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Abstract

Towards Generalist Robots through Visual World Modeling

Boyuan Chen

Moving from narrow robots specializing in specific tasks to generalist robots excelling in mul-

tiple tasks in various environmental conditions is the future of next-generation robotics. The key

to generalist robots is the ability to learn world models that are reusable, generalizable, and adapt-

able. Having a general understanding of how the physical world works will enable robots to acquire

transferable knowledge across different tasks, predict possible outcomes of future actions before

execution, and constantly update their knowledge through continual interactions. While the major-

ity of robot learning frameworks tend to mix task-related and task-agnostic components altogether

throughout the learning process, these two components are often not intertwined when one of them

is changed. For example, a task-agnostic component such as the computational model of the robot

body remains the same even under different task settings, while a task-related component such as

the dynamics of a moving object remains the same for different embodiments.

This thesis studies the key steps towards building generalist robots by decomposing the world

modeling problem into task-agnostic and task-related elements: (1) robot self-modeling; (2) robot

modeling other agents; and (3) robot modeling the physical environment. This framework has

produced powerful and efficient learning-based robotic systems for a variety of tasks and physical

embodiments, such as computational models of physical robots that can be reused and adapted

to numerous task objectives and changing environments, behavior modeling frameworks for com-

plex multi-robot applications, and dynamical system understanding algorithms to distill compact

physics knowledge from high-dimensional and multi-modal sensory data. The approach in this

thesis could help catalyze the understanding, prediction, and control of increasingly complex sys-

tems.
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2.6 Pipeline Execution: we executed the motor commands output by our entire two-
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robot joint angles and its 3D point cloud. (B) We show the computational diagram
of our visual self-model. The coordinate network takes in the spatial coordinate
and the kinematic network extracts kinematic features from the input joint angles.
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3.3 3D self-aware motion planning tasks. We present an overview of three different
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to be in contact with a randomly placed target sphere. Touch a 3D sphere with
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effector link. Touch a 3D sphere with end effector while avoiding obstacle (Right)
tasks the robot to propose an entire set of collision-free trajectories in the form of
intermediate joint angles to touch a randomly placed target sphere using its end
effector. The three tasks gradually becomes harder with more constraints. . . . . . 27
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3.4 visual self-model predictions. (A) Quantitative evaluations of our visual self-
model predictions in both simulated and noisy real-world environments. Our visual
self-model outperforms nearest neighbor and random baselines suggesting that the
visual self-model learns a generalizable representation of the robot morphology
beyond the training samples. (B) With simulated training data, our visual self-
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3.8 Resiliency Tests. In the first column, the learned visual self-model can detect the
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visual self-model can identify the specific type of change through the mismatch
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show how the visual self-model can update its internal belief to match the current
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4.1 Visual Theory of Behavior An actor robot (black circle) is programmed to move
towards the nearest food (green circle) that it can see, and consume it. Sometimes
(a), the nearest green circle is directly visible to the actor, but sometimes (b) the
nearest green circle is occluded by an obstacle. When occluded, the actor will
move towards the closest visible circle, if any. After watching the actor act in
various situations, an observer-AI learns to envision what the actor robot will do in
a new, unseen situation (c). The observer’s prediction is delivered as a visualization
of the actor robot’s “trajectory smear” (d). This entire reasoning process is done
visually, sidestepping the need for symbols, logic, or semantic reasoning. . . . . . . 49

4.2 Experimental setup. (A) Actor robot in playpen, showing observer, green food,
and red obstacle. (B) A sample input image as seen by the observer, and (C)sample
output image produced by the observer, which includes a prediction of the motion
path of the actor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Visualization of the behaviors of the actor robots and Observer network ar-
chitecture. (A) We pre-programmed four types of behaviors for the actor robot.
The images shown here are produced by integrating a sequence of frames from a
video captured by the top-down camera. The robot path is shown in black, the rect-
angular obstacle (if any) in red and the goal circles in green or red. (B) The image
prediction network is composed of several layers of convolutional units and decon-
volutional units. At the deconvolutional stage, we utilize multi-scale prediction to
maintain high resolution at the output image. Numbers indicate the dimension of
output feature map after each module. . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Success Rate of Observer AI and Physical scenes and outcomes envisioned by
the observer. (A) We report the successful rate of the observer AI for each type
of behavior during testing. Noted that all the behaviors of the actor robot are seen
during training together and no other information is given except the single image
frame. Our observer AI achieves a 98.5% success rate on average across all four
types of behaviors of the actor robot. (B) The first column and the third column
show some sample scenarios involving the actor robot, one or two green circles,
and a square obstacle. The second and the fourth column show the outcome as
envisioned by the observer. The left two columns (Success) show successful vision,
whereas the right two columns (Failure) show failed envision. . . . . . . . . . . . . 56

4.5 Handling ambiguity. This observer AI is trained only on the first frame as input.
Therefore, there are multiple possible future trajectories possible based on only
this input frame. As shown in A. Image Pair Prediction, the observer handles this
ambiguity by outputting one of the heuristic behaviors or as a blurry trajectory.
Although our observer model is trained using start and end image pairs (with inte-
gration of all the past frames), the observer can be used in an online fashion during
evaluation. B. Progressive Video Sequence Prediction shows the prediction results
using our model across multiple time stamps. . . . . . . . . . . . . . . . . . . . . 59
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4.6 Physical scenes and outcomes envisioned by the observer. The first column and
the third column show some sample scenarios involving the actor robot, one or
two green foods, and a square obstacle. The second and the fourth column show
the outcome as envisioned by the observer. The left two columns (Success) show
successful vision, whereas the right two columns (Failure) show failed or blurry
envision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.7 Training and testing of the observer and corresponding success rate. We first
gathered training and testing data by randomly placing the actor, two green food
items, and the obstacle (Table, A). We also collected “obscured” test cases where
we deliberately placed the closest food to where it is not visible to the actor (Table,
B). Higher success rates were achieved by balancing the training data with half
“visible” data and half “obscured” data (Table, C and D). Learning curves across
all four above scenarios are shown. Error bars are presented to show experiment
results across three different random seeds used in both data splitting and network
training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.8 Counterfactual Perturbation and Prediction Sensitivity. (A) The first column
shows the original observation of the observer and the third column shows the
prediction from the observer. The second column is the real trajectory of the actor
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Chapter 1: Introduction

1.1 Motivation

Despite the accelerating progress in robotics, robots today remain relatively narrow in their

capabilities. Current robots are typically designed to be specialized in one particular task, such as

part pick and place, navigation, and locomotion. Though robots are becoming better and better at

these tasks, they are pushed towards “specialists robots” in one particular environmental setting or

task setting.

Consider an assistive robot offering to open the door when both our hands are occupied. It

turns out that this task is trivial for humans but extremely difficult for the current robots to do. In

order to offer help like this in everyday human activities, robots need to know how to grasp and

manipulate the door, recognize the need to provide help, understand the perspective of the human

and take the right motion plan for safe operations. All these subtle but critical capabilities are

essential for robots to work seamlessly alongside humans. In other words, robots not only need to

be good at a specific task, but they also need to be good at multiple tasks in various environmental

conditions. Such future robots are “generalist robots”.

The gap from “specialists robots” to “generalist robots” highlights a fundamental challenge of

the current robot design: instead of learning each new task from scratch, robots need to maintain a

consistent belief of the world, adapt this belief to different tasks and environments, and update the

belief. Therefore, the fundamental challenge is centered around how to build a world model and

leverage the model for various task planning.

The standard paradigm for robot learning seeks to model the world by learning task-specific

knowledge and task-agnostic knowledge altogether from interaction data. This paradigm inherits

the widely adopted end-to-end learning framework in computer vision and natural language pro-
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cessing. However, robotics poses several unique challenges that make this paradigm difficult to

scale in robot learning domain. First, there is not enough human power to supervise robots. There-

fore, robots need to learn on their own and quickly adapt to different scenarios. Second, the world

changes constantly. Furniture may be moved around and new objects may be introduced. In this

case, the learned knowledge should recognize such changes and generalize to new settings. Third,

there are often the presence of other agents such as humans, animals and other robots. Robots need

to take into account the behavior, goals and perspectives of these other agents to plan accordingly.

Finally, the world comes with complex physics and dynamics. Robots need to distill compact

physics knowledge to reuse them in different future settings to be truly adaptable.

This thesis approaches the challenging world modeling problem by decomposing the problem

into three major aspects aiming to learn disentangled representation of the task-agnostic models

and task-specific models:

• Robot Self-Modeling. Robots learn what they can and cannot do. These self-models allow

the robots to predict the possible outcomes of multiple future actions without trying them

out in the physical reality. By learning a consistent self-model, robots can carry over and

update the self-model under different changes.

• Robot Modeling of Other Agents. Robots learn to model the behaviors, goals and perspec-

tives of other agents. The models of others enable robots to move and plan by taking other

agents into the consideration for multi-agent settings.

• Robot Modeling the Physical Environment. Robots distill compact physical knowledge

from noisy and high-dimensional data. These data often comes from natural and unlabelled

sensory data from multiple modalities.

1.2 Thesis Outline

This thesis is structured as follows:
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Chapter 2 introduces a method to scale data-driven forward-kinematics self-modeling ap-

proach to robotic platforms with complex kinematics and dynamics. In particular, this chapter

introduces both the hardware and software design of an animatronic robot face with soft skin and

a visual perception system. The robot can first produce a self-image to predict what itself would

look like if it were going to imitate a given facial expression and then use an inverse model to

produce the actual motor commands to execute. Once the self-model is acquired, the robot can

imitate diverse facial expressions across multiple human subjects.

Chapter 3 presents a novel perspective on data-driven self-modeling termed query-based self-

modeling. Query-based self-model learns to model the full-body robot morphology and kinematics

by answering pose-conditioned space occupancy queries of the robot body. The learning data

source purely comes from visual observations. Thus, this self-model is also known as a visual

self-model. Such self-model can then be reused in multiple control and motion planning tasks in

real-time without any retraining. When there is self-damage, this self-model can first detect the

change, identify the specific type of the change, and finally recover from the change.

Chapter 4 studies how to generalize the idea of self-modeling to modeling of other agents.

This chapter introduces a long-term visual predictive model to learn the behavior of another robot

solely from visual inputs. Several experiments such as prediction accuracy evaluation, false-belief

test and counterfactual perturbation are proposed to demonstrate the effectiveness of the proposed

method on a physical robot platform.

Chapter 5 describes an approach to have one robot to further model the visual perspective of

another robot, an ability known as visual perspective taking. Moving beyond behavior modeling

to perspective modeling enables the robot to perform tasks that involve complex spatial reasoning

among multiple agents. This chapter focuses on the task of visual hide and seek. With the predic-

tions of what the 3D environment will look like from the moving opponent robot’s point of view,

the hider robot can accurately evaluate the safety level of all possible locations in the room and

plan an optimal trajectory to hide.

Chapter 6 develops a method to automatically discover the fundamental state variables hidden
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in experimental data. While the previous four chapters have focused on modeling the embodied

self and others, this chapter starts to explore how to model the physical environment by distilling

compact physical knowledge from high-dimensional noisy data. The proposed two-stage approach

first identifies the minimum number of variables needed to fully describe the system dynamics and

then extracts the values of these variables, all directly from videos. The extracted state variables

preserve significant properties for long-term dynamics predictions which is valuable for numerous

robotics applications.

Chapter 7 goes beyond modeling of the physical environment with visual sensory modality

and presents a learning-based method to reconstruct the visual contents of the scene from acoustic

vibrations. Though visual signals have served as a major source of robot perception, other modal-

ities such as sound are also essential for robots to perceive the rich environmental information for

state estimation and decision making. This chapter presents a model to estimate the state of a

dropped object from the acoustic vibrations caused by its motion.

Conclusion offers conclusion, discussion and possible future directions.

1.3 Related Works

1.3.1 Robot Self-Modeling

Robot self-modeling aims to model the computational aspects of the robot body and decouple

the embodied model from task-related components. Different approaches model different aspects

of robots for specific downstream tasks, such as the tilt angle of the robot [1], the position of end

effectors [2], the velocity of motor joints [3], the mirror image of animatronic faces [4], or the

contact locations as well as joint configurations of robot grippers [5]. These approaches are also

known as data-driven forward-kinematics self models.

1.3.2 Predictive Vision

There is a substantial body of work on predictive vision [6, 7, 8, 9, 10, 11, 12, 13, 14]. The

strategy presented in this paper is also inspired by the successful applications of these approaches.
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Some research groups are also attempting to utilize this idea on robot motion planning [15]. In

these approaches, possible future scene representations are predicted in a recurrent manner, i.e.,

after the next possible frame is predicted, it is fed into the input loop to predict subsequent frames.

What is missing when these approaches can be effective for building Robot Theory of Mind, they

must be capable of predicting both possible future actions and goals of other robots over a relatively

long-term horizon.

1.3.3 Self-supervised learning

Our work uses unlabeled video to learn useful representations without manual supervision. In

recent years, self-supervision, which predicts information naturally present in data by manipulating

or withholding part of the input, has become a popular paradigm for unsupervised learning. Vari-

ous types of self-supervised signals have been used to learn strong visual representations, such as

spatial arrangement [16], contextual information [17, 18], color [19, 20], the arrow of time [21, 22,

23, 24, 25, 26], future prediction [6, 8, 11, 27], consistency in motion [28, 29], view synthesis [30,

31], spatio-temporal coherence [32, 33, 34, 35, 36], and predictive coding [27, 37]. Learned repre-

sentations are then used for other downstream tasks such as image classification, object detection,

video clip retrieval, and action recognition.

1.3.4 Machine Theory of Mind

Recently, there is an emerging body of work studying the behavior of machines to better under-

stand machine behavior so as to better control it in the future [38]. Researchers have tried to build

Theory of Mind that would apply to robots or machines, as this would in their view allow robots to

better emulate the ability to grasp a perspective adopted by others. Robot Theory of Mind is also

posited to lead to a better understanding of the meta-cognition mechanism and build machines that

could exhibit human like behaviors [39].

In Human Robot Interaction, Scassellati [40] implemented functions such as face finding and

face recognition for different animate and inanimate entities, while attributing them visual attention
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inherited from humans [41, 42]. Systems that try to detect and infer the intentions of humans have

also been developed [41, 42]. Understanding the behavior of other agents by building and evolving

self-models [43, 44, 45, 46, 47] is also a key step in the development of Theory of Mind pertaining

specifically to robots.

Authors of recent studies [48, 49, 50, 51, 52] have also attempted to build a mind network

directly for the observer robot, however all with symbolic reasoning processes. We have previously

[49] conducted both simulations and real-world experiments involving a real robot that reverse-

engineers the actor’s policy with neural networks based on collected trajectories. However, the

trajectories of the actor robot were given to the observer network directly and the definition of

the final goal of the actor robot and the dynamics of the scene were not learned. Rabinowitz [48]

presented a similar problem as a few-shot learning frameworks where the next step action was

predicted. Nevertheless, the authors adopted discrete action spaces and experimented on a small

(11 × 11) grid world setting. These constraints do not apply to real robotics settings and must be

overcome in order to have real life applications.

1.3.5 Embodiment Navigation and Manipulation

Our work builds on research for embodied agents that learn to navigate and manipulate en-

vironments. Embodied agents with extensive training experience are increasingly able to solve a

large number of problems across manipulation, navigation, and game-playing tasks [53, 54, 55, 56,

57, 58, 59, 60, 61]. Extensive work has demonstrated that, after learning with indirect supervision

from a reward function, rich representations for their task automatically emerge [62, 63, 64, 60, 65,

66]. Several recent works have created 3D embodiment simulation environment [67, 68, 69, 70,

71] for navigation and visual question answering tasks. To train these models, visual navigation is

often framed as a reinforcement learning problem [72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83,

57]. Moreover, by incorporating multiple embodied agents into the environment, past work has

explored how to learn diverse strategies and behaviors in multi-agent visual navigation tasks [65,

84]. For a full review of multi-agent reinforcement learning, please see [85, 86, 87, 88, 89].
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1.3.6 Sound in Robotics

Most related research to our work is on audiovisual object understanding for robot perception

and control. [90] investigates vision and sound in a robot setting to predict which robot actions

caused the given sound. [91] leverages audio signals from ball bouncing motions to calibrate the

stochastic dynamical events for “sim2real” tasks. [92] predicts the trajectory of a falling cube

for robot object retrieval outside visible region. Instead of predicting the 2D trajectory for a sin-

gle cube, this paper learns to predict the entire visual scene under fully occluded conditions by

outputting RGB and depth images on three different blocks.
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Chapter 2: Robot Forward-Kinematics Self-Modeling

Building computational self-models of robot bodies, or the ability of a robot to simulate its

physical self, is an essential requirement for robot motion planning and control. Similar to humans

and animals [93, 94], robots can use self-models to anticipate future outcomes of various motion

plans without explicitly trying them out in the physical world. Predictions obtained using a self-

model can be utilized in decision criteria for future actions. Importantly, a consistent self-model,

once acquired, can be re-purposed for many different tasks and thus can serve for lifelong learning.

Most available robotic systems rely on dedicated physical simulators for task planning and

control [95, 96, 97, 98, 99, 100]. Yet, these simulators require extensive human effort to develop,

calibrate and maintain over the lifetime of the robot. In contrast, fully data-driven self-modeling

enables machines to learn their forward kinematics directly in situ using task-agnostic interaction

data.

In this chapter, we will introduce our efforts [4, 101] on driving an animatronic robot face

with a soft skin and complex kinematics and dynamics with data-driven forward-kinematics self-

modeling. The majority of past works on forward-kinematics self-modeling focus only on rigid

body robots. However, directly scaling the previous approaches to hybrid mechanical embodiment

do not work. For example, the state of the soft skin of the robot cannot be easily defined as 6-

DoF poses. Therefore, a more general data-driven forward-kinematics self-modeling approach

that works across both rigid body and soft body robots require extensive re-design of the learning

algorithms. Here, we propose to use the mirror image of a robot, known as the “self-image” of

the robot, as the intermediate representation to actuate an animatronic robot face to mimic diverse

human facial expressions across various human subjects without any human supervision during

training.
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2.1 Background

Facial expressions are an essential aspect of nonverbal communication. In our day-to-day

lives, we rely on diverse facial expressions to convey our feelings and attitudes to others and

interpret other people’s emotions, desires and intentions [102]. Facial mimicry [103, 104, 105,

106] is also recognized as a vital stepping stone towards the early development of social skills for

infants. Therefore, building robots that can automatically mimic diverse human facial expressions

[107, 108, 109, 110] will facilitate more natural robotic social behaviors and further encourage

stronger engagement in human-robot interactions. Mimicking human facial expressions is also

the first step towards achieving adaptive facial reactions in robots. Despite the practical value

of such systems, extant research in this domain mostly focuses on the hardware design and pre-

programmed facial expressions, allowing robots to select one of the facial expressions from a

predefined set. Generalizing across various human expressions has remained challenging.

Current robotic face systems cannot mimic human facial expressions adaptively. The key lim-

itation is the lack of a general learning framework that can learn from limited human supervision.

Some traditional methods [111, 112, 113, 114, 115, 116, 117] define a set of pre-specified facial

expressions.

Others generalize this process to search for closest match from a database [118] or by following

an fitness function [118, 119]. However, as human expressions are highly diverse, these approaches

have limited value in practical robot-human interactions.

In this work, we present Eva 2.0 (Fig. 2.1) with significant upgrades to our previous Eva 1.0

[101] platform with more flexible and stable control. We further propose a general learning-based

framework to learn facial mimicry from visual observations that can generalize well to different

human subjects and diverse expressions. Importantly, our approach does not rely on human su-

pervisions to provide ground-truth robot commands. Our key idea is to decompose the problem

into two stages: (1) given normalized human facial landmarks, we first use a generative model to

synthesize a corresponding robot self-image with the same facial expression and then (2) leverage
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Fig. 2.1: Eva 2.0 is a general animatronic robotic face for facial mimicry. The robot does so
by learning the correspondence between facial landmarks and self-images as well as a learned
inverse kinematic model. The entire learning process relies on the robot’s motor babbling in a
self-supervised manner. Our robot can mimic varieties of human expressions across many human
subjects.

an inverse network to output the set of motor commands from the synthesized image.

Our experiments suggest that our approach outperforms previous nearest-neighbor search-

based algorithms and direct mapping from human face to action methods. Moreover, quantita-

tive visualizations of our robot imitations demonstrate that, when presented with diverse human

subjects, our method generates appropriate and accurate facial expression imitations.

Our primary contributions are threefold. First, we present an animatronic robotic face with soft

skin and flexible control mechanisms. Second, we propose a vision-based learning framework for

robot facial mimicry that can be trained in a self-supervised manner. Third, we construct a human

facial expression dataset from previous database, YouTube videos and real-world human subjects.

Our approach enables strong generalization over 12 human subjects and nearly 400 salient natural
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expressions. Our robot has a response time within 0.18 s, indicating a strong capability of real-time

reaction.

2.2 Robot Platform Design

Our robot design — based on our previous Eva 1.0 [101] with significant upgrades — consists

of two sub-assembly modules: facial movement module and neck movement module. We use

micro servo motors (MG90S) to actuate all the components of our robotic face. All parts in our

design are based on off-the-shelf hardware components that can be easily purchased online or 3D

printed. To accelerate research, we open-source the design and step-by-step assembly process on

our website. An overview of our hardware design is shown in Fig. 2.2.

Facial Movement Module Our facial movement module can be further divided into skull

frame, eye module, muscle module and jaw module. Compared to Eva 1.0, we redesign the 3D

shape of the skull frame to enlarge the maneuvering space and thus allow for more flexible move-

ments. The new skull frame also facilitates tighter connection to the skin with smoother and more

natural looks on the face surface.

By adding a pair of ball joints and three pairs of parallelogram mechanisms, we now also

ensure that the 6DoF eyeball module can move freely within a ±20° range both horizontally and

vertically, making the movements more stable. The rotation of each eyeball is controlled by two

motors and three ball joint linkages. We also upgraded the eyelid design based on human face.

Our robot skin is attached to the front skull. The muscles driving facial expressions are at-

tached to the inner side of the skin with a piece of fiber fabric, a strand of nylon cord, and a servo

actuator inside the back of the skull. By pulling different nylon cords, a specific skin region can be

deformed. We use the same region selection as Eva 1.0. To reduce the noise for muscle control, we

run each nylon cord through a transparent vinyl tube linking the skull front and the motor. Our de-

sign ensures that the deformation in each muscle is proportional to the motor’s rotation angle. Our

design enables a large possible space of facial expressions by manipulating 10 pairs of symmetrical

muscles in different proportions.
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Fig. 2.2: Mechanical Design: our robot is actuated by the motor servo module (A) controlled by
a Raspberry Pi 4 located at the bottom. The soft skin is connected to 10 motors via nylon cord.
Our 6DoF eye module (B) is decoupled from the front skull. The RGB camera (C) is only used
for random data collection of robot self-images but not for testing. The 6DoF neck module (D)
follows Steward platform.

The jaw module is responsible for deforming the two muscles around the mouth. This is similar

to the aforementioned skin movement design, but benefits from two additional coupled motors that

control the movement, allowing the jaw to open up to 20°.

Neck Movement Module Our 6DoF neck module design is inspired by Stewart platform.

Six motors are arranged in 3 pairs evenly distributed on 3 sides of the hexagon base. Each pair

comprises two motors in a mirrored arrangement that are connected to a ball joint linkage.

2.3 Self-Modeling through Self-Image

We propose a learning-based framework for controlling the animatronic robotic face to mimic

varieties of human facial expressions. An overview of our learning algorithms is shown in Fig.

2.3. We consider the following problem setup: given an image of human face displaying a natural

facial expression, the model needs to output the motor commands to actuate the robot to imitate

the given facial expression.
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Without human pre-programming for different expressions, the problem poses several key chal-

lenges and desired properties. First, we hope that the learning algorithm can generalize to diverse

unseen human faces. We leveraged the recent advances in human facial landmark detection to

obtain abstract representations from high-dimensional image frames (Section 2.3.1) which can be

shared among different human subjects.

The second challenge in attempting to achieve facial mimicry stems from the lack of ground-

truth pairs of human expressions and robot motor commands. Without hard-coding and extensive

trail-and-error, obtaining such a pair is not practical. In this chapter, we overcome this issue by

adopting a two stage learning-based method: (1) a generative model which first synthesizes a robot

self-image from facial landmarks processed by a proposed normalization algorithm (Section 2.3.3

and Section 2.3.2), (2) and an inverse model that is trained to produce desired motor commands

from the generated robot image (Section 2.3.3). As we will show, the ground-truth labels for both

models can be acquired with one round of self-supervised data collection without any human input.

2.3.1 Representation of Facial Expression

We capture facial expressions via facial landmarks, as this has been shown as an effective means

of representing the underlying emotions. More importantly, facial landmarks provide a unified

abstraction from diverse high-dimensional human images under different lighting, background and

poses.

Specifically, we extract facial landmarks with OpenPose [120, 121] software. The output is a

vector of 53 × 3 size representing the spatial position of 53 landmarks on human faces, with the

last dimension being confidence scores. We also extracted the head pose for direct neck movement

control. As ground-truth pairs for generating motor commands directly from the extracted human

landmarks are not available, we adopt a different strategy, as discussed below.
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Fig. 2.3: Model Overview: our two-stage framework consists of two major modules: a generative
network and an inverse network. Given an image captured by a regular RGB camera, we first
extract facial landmarks with OpenPose. We then normalize the human landmarks to the robot
scale and embed it on an image. Together with a reference static robot self-image, these two
images are concatenated to the generative network to synthesize a robot self-image as if the robot
makes the same expression. The inverse model takes the synthetic robot self-image to output the
final motor commands for execution.

2.3.2 Landmark Normalization

Before we send the landmarks from human faces for robot learning, we need to normalize the

spatial locations of the landmark vector to the robot domain. This is necessary due to potential vari-

ations in the scale or landmark arrangements in the captured human faces. Formally we normalize

each landmark coordinate from human space 𝐿𝐻 to robot space 𝐿𝑅 with:

𝐿𝑅 =
(𝐿𝐻 − 𝐻𝑚𝑖𝑛) (𝑅𝑚𝑎𝑥 − 𝑅𝑚𝑖𝑛)

𝐻𝑚𝑎𝑥 − 𝐻𝑚𝑖𝑛
+ 𝑅𝑚𝑖𝑛

where 𝐻𝑚𝑖𝑛, 𝐻𝑚𝑎𝑥 , 𝑅𝑚𝑖𝑛, 𝑅𝑚𝑎𝑥 represent the value ranges of the spatial location per corresponding

landmark in the sampled human and robot image frames.

2.3.3 Generative Model and Inverse Model

The generative model takes in the normalized human landmarks and generates a synthetic RGB

image allowing the robot to conceive the same facial expression, which we denote as robot’s self-

image. We parametrize the generative model 𝐺 with a deep neural network with parameter \.

A key challenge here is to map the coordinate vector to a high-dimensional image. This could

be accomplished by encoding the input vectors with a fully-connected network, which is thus used

by the robot to learn the entire spatial mapping. However, this simple approach requires a network

of strong capacity and optimization algorithm and does not perform well in practice [122].
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To this end, we propose to encode the spatial coordinates of the landmarks to a two-channel

image mask Mw×h×2
i [123]. The first channel has the value of 1 if there is a landmark at the partic-

ular location and 0 otherwise. The second channel is a greyscale image indicating the confidence

score returned by the landmark detection algorithm. This encoding matches the size of the robot

image, which helps with ensuring correct spatial correspondence.

Furthermore, instead of relying on the network to directly regress the absolute value in the

output image, it only needs to output the “change” in the image introduced by landmark displace-

ments. In practice, we achieve this by conditioning the network with a static robot self-image

Iw×h×3
s whereby the two images are concatenated along the depth channel. Our generative model

can be expressed as: Ii ← 𝐺 (Mi, Is).

Implementation Details We use a fully convolutional encoder-decoder architecture [124, 125]

where the resolution of the decoder network is enhanced by several hierarchical feature refinement

convolutional layers [126]. Since the network is fully convolutional, we can preserve all the spatial

information with high-quality outputs. Our network is optimized with a simple pixel-wise mean-

squared error loss using Adam [127] optimizer and a learning rate of 0.001. We train the network

for 200 epochs with batch size 196 until convergence on a validation dataset. The formal objective

function that we minimize is:

L𝐺 = MSE(𝐺 (M, Is), I)

The inverse model 𝐹 maps the synthetic robot self-image to motor commands in order to learn

an inverse mapping from the goal image to actions.

Action representation Our robot utilizes 𝑁 motors to actuate the face muscles. Given the

robot face image, it is straightforward to frame this problem as continuous value regression. That

is, given an input image, the network needs to output 𝑁 values for 𝑁 motor encoders. However,

this framing can quickly become impractical in complex real-world scenarios and may lead to

over-engineering. In practice, we observe that the motors have certain angle threshold to produce

salient and stable motion. As a result, we can achieve salient motions with a discrete parameterized

angle encoder without loss of accuracy.
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Fig. 2.4: Training Data Collection: the whole training process of our generative model and the
inverse model rely on a single robot dataset without human supervision. We collect our training
data with random motor babbling in a self-supervised manner whereby the camera facing the robot
is used solely for gathering the training data, i.e., it is not used during evaluation

We normalized and discretized the motor values to the [0, 1] range with 0.25 step size, re-

sulting in 5 values per motor. This discretization converts the original problem to a multi-class

classification problem. Given an input robot image, the inverse model will output 5 × 𝑁 numbers,

where every five numbers represents the probability of choosing each motor angle for one actuator.

Our inverse model can be expressed as: Ai ← 𝐹 (Ii).

Implementation Details Our architecture has 6 convolutional layers followed by several fully-

connected layers to adapt the output dimension to be 5 × 𝑁 . We train our network with a multi-

class Cross-Entropy loss with Adam optimizer and a learning rate of 0.00005 for 58 epochs. We

have 14, 000 pairs for training and 1, 000 pairs for validation and testing respectively. The formal

objective function is:

L𝐹 = Σ𝑁−1
𝑛=0 CE(𝐹𝑛 (I),An)
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2.3.4 Training Data Collection

Both models can be trained separately with the same data collected via self-supervised motor

babbling (Fig. 2.4). We randomized the angles of the 10 motors ranging from 0 to 1 with an

interval of 0.25 for 16, 000 steps. We used Intel RealSense D435i to capture RGB images and

cropped the image to 480 × 320 to center the robot head. For each step 𝑖, we recorded the motor

command values Ai, the corresponding robot images Ii, as well as the extracted landmark LR,i

from the robot with OpenPose. We thus obtain the training pairs of the generative model as (LR,i,

Ii) and the training pairs of the inverse model as (Ii, Ai). Since the data collection is purely random,

the process does not require any human labeling.

2.3.5 Inference

Once the generative model and the inverse model are trained, we can use them jointly to per-

form inference. Given the input human image captured by an RGB camera, we first extract the

landmark coordinates. After our normalization procedure, we can send it to our generative model

which then outputs a synthetic robot self-image. This synthetic robot image serves as input for

the inverse model which outputs the motor commands. All the network training and testing can be

accomplished on a single NVIDIA 1080Ti GPU, whereas the motor commands on the robot are

executed via WiFi.

2.4 Experiments

2.4.1 Evaluation Dataset

Even though the training of our models do not require any human face dataset, we constructed

a human facial dataset with salient facial expressions to perform extensive evaluations. Our human

expression dataset is a combination of MMI Facial Expression database [128] and a set of online

videos featuring eight subjects. We uniformly down-sampled the original videos to obtain 380

salient frames covering a variety of facial expressions and human subjects.
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2.4.2 Baselines

We are interested in evaluating the effectiveness of our approach for the generative model

(GM), the inverse model (IM), and finally the entire pipeline. To this end, we design our baseline

and ablation studies for each of them. For the generative model, we compared our method with a

randomly sampled (RS) image from a collection of real images. This comparison aims to ascertain

whether the synthetic image can outperform the real image and whether our model can predict

reasonable motion on the static robot template.

Even though our method successfully convert the inverse model to a classification problem, a

purely random baseline only has a 20% success rate. We also compared our model with another

two less random simple baselines — a randomly initialized network (RI) and a model trained for

about 100 iterations (RI-100).

For the entire pipeline, we evaluated different combinations of the above baselines. For ex-

ample, we obtained one baseline by combining our generative model with an inverse model that

has been trained for 100 iterations. Additionally, we present another three baselines. The first

one is to perform a nearest neighbor retrieval (NN) with the landmarks extracted from the output

of our generative model. We can directly search within our robot dataset. This baseline replaces

our inverse model with a NN model. Similarly, we can perform such NN operation with human

landmarks as a direct input. Lastly, we assessed whether we can directly generate the motor com-

mands without our two-stage algorithm by training a network to output motor commands from our

embedded input landmarks.

We used the same architecture for all the above baselines while varying only the number of

channels in the first layer for different input dimensions. We trained all the models with three

random seeds and report the mean and standard errors.

2.4.3 Evaluation Metrics

Our evaluation metrics cover both the pixel-wise accuracy of synthetic image and the accuracy

of the output commands. We also extracted landmarks from our synthetic image to measure if the
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Table 2.1: Accuracy of the Generative Model

Method Image Distance ↓ (×10−5) Landmark Distance ↓
GM (ours) 3.47± 0.009 0.46± 0.002

RS 6.47 ± 0.039 0.84 ± 0.007

Fig. 2.5: Robot Visualizations: we executed the output motor commands on our physical robot to
demonstrate that our method supports accurate facial mimicry of a variety of human expressions
across multiple human subjects.

model successfully learns the facial expression than simply copying the static image. Moreover,

we provide qualitative visualizations for the final pipeline. We also extracted landmarks from our

entire pipeline execution to compare against the input human landmarks. We use L2 metric for

both the image and landmark distances.

2.4.4 Results

Generative Model Tab. 2.1 shows the quantitative evaluation for our generative model. Our

generative model outperforms the random baseline by a large margin. Note that the image distance

is normalized by the total number of pixel values (480×320×3) which range from 0 and 1, whereas

the landmark distance is normalized by the total number of landmarks (53).

Inverse Model Tab. 2.2 shows the evaluation result for our inverse model. Compared with

the random initialized model, the model trained for 100 iterations as well as the purely random

baselines (20% accuracy), our inverse model produces much more accurate motor commands.

Two-Stage Pipeline By combining the generative and inverse model, we can use the synthetic

output from the generative model as the input for the inverse model, allowing us to evaluate the en-
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Table 2.2: Accuracy of the Inverse Model

Method Command Distance ↓ Command Accuracy ↑ (%)

IM (ours) 0.53± 0.009 75.86± 0.042

RI 1.39 ± 0.009 30.34 ± 0.038

RI-100 0.90 ± 0.010 56.40 ± 0.041

Table 2.3: Accuracy of the Entire Two-Stage Pipeline

Method Command Distance ↓ Command Accuracy ↑ (%)

GM IM 0.83 ±0.008 54.57±0.048

GM NN 1.06 ±0.009 45.74 ±0.045

GM RI 1.39 ±0.009 30.34 ±0.039

GM RI-100 0.98 ±0.009 53.48 ±0.041

Landmark to Motor 1.03 ±0.011 52.81 ±0.048

Landmark NN 0.98 ±0.095 49.3 ±0.045

tire two-stage pipeline. As shown in Tab. 2.3, our two-stage strategy outperforms all baselines, but

is inferior to the performance of its component models. This is to be expected, as the inverse model

takes the synthetic output from the generative model as its input when these are evaluated jointly,

whereas individual evaluations are based on real images from our robot dataset. Nonetheless, our

method still achieves the best predictions and is particularly advantageous compared to two single

model baselines, indicating that decomposing the problem into two sub-steps is a prudent design

choice.

Pipeline Execution We executed the output motor commands from the above two-stage pipeline

on our physical robot and computed the landmark distance extracted from the resulted robot face

with the ground-truth normalized landmarks. To provide qualitative evaluations, we visualized the

final robot face together with the input human face in Fig. 2.5.

Our evaluation was conducted on 380 salient frames which covers 10 video clips from 8 sub-

jects. We show the quantitative results compared with a random baseline in Fig. 2.6. Our approach

demonstrates a flexible learning-based framework to mimic human facial expression. Our method

also generalizes across various human subjects without any human supervision.
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Fig. 2.6: Pipeline Execution: we executed the motor commands output by our entire two-stage
pipeline and extracted the landmarks from the resulting physical robot face to compare against the
ground-truth human landmarks as well as a random baseline to benchmark the task difficulty. The
results show that our robot can imitate different human expressions accurately.

Overall, we present a new animatronic robot face design with soft skin and visual percep-

tion system. We also introduce a two-stage self-supervised learning framework for general face

mimicry. Our experiments demonstrate that the two-stage algorithm improves the accuracy and

diversity of imitating human facial expressions under various conditions. Our method enables

real-time planning and opens new opportunities for practical applications.
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Chapter 3: Robot Query-Based Self-Modeling

The last chapter has discussed the contributions toward scaling data-driven forward-kinematics

self-modeling approach to robots with complex kinematics and dynamics, such as an anima-

tronic robotic face with a visual perception system and soft skin. However, data-driven forward-

kinematics self-models must know in advance what aspects of the robot need to be modeled, such

as the tilt angle of the robot [1], the position of end effectors [2], the velocity of motor joints [3],

the mirror image of animatronic faces [4], or the contact locations, as well as joint configurations

of robot grippers [5]. The restricted predictive scope of traditional data-driven self-models limits

the general applicability of these self-models to future, yet unknown, 3D spatial planning tasks.

For example, a data-driven self-model focusing only on predicting the position of an end effector

may not be useful for tasks involving operation in a crowded workspace, where full-body collisions

must be factored into the planning. Ensuring that the entire robot arm motion will be collision-free

is a critical aspect for numerous safe robot operations such as object retrieval, trajectory planning,

and human-robot interaction. Data-driven modeling of the entire robot morphology and kinemat-

ics, without prior knowledge of what aspects of the morphology are relevant to future tasks, has

remained a major challenge.

In this chapter, we present a full-body visual self-modeling approach [129] (Fig.3.1) which

captures the entire robot morphology and kinematics using a single implicit neural representation.

Rather than predicting positions and velocities of prespecified robot parts, this implicit system is

able to answer space occupancy queries, given the current state (pose) or the possible future states

of the robot. For example, the query-driven visual self-model can answer queries as to whether a

spatial position (𝑥, 𝑦, 𝑧) will be occupied if the joints move to some specified angles. Since both

the spatial and robot state inputs are real values, our visual self-model allow continuous queries in

the domain of both control signals and spatial locations. Furthermore, the learning process only
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a1 a2 a3 a4

170.6° 23.1° -20.5° 5.3°

a1 a2 a3 a4

39.7° 31.4° 10.1° -77.1°

a1 a2 a3 a4

9.6° -15.9° -31.0° -89.2°

a1 a2 a3 a4

157.6° -101.8° -6.4° 0.7°

Fig. 3.1: Visual self-modeling robots. We equip the robot with the ability to model its entire
morphology and kinematics in 3D space only given joint angles, known as visual self-model.
With the visual self-model, the robot can perform variety of motion planning and control tasks
by simulating the potential interactions between itself and the 3D world. Our visual self-model is
continuous, memory efficient, differentiable and kinematic aware.

requires joint angles and sparse multi-view depth images, which enables generalizable and scalable

data acquisition without human supervision.

Once learned, the responses from this single visual self-model to a series of queries can then

be used for a variety of 3D motion planning and control tasks, even though the self-model was

only trained with task-agnostic random motor movements. Because of our fully differentiable

parameterization, the robot can directly perform efficient parallel gradient-based optimization on

top of the self-model to search for the best plans in real-time. We can also combine the self-

model in a seamless manner with existing motion planning techniques. Moreover, when the robot

sustains physical damage, such as broken motors or changed morphology, our self-model can

detect, identify and recover from these changes. Since our self-model is inherently visual, it can

provide real-time human-interpretable visualization of the robot’s internal belief of its current 3D

morphology and state. This ability to sense pose-conditioned space occupancy is perhaps not
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unlike our natural human ability to “see in our mind’s eye” whether our body could fit through a

narrow passage without actually trying it out in reality [130].

3.1 Query-Based Self-Modeling of Robots

3.1.1 Implicit Visual Self-Model Representation

Robots operate in a 3D world, and therefore being morphologically and kinematically aware

in 3D space is essential for them to successfully interact with the physical environments as well

as adapt to potential changes in the field. Traditionally, robot engineers build a physical simulator

and integrate it with CAD models of the robot. However, designing a simulation environment is

not trivial. Accurate CAD models that reflect the real as-built robot geometry may not be easily

available, especially for robots that have been modified due to damage, adaptation, wear and repair.

This challenge will likely become more acute as the variety and complexity of robotic systems con-

tinues to increase in the future, and especially as robots must operate with less human supervision,

maintenance, and oversight.

We therefore aim to learn the self-model of robots directly through task-agnostic data with

minimal human supervision or domain knowledge. Our goal is to learn a visual self-model which

can capture the entire body morphology and kinematics, without prior knowledge of the body

configurations such as joint placements, part geometry, motor axis and joint types. With the visual

self-model, a robot should be able to plan its future actions by rolling out the self-model before

executing any actions in the physical world. We can also visualize its final plan from different

viewing angles, because the model itself is three-dimensional.

There are two major challenges when designing a visual self-modeling process. First, we need

to carefully decide how to represent the 3D geometry of the robot body. Most existing 3D represen-

tations are explicit, such as point cloud, tessellated triangle meshes, or voxelized occupancy grids.

However, such approaches come with several limitations. Point clouds, meshes, and grids often

consume large amounts of memory to store even a single geometry, let alone a kinetic geometry

dependent on input DoF. Point clouds also lose structural connectivity, while voxel representa-
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Fig. 3.2: Implicit visual self-model representation. (A) Real-world setup for data collection. We
fused sparse views from five depth cameras to capture the point cloud of the robot body. As the
robot arm randomly moved around, we recorded pairs of the robot joint angles and its 3D point
cloud. (B) We show the computational diagram of our visual self-model. The coordinate network
takes in the spatial coordinate and the kinematic network extracts kinematic features from the input
joint angles. We then concatenated the spatial features and the kinematic features into a few layers
of MLPs to output the zero-level set SDF values. The implicit representation can be queried at
arbitrary continuous 3D spatial coordinates and different sets of joint angles.

tions lose continuous resolutions. These limitations are amplified in kinematic tasks, since the

self-models are expected to be dependent on trajectories of multiple degrees of freedom of the

robot.

The second challenge concerns the computational efficiency of leveraging the learned visual

self-model for downstream task planning. Once a visual self-model is formed, we hope that the

same model can be used for many tasks. In other words, the model must be task-agnostic. Fur-

thermore, real-time planning and control is critical for many robotic applications. Therefore, the

ideal representation should render the 3D model in a parallel and memory efficient manner using

GPU hardware. The model should also provide fast inference capability to solve common inverse

problems in robotics, such as inverse kinematics. Lastly, not every component of the robot body

weights equally in all tasks, so it should be possible to query different spatial components of the

visual self-model as needed. For example, the full 3D knowledge of the robot base and 3D geom-

etry of other arm components are not required when calculating the inverse kinematic solution of

a robot arm trying to reach a 3D object with its end effector.

We overcame the above challenges by proposing a state conditioned implicit visual self-model

that is continuous, memory efficient, differentiable, and kinematics aware. The key idea is that the
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model does not simply predict future robot states explicitly; instead, it is able to answer spatial and

kinematic queries about the geometry of the robot under various future states.

To construct a query-answering self-model, we leverage implicit neural representations to

model the 3D body of the robot as shown in Fig.3.2. Given a spatial query point coordinate

X ∈ R3 normalized based on scene boundary, and a robot joint state vector A ∈ R𝑁 specifying

all the 𝑁 joint angles, the visual self-model can be represented by a neural network to produce the

zero-level set Signed Distance Function (SDF) of the robot body at the given query point X .

We use SDF as a representation of 3D shapes [131]. An SDF is a continuous field in which each

point is associated with a magnitude value representing its closest distance to a surface, and a sign

(− or +) indicating if the point is inside or outside the surface boundary. Through this network, the

robot morphology is represented as the zero-level iso-surface of the function.

Formally, the model can be expressed as:

𝑆𝐷𝐹 = {X ∈ R3,A ∈ R𝑁 |𝐹 (𝐶 (X), 𝐾 (A))},

where 𝐶 is the coordinate neural network with several layers of MLPs to encode the spatial

coordinate features, 𝐾 is the kinematic neural network with several layers of MLPs to encode the

robot kinematic features, and 𝐹 is the last few layers of MLPs to fuse the features from both the

coordinate network 𝐶 and kinematic network 𝐾 after concatenating their outputs to produce the

final SDF values conditioned on the queried spatial coordinates and current joint angles. We omit

the batch size here for simplicity. For nonlinear activation functions, we used Sine functions to

preserve the details on the 3D models [132].

We trained the network by formulating the problem as an Eikonal boundary value problem.

Instead of supervising the network with the ground-truth SDF, similar to SIREN network [132],

we directly used point clouds and surface normals obtained by fusing observations from sparse

RGB-D camera views as labels, as indicated in Fig.3.2. In both simulation and real-world setup,

we used five RGB-D cameras to capture pairs of data for training, namely the joint angles and

the fused point cloud. During testing, the only available robot-related information to our visual
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Touch a 3D sphere with end effector

while avoiding obstacle
Touch a 3D sphere with end effector

Touch a 3D sphere

with any part of the robot body

Generate possible goal state Generate possible goal state Generate an entire possible trajectory

Fig. 3.3: 3D self-aware motion planning tasks. We present an overview of three different tasks.
Touch 3D sphere with any part of the robot body (Left) asks the robot to generate a set of target
joint angles such that some part of the robot body needs to be in contact with a randomly placed
target sphere. Touch a 3D sphere with end effector (Middle) requires the robot to generate a set
of target joint angles such that the robot needs to touch a randomly placed target sphere with its
end effector link. Touch a 3D sphere with end effector while avoiding obstacle (Right) tasks the
robot to propose an entire set of collision-free trajectories in the form of intermediate joint angles
to touch a randomly placed target sphere using its end effector. The three tasks gradually becomes
harder with more constraints.

self-model is a set of joint angles. More details of the network architectures and loss functions are

discussed in the Materials and Methods section.

Overall, our visual self-model is formed by several layers of MLPs that implicitly captures

the entire morphology and kinematics of the robot body. We implemented the network with dif-

ferentiable deep learning framework so that it can be easily deployed on GPUs with end-to-end

differentiable capabilities. Notably, though the entire self-model only consumes 1.1 MB to store

its weights, our visual self-model can represent the 3D morphology of the robot body with dif-

ferent kinds of joint angles at various continuous spatial locations. By separating the kinematic

feature encoder and coordinate feature encoder into two sub-networks, each sub-network captures

independent semantic meaning. As we will show next, this property allows the self-model to learn

rich kinematic features useful for downstream tasks.

3.1.2 3D Self-Aware Motion Planning

We aim to utilize the learned visual self-model in various motion planning tasks in 3D space.

In this section, we will present algorithm designs to show the use cases for three sample tasks

(Fig. 3.3). However, our model is not limited by only those three tasks. Rather, we use them as
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representative examples for demonstration purposes and we expect that the model can generalize

to other possible tasks.

• Touch a 3D sphere with any part of the robot body The goal of this task is to touch a 4cm

diameter sphere using any part of the robot body. To solve this problem, the robot needs to

calculate inverse kinematics in 3D without constraints on which specific body piece touches

the target object.

• Touch a 3D sphere with end effector This task not only requires the robot to touch a target

sphere, but it also asks the robot to touch it with the end effector link. This is a harder task

since the robot needs to solve inverse kinematics in 3D with a particular link constraint. The

solution space is quickly reduced.

• Touch a 3D sphere with end effector, while Avoiding an Obstacle In this task, we ask the

robot to go beyond computing a target end state with or without link constraints. Instead, in

order to succeed at this task, the robot needs to perform precise motion planning in 3D to

touch the final target while avoiding a large obstacle shown as red block in Fig.3.3. Overall,

the robot is tasked to propose an entire safe trajectory from its initial state to the target state.

During the execution of the proposed trajectory, the robot will fail the task if any part of the

robot body collides with the obstacle.

To solve these motion planning tasks, one immediate thought is to obtain the entire robot body

meshes and load them into existing robot simulators. This can be done by traversing all possible

spatial points under certain precision and different sets of joint angles through the implicit neu-

ral representation, and rendering the entire 3D robot mesh with post-processing algorithms [133].

Such usage of the visual self-model seems to be a straightforward solution to bypasses the need

to construct robot kinematic and geometric models such as CAD and URDF files. However, in

practice, we found that constantly loading new robot meshes and destroying old robot meshes in

commonly available robot simulators costed a significant amount of time. This limits the possibil-

ity of applying this method for real-time planning and control.
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We propose to frame the first two tasks as constrained optimization problems by leveraging

the differentiability of the visual self-model as well as its capability of answering partial queries

on spatial coordinates. Specifically, for the first task, we initialize thousands sets of joint angles.

We then sample 𝑃 points uniformly on the surface of the target object. Since the output of the

visual self-model will be zero when the queried spatial point is on the surface, the overall objective

is to find the set of joint angles which can minimize the total sum of output values across all the

sampled points on the target object. By freezing the weights of the learned visual self-model, we

can perform gradient descent from the output surface predictions with respect to the input joint

angles, under the constraint that the motor angles has to be within the range of [−𝜋, 𝜋].

Formally, the constrained optimization problem can be expressed as:

A∗ = minEA𝑏

[
ΣT 𝑝𝐹 (𝐶 (T 𝑝), 𝐾 (A𝑏))

]
s.t. − 𝜋 ⩽ 𝐴𝑏𝑖 ⩽ 𝜋, 𝑖 = 1, 2, 3, 4

where T ∈ R𝑃×3 is the sampled points on the target object, 𝑖 is the motor index, and 𝑏 =

1, 2, ..., 𝐵 is the index of each sampled set of joint angles with the maximum value 𝐵 to be the

batch size on a single GPU. Since the visual self-model runs parallelly on a GPU with small

consumption of memories, the entire optimization process can produce accurate solutions within a

short period of time. With more GPUs, the process can be further sped up.

To solve the second task, we need additional information about where the end effector locates

relative to the entire robot body. Since the current visual self-model was only trained to capture

the overall body geometries, similar to other works in self modeling, we can supervise the vi-

sual self-model to predict the end effector location at the same time. The good news is that our

visual self-model already has a specialized sub-network that implicitly captures the robot kine-

matics. Therefore, we can directly use the pretrained weights of the kinematic sub-network, and

train only two nonlinear layers of MLPs 𝐸 attached to the end of the sub-network with little ad-

ditional efforts. In fact, as we will show in the experiment section, our visual self-model provides

a strong semantic proxy to pre-train the kinematic sub-network, leading to superior performance
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than training a specialized network to predict the end effector position from scratch. Without our

decomposition formulation of kinematic sub-network, the acquired kinematics information may

not be easily distilled as an independent feature for future use.

Similar to the first task, we now can formalize the solution of the second task by adding another

objective function to make sure the resulted end effector reaches the target object. The overall

optimization problem can be formalized as follows:

A∗ = minEA𝑏

[
ΣT 𝑝_EE𝐸 (𝐾 (A𝑏)) + _SDF𝐹 (𝐶 (T 𝑝), 𝐾 (A𝑏))

]
s.t. − 𝜋 ⩽ 𝐴𝑏𝑖 ⩽ 𝜋, 𝑖 = 1, 2, 3, 4

As discussed above, the objective function includes two terms weighted by hyperparameters

_EE and _SDF. The first term ensures the end effector touches the target object and the second

term encourages the robot body to touch the target object. We found that adding a small _SDF

consistently achieves better results.

Regarding the third task, our visual self-model can directly work with existing motion planning

algorithms with minimal changes. There have been great success [134] on motion planning algo-

rithms to solve obstacle avoidance problem in high-dimensional state and action spaces. We thus

combine our visual self-model with the existing algorithms in a plug-and-play manner. Specifi-

cally, we use RRT* [135] as our backbone algorithm due to its popularity, probabilistic complete-

ness and computational efficiency. Generally speaking, there are two major components in RRT*

that require physical inference with robot bodies. The first component is to calculate the goal state,

and the second component is to check whether a collision will happen given a particular state of

the robot. With these two components, various planning algorithms can narrow the search space to

the final solution without having to explicitly query robot status again.

Traditionally, these two components require a dedicated robot simulator and pre-defined robot

bodies. With our visual self-model, we can reach the final solution by simply performing fast

parallel inference on the learned model. Specifically, the goal state can be obtained by running the

same optimization procedure as in the second task. For collision detection, we can pass uniformly
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sampled points on the obstacle surface as well as the given set of joint angles 𝐴𝑞𝑢𝑒𝑟𝑦 through our

visual self-model as shown below. If the total sum of the output values over all the sampled points

is equal to or below a small threshold 𝜏 , then there is a collision. Otherwise, the robot will not

collide with the obstacle object.

Collision =


True, ΣO𝑖𝐹 (𝐶 (O𝑖), 𝐾 (A𝑞𝑢𝑒𝑟𝑦)) ⩽ 𝜏;

False, ΣO𝑖𝐹 (𝐶 (O𝑖), 𝐾 (A𝑞𝑢𝑒𝑟𝑦)) > 𝜏.

3.1.3 Damage Identification and Recovery

One major promise of machines that can model or identify themselves is the capability of

recognizing and inspecting damage or changes, and then quickly adapting to these changes. In

this section, we present our method to identify and recover from damage using the learned visual

self-model.

Our approach involves three steps. The robot first detects a damage or change on its body

compared to its original (intact) geometry. Then the robot can identify which specific type of

damage or change is happening. Finally, the robot will gather new information about itself with

limited data and computational resources to quickly adapt its self-model to the new changes.

Overall, our approach introduces several significant advantages over previous methods. First,

being able to recognize the specific type of damage or change enables the robot to provide addi-

tional feedback information. Previous works have shown that it was possible to detect a damage.

However, they were not able to provide additional information to identify the source of the change

or which specific type of damage has happened. This information is extremely helpful when the

damage requires hardware repair. Instead of relying on a domain expert to perform a series of in-

spections, our method can automatically generate information about specific damage such as “the

second joint motor is broken”.

Another advantage is that our approach performs modeling in the 3D visual world. This means

that we can visualize and render the internal belief of the visual self-model in a straightforward
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and interactive fashion. As we will show in the results, one can immediately tell which section of

the internal belief of the robot body does not match the real-world counterpart. We can further tell

visually if the internal belief has been updated to match the new changes after learning from new

observations.

In the following sections, we begin by describing the specific algorithms, and then we follow

with real-world results in the next section. In the first step, we measure the current prediction

error and the original prediction error. The current prediction error is computed by comparing the

internal belief expressed by the learned visual self-model with the current observed 3D mesh of the

robot, while the original prediction error is computed by comparing the same internal belief with

the previously observed 3D robot body. Both cases share the same joint conditions. By comparing

these two prediction errors, a large gap can inform us about a significant change or damage to the

robot body.

In the second step, we aim to identify the specific type of damage happening on the robot.

Based on the robot arm platform we are experimenting with, we assume two types of potential

changes: (1) broken motor and (2) changed topology.

To reveal which specific type of the current damage is, our key idea is to solve the inverse

problem with the learned visual self-model. Concretely, based on a single current observation of

the robot body, we infer the best joint angles that the robot should have executed to result to the

current 3D observation. This is a very challenging problem because an ideal joint angle set needs

to give accurate 3D reconstruction of the entire robot body. Relying on previous gradient-based

optimization algorithm is inefficient since the final gradient computation requires the sum over all

the sampled points on the whole robot body. This process takes a large amount of memory and

computation resources to perform a single gradient step due to the large volume of the robot mesh.

Instead, we propose to use random search to locate the best possible joint angles. The simple

random search algorithm works very well in this case. It does not require the accumulation of

any gradient information so that larger batch of queries can fit on a single forward pass of visual

self-model.
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With the inferred joint angles, we can quantify the damage by comparing them with the actual

input motor commands. If a specific inferred joint angle is always different from the actual input

and that particular inferred angle always stays as a constant value or some other random values,

then we can tell that the corresponding motor is broken. When all the inferred joint angles match

closely to the actual input commands, the wrong belief of the 3D body then comes from a topology

change and all the motors function well. We leave the research where both changes happen at the

same time or more complex changes as future directions.

Finally, we also evaluate if our visual self-model can quickly recover from the changes by

adapting on several new observations. For this step, the main purpose is to demonstrate the re-

siliency of the model, rather than proposing a new algorithm for continual adaption. Therefore, we

follow common approaches by collecting a few more 3D observations after the changes to keep

training the network for several epochs. We then check if the new visual self-model can success-

fully update its internal belief to match the current robot body both quantitatively and qualitatively.

3.2 Experiments

In this section, we aim to evaluate the performance of the learned visual self-model, demon-

strate the results of using the visual self-model in various motion planning tasks, and test the

resiliency of the learned model under real-world damages. To this end, in the first two subsections,

we present quantitative and qualitative evaluations as well as baseline comparisons in simulation.

For all three subsections, we also demonstrate the fidelity of directly learning and using the visual

self-model in the real-world setup.

3.2.1 Visual Self-Model Estimation

We used the WidowX 200 Robot Arm as our experimental platform both in simulation and

real-world. In order to obtain the ground truth point cloud data, we mounted five RealSense D435i

RGB-D cameras around the robot as shown in Fig.3.2(A). Four cameras were around each side

of the robot to capture side views. One camera was on the top to capture the top-down view. All
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cameras were calibrated. The depth images were first projected to point clouds which were then

fused into a single point cloud based on the camera extrinsic parameters. The final point cloud was

generated by clipping the scene with a pre-defined scene boundary.

During data collection, we randomly moved the robot arms to get pairs of joint values and its

corresponding point cloud. For each pair of data, the simulation needed less than 1 second and the

real-world collection took around 8 seconds. In total, we collected 10,000 data points in simulation

with PyBullet [98] and 7,888 data points in the physical setup. We partitioned the data into training

set (90%), validation set (5%) and testing set (5%).

To evaluate the prediction accuracy, we ran several forward passes on the learned visual self-

model to obtain the whole body mesh of the robot on the testing set. On a single GPU (NVIDIA

RTX 2080Ti), this process took about 2.4 seconds. Following previous works on implicit neural

representations of 3D models [131, 132], we calculated the Chamfer-L1 distance between the

predicted mesh and the ground truth mesh as our metric. All units in this chapter are in meter.

In simulation, the point cloud fusion was nearly perfect due to noiseless depth image and exact

camera calibrations. In the real-world experiments, we noticed that the point cloud fusion was

very noisy due to imprecise depth information introduced by internal sensor errors, noisy camera

calibrations, and importantly, very sparse view points. We did not increase the number of views

since the current ground truth scan can already reflect the overall pose of the robot, so we tested

the fidelity of our algorithm directly on the noisy real-world data in exchange of adding more

resources and time cost. The gap of the ground truth data quality between the simulation and real

world suggests that the final results in the real-world setup can be greatly improved with better

future 3D scanning techniques.

Fig.3.4 (B) visualizes pairs of predicted meshes and the ground truth meshes. In both sim-

ulation and real-world cases, our learned visual self-model produced accurate estimations of the

robot morphology and kinematics, given only unseen joint angles as input. We also compared our

algorithm with a random search baseline and a nearest neighbor baseline. For the random search,

we randomly selected a robot mesh from the training set as the prediction. For the nearest neighbor
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(A)

Fig. 3.4: visual self-model predictions. (A) Quantitative evaluations of our visual self-model pre-
dictions in both simulated and noisy real-world environments. Our visual self-model outperforms
nearest neighbor and random baselines suggesting that the visual self-model learns a generalizable
representation of the robot morphology beyond the training samples. (B) With simulated train-
ing data, our visual self-model can produce high quality 3D body predictions given a diverse set
of novel joint angles. (C) When the training data becomes highly noisy in the real world due to
imprecise depth information, noisy camera calibrations and super sparse view points, our visual
self-model can still accurately match the ground truth to reflect the overall robot body morphology
and kinematics.

baseline, we compared the testing joint angles with all the joint angles in the training set using L2

distance metric, and then used the robot mesh corresponding to the closest joint angles as the final
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Fig. 3.5: Interpolation between joint angles. We demonstrate that our learned visual self-model
can smoothly interpolate between different joint angles. (A) shows the results trained in simulation
and (B) shows the results trained on real-world data.

prediction.

We presented the quantitative results in Fig.3.4 (A). Our method reached around 0.002 and

0.0102 meter Chamfer-L1 distance in simulated and real-world experiments, respectively. Our

self-model outperformed both baselines suggesting that the our visual self-model learns the gener-

alizable correspondence between the joint angles and the robot morphology as well as kinematics

rather than memorizing the training set distribution. Since the workspace of the physical robot

is around 0.9 × 0.9 × 0.9 meter. Our visual self-model is accurate to about one percent of the

workspace calculated as 0.0102/0.9 ≈ 1.1%.
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In addition to the predictions on individual set of joint angles, we also visualize the predictions

over joint angle trajectories by linearly interpolating between sets of starting joint angles and sets

of target joint angles. Both the starting and target joint angles are randomly sampled. As shown in

Fig.3.5, our visual self-model can generate smooth interpolations of robot morphologies between

small changes of joint angles. As we will show next, this property allows our visual self-model to

generate accurate trajectories for downstream motion planning tasks.

3.2.2 3D Self-Aware Motion Planning

In this subsection, we aim to evaluate the performance of using our visual self-model and 3D

Self-Aware motion planning algorithms for three representative downstream tasks: teach a 3D

sphere with any part of the robot body, touch a 3D sphere with end effector and touch a 3D sphere

with end effector while avoiding obstacle. Detailed illustrations of the tasks and algorithms have

been discussed above. For all three tasks, we present qualitative visualizations of our solutions

obtained through the visual self-model in the real-world system in Fig.3.6. We then introduce our

quantitative evaluation results in the simulation setup.

For the “Touch a 3D sphere with any part of the body” task, our evaluation metric measures the

Euclidean distance of the closest points between the robot surface and the target object surface. We

sampled 100 tasks where the target sphere is placed at different 3D locations within the reachable

space of the robot. If the robot was already in contact with the target sphere at initialization, we

discarded that task and re-sampled another task. Our results are shown in Fig.3.6(B). We compared

our visual self-model with several other baselines. To reflect the task difficulty, we first measured

the initial distance between the robot surface body at its home location and all sampled target

sphere surfaces. We also compared with a random trial baseline where the only input was also

the joint angles, similarly to our visual self-model. In this case, the robot randomly selected a

set of joint angles as its final solution. This baseline gave even worse performance than initial

distance indicating that the robot needs to perform careful inverse kinematics calculation with

considerations of its entire morphology and kinematics. Overall, our method produces much more
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Fig. 3.6: 3D self-aware motion planning results. (A) For each of the three tasks, we show the
real-world demos by executing the proposed plans from our visual self-model. (B) Our visual
self-model outperformed all the baselines by a large margin. Overall, our visual self-model can
produce accurate solutions for both tasks. (C) We found that our visual self-model enables the
kinematic network to gain better generalization performance on downstream tasks than a plain
kinematic self-model trained from scratch.

accurate solutions. Furthermore, our method was also time efficient during the search stage. Each

solution took 2.92 seconds on average on a single GPU after 500 optimization iterations. Note that

the solutions generated in this sample application satisfy the constraints but are not necessarily
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optimal. Additional optimization criteria, such as energy or peak speed minimization could be

added, and many established path planning techniques could be used. We leave such explorations

for future work.

For the “Touch a 3D sphere with end effector task”, our evaluation metric measures the Eu-

clidean distance between the end effector link and the closest point on the target sphere surface.

We sampled 100 tasks and made sure that the robot was not in contact with the target sphere at its

home configuration. Our results are shown in Fig.3.6(B). Similar to the first task, we compared

our approach with the initial distance and random trial baselines. Both baselines were poor at this

task with about 36 cm to 37 cm errors. This is even worse than the first task because the presented

task requires more accurate solutions to consider both the 3D body geometry and the end effector

position.

We have hypothesized that our visual self-model encourages strong semantic knowledge of

robot kinematics in the kinematic sub-network. To verify this hypothesize, we re-used the pre-

trained weights of the kinematic sub-network, and appended two nonlinear layers of MLPs to

perform further training only on the newly added layers, in order to regress the end effector link

position. The quantity of the data and the strategy of data splits followed the same definition

with our original visual self-model. The test error was around 0.5cm. We also trained a network

with the exact same architecture without pre-trained weights from our visual self-model to predict

the end effector position. The test error of this model was 1.3cm which was nearly three times

higher. Moreover, when applying these two models separately with our motion planning pipeline

in Fig.3.6(B), our method reached nearly ten times higher accuracy than the model trained from

scratch denoted as “end-effector prediction” in the table. These results suggest the importance

of considering the kinematic structure of the robot together with its 3D morphology. In terms of

time efficiency, our method took 4.93 seconds on average on a single GPU after 500 optimization

iterations because of the fast parallel inference property.

Furthermore, we found that learning the kinematic structure, together with our visual self-

model to learn the entire robot morphology, brought stronger generalization capability to down-
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stream tasks. In Fig.3.6(C), every dot represents a task sample. The y-axis indicates the error

measurements on the task of “touch a 3D sphere with end effector”, and the x-axis denotes the

closest distance between each sampled task and their nearest neighbor in the training set. Larger

values on the x-axis means that the sampled task is farther away from the training data distribution.

Therefore, the errors of the method with strong generalization capability should not raise with

the increased distance from the training data distribution. We thus also plotted a linear regression

model fit in the same figure. By comparing our visual self-model denoted as red dots and the model

trained from scratch indicated as blue dots, we can tell that our visual self-model obtains a much

stronger generalization capability, while the model trained from scratch will have a much higher

error when the data is away from the training set.

Finally, we also provide results of using different values of _Link and _SDF in the objective

function. We found that _Link = 0.8 and _SDF = 0.2 gives the best results. Therefore, adding a

small regularization with the original SDF objective can help achieve better performance in this

task.

For the “Touch a 3D sphere with end effector while avoiding obstacle” task, since the target

joint states are generated and evaluated through the above task, we are now interested in evaluating

the capability of generating collision-free trajectory when combing existing motion planners with

our visual self-model as collision prediction function. Again, we sampled 100 tasks with initial

states being contact free with the robot body. We placed a block 40cm above the robot base as

the obstacle object. The block has a dimension of 20cm × 20cm × 20cm. In total, after running

the motion planner with our visual self-model, we received 95 out of 100 trajectories which the

model believes no collision will happen along each trajectory. We then executed these trajectories

and found that 92 out of the 95 trajectories successfully passed around the obstacle towards the

target object without any collision. This is 96.84% success rate over all the output trajectories.

Our method took 7.43 seconds on average to produce an entire trajectory which includes the time

for both inferring the target state as presented in the second task and running the motion planners.

This fast inference time enables our method to provide real-time planning and control solutions.

40



3.2.3 Resiliency Tests

Being able to identify potential damages or changes to the robot body and quickly recover from

these changes is a critical capability of intelligent machines in the real world. We made two type of

changes to the robot body as depicted by Fig.3.7(A). In the first change, we broke the second motor

to the end effector link by disconnecting the data transfer cable from the motor, which results the

corresponding joint always stayed at 90°. Motor broken can happen due to various reasons such

as loosing cables, over heating or hardware damage, but the common resulted observation is that

the motor does not respond to any commands. The second change applies to the topology change

of the end effector link. We attached a 3D-printed plastic stick to the end effector so that the

reachable space of the robot arm was extended. This is also a representative change in practical

applications when different tasks demand new attachments of tools to the robot body or switch

different grippers on a robot arm.

With our proposed algorithm and the learned visual self-model, we tested the applicability of

our method directly on these real world changes. Fig.3.8 presents several example results. The

first step is to detect the change. As shown in the first column, our algorithm detected a clear gap

between the original prediction errors and the current prediction errors. The obvious gaps suggest

that our visual self-model can capture the changes happening on the robot body.

The second step is to identify the specific type of change. In the first two examples, no matter

what the input commands were to the robot, the second last joint was always inferred to be around

90° by solving the inverse problem with the newly observed morphology. This consistent mis-

match indicates that the second last motor was broken and the angle stayed at 90°. In the last two

examples, even though we can detect that there were some changes from the first step, the inferred

joint angles were still well-aligned with the input commands. Following our discussions earlier,

our algorithm identified that there was a topology change on the robot body. Our results suggest

that our visual self-model can be used to effectively solve inverse problems to help identify what

body change or damage might have taken place. Importantly, our approach only requires a single

3D observation of the current robot to produce the above results to detect and further identify the
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Motor broken Attached gripper(A)

(B)
Original internal belief Updated belief Ground truth mesh 

after change / damage

(C)

Fig. 3.7: Potential change or damage on the robot and visualizations (A) Two types of potential
changes. The left scenario is motor broken where the joint will always stay at 90°. In the right
scenario, we attached a 3D-printed plastic stick. (B) Motor broken: we can visualize the robot’s
original internal belief, its updated belief after continual learning and the current robot morphology.
(C) Extended robot link visualizations.

damage.

In the final step, our goal is to evaluate whether our visual self-model can quickly recover from
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Fig. 3.8: Resiliency Tests. In the first column, the learned visual self-model can detect the change
or damage through the large error gap. In the middle column, the learn3d visual self-model can
identify the specific type of change through the mismatch between the input joint values and the
inferred joint values. In the last column, we show how the visual self-model can update its internal
belief to match the current robot morphology.

the detected changes with only a few new observations. We first collected a few more observations

of the current robot through random movements. With the new observations, we used them as the

training data to continue the training of our existing visual self-model. Fig.3.8 plots the intermedi-
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ate model performances on the test instance at every 10 epochs. We found that our model required

50 examples to converge. Our visual self-model can quickly recover with the new training data

after 100 epochs which took on average 8.13 minutes in the real world on a single GPU.

Another advantage of our visual self-model is its interpretability. In Fig.3.7(B), we can vi-

sualize the internal belief of the robot before and after the damage adaption. Through these vi-

sualizations, we can inspect what the robot’s internal belief looks like and whether the robot has

successfully updated its belief to match the current robot morphology. These visualizations can be

queried in an online fashion with about 2.4 seconds on a single GPU.
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Chapter 4: Robot Modeling the Behavior of Other Robots

Starting from this chapter, we go beyond the self-modeling of the robot embodiment and study

how to generalize the self-modeling techniques to modeling of other robots. In this chapter, we

will first introduce how robots can model the behavior of other robots [125]. We will then follow

with the next chapter on how robots can model the visual perspective of other robots.

Behavior Modeling is an essential cognitive ability that underlies many aspects of human and

animal social behavior [136], and an ability we would like to endow robots. Most studies of

machine behavior modeling, however, rely on symbolic or selected parametric sensory inputs and

built-in knowledge relevant to a given task. Here, we propose that an observer can model the

behavior of an actor through visual processing alone, without any prior symbolic information and

assumptions about relevant inputs. To test this hypothesis, we designed a non-verbal non-symbolic

robotic experiment in which an observer must visualize future plans of an actor robot, based only

on an image depicting the initial scene of the actor robot. We found that an AI-observer is able

to visualize the future plans of the actor with 98.5% success across four different activities, even

when the activity is not known a-priori. We hypothesize that such visual behavior modeling is an

essential cognitive ability that will allow machines to understand and coordinate with surrounding

agents, while sidestepping the notorious symbol grounding problem. Through a false-belief test,

we suggest that this approach may be a precursor to the Theory of Mind, one of the distinguishing

hallmarks of primate social cognition.

4.1 Background: Robot Theory of Mind

At about age three, a human child recognizes that other humans may have a differing world

view than herself [137]. She will learn that a toy can be hidden from a caretaker who is not present
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in the room, or that other people may not share the same desires and plans as she does. The ability

to recognize that different agents have different mental states, goals, and plans is often referred to

as “Theory of Mind” (ToM). In children, the capacity for ToM can lead to playful activities such as

“hide and seek”, as well as more sophisticated manipulations such as lying [138]. More broadly,

ToM is recognized as a key distinguishing hallmark of human and primate cognition, and a factor

that is essential for complex and adaptive social interactions such as cooperation, competition,

empathy and deception.

The origins of ToM are difficult to ascertain, because cognitive processes leave no fossil record.

In this work, we experimentally look for evidence that ToM would have been preceded by a much

simpler precursor which we call “visual behavior modeling”. Researchers typically refer to the

two agents engaged in Behavior Modeling or ToM as “actor” and “observer.” The actor behaves

in some way based on its own perception of the world. The observer watches the actor and forms

an understanding of the mental state held by the actor and/or the resulting actions that the actor

intends to take. In the simplest case, the actor behaves deterministically, and the observer has

full knowledge of the world external to the actor. In more complex cases, observers can have

partial knowledge, and agents can be both actors and observers at the same time, simultaneously

modeling each other, leading to infinite regress of nested co-adapting models. Here, we study only

the simplest case, in both deterministic and stochastic conditions.

Theory of Behavior and ToM experiments are notoriously difficult to carry out because it is

very challenging for a researcher to query the state of mind of the observer, in order to determine

if the observer truly understands actor’s mental state and plans. In older children and adults, the

state of mind of the observer can be queried directly by formulating a verbal question about the

actor, such as “Tell me where Sally will look for the ball?” as in the classic “Sally and Anne” test

[139, 140, 141].

In young children and primates, as well as in robots, the state of mind of the observer can only

be indirectly inferred by inducing an action that reveals the observer’s understanding of the state

of mind of the actor. For example, a researcher might ask the child to point at the box where Sally
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will look for the ball. A key challenge is that in order to be able to answer a researcher’s question

or to follow the researcher’s instructions, the observer must already possess an advanced cognitive

ability. For example, the observer must at least be able to understand symbolic questions, make

decisions, and formulate responses. The ability to follow instructions, in itself, involves a fairly

advanced degree of mental reasoning. This challenge makes it difficult to ascertain the degree to

which ToM exists in simple life forms and in robots.

Meltzoff [142] noted this challenge and proposed the need for non-verbal tests to assess theory

of mind. For example, one non-verbal assessment of ToM involves testing whether a child will

mobilize to assist another person that appears to be struggling to open a door. Even though these

tests are carried out without verbal communication, it is difficult and sometimes impossible for a

researcher to conclude with absolute certainty whether the observers performed explicit reasoning

while addressing the challenge, or acted instinctively out of some built-in conditional reflex.

Experiments in ToM of robots and AI agents suffer a similar challenge. In a recent set of im-

pressive studies, such as Rabinowitz et al.[48] agents were able to successfully model the behavior

of other agents on a grid world. Baker et al. [143] also demonstrated that complex tool manipu-

lation and coordination strategies can emerge by having adversarial agents play hide and seek in

a self-play manner. There are many other examples of AI agents that learn to play successfully

against other agents (human and machine) in various video games [53], frequently outperforming

their competitors with impressive gaps. However, in those studies, the players’ inputs involve en-

gineered features and discrete outputs, in the form of grounded symbols, objects, and actions, such

as coordinates of agents and obstacles, and discrete actions such as move forward, backward, left

or right. This raises the next fundamental question which is where these discrete relevant inputs

and actions choices came from, and how were they grounded in the first place.

In some past studies [15], the observers’ inputs included private internal actor states such as

motor commands, that would normally be hidden from an external observer, and therefore could

not be used legitimately in a ToM experiment, We focus here on observers that only have access to

raw data captured externally using remote sensors, such as cameras and microphones.
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Many AI agents use only visual inputs, but most do not explicitly model the behavior of the

actor. Instead, they select from a finite repertoire of possible actions that will move them closer

towards a goal. For example, Mnih et al [53] showed an impressive example of an agent that learns

to play Atari games using only visual inputs, by producing discrete actions that maximize its score.

Our own recent work [144] also shows that having agents play hide and seek with only first-person

visual observation can lead to the recognition of the visibility of other agents and self-visibility

to emerge, but the action space of the observer agent is still discrete. There is no direct evidence

that either system models the plans of the other system. The question of visual behavior modeling

is also interesting from an evolutionary point of view. There is no doubt the ToM that involves

explicit modeling of actor plans confers an evolutionary advantage to the observer, and may have

therefore evolved directly. Foreseeing the plans of an actor can help with many activities beyond

competition, such as imitation learning, or cooperation. However, here we explore a precursor

question: Can machines intelligently model behavior of other agents without access to explicit

symbols, objects and actions?

Being able to model an actor without any explicit symbolic processing could shed light on

the evolutionary origin of ToM, as well as offer an alternative path to train machines without the

need for feature engineering, symbolic mechanisms, and sidestepping the inductive bias involved

in deciding which symbols, objects, and actions need to be built into the system.

To test the hypothesis that longer term outcome of behavior can be predicted visually, we focus

here on a more abstract notion termed “Theory of Behavior” (ToB). As shown in Fig. 1, we ask

whether an observer can predict the conditional (and possibly stochastic) behavior of an actor

based on visual observation of the actor alone, without access to the actor’s internal states, prior

knowledge about the behavior. We do not ask whether the observer can ascertain the explicit goal

or objective of the actor. We avoid this question for two reasons: First, the explicit goal, if any, of

the actor is a hidden variable that may or may not exist, and is subject to interpretation. Second,

to process an explicit goal presumes preadapted ability to reason symbolically. In contrast, we

hypothesize that the actor can develop the ability to visualize goal-oriented behavior even without
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Fig. 4.1: Visual Theory of Behavior An actor robot (black circle) is programmed to move towards
the nearest food (green circle) that it can see, and consume it. Sometimes (a), the nearest green
circle is directly visible to the actor, but sometimes (b) the nearest green circle is occluded by
an obstacle. When occluded, the actor will move towards the closest visible circle, if any. After
watching the actor act in various situations, an observer-AI learns to envision what the actor robot
will do in a new, unseen situation (c). The observer’s prediction is delivered as a visualization of
the actor robot’s “trajectory smear” (d). This entire reasoning process is done visually, sidestepping
the need for symbols, logic, or semantic reasoning.

having any internal notion of goals at all, and without using symbolic processing ability at all. If

true, this suggests a visual precursor to theory of mind.

Our goal is to see if the observer can predict the long-term outcome of the actor’s behavior,

rather than simply the next frame in a video sequence, as do many frame-to-frame predictors

[15, 6, 7, 8, 9, 10, 11, 12, 13, 14]. Prediction of next set of frames in a video sequence is both

more difficult and less important to a robot that predicting the longer-term outcome of an actor’s

behavior. For example, a colleague that watches you rise out of your seat with an empty cup

of coffee and head towards the coffee machine, cannot predict your exact movements frame by

frame, but can likely predict that you will soon be back sitting at your desk with a refilled cup of

coffee. We argue that this precise ability – to envision the outcome of a behavior - is the basis

of TOM, not the frame-by-frame prediction that is difficult, yet seems to dominate prior work in

visual prediction (probably because there is plenty of data for it).
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4.2 Visual Behavior Modeling

4.2.1 Task Setup

In our experiment, we created a robotics system (Fig. 4.2) comprising a physical robot actor,

and an observer agent that watches the actor from above. In order to evaluate the effectiveness of

our proposed method, we followed the guidelines proposed by Shevlin and Halina [145] to design

our evaluations from both a Machine Learning perspective and a Psychology perspective. During

our experiments, we aimed to answer the following two questions: First, can an observer agent

visually predict the future plans of the actor robot, without symbolic reasoning. Second, we are

interested in understanding whether the observer agent gains some equivalent to perspective taking

abilities.

To test whether the observer can model the behavior of the actor robot from purely visual input,

we first pre-programmed (hard-coded) four types of behavior into the actor robot. Without being

provided any symbolic information regarding which category of the current actor’s behavior is, the

observer machine is asked to generate its envisioned image of what the future scene will look like,

including the trajectory and the consequences caused by the actor robot’s behavior. The result is

outputted by the observer as a predicted image frame.

The four types of pre-programmed behavior of the actor robot were: (a) Straight line behavior:

the actor robot goes to the green circle in a straight line; (b) Elbow behavior: the actor robot goes

to the green circle by first navigating towards an intermediate non-colinear point that is located

midway and then moves to the green circle in a straight line form there; (c) Zig-zag behavior: the

actor robot goes to the circle by navigating through two intermediated non-collinear control points

positioned symmetrically on both sides of the straight line path to the goal; and (d) Single-food

with obstacle behavior: this behavior is a more complex version of behavior (a) due to occlusion

caused by an extra obstacle. In behavior (d), the actor robot goes to the green circle in a straight

line if and only if the green circle is visible to it. However, if the green circle is not visible to the

actor robot due to the occlusion, the actor robot will not move. When determining visibility, we
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A 

Observer 

Fig. 4.2: Experimental setup. (A) Actor robot in playpen, showing observer, green food, and red
obstacle. (B) A sample input image as seen by the observer, and (C)sample output image produced
by the observer, which includes a prediction of the motion path of the actor.

use a line of sight as the line joining the center of the actor with the center of each food circle, and

test computationally whether that line intersects with any obstacle. The actor does not require any

physical sensor in this experiment.
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We show samples of these four behaviors in Fig. 4.3A, using actual camera shots of the

smeared-motion of the robot as seen from the point of view of the observer camera. We use the

term “smeared motion” to denote an integration of multiple video frames into a single image by

recording the minimum intensity of each pixel across its time history. Thus, a dark robot moving

along a trajectory will leave a dark path in its wake.

While some of the four actor’s policies described above involve nested logical clauses, we

show that the observer can envision the outcome of those actions without using any explicit logic

reasoning, or any explicit notion of objects, obstacles, actions and goals.

The observer AI can only see the world external to the actor using an overhead camera that

captures the actor, the green circles and the red obstacle (if any). Importantly, the only information

available to the observer are raw camera input images. No labeling, segmentation, motor com-

mands, trajectory coordinates or other derived information is provided to the observer other than

the raw camera image itself. The observer is not told, for example, that green pixels are associated

with goals, or that colors and shapes even matter. The key question is whether the observer will

learn that whether and where the actor moves depends on what the actor can see from the point of

view of the actor, not what the observer itself sees.

Importantly, the observer does not output a symbolic answer, such as which green circle will

be consumed, which direction the actor will move, or whether or not the actor will move. Instead,

the observer envisions the outcome of the actor’s actions holistically by producing a single image

of the resulting world, without any explicit knowledge of circles, obstacles, actions or trajectories

and without any explicit symbolic reasoning.

The behavior of the actor robot was pre-programmed using hard-coded logic, based on its

personal world view. The observer AI was represented as a deep neural network that receives the

overhead image as input and produces a prediction of the resulting actor behavior as output. Each

input scene is a 64×64 pixel image. The output envisioned by the observer is also a 64×64 pixel

image that depicts the actor’s behavior as a motion smear and removing consumed food circles, if

any.
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B

Fig. 4.3: Visualization of the behaviors of the actor robots and Observer network architec-
ture. (A) We pre-programmed four types of behaviors for the actor robot. The images shown here
are produced by integrating a sequence of frames from a video captured by the top-down camera.
The robot path is shown in black, the rectangular obstacle (if any) in red and the goal circles in
green or red. (B) The image prediction network is composed of several layers of convolutional
units and deconvolutional units. At the deconvolutional stage, we utilize multi-scale prediction to
maintain high resolution at the output image. Numbers indicate the dimension of output feature
map after each module.
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4.2.2 Network Design

The architecture of our network is a fully convolutional multi-scale vision prediction (image-

to-image) network, comprising 12 fully convolutional layers with 609,984 neurons and 570K pa-

rameters. Such networks are often used for predicting the next frame in a video. However, instead

of predicting the next frame in a series of frames, we required the network to predict the last frame

based on an image created by integrating the first half of the frame sequence (for the first three

policies of the actor robot) or just the first frame (for the fourth policy of the actor robot). This is

akin to asking a person to predict “how the movie will end” based on the opening scene.

Specifically, our network comprises two main parts: an encoder network and a multi-scale

decoder network. The encoder network is composed of several convolutional layers where each

convolutional layer is followed by a batch normalization layer and a ReLU non-linear activation

function. Such a unit is denoted as a whole as “Conv” block in Fig. 4.3B. It has been demonstrated

[6, 126] that a multi-scale convolutional network is useful for refining coarse feature representa-

tions to higher resolution.

Inspired by these prior works, we used similar multi-scale prediction networks within the de-

coder network. Each input image is fed into a “Pred” block which is a convolutional layer followed

by a transposed convolutional layer and a Sigmoid non-linear activation function to generate a sub-

sampled predicted feature map.

This predicted feature map is then concatenated with the output from a “Deconv” block to be

fed into the next stage. The output from each stage is sent into both the “Deconv” unit and the

“Pred” unit to get the feature predictions of the next stage. By the end of the decoder network, the

“Deconv” will generate the final output which has the same size as the input image. Similar to the

“Conv” unit, each “Deconv” block in Fig. 4.3B is composed of a transposed convolutional layer

and a Sigmoid non-linear activation function. We minimize a Mean Squared Error loss on pixel

values for training our network.
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4.3 Experiments

4.3.1 Modeling Results

The observer AI was trained using 2,400 input-output image pairs recorded experimentally, of

which 20 percent were used for testing. The input image is a single frame with the projection of

the first half of the trajectory of the actor robot, and the output image is the final frame with the

project of the entire trajectory of the actor robot. Both the training and testing data were balanced

across all four types of behaviors of the actor robot. Each original image pair was expanded into

10 additional cases using random rotation and symmetry transformations with 0.5 probability of

each, in order to augment the training set and testing set. The augmentation was done after splitting

into training and testing set so as to not cross-contaminate the training and testing datasets. The

resulting performance reported in Fig. 4.4A was measured on a withheld test set of 1,200 image

pairs for each of the four policies of the actor robot.

Fig. 4.4B shows qualitative examples of various raw input scenes as seen by the observer AI,

and both successful and failed outcomes it envisioned. When the observer envisions that a green

circle is consumed, it clears most of the green pixels. If the observer AI believes that the actor will

move, the envisioned the trajectory of the actor robot as a motion smear. We emphasize again that

the observer has no explicit notion of food, obstacles, actions, coordinated, position, policies, line

of sight etc. It only sees an image of the world and envisions an image of the future. The observer

did not know which policy was being employed by the actor.

The proposed visual Theory of Behavior was considered experimentally successful if and only

if the scene envisioned by the observer had correctly erased the food consumed by the actor, and

also correctly visualized the actor’s motion trajectory. To evaluate whether the observer has suc-

cessfully foreseen the high-level behavior of the actor robot, we automatically processed the im-

ages produced by the observer using classical machine vision techniques. We extracted both the

largest contours of the ground truth and predicted trajectory, as well as the position of the food cir-

cles using their colors measured from the ground truth image. We calculated the shortest distance
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Actor Behavior Success Rate

Straight line behavior 99.90% (n=980)

Elbow behavior 98.94% (n=944)

Zia-zag behavior 96.70% (n=999)

Single food with obstacle behavior 98.52% (n=811)

A

B

Successful ToB Failed ToB

Observed Predicted Observed Predicted

Fig. 4.4: Success Rate of Observer AI and Physical scenes and outcomes envisioned by the
observer. (A) We report the successful rate of the observer AI for each type of behavior during
testing. Noted that all the behaviors of the actor robot are seen during training together and no
other information is given except the single image frame. Our observer AI achieves a 98.5%
success rate on average across all four types of behaviors of the actor robot. (B) The first column
and the third column show some sample scenarios involving the actor robot, one or two green
circles, and a square obstacle. The second and the fourth column show the outcome as envisioned
by the observer. The left two columns (Success) show successful vision, whereas the right two
columns (Failure) show failed envision.
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from all the points on the contours to the center of the green food (target), we define this value as

Dtarget.

In 6.65% of the cases, the machine vision algorithm used to evaluate success or failure auto-

matically was unable to reliably determine the contour or the position of the foods in the ground

truth images, and therefore was unable to determine whether or not the behavior was “successful”.

These cases were largely caused by a particularly short length of the trajectory leading to situations

where the robot already covers a substantial part of the food due to the angle of the camera view.

These cases were automatically omitted from the statistical analysis.

For the remaining 93.35% of cases where success or failure can be determined reliably, we

compute the success rate by checking if the envisioned actor location is within one robot-diameter

from the real actor position. In other words, for each predicted output, if Dtarget is smaller or equal

than the diameter of the Actor robot, we mark that prediction as a success. Otherwise, we mark it as

a failure. Then the success rate is calculated by dividing the total number of successful predictions

by the total number of predictions. Each individual policy is evaluated separately during testing.

However, the category of policies is never used during training.

As shown in Fig. 4.4A, our observer AI is able to achieve a 98.52% accuracy on average across

all four types of behaviors of the actor robot, without knowing in advance which policy will be

used. Combing with the qualitative results shown in Fig. 4.4B, we show that our observer AI is

able to understand and predict the behavior of the actor robot without any symbolic representations.

4.3.2 Handling Ambiguity in Visual Behavior Modeling

An interesting question is whether the observer can handle ambiguity. For example, ambiguity

may arise from stochastic behavior of the actor or from sensory noise. To test this, instead of

integrating the first half of the trajectories of the first three policies of the actor robot into one

single input image, we only give the first image as the visual input for all four policies to the

observer AI. Now the training input becomes just a single frame from the initial scene, and the

output to be predicted is a single image that should integrate all future frames from the first frame
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to the last frame, across the entire yet-unseen trajectory of the actor robot.

Under this setting, there are multiple possible future behaviors of the actor robot when given

only single starting frame. The question is not whether or not the prediction will be correct (as it

is impossible), but rather how with the observer represent the ambiguity. Fig. 4.5 shows that the

observer AI handle the uncertainty by generating blurry, foggy images.

We also wanted to investigate if the level of blurriness is reduced as the observer is given more

frames from the activity of the actor, thereby reducing the uncertainty. We fed the observer input

image that integrated increasingly longer series of frames up to the current time stamp. In Fig. 4.5,

we show the sequence of input and output images subject to uncertainty.

4.3.3 False-Belief Test

To ensure that our proposed Visual Theory of Behavior is consistent with protocols commonly

practiced in studies of Perspective Taking or Theory of Mind, we further designed our experiments

to include a false belief test. In this case, the actor robot has one simple, pre-programmed (hard

coded) behavior. The actor robot always moves towards the nearest green circle that it can see with

a straight line of sight. When two circles are visible, the actor will move towards the closest circle.

However, if the closest circle is hidden behind an obstacle, such as a red box, then the actor will not

see the green circle and will therefore not move towards it. Instead the actor might move towards

a different circle that is visible. Similarly, Fig. 4.6 shows the qualitative examples of the visual

observations as well as predictions envisioned by the observer AI. The observer AI was trained

using 600 input-output pairs which then are augmented to 6,000 image pairs in the same way as

indicated above.

There are mainly two types of sub-behaviors under this single policy of the actor robot. We

call it a “food visible” case when the actor robot perceives the physically closest food and hence

moves towards it. Alternatively, we call it a “food obscured” case when the actor robot is unable to

see the physically closest food due to the occlusion by an obstacle, and only consumes the visible

food which is further from it.
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A Image Pair Prediction 
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B Progressive Video Sequence Prediction 
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Fig. 4.5: Handling ambiguity. This observer AI is trained only on the first frame as input. There-
fore, there are multiple possible future trajectories possible based on only this input frame. As
shown in A. Image Pair Prediction, the observer handles this ambiguity by outputting one of the
heuristic behaviors or as a blurry trajectory. Although our observer model is trained using start
and end image pairs (with integration of all the past frames), the observer can be used in an online
fashion during evaluation. B. Progressive Video Sequence Prediction shows the prediction results
using our model across multiple time stamps.

This experimental design can be seen as a false belief test. In the first step, we train the observer

agent only with the “food visible” cases where the observer only sees the actor moves towards the
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Successful ToB Failed ToB

Observed Predicted Observed Predicted

Fig. 4.6: Physical scenes and outcomes envisioned by the observer. The first column and the
third column show some sample scenarios involving the actor robot, one or two green foods, and
a square obstacle. The second and the fourth column show the outcome as envisioned by the
observer. The left two columns (Success) show successful vision, whereas the right two columns
(Failure) show failed or blurry envision.

closet food. However, the actual policy of the actor robot is to consume the closest food it can

see. Hence, there should be a mismatch of understanding of the policy between the observer and

the ground-truth policy of the actor. Indeed, our results in Fig. 7 shows that if we test the observe

model with only “food visible” cases, the observer AI was able to correctly envision the scene with
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Train / Test Success Rate 
Food Visible Train, Food Visible Test 97.30% (n=667) 
Food Visible Train, Food Obscured Test 56.82% (n=88) 
Half Food Visible Train, Half Food Obscured Train, Food Visible Test 98.21% (n=669) 
Half Food Visible Train, Half Food Obscured Train, Food Obscured Test 100.00% (n=88) 

 

 

 

  

 

train loss 

test loss 

train loss 

test loss 

train loss 

test loss 

train loss 

test loss 

Fig. 4.7: Training and testing of the observer and corresponding success rate. We first gathered
training and testing data by randomly placing the actor, two green food items, and the obstacle
(Table, A). We also collected “obscured” test cases where we deliberately placed the closest food
to where it is not visible to the actor (Table, B). Higher success rates were achieved by balancing
the training data with half “visible” data and half “obscured” data (Table, C and D). Learning
curves across all four above scenarios are shown. Error bars are presented to show experiment
results across three different random seeds used in both data splitting and network training.

97.3% accuracy. However, if we test the observer model with only the “food obscured” cases, the

observer AI’s accuracy drops to 56.82%. This means that the observer trained only on food visible

cases fails to notice the difference of the perspective between itself and the actor robot.

After we balanced the training dataset by including 50% “food visible” cases and 50% “food

obscured” cases, the results change. We then test the trained observer model with “food obscured”
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testing set again. As shown in Fig. 4.7, the observer AI achieved 100% accuracy on all the “food

obscured” testing set and even further improves the “food visible” testing accuracy to 98.21%.

This statistically significant improvement in the performance can be interpreted to imply that it is

necessary to teach perspective taking to the observer agent under our setting by exposing it to both

food visible and food obscured examines.

Fig. 8A presents qualitative visualizations when we perform counterfactual perturbation to

the observation of the observer agent, under “food obscured” cases. Specifically, by moving the

obstacle from blocking the physically closest food to blocking the physically farther food, we ob-

serve that the observer changes its prediction accordingly, which further validates that the observer

recognizes the perspective differences between itself and the actor robot.

To further investigate to what degree our observer network is able to model behavior of the

actor robot under various unseen changes in the environment, we replicate the exact setting and

data processing pipeline from the real world in simulation and perform a systematically evaluation.

Specifically, we first vary the size of the robot, the obstacle and the foods in the “food visible”

testing data and “food obscured” testing data respectively. We only vary one element at a time.

We then gradually change the color of the food and the obstacle to each other. Finally, we add one

additional food and one additional obstacle respectively during testing.

The results are summarized in Fig. 4.8B. Our observer model is still able to give accurate

prediction when the sizes of the objects are changed, but performs worse when the color is changed

by 40% and finally breaks when the color is changed by 60%. This suggests that our observer

model does not heavily rely on size of the entities to model the behavior, but it remembers the

color information to some extent to assist the prediction.
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A 

Observation 
(before perturbation) 

Real Trajectory 
of the Actor Prediction Observation  

(after perturbation) 
Counterfactual 

Prediction 

     

     
 
B 

 
 Fig. 4.8: Counterfactual Perturbation and Prediction Sensitivity. (A) The first column shows

the original observation of the observer and the third column shows the prediction from the ob-
server. The second column is the real trajectory of the actor robot after releasing it. We then
move the obstacle to a different location from the first column. The resulted new observation of
the observer is shown in the fourth column. The last column shows the counterfactual prediction
after seeing this new observation. Both examples show the observer changes its prediction after
the physically closest green dot becomes visible from being obscured by the obstacle. (B) Our
model is able to give accurate prediction when the sizes of different objects as well as actor robot
is changed. However, the observer model performs worse when the color is changed by 40%, and
eventually breaks when the color is changed by 60%. The size change in these experiments is
limited by the arena size (128 × 128 pixels).
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Chapter 5: Robot Modeling the Visual Perspective of Other Robots

Imagine that you see your colleague trying to open the door, only to find that the door is

blocked by the doorstop hidden on the other side. Without exchanging words, you rush to remove

the doorstop, allowing the door to swing open. You took this action because you understood

what your colleague was trying to do (open the door), and you understood that she could not

see the doorstop (from her viewpoint). We refer to these intuitive abilities as Behavior Modeling

and Visual Perspective Taking, respectively. Visual Perspective Taking [146, 147, 148, 149, 150,

151] is essential for many useful multi-agent skills such as understanding social dynamics and

relationships, engaging in social interactions, and understanding intentions of others. A simple

action such as getting out of the way of a busy person or assisting a person about to sit down,

involve both of these abilities.

Like humans, robots that can perform VPT and use that ability to model others [125] have many

advantages across a variety of applications such as social robotics, assistive and service robotics.

However, even though current robots can perform a variety of tasks by themselves or move as a

group, these robots often do not demonstrate the capability of performing perspective taking or

behavior modeling. Several challenges still remain.

First, visual observations are high-dimensional with a large amount of information. Relying on

manual feature extractions and hand-designed learning procedure [152] cannot scale in complex

setups. Second, the behaviors among different robots are cross-dependent. Consequently, it is nec-

essary to account for the mutual interaction [153] between related robots. Third, directly learning

on physical robots requires strong data efficiency. Though recent methods [60, 143, 154, 155]

demonstrate that similar cognitive abilities could emerge from reward-driven learning, they often

require millions of learning steps. Lastly, learning to predict the long-term future is very chal-

lenging. Most existing visual prediction frameworks [156, 15, 157, 158, 159] follow an iterative
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paradigm to rollout the prediction, which is both time and memory consuming under long-horizon

tasks.

In this chapter, we propose a self-supervised vision-based learning framework [66, 60] to take a

small step towards realizing VPT and TOB in navigation robots involving future opponent model-

ing. We call our framework VPT-TOB. Our key idea is to explicitly predict the future perspective

of the other robot as an image by conditioning on a top-down visual embedding of first-person

RGB-D camera images and time-abstracted action embeddings. We further present a value predic-

tion model that can leverage the future perspective prediction to evaluate action proposals. During

test time, we ask the robot to propose future goals on the top-down map and generate potential

action plans with its low-level controller. The robot can then use our VPT-TOB model to imag-

ine future perspectives of the other robot and evaluates its goal proposal with the value prediction

model. The robot can choose the safest position to navigate to.

Our experiments on a physical hide-and-seek task suggest that our method outperforms base-

line algorithms that do not explicitly consider other agents’ perspectives and behaviors, showing

the importance of explicit visual perspective taking and behavior modeling. Our hider robot ex-

hibits diverse behaviors during hiding and an interpretable decision-making process by providing

how the robot is envisioning the future state and actions of another robot.

The primary contribution of this chapter is to demonstrate that a long-term vision prediction

framework can be used to model the perspectives and behaviors of other robots. We present a

value prediction module that can take the perspective prediction to evaluate action proposals dur-

ing test time. We perform several experiments and ablation studies in both real and simulation

environments to evaluate the effectiveness of our design decisions.

5.1 Visual Perspective Taking Network

In this chapter, we frame the Visual Perspective Taking and Behavior Modeling as an action-

conditioned vision predictive model. Our method encourages the learning robot to explicitly con-

template the future visual perspective and behavior of the other robot by outputting where the other
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Seeker

Hider

Hider’s ViewWhat does the 
seeker see?

Fig. 5.1: Visual Perspective Taking (VPT) refers to the ability to estimate other agents’ viewpoint
from its own observation. With our VPT framework, the hider robot learns to predict the seeker
robot future observation and plan its actions based on this prediction to avoid being captured.

Hider

Seeker

Physical Arena

Top-Down Projection

Hider’s View

Visual Perspective Taking
(VPT-TOB)

Predicted Value Map

Selected Hiding Spot

0 (Risky)

1 (Safe)

0.2

0.4

0.6

0.8

Predicted Seeker’s View

VPN

Fig. 5.2: Method Overview: our robot learns to infer the future view of the other robot with
our VPT-TOB model based on its initial visual observation and future action embeddings (blue
is invisible area). With these anticipations and a value prediction model, the robot can produce a
value map indicating the safety level (color bar) and selects the best hiding spot.

agent will be, and what the other agent will see as an image. Our hider robot can be trained directly

on the physical setup. Once trained, the robot can answer “what if” questions visually: what will

the other agent do, and what will its view become, if I choose to perform this action for some time?

Task Setup To investigate the effectiveness of this framework in opponent modeling, we con-
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sider a hide-and-seek setting [60] where a hider robot needs to avoid being captured by another

seeker robot while navigating around the environment with various obstacles. In order to predict

the future perspective of the seeker, the hider robot needs to infer the geometric view from the

seeker, reason about the environment spatial layout, and form a model of the seeker’s policy. This

task reflects several challenging aspects in real-world setup such as occlusions in robot perception

and cross-dependent actions among multiple robots.

We 3D printed two-wheeled robots with size of 110mm by 130mm on a 1.2m by 1.2m plane

with three obstacles. Similar to Wu et al. [160], for simple prototype, we place fiducial markers

[161] on the robots and track them with a top-down camera. However, our setup aims at represent-

ing what could be possible to achieve with only the onboard RGB-D camera for SLAM. Therefore,

the robots only perceive what could be captured with the first-person RGB-D camera with 86°FoV

with noisy depth and color information and occlusions.

Both robots start by facing at each other at a random location in the environment and moves

in the same speed (10 mm/step). The robots can move forward or backward and rotate with 10°as

given primitives. We only focus on stationary case where the seeker robot follows a heuristic expert

policy and leave the non-stationary scenario for future work as the first step towards grounding VPT

to physical robots. If the hider is visible through its first-person camera, the seeker will navigate

towards it with A* [162]; if the seeker loses the hider in its camera view, it will navigate to the last

known position of the hider and then continuously explore the room until the hider shows again.

5.1.1 State Representation

We represent the robot state observation as a RGB image. The image representation depicts a

top-down visibility map. This is similar to the representations in other mobile navigation and self-

driving systems [163, 164, 165, 166, 160]. We project the depth information from first-person view

to a 2D bird’s eye view to acquire the top-down visibility map. Areas behind the object boundary

are treated as free space. We colorize the observation map to reflect this. The hider robot is always

aware of its own position, while the seeker position is only available when it is visible through a
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color filter from the first-person view. The robots are plotted as circles with different colors. We

denote the final visual state representation of the hider and the seeker at timestamp t as 𝐼𝐻,𝑡 and

𝐼𝑆,𝑡 .

5.1.2 Action Representation

We design the action representation with two key considerations in mind. First, we want to

align the action representation with the state representation. Second, we need to preserve infor-

mation about past action sequences. Thus, we propose to encode the robot’s trajectory sequence

as two 2-channel images with the same dimensions as our top-down visibility map. Say we are

interested in the action sequence from 𝑡=0 up to a future time 𝑡=𝑡𝑖. The first image is a visitation

map 𝐹𝑡=0:𝑡𝑖 denoting how many times each point on the map will be visited by the robot. This is

achieved through the second alpha-channel where darker color represents more frequent visitation.

The second image is a time-encoded trajectory map 𝑇𝑡=0:𝑡𝑖 denoting the traversal order. Similar to

𝐹, the darker the color in 𝑇 , the later the position will be traversed. Both 𝐹 and 𝑇 are necessary for

a complete action representation to avoid the ambiguity brought by the trajectory intersection. An

example of a training data pair is shown in Fig. 5.3.

5.1.3 Data Collection

We experiment with two types of exploration policies for the hider to collect the training data.

The first is a random policy created by sampling from the given action primitives. However, this

policy explores poorly thus resulting in the seeker easily catching the hider. The hider mostly stays

alive for only 20 to 30 steps which biases the training data to be short-sighted. The second policy

is human play data [167]. We ask a human subject to play as the hider in front of a display from

the first-person view for 100 trajectories. Since the human subject has never played this version of

the game before, the trajectories are diverse ranging from successful trials to failures, making it a

good strategy to stay with.

During robot data collection, the hider robot randomly samples a human trajectory and uses the
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Observation Action Embedding Seeker Future View

Fig. 5.3: An example of the training data pair for VPT-TOB.

selected trajectory as is but from a different initial condition. It is also possible to train an imitation

policy on the human data, but we find the current strategy sufficient to give enough balanced data.

A horizon will terminate when one of two conditions is triggered: 1) the seeker robot catches the

hider robot, or 2) the total number of steps reaches a maximum value (100 in our setup).

5.1.4 VPT-TOB Network

The objective of the VPT-TOB network 𝑓𝑝 is to anticipate the visual observation IS,t=ti of

the seeker at future time step 𝑡𝑖 given its initial observation IH,t=0 and action embedding (Ft=0:ti ,

Tt=0:ti). Intuitively, the hider robot needs to first anticipate where it will end up if it takes certain

action sequences. Secondly, the robot needs to model the behavior of the other robot so that it

learns how the seeker will react. Finally, the hider needs to project the view using its prediction of

the seeker agent, which requires an understanding of scene geometry and view projection. During

training, the hider has access to the seeker’s view as a supervised signal. During testing, the hider

has to predict the seeker’s views.

Network Architecture Our VPT-TOB model is a fully convolutional encoder-decoder network

[125]. The encoder is a 8-layer fully convolutional network which takes in the concatenated visual

observation and action embedding as input with size 128 × 128. The decoder network comprises

four transposed convolutional layers where each of them is followed by another 2D convolution

and a transposed convolution for high-resolution output [126] with size 128 × 128.

Training VPT-TOB model can be supervised with a simple pixel-wise mean-squared error loss.
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We use 1,000 real-world trajectories for training and 200 trajectories for validation and testing. We

use Adam [127] optimizer with a learning rate of 0.001 and batch size 256. We decrease the

learning rate by 10% at the 25% and 65% of the training progress. Formally, the loss function can

be written as:

LVPT-TOB = MSE( 𝑓𝑝 (IH,t=0,Ft=0:ti ,Tt=0:ti), IS,t=ti)

5.1.5 Inference and Planning

At test time, the hider robot needs to propose a set of action plans and envision the possible

outcomes for them with VPT-TOB to pick the best plan. One way to represent the plan is to specify

a goal location and then perform visual MPC [15] with the learned opponent model to find the best

path. However, in our task setup in which no human specified goal is available, a more reasonable

way is to propose a spatial location in the room and plan with a low-level controller policy (e.g.,

A*). This parameterization emphasizes a safer hiding location instead of a safer path to follow

given a required goal.

Value Estimation Map We therefore aim to generate a value map to evaluate the risk level

of the possible goal locations. A value map is a matrix where each element denotes the safety of

choosing the corresponding position as the goal. The earlier the hider robot is caught towards that

goal, the riskier that goal is. Formally, the value for each element on the value map is defined as

the following accumulation form:

𝑉𝑖,𝑡=0:𝑇 =
∑︁
𝑘

𝑣𝑖,𝑡=(𝑘𝑁−1) , 𝑣 =


1, if hider is caught

0, otherwise

where 𝑘 is an integer from 0 to
⌊
𝑇
𝑁

⌋
and 𝑇 is the maximum time budget for this horizon and 𝑁 is

the step size. Under this formulation, we discretize the environment as a grid map (121 endpoints

for our setup). From the current hider position, the planned path from A* can be embedded every

N (N=10 for us) steps.
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Value Prediction Network (VPN) Our value prediction network 𝑓𝑣 takes in the visual pre-

diction from VPT-TOB to output the binary 𝑣 value for each step. We can then use the above

formula to compute the accumulated value along all the steps. We just need a few forward passes

on VPT-TOB and VPN to obtain the entire value map within 1.4 seconds on a single GPU.

Intuitively, VPN estimates whether the hider will be caught given the predicted future view of

the seeker. Our VPN network consists of 3-convolutional layers followed by 2 fully-connected

layers. We apply max-pooling after each convolution and a dropout layer right after the first fully-

connected layer. The network is trained to minimize a cross-entropy loss. We augment the data

by randomly rotating the images among (90°, 180°, 270°). In total, we have 2, 000 images for

training, and 400 images each for validation and evaluation. We train our model for 100 epochs

with a batch size of 256 and a learning rate of 0.0005. We decrease the learning rate by 10% at

20% and 50% of the training progress. We use Adam as the optimizer. Formally, the loss function

can be written as:

LVPN = −(𝑣 log
(
𝑓𝑣 (ÎS,t=ti)

)
) + (1 − 𝑣) log

(
1 − 𝑓𝑣 (ÎS,t=ti)

)
5.2 Experiments

We first perform a series of experiments in our real-world setup. To evaluate different compo-

nents in our algorithm, we further replicate our physical setup in a simulation and execute several

ablation and baseline comparisons.

VPT-TOB and VPN A straightforward evaluation of the VPT-TOB model is to provide quan-

titative visualizations of the imagined frames. Since our goal with VPT-TOB is to capture the

perspective information and opponent behavior for long-term planning, a perceptual error will not

be ideal for our evaluation. Meanwhile, our VPN model needs to take in the predicted frame from

VPT-TOB to infer whether the hider robot will be safe. Therefore, we can use the performance of

VPN on the output of VPT-TOB as a quantitative metric for our VPT-TOB model.

Value Estimation Map To evaluate the overall performance of the entire planning pipeline, we
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Physical 
Bird’s-Eye 

View
(Reference)

Seeker’s View
(Prediction by 

Hider)

Seeker’s View
(Ground-truth)

1st step 20th step 40th step 60th step 80th step 100th step 1st step 20th step 40th step 60th step 80th step 100th step

Fig. 5.4: VPT-TOB predictions from physical robots: we here show two example sequences.
The predictions are shown as a function of time. Our hider robot accurately predicts the future
perspectives of the seeker robot only by its own initial observation and a future potential action
plan.

quantify the accuracy with the entire value map. We measure this in simulation which can provide

us with ground-truth values conveniently by moving the hider robot to all possible goal locations

and collecting the accumulated values. During test time, what matters for decision making is the

relative value between different goal locations instead of the absolute value. To this end, our metric

for the value map is a relative ranking accuracy. Say we choose 𝑔𝑖 and 𝑔 𝑗 as a pair to evaluate.

The relative ranking of this pair is correct if it matches the relative ranking from the ground-truth

value map. We evaluated all pairs at least 3 units away. This metric will result in the same ranking

among all comparisons as the last metric, but provide an overall evaluation.

5.2.1 Real-World Results

The prediction results from our VPT-TOB model is a sequence of images based on a single

initial observation from the hider’s view and the future action embedding. In Fig. 5.4, we show the

predictions from the random hider robot every 20 steps up to 100 steps corresponding to about 25

seconds. Each predicted image presents where the hider thinks the seeker robot will be, and what

the seeker’s view will look like. Our model gives accurate predictions about the perspective and

behavior of the opponent robot.

For test time planning, we randomly place the hider and seeker robot in the environment and

ask the hider robot to plan and execute its goal selection from VPT-TOB and VPN. Fig. 5.5 shows

the video frames where the hider robot navigates to its selected goal and successfully avoids the
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Bird View Hider’s View Goal Sampling Value Map Selected Hiding Spot

t = 20 t = 40 t = 60 t = 80 t = 100

(A) Hider robot chose to hide behind the obstacle

t = 24 t = 48 t = 72 t = 96 t = 120

(B) Hider robot chose to hide around the corner

(C) Hider robot completely avoid the tracking of the seeker

t = 32 t = 64 t = 96 t = 128

t = 37 (Last time the 
seeker sees the hider)

Fig. 5.5: Planning and hiding Our hider robot produces a value map with our VPT-TOB and VPN
networks. (Blue is safe and red is dangerous.) The hider then navigates to the farthest location with
the highest value (star mark). Interestingly, in the last example, the hider completely got rid of the
seeker from the 37th time step.

seeker only by relying on its initial value map estimation for the future 100 time steps. There is no

extra decision making cost during execution. Interesting hiding behaviors emerged automatically
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from our setup as shown in Figure 5.5.

We further test the performance of our VPN model under the real-world setup by inputting

the predictions from the VPT-TOB model. Our VPN model achieves an accuracy of 88.39%. As

we will discuss in the next section, this is very similar to what we can achieve in the simulation,

demonstrating the effectiveness of our method in the physical robot platform.

5.2.2 Simulation Analysis

Our simulation is built with Unity to evaluate different components in our approach. The

simulation can run in parallel and hence provides an efficient and scalable testing environment. To

provide extensive analysis, we use in total 4,500 trajectories as training and 500 trajectories each

for validation and testing. We can also get the top-down observation directly by applying a mesh

filter in Unity with similar result from our real robot sensors. We run the hider robot for 200 steps.

5.2.3 Baselines

Self-perspective predicts the hider’s own future states conditioned on its initial observation and

action plans other than explicitly modeling the other robot. This follows recent works on learning

visual world models [15, 157, 168, 159, 169] with adapted architectures for fair comparison.

Coordinate-value directly predict whether the hider robot will be caught in the future from

initial observation and action plans. The input consists of an initial state observation from the

hider, a vector action embedding with spatial coordinate information, and a future coordinate value

where the hider will end up using the given actions.

Vector-action is the same with VPT-TOB but replaces our action representation with a vector

embedding as in [170]. This embedding is concatenated with the intermediate features to produce

the final predicted image.

The self-perspective baseline aims to test whether modeling the opponent agent is necessary.

Both the self-perspective and coordinate-value baselines serve to examine if explicit opponent

modeling is more effective than relying on the network to learn the opponent model implicitly.
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t = 156 t = 23 t = 185

Hider’s Observation
(Input, t=1)

Seeker’s Future View 
(Ground-truth)

Seeker’s Future View 
(Prediction by Hider)

t = 75

Hider’s Observation
(Input, t=1)

t = 13 t = 179 t = 95 t = 60

Hider’s Future View 
(Ground-truth)

Hider’s Future View 
(Prediction by Hider)

t = 80 t = 2 t = 112

Hider’s Observation
(Input, t=1)

t = 117

Seeker’s Future View 
(Ground-truth)

Seeker’s Future View 
(Prediction by Hider)

(A) VPT-TOB

(B) self-perspective

(C) vector-action

Fig. 5.6: Predictions from VPT-TOB and other baselines. Our method produces more accurate
modeling of the other robot’s future perspective, suggesting the advantage of explicit opponent
modeling and our visual action embedding.

Vector-action is used to evaluate if our action representation can improve the quality of VPT-TOB

model.

Through our simulation comparisons, we show the accuracy of VPN across all the applicable
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Table 5.1: VPT-TOB and VPN Performance

Method Success Rate on Held-out Examples

Self-perspective + VPN 76.61%
Coordinate-value 76.40%

Vector-action + VPN 82.98%
VPT-TOB (ours) 88.45%

methods in Tab. 5.1 in which the input of VPN comes from our VPT-TOB or other baseline

models. We run all the methods on 1,000 unseen examples with uniform starting locations and

horizon length. The result suggest the advantage of our method. Both VPT-TOB and vector-action

outperforms self-perspective and coordinate-value, validating the necessity to explicitly model the

opponent perspective and behavior. The gap between vector-action and VPT-TOB indicates that

our action representation offers additional gains for learning an accurate visual opponent model.

Visualizations of the predicted frames substantiate our conclusion (Fig. 5.6). For better com-

parison, we also display bird’s-eye view in the first row and ground-truth seeker’s view in the last

row. However, these images are only for visualization, not inference.

Fig. 5.7 shows the generated value maps from our approach comparing with the ground-truth

value maps. Overall, our framework demonstrates an accurate estimation about the safety level

across the room.

5.2.4 Generalization Across Training Time Horizon

With the relative ranking accuracy, we can quantify the performance of our approach from a

higher-level perspective. Since our model should also learn temporal abstractions from our action

representation, we extend the test horizon up to 175% of the maximum number of steps given in

training and examine how the relative ranking accuracy changes. We achieved this test by simply

projecting longer horizon action trajectories on our image-based action embedding.

Tab. 5.2 shows the performance. Our model is able to predict far beyond its training horizon

with very small losses of the accuracy. This suggests that our method also learns to model the

temporal dynamics while modeling the other agent.
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Bird’s-Eye
View (t=0)

Predicted
Value Map Ground-truth Bird’s-Eye

View (t=0)
Predicted
Value Map Ground-truth

Fig. 5.7: Predicted value maps versus ground-truth value maps. Our method produces accurate
value estimations and reflect the overall value patterns.

Table 5.2: Generalization on Prediction Horizon

Prediction Steps Relative Ranking Accuracy

200 (max seen during training) 75.29 ± 12.23%
250 73.75 ± 10.35%
300 73.03 ± 10.40%
350 72.77 ± 10.82%
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Chapter 6: Physical Environment Modeling through Visual Discovery

We have introduced how to build toward “generalist robots” by enabling robots to model their

embodied self and their surrounding agents. With these self models and the models of other agents,

robots can leverage this consistent knowledge to perform various future tasks across different do-

mains. Another major aspect of robot learning tasks is to model their physical environments.

To fully generalize on multiple environmental conditions, robots need to distill compact physi-

cal knowledge of the environment, such as the governing law of physics, from noisy and high-

dimensional observations. In this chapter, we will introduce the essential step of distilling compact

physical knowledge of dynamical systems purely from high-dimensional video recordings. That

is, the discovery of fundamental variables hidden in experimental data [171].

All physical laws are described as mathematical relationships between state variables. These

variables provide a complete and non-redundant description of the relevant system, while laws de-

scribe how these variables change with time. However, despite the prevalence of computing power

and AI, the process of identifying the hidden state variables themselves has resisted automation.

Most data-driven methods for modeling physical phenomena still rely on the assumption that the

relevant state variables are already known. A longstanding question is whether it is possible to

identify state variables from scratch, given only high-dimensional observational data. Here we

propose a new principle for determining how many state variables an observed system is likely to

have and what these variables might be, directly from video streams. We demonstrate the effective-

ness of this approach using video recordings of a variety of physical dynamical systems, ranging

from elastic double pendulums to fire flames. Without any prior knowledge of the underlying

physics, our algorithm discovers the intrinsic dimension of the observed dynamics and identifies

candidate sets of state variables. We suggest that this approach could catalyze the understanding,

prediction, and control of increasingly complex systems.
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6.1 Background

Mathematical relationships are known to describe nearly all physical laws in nature [172], and

these mathematical expressions are almost always formulated as relationships between physical

state variables that describe the physical system. This suggests that before any natural law can be

discovered, the relevant state variables must first be identified [173, 174].

For example, it took civilizations millennia to formalize basic mechanical variables such as

mass, momentum and acceleration. Only once these notions were formalized, could laws of me-

chanical motion be discovered. Laws of thermodynamics were discovered only after concepts such

as temperature, pressure, energy and entropy were formalized. Laws of solid mechanics could only

be discovered once variables such as stress and strain were formalized. Electromagnetism, fluid

dynamics, quantum mechanics and so forth all required their own set of fundamental state variables

to be defined, before they could be formalized into existence. Without the proper state variables,

even a simple system may appear enigmatically complex.

The set of state variables for modeling any system is not only hidden, but it is also not unique

(Fig. 6.1). In fact, even for well-studied systems in classical mechanics, such as swinging pendu-

lum, many sets of possible state variables exist. For the pendulum, the state variables are typically

the angle of the arm 𝑞1 = \ and the angular velocity of the arm 𝑞2 = ¤\. The angle and angular

velocity are convenient choices because they can be directly measured. However, alternative sets

of state variables, such as kinetic and potential energies of the arm, could also be used as state

variables.

A key challenge, however, occurs when the system is new, unfamiliar or complex, and the

relevant set of state variables is unknown. Although there are various techniques such as Dynamic

Mode Decomposition (DMD) and Singular Value Decomposition (SVD) [175] developed to learn

dynamical systems based on observations, none of these methods has the ability to process a video

of a pendulum, for example, and without any further knowledge, output the double pendulum’s four

state variables. Such an ability, if had, could help scientist gain insight into the physics underlying
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Circular Motion Reaction Diffusion Single Pendulum

Rigid Double Pendulum Elastic Double Pendulum Swing Stick

Air Dancer Lava Lamp Fire

Fig. 6.1: What state variables describe these dynamical systems? Identifying state variables
from raw observation data is a precursor step to discovering physical laws. The key challenge is to
figure out how many variables will give a complete and non-redundant description of the system’s
states, what are the candidate variables, and how the variables are dependent on each other. Our
work studies how to retrieve possible set of state variables from data distributions non-linearly
embedded in the ambient space.

increasingly complex phenomena, especially when theory is not keeping pace with observations.

Data-analytics tools have impacted almost every aspect of scientific discovery [176, 177]: Ma-

chines can measure, collect, store and analyze vast amounts of data. New machine learning tech-

niques can create predictive models, find analytical equations [178] and invariants [179], and even

generate causal hypotheses along with new experiments to validate or refute these hypotheses [180,

181, 182]. Yet, a longstanding question is whether it is possible to automatically uncover the hid-

den state variables themselves. Finding such variables is still a laborious process requiring teams

of human scientists toiling over decades.
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The ability of human scientists to distill vast streams of raw observations into laws governing

a concise set of relevant state variables has played a key role in many scientific discoveries. It is

thus of great importance to have tools for automated scientific discovery that could help distill raw

sensory perceptions into a compact set of state variables and their relationships.

Numerous machine learning tools have been demonstrated to model the dynamics of physical

systems automatically, but most of them were already provided measurements of the relevant state

variables in advance [183, 184, 185, 178, 186, 179, 187, 188, 189, 190, 191, 192, 193, 194]1.

For example, our own previous work on distilling natural laws [179] assumed an input stream

corresponding to state variables such as angle and angular velocity of a pendulum arm. Brunton

et al. [192] required access to spatial coordinates and their derivatives for modeling a Lorenz

system, Udrescu and Tegmark [194] combined neural networks with known physical properties to

solve equations from the Feynman Lecture on Physics, given provided variables, Mrowca et al.

[195] required access to the position, velocity, mass, and material property of the particles that

compose the objects being modeled and Champion et al. [196] predefined possible basis functions

to constrain the training of an autoencoder for observation reconstruction.

The goal of this work is to find a way to overcome this key barrier to automated discovery

– by explicitly identifying the intrinsic dimensionality of a system and the corresponding hidden

state variables, purely from the visual information encoded in raw camera observations. A key

challenge in identifying state variables is that they are often hidden and might be hard to measure

directly. An even greater challenging aspect of state variable identification is that there might be a

large number of potential descriptive variables that are related to the varying state of the system,

but are neither compact nor complete in their description of the system.

For example, a camera observing a swinging pendulum with an imaging resolution of 128×128

pixels in three color channels, will measure 49,152 variables per frame. Yet this enormous set of

measurement, while intuitively descriptive, is neither compact nor complete: In fact, we know

that the state of a swinging pendulum can be described fully by only two variables: its angle and

1By State Variables, we refer to compact and complete sets of quantitative variables that fully describe the observed
dynamical system evolving with time.
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angular velocity. Moreover these two state variables cannot be measured from a single video frame

alone. In other words, a single frame, despite the large number of measurements, is insufficient to

describe the full state of a pendulum.

The questions that we aim to answer are: Given a series of video frames of a swinging pendu-

lum that contain the full and accurate motion trajectories, for example, is there a way to know that

only two variables are required to describe its dynamics in full? And is there an automated process

to reduce the vast deluge of irrelevant and superfluous pixel information into representations in

terms of the two state variables? Naturally, we would like this process to work across a variety of

physical systems and phenomena.

The starting point of our approach is to model the system dynamics directly from video repre-

sentations via a neural network with bottleneck latent embeddings [197, 198, 199]. If the network

is able to make accurate future predictions, the network should internally encapsulate a relation-

ship connecting relevant current states with future states. Our paramount challenge is to distill and

extract the hidden state variables from the network encoding.

Our key idea involves two major stages. First, after training the dynamics predictive neural

network, we calculate the minimum number of independent variables needed to describe the dy-

namical systems, known as its intrinsic dimension, with geometric manifold learning algorithms.

This initial stage produces accurate intrinsic dimension estimations on a variety of systems from

the model’s bottleneck latent embeddings which are already reduced by hundreds of times com-

pared to the raw image space.

Armed with the intrinsic dimension obtained in the first stage, in the second stage, we design

a latent reconstruction neural network to further identify the governing state variables with the

exact dimension as the intrinsic dimension. We term these identified state variables Neural State

Variables. Through both quantitative and qualitative experiments, we demonstrated that Neural

State Variables can accurately capture the overall system dynamics.

Beyond our two-stage approach to reveal the system intrinsic dimension and the possible set

of state variables, another major contribution of our work is to leverage the discovered Neural
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State Variables both as an intermediate representation and evaluation metric for stable long-term

future predictions of system behaviors. Due to the special reduced-dimension property of Neural

State Variables, they can provide very stable long-term predictions, while higher dimensional auto-

encoders often yield blurred or plain background predictions if iterated just a few steps into the

future.

Finally, we present a hybrid prediction scheme which achieves both accurate and stable long-

term predictions. Furthermore, we derive a quantitative evaluation metric for long-term prediction

stability with Neural State Variables by approximating the true system dynamics using the most

compact latent space. We also demonstrate that Neural State Variables can offer a robust represen-

tation space for modeling system dynamics under various visual perturbations.

6.2 Discovery of the Intrinsic Dimension

6.2.1 Modeling Dynamical Systems from Videos

The dynamics of a physical system defines the rule that governs how the current system states

will evolve into their successive states in the future. Mathematically, provided the ambient space

X and the state space S ⊂ X, one can formulate the dynamical system as

X𝑡+𝑑𝑡 = 𝐹 (X𝑡), 𝑡 = 0, 𝑑𝑡, 2𝑑𝑡, 3𝑑𝑡, . . . , (6.1)

where X𝑡 ∈ S is the system’s current state at time 𝑡, 𝑑𝑡 is the discrete time increment. 𝐹 : S →

S describes the state evolution from X𝑡 to the system’s successive state X𝑡+𝑑𝑡 at time 𝑡 + 𝑑𝑡.

Throughout this chapter we will consider the system as discrete in time. Any continuous in time

dynamical system can also be discretized to formulation (6.1) with an appropriate sampling interval

𝑑𝑡.

The first step towards modeling a dynamical system is to choose the representation of system

states. Previous studies assume that the states are given as the direct measurements of a set of pre-

defined state variables, such as the position and velocity of a rigid body object. However, defining
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which state variables to measure requires expert prior knowledge of the system. For an unfamiliar

physical system, we do not know in advance what quantities to measure. Moreover, most state

variables are not directly measurable, as they correspond to properties that are physically unob-

servable in a non-intrusive manner or cannot be uniquely determined without prior knowledge.

One example is the measurement of the position of the pendulum arms is very challenging without

installing tracking markers which can change the system dynamics.

In this work, we chose video frames as the state representation. Using the notations above,

X is the high dimensional image space. This choice comes with several advantages. First, video

recordings do not require prior knowledge of the inner working processes of the observed dynam-

ical system. Second, video cameras collect a rich stream of physics signals, without requiring

expensive and specialized equipment. If we can apply our method to data collected by video cam-

eras, then this approach could potentially operate with other types of sensor arrays.

Our goal is to learn a the most compact space that implicitly captures the entire system dy-

namics, using only high dimensional visual data as input. To achieve this, we formulate a self-

supervised learning problem to leverage the natural supervision from future video streams. Our

model is based on an auto-encoder neural network to map the high-dimensional visual observa-

tions to a relative low-dimensional embedding which will then be projected to a high-dimensional

image space again to predict the future video frames. If the model can successfully produce accu-

rate future predictions, the low-dimensional bottleneck has to capture sufficient information on the

system dynamics.

Formally, our framework comprises five major components as shown in Fig. 6.2(A): A pair

of input image frames Xt, an encoder network 𝑔E, a latent embedding vector L𝒕→𝒕+𝒅𝒕, a decoder

network 𝑔D, and a pair of output future frames X𝒕+𝒅𝒕. For the dynamical systems studied in our

chapter, both the input and output image pairs are two consecutive frames with the dimension

128 × 128 × 3 RGB channels. The pairs of frames are concatenated to form single input and

output image. The encoder 𝑔E and decoder 𝑔D are fully convolutional networks where the decoder

also comes with residual connections and multi-scale predictions to enhance higher resolution
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Fig. 6.2: Two-stage modeling of dynamical systems. (A) and (B) First stage: intrinsic dimen-
sion estimation. We first modelled the dynamical systems via the evolution from Xt to X𝒕+𝒅𝒕

with a fully convolutional encoder-decoder network directly from video observations. The dimen-
sion of the latent vectors L𝒕→𝒕+𝒅𝒕 is often much lower than the dimension of the input vectors, but
much higher than the intrinsic dimension of the system. To identify the intrinsic dimension of the
system, we applied geometric manifold learning algorithms on this set of relative high dimension
latent vectors. (C) Second stage: discover Neural State Variables. We applied another encoder-
decoder network on top of the above latent vectors to automatically determine the Neural State
Variables by limiting the latent dimension of this network with the identified intrinsic dimension.
Our two-step approach can produce Neural State Variables with the exact dimension of the system
intrinsic dimension. (D) Once we determine the Neural State Variables, we can leverage the system
dynamics in the space of Neural State Variables as an indicator of dynamics stability. Therefore,
we learn a neural latent dynamics to predict the the Neural State Variables at the next time step
from the current Neural State Variables.

predictions. The network first outputs L𝑡→𝑡+𝑑𝑡 = 𝑔E(Xt) and then generates the future frames

X̂𝒕+𝒅𝒕.
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To train the encode and decoder networks, we use simple L2 loss function without other con-

straints:

L = EX
[
∥𝑔D(𝑔E(Xt)) −X𝒕+𝒅𝒕 ∥22

]
.

The learned mapping �̂� = 𝑔D ◦ 𝑔E provides a numerical approximation of the system’s evolution

mapping 𝐹 through the latent embedding.

One critical but largely ignored design decision is the dimension LD of the latent embedding

L ∈ RLD. In Machine Learning, LD is often treated as a hyperparameter selected using an “edu-

cated guess” because it is not immediately clear what the best value of LD should be. However,

this dimensionality is especially important for physical dynamics modeling. When LD is large, the

latent embedding can hold large numbers of useful bits of information about the system dynamics.

However large embedding vectors overfit the data are have limited capacity for longer range pre-

diction. More importantly, large latent spaces hide and obfuscate the compact set of state variables

we are after. When LD is too small, the network may under-fit the data.

Therefore, we aim to come as close as possible to the exact number of state variables. In the

next section, we will carefully analyze these issues and introduce our novel solutions to system-

atically discover the most compact space of the embedding vector without imposing optimization

challenges.

To study the generality of the proposed approach, we compiled a dataset comprising videos

of nine physical dynamical systems from various experimental domains (Fig. 6.1), ranging from

simple periodic motion (circular motion, single pendulum), chaotic kinematics (rigid double pen-

dulum, elastic double pendulum, swing stick), nonlinear wave (reaction-diffusion system), multi-

phase flow (lava lamp), to aeroelasticity (air dancer) and combustion (flame dynamics). Each

dataset comes with raw video recordings of the dynamical systems. For certain dataset where

measurements of known physical quantities are easy to obtain, we also provide ground-truth esti-

mations for evaluation purposes only.

In Fig. 6.3(A), we show comparisons between the predicted video frames and the ground-truth

recordings. Our model was able to produce accurate video predictions. Our model also substan-
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tially outperforms linear extrapolation and copying input data baselines in Fig. 6.3(B). For dataset

with ground-truth physical quantities such as elastic double pendulum, our system was able to pre-

dict the physical variables accurately compared to the ground truth. Overall, the evaluation results

suggest that the model successfully captured a nontrivial understanding of the system dynamics.

6.2.2 Intrinsic Dimension Estimation

Intrinsic Dimension (ID) has served as a fundamental concept in many advances in physi-

cal sciences. In general, the intrinsic dimension refers to the minimum number of independent

variables needed to fully describe the state of a dynamical system. The intrinsic dimension is inde-

pendent of specific representations of the system or choice of a particular set of state variables. In

a more quantitative way, the intrinsic dimension could be equivalently defined as the topological

dimension of the state space S as a manifold in the ambient space X [200, 201, 202].

A common assumption when analyzing a physical system is that the intrinsic dimension is

known a priory. An even stronger assumption is that the corresponding state variables themselves

are given. Yet these assumptions do not hold for unknown or partially known systems. In order

to uncover the underlying dynamics of a wide range of systems and make future predictions of

their future behaviors, we need to automatically identify the intrinsic dimension of the systems and

extract the corresponding state variables from observed data, which is often high dimensional and

noisy.

A naive approach using an auto-encoder predictive framework is to keep reducing the size of

the latent embedding vector through trial and error until the output is no longer valid. However,

this approach does not yield satisfactory results because the output deteriorates long before the

Fig. 6.3 (preceding page): Prediction visualizations and physics evaluations (A) Visualizations
of our basic prediction results. (B) For systems where physical variables happen to be available,
we obtained the physical variables from both the predicted frames and the ground truth frames.
We then performed physics evaluations on these systems. We show the results of elastic double
pendulum here. The elastic double pendulum dataset has 60 fps. Our prediction model outperforms
both the copy data and linear extrapolation baselines suggesting that our model captures nontrivial
understanding of the system’s second order dynamics.
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(A)

Input Output (Direct Shrink) Output (Ours) Ground Truth

(C)
Input Output Ground Truth Input Output Ground Truth

(B)

Fig. 6.4: Intrinsic Dimension (ID) and Neural State Variables (A) Keep reducing the size of
the latent embedding on the original auto-encoder to find ID is not feasible due to optimization
difficulties. The network could not converge to a satisfactory solution. With our two-stage method
to retrieve the system intrinsic dimension and further discovered Neural State Variables, we can
bypass this limitation to produce accurate future predictions. (B) Our method estimates ID without
prior knowledge about the systems’ state variables. The estimated ID value are rounded to the
nearest even integer as position and velocity variables are in pairs. For systems with known IDs,
our calculations give accurate results. For unknown systems, the ranking of the ID also makes
sense. Our method outperforms direct estimations from raw images. (C) More results on one-step
prediction with our discovered Neural State Variables.

minimal set of state variables is reached. As shown in Fig. 6.4(A), the model predictions broke

down when we directly shrank the size of the latent space to the intrinsic dimension.
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Inspired by traditional manifold learning methods that utilize geometric structures of the em-

bedding vectors (such as their nearest distances), we propose a solution that can automatically

discover the intrinsic dimension of a dynamical system from the latent vectors. Our approach only

needs a one-time network training step. Specifically, we applied the Levina-Bickel’s algorithm

[203] on the latent embedding space. The algorithm considers latent vectors {L(1) ,L(2) , · · · ,L(𝑁)}

collected from the trained dynamics predictive model as 𝑁 data points on a manifold of dimen-

sion ID in the latent embedding space. A key geometric observation is that the number of data

points within distance 𝑟 from any given data point L(𝑖) is proportional to 𝑟 ID when 𝑟 is small.

Based on the observation, the Levina-Bickel’s algorithm derives the local ID estimator near L(𝑖)

as 1
𝑘−2

∑𝑘−1
𝑗=1 log 𝑇𝑘 (L(𝑖) )

𝑇 𝑗 (L(𝑖) )
, where 𝑇𝑘 (L(𝑖)) is the Euclidean distance between L(𝑖) and its 𝑘 th nearest

neighbor in {L(1) ,L(2) , · · · ,L(𝑁)}. The global ID estimator is then calculated as:

IDL-B =
1
𝑁

𝑁∑︁
𝑖=1

1
𝑘 − 2

𝑘−1∑︁
𝑗=1

log
𝑇𝑘 (L(𝑖))
𝑇𝑗 (L(𝑖))

.

Fig. 6.4(B) shows the estimations across all the systems in our holdout dataset along with

baseline comparisons from raw image observations and partial ground-truths. Our method demon-

strates highly accurate estimations of the intrinsic dimension of all known systems. Although

we cannot account for the ground-truth intrinsic dimension of other systems, we do see that our

experiments presented a reasonable and intuitive relative ranking among all listed systems.

We also compared the performance of Levina-Bickel’s algorithm with other popular intrinsic

dimensionality estimation algorithms including MiND_ML, MiND_KL, Hein, and CD [202, 204,

205, 206, 207] by following the original implementations [206, 205]. Though all the algorithms

demonstrated promising performance, we found that the Levina-Bickel algorithm gives the most

robust and reliable estimation.
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6.3 Neural State Variables

6.3.1 Discovery of the Neural State Variables

As we have discussed above, the minimum set of independent state variables V used to describe

the dynamical system has the dimension known as the intrinsic dimension, namely V ∈ RID. To

simplify the terminology, we refer them as State Variables directly throughout the rest of this

chapter.

Now that we have identified the number of state variables, we need to find the actual variables

themselves (bearing in mind that the set is not unique). We propose a two-stage framework to

retrieve possible State Variables from raw video data with both dynamics predictive and latent

reconstruction neural networks. We term our subset of State Variables as Neural State Variables.

Hence, with Neural State Variables V , the dynamical system can be expressed as the evolution of

the trajectory {V0→𝑑𝑡 , V𝑑𝑡→2𝑑𝑡 , ...}.

Our key idea is to break down the identification process into two stages as illustrated in

Fig. 6.2(A)-(C). The first stage is to train a dynamics predictive model and identify the intrin-

sic dimension ID as indicated in the previous section. This stage yields a relative low-dimensional

latent embedding L ∈ RLD where LD is still much larger than ID. As shown in Fig. 6.3, the net-

work can converge to output accurate future frames, indicating that the latent embedding captures

sufficient information about the complete system dynamics.

The second stage operates directly on the latent embedding to further distill the Neural State

Variables. Directly reducing the latent vector using the first step did not converge (Fig. 6.4(A)).

Therefore, we trained a second auto-encoder network that takes in the pre-trained latent embed-

ding and outputs the reconstruction of the input. The special property of this network is that

the size of the latent embedding equals to the intrinsic dimension obtained from the first step.

With a minimum reconstruction error, we can identify this latent embedding vectors as the Neural

State Variables. Specifically, the network can be expressed as follows: V𝑡→𝑡+𝑑𝑡 = ℎE(L𝑡→𝑡+𝑑𝑡)

and L̂𝑡→𝑡+𝑑𝑡 = ℎD(V𝑡→𝑡+𝑑𝑡) where ℎE and ℎD refers to the encoder and decoder network of the
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latent reconstruction model. We train the latent reconstruction model with the L2 loss: L =

EL
[
∥ℎD(ℎE(L𝒕→𝒕+𝒅𝒕)) −L𝒕→𝒕+𝒅𝒕 ∥22

]
.

Overall, our two-stage method bypasses the optimization challenges and avoides the risk of

under-fitting the observed data. In Fig. 6.4(C), we qualitatively demonstrate the effectiveness of our

approach. For all the systems in our dataset, our framework is able to predict accurate future frames

from super compact variables with dimension ID (e.g., ID = 4 for rigid double pendulum and

ID = 6 for elastic double pendulum). In the next section, we will provide quantitative evaluations

and demonstrate its key usage to predict the long-term evolution of these dynamical systems.

6.3.2 Neural State Variables for Stable Long-Term Prediction

Forecasting the long-term future behaviors of unknown physical systems by learning to model

their dynamics is critical for numerous real-world tasks. With a dynamics predictive model giving

the one-step prediction, we can perform model rollout to feed each step’s prediction as the input to

predict the next state. However, there are two main challenges to obtaining satisfactory long-term

predictions:

• One-Step Prediction Accuracy The learned dynamics may not be accurate since prediction

errors are iteratively introduced at every prediction step. This issue mainly attributes to the

one-step prediction accuracy.

• Long-term Prediction Stability Due to error accumulation, the predicted sequences may

not be able to maintain the ground truth state space: one repeated observation from past

studies is that the long-term predicted sequences become blur, heavily distorted, or plain

background within only a few rollouts. We also observed similar phenomena in our exper-

iments as shown in Fig. 6.4(A). This is a very important issue to resolve because if objects

deform or entirely disappear without following the system dynamics, it would be impossible

to follow the system evolution faithfully. Here, we first define this phenomena as long-term

prediction stability. We then present quantitative analysis for various prediction schemes.
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Finally, we will present our solution to approach the stability challenge with Neural State

Variables.

Long-term prediction stability refers to the deviation between the predicted sequences gener-

ated from the learned dynamics and the ground truth state space governed by the system dynamics.

Given a metric 𝑀S (·) that measures the deviation from a predicted state to the true state space S,

and a prediction sequence {X̂0, X̂𝑑𝑡 , · · · } from any initial state X̂0, we can quantify the stability

of a prediction scheme as the growth rate of 𝑀S (X̂𝑡) as a function of 𝑡.

One challenge is to define at what point is the predicted image so degraded that it does not

count as a prediction at all. We define an image quality test as follows (used only for evaluation):

For systems for which we have prior knowledge about their conventional state variables, and we

can extract these physical variables from the corresponding videos through classic computer vision

techniques (e.g., color and contour extraction), 𝑀phys
S (·) can be readily defined as a binary value

indicating whether the same set of physical variables can still be distilled from a predicted state

X̂ as its corresponding ground truth state. Consequently, if the predicted frame is heavily blurred

or distorted, we will not be able to distill meaningful physical variables. Thus, 𝑀phys
S (X̂) will be

one. Otherwise 𝑀phys
S (X̂) will be zero.

Moreover, to more generally capture the long-term predictive stability of various prediction

schemes, 𝑀phys
S (·) should be evaluated on prediction sequences with multiple initial states. There-

fore, we further define 𝑀phys
S (·) as the Reject Ratio to indicate how many predicted frames at each

time step from different initial states will fail to pass the physical variables extraction test.

With the above test, we can quantitatively compare the stability of various long term predic-

tion schemes. These schemes are based on iterative model rollouts but they differ in the size of

intermediate variables. When the model rollouts are through high dimensional latent vectors (8192

variables or 64 variables), the iterative scheme is given by X̂𝑡+𝑑𝑡 = 𝑔D ◦ 𝑔E(X̂𝑡), 𝑡 = 0, 𝑑𝑡, . . . ,

where 𝑔E and 𝑔D represent the first auto-encoder that transforms input frames to the predicted

frames via latent embeddings. When the model rollouts are through Neural State Variables, the

iterative scheme is given by X̂𝑡+𝑑𝑡 = 𝑔D ◦ ℎD ◦ ℎE ◦ 𝑔E(X̂𝑡), 𝑡 = 0, 𝑑𝑡, . . . , where ℎE and ℎD
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represent the second auto-encoder that reconstructs latent embeddings via Neural State Variables.

The original latent embeddings are computed from input frames with 𝑔E, and the reconstructed

latent embeddings will be sent to 𝑔D to produce the final predicted frames.

Fig. 6.5(A) shows the stability results on rigid double pendulum and elastic double pendulum

where we can extract the physical variables from videos. The 8192-dim and 64-dim scheme cannot

give stable long-term future predictions. In our experiments, we noticed that both schemes can

provide stable predictions when the system intrinsic dimension is smaller or equal than 2.

Inspired by lessons learned from computational physics, an effective fix to the unstable long-

term prediction is to construct a prediction scheme where the predicted states will be projected into

a small neighborhood of the state space. Here Neural State Variables serve as a strong candidate so-

lution. This is because Neural State Variables have the same dimension as the intrinsic dimension.

This fact prevents predictions from falling off the system manifold into new dimensions.

The blue curves in Fig. 6.5(A) illustrate the stability introduced by using Neural State Variables

as intermediate representations for long-term predictions. Neural State Variables provide the most

stable predictions across all the systems. However, since Neural State Variables were obtained by

performing reconstruction on a relative high-dimensional latent embedding, they have an inferior

performance on one-step prediction accuracy.

To combine the best of two worlds, we propose a hybrid scheme as our final solution: using

Neural State Variables as stabilizers while performing long-term predictions with their correspond-

ing high-dimensional latent embeddings. Formally, the hybrid scheme follows an 𝑁 + 1 pattern

where for every 𝑁 steps performed with the high-dimensional latent vectors, a one step prediction

is followed with the Neural State Variables. As shown by the green curves in Fig. 6.5(A) and (B),

our hybrid scheme offers stable and accurate long-term predictions. In Fig. 6.5(A) and (B), the

hybrid scheme was implemented with specific values of 𝑁 between 3 and 6. We also conducted

experiments with different choices of 𝑁 and found that the outcomes were not sensitive to the

particular values of 𝑁 .

Another important note is that the use of pixel error as the evaluation metric, though easy
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Rigid double pendulum (measurable) Swing stick (non-measurable)

Fig. 6.5: Long-term Prediction Stability (A) For systems where we could extract physical vari-
ables such as rigid and elastic double pendulum, using Neural State Variables as intermediate
representations gives the most stable long-term future predictions. With our hybrid scheme, we
can achieve relatively stable and accurate predictions. Pixel error cannot replace physics-based
evaluation for measuring the long-term prediction stability. (B) Predictions through Neural State
Variables can maintain the ground truth state space for long-term predictions. The hybrid scheme
offers the most stable and accurate predictions.

to compute, can be misleading for the evaluation of long-term predictions when the predictions

quickly become unstable. As quantitatively and qualitatively demonstrated in Fig. 6.5, pixel errors
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remain roughly the same after the predicted images become plain backgrounds. These pixel errors

are even smaller than the pixel errors computed from a slightly inaccurate but clear prediction.

This observation further emphasizes the significance of designing an appropriate 𝑀S (·) metric.

6.3.3 Neural State Variables for Dynamics Stability Indicators

So far, for evaluating long-term prediction stability, we have been assuming that we can extract

the physical variables from the system states during evaluation. Yet, it is common that, in most

of the video representations in our dataset, we know neither which variables to extract nor how to

extract them directly from videos. As noted above, pixel errors are also not reliable. In this case, a

very challenging but important problem is how we can evaluate the long-term prediction stability

from videos. Resolving this problem can potentially open up the door to quantitatively evaluate

prediction stability of various schemes for many complex and unknown systems, all directly from

videos.

Following the framework in the last section, the key is the design of the metric 𝑀S (·). Here we

propose a solution based on Neural State Variables, namely 𝑀neur
S . Specifically, 𝑀neur

S is a metric

on a pair of states (X̂𝑡 , X̂𝑡+𝑑𝑡).

𝑀neur
S (X̂𝑡 , X̂𝑡+𝑑𝑡) =

ℎE ◦ 𝑔E(X̂𝑡+𝑑𝑡) − �̂�𝑉 (ℎE ◦ 𝑔E(X̂𝑡))
 ,

where �̂�𝑉 is a neural network trained to approximate the latent dynamics on the space of Neu-

ral State Variables V̂𝑡+𝑑𝑡→𝑡+2𝑑𝑡 ← �̂�𝑉 (V𝑡→𝑡+𝑑𝑡), ℎE ◦ 𝑔E(X̂𝑡) = V̂𝑡→𝑡+𝑑𝑡 and ℎE ◦ 𝑔E(X̂𝑡+𝑑𝑡) =

V̂𝑡+𝑑𝑡→𝑡+2𝑑𝑡 are Neural States in RID, ∥·∥ is the Euclidean norm in RID.

Intuitively, 𝑀neur
S measures how far the predicted dynamics, reflected by the given predicted

sequence, deviates from the reduced system dynamics projected onto the space of Neural State

Variables. As shown in the previous sections, all latent embeddings with higher or equal to the

intrinsic dimension may provide accurate short-term approximation of system dynamics. However,

we chose the space of Neural State Variables as the reference because it has the same dimension
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Fig. 6.6: Neural State Variables for Dynamics Stability Indicators The latent dynamics on
the space of Neural State Variables, namely neural latent dynamics, can be used as an effective
indicator to quantify the stability of long-term future predictions. The strong correlation between
the latent dynamics error and the physics reject ratio implies that our latent dynamics error can be
used as an alternative metric to measure long-term prediction stability.

as ID. First, as mentioned above, Neural State Variables project the predicted states in the small

neighborhood of the ground truth states. Moreover, the Euclidean distance serve as a good metric

to measure dynamics deviation in this case, while other higher dimensions may suffer the curse of

dimensionality when designing the distance metric. Overall, 𝑀neur
S is an ideal alternative candidate

to 𝑀phys
S .

Similar to 𝑀phys
S , the final 𝑀neur

S is computed across multiple prediction sequences with vari-

ous initial states. We show the evaluation results with our stability metric based on Neural State

Variables in Fig. 6.6. 𝑀neur
S produces patterns that highly match with 𝑀phys

S for the systems where

we know how to extract physical variables. This can also be seen in the correlation plot in Fig. 6.6

where we computed the Pearson correlation coefficient between reject ratio of all models (dim-

8192, dim-64, dim-ID, hybrid) at all prediction steps and the respective latent dynamics errors.

For unknown systems, we observed the same trend where high-dimensional latent embeddings

schemes are often not stable. In conclusion, our 𝑀phys
S metric can help us measure the long-term

prediction stability directly from videos without additional prior knowledge of the system.

6.3.4 Neural State Variables for Robust Long-Term Prediction

Another critical factor when modeling system dynamics from videos is the robustness against

visual perturbations. Therefore we applied several visual perturbations on the input video frames
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Fig. 6.7: Neural State Variables for robust long-term prediction (A) The physical reject ratio
can effectively measure long-term prediction robustness from perturbed initial data. For both sys-
tems and all combinations of perturbation types and perturbation levels, the model rollouts through
Neural State Variables provide the most robust predictions. (B) From perturbed initial frames, the
dynamics predictive model with high dimensional latent vectors produces blurred images or pure
background with only one model rollout, while the model rollouts through Neural State Variables
still give reasonable predictions.

during test time and evaluated the performances of different models.

Specifically, we performed three types of perturbations. The first type is to simulate camera
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occlusions by covering certain portion of the input frames with a randomly generated color square.

The area of the square indicates the level of the perturbation. For example, 1
64 means the area of

the square is 1
64 times of the area of one input frame.

The second type is to simulate background color change by covering certain portion of the

input frame background with a randomly generated color square. The main difference between

this perturbation and the first one is that the color square will not cover the object. The level

definition is the same with the first perturbation type.

Lastly, to simulate possible sensor noises, we added random Gaussian noise on the input

frames. The Gaussian noise has a zero mean and different level of standard deviations. For exam-

ple, 1
64 means the Gaussian noise has a standard deviation of 1

64 × 255 where 255 is the highest

pixel value in the input frames.

We show the test-time results using the physical reject ratio metric in Fig. 6.7(A). The quan-

titative results clearly demonstrate the strong robustness of models on the Neural State Variables

space across all level of perturbations. The models with very high dimensional latent space quickly

produce unstable predictions.The models with a relative lower dimension but still higher than ID

can sometimes give stable predictions again after several unstable rollouts. However, even though

the predictions can become stable again, it requires much more number of prediction steps. We

also show qualitative visualizations in Fig. 6.7(B).

6.3.5 Analysis

We hypothesize that Neural State Variables contain rich physical meanings that align with the

conventional definition of the physical State Variables. In this section, we verify this hypothesis

through both quantitative regression experiments and qualitative visualizations.

We trained a small neural network with five layers of MLPs to regress conventional physical

variables including positions, velocities, and energies from learned Neural State Variables. Our

results are shown in Fig. 6.8(A). Using 30% of labeled data, the learned Neural State Variables

can be used to accurately regress the physical variables. We then compared the regression errors
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few principal components of high dimensional latent vectors from our predictive model. Using
the same number of state variables, which equals ID, and the same labeled data, the regres-
sion errors using principal components of high dimensional latent vectors are much larger than
those using Neural State Variables, especially for velocity variables. Therefore, state variables
obtained through PCA, or equivalently through linear neural networks, can hardly capture the
dynamics of the system.

Latent Variables ✓ (deg) ✓̇ (deg/s) Energy (J)

dim-2 PCA of
dim-8192 Latents 19.99 (±0.96) 134.68 (±7.76) 0.94 (±0.12)

dim-2 PCA of
dim-64 Latents 63.23 (±3.42) 252.00 (±9.60) 1.22 (±0.07)

dim-2 Latents 6.15 (±0.64) 43.45 (±3.84) 0.35 (±0.02)

Table 1: Single pendulum: angular position, angular velocity, and total energy.

Latent Variables ✓1 (deg) ✓2 (deg) ✓̇1 (deg/s) ✓̇2 (deg/s) Energy (J)

dim-4 PCA of
dim-8192 Latents 29.23 (±1.15) 45.74 (±0.47) 163.67 (±2.77) 380.42 (±2.98) 0.11 (±0.00)

dim-4 PCA of
dim-64 Latents 16.87 (±0.91) 16.89 (±0.32) 196.52 (±4.74) 322.27 (±13.35) 0.10 (±0.00)

dim-4 Latents 10.32 (±0.59) 10.17 (±0.51) 88.01 (±3.86) 126.88 (±7.66) 0.06 (±0.00)

Table 2: Rigid double pendulum: angular positions and angular velocities of the two arms, and
total energy.

Latent Variables ✓1 (deg) ✓2 (deg) z (m) ✓̇1 (deg/s) ✓̇2 (deg/s) ż (m/s) Total energy (J)

dim-6 PCA of
dim-8192 Latents 23.86 (±1.14) 43.03 (±0.72) 0.02 (±0.00) 149.36 (±3.20) 397.20 (±9.50) 0.52 (±0.01) 0.08 (±0.00)

dim-6 PCA of
dim-64 Latents 14.10 (±0.88) 27.96 (±0.85) 0.01 (±0.00) 170.68 (±6.37) 396.70 (±2.90) 0.59 (±0.01) 0.07 (±0.00)

dim-6 Latents 7.85 (±0.54) 14.11 (±0.50) 0.01 (±0.00) 70.03 (±1.41) 163.13 (±4.10) 0.27 (±0.01) 0.05 (±0.00)

Table 3: Elastic double pendulum: angular positions and angular velocities of the two arms,
stretch and stretch velocity of the first arm, and total energy.

Visualizations colored by the value of physical variables in Fig. 8B can further demonstrate
the physical meaning of the Neural State Variables. We observe that indeed the physical vari-
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Fig. 6.8: PCA regression and Neural State Variables visualizations (A) Neural State Variables
capture much richer information about the system dynamics than state variables obtained through
PCA from other high dimensional latent embedding vectors. (B) We also visualize the Neural
State Variables after applying PCA on them. The colors represent the value of different physical
variables. Examples shown here suggest interesting symmetrical structures encoded in the Neural
State Variables.

with those from the first few principal components of high dimensional latent vectors from our

dynamics predictive model. Using the same number of state variables, which equals ID, and the

same labeled data, the regression errors using principal components of high dimensional latent

vectors are much larger than those using Neural State Variables, especially for velocity variables.

Therefore, state variables obtained through PCA, or equivalently through linear neural networks,

can hardly capture the dynamics of the system.

Visualizations colored by the value of physical variables in Fig. 6.8(B) can further demonstrate

the physical meaning of the Neural State Variables. We observe that indeed the physical variables

are captured in the set of Neural State Variables chosen by our modeling system. The charts also

reveal the inherent symmetrical nature of these variables.
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Chapter 7: Physical Environment Modeling through Acoustic Vibration

The majority of robotic systems nowadays heavily rely on camera sensors to perceive the in-

formation from the environment to model the physics and dynamics. However, environmental

conditions are not always ideal for cameras. Although robots frequently need to interact with con-

tainers, objects inside containers often become occluded from cameras, making state estimation

from vision impractical. In unconstrained settings, environments can also lack ideal lighting con-

ditions, with limited visual signals to indicate the location and state of objects. Moreover, camera

systems require extensive calibration for 3D state estimation, which is often fragile during contact

and collisions.

In this chapter, we will demonstrate how to leverage acoustic vibrations for robots to sense

and model their physical environment [208]. In particular, we will focus on the task of object

state estimation. Unlike vision, sound remains robust during occlusions or poor illuminations. For

example, when an object is dropped inside a container, it may not be visible to any camera, but

the collision between the object and the bin will cause a sound that can be easily picked up by a

contact microphone. The exact incidental vibration will depend on the location and pose of the

objects inside the bin. We demonstrate how to use this audio signal to reconstruct the objects’

states inside containers.

We introduce The Boombox, a smart container that uses its vibration of itself to reconstruct an

image of its contents. The box is no larger than a cubic square foot. Unlike most containers, the

box uses contact microphones to detect its own vibration. Exploiting the link between acoustic and

visual structure, we show that a convolutional network can use these vibrations to predict the visual

scene inside the container within centimeters, even under total occlusion and poor illumination.

Figure 7.1 illustrates our box and one reconstruction from the sound.

Interacting with bins and containers is a fundamental task in robotics, making state estimation
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Fig. 7.1: The Boombox. We introduce a
“smart” container that is able to reconstruct
an image of its inside contents. The approach
works even when the camera cannot see into
the container. The box has four contact mi-
crophones on each face. When objects interact
with the box, they cause incidental acoustic vi-
brations. From these vibrations, we learn to
predict the visual scene inside the box.

of the objects inside the bin critical. While robots often use cameras for state estimation, the

visual modality is not always ideal due to occlusions and poor illumination. We introduce The

Boombox, a container that uses sound to estimate the state of the contents inside a box. Based

on the observation that the collision between objects and their containers will cause an acoustic

vibration, we present a convolutional network for learning to reconstruct visual scenes. Although

we use low-cost and low-power contact microphones to detect the vibrations, our results show that

learning from multimodal data enables state estimation from affordable audio sensors. Due to the

many ways that robots use containers, we believe the box will have a number of applications in

robotics.

7.1 The Boombox

7.1.1 Detecting Vibrations

The Boombox, shown in Figure 7.2A, is a plastic storage container that is 15.5cm × 26cm ×

13cm (width × length × height) with an open top. The box is a standard object that one can buy at

any local hardware store. When an object collides with the box, a small acoustic vibration will be

produced in both the air and the solid box itself. We have attached contact microphones on each

wall of the plastic cuboid storage bin in order to detect this vibration. Unlike air microphones,

contact microphones are insensitive to the vibrations in the air (which human ears hear as sound).

Instead, they detect the vibration of solid objects.

The microphones are attached on the outer side of the walls, resulting in four audio channels.
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Fig. 7.2: The Boombox Overview. (A) The Boombox can sense the object through four contact
microphones on each side of a storage container. A top-down RGB-D camera is used to collect the
final stabilized scene after the object movements. (B) We drop three wooden objects with different
shapes. (C) Input and output data visualizations.

We arrange the microphones roughly at the horizontal center of each wall and close to the bottom.

As our approach will not require calibration, the microphone displacements can be approximate.

We used TraderPlus piezo contact microphones, which are very affordable (no more than $5 each).1

7.1.2 Vibration Characteristics

When objects collide with the box, the contact microphones will capture the resulting vibra-

tions. Figure 7.3 shows an example of the vibration captured from two of the microphones. We aim

to recover the visual structure from this signal. As these vibrations are independent of the visual

conditions, they allow perception despite occlusion and poor illumination. There is rich structure

in the raw acoustic signal. For example, the human auditory system uses inter-aural timing differ-

ence (ITD), which is the time difference of arrival between both ears. Humans also locate sounds

with inter-aural level difference (ILD), which is the amplitude level difference between both ears

[209].

However, in our settings, extracting these characteristics is challenging. In practice, objects

will bounce around in the container before arriving at their stable position, as shown in Figure 7.4.

1We found that these microphones gave sufficiently clear signals while being more affordable than available direc-
tional microphone arrays. Each microphone was connected to a laptop through audio jack to USB converter. We use
GarageBand software to record all four microphones together to synchronize the recordings.

103



Mic2Mic1

Third

Bounce

... ...

Fig. 7.3: Vibration Characteristics. We visualize a vibration captured by two microphones in
the box. Several distinctive characteristics need to be combined over time in order to accurately
reconstruct an image with the right position, orientation, and shape of objects.

Each bounce will produce another, potentially interfering vibration. In our attempts to analytically

use this signal, we found that the third bounce has the best signal for the time difference of arrival,

but as can be seen from Figure 7.3, even on the third bounce the time difference of arrival is unclear

in the actual waveform. There are a multitude of factors that make analytical approaches not robust

to our real-world signals. Firstly, we are working with a moving signal, whereas time difference of

arrival calculations work best on stationary signals due to the fact that it compares the time taken

for a signal to travel from a fixed location. This makes it very difficult to analytically segment

the signal into chunks of roughly the same location. Secondly, there are echos that make non-

learning based methods difficult to identify phase shifts as the environment is a small container.

Finally, the fact that the microphones are close together means that the time difference of arrival is

encompassed in few samples, thus making it susceptible to noise.

Instead of hand crafting features, we will train a model to identify the fraction of the signal

that is most robust for final localization. Our model will learn to identify the useful features from

the signals to reconstruct a 3D scene, which includes the shape, orientation, and position of the

contents.

7.1.3 Multimodal Training Dataset

Since vision and sound are naturally synchronized, we will use vision as self-supervision to

learn robust characteristic features of the acoustic signal. We collected a multimodal training

dataset by dropping objects into the box and capturing resulting images and vibrations. We position
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Fig. 7.4: Chaotic Trajectories. We show the chaotic trajectories of objects as they bounce around
the box until becoming stable. The moving sound source and multiple bounces also create poten-
tially interfering vibrations, complicating the real-world audio signal.

an Intel RealSense D435i camera that looks inside the bin to capture both RGB and depth images,

which we only use during training.2 We use three wooden blocks with different shapes to create our

dataset. The blocks have the same color and materials, and we show these objects in Figure 7.2B.

We hold the object above the bin, and freely drop it. After dropping, the objects bounce around in

the box a few times before settling into a resting position. We record the full process from all the

microphones and the top-down camera. Overall, our collection process results in diverse falling

trajectories across all shapes with a total of 1,575 sequences. Figure 7.2C shows an overview of

the dataset. After learning, our approach will be able to reconstruct the 3D visual scene from the

box’s vibration alone.

7.2 Predicting the Visual Scene from Vibration

To estimate the state inside the container, we will learn to reconstruct the visual modality from

the audio modality. We present a convolutional network that translates vibrations into images.

7.2.1 Model

We will fit a model that reconstructs the visual contents from the vibrations. Let 𝐴𝑖 be a

spectrogram of the vibration captured by microphone 𝑖 such that 𝑖 ∈ {1, 2, 3, 4}. Our model will

predict the image �̂�RGB = 𝑓RGB(𝐴; \) where 𝑓 is a neural network parameterized by \. The

2The camera is 42cm away from the bottom of the bin to capture clear top-down images.
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network will learn to predict the image of a top-down view into the container. We additionally

have a corresponding network to produce a depth image �̂�depth = 𝑓depth(𝐴; \).

Reconstructing a pixel requires the model to have access to the full spectrogram. However,

we also want to take advantage of the spatio-temporal structure of the signal. We therefore use

a fully convolutional encoder and decoder architecture. The network transforms a spectrogram

representation (time × frequency) into an 𝐶-channel embedding with width and height being 1×1,

such that the receptive field of every dimension reaches every magnitude in the input and every

pixel in the output. Unlike image-to-image translation problems [210, 211, 212], our task requires

translation across modalities.

We use a multi-scale decoder network [6, 213, 125]. Specifically, each decoder layer consists

of two branches. One branch is a transposed convolutional layer to up-sample the intermediate fea-

ture. The other branch passes the input feature first to a convolutional layer and then a transposed

convolution so that the output for the second branch matches the size of the first branch. We then

concatenate the output from these two branches along the feature dimension as the input feature

for the next decoder layer. We perform the same operation for each decoder layer except the last

layer where only one transposed convolution layer is needed to predict the final output image.

We use a spectrogram to represent audio signals. We apply a Fourier Transform before con-

verting the generated spectrogram to Mel scale. Since we have four microphones, audio clips

are concatenated together along a third dimension in addition to the original time and frequency

dimension.

7.2.2 Learning

In most cases, we care about predicting the resting position of the object. We therefore train

the network 𝑓 to predict the final stable image. For RGB image predictions, we train the network

to minimize the expected squared error between the image 𝑋RGB and the predictions from audio

𝐴:

LRGB = E𝐴,𝑋
[
∥ 𝑓RGB(𝐴; \) − 𝑋RGB∥22

]
(7.1)
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In order to reconstruct shape, we also train the network to predict a depth image from the audio

input. We train the model to minimize the expected L1 distance:

Ldepth = E𝐴,𝑋
[
∥ 𝑓depth(𝐴; 𝜙) − 𝑋depth∥1

]
(7.2)

Since ground truth depth often has outliers and substantial noise, we use an L1 loss [214]. We use

stochastic gradient descent to estimate the network parameters \ and 𝜙. After learning, the model

predicts both the RGB image and the depth image from just the vibration. The visual modality

is only supervising representations for the audio modality, allowing reconstructions when cameras

are not viable, such during occlusions or low illumination.

7.2.3 Implementation Details

Our network takes in the input size of 128 × 128 × 4 where the last dimension denotes the

number of microphones. The output is a 128×128×3 RGB image or a 128×128×1 depth image.

We use the same network architecture for both the RGB and depth output representations except

the feature dimension in the last layer for different modalities. All network details are listed in

the Appendix. Our networks are configured in PyTorch and PyTorch-Lightning. We optimized all

the networks for 500 epochs with Adam [127] optimizer and batch size of 32 on a single NVIDIA

RTX 2080 Ti GPU. The learning rates starts from 0.001 and decrease by 50% at epoch 20, 50, and

100.

7.3 Experiments

Our experiments analyze the hardware and software at reconstructing an image of the con-

tents from audio. In this section, we first quantitatively evaluate the performance. We then show

qualitative results for the reconstructions. Finally, we visualize the learned representations.

Since the physics behind our dataset is chaotic, every time an object is dropped into the con-

tainer, we obtain a unique example with a different resting position and orientation. We randomly
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split the dataset into a training set (80%), a validation set (10%), and a testing set (10%). All of

our results are evaluated with three random seeds for training and evaluation with various splits of

the dataset. We report the mean and the standard error of the mean for all outcomes.

7.3.1 Evaluation Metrics

We use two evaluation metrics for our final scene reconstruction that focus on the object state.

IoU measures how well the model reconstructs both shape and location. Since the model

predicts an image, we subtract the background to convert the predicted image into a segmentation

mask. Similarly, we performed the same operation on the ground-truth image. IoU metric then

computes intersection over union with the two binary masks.

Localization score evaluates whether the model produces an image with the block in the right

spatial position. This metric is especially useful for object picking tasks with a suction gripper

where the spatial location of the block matters. With the binary masks obtained in the above

process, we can fit a bounding box with minimum area around the object region. We denote

the distance between the center of the predicted bounding box and the center of the ground-truth

bounding box as 𝑑, and the length of the diagonal line of ground-truth box as 𝑙. We report the

fraction of times the predicted location is less than half the diagonal: 1
𝑁

∑𝑁
𝑖=1 [𝑑𝑖 ≤ 𝑙/2].

7.3.2 Baselines

Time Difference of Arrival (TDoA). We compare against an analytical prediction of the loca-

tion. A standard practice is to localize sound sources by estimating the time difference of arrival

across an array of microphones. In our case, the microphones surround the sound source. There

are several ways to estimate the time difference of arrival, and we use the Generalized Cross Corre-

lation with Phase Transform (GCC-PHAT), which is a established, textbook approach [215]. Once

we have our time difference of arrival estimate, we find the location in the box that would yield a

time difference of arrival that is closest to our estimate.

Random Sampling. To evaluate if the learned models simply memorize the training data, we
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Audio Input Prediction Ground Truth Audio Input Prediction Ground Truth

Fig. 7.5: Model Predictions with Mixed Shapes. From left to right on each column, we visualize
the audio input, the predicted scene, and the ground-truth images. Our model can produce accurate
predictions for object shape, position and orientation.

compared our method against a random sampling procedure. This baseline makes a prediction by

randomly sampling an image from the training set and using it as the prediction.

Average Bounding Box. The average bounding box baseline measures to what extent the

model learns the dataset bias. We extracted object bounding boxes from all the training data

through background subtraction and rectangle fitting to obtain the average center location, box

sizes and box orientation. This baseline uses the average bounding box as the prediction for all the

test samples.

Nearest Neighbor. To evaluate the generalization performance from training data distribution,

we construct a nearest neighbor baseline. For each test input audio, we use the resulted image

from the training data with most similar audio as the prediction. The similarity is measured by a

L2 distance.

7.3.3 Reconstruction with Mixed Shapes

We first analyze how well The Boombox reconstructs its contents when the shape is not known

a priori. We train a single model with all the object shapes. The training data for each shape

are simply combined together so that the training, validation and testing data are naturally well-

balanced with respect to the shapes. This setting is challenging because the model needs to learn
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Fig. 7.6: Reconstruction with Mixed Shapes. Our model outperforms baseline methods at local-
ization and shape prediction.
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Boombox (depth 
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0.145518 0.03365818046676520.487311333333333 0.0693026431057607
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Fig. 7.7: Reconstruction with Known Shape. We show the performance of each individual model
trained with one of the three objects. We report both the mean and the standard error of the mean
from three random seeds. Our approach enables robust features to be learned to predict the location
and shape of the dropped objects.

audio features for multiple shapes at once.

Figure 7.6 shows the convolutional networks are able to learn robust features to localize both

the position and orientation, even when shapes are mixed. Our method outperforms TDoA often by

significant margins, suggesting that our learning-based model is learning robust acoustic features

for localization. Due to the realistic complexity of the audio signal, the hand-crafted features are

hard to reliably estimate. Our model outperforms both the random sampling and average bounding

box baseline, indicating that our model learns the natural correspondence between acoustic sig-

nals and visual scene rather than memorizing the training data distribution. We show qualitative

predictions for both RGB and depth images in Figure 7.5.
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(A) Remove amplitude
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(B) Flip microphones Mic1Mic4

Mic2 Ground Truth Before Flipping Prediction Before Flipping Prediction After Flipping

(C) Temporal Shift
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Mic 4 (Before, Shift 0.01s)

Temporal Shift
100 200 300 400 500 600

Mic3

Fig. 7.8: Visualization of Ablation Studies. We visualize the impact of different ablations on the
model. A) By thresholding the spectrograms, we remove the amplitude from the input. B) We
experimented with flipping the microphones only at testing time. The model’s predictions show a
corresponding flip as well in the predicted images. C) We also experimented with shifting the rel-
ative time difference between the microphones, introducing an artificial delay in the microphones
only at testing time. A shift in time causes a shift in space in the model’s predictions. The corrup-
tions are consistent with a block falling in that location.

7.3.4 Reconstruction with Known Shape

We next analyze how well the model performs when the object shape is known, but the position

and orientation is not. We train separate models for each shape of the object independently. Figure

7.7 shows The Boombox is able to reconstruct both the position and orientation of the shapes. The

convolutional network obtains the best performance for most shapes on both evaluation metrics.

These results highlight the relative difficulty at reconstructing different shapes from sound. By

comparing the model performance across various shapes, the model trained on cubes achieves the

best performance while the model trained on blocks performs slightly worse. The most difficult

shape is the stick.

When the training data combines all shapes, the model should share features between shapes,
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Fig. 7.9: Shape Transfer. Performance improves by training with multiple shapes.

thus improving performance. To validate this, we compare performance on the multi-shape versus

models trained with a single known shape. Figure 7.9 shows that the performance on the block and

stick shapes are improved by a large margin. We notice that the performance of the cube drops due

to the confusion between shapes. When the cube confuses with the stick or the block, because of

the smaller surface area of these two shapes, the cube performance slightly degrades.

7.3.5 Ablations and Analysis

To better understand what features the model has learned specifically, we perform several ab-

lation studies, shown in Figure 7.8 and Figure 7.10.

Flip microphones. The microphones’ layout should matter for our learned model to localize

the objects. When we flipped the microphone location, due to the symmetric nature of the hard-

ware setup, the predictions should also be flipped accordingly. To study this, we flipped the input

of Mic1 and Mic4 as well as the input of Mic2 and Mic3 in the testing set, shown in Figure 7.8.

Our results in Figure 7.8B shows that our model indeed produces a flipped scene. The perfor-

mance in Figure 7.10 nearly drops to zero, suggesting that the model implicitly learned the relative

microphone locations to assist its final prediction.

Remove amplitude. The relative amplitude between microphones can indicate the relative

position of the sound source to different microphones. We removed the amplitude information by

thresholding the spectrograms, shown in Figure 7.8. We retrained the network due to potential
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Table 1

RGB output (IoU 
Score)

RGB output (IoU 
Score Error)

RGB output 
(Localization)

RGB output 
(Localization 
Error)

Depth output (IoU 
Score)

Depth output (IoU 
Score Error)

Original 0.229899333333333 0.01532714370361 0.86929 0.0207907316850562 0.145518 0.0336581804667652

No amplitude 0.111411 0.003960265437231870.745501333333333 0.0218479440248073 0.068995 0.0140442495112175

Flipped mics 0.001143333333333330.0001876311393251250.08601966666666670.01161389566185460.005083666666666670.00209377094682723

Temporal shift 100 0.217426666666667 0.0173902832000453 0.871465 0.01869963365951320.133801333333333 0.0308732291655912

Temporal shift 300 0.171590333333333 0.0255842748730109 0.823479 0.02965312112296670.09645266666666670.0157413778127724

Temporal shift 500 0.132887666666667 0.02856062771446810.728956333333333 0.06198781147487340.06308633333333330.0116486305966743

All vs. single

RGB output (IoU 
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error)

RGB output (IoU 
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RGB output (IoU 
Score, all, error)

Cube 0.287593333333333 0.0405538478788114 0.31676 0.0713549652582075 0.237941 0.0228912955582102

RGB output (IoU Score)

Original
No amplitude
Flipped mics

Temporal shift 100
Temporal shift 300
Temporal shift 500

0 0.075 0.15 0.225 0.3

0.13
0.17
0.22
0.00
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RGB output (Localization)
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72.90%
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8.60%
74.55%
86.93%

Depth output (IoU Score)

Original
No amplitude
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Temporal shift 100
Temporal shift 300
Temporal shift 500

0 0.045 0.09 0.135 0.18

0.06
0.10
0.13
0.01
0.07
0.15

Depth output (Localization)

0% 25% 50% 75% 100%

25.15%
36.81%
46.22%
3.98%
25.96%
48.73%

2

Fig. 7.10: Quantitative ablation studies. We experiment with different perturbations to our input
data to understand the model predictions.

distribution shift. As expected, even though the time and frequency information are preserved, the

model performs much worse (Figure 7.10), suggesting that our model additionally learns to use

amplitude for the predictions.

Temporal shift. We are interested to see if our model learns to capture features about the

time difference of arrival between microphones. If so, when we shift the audio temporally, the

prediction should also shift spatially. We experimented with various degrees of temporal shifts on

the original spectrograms. For example, shifting 500 samples corresponds to shifting about 0.01s

(500 / 44,000). By shifting the Mic1’s spectrogram forward and Mic4’s spectrogram backward

with zero padding to maintain the same amount of time, and preforming similar operation on Mic2

and Mic3 respectively, we should expect that the predicted object position shifts towards the left-up

direction. In Figure 7.8, we can clearly observe this trend as temporal shift increases. Shifting the

signal in time decreases the model’s performance, demonstrating that the model has picked up on

the time difference of arrival.

Feature Visualization: We finally visualize the latent features in between our encoder and

decoder network with t-SNE[216], shown in Figure 7.11. We colorize the points based on ground

truth position and orientation. The magnitude distance from the center of the image is represented
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Angle and  
Relative Position

Fig. 7.11: Low-dimensional embedding. We visualize the learned features in the encoder with
t-SNE.

by saturation, and the angle from the horizontal axis is represented by hue. We find that there is

often clear clustering of the embeddings by their position and orientation, showing that the model

is robustly discriminating the location of the impact from sound alone. Moreover, the gradual

transitions between colors suggest the features are able to smoothly interpolate spatially.
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Conclusion

This thesis aims to study the fundamental aspects towards building “generalist robots” through

world modeling. I believe that if robots can carry over and update consistent knowledge of the

world throughout their learning and functioning time, they do not need to learn each new task and

new environment from scratch. Such continual and efficient learning capability is clearly a critical

property of future generation of robots.

In particular, this thesis approaches the challenging and abstract world modeling problem

by decomposing the world modeling problem into robot self-modeling, robot modeling of other

agents, and robot modeling their physical environment. This thesis has demonstrated that this

choice of decomposition not only learns accurate predictive models on each of the three compo-

nent themselves, it also encourages a different perspective on robot learning research by focusing

on obtaining disentangled representations of the world as task-related component and task-agnostic

component. As shown in this thesis, this key idea have produced powerful results in numerous

robotic applications which were considered highly challenging or even impossible before.

Looking ahead, there are still many challenges to build generalist robots. First, building gen-

eralist robots require multi-modal robots. The world comes with rich information of physics,

dynamics and contexts, which no single sensor can completely capture. Yet, majority of robotics

applications rely primarily on vision sensor. However, there are critical information hidden in other

modalities for interaction tasks such as sound, tactile feedback and temperature. Such information

is not only relevant for robots, as understanding multimodal information is extremely important for

humans as well. By building multi-modal robots, we can even better understand human behaviors
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[217] and teach robots novel concepts by talking to them [218]. Therefore, one immediate future

direction is to learn to distill integrated knowledge from different sensory modalities and build

robust multi-modal perception system.

Scaling the world models to complex and constantly changing environments on physical robots

remains an important yet relatively underexplored problem. This requires to build computational

models that are situational aware. For example, a robot may encounter sudden dynamic payload

or broken hardware, or similar changes to its partner’s body. To be fully functional and reliable,

the robot needs to quickly identify these changes or unforeseen situations and adapt to them with

minimal interruptions.

Another major aspect is to study human-robot and robot-robot systems since humans will be

surrounded by different kinds of robots in the future. Enabling smooth, safe and robust “integrated

intelligence” system requires considerable improvements to the current systems and algorithms.

Critical research questions involve better understanding of high-level human behaviors such as

abstract goals, intentions, desires, and behaviors from both non-verbal behaviors and high-level

language instructions, more efficient and effective communication methods between collaborative

robots, and more interpretable robot behaviors for other robots and humans.

By considering robotic research from traditional lab setting to complex open-world scenar-

ios through physical world modeling, I believe that future generalist robots can work seamlessly

alongside with humans as an integral part of the society.
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Appendix A: Full-Body Visual Self-Modeling of Robot Morphologies

Background on Computational Representation of Visual Self-Model

In this supplementary document, we will first introduce the background of Signed Distance

Functions (SDF) as a method to represent 3D shapes. We will then describe how we can train a

neural network to represent the 3D shape with SDF representation as a continuous and generative

model. Finally, we will describe our key design decisions to enable learning both the robot mor-

phology and kinematics such that a consistent visual self-model can acquire generalizable robot

body and kinematics representations for various future tasks.

Signed Distance Function as 3D Shape Representation

Signed Distance Function (SDF) has been commonly used to represent the geometry of 3D

shapes. In our case, the object we would like to represent is the robot body. Specifically, SDF

maps a given 3D coordinate X = (𝑥, 𝑦, 𝑧) to a signed value. The magnitude of this value reflects

the closest distance from this 3D point to the surface of the robot body, and the sign of this value

indicates whether the point is inside or outside the surface boundary. Here, a negative sign means

the point is located inside the surface boundary and a positive sign means the point is located

outside the surface boundary. Therefore, when SDF equals to zero, the given 3D point is on the

surface of the robot body. In other words, the robot morphology can be represented as the zero-level

iso-surface or zero-level set of the SDF. Mathematically, the function can be defined as follows:

𝑆𝐷𝐹 : R3 ↦→ R,X → 𝑆𝐷𝐹 (X)

The surface of the robot morphology is thus represented by the iso-surface 𝑆𝐷𝐹 (·) = 0. By

querying the SDF values on 3D points within the region of interests, we can recover the 3D surface
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boundary of the robot body. We can further reconstruct the 3D mesh of the robot morphology with

Marching Cubes algorithm, for example, to visualize the entire shape. Depending on the sampling

resolution of the input coordinates X , we can also control the resolution of the reconstructed mesh.

Therefore, if we choose to represent the coordinate values as continuous functions, the SDF also

provides a continuous representation of the robot morphology.

Differentiable SDF with Deep Neural Networks

Once we have created the SDF representation of the target robot morphology, inspired by the

recent work of using neural networks to learn a differentiable function mapping from 3D coordi-

nates to the SDF values, we can use a neural network to learn such mapping from pairs of data

created as above. Formally, we aim to learn the parameters \ of a function 𝑓\ such that 𝑓\ (X)

closely approximates 𝑆𝐷𝐹 (X). The network architecture are MLP layers following the previ-

ous work. To train the network end to end, there are mainly two methods. The first method is

to perform regression with respect to the ground-truth SDF values. Such method can be trained

with distance-based loss function such as L1 loss. The second method is to treat the SDF pre-

diction problem as an Eikonal boundary problem to constrain the norm of the spatial gradients,

the zero-level SDF values and the normals of the on-surface points, as well as SDF values of the

off-surface points. One recent advancement of such neural network design is to replace the ReLU

activation functions between the MLP layers as periodic activation functions for finer details in the

final predictions. We therefore utilize sine activation functions and follow the second method to

train the network. In our experiments, with the same activation functions, the performances of both

methods are similar. Overall, the learned SDF representation is a continuous generative model for

3D objects.

Query-Based Visual Self-Model of Full-Body Robot Morphologies

We can only represent a single robot morphology by following the above steps. However, a

visual self-model of the robot should represent the full-body morphology with kinematics aware-
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ness, since kinematic awareness conditioned on robot actions is central for leveraging the learned

self-model for various motion planning and control tasks. More importantly, we expect the visual

self-model to generalize strongly on unseen motor states of the robot beyond the training set. As

discussed in our main texts, another critical consideration when constructing our visual self-model

is to enable query-based inputs. Query-based inputs make it possible for us to query the pose-

conditioned body occupancy only around the 3D regions that we care about for the future tasks at

hand. Based on these two considerations, implicit neural representations, such as the above dif-

ferentiable SDF formulations, serve as great foundations for designing our final visual self-model.

We will now describe other major decisions to realize our visual self-model.

First, we use two branches of neural networks to process the two query-based inputs: a spatial

coordinate X = (𝑥, 𝑦, 𝑧) and a set of motor angles A. Such two branches can process the two

input components separately so that the spatial coordinate queries and the robot motor states can

be processed independently before they are fused together for the final SDF value predictions.

Following the functionalities of these two branches, we name the first branch as coordinate network

𝐶 and the second branch as kinematic network 𝐾 . This design decision allows the network to learn

rich kinematic information in the kinematic branch without confusing with the information from

the coordinate network branch, hence producing useful features for future motion planning and

control tasks as shown in the Results section. After concatenating the features from the coordinate

network and the kinematic network, we send the final feature vector to another few layers of

MLPs 𝐹 to predict the corresponding SDF values. We discussed the final loss function to train

our network in the Materials and Methods section. The formulation of our final network can be

expressed as:

𝐹 ◦ (𝐾,𝐶) : (R3,R𝑁 ) ↦→ R, (X ,A) → 𝐹 (𝐶 (X), 𝐾 (A))

where 𝑁 is the dimension of the motor state vector.

By formulating the query-based visual self-model with the above implicit neural represen-

tations, the learned model can generalize on unseen motor angles to infer the full-body robot

morphologies. As thoroughly described in the 3D Self-Aware Motion Planning and Damage Iden-
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tification and Recovery sections, we can further design gradient-based optimization algorithms

on top of our acquired visual self-model for fast motion planning and control as well as damage

assessment tasks.
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Appendix B: Visual Behavior Modelling for Robotic Theory of Mind

B.1 Experimental setup

We performed all of our experiments on the hardware setup shown in Fig. ??. In order to

automatically generate and display the target food and other foods on the background, we used

a flat panel display. This display has a screen size of 57.5 inches by 33 inches and 2160P (4K)

resolution. We then connected the display to a computer to send auto-generated background maps.

The Observer machine is an Alienware-15 laptop connected to a top-view camera to acquire

the scene videos as seen from above. The camera used was an Intel RealSense Camera (D415)

with up to 1280 * 720 resolution. Higher resolutions tended to capture refresh patterns.

We set up a camera support structure (shown in black over the display) and a display support

structure (shown in silver below the display) respectively to attach both the top-view camera and

the display together. The Actor Robot navigated around on top of the display surface. The robot

was controlled by a master computer through WiFi network. To protect the surface of the display

while running the robot, we place a clear acrylic sheet on top of the display.

We now describe the steps that we used to conduct our experiments. First, we define each

trajectory as the full motion path from the moment the robot starts to execute its internal policy

until it finishes.

For each such trajectory, we place the actor robot at a randomly-generated position on the

background display. Then the display shows a background image that has various configurations,

depending on the type of the designed environments. If there is an obstacle in the pre-defined en-

vironment, a randomly generated obstacle position will be displayed and we place a red cardboard

box at the corresponding location, to serve as a real obstacle.

In order to avoid the possibility of the observer determining the robot orientation from the
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Fig. B.1: Experiment platform setup. We built an experimental platform for data collection and
evaluations. An Actor robot navigated on top of a TV display where different green dots or red
dots are displayed. An Observer watches the scene through a bird-view camera.

direction its wheels are pointing, we covered the robot with a black cylinder. This is why the

robot looks like a black circle in the videos. We show some of examples of the initial state at the

beginning of each policy in Fig.B.2.

After the initial setup, the Actor will start to execute its internal policy, while the Observer

starts to record the video for the current trajectory through the bird-view camera until the Actor

finishes. We then repeat the above steps with different positions of the foods and the obstacles, if

applicable, to collect our dataset.
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B.2 Robot details

We designed a 3D printed robot for our experiments. There are several practical challenges to

address in this experiment. First, robot must be small enough to have room to maneuver on the

display. Second, the battery of the robot requires sufficient power capacity to enable extensive data

collection continuously. Such scalability is extremely important for data-driven approaches.

To overcome these challenges, we present our design of the Actor robot. The robot is a two

wheeled robot with fully 3D-printed body and off-the-shelf electronic components. We show dif-

ferent views and dimensional information of the robot in Fig. B.3. We will also open source both

the hardware design (CAD files for 3D printing, links for available parts inside the robot and as-

semble manuals) and software packages for this robot upon the paper is accepted. In Fig. B.4, we

show the key parameters of the Actor robot for references.

B.3 Video Processing

With the intention of creating a pure visual theory of mind model, we preprocessed the recorded

videos into two compound images. The steps involved in the video collection are described in the

previous section. We now discuss the video processing steps. Fig. B.5 provides an overview of

the entire processing pipeline. In essence, a compound image is created by taking the minimum

value of each pixel over an entire video. This compresses a video into a single image. We assume

standard RGB encoding,

We denote the video frames 𝐼𝑖,0, 𝐼𝑖,1, . . . , 𝐼𝑖,𝑇 as corresponding to the frames of the 𝑖th trajectory

where T is the total number of frames in the current trajectory. We provide the Observer one single

initial frame image as the input and expect the Observer to predict a single image that describes

both the future trajectories of the Actor and the goal of the Actor.

To do so, we stacked all the frames from 𝐼𝑖,0 to 𝐼𝑖,𝑇 by saving the smallest pixel values across

of these frames to form one single output image. The input is just one first initial frame image.

This pair of input and output image is further used to train our visual theory of mind model in a
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supervised way. We show some example input frames and output images in Fig. B.6.

Intuitively, stacking images like this is trying to project all the past waypoints of the Actor

onto one single image without losing the background environment information. Hence, the output

images have the whole trajectory of the Actor robot among the entire process. It is worth to note

that we do not specifically track the position of the robots nor hand-crafted any image features to

achieve this.

We collected 600 real world videos. We pre-processed these videos using the aforementioned

method which gives us 600 input and output pairs of images. Furthermore, we augment 500 of

them with 0.5 probability of being flipped right to left, and 0.5 probability of being flipped up and

down, to get 5,000 training image pairs. Using the same augmentation pipeline, we augment 100

of the images to get 1,000 testing data pairs.

B.4 Deep Learning Architecture

We designed a multi-scale fully convolutional encoder-decoder network to serve as our image

prediction network. An overview of our network architecture is shown in Fig. B.7. Our network

takes one single RGB image as the input and generates one single RGB image as output. Both

the size of the input 𝐼input and the size of the output 𝐼output are 64 × 64 × 3. The network mainly

has two parts, an encoder network and a multi-scale decoder network. The encoder network is

composed of several convolutional layers where each convolutional layer is followed by a batch

normalization layer and a ReLU non-linear activation function. Such a unit is denoted as a whole

as “Conv” block in Fig. B.7.

It has been demonstrated that a multi-scale convolutional network is useful for refining coarse

feature representations to higher resolution. Inspired by these prior works, we used similar multi-

scale prediction networks within the decoder network. Each input feature is fed into a “Pred” block

which is a convolutional layer followed by a transposed convolutional layer and a Sigmoid non-

linear activation function to generate a sub-sampled predicted feature map. This predicted feature

map is then concatenated with the output from a “Deconv” block to be fed into the next stage. The
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output from each stage is sent into both the “Deconv” unit and the “Pred” unit to get the feature

predictions of the next stage.

By the end of the decoder network, the “Deconv” will generate the final output which has

the same size as the input image. Similar to the “Conv” unit, each “Deconv” block in Fig. B.7

is composed of a transposed convolutional layer and a Sigmoid non-linear activation function.

We show all the parameter settings of our architecture in Fig. B.8. We optimize our network to

minimize a Mean Square Error loss. We train our network with Adam optimizer with an initial

learning rate 0.01 and batch size 128 for 100 epochs. The learning rate decays by 90% at epoch

10, 30, 50, and 80.

Fig. B.9 shows more sample input, target output and predicted output images after training

the network. Qualitatively, our predictions generally match the target outputs and can successfully

model the policy of the Actor robot and its internal hidden goal. We also show the learning curve

of the “hardest” policy across multiple runs in Fig. ??.
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 Top View Side View 
 
 
 
 

(1) 

 
  
 
 
 
 

(2) 

 
  
 
 
 
 

(3) 

 
 Fig. B.2: Examples of initial setup for each actor policy. Each row shows a pair of images taken

from different angles while the actor robot performs various policies. The left column is taken
from the top view camera and the right column is taken from a side angle to show a “1st person
view”. (1) The Actor robot always navigates towards the green food and ignore the red food. (2)
The Actor robot always go to the visible green food. If there is no green food visible (e.g., the
green food is occluded by some obstacle), the Actor robot will stay in put. (3) The Actor robot
always pursues the closest food it can perceive.
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A. Front View B. Right View 

                       
                           

                        

 
C. Top View D. Side View 

 Fig. B.3: CAD model of the Actor robot. We use this CAD file to 3D print the whole body of
our Actor robot. Different views (unit: mm) have been shown in each figure along with important
dimensional parameters.
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Specifications 

Basic 
Capacities 

Navigation, Remote 
control, easy to attach 
various sensors such as 
camera, microphone 
etc. 

Size See Fig. S3. 
Weight 654 g 
Speed Range 0 ~ 30 cm / s 

Accuracy 
(Straight Line): 

Approximately 1.5 cm 
off after running with 
15.5 cm / s for 1 second 
(before calibration) 

 
Fig. B.4: Key parameters of the Actor robot.

149



 

Fig. B.5: Examples of data preprocessing pipeline of straight line policy, “elbow” line policy,
“zig-zag” line policy and one single food with obstacle policy. Every two rows correspond to
one preprocessing pipeline. In the 1st row, all the frames in the first half of the video are stacked
together to generate one single input image. In the 2nd row, all frames on the current video are
stacked together to form one single target image. Here we only show three frames and five frames
for each row for illustration purposes. In reality, we process all of the obtained video frames.
As we can see in the last column, each single image contains all the information of the current
environment and the encoded past trajectory of the Actor robot.
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Policy Description Input Target Output 

Straight Line Policy: The Actor always 
goes to the green food in straight line. 

  

Elbow Policy: The Actor always goes to 
the green food by first going to a control 
point and then navigating to the green 
food in straight lines. 

  

Zig-Zag Policy: The Actor always goes 
to the green food by first going to two 
control points subsequently and then 
navigating to the green food in straight 
line. 

  

One Food Obstacle Policy: The Actor 
always goes to the green food if it is 
visible to the robot. Otherwise, the Actor 
robot will not move. (The red cube is the 
obstacle and the robot is not able to see 
through it.) 

  

Two Foods Obstacle Policy: The Actor 
always goes to the closest green food it 
can see in a straight line. (The red cube 
is the obstacle and the robot is not able 
to see through it.) 

  
 

Fig. B.6: The descriptions of the Actor policy.
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Fig. B.7: Image Prediction Network Architecture. Our image prediction network is composed
of several layers of convolutional layers and deconvolutional layers. At the deconvolutional stage,
we utilize multi-scale prediction to maintain high resolution in our output image.

 
 
Layer Kernel 

Size 
Num 

Outputs 
Stride Padding Dilation Activation 

Conv1 4 × 4 32 2 1 1 ReLU 
Conv2 4 × 4 32 2 1 1 ReLU 
Conv3 4 × 4 64 2 1 1 ReLU 
Conv4 4 × 4 128 2 1 1 ReLU 
Deconv4 4 × 4 64 2 1 1 Sigmoid 
Deconv3 4 × 4 32 2 1 1 ReLU 
Deconv2 4 × 4 16 2 1 1 ReLU 
Deconv1 4 × 4 3 2 1 1 ReLU 
Pred3Conv 3 × 3 3 1 1 1 N/A 
Pred2Conv 3 × 3 3 1 1 1 N/A 
Pred1Conv 3 × 3 3 1 1 1 N/A 
Pred3Deconv 4 × 4 3 2 1 1 Sigmoid 
Pred2Deconv 4 × 4 3 2 1 1 Sigmoid 
Pred1Deconv 4 × 4 3 2 1 1 Sigmoid 

 Fig. B.8: Parameters of the Image Prediction Network. The name of the layer corresponds to
the unit in the architecture and the number indicates the sequence of the current layer. We choose
to use Sigmoid as our final activation function due to the normalization.
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     Input               Target            Prediction     Input               Target           Prediction 

Straight Line Policy 

  

  
Elbow Policy 

  

  
Zig-Zag Policy 

  

  

 Fig. B.9: Parameters of the Image Prediction Network. We show some examples of the predic-
tion results from our Observer network. Each group of three images represent one example. The
1st image in each group is the input image shown to the Observer network and the second image
in each group is the target output of the Observer network. We get the second image by recording
the real motion of the Actor robot. The third image is predicted from our Observer network and it
should match the second image if the Observer is able to successfully infer the future trajectories
and the goal of the Actor robot.
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Appendix C: The Boombox: Visual Reconstruction from Acoustic Vibrations

C.1 Data Processing Details

There are three modalities (RGB, depth, and audio) in our collected data. Our goal for data

processing is to obtain high-quality data samples for coherent dynamics and scene representation.

For each video recording, we aligned the RGB and depth streams with the camera parameters

and extracted the last frame to represent the final scene after the object became stable. We applied

edge-preserving and hole-filling spatial filters on the depth images to get less noisy depth images.

We then cropped and resized all the image frames to remove the unnecessary backgrounds. In order

to quantitatively evaluate our predictions, we further applied background subtractions leading to

binary object masks.

Audio clips were recorded continuously across per data collection trail which included multiple

sequences. Therefore, the first step requires segmenting the audio clips for each dropping sequence.

We first calculate the audio segments for each microphone with energy threshold. As a means to

synchronize among all four microphones, we use the earliest and latest sound arrival timestamps

from four audio segments on the same sequence to finalize the segmentation windows.

C.2 Network Architectures

We list all the specific parameters of the encoder and decoder network in Table C.1 and Ta-

ble C.2. All layers are accompanied with a batch normalization layer and a specified activation

function. We will also open source all the hardware and software design along with the collected

dataset.
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Layer Kernel Size #Filters Stride Padding Dilation Activation

Conv1 4x4 32 2 1 1 ReLU
Conv2 4x4 32 2 1 1 ReLU
Conv3 4x4 64 2 1 1 ReLU
Conv4 4x4 128 2 1 1 ReLU
Conv5 4x4 128 2 1 1 ReLU
Conv6 4x4 128 2 1 1 ReLU
Conv7 4x4 128 2 1 1 ReLU

Table C.1: Encoder Network Parameters: we list all the specific parameters for the encoder
network. In addition to the above convolutional layers, after each “Conv” layer, we attach another
convolutional layer with the same number of filters as the current convolutional layer but with 4×4
kernel and 3 as stride.

Layer Kernel Size #Filters Stride Padding Dilation Activation

Deconv7 4x4 128 2 1 1 ReLU
Deconv6 4x4 128 2 1 1 ReLU
Deconv5 4x4 128 2 1 1 ReLU
Deconv4 4x4 64 2 1 1 ReLU
Deconv3 4x4 32 2 1 1 ReLU
Deconv2 4x4 16 2 1 1 ReLU
Deconv1 4x4 3/1 2 1 1 Sigmoid

Table C.2: Decoder Network Parameters: we list all the specific parameters for the decoder
network. Except for the last layer, along with every transposed convolutional layer, the input of
each layer is also first passed through a 2D convolutional layer with kernel size 3 × 3 and stride
1 and then a transposed 2D convolutional layer with kernel size 3 × 3 and stride 2. The output of
this branch will then be concatenated with each “Deconv” layer along the feature dimension as the
input of the next “Deconv” layer.
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Appendix D: Automated Discovery of Fundamental Variables

Data Collection and Processing

In this section, we describe data collection processes for all datasets. The rigid double pendu-

lum, swing stick, air dancer, fire and lava lamp datasets were collected from real-world physical

experiments, while the circular motion, reaction diffusion, single pendulum, and elastic double

pendulum datasets were collected from simulations.

Rigid double pendulum.

The physical parameters of our rigid double pendulum system is shown in Fig. D.1. The system

used in our investigation is a two colored chaotic pendulum from 3D scientific: the first arm is black

and the second arm is blue. Using the pivot attachment that came with the pendulum, the pendulum

is installed against a brown-beige wall in the laboratory. There are 4 bearings on the pendulum.

Three of them are fixed in place and one is left loose to reduce friction. We used an iPhone7 to

record videos at 720 p and 240 fps.

 

 

 

 

 

Length of the first arm: 20.5 cm 

                  Double Pendulum 

Length of the second arm: 17.9 cm 

Mass of the first arm: 0.262 kg 

Mass of the second arm: 0.110 kg 

Depth of the arms: 3.8 cm 

Fig. S1. Physical Parameters of the Double Pendulum System. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. D.1: Physical parameters of the rigid double pendulum system
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We collected a total of 100 videos, with an approximate length of 15 seconds for each video.

We used 80 of these videos for training and validation, and 20 of them for testing. For better video

quality, we trimmed each video to 11s in order to avoid the movement at the beginning and the

end of recording caused by humans and small changes in brightness or illumination caused by

the camera. Another reason is that the dynamics towards the late part of the recordings are more

predictable due to the lack of energy and the loss of momentum. Afterwards, we sub-sampled

the video to construct a video dataset with 60 fps to produce sufficient visual difference between

subsequent frames in a prediction triplet. To feed the video frames into our visual predictive

models, the images are resized to 128 × 128.

Since we are interested in evaluating the results of prediction from the double pendulum sys-

tem, we further equalized the background of the pendulum system with a simple color filtering

so that our vision algorithms can detect the position and orientation of the pendulum arms with

another color filtering during the evaluation process. We performed this additional step only to the

double pendulum, for the sake of evaluation alone, while other systems do not involve this extra

preprocessing step.

Swing stick.

The physical parameters of the swing sticks can be found in Fig. D.2. The system being used is

from Geelong Shope, made out of a high-quality base, aluminum sticks, high quality bearings and

black rubber feet. We used a GoPro Hero 5 Black camera to capture the motion of the system on

a 240 frame per second and 720 pixel setting. The GoPro was mounted on a tripod directly at the

height of the swing stick table. For each video sequence, we held the stick to a random position

and then applied a force on the arm to cause motions that can last for a longer period of time.

We collected a total of 23 videos of approximately 150 seconds for each video sequence. We

used 18 of these videos for training and validation and the remaining 5 for testing. Similar to the

rigid double pendulum dataset, we trimmed the videos to obtain high-quality data, resulting in 140

seconds for each video. We further sub-sampled the video to 60 fps and resized the image frames
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Fig. D.2: Physical parameters of the swing stick system

to 128 × 128 before sending the frames to our dynamics predictive model.

Air dancer.

The physics parameters of the air dancer system can be found in Fig. D.3. Initially, the air

dancer ran on a 9 V capped battery that could directly be placed in the compartment. However,

this led to undesirable complications in our study. First, the 9 V voltage was too high for the motor

as the rotation of the fan prevented the dancer from showing sustained chaotic behavior. It would

often stand upright after a very short duration. Second, the battery life for the system is short. Over

the time of recording the dataset, the voltage of the battery quickly dropped.

To resolve these complications, we cut the battery connections from the dancer and plugged it

into a variable dc power supply with 6.70 V, and grounding the negative connection. This produced
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appropriate airflow through the blower to enforce the repetitive high-low pressure phenomenon.

We recorded the video with a GoPro Hero5 Black. In total, we collected 27 videos, each of

approximate length 150 seconds. We used 22 videos for training and validation and 5 videos for

testing. Following the previous steps, all the videos were trimmed to 140 seconds to obtain the

final dataset. The image frames were resized to 128 × 128 with 60 fps.

Lava lamp.

We downloaded a real world recording of lava lamp system from YouTube. The video lasts

about 4 hours with 2.5 fps.

Fire.

We downloaded a real world recording of fire system from YouTube. The video lasts about

3,603 seconds with 24 fps.

Circular Motion.

We simulated a circle moving along a circular path with a constant speed to construct the

circular motion dataset. We fixed the center and the radius of the circular path as well as the radius

of the circle. For each sequence, we randomly sampled the circle’s initial position and constant
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speed. In total, we collected 1,100 sequences with 60fps. We used 880 of these sequences for

training and validation, and 220 of them for testing.

Reaction diffusion.

We simulated the dynamics of a planar spiral wave to construct our reaction diffusion dataset.

The dynamics of the system is driven by the following reaction-diffusion PDEs:

𝑢𝑡 = (1 − (𝑢2 + 𝑣2))𝑢 + 𝛽(𝑢2 + 𝑣2)𝑣 + 𝑑 (𝑢𝑥𝑥 + 𝑢𝑦𝑦),

𝑣𝑡 = −𝛽(𝑢2 + 𝑣2)𝑢 + (1 − (𝑢2 + 𝑣2))𝑣 + 𝑑 (𝑣𝑥𝑥 + 𝑣𝑦𝑦),

with parameters 𝑑 = 0.1 and 𝛽 = 1. We ran only one simulation by solving the PDEs, following the

original implementations. We then constructed the dataset by rendering the scalar field 𝑢(𝑥, 𝑦, 𝑡) at

each time 𝑡 as a 128×128 image with time 𝑡 sampled at 5 fps. The long sequence of frames sampled

from the simulation was divided into 100 shorter sequences. We used 80 of these sequences for

training and validation, and 20 of them for testing.

Single pendulum.

We will present the physics equations of the single pendulum system in the “Physics Equations

of Pendulum Systems” section. We set the pendulum mass as 𝑚 = 1kg and the pendulum length

as 𝐿 = 0.5m. For each sequence, we randomly sampled the initial position and velocity of the

pendulum arm. In total, we collected 1,200 sequences with 60fps. We used 960 of these sequences

for training and validation, and 240 of them for testing.

Elastic double pendulum.

We will present the physics equations of the elastic double pendulum system in the “Physics

Equations of Pendulum Systems” section. We set the physical parameters of this system to be

the same as the physical parameters of the rigid double pendulum except that the first arm was
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replaced by a massless spring with a elasticity constant 𝑘 = 40kg/s2. For each sequence, we

randomly sampled the initial angle and angular velocity of the spring, the initial length and stretch

velocity of the spring, and the initial angle and angular velocity of the pendulum arm. In total, we

collected 1,200 sequences with 60fps. We used 960 of these sequences for training and validation,

and 240 of them for testing.

Physics Equations of Pendulum Systems

In this section, we provide more information on the physical state variables and equations of the

three pendulum systems: the single pendulum, the rigid double pendulum, and the elastic double

pendulum. See Fig. D.4 for a graphical illustration of those systems.

θ

𝐿

θ1

𝐿1 𝐿2

θ2

θ1

𝐿1 + 𝑧

𝐿2

θ2

Single pendulum Rigid double pendulum Elastic double pendulum

Fig. D.4: Illustration of our three pendulum systems

Single pendulum

Denote 𝑚 the mass and 𝐿 the length of the pendulum. The pendulum’s momentum of inertia

is 𝐼 = 1
3𝑚𝐿

2. We specify the system state by the pendulum’s angular position \ and its respective

angular velocity ¤\. The system’s kinetic energy is

𝑇 =
1
2
𝐼 ¤\2 =

1
6
𝑚𝐿2 ¤\2.
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Taking the configuration that the pendulum arm is horizontal as the zero point, the system’s poten-

tial energy is

𝑉 = −1
2
𝑚𝑔𝐿 cos \.

Therefore, the system’s Lagrangian is

𝐿 = 𝑇 −𝑉 =
1
6
𝑚𝐿2 ¤\2 + 1

2
𝑚𝑔𝐿 cos \,

which gives the the equation of motion of the system:

¥\ = − 3𝑔
2𝐿

sin \.

The total energy of the system is:

𝐸 = 𝑇 +𝑉 =
1
6
𝑚𝐿2 ¤\2 − 1

2
𝑚𝑔𝐿 cos \.

𝐸 is also the Hamiltonian of the system.

Rigid double pendulum

Denote 𝑚1 and 𝑚2 the masses of the two arms of the double pendulum, 𝐿1 and 𝑊1 the length

and width of the first arm, and 𝐿2 and 𝑊2 the length and width of the second arm. The momenta

of inertia of the two arms are:

𝐼1 =
1
12
(𝐿2

1 +𝑊
2
1 ), 𝐼2 =

1
12
(𝐿2

2 +𝑊
2
2 ).

We specify the system state by the two arms’ angular positions \1 and \2, and their respective

angular velocities ¤\1 and ¤\2.

The kinetic energy of the system is the sum of the two arms’ translational and rotational kinetic
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energies, which is given by:

𝑇 =
1
2

(
1
4
𝑚1𝐿

2
1 + 𝑚2𝐿

2
1 + 𝐼1

)
¤\2
1 +

1
2

(
1
4
𝑚2𝐿

2
2 + 𝐼2

)
¤\2
2 +

1
2
𝑚2𝐿1𝐿2 ¤\1 ¤\2 cos(\1 − \2),

The potential energy of the system is the sum of the two arms’ gravitational potential energies.

Taking the configuration that both arms are horizontal as the zero point, the potential energy of the

system is given by:

𝑉 = −
(
1
2
𝑚1 + 𝑚2

)
𝑔𝐿1 cos \1 −

1
2
𝑚2𝑔𝐿2 cos \2,

The total energy of the system is the sum of kinetic and potential energies, which is given by:

𝐸 =
1
2

(
1
4
𝑚1𝐿

2
1 + 𝑚2𝐿

2
1 + 𝐼1

)
¤\2
1 +

1
2

(
1
4
𝑚2𝐿

2
2 + 𝐼2

)
¤\2
2 +

1
2
𝑚2𝐿1𝐿2 ¤\1 ¤\2 cos(\1 − \2)

−
(
1
2
𝑚1 + 𝑚2

)
𝑔𝐿1 cos \1 −

1
2
𝑚2𝑔𝐿2 cos \2.

𝐸 is also the Hamiltonian of the system.

Elastic double pendulum

The elastic double pendulum is composed of a massless spring and a rigid pendulum. We

denote 𝑚 the mass of the pendulum. In addition, we denote 𝐿1 the original length and 𝑧 the stretch

of the spring, and 𝐿2 and 𝑊2 the length and width of the pendulum. The pendulum’s momentum

of inertia is 𝐼 = 1
12 (𝐿

2
2 +𝑊

2
2 ).

We specify the system state by the spring’s angular position \1, the pendulum’s angular position

\2, the spring stretch 𝑧, and their respective velocities ¤\1, ¤\2, ¤𝑧.

The kinetic energy of the system is the sum of the pendulum’s translational and rotational
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kinetic energies, which is given by

𝑇 =
1
2
𝑚

[
(𝐿1 + 𝑧)2 ¤\2

1 +
1
4
𝐿2

2
¤\2
2 + ¤𝑧

2 + (𝐿1 + 𝑧)𝐿2 cos(\1 − \2) ¤\1 ¤\2 + 𝐿2 sin(\1 − \2) ¤\2 ¤𝑧
]

+ 1
2
𝐼 ¤\2

2.

The potential energy of the system is the sum of the gravitational potential energy of the pendulum

and the elastic potential energy of the spring. Taking the configuration that both the spring and

the pendulum are horizontal as the zero point of the pendulum’s gravitational potential energy, the

system’s potential energy is given by:

𝑉 = 𝑚𝑔

[
−(𝐿1 + 𝑧) cos \1 −

1
2
𝐿2 cos \2

]
+ 1

2
𝑘𝑧2.

Therefore, the system’s Lagrangian 𝐿 = 𝑇 −𝑉 is given by

𝐿 =
1
2
𝑚

[
(𝐿1 + 𝑧)2 ¤\2

1 +
1
4
𝐿2

2
¤\2
2 + ¤𝑧

2 + (𝐿1 + 𝑧)𝐿2 cos(\1 − \2) ¤\1 ¤\2 + 𝐿2 sin(\1 − \2) ¤\2 ¤𝑧
]

+ 1
2
𝐼 ¤\2

2 + 𝑚𝑔
[
(𝐿1 + 𝑧) cos \1 +

1
2
𝐿2 cos \2

]
− 1

2
𝑘𝑧2.

Then we can derive the system’s equations of motion from the above Lagrangian, resulting in a

3 × 3 system of ODEs:

𝐴


¥\1

¥\2

¥𝑧


= 𝑏,

where

𝐴 =


(𝐿1 + 𝑧)2 1

2 (𝐿1 + 𝑧)𝐿2 cos(\1 − \2) 0
1
2 (𝐿1 + 𝑧)𝐿2 cos(\1 − \2) 1

4𝐿
2
2 +

𝐼
𝑚

1
2𝐿2 sin(\1 − \2)

0 1
2𝐿2 sin(\1 − \2) 1


,
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and

𝑏 =


−1

2 (𝐿1 + 𝑧)𝐿2 sin(\1 − \2) ( ¤\2
2) − 2(𝐿1 + 𝑧) ¤\1 ¤𝑧 − 𝑔(𝐿1 + 𝑧) sin \1

1
2 (𝐿1 + 𝑧)𝐿2 sin(\1 − \2) ( ¤\2

1) − 𝐿2 cos(\1 − \2) ¤\1 ¤𝑧 − 1
2𝑔𝐿2 sin \2

(𝐿1 + 𝑧) ¤\2
1 +

1
2𝐿2 cos(\1 − \2) ¤\2

2 + 𝑔 cos \1 − 𝑘
𝑚
𝑧


.

It is straightforward to verify that the matrix 𝐴 is symmetric and positive definite. Therefore the

ODE system is always solvable.

The system’s total energy is the sum of its kinetic and potential energies, which is given by:

𝐸 =
1
2
𝑚

[
(𝐿1 + 𝑧)2 ¤\2

1 +
1
4
𝐿2

2
¤\2
2 + ¤𝑧

2 + (𝐿1 + 𝑧)𝐿2 cos(\1 − \2) ¤\1 ¤\2 + 𝐿2 sin(\1 − \2) ¤\2 ¤𝑧
]

+ 1
2
𝐼 ¤\2

2 − 𝑚𝑔
[
(𝐿1 + 𝑧) cos \1 +

1
2
𝐿2 cos \2

]
+ 1

2
𝑘𝑧2.

𝐸 is also the Hamiltonian of the system.

Model Details

In this section, we provide details about our models for dynamics prediction, latent reconstruc-

tion, and latent dynamics prediction with Neural State Variables.

Dynamics predictive model architecture

The dynamics predictive model is an auto-encoder with specific parameters listed in Tab. D.1.

All convolutional or transposed convolutional layers are accompanied with a batch normalization

layer and a specified activation function. For the encoder network, after each “Conv” layer as

shown in Tab. D.1, we attach another convolutional layer with the same number of filters as the

current convolutional layer but with 3×3 kernel and 1 as stride. For the decoder network, along with

each “Deconv” layer as shown in Tab. D.1 except for the last one, the input is also passed through a

transposed convolutional layer with kernel size 4×4, 2 as stride, and a Sigmoid activation function.

The output of this branch will then be concatenated with each “Deconv” layer along the feature

dimension as the input of the next “Deconv” layer.

165



Layer Kernel Size #Filters Stride Padding Activation

Conv1 4 × 4 32 2 1 ReLU

Conv2 4 × 4 32 2 1 ReLU

Conv3 4 × 4 64 2 1 ReLU

Conv4 4 × 4 128 2 1 ReLU

Conv5 3 × 4 128 (1,2) 1 ReLU

Deconv5 3 × 4 64 (1,2) 1 ReLU

Deconv4 4 × 4 64 2 1 ReLU

Deconv3 4 × 4 32 2 1 ReLU

Deconv2 4 × 4 16 2 1 ReLU

Deconv1 4 × 4 3 2 1 Sigmoid

Table D.1: Dynamics predictive model architecture

Latent reconstruction model architecture

The latent reconstruction model is also an auto-encoder with specific parameters listed in

Tab. D.2. Each layer is a linear layer accompanied with a sine activation function, and ID refers

to the system’s intrinsic dimension. The intermediate latent vectors whose dimension is ID are

identified as Neural State Variables.

Encoder Layer #Filters Activation Decoder Layer #Filters Activation

Layer1 128 Sine Layer5 32 Sine

Layer2 64 Sine Layer6 64 Sine

Layer3 32 Sine Layer7 128 Sine

Layer4 ID Sine Layer8 64 Sine

Table D.2: Latent reconstruction model architecture
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Neural latent dynamics model architecture

The neural latent dynamics model is a simple six-layer MLP, the widths of first five layers are

(32, 64, 64, 64, 32, ID) where ID is the dimension of Neural State Variables, and each layer is

accompanied with the ReLU activation function.

More Physics Evaluation Results for Dynamics Predictive Model

In this section, we show physics evaluation results for the high-dimensional dynamics predic-

tive model on the single pendulum and rigid double pendulum systems. As shown in Tab. D.3 and

Tab. D.4, our dynamics predictive model outperforms both the copy data and linear extrapolation

baselines on both systems.

Method \ (deg) ¤\ (deg/s) Energy (J)

Copy data 10.09 (±0.04) 37.44 (±0.14) 0.10 (±0.00)

Linear extrapolation 0.67 (±0.00) 37.44 (±0.14) 0.28 (±0.00)

Our model 0.22 (±0.00) 18.97 (±0.12) 0.15 (±0.00)

Table D.3: Physics evaluation results on the single pendulum system

Method \1 (deg) \2 (deg) ¤\1 (deg/s) ¤\2 (deg/s) Energy (J)

Copy data 8.29 (±0.04) 17.96 (±0.10) 111.64 (±0.78) 170.75 (±0.96) 0.06 (±0.00)

Linear extrapolation 2.39 (±0.02) 3.12 (±0.02) 111.64 (±0.78) 170.75 (±0.96) 0.08 (±0.00)

Our model 0.89 (±0.01) 1.55 (±0.01) 66.67 (±0.53) 113.94 (±0.84) 0.06 (±0.00)

Table D.4: Physics evaluation results on the rigid double pendulum system

More Results from Intrinsic Dimension Estimation

There are several intrinsic dimension estimation algorithms in addition to the Levina-Bickel’s

algorithm. In this section we provide the intrinsic dimension estimation results from another four

widely used algorithms: MiND_ML, MiND_KL, Hein, and CD using the same latent vectors.

167



Those results together with results from the Levina-Bickel’s algorithm and ground truth values

are shown in Tab. D.5. As shown in the results, Levina-Bickel’s algorithm provides robust and

accurate estimations across all six systems.

System Ground Truth Levina-Bickel MiND_ML MiND_KL Hein CD

Circular motion 2 2.19 (±0.05) 2.66 (±0.07) 3.00 (±0.00) 6.33 (±0.47) 5.23 (±0.41)

Reaction diffusion 2 2.16 (±0.14) 2.34 (±0.08) 3.00 (±0.00) 3.00 (±1.41) 3.08 (±1.04)

Single pendulum 2 2.05 (±0.02) 2.05 (±0.01) 2.00 (±0.00) 2.00 (±0.00) 2.03 (±0.04)

Rigid double pendulum 4 4.71 (±0.03) 4.69 (±0.03) 5.00 (±0.00) 3.33 (±0.47) 3.63 (±0.10)

Swing stick 4 4.89 (±0.33) 4.38 (±0.10) 4.80 (±0.40) 3.33 (±0.47) 3.15 (±0.10)

Elastic double pendulum 6 5.34 (±0.20) 5.15 (±0.13) 5.13 (±0.34) 4.00 (±0.00) 4.26 (±0.12)

Table D.5: Intrinsic Dimension Estimation Results from Different Algorithms.

More Physics Evaluation Results for Hybrid Schemes

In this section, we provide physics evaluation results testing the hybrid schemes for long term

predictions on the rigid double pendulum system. The hybrid scheme follows a 𝑁+1 pattern where

every 𝑁 steps performed with the high-dimensional latent vectors are followed by a one step pre-

diction using Neural State Variables. We implemented the hybrid 𝑁 + 1 scheme with 𝑁 = 3, 4, 5, 6

on the double pendulum system and compared physics evaluation results from the generated long

term predictions. As shown in Fig. D.5, the hybrid scheme always produces reasonable long-term

predictions, and performance is not sensitive to the choice of 𝑁 .

More Theoretical Analysis on Long-Term Prediction Stability

In this section, we provide more theoretical analysis on long term prediction stability. We will

fix the notations that S ⊂ R𝐷 is the system’s state space where R𝐷 is the high-dimensional image

space, ID = dimS is the system’s intrinsic dimension, and LD is the latent space dimension of a

given dynamics predictive model. The dimensions are assumed to satisfy ID ≪ LD ≪ 𝐷. The

ground truth dynamics is given by X𝑡+1 = 𝐹 (X𝑡) where 𝐹 : S → S is the system evolution

mapping.
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Fig. D.5: Physics evaluation with hybrid schemes on the double pendulum system

For the theoretical analysis purpose, let us define:

𝑀S (X̂) ≜ dist(X̂ ,S) = inf
X∈S

X̂ −X,
as the metric measuring the deviation from any predicted state X̂ to the state space S, where ∥·∥

is the Euclidean norm in R𝐷 .

Now let us consider the long term predictions generated from model rollouts through Neural

State Variables. Starting from any initial state X0 ∈ S, the model rollouts produce:

X0 = X̂0 → V̂0 → X̂𝑑𝑡 → V̂𝑑𝑡 → X̂2𝑑𝑡 → V̂2𝑑𝑡 → X̂3𝑑𝑡 → · · · ,

where X̂𝑡 ∈ R𝐷 , 𝑡 = 0, 𝑑𝑡, 2𝑑𝑡, · · · are the predicted frames, and V̂𝑡 ∈ RID, 𝑡 = 0, 𝑑𝑡, 2𝑑𝑡, · · · are

the corresponding Neural State Variables. We denote 𝜙E = ℎE ◦ 𝑔E that maps every X̂𝑡 to V̂𝑡 and

𝜙D = 𝑔D ◦ ℎD that maps every V̂𝑡 to X̂𝑡+𝑑𝑡 for 𝑡 = 0, 𝑑𝑡, 2𝑑𝑡, · · · . Both 𝜙E and 𝜙D are compositions
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of neural networks that are trained to minimize the one-step prediction error. Therefore, �̂� =

𝜙D ◦ 𝜙E provides an approximation of the ground truth evolution mapping 𝐹 through Neural State

Variables. We will make the following assumption regarding the one-step dynamics approximation

error.

Assumption 1. 𝑀S (X̂) ≤ Y ∀X̂ = �̂� (X), X ∈ S for some Y > 0.

We note that all possible ground truth and predicted states fall into the set

Z ≜
∞⋃
𝑛=0

�̂� (𝑛) (S),

where �̂� (0) (S) = S and

�̂� (𝑛) (S) = {X̂ = �̂� ◦ �̂� · · · ◦ �̂�︸          ︷︷          ︸
𝑛 times

(X) : X ∈ S}, 𝑛 = 1, 2, · · ·

By definition S ⊂ Z ⊂ R𝐷 , which yields 𝜙E(S) ⊂ 𝜙E(Z) ⊂ RID. Here we make the second

assumption saying that 𝜙E(Z) is no larger than 𝜙E(S) even ifZ might be strictly larger than S.

Assumption 2. 𝜙E(S) = 𝜙E(Z).

This assumption essentially relies on the dimensionality constraint. The state space S has dimen-

sion ID, whileZ may have a higher dimension than ID. By projecting to the space of Neural State

Variables whose dimension is ID, the extra dimensions ofZ will be eliminated.

By Assumption 2 and the definition ofZ, we have:

�̂� (S) = 𝜙D ◦ 𝜙E(S) = 𝜙D ◦ 𝜙E(Z) = �̂� (Z) = Z.

It together with Assumption 1 gives the following conclusion.

Proposition 1. Under Assumptions 1 and 2, we have 𝑀S (X̂) ≤ Y ∀X̂ ∈ Z.

As a direct corollary, for any long term prediction sequence {X̂0, X̂𝑑𝑡 , X̂2𝑑𝑡 , · · · } from any

initial state X̂0 = X0 ∈ S, we have 𝑀S (X̂𝑡) ≤ Y for all 𝑡 = 0, 𝑑𝑡, 2𝑑𝑡, · · · . That is, the prediction

sequence always stays in a fixed neighborhood of the ground truth state space S and the growth of
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𝑀S (X̂𝑡) is well-controlled, which guarantees the stability of long term predictions generated with

Neural State Variables. For the model rollouts through latent vectors whose dimension LD ≫ ID,

similar arguments yield that 𝑔E(S) ⊂ 𝑔E(Z) ⊂ RLD and 𝑔E(Z) could have a dimension higher

than ID. Therefore, the long term predictions could escape from the state space S through the extra

dimensions. By shrinking the latent dimension to the system’s intrinsic dimension, such instability

formation can be avoided.

More Results on Neural State Variables for Dynamic Stability Indicators

In this section, we show long term stability evaluation results using dynamic stability indicators

with Neural State Variables. In Fig. D.6, the stability plots for six systems are shown. See the

supplementary video for the corresponding visual predictions.
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Fig. D.6: Stability evaluation with Neural State Variables

More Analysis on Neural State Variables

In this section, we show more results to demonstrate the rich physics information contained

in our learned Neural State Variables. First, we give the quantitative latent regression results on
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the elastic double pendulum system in Tab. D.6. It can be observed that the learned Neural State

Variables capture much richer information about the system dynamics than the variables obtained

through PCA from high dimensional latent embedding vectors.

We also show visualizations of the Neural State Variables after applying PCA on them. See

Fig. D.7.

Latent Variables \1 (deg) \2 (deg) 𝑧 (m) ¤\1 (deg/s) ¤\2 (deg/s) ¤𝑧 (m/s) Total energy (J)

dim-6 PCA of
dim-8192 Latents 23.86 (±1.14) 43.03 (±0.72) 0.02 (±0.00) 149.36 (±3.20) 397.20 (±9.50) 0.52 (±0.01) 0.08 (±0.00)

dim-6 PCA of
dim-64 Latents 14.10 (±0.88) 27.96 (±0.85) 0.01 (±0.00) 170.68 (±6.37) 396.70 (±2.90) 0.59 (±0.01) 0.07 (±0.00)

dim-6 Latents 7.85 (±0.54) 14.11 (±0.50) 0.01 (±0.00) 70.03 (±1.41) 163.13 (±4.10) 0.27 (±0.01) 0.05 (±0.00)

Table D.6: Latent regression results on the elastic double pendulum system
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Fig. D.7: Visualization of Neural State Variables
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Appendix E: Beyond Categorical Label Representations for Image

Classification

E.1 Background and Motivation

Image classification is a well-established task in machine learning. The standard approach takes

an input image and predicts a categorical distribution over the given classes. The most popular

method to train these neural network is through a cross-entropy loss with backpropagation. Deep

convolutional neural networks [219, 220, 221, 222, 223] have achieved extraordinary performance

on this task, while some even surpass human level performance. However, is this a solved problem?

The state-of-the-art performance commonly relies on large amounts of training data [224, 225,

226], and there exist many examples of networks with good performance that fail on images with

imperceptible adversarial perturbations [227, 228, 229].

Much progress has been made in domains such as few-shot learning and meta-learning to im-

prove the data efficiency of neural networks. There is also a large body of research addressing the

challenge of adversarial defense. Most efforts have focused on improving optimization methods,

weight initialization, architecture design, and data preprocessing. In this work, we find that simply

replacing standard categorical labels with high dimensional, high entropy variants (e.g. an audio

spectrogram pronouncing the name of the class) can lead to interesting properties such as improved

robustness and efficiency, without a loss of accuracy.

Our research is inspired by key observations from human learning. Humans appear to learn

to recognize new objects from few examples, and are not easily fooled by the types of adversarial

perturbations applied to current neural networks. There could be many reasons for the discrepancy

between how humans and machines learn. One significant aspect is that humans do not output

categorical probabilities on all known categories. A child shown a picture of a dog and asked
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“what is this a picture of?” will directly speak out the answer — “dog.” Similarly, a child being

trained by a parent is shown a picture and then provided the associated label in the form of speech.

These observations raise the question: Are we supervising neural networks on the best modality?

In this paper, we take one step closer to understanding the role of label representations inside

the training pipeline of deep neural networks. However, while useful properties emerge by utilizing

various label representations, we do not attempt to achieve state-of-the-art performance over these

metrics. Rather, we hope to provide a novel research perspective on the standard setup. Therefore,

our study is not mutually exclusive with previous research on improving adversarial robustness

and data efficiency.

An overview of our approach is shown in Figure E.1. We first follow the above natural observa-

tion and modify the existing image classifiers to “speak out” the predictions instead of outputting

a categorical distribution. Our initial experiments show surprising results: that neural networks

trained with speech labels learn more robust features against adversarial attacks, and are more

data-efficient when only less than 20% of training data is available.

Furthermore, we hypothesize that the improvements from the speech label representation come

from its property as a specific type of high-dimensional object. To test our hypothesis, we per-

formed a large-scale systematic study with various other high-dimensional label representations

including constant matrices, speech spectrograms, shuffled speech spectrograms, composition of

Gaussians, and high dimensional and low dimensional uniform random vectors. Our experimental

results show that high-dimensional label representations with high entropy generally lead to robust

and data efficient network training. We believe that our findings suggest a significant role of label

representations which has been largely unexplored when considering the training of deep neural

networks.

Our contributions are three fold. First, we introduce a new paradigm for the image classifica-

tion task by using speech as the supervised signal. We demonstrate that speech models can achieve

comparable performance to traditional models that rely on categorical outputs. Second, we quan-

titatively show that high-dimensional label representations with high entropy (e.g. audio spec-
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𝐼! 𝐼"# “bird”

2 2 2 2 2 …  2 2 2 2 
2 2 2 2 2 …  2 2 2 2 
2 2 2 2 2 …  2 2 2 2
2 2 2 2 2 …  2 2 2 2
2 2 2 2 2 …  2 2 2 2

…

Speech Shuffled Speech Composite Gaussian Constant

Fig. E.1: Label Representations beyond Categorical Probabilities: We study the role of label repre-
sentation in training neural networks for image classification. We find that high-dimensional labels
with high entropy lead to more robust and data-efficient feature learning.

trograms and composition of Gaussians) produce more robust and data-efficient neural networks,

while high-dimensional labels with low entropy (e.g. constant matrices) and low-dimensional la-

bels with high entropy do not have these benefits and may even lead to worse performance. Finally,

we present a set of quantitative and qualitative analyses to systematically study and understand the

learned feature representations of our networks. Our visualizations suggest that speech labels en-

courage learning more discriminative features.

E.2 Related Works

Data Efficiency and Robustness Data efficiency has been a widely studied problem within

the context of few-shot learning and meta-learning [230, 231, 232, 233]. Researchers have made

exciting progress on improving methods of optimization [234, 235], weight initialization [236,

237], and architecture design [238, 239].

There is also a large body of research addressing the challenge of adversarial defense. Ad-

versarial training is perhaps the most common measure against adversarial attacks [240, 241, 242,

243, 244]. Recent works try to tackle the problem by leveraging GANs [245], detecting adversarial

examples [246, 247, 248], and denoising or reconstruction [249, 250].

Most of these techniques for improving data efficiency and adversarial robustness study the

problem from the perspective of model, optimizer and data. Relatively little research has been

conducted on the labels themselves or more specifically, their representation. [251] augmented

categorical labels with a new NULL class to allow the model to classify and reject perturbed

175



examples. [252] utilizes model distillation [253] for adversarial defense. [254] further augment

the label used to train the distilled model with the predictive uncertainty from the original model.

Nevertheless, the method of [251] requires adversarial examples to train on while that of defensive

distillation has been shown to be vulnerable to substitute model black-box attacks [255].

Label Smoothing The closest approach to our work is Label Smoothing (LS) [256]. Here

we highlight key differences between our approach and LS. First, LS applies to discriminative

outputs where both correct and incorrect class information are presented during training, while our

output is generative and only correct class information is presented. That is, our outputs are not a

distribution over classes. Although LS has been shown to improve adversarial robustness [257], it

has not been shown to be effective for low-data learning. As we will show in our experiments, LS

does not help when the amount of training data is limited, while our label representations lead to

significant improvements. Therefore, our high-dimensional, high-entropy labels provide benefits

beyond those provided by label smoothing.

E.3 Beyond Accuracy: Emergence of Robustness and Efficiency

It is well-known that deep neural networks with similar accuracy on the same task may per-

form very differently under different evaluation scenarios. Additionally, real-world applications

rely on more considerations than just accuracy. Robustness and data efficiency are two practical

challenges for deep neural networks. We test the emergence of those properties under various label

representations.

E.3.1 Robustness under Adversarial Attacks

We evaluate the robustness of all the trained models using the fast gradient sign method (FGSM)

[258] and the iterative method [241] across multiple widely used convolutional networks. We

choose these attacks because their adversarial images 𝐼adv are usually indistinguishable from the

original images 𝐼 or do not significantly affect human evaluation, but they can be very challenging

for neural networks to correctly classify. When a loss function 𝐽 is involved in generating the
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adversarial images, we use the cross-entropy loss for the text model and the smooth L1 loss for the

speech model.

FGSM is a fast one-step attack that generates an adversarial image by adding a small adver-

sarial perturbation to the original image. The perturbation is based on the gradient of the loss with

respect to the original image. The maximum magnitude of the perturbation is maintained by 𝜖 :

∥𝐼 − 𝐼adv∥∞ ≤ 𝜖 . (E.1)

We test both untargeted and targeted versions of FGSM. The untargeted attacks increase the loss

between the predicted class and the true class 𝑌true:

𝐼adv = 𝐼 + 𝜖 · Sign(∇𝐼𝐽 (𝐼,𝑌true)), (E.2)

whereas the targeted attacks decrease the loss between the predicted class and a target class 𝑌target:

𝐼adv = 𝐼 − 𝜖 · Sign(∇𝐼𝐽 (𝐼,𝑌target)). (E.3)

We choose a random incorrect class as the target class for each input image, and the same target

classes are used to test different models. All 𝐼adv are normalized after the perturbation.

Iterative Method As an extension to FGSM, the iterative method applies multiple steps of

gradient-based updates. In our experiments, we initialize the adversarial image 𝐼adv to be the

original image 𝐼 so that 𝐼0adv = 𝐼. Then we apply FGSM for 5 times with a small step size 𝛼 = 𝜖/5.

The untargeted update for each iteration becomes

𝐼𝑁+1adv = Clip𝐼,𝜖
{
𝐼𝑁adv + 𝛼 · Sign(∇𝐼𝐽 (𝐼𝑁adv, 𝑌true))

}
, (E.4)

and the targeted update becomes

𝐼𝑁+1adv = Clip𝐼,𝜖
{
𝐼𝑁adv − 𝛼 · Sign(∇𝐼𝐽 (𝐼𝑁adv, 𝑌target))

}
, (E.5)
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where Clip𝐼,𝜖 denotes clipping the total perturbation 𝐼𝑁adv − 𝐼 in the range of [−𝜖, 𝜖]. We use the

same targeted classes from FGSM for the evaluation on the iterative method.

E.3.2 Learning Efficiency with Limited Data

We take the most straightforward approach to evaluate data efficiency. We start with only 1%

of the original training data. We always use the full amount of testing data. We then gradually

increase the amount of training data to 2%, 4%, 8%, 10%, and 20% of the original to perform

extensive multi-scale evaluation.

E.4 Experimental Setup

Dataset We evaluate our models on the CIFAR-10 and CIFAR-100 datasets [224]. We use the

same training, validation and testing data split (45, 000/5, 000/10, 000) for all of our experiments.

We also keep the same random seed for data preprocessing and augmentation. Therefore, we

present apple to apple comparisons for all label representations.

Speech Label Generation We generate the speech labels shown in Figure E.1 by following

the standard practice as in recent works [259, 260]:

• We first generate the English speech audio automatically with a text-to-speech (TTS)1 sys-

tem from the text labels in the corresponding dataset. Therefore, all the speech labels are

pronounced consistently by the same API with the same parameters for controlled experi-

ments. We leave the exploration of different languages and intonations as future work.

• We save each audio file in the WAVE format with the 16-bit pulse-code modulation encoding,

and trim the silent edges from all audio files.

• Since different speech signals may last for various lengths, we preprocess2 each speech label

to generate a Log Mel spectrogram to maintain the same dimension. We use a sampling rate

1https://cloud.google.com/text-to-speech/
2https://librosa.github.io/
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of 22, 050 Hz, 64 Mel frequency bands, and a hop length of 256. Another advantage of this

preprocessing into spectrograms is that we can then utilize convolutional neural networks as

the speech decoder to reconstruct our speech labels. Meanwhile, we convert the amplitudes

to the decibel scale.

• Finally, the spectrograms are shaped into a 𝑁 × 𝑁 matrix with values ranging from −80 to 0,

where 𝑁 is double the dimension of the image input. Our resulting speech spectrogram can

be viewed as a 2D image.

Given the first step in this procedure, note that for a given class (e.g. "bird") there is only one

corresponding spectrogram. Therefore, the improved robustness we observe is not a result of any

label-augmentation.

Other Labels For a deeper understanding of which properties of speech labels introduce dif-

ferent feature learning characteristics, we replicate all the experiments using the following high-

dimensional label variants. We also show visualizations for all the label variants in Figure E.1.

• shuffled-speech We cut the speech spectrogram image into 64 slices along the time dimen-

sion, shuffle the order of them, and then combine them back together as an image. Although

the new image cannot be converted back to a meaningful audio, it preserves the frequency

information from the original audio. More importantly, this variant does not change the

entropy or dimensionality of the original speech label.

• constant-matrix In contrast, the constant matrix represents another extreme of high-dimensional

label representation, with all elements having the same value and zero entropy. The constant-

matrix label has the same dimension as the speech label, and values are evenly spaced with

a range of 80 (which is also the range of the speech labels).

• Gaussian-composition We obtain this representation by plotting a composition of 2D Gaus-

sians directly as images. Each composition is obtained by adding 10 Gaussians with uni-

formly sampled positions and orientations.
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• random/uniform-matrix We also adopt a matrix with same dimensions as the above high-

dimensional labels by randomly sampling from a uniform distribution. We additionally con-

struct a uniform random vector with low dimensionality to inspect whether dimensionality

matters. Throughout the paper, we will use random matrix and uniform matrix interchange-

ably to refer to the same representation.

• BERT embedding We obtain the BERT embedding from the last hidden state of a pre-trained

BERT model [261, 262]. We remove outlines larger than twice the standard deviation and

normalize the matrix to the same range of our other high-dimensional labels. The BERT

embedding results in a 64 × 64 matrix.

• GloVe embedding Similarly, we directly use the pretrained GloVe [263] word vectors.3 This

results in a 50-dimensional label vector.

Models We take three widely used convolutional networks as our base model: VGG19 [221],

ResNet-32 and ResNet-110 [222]. Here we define that a categorical classification model has two

parts: an image encoder 𝐼𝑒 and a category (text) decoder 𝐼𝑡𝑑 . Traditionally, 𝐼𝑡𝑑 represents fully

connected layers following various forms of convolutional backbones 𝐼𝑒. Finally, a softmax func-

tion is applied to the output from the last layer of 𝐼𝑡𝑑 to convert the predictions to a categorical

probability distribution. The prediction is retrieved from the class with the highest probability.

Similarly, we define that the models for our high-dimensional labels consists of two parts: an

image encoder and a label decoder 𝐼𝑙𝑑 . Throughout the paper, we use the same image encoder but

replace the category decoder 𝐼𝑡𝑑 with one dense layer and several transpose convolutional layers

as 𝐼𝑙𝑑 . All the layers inside 𝐼𝑙𝑑 are equipped with batch normalization [264] and leaky ReLU with

a 0.01 negative slope.

Overall, the majority of parameters of the network comes from the image encoder which

is shared across both categorical labels and other label representations. The decoder for high-

dimensional labels increases the number of parameters by a very limited amount (see Appendix

3https://nlp.stanford.edu/projects/glove/
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for all the numbers). Thus, our experiments are well-controlled with respect to the number of

parameters.

Learning We train the categorical model to minimize the traditional cross-entropy objective

function. We minimize Equation E.6 for other models with high-dimensional labels. We use the

smooth L1 loss (Huber loss) 𝐿𝑠 shown in Equation E.7. Here, 𝑦𝑖 is the predicted label matrix while

𝑠𝑖 stands for the ground-truth matrix.

min
\𝑠

∑︁
𝑖

L𝑠 (𝑦𝑖, 𝑠𝑖) (E.6)

L𝑠 (𝑦𝑖, 𝑠𝑖) =


1
2 (𝑦𝑖 − 𝑠𝑖)

2, if |𝑦𝑖 − 𝑠𝑖 | ≤ 1

|𝑦𝑖 − 𝑠𝑖 |, otherwise
(E.7)

We optimize all the networks using stochastic gradient descent (SGD) with back-propagation, and

we select the best model based on the accuracy on the validation set.

Evaluation For categorical models, a prediction is considered correct if the class with the

highest probability indicates the same category as the target class. For high-dimensional labels,

we provide two types of measurements. Given the model output, we select the ground-truth label

that minimizes the distance to the output. We refer to this as the "nearest neighbor" (NN) choice.

The other criteria is to check whether the smooth L1 loss is below a certain threshold. We use

Amazon Mechanical Turk [265] to validate that generated speech below our threshold is correctly

identifiable by humans. In our experiments, we find 3.5 is a reasonable threshold. The human eval-

uations on the speech label demonstrate that our metric captures both the numerical performance

and the level of interpretability of the generated speech output. Note that we mainly rely on the

NN method for evaluation and only refer to the threshold method to demonstrate the qualitative

results from the speech label.
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E.5 Results and Discussion

E.5.1 Do All the Models Learn to Classify Images?

We report the classification accuracy for all the labels in Table E.1. Speech labels, shuffled-

speech and Gaussian-composition labels achieve comparable accuracy with the traditional cate-

gorical labels, while the constant-matrix performs slightly worse than these representations. This

suggests that the constant-matrix label is harder to train with. We verify this observation by visu-

alizing the training curves for all label representations on CIFAR-100 with the ResNet-110 image

encoder in Figure E.2. The training curves show that the constant-matrix model takes longer to

converge than the others, and converges to a higher loss.

Labels
CIFAR-10 Accuracy (%) CIFAR-100 Accuracy (%)

VGG19 ResNet32 ResNet110 VGG19 ResNet32 ResNet110

Category 92.82 ± 0.08 92.34 ± 0.25 93.23 ± 0.29 70.98 ± 0.10 68.05 ± 0.72 70.03 ± 0.49

Speech Threshold 91.97 ± 0.17 91.90 ± 0.04 92.44 ± 0.11 69.13 ± 0.75 61.08 ± 0.27 67.88 ± 0.16

Speech NN 92.12 ± 0.18 92.34 ± 0.01 92.73 ± 0.08 70.27 ± 0.61 64.74 ± 0.36 69.51 ± 0.25

Shuffle Threshold 92.27 ± 0.16 91.49 ± 0.22 92.44 ± 0.05 67.04 ± 0.41 51.95 ± 0.85 63.00 ± 1.45

Shuffle NN 92.64 ± 0.19 92.72 ± 0.20 92.92 ± 0.24 70.88 ± 0.31 64.23 ± 0.80 69.41 ± 0.66

Composition Threshold 91.53 ± 0.24 91.49 ± 0.22 92.36 ± 0.02 68.06 ± 0.28 60.54 ± 0.54 67.17 ± 0.40

Composition NN 91.94 ± 0.22 92.39 ± 0.17 93.07 ± 0.03 70.20 ± 0.23 66.72 ± 0.44 70.62 ± 0.20

Constant Threshold 88.27 ± 0.63 88.50 ± 0.25 89.27 ± 0.15 62.99 ± 0.11 55.70 ± 0.36 58.78 ± 0.18

Constant NN 88.33 ± 0.65 88.61 ± 0.27 89.37 ± 0.13 34.29 ± 2.40 19.00 ± 1.19 24.46 ± 3.70

Table E.1: Classification accuracy on CIFAR-10 and CIFAR-100 for all label representations.
Speech labels, shuffled speech labels, and composition of Gaussian labels all achieve comparable
accuracies with categorical labels. Constant matrix labels perform slightly worse than the others.

E.5.2 Feature Robustness

In order to evaluate the robustness of the models, we take all the trained models (Table E.1) as

the starting points for adversarial attacks with the FGSM and the iterative method. We apply an 𝜖

from 0 to 0.3 with a 0.05 increment to the normalized images by following the original FGSM setup

[258] and test the model accuracy for each 𝜖 value. We only run attacks on the original correctly

classified images and mark the original misclassified images as incorrect when we compute the
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Fig. E.2: Training and validation losses on CIFAR-10 dataset with ResNet-110 image encoder for
models with the speech / shuffled speech / composition of Gaussians / constant matrix labels (left)
and categorical labels (right). All of the models are trained to converge. The model trained with
constant matrix labels converges slower than models trained with other high dimensional labels.

accuracy for all 𝜖 values. We provide the accuracy computed on the subset of test images that are

initially correctly classified in the Appendix, though the ranking among different models remains

the same.

Figure E.3 shows the test accuracy under various attacks. Although the accuracy of all models

decreases as the attack becomes stronger (larger 𝜖), the models with speech labels, shuffled speech

labels, and composition of Gaussian labels perform consistently much better than the models with

traditional categorical labels across all three image encoders, for all types of attacks, and on both

CIFAR datasets. Uniform random matrix labels perform similarly well in this setting (see the

Appendix for details). Interestingly, models with constant matrix labels perform worse than all

other models with high-dimensional labels, suggesting that there are some inherent properties that

enhance model robustness beyond simply high dimensionality.
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Fig. E.3: Test accuracy under adversarial attacks on CIFAR-10 (left four columns) and CIFAR-100
(right four columns). The accuracy evaluated by the threshold and the nearest neighbor is plotted
in solid and dotted lines respectively. We show the results of targeted and untargeted FGSM and
iterative method on three image encoders with three random seeds. The horizontal axis indicates
the strength of different attacks.

E.5.3 Feature Effectiveness

With the CIFAR-10 dataset, we train models with various label representations using 1%, 2%,

4%, 8%, 10%, and 20% of the training data. For each amount of data, we train with the VGG19,

ResNet-32, and ResNet-110 image encoders with five different random seeds. To conduct con-

trolled experiments, we use the exact same training procedures and hyperparameters as the full-data

experiments, so that the only difference is the amount of training data. All models are evaluated on

the same validation set and test set. Figure E.4 reports the test accuracy. Similar to the results from

the robustness evaluation, speech labels, shuffled speech labels, composition of Gaussian labels,

and uniform random labels achieve higher accuracies than the models with categorical labels for

both VGG19 and ResNet-110, and comparable results for ResNet-32. The results demonstrate that

the speech models are able to learn more generalizable and effective features with less data. This

property is extremely valuable when the amount of training data is limited.

Additionally, our results suggest that label-smoothing does not provide further benefits when

the amount of training data is limited, as discussed above. Lastly, the performance of the models

trained on constant matrix labels is consistent with that in the robustness experiment: it performs
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worse than all other high-dimensional labels. We provide further analysis in the next section.
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Fig. E.4: Test accuracy when limited training data is available. Accuracy is computed using the
nearest-neighbor method

E.5.4 What is Special about Audio Labels?

Our experiments for robustness and data efficiency suggest that high-dimensional labels hold

some interesting inherent property beyond just high-dimensionality that encourage learning of

more robust and effective features. We hypothesize that high-dimensional label representations

with high entropy provide stronger learning signals which give rise to better feature representa-

tions.

To verify our hypothesis, we measure several standard statistics over various label representa-

tions, shown in Table E.2. Specifically, we measure the normalized L1 and L2 distance between

pairs of labels for each representation. We further measure the entropy for each individual label.

Interestingly, although the Manhattan and Euclidean distance between pairs of labels do not

show any particularly useful patterns, the average entropy of the speech labels, the shuffled speech

labels, and composition of Gaussian labels are all higher than that of the constant matrix and

original categorical labels. The ranking of the entropy between these two groups exactly matches

the performance in our robustness and data efficiency experiments shown in Figure E.3 and Figure

E.4. This correlation suggests that high dimensional labels with high entropy may have positive
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Label Types
CIFAR-10 CIFAR-100

Entropy L1 Distance L2 Distance Entropy L1 Distance L2 Distance

Category 0.47 ± 0.00 2.00 ± 0.00 1.41 ± 0.00 0.08 ± 0.00 2.00 ± 0.00 1.41 ± 0.00

Constant 0.00 ± 0.00 26.07 ± 15.72 26.07 ± 15.72 0.00 ± 0.00 21.76 ± 15.16 21.76 ± 15.16

Speech 11.35 ± 0.35 23.80 ± 5.16 12.95 ± 2.70 11.37 ± 0.32 21.45 ± 5.53 13.15 ± 2.19

Shuffle 11.35 ± 0.35 35.29 ± 2.18 18.87 ± 1.53 11.37 ± 0.32 34.40 ± 2.59 17.81 ± 1.24

Composite 12.00 ± 0.00 24.13 ± 3.36 19.41 ± 1.47 12.00 ± 0.00 25.75 ± 4.72 20.60 ± 2.96

BERT 11.17 ± 0.00 5.71 ± 0.94 2.06 ± 0.24 11.17 ± 0.00 7.89 ± 2.84 2.63 ± 0.70

GloVe 5.64 ± 0.00 7.35 ± 1.69 1.30 ± 0.31 5.64 ± 0.00 5.62 ± 0.90 0.99 ± 0.16

Table E.2: Different basic statistics of all types of label representations. Labels that encourage
more robust and effective feature learning also have higher entropy than other label forms.

impacts on robustness and data-efficient training.

We further validate that the benefits come from both high dimensionality and high entropy

by training a model with low-dimensional and high-entropy labels. We generated these labels by

sampling from a uniform distribution, following the same procedure as the uniform-random matrix

label described previously. We found that while models trained with this label perform compara-

bly to ones trained with high-dimensional high-entropy labels in terms of adversarial robustness

(see Appendix), high-dimensional and high-entropy label models outperform the low-dimensional

high-entropy model in terms of data efficiency, as shown by the curve "Low-dim" in Figure E.4.

We find a similar result for categorical models trained with label smoothing, which has been previ-

ously shown to improve adversarial robustness [257]. In fact, high dimensionality is a prerequisite

for high entropy because the maximum entropy is limited by the dimensionality of the label.

Note that the model trained with label smoothing uses the standard cross-entropy loss, mean-

while the low-dimensional high-entropy model is trained with the Huber loss. As a result, we

argue that the loss is not responsible for the improved performance of models trained with high-

dimensional, high-entropy labels.
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E.5.5 Visualizations

Throughout the training process, we visualized the learned features immediately after the image

encoder layer of ResNet-110 with t-SNE [266], both for audio and categorical models on CIFAR-

10 test set. The results are shown in Figure E.5. We observe that the embedding of the learned

features evolve as the training progresses. Compared with the feature embedding of the categorical

model, the embedding of the speech models shows the formation of clusters at earlier stages of

training. More separated clusters are also obtained towards convergence. We provide further

visualizations and Grad-CAM interpretations in the Appendix.

Fig. E.5: T-SNE progression for speech (top row) and categorical (bottom row) models with
ResNet-110 image encoder. From left to right, the plot shows 10%, 30%, 50%, 70%, and 100%
progress in training. The speech model develops distinctive clusters at an earlier stage and has
better separated clusters overall.

E.6 Threshold Validation

We deployed a large-scale study on Amazon Mechanical Turk4 to validate our choice of 3.5 as

a classification threshold for the speech model.

In particular, we asked workers to listen to the outputs of the speech model and choose from the

set of classes (with a "None" class for unintelligible output) the one which best fits the output. We

4https://www.mturk.com
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assigned 3 workers to evaluate each output from the VGG19 speech model on CIFAR-10 test set.

We chose a restrictive selection criteria to ensure maximum quality of responses. Only workers

with a ≥ 99% approval rating and at least 10, 000 approvals were selected.

To measure agreement between humans and our speech model, for each sample in the test

set we determine the decision made by the model using our pre-selected threshold (loss < 3.5 is

correct, while loss ≥ 3.5 is incorrect). Then we compare these decisions to those of the human

workers. When we count each of the three workers independently, we find that humans agree with

the model 99.4% of the time. When we take a majority vote (2/3 humans agreeing) we find that

humans agree with the model 99.8% of the time. We conclude that 3.5 is a reasonable threshold

for evaluating the model.

E.7 Subset Robustness

Additional robustness evaluation is computed using the subset of the test images that are ini-

tially correctly classified by the models without any adversarial attacks (Figure E.6). All test ac-

curacy starts at 100% and decreases with stronger attacks. The strength of the attacks is described

by the value of epsilon.
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Fig. E.6: Test accuracy under adversarial attacks on CIFAR-10 (left four columns) and CIFAR-100
(right four columns) for the initially correct subset of the test images. The accuracy evaluated by
the threshold and the nearest neighbor is plotted in solid and dotted lines respectively. The general
trend from the subset is similar to that from the full test set.
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E.8 Additional Results on Robustness Evaluation

We here include the full results on robustness evaluation on CIFAR-10 dataset in Figure E.7.
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Fig. E.7: Full results of the robustness evaluation on CIFAR-10

E.9 Hyperparameters

E.9.1 Implementation Details

We train the categorical models for 200 epochs with a starting learning rate of 0.1, and decay

the learning rate by 0.1 at epoch 100 and 150. The high-dimensional models are trained for 600

epochs with the same initial learning rate, and we drop the learning rate by 0.1 at epoch 300 and

450. All models are trained with a batch size of 128 using the SGD optimizer with 0.9 momentum

and 0.0001 weight decay. One exception is when train categorical models with the VGG19 image

encoder, we use a larger weight decay, 0.0005. We implement our models using PyTorch [267]. All
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experiments are performed on a single GeForce RTX 2080 Ti GPU. The limited-data experiments

are conducted using the same settings as the full data experiments.

E.9.2 Architecture Parameters

We provide the parameter counts for the all models in Table E.3 and Table E.4. The majority

of the parameters come from the image encoders. High-dimensional models have slightly more

parameters than categorical models due to the high-dimensional label decoder (Table E.5).

Model
CIFAR-10

VGG19 ResNet32 ResNet110

Category 2 × 107 4.67 × 105 1.73 × 106

High-dimensional 2.01 × 107 5.80 × 105 1, 84 × 106

Table E.3: Total number of parameters of the category and high-dimensional models for CIFAR-10
dataset

Model
CIFAR-100

VGG19 ResNet32 ResNet110

Category 2.01 × 107 4.73 × 105 1.74 × 105

High-dimensional 2.02 × 107 5.80 × 105 1.84 × 105

Table E.4: Total number of parameters of the category and high-dimensional models for CIFAR-
100 dataset

E.10 Dataset

To demonstrate the effectiveness of our proposed method, we evaluate our models on the

CIFAR-10 and CIFAR-100 datasets [224]. For each dataset, we train different models on the

same training set and evaluate the models on the same validation set using the same random

seeds for fair comparisons. To preprocess the training images, we randomly crop them with a

padding size 4 and perform random horizontal flips. All CIFAR images are normalized with mean

(0.4914, 0.4822, 0.4465) and standard deviation (0.2023, 0.1994, 0.2010) of the training set.
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Layer Input Output Kernel Stride Padding

Dense 𝐼𝑒 out 64 - - -
ConvTranspose 2D 64 × 1 × 1 64 × 4 × 4 4 × 4 1 × 1 0
ConvTranspose 2D 64 × 4 × 4 32 × 8 × 8 4 × 4 2 × 2 1 × 1
ConvTranspose 2D 32 × 8 × 8 16 × 16 × 16 4 × 4 2 × 2 1 × 1
ConvTranspose 2D 16 × 16 × 16 8 × 32 × 32 4 × 4 2 × 2 1 × 1
ConvTranspose 2D 8 × 32 × 32 1 × 64 × 64 4 × 4 2 × 2 1 × 1

Table E.5: The architecture of the high-dimensional label decoder 𝐼𝑙𝑑 . The input dimension of the
first dense layer is the dimension of the output of the image encoder 𝐼𝑒. The output of the last
ConvTranspose2d layer is the target label.

Uniform Speech Category Uniform Speech Category Uniform Speech Category

(a) VGG19 (b) ResNet32 (c) ResNet110

Fig. E.8: T-SNE of the best uniform (left), speech (middle), and categorical (right) models trained
with the same random seed. Speech models show best separated clusters across all three models.

CIFAR-10 consists of 60, 000 images of size 32 × 32 uniformly distributed across 10 classes.

The dataset comes with 50, 000 training images and 10, 000 test images. We use a 45, 000/5, 000

training/validation split.

CIFAR-100 also comprises 60, 000 images of size 32 × 32, but it has 100 classes each con-

taining 600 images. The dataset is split into 50, 000 training images and 10, 000 test images. We

randomly select 5, 000 images from the training images to form the validation set.

E.11 Visualizations

In addition to the progressive t-SNE plots we presented in the main context, we plot the em-

bedding of all three types of image encoders of models trained on speech labels, categorical labels,

and constant matrix labels in Figure E.8. We only show the results from the models with highest

accuracy. Similarly, we observe that speech models have better separation of clusters. The feature

embedding of the constant model is worse than that of the speech model, further confirming that

the speech representation is unique in addition to its dimensionality.
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Grad-CAM We visualize activations from beginning, intermediate, and final layers in the im-

age encoders for both speech and categorical models. We see that the input activations for the

speech model conform more tightly than those of the categorical model to the central object of

each image at all three stages. This may suggest that the speech model learns more discriminative

features than the categorical model. These features are also visually more easily understandable to

humans.

E.12 Conclusion

We introduce a novel paradigm for the traditional image classification task by replacing cat-

egorical labels with high-dimensional, high-entropy matrices such as speech spectrograms. We

demonstrate comparable accuracy on the original task with our speech labels, however, models

trained with our speech labels achieve superior performance under various adversarial attacks and

are able to learn in a more data efficient manner with only a small percentage of training data.

We further study the inherent properties of high dimensional label representations that potentially

introduce the advantages. Through a large scale systematic study on various label representations,

we suggest that high-entropy, high-dimensional labels generally lead to more robust and data ef-

ficient training. Our work provides novel insights for the role of label representation in training

deep neural networks.
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