)max{1/2,α}

=

c2N
λi j
2 (N

λi j
1 , `

λi j )+(h+aγ)E
[

Q(N
λi j
1 +N

λi j
2 (N

λi j
1 , `

λi j ), `
λi j )

]
(
λi j/µ

)max{1/2,α}

= c2
N

λi j
2 (N

λi j
1 , `

λi j )(
λi j/µ

)max{1/2,α} +

(h+aγ)E
[

Q(N
λi j
1 +N

λi j
2 (N

λi j
1 , `

λi j ), `
λi j )

]
(
λi j/µ

)max{1/2,α}

→ ∞ as λi j → ∞,

and (C.41) holds.

For case (iii), we can further consider a further subsequence indexed by λi jk
along

which N̂
λi jk
2 (N

λi jk
1 , `

λi jk ) converges. Such subsequence exists because a sequence has no

convergent subsequence if and only if it approaches infinity. The same arguments for case

(i) can be applied to establish (C.41).

Now, it follows from (C.40) and (C.41) that

lim
λi j→∞

Ĉ
λi j
u ≥ c1β1 +E

liminf
λi j→∞

R
λi j (N

λi j
1 ,N

λi j
2 (N

λi j
1 ,Λ

λi j ),Λ
λi j )(

λi j/µ
)max{1/2,α}


≥ c1β1 +E [r̂ (β1,β

∗
2 (β1,X),X)] .

Furthermore, since β ∗1 is constructed such that

c1β1 +E [r̂ (β1,β
∗
2 (β1,X),X)]≥ c1β

∗
1 +E [r̂ (β ∗1 ,β

∗
2 (β

∗
1 ,X),X)] ,

it follows that

lim
λi j→∞

Ĉ
λi j
u ≥ c1β

∗
1 +E [r̂ (β ∗1 ,β

∗
2 (β

∗
1 ,X),X)] = lim

λi j→∞

Ĉ
λi j
2,UH ,

where the last equality follows from Lemma 9 and Lemma 12. Since the subsequence

indexed by λi j is arbitrary, we have established (C.36).
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Next, we apply (C.36) to the sequence of exact optimal two-stage staffing rules, i.e.,

u2,∗, and get that

liminf
λ→∞

Ĉ λ
2,∗ ≥ lim

λ→∞

Ĉ λ
2,UH .

By the optimality of u2,∗, we also have

limsup
λ→∞

Ĉ λ
2,∗ ≤ lim

λ→∞

Ĉ λ
2,UH .

Thus,

lim
λ→∞

Ĉ λ
2,∗ = lim

λ→∞

Ĉ λ
2,UH . (C.42)

The statement follows from (C.42).

The following corollary is a direct consequence from the proof of Lemma 13.

Corollary 3. For α ∈ (0,1), let β ∗1 and β ∗2 (β
∗
1 ,X) be defined in (C.14) when α > 1/2, and

defined in (C.19) when α ≤ 1/2. Consider a sequence of staffing policies u = {πλ : λ >

0}= {Nλ
1 ,N

λ
2 (N

λ
1 ,Λ

λ ) : λ > 0}. If there does not exist a subsequence indexed by λi along

which {Nλi
1 ,Nλi

2 (Nλi
1 ,Λλi) : λi > 0} is prescribed as

Nλi
1 = λi/µ +β

∗
1 (λi/µ)max{α,1/2}+o((λi/µ)max{α,1/2})

Nλi
2 (Nλi

1 ,Λλi) = β
∗
2 (β

∗
1 ,X)(λi/µ)max{α,1/2}+oUI((λi/µ)max{α,1/2}),

then C λ
u −C λ

2,UH ≥Θ(λ max{α,1/2}).

Corollary 3 indicates that it is without loss of optimality to consider the family of two-

stage uncertainty hedging rule. To improve upon the o(λ max{α,1/2}) optimality gap es-

tablished in Lemma 13, we need to consider refinement which puts further restrictions on

the o((λi/µ)max{α,1/2}) term in Nλ
1 and the oUI((λi/µ)max{α,1/2}) term in Nλ

2 (N
λ
1 ,Λ

λ ). In

the special case when α > 1/2, it is without loss of optimality to consider the family of

two-stage newsvendor solutions. The two-stage QED rule is a refinement of the two-stage

newsvendor solution that reduces the optimality gap from o(λ α) to o(
√

λ ).
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C.3.4 Proof of Theorem 5

PROOF: Note that the two-stage uncertainty hedging rule when α > 1/2 is equivalent to

the two-stage newsvendor solution. The statement follows from Lemma 13.

C.4 Proof of Theorem 4

The proof of Theorem 4 builds on the performance quantification of u2(β1,β2(β1,X)) and

u2,UH introduced in Appendix C.3. For the sequence of systems indexed by λ , recall that

C λ
1,∗ is the optimal total cost for the single-stage optimization problem (3.4), and C λ

2,∗ is the

optimal total cost for the two-stage optimization problem (3.2). We establish Theorem 4

for different values of α .

C.4.1 Benefit of Surge Staffing When α < 1/2

Lemma 14. If α < 1/2, then C λ
1,∗−C λ

2,∗ = o(
√

λ ).

PROOF: We start by determining the parameters β ∗1 and β ∗2 (β
∗
1 ,X) defined in (C.19)

for the two-stage uncertainty hedging rule when α < 1/2. In particular, for any realization

x of the random variable X , the function ẑ in (C.18) becomes

r̂ (β1,β2(β1,x),x)

= c2β2(β1,x)+
(

hµ

γ
+aµ

)√ γ

µ

[
H
(
(β1 +β2(β1,x))

√
µ

γ

)
− (β1 +β2(β1,x))

√
µ

γ

]
1+
√

γ

µ

H
(
(β1+β2(β1,x))

√
µ

γ

)
H(−(β1+β2(β1,x)))

.

Note that r̂ (β1,β2(β1,x),x) does not depend on the realization x. Hence, given β1, we have

that β ∗2 (β1,x) = argminβ2∈R+
r̂(β1,β2(β1,x),x) does not depend on x either. Then β ∗1 and

β ∗2 (β
∗
1 ,x) jointly solve

min
β1∈R,β2(β1,x)∈R+

c1β1 + r̂ (β1,β2(β1,x),x) .

By the assumption that c1 < c2. Thus, it is optimal to set

β
∗
1 := arg min

β1∈R
c1β1 +

(
hµ

γ
+aµ

)√ γ

µ

[
H
(

β1

√
µ

γ

)
−β1

√
µ

γ

]
1+
√

γ

µ

H
(

β1

√
µ

γ

)
H(−β1)

,
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and β ∗2 (β
∗
1 ,x) := 0 for all realizations x of the random variable X .

In this case, the two-stage uncertainty hedging rule is equivalent to the conventional

single-stage square-root staffing rule (with staffing cost c1, holding cost h, and abandon-

ment cost a). Then,

C λ
2,UH−C λ

1,∗ ≥ 0 for all λ > 0. (C.43)

In addition, we establish in Lemma 13 that

C λ
2,UH−C λ

2,∗ = o(
√

λ ). (C.44)

The statement follows from (C.43) and (C.44).

C.4.2 Benefit of Surge Staffing When α = 1/2

Lemma 15. If α = 1/2, then C λ
1,∗−C λ

2,∗ = O(
√

λ ).

PROOF: Consider β
†
2 (β1,X) := 0 for all β1, and

β
†
1 := arg min

β1∈R
c1β1 +E

[
r̂
(

β1,β
†
2 (β1,X),X

)]
.

Note that β
†
1 and β

†
2 (β1,X) provide a feasible pair of parameters for u2(β1,β2(β1,X)).

Let C λ
2,† denote the expected total cost under u2(β

†
1 ,β

†
2 (β

†
1 ,X)). It follows from similar

derivation as in the proof of Lemma 12 that

lim
λ→∞

Ĉ λ
2,† = c1β

†
1 +E

[
r̂
(

β
†
1 ,β

†
2 (β

†
1 ,X),X

)]
.

Since (β †
1 ,β

†
2 (β

†
1 ,x)) is not necessarily optimal for the optimization problem in (C.19), we

have

c1β
†
1 +E

[
r̂
(

β
†
1 ,β

†
2 (β

†
1 ,X),X

)]
≥ c1β

∗
1 +E [r̂ (β ∗1 ,β

∗
2 (β

∗
1 ,X),X)] .

It then follows from Lemma 12 that

C λ
2,†−C λ

2,UH = O(
√

λ ). (C.45)

Moreover, since β
†
2 (β

†
1 ,X) = 0, this policy is equivalent to a single-stage staffing rule. By

Proposition 3 in Bassamboo et al. (2010), we get that

C λ
2,†−C λ

1,∗ = O(
√

λ ). (C.46)
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Lastly, by Lemma 13, we have

C λ
2,UH−C λ

2,∗ = o(
√

λ ). (C.47)

The statement follows from (C.45)–(C.47).

Figure C.1 below illustrates the performance gap between the employed policies in the

proof of Lemma 15.

Figure C.1: Cost saving for α = 1/2
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C2,UH
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C.4.3 Benefit of Surge Staffing When α > 1/2

Lemma 16. If α > 1/2, then C λ
1,∗−C λ

2,∗ = Θ(λ α).

PROOF: Under the two-stage newsvendor solution, the base-stage staffing level is

λ/µ +β ∗1 (λ/µ)α +o((λ/µ)α), where β ∗1 is given by

β
∗
1 = argmin

β1∈R
c1β1 + c2E

[
(X−β1)

+
]
.

Moreover, Lemma 9 establishes that

Ĉ λ
2,NV → c1β

∗
1 + c2E

[
(X−β

∗
1 )

+
]

as λ → ∞.

In comparison, under the single-stage newsvendor solution, the base-stage staffing level

is λ/µ +βNV (λ/µ)α , where βNV is given by

βNV = argmin
β∈R

c1β +

(
hµ

γ
+aµ

)
E
[
(X−β )+

]
.

Similar lines of arguments as in the proof of Lemma 9 show that

Ĉ λ
1,NV → c1βNV +

(
hµ

γ
+aµ

)
E
[
(X−βNV )

+] as λ → ∞.
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Therefore, if

argmin
β∈R

c1β +

(
hµ

γ
+aµ

)
E
[
(X−β )+

]
> argmin

β∈R
c1β + c2E

[
(X−β )+

]
, (C.48)

then

lim
λ→∞

Ĉ λ
1,NV > lim

λ→∞

Ĉ λ
2,NV ,

so that

C λ
1,NV −C λ

2,NV = Θ(λ α). (C.49)

Note that a sufficient condition for (C.48) to hold is that X is a continuous random variable,

i.e., with a proper density function.

Moreover, by Theorem 1 in Bassamboo et al. (2010), we get that

C λ
1,NV −C λ

1,∗ = O(λ 1−α) = o(
√

λ ). (C.50)

By Lemma 13, we also have

C λ
2,NV −C λ

2,∗ = o(λ α). (C.51)

The statement follows from (C.49)–(C.51).

Figure C.2 below illustrates the performance gap between the employed policies in the

proof of Lemma 16.

Figure C.2: Cost saving for α > 1/2
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Theorem 4 follows from Lemmas 14–16.
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C.5 Proof of Theorem 6

Before we prove Theorem 6, we first prove an important auxiliary result on the asymp-

totic equivalence of the family of two-stage newsvendor solutions, and then establish the

asymptotic performance of the family of two-stage QED rules. We assume throughout this

section that α > 1/2.

Recall that the two-stage newsvendor policy takes the form

Nλ
1 = λ/µ +β

∗
1 (λ/µ)α +Dλ

1 , Nλ
2 (N

λ
1 ,Λ

λ ) = β
∗
2 (β

∗
1 ,X)(λ/µ)α +Dλ

2 (N
λ
1 ,Λ

λ ),

(C.52)

for Dλ
1 = o((λ/µ)α), and Dλ

2 (N
λ
1 ,Λ

λ ) = oUI ((λ/µ)α). Let u be a policy of the form

(C.52). Based on u, we can construct another policy ũ, where

Ñλ
1 = λ/µ +β

∗
1 (λ/µ)α + D̃λ

1 , and Ñλ
2 (Ñ

λ
1 ,Λ

λ ) = β
∗
2 (β

∗
1 ,X)(λ/µ)α + D̃λ

2 (Ñ
λ
1 ,Λ

λ ),

for

D̃λ
1 := 0, and D̃λ

2 (Ñ
λ
1 ,Λ

λ ) :=


Dλ

2 (N
λ
1 ,Λ

λ ) if X < β ∗1

Dλ
1 +Dλ

2 (N
λ
1 ,Λ

λ ) if X ≥ β ∗1 .

Let C λ
u and C λ

ũ denote the expected total cost under u and ũ, respectively.

Lemma 17. If C λ
u < C λ

ũ , then C λ
ũ −C λ

u = o(
√

λ ).

PROOF: Let S λ
u and S λ

ũ denote the expected staffing cost under u and ũ, respectively.

By construction, u and ũ have the same expected staffing cost, namely,

S λ
u = c1(λ/µ)+ c1β

∗
1 (λ/µ)α + c1Dλ

1 +E
[
c2β

∗
2 (β

∗
1 ,X)+ c2Dλ

2 (N
λ
1 ,Λ

λ )
]

= c1(λ/µ)+ c1β
∗
1 (λ/µ)α + c2

c1

c2
Dλ

1 +E
[
c2β

∗
2 (β

∗
1 ,X)+ c2Dλ

2 (N
λ
1 ,Λ

λ )
]

= c1(λ/µ)+ c1β
∗
1 (λ/µ)α + c2Dλ

1P(X ≥ β
∗
1 )+E

[
c2β

∗
2 (β

∗
1 ,X)+ c2Dλ

2 (N
λ
1 ,Λ

λ )
]

= S λ
ũ ,

where the second to last equality follows from β ∗1 = F̄−1
X (c1/c2) and the assumption that

X is a continuous random variable.

224



We next consider queue length. If Dλ
1 < 0, then by construction of ũ, ũ prescribes a

higher staffing level than u when X < β ∗1 , and prescribes the same staffing level as u when

X ≥ β ∗1 . Thus,

E
[
Q(Nλ

1 +Nλ
2 (N

λ
1 ,Λ

λ ),Λλ )
]
≥ E

[
Q(Ñλ

1 + Ñλ
2 (Ñ

λ
1 ,Λ

λ ),Λλ )
]
,

and C λ
u ≥ C λ

ũ .

Therefore, it is without loss of generality to assume that Dλ
1 ≥ 0 for all λ > 0. We again

divide the discussion into two cases: X ≥ β ∗1 and X < β ∗1 . If the realized random variable

satisfies x≥ β ∗1 , then

D̃λ
1 + D̃λ

2 (Ñ
λ
1 , `

λ ) = Dλ
1 +Dλ

2 (N
λ
1 , `

λ ),

where `λ = λ + xλ α µ1−α . This implies that

E
[
Q(Nλ

1 +Nλ
2 (N

λ
1 ,Λ

λ ),Λλ )1{X≥β ∗1 }

]
= E

[
Q(Ñλ

1 + Ñλ
2 (Ñ

λ
1 ,Λ

λ ),Λλ )1{X≥β ∗1 }

]
. (C.53)

In the other case where X < β ∗1 , it follows from (C.11) in the proof of Lemma 8 that

lim
λ→∞

1
(λ/µ)1/2E

[
Q(Nλ

1 +Nλ
2 (N

λ
1 ,Λ

λ ),Λλ )1{X<β ∗1 }|Λ
λ

]
= lim

λ→∞

1
(λ/µ)1/2E

[
Q(Ñλ

1 + Ñλ
2 (Ñ

λ
1 ,Λ

λ ),Λλ )1{X<β ∗1 }|Λ
λ

]
= 0.

(C.54)

The above equality and subsequent inequalities involving random variables hold in a path-

by-path sense. Furthermore, recall from Lemma 6 that

E
[
Q(Nλ

1 +Nλ
2 (N

λ
1 ,Λ

λ ),Λλ )|Λλ

]
≤max{µ/γ,1}

((
Λ

λ/µ−Nλ
1

)+
+
√

4π/µ

√
Λλ +1/ log2

)
≤max{µ/γ,1}

(√
4π/µ

√
Λλ +1/ log2

)
,

where the second inequality follows because Dλ
1 ≥ 0. Thus, there exists a random variable

Y with E [Y ]< ∞ such that

1
(λ/µ)1/2E

[
Q(Nλ

1 +Nλ
2 (N

λ
1 ,Λ

λ ),Λλ )1{X<β ∗1 }|Λ
λ

]
≤ Y, for all λ > 0.
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Moreover, the same derivation applies to ũ. Thus, we can apply the dominated convergence

theorem to (C.54) and get that

lim
λ→∞

1
(λ/µ)1/2E

[
Q(Nλ

1 +Nλ
2 (N

λ
1 ,Λ

λ ),Λλ )1{X<β ∗1 }

]
=

1
(λ/µ)1/2E

[
Q(Ñλ

1 + Ñλ
2 (Ñ

λ
1 ,Λ

λ ),Λλ )1{X<β ∗1 }

]
= 0.

(C.55)

Now, we write C λ
u as

C λ
u = S λ

u +(h+aγ)E
[
Q(Nλ

1 +Nλ
2 (N

λ
1 ,Λ

λ ),Λλ )
]

= S λ
u +(h+aγ)E

[
Q(Nλ

1 +Nλ
2 (N

λ
1 ,Λ

λ ),Λλ )1{X<β ∗1 }

]
+(h+aγ)E

[
Q(Nλ

1 +Nλ
2 (N

λ
1 ,Λ

λ ),Λλ )1{X≥β ∗1 }

]
.

(C.56)

In addition, we write C λ
ũ as

C λ
ũ = S λ

ũ +(h+aγ)E
[
Q(Ñλ

1 + Ñλ
2 (Ñ

λ
1 ,Λ

λ ),Λλ )
]

= S λ
ũ +(h+aγ)E

[
Q(Ñλ

1 + Ñλ
2 (Ñ

λ
1 ,Λ

λ ),Λλ )1{X<β ∗1 }

]
+(h+aγ)E

[
Q(Ñλ

1 + Ñλ
2 (Ñ

λ
1 ,Λ

λ ),Λλ )1{X≥β ∗1 }

]
.

(C.57)

Then,

C λ
u −C λ

ũ = (h+aγ)E
[
Q(Nλ

1 +Nλ
2 (N

λ
1 ,Λ

λ ),Λλ )1{X<β ∗1 }

]
− (h+aγ)E

[
Q(Ñλ

1 + Ñλ
2 (Ñ

λ
1 ,Λ

λ ),Λλ )1{X<β ∗1 }

]
= o(
√

λ ),

where the first equality follows from (C.53), (C.56) and (C.57), and the second equality

follows from (C.55).

Recall from Section 3.4.2 that u2,QED takes the form

Nλ
1 = λ/µ+β

∗
1 (λ/µ)α +O(

√
λ/µ), and Nλ

2 (N
λ
1 ,Λ

λ )= (Λλ/µ+η
∗
√

Λλ/µ−Nλ
1 )

++oUI(
√

λ/µ).

For a sequence of policies u ∈U , let

C̄ λ
u :=

1
(λ/µ)1/2

(
C λ

u − c1
λ

µ
− c1β

∗
1

(
λ

µ

)α

− c2E
[
(X−β

∗
1 )

+
](λ

µ

)α)
. (C.58)
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In addition, define the mapping ψ : R→ R as

ψ(x) :=


0 if x < β ∗1

c2η∗+
(

hµ

γ
+aµ

)√ γ

µ

[
H
(

η∗
√

µ

γ

)
−η∗

√
µ

γ

]
1+
√

γ

µ

H
(

η∗
√

µ
γ

)
H(−η∗)

if x≥ β ∗1 .
(C.59)

Lemma 18. We have

lim
λ→∞

C̄ λ
2,QED = E [ψ(X)] .

PROOF: Consider an arbitrary two-stage QED policy u of the form

Nλ
1 = λ/µ+β

∗
1 (λ/µ)α +Dλ

1 , and Nλ
2 (N

λ
1 ,Λ

λ )= (Λλ/µ+η
∗
√

Λλ/µ−Nλ
1 )

++J(Nλ
1 ,Λ

λ ),

for Dλ
1 ∈ R, Dλ

1 = O(
√

λ/µ), and J(Nλ
1 ,Λ

λ ) = oUI(
√

λ/µ).

For base staffing level, it holds that

c1

(
Nλ

1 −λ/µ−β
∗
1 (λ/µ)α −Dλ

1

)
= 0.

For surge staffing level, we have

lim
λ→∞

1√
λ/µ

c2

(
Nλ

2 (N
λ
1 ,Λ

λ )− (X−β
∗
1 )

+

(
λ

µ

)α

+Dλ
11{X>β ∗1 }

)
= n̄(X), (C.60)

where

n̄(X) :=


0 if X < β ∗1

c2η∗ if X > β ∗1 .

We next show that

lim
λ→∞

E

[
1√
λ/µ

c2

(
Nλ

2 (N
λ
1 ,Λ

λ )− (X−β
∗
1 )

+

(
λ

µ

)α

+Dλ
11{X>β ∗1 }

)]
= E [n̄(X)] .

(C.61)

To see (C.61), note that when X < β ∗1 ,

|Nλ
2 (N

λ
1 ,Λ

λ )− (X−β
∗
1 )

+(λ/µ)α +Dλ
11{X>β ∗1 }|

= |(Λλ/µ +η
∗
√

Λλ/µ−Nλ
1 )

++ J(Nλ
1 ,Λ

λ )|

=
∣∣((X−β

∗
1 )(λ/µ)α +η

∗
√

Λλ/µ−Dλ
1

)+

+ J(Nλ
1 ,Λ

λ )
∣∣

≤ |η∗|
√

Λλ/µ + |Dλ
1 |+ |J(Nλ

1 ,Λ
λ )|.
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When X > β ∗1 ,

|Nλ
2 (N

λ
1 ,Λ

λ )− (X−β
∗
1 )

+(λ/µ)α +Dλ
11{X>β ∗1 }|

= |(Λλ/µ +η
∗
√

Λλ/µ−Nλ
1 )

++ J(Nλ
1 ,Λ

λ )− (X−β
∗
1 )

+(λ/µ)α +Dλ
1 |

=
∣∣((X−β

∗
1 )(λ/µ)α +η

∗
√

Λλ/µ−Dλ
1

)+

+ J(Nλ
1 ,Λ

λ )− (X−β
∗
1 )

+(λ/µ)α +Dλ
1
∣∣

=


|η∗
√

Λλ/µ−Dλ
1 + J(Nλ

1 ,Λ
λ )+Dλ

1 | if (X−β ∗1 )(λ/µ)α ≥−η∗
√

Λλ/µ +Dλ
1

|J(Nλ
1 ,Λ

λ )− (X−β ∗1 )
+(λ/µ)α +Dλ

1 | if (X−β ∗1 )(λ/µ)α <−η∗
√

Λλ/µ +Dλ
1

≤ |η∗|
√

Λλ/µ +2|Dλ
1 |+ |J(Nλ

1 ,Λ
λ )|.

Thus, in both cases, there exists some random variable Y with E [Y ]< ∞ such that∣∣∣∣ 1√
λ/µ

(
Nλ

2 (N
λ
1 ,Λ

λ )− (X−β
∗
1 )

+

(
λ

µ

)α)
+Dλ

11{X>β ∗1 }

∣∣∣∣< Y, for all λ > 0.

The first equality in (C.61) can then be justified by (C.60) and the dominated convergence

theorem.

For queue length, it follows from (C.11) in the proof of Lemma 8 (for the case where

X < β ∗1 ), and the same analysis as in the proof of Lemma 11 (for the case where X > β ∗1 )

that

lim
λ→∞

1

(λ/µ)1/2 (h+aγ)E
[
Q(Nλ

1 +Nλ
2 (N

λ
1 ,Λ

λ ),Λλ )|Λλ

]
= q̄(X), (C.62)

where

q̄(X) :=


0 if X < β ∗1(

hµ

γ
+aµ

)√ γ

µ

[
H
(

η∗
√

µ

γ

)
−η∗

√
µ

γ

]
1+
√

γ

µ

H
(

η∗
√

µ
γ

)
H(−η∗)

if X > β ∗1 .

We next show that

lim
λ→∞

1

(λ/µ)1/2 (h+aγ)E
[
Q(Nλ

1 +Nλ
2 (N

λ
1 ,Λ

λ ),Λλ )
]
= E [q̄(X)] . (C.63)

228



To see (C.63), it follows from Lemma 6 that

E
[
Q(Nλ

1 +Nλ
2 (N

λ
1 ,Λ

λ ),Λλ )|Λλ

]
≤max{µ/γ,1}

((
Λ

λ/µ−Nλ
1 −Nλ

2 (N
λ
1 ,Λ

λ )
)+

+
√

4π/µ

√
Λλ +1/ log2

)

≤


max{µ/γ,1}

(
|Dλ

1 |+
√

4π/µ

√
Λλ +1/ log2

)
if X < β ∗1

max{µ/γ,1}
(
|J(Nλ

1 ,Λ
λ )|+

√
4π/µ

√
Λλ +1/ log2

)
if X > β ∗1 .

Thus, there exists some random variable Y with E [Y ]< ∞ such that

1

(λ/µ)1/2 (h+aγ)E
[
Q(Nλ

1 +Nλ
2 (N

λ
1 ,Λ

λ ),Λλ )
]
< Y, for all λ > 0.

The first equality in (C.63) is justified by (C.62) and the dominated convergence theorem.

Then, for C̄ λ
u defined in (C.58) and ψ defined in (C.59),

C̄ λ
u =

1

(λ/µ)1/2

(
c1Nλ

1 + c2E
[
Nλ

2 (N
λ
1 ,Λ

λ )
]
+(h+aγ)E

[
Q(Nλ

1 +Nλ
2 (N

λ
1 ,Λ

λ ),Λλ )
]

− c1
λ

µ
− c1β

∗
1

(
λ

µ

)α

− c2E
[
(X−β

∗
1 )

+
](λ

µ

)α)
=

1

(λ/µ)1/2

(
c1

(
Nλ

1 −
λ

µ
−β

∗
1

(
λ

µ

)α

−Dλ
1

)
+ c2E

[
Nλ

2 (N
λ
1 ,Λ

λ )− (X−β
∗
1 )

+

(
λ

µ

)α

+Dλ
11{X>β ∗1 }

]
+(h+aγ)E

[
Q(Nλ

1 +Nλ
2 (N

λ
1 ,Λ

λ ),Λλ )
])

= E [ψ(X)] ,

from which the statement follows.

We now present the proof of Theorem 6.

PROOF: [Proof of Theorem 6] It follows from (C.36) in the proof of Lemma 13 that

for all u ∈U ,

liminf
λ→∞

Ĉ λ
u ≥ lim

λ→∞

Ĉ λ
2,NV = c1β

∗
1 + c2E

[
(X−β

∗
1 )

+
]
,

where β ∗1 = F̄−1
X (c1/c2). Thus, for a sequence of policies u ∈U , we consider C̄ λ

u defined

in (C.58). We next show that for all u ∈U ,

liminf
λ→∞

C̄ λ
u ≥ lim

λ→∞

C̄ λ
2,QED, (C.64)
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where the limit on the right-hand side of (C.64) is rigorously established in Lemma 18.

Similar to the proof of Lemma 13, for the purpose of characterizing (near-)optimal staffing

rules, we assume without loss of generality that limsupλ→∞ C̄ λ
u < ∞.

First, by Corollary 3, it is without loss of optimality to consider a sequence of policies

u of the form

Nλ
1 = λ/µ +β

∗
1 (λ/µ)α +Dλ

1 , Nλ
2 = (X−β

∗
1 )

+(λ/µ)α +Dλ
2 (N

λ
1 ,Λ

λ ),

for Dλ
1 = o((λ/µ)α) and Dλ

2 (N
λ
1 ,Λ

λ ) = oUI ((λ/µ)α), i.e., the two-stage newsvendor

solutions.

In addition, Lemma 17 implies that it is without loss of generality to consider a se-

quence of policies where Dλ
1 = 0 for all λ > 0. Thus, we can write

C̄ λ
u =

1
(λ/µ)1/2E

[
c2Nλ

2 (N
λ
1 ,Λ

λ )+(h+aγ)E
[
Q(Nλ

1 +Nλ
2 (N

λ
1 ,Λ

λ ),Λλ )|Λλ

]
− c2(X−β

∗
1 )

+

(
λ

µ

)α ]
=

1
(λ/µ)1/2E

[
c2Dλ

2 (N
λ
1 ,Λ

λ )+(h+aγ)E
[
Q(Nλ

1 +Nλ
2 (N

λ
1 ,Λ

λ ),Λλ )|Λλ

]]
.

By Fatou’s lemma,

liminf
λ→∞

C̄ λ
u

≥ E
[

liminf
λ→∞

1
(λ/µ)1/2

(
c2Dλ

2 (N
λ
1 ,Λ

λ )+(h+aγ)E
[
Q(Nλ

1 +Nλ
2 (N

λ
1 ,Λ

λ ),Λλ )|Λλ

])]
.

(C.65)

We are going to establish that for any realized arrival rate `λ = λ + xλ α µ1−α ,

liminf
λ→∞

1
(λ/µ)1/2

(
c2Dλ

2 (N
λ
1 , `

λ )+(h+aγ)E
[
Q(Nλ

1 +Nλ
2 (N

λ
1 , `

λ ), `λ )
])
≥ ψ(x),

(C.66)

where ψ is defined in (C.59). To this end, define

D̄λ
2 (N

λ
1 , `

λ ) :=
1

(λ/µ)1/2 Dλ
2 (N

λ
1 , `

λ ).

Observe that the sequence
{

D̄λ
2 (N

λ
1 , `

λ ) : λ > 0
}

satisfies exactly one of the following four

cases:
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(i) D̄λ
2 (N

λ
1 , `

λ )→ ∞ as λ → ∞.

(ii) D̄λ
2 (N

λ
1 , `

λ )→−∞ as λ → ∞.

(iii) D̄λ
2 (N

λ
1 , `

λ )→ η ∈ R as λ → ∞.

(iv) D̄λ
2 (N

λ
1 , `

λ ) does not converge.

For case (i), since E
[
Qλ (Nλ

1 +Nλ
2 (N

λ
1 , `

λ ), `λ )
]
≥ 0,

liminf
λ→∞

1
(λ/µ)1/2

(
c2Dλ

2 (N
λ
1 , `

λ )+(h+aγ)E
[
Q(Nλ

1 +Nλ
2 (N

λ
1 , `

λ ), `λ )
])

≥ liminf
λ→∞

c2D̄λ
2 (N

λ
1 , `

λ )

= ∞.

For case (ii), this case is only possible when x > β ∗1 . This is because otherwise, β ∗2 = 0,

so that Dλ
2 ≥ 0 for all λ > 0. Now since x > β ∗1 , we have

(h+aγ)E
[
Q(Nλ

1 +Nλ
2 (N

λ
1 , `

λ ), `λ )
]

=

(
h
γ
+a
)

γE
[
Q(Nλ

1 +Nλ
2 (N

λ
1 , `

λ ), `λ )
]

=

(
h
γ
+a
)(

`λ −µE
[
B2(Nλ

1 ,N
λ
2 (N

λ
1 , `

λ ), `λ )
]
−µE

[
B1(Nλ

1 ,N
λ
2 (N

λ
1 , `

λ ), `λ )
])

≥
(

h
γ
+a
)(

`λ −µNλ
2 (N

λ
1 , `

λ )−µNλ
1

)
=

(
hµ

γ
+aµ

)(
−Dλ

2 (N
λ
1 , `

λ )
)
,

where recall from the proof of Proposition 5 that B1(Nλ
1 ,N

λ
2 (N

λ
1 , `

λ ), `λ ) is the steady-state

number of busy servers among those that are staffed at the base stage, and B2(Nλ
1 ,N

λ
2 (N

λ
1 , `

λ ), `λ )

is the steady-state number of busy servers among those that are staffed at the surge stage.
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Therefore,

liminf
λ→∞

1
(λ/µ)1/2

(
c2Dλ

2 (N
λ
1 , `

λ )+(h+aγ)E
[
Q(Nλ

1 +Nλ
2 (N

λ
1 , `

λ ), `λ )
])

≥ liminf
λ→∞

1
(λ/µ)1/2

(
c2Dλ

2 (N
λ
1 , `

λ )+

(
hµ

γ
+aµ

)(
−Dλ

2 (N
λ
1 , `

λ )
))

= liminf
λ→∞

1
(λ/µ)1/2

(
c2−

hµ

γ
−aµ

)
Dλ

2 (N
λ
1 , `

λ )

=∞.

For case (iii), it follows from (C.11) in the proof of Lemma 8 (for the case where

x < β ∗1 ), and the same analysis as in the proof of Lemma 11 (for the case where x > β ∗1 )

that

lim
λ→∞

1
(λ/µ)1/2

(
c2Dλ

2 (N
λ
1 , `

λ )+(h+aγ)E
[
Q(Nλ

1 +Nλ
2 (N

λ
1 , `

λ ), `λ )
])

=c2η + lim
λ→∞

1

(λ/µ)1/2 (h+aγ)E
[
Q(Nλ

1 +Nλ
2 (N

λ
1 , `

λ ), `λ )
]

=


c2η if x < β ∗1

c2η +
(

hµ

γ
+aµ

)√ γ

µ

[
H
(

η

√
µ

γ

)
−η

√
µ

γ

]
1+
√

γ

µ

H
(

η

√
µ
γ

)
H(−η)

if x > β ∗1 .

Moreover, in the scenario where x < β ∗1 , we have β ∗2 (β
∗
1 ,x) = 0, so it must be that Dλ

2 ≥ 0

and η ≥ 0. Therefore, (C.66) follows from the definition of η∗ in (3.11).

For case (iv), we can further consider a subsequence indexed by λi along which D̄λi
2 (N

λi
1 , `λi)

converges. Such subsequence exists because a sequence has no convergent subsequence if

and only if it approaches infinity. The same arguments for case (iii) can be applied to

establish (C.66).

So far we have established (C.66). This, together with (C.65) and Lemma 18, gives that

liminf
λ→∞

C̄ λ
u ≥ E

[
liminf

λ→∞

1
(λ/µ)1/2

(
c2Dλ

2 (N
λ
1 ,Λ

λ )+(h+aγ)E
[
Q(Nλ

1 +Nλ
2 (N

λ
1 ,Λ

λ ),Λλ )|Λλ

])]
≥ E [ψ(X)]

= lim
λ→∞

C̄ λ
2,QED,

which establishes (C.64).
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In this last step, note that by (C.64), we have

liminf
λ→∞

C̄ λ
2,∗ ≥ lim

λ→∞

C̄ λ
2,QED.

Moreover, by the optimality of u2,∗, it holds that

limsup
λ→∞

C̄ λ
2,∗ ≤ lim

λ→∞

C̄ λ
2,QED.

Therefore,

lim
λ→∞

C̄ λ
2,∗ = lim

λ→∞

C̄ λ
2,QED,

which implies that C λ
2,QED−C λ

2,∗ = o(
√

λ ).

C.6 Model with Surge-Stage Prediction Error

Recall that we use FY (alternatively, fY ) and FZ (alternatively, fZ) to denote the cdf (alter-

natively, probability density function) of Y and Z, respectively.

C.6.1 Small Prediction Error: Proof of Proposition 6

PROOF: Statement (I) follows exactly the same lines of analysis as the proof of Theorem

4 for α > 1/2. Statement (II) follows exactly the same lines of analysis as the proof of

Theorem 6. Lastly, following the same lines of analysis as the proof of Theorem 6, we can

show that C e,λ
2,ERR−C o,λ

2,∗ = o(
√

λ ). This, together with statement (II), implies statement

(III). To elaborate on the generalization, we explain why the proof of Proposition 6 follows

directly from the analysis of the case with perfect surge-stage prediction. In particular,

when ν < 1/2, the two-stage error policy takes the same form as the two-stage QED rule,

with random variable X (alternatively, its realization x) replaced by random variable Y

(alternatively, its realization y). For `λ = λ + yλ α µ1−α + zλ ν µ1−ν , it still holds that if

y < F−1
Y (c1/c2), then

Nλ
1 +Nλ

2 (N
λ
1 ,y) = `λ/µ +F−1

Y (c1/c2)
(
`λ/µ

)α

+O(

√
`λ/µ).

In the other case where y≥ F−1
Y (c1/c2), we have

Nλ
1 +Nλ

2 (N
λ
1 ,y) = `λ/µ +η

∗
(
`λ/µ

)α

+o(
√

`λ/µ),
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for η∗ defined in (3.11). The rest of the analysis is generalized similarly.

C.6.2 Moderate to Large Prediction Error: Proof of Proposition 7

PROOF: We first show that there exists an optimal solution to (3.18). In particular, con-

sider the inner-problem in (3.18):

min
Nλ

2 (N
λ
1 ,Y )

{
c2Nλ

2 (N
λ
1 ,Y )+(hµ/γ +aµ)E

[(
Λ

λ/µ−Nλ
1 −Nλ

2 (N
λ
1 ,Y )

)+
|Y
]}

. (C.67)

Note that (C.67) is a newsvendor problem with unit capacity cost c2, unit sales price hµ/γ+

aµ , random demand Λλ/µ−Nλ
1 |Y (where the randomness lies in random variable Z), and

capacity decision Nλ
2 (N

λ
1 ,Y ). The optimal solution is given by

N̄λ
2 (N

λ
1 ,Y ) =

(
F̄−1

Z

(
c2

hµ/γ +aµ

)(
λ

µ

)ν

+
λ

µ
+Y

(
λ

µ

)α

−Nλ
1

)+

.

Given N̄λ
2 (N

λ
1 ,Y ), the outer-problem is given by minNλ

1
h(Nλ

1 ), where

h(Nλ
1 ) := c1Nλ

1 +E
[

c2N̄λ
2 (N

λ
1 ,Y )+(hµ/γ +aµ)

(
Λ

λ/µ−Nλ
1 − N̄λ

2 (N
λ
1 ,Y )

)+]
.

Differentiating h(Nλ
1 ) with respect to Nλ

1 gives

∂

∂Nλ
1

h(Nλ
1 ) = c1− c2P

((
λ

µ

)α

Y >

(
Nλ

1 −
λ

µ
− F̄−1

Z

(
c2

hµ/γ +aµ

)(
λ

µ

)ν))
−
(

hµ

γ
+aµ

)
P
((

λ

µ

)α

Y ≤
(

Nλ
1 −

λ

µ
− F̄−1

Z

(
c2

hµ/γ +aµ

)(
λ

µ

)ν)
,(

λ

µ

)α

Y +

(
λ

µ

)ν

Z > Nλ
1 −

λ

µ

)
.

By observation, ∂

∂Nλ
1

h(Nλ
1 ) is continuous in Nλ

1 , and there exist Nλ ,L
1 and Nλ ,U

1 such that

∂

∂Nλ
1

h(Nλ ,L
1 ) < 0 and ∂

∂Nλ
1

h(Nλ ,H
1 ) > 0. Thus, the intermediate value theorem implies that

there exists critical point N̄λ
1 such that ∂

∂Nλ
1

h(N̄λ
1 ) = 0. In addition, h(Nλ

1 ) is convex in Nλ
1 ,

because

∂ 2

∂ (Nλ
1 )

2
h(Nλ

1 ) =

(
hµ

γ
+aµ

)(
λ

µ

)−ν ∫ ( λ

µ

)−α(
Nλ

1 −
λ

µ
−F̄−1

Z

(
c2

hµ/γ+aµ

)(
λ

µ

)ν)
−∞

fY (y)

fZ

((
λ

µ

)−ν(
Nλ

1 −
λ

µ
− y
(

λ

µ

)α))
dy≥ 0.
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Hence, N̄λ
1 is a global minimum of h(Nλ

1 ), and (N̄λ
1 , N̄

λ
2 (N̄

λ
1 ,Y )) is optimal to (3.18).

Proof of (I). We discuss the following two cases: ν < α and ν = α .

Case 1: ν < α . When ν < α , similar lines of analysis as the proof of Theorem 4 for

α < 1/2 go through. Due to the similarity in the steps, we shall present the key structure

of the proof and omit the details.

Consider the two-stage staffing rule denoted by u, where the staffing levels are given by

Nλ
1 := λ/µ + F̄−1

Y (c1/c2)(λ/µ)α , and Nλ
2 (N

λ
1 ,Y ) :=

(
Y − F̄−1

Y (c1/c2)
)+

(λ/µ)α .

Following the definition of Ĉ λ
u in (C.6), we define

Ĉ e,λ
u :=

C e,λ
u − c1λ/µ

(λ/µ)max{α,1/2} .

Similar lines of arguments as in the proof of Lemma 9 establish that

Ĉ e,λ
u → c1F̄−1

Y (c1/c2)+ c2E
[
(Y − F̄−1

Y (c1/c2))
+
]

as λ → ∞.

In comparison, consider the single-stage staffing rule denoted by ũ, where the base-

stage staffing level is

Nλ
1 :=

λ

µ
+ F̄−1

Y

(
c1

hµ/γ +aµ

)
(λ/µ)α .

Similar lines of arguments as in the proof of Lemma 9 show that

Ĉ e,λ
ũ → c1F̄−1

Y

(
c1

hµ/γ +aµ

)
+

(
hµ

γ
+aµ

)
E

[(
Y − F̄−1

Y

(
c1

hµ/γ +aµ

))+
]

as λ→∞,

where Ĉ e,λ
ũ is defined the same way as Ĉ e,λ

u but for policy ũ instead.

By Assumption 5 and the continuity of Y , it can be verified that limλ→∞ Ĉ e,λ
ũ > limλ→∞ Ĉ e,λ

u .

Thus,

C e,λ
ũ −C e,λ

u = Θ(λ α).

Moreover, similar derivation as in the proof of Lemma 13 gives that

C e,λ
ũ −C e,λ

1,∗ = o(λ α) and C e,λ
u −C e,λ

2,∗ = o(λ α).
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The statement follows.

Case 2: ν = α . Consider the two-stage staffing rule denoted by u, where the staffing

levels are given by

Nλ
1 := λ/µ +β

∗
1 (λ/µ)α , and Nλ

2 (N
λ
1 ,Y ) := β

∗
2 (β

∗
1 ,Y )(λ/µ)α ,

where β ∗1 and β ∗2 (β
∗
1 ,Y ) jointly solve

min
β1

{
c1β1 +E

[
min

β2(β1,Y )∈R+

{
c2β2(β1,Y )+(hµ/γ +aµ)E

[
(Y +Z−β1−β2(β1,Y ))

+
∣∣Y ]}]} .

(C.68)

We first show that an optimal solution to (C.68) exists. Consider the inner-problem in

(C.68):

min
β2(β1,Y )∈R+

c2β2(β1,Y )+(hµ/γ +aµ)E
[
(Y +Z−β1−β2(β1,Y ))

+
∣∣Y ] . (C.69)

Note that (C.69) is a newsvendor problem with unit capacity cost c2, unit sales price hµ/γ+

aµ , random demand Y +Z−β1|Y (where the randomness lies in random variable Z), and

capacity decision β2(β1,Y ). The optimal solution is given by

β
∗
2 (β1,Y ) =

(
F̄−1

Z

(
c2

hµ/γ +aµ

)
+Y −β1

)+

. (C.70)

Given β ∗2 (β1,Y ), the outer-problem is given by minβ1∈R h(β1), where

h(β1) :=
{

c1β1 +E
[
c2β

∗
2 (β1,Y )+(hµ/γ +aµ)(Y +Z−β1−β

∗
2 (β1,Y ))

+]} .
Differentiating h(β1) with respect to β1 gives

∂

∂β1
h(β1) = c1− c2P

(
Y > F̄−1

Z

(
c2

hµ/γ +aµ

)
+β1

)
−
(

hµ

γ
+aµ

)
P
(

Y ≤ F̄−1
Z

(
c2

hµ/γ +aµ

)
+β1,Y +Z > β1

)
.

(C.71)

By observation, ∂

∂β1
h(β1) is continuous in β1, and there exist β L

1 and βU
1 such that ∂

∂β1
h(β L

1 )<

0 and ∂

∂β1
h(β H

1 )> 0. Thus, the intermediate value theorem implies that there exists critical

point β ∗1 such that ∂

∂β1
h(β ∗1 ) = 0. In addition, h(β1) is convex in β1, because

∂ 2

∂β 2
1

h(β1) =

(
hµ

γ
+aµ

)∫ F̄−1
Z

(
c2

hµ/γ+aµ

)
+β1

−∞

fY (y) fZ(−y+β1)dy≥ 0.
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Hence, β ∗1 is a global minimum of h(β1).

Following similar lines of arguments as in the proof of Lemma 9 and Lemma 13, we

get that

lim
λ→∞

Ĉ e,λ
u = c1β

∗
1 +E

[
c2β

∗
2 (β

∗
1 ,Y )+(hµ/γ +aµ)(Y +Z−β

∗
1 −β

∗
2 (β

∗
1 ,Y ))

+] ,
and

C e,λ
u −C e,λ

2,∗ = o(λ α). (C.72)

Next, consider the single-stage policy denoted by ũ, where the base-stage staffing level

is given by Nλ
1 := λ/µ + β̃ (λ/µ)α , for

β̃ := argmin
β∈R

c1β +

(
hµ

γ
+aµ

)
E
[
(Y +Z−β )+

]
= F̄−1

Y+Z

(
c1

hµ/γ +aµ

)
. (C.73)

Similar derivation as in the proof of Lemma 9 gives that

lim
λ→∞

Ĉ e,λ
ũ = c1β̃ +(hµ/γ +aµ)E

[(
Y +Z− β̃

)+]
.

Theorem 1 in Bassamboo et al. (2010) establishes that

C e,λ
ũ −C e,λ

1,∗ = O(λ 1−α). (C.74)

If Assumption 6 holds, then

β
∗
2 (β

∗
1 ,Y ) =

(
F̄−1

Z

(
c2

hµ/γ +aµ

)
+Y −β

∗
1

)+

> 0 with probability p > 0. (C.75)

To see (C.75), suppose for the sake of contradiction that β ∗2 (β
∗
1 ,Y ) = 0 with probability 1.

It follows by solving ∂

∂β1
h(β ∗1 ) = 0 in (C.71) that β ∗1 = β̃ , for β̃ defined in (C.73). However,

plugging in the value of β̃ in (C.70) gives that

β
∗
2 (β

∗
1 ,Y ) = β

∗
2 (β̃1,Y ) =

(
F̄−1

Z

(
c2

hµ/γ +aµ

)
+Y − F̄−1

Y+Z

(
c1

hµ/γ +aµ

))+

.

This, together with Assumption 6, implies that β ∗2 (β
∗
1 ,Y ) > 0 with probability p > 0, a

contradiction. Thus, (C.75) holds. It follows from (C.75) that limλ→∞ Ĉ e,λ
ũ > limλ→∞ Ĉ e,λ

u ,

so that

C e,λ
ũ −C e,λ

u = Θ(λ α). (C.76)
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In the other case where Assumption 6 does not hold, similar derivation shows that

β ∗1 = β̃ and β ∗2 (β
∗
1 ,Y ) = β ∗2 (β̃ ,Y ) = 0 is optimal to (C.68), and

C e,λ
ũ −C e,λ

u = o(λ α). (C.77)

The statement follows from (C.72), (C.74), (C.76), and (C.77).

Proof of (II). We discuss the following three cases: µ = γ , µ > γ , and µ < γ .

Case 1: µ = γ . It follows from Lemma 3 in Bassamboo et al. (2010) that for any

staffing prescriptions Nλ
1 and Nλ

2 (N
λ
1 ,Y ), we have(

Λλ

µ
−Nλ

1 −Nλ
2 (N

λ
1 ,Y )

)+

≤ E
[
Q(Nλ

1 +Nλ
2 (N

λ
1 ,Y ),Λ

λ )|Y,Z
]

≤

√
4π

µ

√
Λλ exp

− µ

4Λλ

(
Λλ

µ
−Nλ

1 −Nλ
2 (N

λ
1 ,Y )

)2


+

(
Λλ

µ
−Nλ

1 −Nλ
2 (N

λ
1 ,Y )

)+

+
1

log2
.

(C.78)

Taking expectation of (C.78) conditional on Y gives

E

[(
Λλ

µ
−Nλ

1 −Nλ
2 (N

λ
1 ,Y )

)+ ∣∣∣∣Y
]

≤ E
[
Q(Nλ

1 +Nλ
2 (N

λ
1 ,Y ),Λ

λ )|Y
]

≤ E

[(
Λλ

µ
−Nλ

1 −Nλ
2 (N

λ
1 ,Y )

)+ ∣∣∣∣Y
]
+E

[√
4π

µ

√
Λλ

∣∣∣∣Y
]
+

1
log2

.

(C.79)
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It follows from (C.79) that

c1Nλ
1 +E

[
c2Nλ

2 (N
λ
1 ,Y )+(h+aγ)E

[(
Λ

λ/µ−Nλ
1 −Nλ

2 (N
λ
1 ,Y )

)+ ∣∣∣∣Y]]
≤ c1Nλ

1 +E
[
c2Nλ

2 (N
λ
1 ,Y )+(h+aγ)E

[
Q(Nλ

1 +Nλ
2 (N

λ
1 ,Y ),Λ

λ )|Y
]]

≤ c1Nλ
1 +E

[
c2Nλ

2 (N
λ
1 ,Y )+(h+aγ)E

[(
Λ

λ/µ−Nλ
1 −Nλ

2 (N
λ
1 ,Y )

)+ ∣∣∣∣Y]]
+E

[√
4π/µ

√
Λλ

]
+1/ log2

≤ c1Nλ
1 +E

[
c2Nλ

2 (N
λ
1 ,Y )+(h+aγ)E

[(
Λ

λ/µ−Nλ
1 −Nλ

2 (N
λ
1 ,Y )

)+ ∣∣∣∣Y]]
+
√

4π/µ
√

λ +
√

4π/µ

√
λ α µ1−αE [|Y |]+

√
4π/µ

√
λ ν µ1−νE [|Z|]+1/ log2,

(C.80)

where the last inequality follows from the reverse Jensen’s inequality, and the fact that Y

and Z are independent.

Let (Nλ ,∗
1 ,Nλ ,∗

2 (Nλ ,∗
1 ,Y )) denotes the optimal solution to problem (3.16). We have

C e,λ
2,Err

= c1N̄λ
1 +E

[
c2N̄λ

2 (N̄
λ
1 ,Y )+(h+aγ)E

[
Q(N̄λ

1 + N̄λ
2 (N̄

λ
1 ,Y ),Λ

λ )|Y
]]

(a)
≤ c1N̄λ

1 +E
[

c2N̄λ
2 (N̄

λ
1 ,Y )+(h+aγ)E

[(
Λ

λ −µ

(
N̄λ

1 + N̄λ
2 (N̄

λ
1 ,Y )

))+
|Y
]
/γ

]
+O(

√
λ )

(b)
≤ c1Nλ ,∗

1 +E
[

c2Nλ ,∗
2 (Nλ ,∗

1 ,Y )+(h+aγ)E
[(

Λ
λ −µ

(
Nλ ,∗

1 +Nλ ,∗
2 (Nλ ,∗

1 ,Y )
))+
|Y
]
/γ

]
+O(

√
λ )

(c)
≤ c1Nλ ,∗

1 +E
[
c2Nλ ,∗

2 (Nλ ,∗
1 ,Y )+(h+aγ)E

[
Q(Nλ ,∗

1 +Nλ ,∗
2 (Nλ ,∗

1 ,Y ),Λλ )|Y
]]

+O(
√

λ )

= C e,λ
2,∗ +O(

√
λ ),

where (a) follows from (C.80), (b) follows from the optimality of (N̄1, N̄2(N̄1,Y )) to prob-

lem (3.18), and (c) follows from (C.80) again.

Case 2: µ > γ . To simply notation, define

C e,λ (Nλ
1 ,N

λ
2 (N

λ
1 ,Y )) := c1Nλ

1 +E
[
c2Nλ

2 (N
λ
1 ,Y )+(h+aγ)E

[
Q(Nλ

1 +Nλ
2 (N

λ
1 ,Y ),Λ

λ )|Y
]]

= c1Nλ
1 +E

[
c2Nλ

2 (N
λ
1 ,Y )+(h/γ +a)P

(
AB,Nλ

1 +Nλ
2 (N

λ
1 ,Y ),Y

)]
,

(C.81)
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where P
(

AB,Nλ
1 +Nλ

2 (N
λ
1 ,Y ),Y

)
denotes the steady-state abandonment probability con-

ditional on Y , i.e., P
(

AB,Nλ
1 +Nλ

2 (N
λ
1 ,Y ),Y

)
:= E

[
1(AB,Nλ

1 +Nλ
2 (N

λ
1 ,Y ),Λ

λ )|Y
]
. In addition,

define

C̄ e,λ (Nλ
1 ,N

λ
2 (N

λ
1 ,Y ))

:= c1Nλ
1 +E

[
c2Nλ

2 (N
λ
1 ,Y )+(h+aγ)E

[(
Λ

λ −µ

(
Nλ

1 +Nλ
2 (N

λ
1 ,Y )

))+
|Y
]
/γ

]
.

(C.82)

Note that (N̄λ
1 , N̄

λ
2 (N̄

λ
1 ,Y )) = argminNλ

1 ,N
λ
2 (N

λ
1 ,Y )

C̄ e,λ (Nλ
1 ,N

λ
2 (N

λ
1 ,Y )).

Consider an auxiliary sequence of systems with the same parameters as the original

sequence of systems except that its abandonment rate is equal to µ; that is, systems in this

sequence have a higher abandonment rate compared to the original sequence. We refer to

this sequence as Sequence II and add the superscript II to all quantities associated with

it, e.g., µ II = µ,γ II = µ . Quantities associated with the original sequence of system are

denoted without superscripts. For systems in Sequence II, we choose the cost parameters

to be the following: cII
1 = c1,cII

2 = c2,aII = a, and hII = hµ/γ . The analogues of (C.81)

and (C.82) for Sequence II are

C e,λ ,II(Nλ
1 ,N

λ
2 (N

λ
1 ,Y ))

:= cII
1 Nλ

1 +E
[
cII

2 Nλ
2 (N

λ
1 ,Y )+

(
hII/γ

II +aII)P(ABII,Nλ
1 +Nλ

2 (N
λ
1 ,Y ),Y

)]
= c1Nλ

1 +E
[
c2Nλ

2 (N
λ
1 ,Y )+(h/γ +a)P

(
AB,Nλ

1 +Nλ
2 (N

λ
1 ,Y ),Y

)]
= C e,λ (Nλ

1 ,N
λ
2 (N

λ
1 ,Y )),

and

C̄ e,λ ,II(Nλ
1 ,N

λ
2 (N

λ
1 ,Y ))

:= cII
1 Nλ

1 +E
[

cII
2 Nλ

2 (N
λ
1 ,Y )+(hII +aII

γ
II)E

[(
Λ

λ −µ
II
(

Nλ
1 +Nλ

2 (N
λ
1 ,Y )

))+
|Y
]
/γ

II
]

= c1Nλ
1 +E

[
c2Nλ

2 (N
λ
1 ,Y )+(h+aγ)E

[(
Λ

λ −µ

(
Nλ

1 +Nλ
2 (N

λ
1 ,Y )

))+
|Y
]
/γ

]
= C̄ e,λ (Nλ

1 ,N
λ
2 (N

λ
1 ,Y )).

(C.83)
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From the proof of Theorem 3 in Bassamboo et al. (2010), we have

P
(

AB,Nλ
1 +Nλ

2 (N
λ
1 ,Y ),Y

)
≤ P

(
ABII,Nλ

1 +Nλ
2 (N

λ
1 ,Y ),Y

)
,

which implies that

C e,λ (Nλ
1 ,N

λ
2 (N

λ
1 ,Y ))≤ C e,λ ,II(Nλ

1 ,N
λ
2 (N

λ
1 ,Y )). (C.84)

Applying (C.80) to Sequence II, we get that

C e,λ ,II(Nλ
1 ,N

λ
2 (N

λ
1 ,Y ))

= cII
1 Nλ

1 +E
[
cII

2 Nλ
2 (N

λ
1 ,Y )+(hII +aII

γ
II)E

[
QII(Nλ

1 +Nλ
2 (N

λ
1 ,Y ),Λ

λ )|Y
]]

≤ cII
1 Nλ

1 +E
[

cII
2 Nλ

2 (N
λ
1 ,Y )+(hII +aII

γ
II)E

[(
Λ

λ/µ
II−Nλ

1 −Nλ
2 (N

λ
1 ,Y )

)+ ∣∣∣∣Y]]
+O(

√
λ )

= C̄ e,λ ,II(Nλ
1 ,N

λ
2 (N

λ
1 ,Y ))+O(

√
λ )

(C.85)

Next, consider another auxiliary sequence of systems with the same parameters as the

original sequence of systems except that its service rate is equal to γ; that is, systems in

this sequence have a lower service rate compared to the original sequence. We refer to

this sequence as Sequence III and add the superscript III to all quantities associated with

Sequence III, e.g., µ III = γ,γ III = γ . For systems in Sequence III, we choose the cost

parameters to be the following: cIII
1 = c1γ/µ,cIII

2 = c2γ/µ,aIII = a, and hIII = h. The

analogues of (C.81) and (C.82) for Sequence III are

C e,λ ,III(Nλ
1 ,N

λ
2 (N

λ
1 ,Y ))

:= cIII
1 Nλ

1 +E
[
cIII

2 Nλ
2 (N

λ
1 ,Y )+

(
hIII/γ

III +aIII)P(ABIII,Nλ
1 +Nλ

2 (N
λ
1 ,Y ),Y

)]
= c1γ/µNλ

1 +E
[
c2γ/µNλ

2 (N
λ
1 ,Y )+(h/γ +a)P

(
ABIII,Nλ

1 +Nλ
2 (N

λ
1 ,Y ),Y

)]
,
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and

C̄ e,λ ,III(Nλ
1 ,N

λ
2 (N

λ
1 ,Y ))

:= E
[

cIII
2 Nλ

2 (N
λ
1 ,Y )+(hIII +aIII

γ
III)E

[(
Λ

λ −µ
III
(

Nλ
1 +Nλ

2 (N
λ
1 ,Y )

))+
|Y
]
/γ

III
]

+ cIII
1 Nλ

1

= c1γ/µNλ
1 +E

[
c2γ/µNλ

2 (N
λ
1 ,Y )+(h+aγ)E

[(
Λ

λ − γ

(
Nλ

1 +Nλ
2 (N

λ
1 ,Y )

))+
|Y
]
/γ

]
= C̄ e,λ (γ/µNλ

1 ,γ/µNλ
2 (N

λ
1 ,Y )).

(C.86)

From the proof of Theorem 3 in Bassamboo et al. (2010), we have

P
(

AB,Nλ
1 +Nλ

2 (N
λ
1 ,Y ),Y

)
≥ P

(
ABIII,µ/γ

(
Nλ

1 +Nλ
2 (N

λ
1 ,Y )

)
,Y
)
,

which implies that

C e,λ (Nλ
1 ,N

λ
2 (N

λ
1 ,Y ))≥ C e,λ ,III(µ/γNλ

1 ,µ/γNλ
2 (N

λ
1 ,Y )). (C.87)

Applying (C.80) to Sequence III, we get that

C e,λ ,III(Nλ
1 ,N

λ
2 (N

λ
1 ,Y ))

= cIII
1 Nλ

1 +E
[
cIII

2 Nλ
2 (N

λ
1 ,Y )+(hIII +aIII

γ
III)E

[
QIII(Nλ

1 +Nλ
2 (N

λ
1 ,Y ),Λ

λ )|Y
]]

≥ cIII
1 Nλ

1 +E
[

cIII
2 Nλ

2 (N
λ
1 ,Y )+(hIII +aIII

γ
III)E

[(
Λ

λ/µ
III−Nλ

1 −Nλ
2 (N

λ
1 ,Y )

)+ ∣∣∣∣Y]]
= C̄ e,λ ,III(Nλ

1 ,N
λ
2 (N

λ
1 ,Y )),

(C.88)

which implies that

C e,λ (Nλ ,∗
1 ,Nλ ,∗

2 (Nλ ,∗
1 ,Y )) = min

Nλ
1 ,N

λ
2 (N

λ
1 ,Y )

C e,λ (Nλ
1 ,N

λ
2 (N

λ
1 ,Y ))

(d)
≥ min

Nλ
1 ,N

λ
2 (N

λ
1 ,Y )

C e,λ ,III(µ/γNλ
1 ,µ/γNλ

2 (N
λ
1 ,Y ))

(e)
≥ min

Nλ
1 ,N

λ
2 (N

λ
1 ,Y )

C̄ e,λ (Nλ
1 ,N

λ
2 (N

λ
1 ,Y ))

= C̄ e,λ (N̄λ
1 , N̄

λ
2 (N̄

λ
1 ,Y )),

(C.89)
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where (d) follows from (C.87), and (e) follows from (C.86) and (C.88).

Lastly, we can write

C e,λ (N̄λ
1 , N̄

λ
2 (N̄

λ
1 ,Y ))−C e,λ (Nλ ,∗

1 ,Nλ ,∗
2 (Nλ ,∗

1 ,Y ))

= C e,λ (N̄λ
1 , N̄

λ
2 (N̄

λ
1 ,Y ))− C̄ e,λ (N̄λ

1 , N̄
λ
2 (N̄

λ
1 ,Y ))+ C̄ e,λ (N̄λ

1 , N̄
λ
2 (N̄

λ
1 ,Y ))

−C e,λ (Nλ ,∗
1 ,Nλ ,∗

2 (Nλ ,∗
1 ,Y ))

( f )
≤ C e,λ ,II(N̄λ

1 , N̄
λ
2 (N̄

λ
1 ,Y ))− C̄ e,λ (N̄λ

1 , N̄
λ
2 (N̄

λ
1 ,Y ))+ C̄ e,λ (N̄λ

1 , N̄
λ
2 (N̄

λ
1 ,Y ))

−C e,λ (Nλ ,∗
1 ,Nλ ,∗

2 (Nλ ,∗
1 ,Y ))

(g)
= C e,λ ,II(N̄λ

1 , N̄
λ
2 (N̄

λ
1 ,Y ))− C̄ e,λ ,II(N̄λ

1 , N̄
λ
2 (N̄

λ
1 ,Y ))+ C̄ e,λ (N̄λ

1 , N̄
λ
2 (N̄

λ
1 ,Y ))

−C e,λ (Nλ ,∗
1 ,Nλ ,∗

2 (Nλ ,∗
1 ,Y ))

(h)
= O(

√
λ ),

where ( f ) follows from (C.84), (g) follows from (C.83), and (h) follows from (C.85) and

(C.89).

Case 3: µ < γ . The analysis for Case 3 is similar to that for Case 2. In particular, we

again consider Sequence II and Sequence III as constructed in Case 2.

For Sequence II, it follows by construction that

P
(

AB,Nλ
1 +Nλ

2 (N
λ
1 ,Y ),Y

)
≥ P

(
ABII,

(
Nλ

1 +Nλ
2 (N

λ
1 ,Y )

)
,Y
)
,

which implies that

C e,λ (Nλ
1 ,N

λ
2 (N

λ
1 ,Y ))≥ C e,λ ,II(Nλ

1 ,N
λ
2 (N

λ
1 ,Y )).

Applying (C.80) to Sequence II, we get that

C e,λ ,II(Nλ
1 ,N

λ
2 (N

λ
1 ,Y ))

= cII
1 Nλ

1 +E
[
cII

2 Nλ
2 (N

λ
1 ,Y )+(hII +aII

γ
II)E

[
QII(Nλ

1 +Nλ
2 (N

λ
1 ,Y ),Λ

λ )|Y
]]

≥ cII
1 Nλ

1 +E
[

cII
2 Nλ

2 (N
λ
1 ,Y )+(hII +aII

γ
II)E

[(
Λ/µ

II−Nλ
1 −Nλ

2 (N
λ
1 ,Y )

)+ ∣∣∣∣Y]]
= c1Nλ

1 +E
[

c2Nλ
2 (N

λ
1 ,Y )+(h/γ +a)E

[(
Λ

λ −µ

(
Nλ

1 −Nλ
2 (N

λ
1 ,Y )

))+
|Y
]]

= C̄ e,λ (Nλ
1 ,N

λ
2 (N

λ
1 ,Y )),
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which implies that

C e,λ (Nλ ,∗
1 ,Nλ ,∗

2 (Nλ ,∗
1 ,Y )) = min

Nλ
1 ,N

λ
2 (N

λ
1 ,Y )

C e,λ (Nλ
1 ,N

λ
2 (N

λ
1 ,Y ))

≥ min
Nλ

1 ,N
λ
2 (N

λ
1 ,Y )

C e,λ ,II(Nλ
1 ,N

λ
2 (N

λ
1 ,Y ))

≥ min
Nλ

1 ,N
λ
2 (N

λ
1 ,Y )

C̄ e,λ (Nλ
1 ,N

λ
2 (N

λ
1 ,Y ))

= C̄ e,λ (N̄λ
1 , N̄

λ
2 (N̄

λ
1 ,Y )).

(C.90)

For Sequence III, it follows by construction that

P
(

AB,Nλ
1 +Nλ

2 (N
λ
1 ,Y ),Y

)
≤ P

(
ABIII,µ/γ

(
Nλ

1 +Nλ
2 (N

λ
1 ,Y )

)
,Y
)
,

which implies that

C e,λ (Nλ
1 ,N

λ
2 (N

λ
1 ,Y ))≤ C e,λ ,III(µ/γNλ

1 ,µ/γNλ
2 (N

λ
1 ,Y )). (C.91)

Applying (C.80) to Sequence III, we get that

C e,λ ,III(Nλ
1 ,N

λ
2 (N

λ
1 ,Y ))

= cIII
1 Nλ

1 +E
[
cIII

2 Nλ
2 (N

λ
1 ,Y )+(hIII +aIII

γ
III)E

[
QIII(Nλ

1 +Nλ
2 (N

λ
1 ,Y ),Λ

λ )|Y
]]

≤ cIII
1 Nλ

1 +E
[

cIII
2 Nλ

2 (N
λ
1 ,Y )+(hIII +aIII

γ
III)E

[(
Λ

λ/µ
III−Nλ

1 −Nλ
2 (N

λ
1 ,Y )

)+ ∣∣∣∣Y]]
+O(

√
λ )

= C̄ e,λ ,III(Nλ
1 ,N

λ
2 (N

λ
1 ,Y ))+O(

√
λ )

(C.92)
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Lastly, we can write

C e,λ (N̄λ
1 , N̄

λ
2 (N̄

λ
1 ,Y ))−C e,λ (Nλ ,∗

1 ,Nλ ,∗
2 (Nλ ,∗

1 ,Y ))

= C e,λ (N̄λ
1 , N̄

λ
2 (N̄

λ
1 ,Y ))− C̄ e,λ (N̄λ

1 , N̄
λ
2 (N̄

λ
1 ,Y ))+ C̄ e,λ (N̄λ

1 , N̄
λ
2 (N̄

λ
1 ,Y ))−C e,λ (N∗1 ,N

∗
2 (N

∗
1 ,Y ))

(i)
≤ C e,λ ,III(µ/γN̄λ

1 ,µ/γN̄λ
2 (N̄

λ
1 ,Y ))− C̄ e,λ (N̄λ

1 , N̄
λ
2 (N̄

λ
1 ,Y ))+ C̄ e,λ (N̄λ

1 , N̄
λ
2 (N̄

λ
1 ,Y ))

−C e,λ (N∗1 ,N
∗
2 (N

∗
1 ,Y ))

( j)
= C e,λ ,III(µ/γN̄λ

1 ,µ/γN̄λ
2 (N̄

λ
1 ,Y ))− C̄ e,λ ,III(µ/γN̄λ

1 ,µ/γN̄λ
2 (N̄

λ
1 ,Y ))

+ C̄ e,λ (N̄λ
1 , N̄

λ
2 (N̄

λ
1 ,Y ))−C e,λ (Nλ ,∗

1 ,Nλ ,∗
2 (Nλ ,∗

1 ,Y ))

(k)
= O(

√
λ ),

where (i) follows from (C.91), ( j) follows from (C.86), and (k) follows from (C.90) and

(C.92).

Proof of (III). For the oracle problem, we consider the following stochastic-fluid opti-

mization problem

min
Nλ

1

{
c1Nλ

1 +E

[
min

Nλ
2 (N

λ
1 ,Λ

λ )

{
c2Nλ

2 (N
λ
1 ,Λ

λ )+(hµ/γ +aµ)E
[(

Λ
λ/µ−Nλ

1 −Nλ
2 (N

λ
1 ,Λ

λ )
)+
|Λλ

]}]}
.

(C.93)

whose optimal solution is given by

N̂λ
1 = F̄−1

Λλ /µ
(c1/c2)(λ/µ)α , and N̂λ

2 (N̂
λ
1 ,Λ

λ ) = (Λλ/µ− N̂λ
1 )

+.

We denote the staffing rule that prescribes (N̂λ
1 , N̂

λ
2 (N̂

λ
1 ,Λ

λ )) as û. The same lines of

analysis used to show statement (II) can be applied to establish that

C o,λ
û −C o,λ

2,∗ = O(
√

λ ). (C.94)

Recall from the proof of Proposition 7 that u2,ERR prescribes staffing levels (N̄λ
1 , N̄

λ
2 (N̄

λ
1 ,Y ))

where

N̄λ
2 (N

λ
1 ,Y ) =

(
F̄−1

Z

(
c2

hµ/γ +aµ

)(
λ

µ

)ν

+
λ

µ
+Y

(
λ

µ

)α

−Nλ
1

)+

,
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and N̄λ
1 solves

0 =c1− c2P
((

λ

µ

)α
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(
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λ

µ
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)ν)
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λ
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(
λ

µ
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λ

µ

)
.

(C.95)

Next, we compare the two inner-optimization problems in (3.18) and (C.93). It holds

that

E
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2 (N̄

λ
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µ
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2 (N̄

λ
1 ,Λ
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)+}]

=
∫

∞
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∫
∞
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(C.96)

Denote part of the integrand in (C.96) as

gλ (y,z) := c2

(
F̄−1

Z

(
c2

hµ/γ +aµ

)(
λ

µ

)ν

+
λ

µ
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µ
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µ
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1
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.

By construction of the two optimization problems, it holds that gλ (y,z) ≥ 0 for all

y,z ∈ R. Moreover, it follows from (C.95) that at least one of the following two cases

holds:
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(i) P
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λ
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Z

(
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Note that if
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= Θ(λ ν).

In addition, if
(

λ

µ

)α

y≤
(

N̄λ
1 −

λ

µ
− F̄−1

Z

(
c2

hµ/γ+aµ

)(
λ

µ

)ν)
and

(
λ

µ

)α

y+
(

λ

µ

)ν

z > N̄λ
1 −

λ

µ
, then

gλ (y,z) = (hµ/γ +aµ− c2)
(

λ/µ + y(λ/µ)α + z(λ/µ)ν − N̄λ
1

)+
= Θ(λ ν).

Therefore, we have

∫
∞

−∞

∫
∞

−∞

gλ (y,z) fY (y) fZ(z)dydz = Θ(λ ν). (C.97)

It follows from (C.96), (C.97), and the construction of stochastic-fluid problems (3.18) and

(C.93) that

C e,λ
2,ERR−C o,λ

û = Θ(λ ν). (C.98)

The statement follows from (C.94), (C.98), and statement (II).

C.7 Non-Parametric Estimation of α and σ

In this section, we provide more details of the non-parametric estimation proposed in Ma-

man (2009) to approximate the relationship between α and σ in the random arrival rate

(3.3). In particular, this method does not impose any distributional assumption on X . How-

ever, it requires that α > 1/2.
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Let Li be a generic random variable denoting the arrival count during a type-i shift,

i ∈I . Since Li|Λi ∼Poisson(Λi), we have

E [Li] = E[E[Li|Λi]] = λi

Var(Li) = Var(E[Li|Λi])+E[Var(Li|Λi)] = λ
2α
i σ

2 +λi, i ∈I .

Thus,
Std(Li)

λ α
i

=
(
σ

2 +λ
1−2α

i
)1/2

, i ∈I .

In addition, since α > 1/2,

lim
λ→∞

(logStd(Li)−α logλi) = logσ , i ∈I .

Hence, it holds for large λi that

logStd(Li)≈ α logλi + logσ , i ∈I .

Using sample mean L̄i to approximate λi and sample standard deviation Σi to approximate

Std(Li), we get that

logΣi ≈ α̂ log L̄i + log σ̂ , i ∈I ,

which is equivalent to (3.20) in our parametric estimation setting.

C.8 Supplementary Numerical Experiments

C.8.1 Translation of The Two-Stage QED Staffing Rule

In this appendix we conduct more numerical experiments to examine system performance

under the two-stage QED staffing rule with different specifications of k in (3.12). In what

follows, we repeat the experiments in Tables 3.2 (with c2 = 2) and 3.3 (with c2 = 10)

for other values of surge staffing costs, i.e., c2 = 6,14. We remark that for the system

parameters under consideration, Assumption 5 requires that c2 < 18. The results of these

experiments corroborate the efficacy of the particular form of the two-stage QED staffing

rule proposed in (3.13) for small systems.
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Table C.1: System performance under different specifications of the two-stage QED staffing rule
with β ∗ = 0.967,η∗ = 0.120
(µ = 1,γ = 0.1,α = 0.75,h = 1.5,a = 3,c1 = 1,c2 = 6)

λ

k
-3 -2 -1 0 1 2 3

25 60.30% 29.61% 9.85% 1.12% 0.00% 5.64% 15.09%
50 41.01% 20.29% 7.18% 1.19% 0.00% 3.44% 9.99%
75 30.78% 15.83% 5.33% 0.81% 0.00% 2.91% 8.66%

100 23.59% 10.91% 3.29% 0.23% 0.00% 2.93% 7.91%

Table C.2: System performance under different specifications of the two-stage QED staffing rule
with β ∗ = 1.465,η∗ =−0.380
(µ = 1,γ = 0.1,α = 0.75,h = 1.5,a = 3,c1 = 1,c2 = 14)

λ

k
-3 -2 -1 0 1 2 3

25 76.65% 31.24% 7.00% 0.00% 4.10% 13.40% 24.12%
50 49.06% 21.06% 5.20% 0.00% 3.47% 10.51% 18.65%
75 37.26% 15.58% 3.26% 0.00% 2.63% 8.67% 15.11%
100 27.70% 11.56% 2.20% 0.00% 2.59% 7.64% 13.83%

C.8.2 Robustness of The Proposed Staffing Rule

In this section we conduct numerical experiments to check the robustness of the proposed

staffing rules with respect to ED-specific patient-flow dynamics. In particular, we consider

the parameters associated with Thursday day shifts, and run simulations incorporating dif-

ferent levels of ED-specific features that are not considered in the theoretical model. To

prevent prediction error from confounding the results, we assume prefect demand infor-

mation at the surge stage. In particular, we compare the oracle policy u2,SFARI with the

single-stage newsvendor solution u1,NV . Figure C.3a provides a reference to the theoretical

setting, where we assume exponential service times, constant arrival rate during the shift

(which is equal to the average shift-level arrival rate shown in Table 3.4), and initialize

Thursday day shift at its expected steady-state queue length conditional on the realized ar-

rival rate. The cost curves are generated by increasing the holding cost so that its ratio to

the base-stage staffing cost is from 0.5 to 1.1 in increment of 0.2. The 95% confidence in-

tervals are derived by simulating 1000 realizations of Thursday day shifts for each holding
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cost and each policy. With everything else held constant to that in Figure C.3a, Figure C.3b

assumes lognormal (as opposed to exponential) service times, and Figure C.3c considers

both lognormal service times and hourly-varying arrival rates. We observe that the cost

curves in Figures C.3a–C.3c are very similar. This implies that lognormal service times

and hourly-varying arrival rates do not significantly deviate system performance from that

in the theoretical setting.

Figure C.3: Impact of service time distribution and non-stationary arrival rate
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C.8.3 ED-Catered Staffing Adjustment

In this section we compare the proposed ED-catered staffing adjustment to the optimized

one among the same family of adjustment schemes. Recall from Section 3.7.4.2 that to

account for the end-of-shift effects, we propose an adjustment scheme for the two-stage

error policy and heuristically set ξ1 = 5 and ξ2 = 1. To make the comparison fair, we apply

the same base-stage adjustment to the single-stage newsvendor solution in the ED setting.

In what follows, we optimize the adjustment parameters for the two policies separately. In

particular, we simulate the ED over 52 weeks for a wide range of holding costs whose ratio

to the base-stage staffing cost range from 0.5 to 1.1. We allow the abandonment cost to

grow proportionally to the holding cost by fixing their ratio to be 1.5. For each policy and

each holding cost, we enumerate ξ1 (as well as ξ2 for the two-stage error policy) from 0

to 10 in increment of 1. (Note that the optimal adjustment parameters are both policy- and

cost-dependent.) Figure C.4 compares the tradeoff curves of u2,ERR and u1,NV using (i) the
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heuristic adjustment, (ii) the optimized adjustment, and (iii) no adjustment. We note that

when there is no adjustment, u2,ERR outperforms u1,NV for all holding costs. Compared

to no adjustment, the heuristic and optimized adjustments further reduce the expected total

costs for u2,ERR. In addition, the tradeoff curves generated using the heuristic and optimized

adjustments are almost indistinguishable. These results demonstrate significant value from

applying transient-shift adjustment to u2,ERR. Given the high proximity of the tradeoff

curves yielded by the heuristic and optimized adjustments, applying the simple heuristic is

effective and circumvents additional computation need.

Figure C.4: Comparison of tradeoff curves under the proposed and optimized adjustment
parameters
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