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Abstract 

Artificial Intelligence for Detection, Characterization, and Classification of Complex Visual 

Patterns in Medical Imaging; Applications in Pulmonary and Neuro-imaging 

Nabil Ettehadi 

 

 Medical imaging is widely used in current healthcare and research settings for various 

purposes such as diagnosis, treatment options, patient monitoring, longitudinal studies, etc. The 

two most commonly used imaging modalities in the United States are Computed Tomography 

(CT) and Magnetic Resonance Imaging (MRI). Raw images acquired via CT or MRI need to 

undergo a variety of processing steps prior to being used for the purposes explained above. These 

processing steps include quality control, noise reduction, anatomical segmentation, tissue 

classification, etc. However, since medical images often include millions of voxels (smallest 3D 

units in the image containing information) it is extremely challenging to process them manually 

by relying on visual inspection and the experience of trained clinicians. In light of this, the field of 

medical imaging is seeking ways to automate data processing.  

 With the impressive performance of Artificial Intelligence (AI) in the field of Computer 

Vision, researchers in the medical imaging community have shown increasing interest in utilizing 

this powerful tool to automate the task of processing medical imaging data. Despite AI’s 



 

 

significant contributions to the medical imaging field, large cohorts of data still remain without 

optimized and robust AI-based tools to process images efficiently and accurately.  

 This thesis focuses on exploiting large cohorts of CT and MRI data to design AI-based 

methods for processing medical images using weakly-supervised and supervised learning 

strategies, as well as mathematical (and/or statistical) modeling and signal processing methods. In 

particular, we address four image processing problems in this thesis. Namely: 1) We propose a 

weakly-supervised deep learning method to automate binary quality control of diffusion MRI 

scans into ‘poor’ and ‘good’ quality classes; 2) We design a weakly-supervised deep learning 

framework to learn and detect visual patterns related to a set of different artifact categories 

considered in this work, in order to identify major artifact types present in dMRI volumes; 3) We 

develop a supervised deep learning method to classify multiple lung texture patterns with 

association to Emphysema disease on human lung CT scans; 4) We investigate and characterize 

the properties of two types of negative BOLD response elicited in human brain fMRI scans during 

visual stimulation using mathematical modeling and signal processing tools. 

 Our results demonstrate that through the use of artificial intelligence and signal processing 

algorithms: 1) dMRI scans can be automatically categorized into two quality groups (i.e., ‘poor’ 

vs ‘good’) with a high classification accuracy, enabling rapid sifting of large cohorts of dMRI 

scans to be utilized in research or clinical settings; 2) Type of the major artifact present in ‘poor’ 

quality dMRI volumes can be identified robustly and automatically with high precision enabling 

exclusion/correction of corrupt volumes according to the artifact type contaminating them; 3) 

Multiple lung texture patterns related to Emphysema disease can be automatically and robustly 

classified across various large cohorts of CT scans enabling investigation of the disease through 

longitudinal studies on multiple cohorts; 4) Negative BOLD responses of different categories can 



 

 

be fully characterized on fMRI data collected from visual stimulation of human brain enabling 

researchers to better understand the human brain functionality through studying cohorts of fMRI 

scans.   
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Chapter 1: Introduction 

1.1 Medical Imaging 

Nowadays, medical imaging serves as a key element of the healthcare system, utilized at 

all stages such as patient screening, early diagnosis, treatment choice, and follow-up sessions 

(Bercovich and Javitt 2018). In addition to clinical applications, medical imaging is widely used 

for research and educational purposes. The currently most popular imaging modalities include 

Computed Tomography (CT) (Buzug 2011), and Magnetic Resonance Imaging (MRI) (McRobbie 

et al. 2017) with more than 125 million scans/year (combined) in the US (Papanicolas, Woskie, 

and Jha 2018). Processing of medical images often includes quality control, artifact 

detection/reduction, anatomical segmentation of different regions of the body, feature extraction, 

and recognition and classification of various (potentially damaged) tissue types and complex visual 

patterns. However, manual processing of such a massive pool of big data (i.e., millions of voxels 

per image) is significantly labor-intensive and highly subjective. Therefore, it is essential to find 

optimal automatic approaches for such medical image processing tasks. 

1.2 Artificial Intelligence 

 Artificial intelligence, especially deep learning, has a wide range of applications in today’s 

academic, industrial, healthcare, and commercial domains. This is the result of recent advances in 

computational resources, as it has become feasible to train large neural networks in a reasonable 

amount of time for various tasks. The idea behind neural networks is to imitate the structure and 

our current understanding of the process in which the human brain functions. Specifically, neural 

networks are composed of numerous individual units (often referred to as neurons), which 

communicate with each other through weighted connections (similar to interactions between 

biological neurons in the human brain) (Krenker, Bešter, and Kos 2011; Anaya-Isaza, Mera-
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Jiménez, and Zequera-Diaz 2021). The optimal weight values for these connections are learned 

through the training process to achieve the desired performance for the task at hand (Han et al. 

2018). Moreover, neurons in a neural network are activated through a nonlinear activation 

function, similar to activation in biological neurons of the human brain (Han et al. 2018; Anaya-

Isaza, Mera-Jiménez, and Zequera-Diaz 2021).  

One area where artificial intelligence and more specifically deep learning becomes very 

useful is the domain of Computer Vision. With the introduction of Convolutional Neural Networks 

(CNNs), the field of image processing was revolutionized since CNNs demonstrated outstanding 

performance (often surpassing human-level performances) in tasks such as image segmentation 

(Minaee et al. 2021), image classification (Druzhkov and Kustikova 2016), object detection (Zhao 

et al. 2019), face recognition (Wang and Deng 2021), action recognition (Herath, Harandi, and 

Porikli 2017), etc. One reason for this is that the introduction of the convolution operator allowed 

CNNs to be trained on images containing hundreds (or millions) of pixels (or voxels for 3D 

images) without growing exponentially in parameters (as opposed to a normal neural network). 

With the proven success of CNNs in the field of computer vision, medical imaging researchers are 

showing increasing interest in applying them to medical imaging data. 

1.3 Artificial Intelligence in Medical Imaging 

Recently, Artificial Intelligence (AI) has brought promising applications to the field of 

healthcare, predominantly in the medical imaging domain (Lakhani et al. 2018). Currently, more 

than half of all publications on AI in healthcare are related to MRI and CT modalities (Pesapane, 

Codari, and Sardanelli 2018). Using AI, medical image processing tasks can be efficiently and 

effectively automated, saving a substantial amount of clinical experts’ time and resources. 

Moreover, AI can identify complex visual patterns that are not necessarily detectable by the human 
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eye, pushing the medical imaging field away from subjective perceptions to more objective 

insights (Pesapane, Codari, and Sardanelli 2018). Some examples of AI applications in medical 

imaging (Liu et al. 2021) include, but are not limited to 1) Classifying medical images into one of 

several classes of diseases or healthy controls (Yadav and Jadhav 2019; Wang et al. 2020) with 

applications in dermatology (Esteva et al. 2017; Wu et al. 2020), ophthalmology (Ting et al. 2017; 

Gulshan et al. 2016), breast cancer (Spanhol et al. 2017), etc.; 2) Detecting and localizing patterns 

of a certain disease or abnormality (at any stage) from medical images (analogous to the concept 

of object detection in computer vision) such as detection of lung nodules in chest CT or X-ray 

images (Liu et al. 2019).; 3) Segmenting medical images into anatomical regions such as lung 

segmentation on CT (Skourt, El Hassani, and Majda 2018) or brain segmentation on structural 

MRI images (Zhang et al. 2015; Akkus et al. 2017; Maas, Zabeh, and Arabshahi 2021).  

Despite significant contributions of AI to the field of medical image processing (e.g., 

Ronneberger, Fischer, and Brox 2015; Roy et al. 2019; Ye et al. 2019, in addition to those 

mentioned above), there remain a set of massive influential imaging datasets for which a reliable 

AI assistant agent has not been yet developed or lacks optimality, robustness, high precision, and 

accuracy (Matheny et al. 2019). Our goal in this thesis is to narrow this gap.  

1.4. Proposed Artificial Intelligence Approaches in this Thesis for CT and MRI 

In this dissertation, we focus on applications of AI in lung CT and brain MR images for 

detection and classification of complex visual patterns, from artifacts to texture and bio-signals, 

exploiting scans widely used in popular large cohort studies. Specifically, we will develop AI and 

mathematical tools to tackle the problems of: 1) Automatic quality control of diffusion MR 

(Stejskal and Tanner 1965; Le Bihan et al. 1986; Huisman 2003) images, 2) Automatic artifact 

type classification in diffusion MR images, 3) Automatic lung texture classification for 
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emphysema disease (Aoshiba, Yokohori, and Nagai 2003; Mets et al. 2012) subtyping, and 4) 

characterization of under-investigated signals in functional MRI (Ogawa et al. 1992) scans. For 

solving each problem, a specific strategy from the following three strategies is used: 

1) Weakly-supervised learning: This strategy utilizes image datasets with weak manual 

annotations (i.e., binary labels used to denote the presence or absence of an artifact across 

a 3D whole image) to automate the process of quality control (i.e., problem 1) and different 

imaging artifact classification (i.e., problem 2) in diffusion MRI volumes. Since manual 

annotation, especially when dealing with large cohorts of big data, is a highly labor-

intensive task, manual annotations at volume-level (instead of voxel/pixel-level) is more 

practical and convenient for experts in charge of this task. By targeting large cohorts of 

infant brain diffusion MR images in problem 1 and 2, which will be discussed later in 

details, we aim to improve child brain development research by providing reliable AI 

methods for sifting the imaging dataset to make the study results and conclusions more 

reliable and reproducible.  

2) Supervised learning: This approach utilizes a set of annotated images (annotated by an 

algorithm instead of a human expert) for the classification of CT-based spatially-informed 

lung texture patterns (sLTPs) associated with pulmonary emphysema disease (i.e., problem 

3). The supervised annotations, also include locations (3D coordinates) of the present 

sLTPs (at voxel-level) in the CT image at hand forming a non-weakly labeled dataset. 

Although the annotations in this approach are at voxel-level, the labels are collected using 

an algorithm (Yang et al. 2021) instead of expert radiologists. Hence, the labeling load is 

transferred to machine instead of human. Leveraging the sLTPs, we aim to classify the 



8 

 

novel CT Emphysema Subtypes (CTES) going beyond the three standard emphysema 

subtypes (Anderson and Augustus et al. 1964; Dahl et al. 2002). 

3) Mathematical modeling and signal processing: In this thesis, we used appropriate signal 

processing and statistical techniques in order to detect and characterize different types of 

Negative Bold Responses (NBRs) in human visual cortex on functional MRI scans (i.e., 

problem 4). 

In this thesis, we use the three strategies mentioned above to tackle the following four 

specific problems in medical imaging. Each problem is detailed in its corresponding chapter of 

this thesis which is outlined at the end of this introduction in section 1.5.  

1.4.1 Problem 1: Weakly-Supervised Fast Binary Quality Assessment of dMRI  

dMRI scans, like any other medical imaging modality, are susceptible to various artifacts. 

If these artifacts go undetected and be included in the imaging data under investigation, they could 

damage the result of subsequent analyses. In this problem, we plan to use AI for automatic quality 

control of dMRI volumes. Specifically, the proposed work aims to develop a weakly-supervised 

(i.e., binary annotations indicating the quality of a whole 3D dMRI volume, rather than slice or 

voxel-level delineation) deep learning method for rapid automatic binary quality assessment (i.e., 

‘poor’ vs ‘good’) of diffusion MRI volumes. This method enables the sifting of a vast amount of 

raw dMRI scans to avoid damaging the reliability of large cohort studies’ results.  

1.4.2 Problem 2: Weakly-Supervised Fast Artifact Type Identification in dMRI  

 In addition to binary quality control of dMRI scans, sometimes it is desired to detect the 

specific artifact type present in a 3D image. By doing so, the image could be corrected (if possible) 

for that specific artifact type using the currently available medical image processing tools. This 

results in reducing the waste in medical imaging data due to complete exclusion of noisy images. 
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Hence, in order to be ablet to correct the corrupt images (if possible), the first step is to detect the 

artifact type in the image. Since manual identification of noisy images is highly labor-intensive, in 

this problem, we aim to leverage AI techniques to automate this process. In particular, the weakly-

supervised automated artifact detection framework for diffusion MRI volumes, proposed in this 

thesis, aims to learn complex visual patterns associated with different artifact types. Using the 

proposed deep learning framework, the major existing artifacts in whole 3D dMRI volumes can 

be recognized automatically and rapidly. The corrupt volumes then could be either processed for 

restoration/quality enhancement according to their type of artifact or completely removed from the 

dataset to retain the credibility of study results.  

1.4.3 Problem 3: Supervised Labeling of Lung Textures Associated with Emphysema 

Subtypes on CT Images 

Recent image processing advances have generated increased interest in automated lung 

texture analysis on CT images for the in-vivo study of lung tissue abnormalities (Depeursinge et 

al. 2014). Using the unsupervised learning method described in (Yang et al. 2021), ten different 

emphysema-specific spatially-localized lung texture patterns (sLTPs) were discovered on full-lung 

high-resolution CT scans in MESA (Bild et al. 2002) and SPIROMICS (Couper et al. 2014) cohorts 

(details of these two cohorts are presented in Chapter 2). Further evaluation of these sLTPs via 

statistical data reduction techniques demonstrated that they can be grouped into 6 CT emphysema 

subtypes that have clinical significance (paper under review). Manual labeling of the discovered 

10 sLTPs (associated with 6 CTES) is not only labor-intensive, but also almost not feasible since 

radiologists are not necessarily able to detect and distinguish these 10 sLTP classes from each 

other, as some of the classes look very similar to each other by the human eye. Hence, in this 

problem, we aim to use AI to design a framework for automatic labeling of 10 sLTPs. In particular, 
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the supervised deep learning framework proposed in this thesis aims to develop a fast, accurate, 

and robust classifier for labeling 10 sLTPs. It is worth noting that the notion of ‘supervised’ used 

here refers to machine-learned ground truth labels provided in (Yang et al. 2021) eliminating the 

need for manual annotation by radiologists. The proposed deep learning method enables 

longitudinal studies within and between various large cohorts of lung CT data (e.g., MESA and 

SPIROMICS) with different scanning protocols for understanding quantitative emphysema and 

sLTP progression. 

1.4.4 Problem 4: Mathematical Characterization of Various Types of Negative Bold 

Responses in Human Brain on fMRI Scans 

 fMRI is widely used these days for non-invasive in-vivo imaging of brain functionality. 

Stimulation of human brain can make local and global changes to the fMRI signal in positive 

(known as the positive BOLD response) and negative (known as the negative BOLD response) 

directions (Ogawa et al. 1992). Contrary to the negative BOLD response, the positive BOLD 

response has been studied widely throughout the literature (Logothetis 2008). Since the relative 

change in the negative fMRI signal is very small compared to the positive BOLD response and 

other biological signals in the brain, it is very challenging to detect and characterize this signal. 

Specifically, one needs to use proper mathematical, statistical, and signal processing tools to 

ensure the reliability of negative BOLD response characterization. In this problem, we aim to 

carefully study various types of negative BOLD responses elicited in the human brain via visual 

stimulation. In particular, the proposed exploratory study in this thesis aims to jointly characterize 

and investigate the properties of the ipsilateral and contralateral negative BOLD responses due to 

unilateral visual stimulation observed in human fMRI scans. Linearity analysis, hemodynamic 

response function extraction, spatial and temporal analysis, and behavioral correlates of the two 
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negative BOLD responses are investigated to help researchers better understand different types of 

negative BOLD responses and potentially advance the field toward characterizing their underlying 

mechanism(s). 

1.5 Potential Impact and Thesis Outline 

 The aim of this work is to leverage and design AI approaches to significantly advance the 

medical image processing techniques for MRI and CT by: 1) Automatically detecting and 

classifying visual patterns of artifacts in MR images using weakly-supervised deep learning 

methods; 2) Automatically and robustly classifying various lung texture patterns (with emphysema 

correspondence) on human lung CT images across different large cohorts of data; 3) Detecting and 

characterizing BOLD response patterns from fMRI scans of human brain using proper 

mathematical, statistical, and signal processing tools.  

 The proposed weakly-supervised deep learning framework for binary quality assessment 

of diffusion MR 3D images enables a fast automated method for sifting raw data. This is very 

important and useful as the inclusion of poor-quality data in any analysis can significantly mislead 

or bias the result of the study. Using the proposed framework, large cohorts of dMRI data can be 

rapidly assessed for image quality, eliminating the tedious task of manual visual inspection of the 

data. 

 In addition to binary quality control, the proposed weakly-supervised deep learning method 

for multiclass artifact identification in diffusion MRI volumes allows medical data analysts to 

automatically detect the type of the major existing artifact in dMRI volumes used in their studies. 

This is especially useful when discarding a big portion of data due to noisy/corrupt images is not 

affordable (e.g., in cases where the sample size of a study is relatively small or re-scanning the 

participants is not an option). In such cases, the images need to be corrected (if possible) according 
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to their artifact type. Our proposed AI-based framework provides a fast automated approach for 

sifting large cohorts of data with artifact type labels to be possibly corrected eliminating the need 

for manual artifact class identification.  

 The proposed supervised deep learning framework for sLTP classification on lung CT 

images delivers a fast and robust (i.e., cohort and scanner invariant) labeler for automatic 

annotation of large cohorts of data with lung texture patterns that are associated with emphysema 

subtypes. The current understanding of emphysema subtypes and potential ways of slowing the 

disease progression remains incomplete. Therefore, this automatic labeler may assist researchers 

in annotating large cohorts of unlabeled (or weakly labeled) lung CT data to be used in studies 

investigating emphysema. 

 The proposed exploratory study investigating negative BOLD responses of various types 

on human fMRI scans provides a clear approach for detecting and characterizing such responses. 

To the best of our knowledge, to this date, the full properties of various types of negative BOLD 

responses are not fully explored. In addition, there is no consensus regarding the mechanism(s) 

responsible for such changes in fMRI signals. Using the results of the exploratory analysis 

proposed in this thesis, researchers will be one step closer to identifying the possible mechanism(s) 

underlying the negative BOLD responses in the human brain. 

 The rest of this thesis is organized as follows: In Chapter 2, we give an overview of the 

large heterogeneous cohorts of data used in this thesis. Following that, in Chapter 3, we describe 

the details of the weakly-supervised framework for binary quality assessment of dMRI scans. Next, 

in Chapter 4, we extend the work implemented in Chapter 3, using a weakly supervised deep 

learning approach, to identify artifact classes present in corrupt dMRI volumes. Then, in Chapter 

5, we will discuss the proposed supervised deep learning method for automatic and robust labeling 
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of sLTPs related to emphysema disease. Following this, in Chapter 6, we turn our attention to 

exploring various types of negative BOLD responses elicited in human visual cortex observed in 

fMRI scans. Finally, in Chapter 7, we present a summary and conclusions of the work done in this 

thesis.  
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Chapter 2: Data and Preprocessing 

The four problems addressed in this thesis include full lung CT scans, human brain 

diffusion MRI scans, and human brain functional MRI scans from the following cohorts:  

1. SubPopulations and InteRmediate Outcome Measures In COPD Study (SPIROMICS) 

(Couper et al. 2014) with full lung CT images from visit 1 at full inspiration; 

2. Multi-Ethnic Study of Atherosclerosis (MESA) (Bild et al. 2002) with full lung CT images 

from visit 5;   

3. Adolescent Brain Cognitive Development (ABCD) (Casey et al. 2018) with dMRI human 

brain images;  

4. Healthy Brain Network (HBN) (Alexander et al. 2017) with dMRI human brain images; 

5. Columbia University Medical Center (CUMC) in-house fMRI dataset with fMRI scans of 

human brain.  

A summary of the data used from these 5 cohorts is presented in Table 2.1.  

Table 2.1: Overview of the medical imaging data used in this thesis. 

Study/Dataset 

Number of subjects 

included in our 

experiments 

Number 

of scans 

Number of 

scanner types 

Problem under 

investigation 

SPIROMICS V1 

inspiration 
2,922 2,922 10 

Problem 3  

(Chapter 5) 

MESA-Lung 

Exam 5 
2,542 2,542 6 

Problem 3  

(Chapter 5) 

ABCD 85 8,530 3 
Problems 1 and 2 

(Chapters 3 and 4) 

HBN 100 12,900 2 
Problem 2  

(Chapter 4) 

CUMC fMRI 42 84 1 
Problem 4  

(Chapter 6) 
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For each cohort used in each problem, details of the study, participants (e.g., 

demographics), and the images (such as the resolution, acquisition parameters, etc.) have been 

thoroughly discussed in their corresponding chapters. More in-depth information is also available 

in the corresponding literature of each study as referenced above. It is worth mentioning that for 

each and every cohort used in this thesis, as described in their respective chapters, their 

corresponding institutional review boards have approved the design of the study protocols.   

The CT images in MESA and SPIROMICS are available at the Heffner Biomedical 

Imaging Laboratory (HBIL) located in the Department of Biomedical Engineering of Columbia 

University.  The dMRI scans in ABCD and HBN are publicly available online (links are provided 

in Chapters 3 and 4). At the time of conducting the experiments, the CUMC fMRI study was 

available at the Quantitative Neuroimaging Laboratory (QNL) of Columbia University Medical 

Center, but at the time of this writing, it is available at the Quantitative Neuroimaging Laboratory 

(QNL) of Weill Cornell Department of Medicine1.  

For each problem, a different set of preprocessing steps was carried out. Hence, for more 

in-depth information on this matter, interested readers are referred to the corresponding chapters 

to get a detailed overview of all the preprocessing steps conducted for each dataset and problem. 

In this chapter, we will conclude by providing a brief general overview of the pre-processing steps 

carried out for each research problem. 

Data and pre-processing steps for used in Chapter 3:  In this project, we used 85 subjects 

randomly selected from the pool of subjects in the Adolescent Brain Cognitive Development 

(ABCD) (Casey et al. 2018) dataset. In particular, we used 8,530 brain dMRI magnitude volumes 

 
1 https://qnlab.weill.cornell.edu/ 
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(raw images) from all 85 sampled subjects. Each dMRI volume underwent the same exact pre-

processing pipeline which includes:  

1) Intensity normalization according to the global intensity distribution of all 85 subjects. 

We used the minimum and maximum intensity values after removing the top and 

bottom 5% percentiles and linearly normalized the intensity values to fall in the range 

of [0, 1].   

2) Brain extraction using the dwi2mask function provided by the MRtrix3 toolbox 

(Tournier et al. 2019). The brain extraction was carried out to make sure that the deep-

learning model focuses on data in brain regions rather than information in the skull 

which are irrelevant to the goal of the project.  

Data and pre-processing steps used in Chapter 4: In this project, we used two datasets. 

Specifically, we used the exact same portion of the ABCD dataset as well as 100 subjects randomly 

selected from all of the subjects involved in the Healthy Brain Network (HBN) (Alexander et al. 

2017) cohort. The following identical pre-processing steps were applied to both cohorts: 

1) Separate intensity value normalizations according to the global intensity information 

of A) all 85 subjects in ABCD dataset; B) all 100 subjects in the HBN dataset. For each 

cohort separately, we extracted the minimum and maximum intensity values after 

eliminating the two 5% percentile tails (i.e., below 5%, and above 95%). Next, we used 

those values for each cohort separately to linearly normalize their intensity values to be 

between [0, 1].   

Data and pre-processing steps used in Chapter 5: In this project we used two relatively 

large cohorts of lung CT data from MESA-Lung exam 5 (Bild et al. 2002), and SPIROMICS V1 

(Couper et al. 2014) populations. In particular we used CT images from 2,922 distinct subjects in 
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SPIROMICS and 2,542 distinct subjects in MESA-Lung exam 5. For both cohorts we performed 

the following pre-processing steps:  

1) Lung mask segmentation. For each subject in both cohorts, lung masks were generated 

using the APOLLO Software provided by VIDA Diagnostic, Iowa. The lung masks 

were applied to CT images to exclude the non-lung regions.  

2) Emphysema and sLTP segmentation. Emphysematous regions within each lung were 

segmented using the upper limit of normal values. Following the Emphysema 

segmentation, sLTP ground truth labels were extracted using the method described in 

(Yang et al. 2021). The sLTP segmented lung CT images were used to form training, 

validation, and test sets for learning and evaluation process. It is worth noting that there 

was no training procedure for the MESA-Lung exam 5 cohort as all of the data in this 

cohort was used only for testing purposes.  

3) Intensity normalization. Since intensity values in both cohorts were very similar, we 

normalized the intensity values in both cohorts using the same minimum and maximum 

intensity values. Following this procedure, the intensities were linearly normalized to 

fall within the range of [0, 1].  

Data and pre-processing steps used in Chapter 6: In this project, we utilized in-house fMRI 

scans of 42 subjects. All fMRI scans underwent the following pre-processing steps using FSL 

(Smith S.M. et al. 2004) and in-house-developed software packages:  

1) Slice-timing correction. All fMRI volumes were corrected for the slice acquisition 

delays using the slice-timing correction methods described in (Parker, Liu, and Razlighi 

2017; Parker and Razlighi 2019). 
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2) Motion correction. For each volume, motion parameters were estimated with respect to 

the first volume via FSL, using rigid-body transformation. Following the estimation of 

these parameters, they were applied to the slice-timing corrected volumes to get 

motion-corrected fMRI volumes.  

3) Susceptibility-induced distortion correction. Since for each experiment there were two 

fMRI scans with opposite phase encoding directions, we were able to estimate the 

geometric distortion correction field using a susceptibility-induced distortion 

correction technique called topup (Andersson, Skare, and Ashburner 2003) included in 

FSL software package.  

4) First-level analysis. We modeled the pre-processed fMRI data with 6 predictors for all 

stimulations and subject responses (i.e., visual right, visual left, audio right, audio left, 

motor-response left, motor-response right). Predictors were obtained by convolving the 

boxcar timings with the canonical double-gamma hemodynamic response function. We 

then used multiple regression to perform the first-level analysis via an in-house-

developed software package in Python.  
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Chapter 3: Weakly-Supervised Learning for Quality Control of 

Brain Diffusion MRI1 

3.1 Introduction  

Diffusion tensor imaging (DTI) (Basser and Jones 2002; Alexander et al. 2007) is a popular 

method for studying neural and structural changes in the human brain through Magnetic Resonance 

Imaging (MRI). In addition to detecting normal changes in white matter (Hüppi and Dubois 2006; 

Ladouceur et al. 2012; Simmonds et al. 2014; Krogsrud et al. 2016), DTI can be used to detect 

abnormal conditions such as Alzheimer’s disease (Hoy et al. 2017; Lo Buono et al. 2020), and 

Schizophrenia (Roalf et al. 2015; Tønnesen 2018). Moreover, popular large cohort studies such as 

the Human Connectome Project (Van Essen et al. 2012) and Adolescent Brain Cognitive 

Development (ABCD) (Casey et al. 2018) employ DTI data for measuring various biomarkers. 

DTI data, however, are often subject to MRI artifacts, such as motion, ghosting, Eddy currents, 

chemical shift, gradient distortions, etc., which could affect the quality and reliability of the results 

(Ettehadi et al. 2021). Hence, it is imperative that the medical images in studies using DTI are 

checked for the presence of such artifacts to ensure reliable and reproducible results. Therefore, 

quality assessment (QA) of DTI volumes is a vital step before any further analysis can be 

performed (Ettehadi et al. 2021). 

Traditional approaches for QA of DTI data have involved the opinion of an MRI expert (or 

sometimes the consensus opinion of a group of MRI experts) by visually inspecting all volumes 

(in some cases all individual slices) and looking for any patterns of artifacts (Ettehadi et al. 2021). 

This task is very challenging and labor-intensive, especially for large cohorts of data, such as the 

 
1 Disclaimer: Parts of this chapter were taken from (Ettehadi et al. 2021) Copyright © 2021, IEEE.  
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ABCD dataset. In addition, this approach to QA is subjective, which can lead to disagreements 

among experts on deciding the quality of an image (Ettehadi et al. 2021). This necessitates 

automated robust approaches for QA of large DTI datasets. 

Fast automated quality control for diffusion MR images is possible with computerized QA 

of data. A number of works, such as FSL (Jenkinson et al. 2010; Andersson et al. 2016; Bastiani 

2019), DTIPrep (Oguz et al. 2014), and DtiStudio (Jiang et al. 2006), have attempted to incorporate 

some level of automatic quality control in their artifact correction tools. In general, such tools rely 

on a variety of statistical methods to detect and estimate the underlying noise (Roalf et al. 2016). 

Alternatively, some approaches utilize Artificial Intelligence (AI) techniques to identify a 

particular class of artifact patterns (e.g., motions and eddy currents) from the image (Iglesias et al. 

2017; Alfaro-Almagro et al. 2018; Graham., Drobnjak, and Zhang 2018). There have been several 

studies that have evaluated these tools’ performance in the QA of DTI data, such as (Liu, Zhu, and 

Zhong 2015) and (Haddad et al. 2019). These studies have reported that such tools are mostly 

limited to detecting the specific type of artifact they were designed for. Furthermore, other AI-

based approaches that take into account a wider variety of artifacts, such as (Samani et al. 2020), 

often require slice-wise labels (as opposed to volume-wise labels) in their training set, which is 

labor-intensive. 

In this chapter, we introduce an automatic and fast deep learning tool for identifying 3D 

DTI volumes of ‘good’ or ‘poor’ quality regardless of the type of artifacts present. Contrary to the 

previous works, our framework relies only on volume-level labels (i.e., a weakly supervised 

approach) rather than slice/voxel-level labels, which significantly reduces the efforts required for 

the creation of a manually annotated dataset for training and evaluation. The proposed QA tool 

consists of two steps. First, we start by using two separately trained 3D Convolutional Neural 
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Networks (CNNs) in order to classify regions of interest (ROIs) randomly sampled from the entire 

DTI volume into categories of ‘good’ or ‘poor’ quality. In the second step, the ROI-level labels 

predicted by the CNNs in the previous step, are then employed in a voting system with two 

different proposed score functions to predict the final quality label of the whole DTI volume under 

consideration. The results we report show that our tool is both efficient and practical for performing 

fast automatic QA of 3D raw DTI volumes, regardless of the class of artifacts present (Ettehadi et 

al. 2021). 

3.2 Method 

3.2.1 Overview 

In order to assess the quality of a DTI input volume, the proposed framework is structured 

in two main steps: The first step involves feeding ROIs of different sizes, randomly sampled from 

the DTI volume under consideration, to two different CNN architectures in order to predict the 

quality labels of these ROIs. In the second step, through a voting process, the final quality label is 

assigned to each DTI whole volume based on the predicted ROI-level labels from the previous 

step. The following section outlines both steps in detail. Fig. 3.1 illustrates the overall framework 

described in this section.  

3.2.2 ROI-Level Label Predictions using CNNs 

To capture the different artifacts locally and globally in every part of the 3D diffusion MRI 

volume, we use two separate CNNs with different 3D ROI sizes. Particularly, we use two sets of 

ROIs for each and every DTI whole volume: 1) a single large, center-cropped ROI and 2) a number 

of small overlapping ROIs. This approach allows the overall framework to search for both local 

and global noise patterns within the image by utilizing multiple-sized ROIs. For each ROI type 

(i.e., large or small), quality labels are predicted separately using the CNN associated with that 
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ROI type. Fig. 3.2 presents an overview of the architectures of CNN 1 and 2. Each architecture 

consists of multiple blocks of Convolutional layers, followed by a batch normalization layer. 

Towards the end of each block, a Max-pooling layer is employed. The image dimension is 

gradually reduced in both networks while the number of channels is eventually increased. Fig. 3.2 

also shows the kernel size and the number of channels for each layer. After the 3rd block, the 

features are unrolled to form a 128 elements one-dimensional vector. The unrolled features are 

then fed to a fully connected layer followed by a SoftMax classifier (Goodfellow, Bengio, and 

Courville 2016) to perform the ROI-level binary quality classification (i.e., class 0: poor quality 

vs class 1: good quality). In order to regularize the model and minimize potential overfitting 

effects, a single dropout unit is placed after the fully connected layer. 

3.2.3 Whole Volume Label Prediction from ROI-Level Labels via Voting Systems  

 We utilize the ROI-level predicted labels form step 1 to determine the quality label of the 

entire 3D DTI volume at hand via a voting block, as shown previously in Fig. 3.1. To this end, we 

propose two independent tailored score functions for the voting block (each of them can be used 

CNN classifier  1

CNN classifier  2

Voting System

Output: 
Input volume 
quality label

Input: 
3D raw DTI 

whole volume

Randomly sampled 
small 3D ROIs

A Single 
center-cropped 

large 3D ROI 

Sampled ROIs 
predicted labels

Single ROI 
predicted label

Figure 3.1: Illustration of the proposed two-step automatic whole-volume DTI quality 

assessment framework. Figure from (Ettehadi et al. 2021) copyright © 2021, IEEE. 
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separately) to perform the final classification task. Equation (3.1) defines the score function one 

which assigns a total score Stot to each volume. Stot is calculated as a linear combination of the 

predicted label of the single center-cropped large ROI SCenter-cropped-ROI, and the summation of the 

predicted labels Si’s of N overlapping small ROIs (Ettehadi et al. 2021). The DTI whole volume 

can be considered good-quality if the total score Stot is above some chosen threshold. Otherwise, 

the whole volume is classified as a poor-quality one. 

 

𝑆𝑡𝑜𝑡 = 𝛼𝑆𝐶𝑒𝑛𝑡𝑒𝑟−𝑐𝑟𝑜𝑝𝑝𝑒𝑑−𝑅𝑂𝐼 + 𝛽 ∑ 𝑆𝑖

𝑁

𝑖=1

 

 𝐼𝑓: 
        𝑆𝑡𝑜𝑡 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  −→   𝐿𝑎𝑏𝑒𝑙 = 1   (𝐺𝑜𝑜𝑑 𝑣𝑜𝑙𝑢𝑚𝑒)  

𝑒𝑙𝑠𝑒: 
                                         −→   𝐿𝑎𝑏𝑒𝑙 = 0    (𝑃𝑜𝑜𝑟 𝑣𝑜𝑙𝑢𝑚𝑒) 

(3.1) 

 

 

In this voting system, there are 4 hyperparameters, namely α, β, N, and the threshold value. The 

search space for the choice of these 4 hyperparameters is constrained by the following three 

conditions: N ≥ 1, α, β, and threshold ≥ 0, and α + β = 1. Conversely, voting system 2 is based on 

a two-tier voting process as in Equation (3.2). In the first layer of this voting procedure, a 

CNN classifier  1:

32@ 5 × 5 × 5 32@ 5 × 5 × 5 32@ 5 × 5 × 5Input:
3D ROI

45 × 45 × 45 

Pooling size:
2 × 2 × 2

64@ 3 × 3 × 3

64@ 3 × 3 × 3
Pooling size:

2 × 2 × 2

128@ 3 × 3 × 3

128@ 3 × 3 × 3
Pooling size:

2 × 2 × 2 128
P=0.4

Output:
ROI label; good/poor

SoftMax
Classifier

CNN classifier  2:

32@ 9 × 9 × 5 32@ 9 × 9 × 5 32@ 9 × 9 × 5
Pooling size:

2 × 2 × 2

64@ 7 × 7 × 3

64@ 7 × 7 × 3
Pooling size:

2 × 2 × 2

128@ 5 × 5 × 3

128@ 5 × 5 × 3
Pooling size:

2 × 2 × 2 128
P=0.4

Output:
ROI label; good/poor
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Figure 3.2: The diagrams of the architectures of CNN 1 (left) and CNN 2 (right). After multiple 

consecutive convolutional blocks followed by Maxpooling, the input ROI is reduced to a 

feature vector with 128 elements. The SoftMax unit conducts the binary classification taking this 

feature vector as the input. Figure from (Ettehadi et al. 2021) copyright © 2021, IEEE. 
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thresholding condition is used to assign an aggregate label to the average score of N overlapping 

small ROIs. Next, the DTI whole volume is given a total score Stot by summing the predicted label 

of the large center-cropped ROI SCenter-cropped-ROI and the aggregate score of the N small ROIs SN-

ROIs calculated earlier. Finally, a decision is made on the quality label of the entire DTI volume in 

the second layer based on SN-ROIs and SCenter-cropped-ROI. In particular, the whole DTI volume is 

considered a good volume if both SN-ROIs and SCenter-cropped-ROI are good (i.e., both equal to 1), or 

else it is assigned a poor-quality label (Ettehadi et al. 2021). This voting system only has two 

hyperparameters, the threshold value and N.  

 

𝑆𝐴𝑉𝐺−𝑅𝑂𝐼𝑠 =
1

𝑁
∑ 𝑆𝑖

𝑁

𝑖=1

 

Layer 1: 

 

 𝐼𝑓: 
        𝑆𝐴𝑉𝐺−𝑅𝑂𝐼𝑠 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  −→   𝑆𝑁−𝑅𝑂𝐼𝑠 = 1   (𝐺𝑜𝑜𝑑 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 𝑣𝑜𝑙𝑢𝑚𝑒)  

𝑒𝑙𝑠𝑒: 
                                                     −→   𝑆𝑁−𝑅𝑂𝐼𝑠 = 0   (𝑃𝑜𝑜𝑟 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 𝑣𝑜𝑙𝑢𝑚𝑒) 

 

𝑆𝑡𝑜𝑡 =  𝑆𝑁−𝑅𝑂𝐼𝑠 + 𝑆𝐶𝑒𝑛𝑡𝑒𝑟−𝑐𝑟𝑜𝑝𝑝𝑒𝑑−𝑅𝑂𝐼 

 

Layer 2: 

 

𝐼𝑓: 
        𝑆𝑡𝑜𝑡 = 2  −→   𝐿𝑎𝑏𝑒𝑙 = 1   (𝐺𝑜𝑜𝑑 𝑣𝑜𝑙𝑢𝑚𝑒)  

𝑒𝑙𝑠𝑒: 
                          −→   𝐿𝑎𝑏𝑒𝑙 = 0    (𝑃𝑜𝑜𝑟 𝑣𝑜𝑙𝑢𝑚𝑒) 

(3.2) 

 

The voting system 1 is further complicated by the presence of its four hyperparameters, 

which introduce additional freedom to the overall framework to perform more challenging 

classifications. However, this flexibility comes at the expense of a relatively more rigorous 

hyperparameter fine-tuning process. Alternatively, as mentioned before, voting system 2 has only 
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two hyperparameters (i.e., threshold and N). This reduces the workload for the fine-tuning process 

but gives the framework less freedom in determining the final classification results. 

3.3 Experiments and Results 

3.3.1 Data and Preprocessing 

In this work, we used a small portion of the ABCD study (Casey et al. 2018) to train, 

validate, and test both of our CNN models. Over 10,000 participants were included in the ABCD 

study between the age of 9 to 10-year-olds and the study tracked brain development from 

childhood through adolescence. All study procedures were approved by local (corresponding to 

each site) institutional review boards. Parental informed consent was obtained in writing, and 

verbal consent was obtained from all children. All of our following experiments were conducted 

using DTI scans taken from 85 subjects in the ABCD study with multi-shell values (b=0, 500, 

1000, 2000, and 3000 s/mm2) (Ettehadi et al. 2021). All scans have exactly the same resolution 

(1.7×1.7×1.7 mm3), the same matrix size (140×140×81), and 96 same diffusion directions. Due to 

the fact that the scans were acquired across 21 different sites, there is a slight variation in the 

acquisition parameters reported in Table 3.1. 

Table 3.1: Acquisition parameters for all DTI scan used in this work  

Table from (Ettehadi et al. 2021) copyright © 2021, IEEE 

Number of 

subjects 

Number of 

b=0 volumes 

Number of 

acquisitions 
TE (ms) TR (ms) 

3 8 1 81.9 4100 

4 7 1 81.9 4100 

7 6 2 89 5300 

1 3 1 89 5300 

2 8 2 96 6050 

1 3 1 96 6050 

1 10 2 88 4100 

66 7 1 88 4100 
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An expert with 12 years of experience in MRI analysis manually annotated 8,530 DTI 

volumes from 85 distinct subjects to facilitate volume-wise classification and significantly reduce 

labor intensity. Having assigned one single label to each DTI whole volume, the annotated scans 

form a dataset for weakly-supervised learning. Approximately 5,060 volumes (59.32%) from the 

labeled cohort were rated as good quality leaving the 3,470 remaining volumes annotated with 

poor quality labels (Ettehadi et al. 2021). By excluding 1,590 good quality volumes at random, we 

balanced the two classes in order to avoid running to class imbalance issues when training the two 

CNNs. In comparison with slice-based QA, volume-based quality assessment is more practical 

and time-effective since the majority of volumes containing slices of low quality will typically be 

excluded from any subsequent analysis. Moreover, manual annotations can be done much more 

easily with volume-wise labeling as it took only around 15 minutes for our expert to label every 

100 volumes (corresponding to one subject) (Ettehadi et al. 2021). This is another advantage of 

the weakly-supervised learning approach. 

We shuffle the labeled volumes at random and divide them into train, validation, and test 

sets with the ratio of 6:2:2. Next, using the global minimum and maximum intensity values, the 

data intensity of each volume is linearly normalized to the range of [0, 1]. Following this, a brain 

mask is extracted using the function dwi2mask in the MRtrix3 toolbox (Tournier et al. 2019). 

During the ROI sampling procedure discussed in the following section, the mask is used to ensure 

that most of the ROI contains brain areas, rather than background data.  

The accuracy, precision, recall, F1-score, and confusion matrix calculated using the 

predicted labels and the ground truth were used to validate the performance of our tool in assessing 

the quality of DTI volumes.  
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3.3.2 ROI Sampling per each DTI Volume 

As discussed earlier, each DTI full volume has two sets of sampled ROIs: N overlapping 

small ROIs and a single center-cropped ROI. Specifically in our implementation, we randomly 

selected 10 overlapping small ROIs of size [45, 45, 45] voxels for each DTI whole volume, as well 

as a centrally cropped large ROI of size [90, 90, 45] voxels. Overlap between any two small ROIs 

was limited to a maximum of 52%. Moreover, the sampled small ROIs were allowed a maximum 

of 16% background voxels in order to capture patterns of artifacts showing up better at the border 

between background and brain (such as motion). 

3.3.3 CNN 1 and 2 Hyperparameters and Training Histories  

Fig. 3.2 shows the architectures of CNN 1 and 2. The activation function used for all 

convolutional layers was RELU (Nair and Hinton 2010), and the kernel parameters were initialized 

by the random Glorot initialization algorithm (Glorot and Bengio 2010). The convolutional kernel 

sizes for both CNNs are depicted in Fig. 3.2. For all convolutional layers, the stride size was set to 

[1, 1, 1] with no padding applied. The stride size of [2, 2, 2] was used for all of the Max-pooling 

layers. The fully connected layer with 128 elements was activated using the RELU function. In 

addition, we chose a dropout probability of 0.4. Lastly, the SoftMax layer was activated using the 

SoftMax activation function, with two possibilities corresponding to the two quality classes 

indexed as: 0 (poor) and 1 (good). 

We implemented both CNN architectures in Python and used Keras (Chollet et al. 2015) 

with Tensorflow (Abadi et al. 2016) as the backend. Using the manually labeled training dataset 

discussed earlier in this chapter, the two models were separately trained to minimize the Cross-

entropy (Good 1952) loss function. Since the kernel sizes of the two CNNs were different, distinct 

hyperparameter choices were used to train them individually. Specifically, CNN 1 was trained for 
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250 epochs with a batch size of 128. We used Adam optimizer with default values (Kingma and 

Ba 2014) for the first 200 iterations, and SGD with Nesterov optimizer (Sutskever et al. 2013) for 

the last 50 iterations (initial learning rate = 0.0001, Momentum = 0.5, and decay rate = 10-6). 

Alternatively, using a batch size of 32, CNN 2 was trained for the entire 250 epochs via SGD with 

Nesterov optimizer with the same parameter values as in CNN 1. Fig. 3.3 illustrates the training 

histories of the two CNNs. For both CNNs, the criterion for choosing the best performing model 

was the highest classification accuracy on the validation set. Fig. 3.4 provides the confusion 

matrices of the two best-performing CNN models on their respective test sets. CNN 1 achieved 

ROI-level classification accuracies of 99.85% on the training set, 88.72% on the validation set, 

and 89.15% on the test set, respectively. As for CNN 2, the accuracies on the training, validation, 

and test sets were 99.99%, 93.98%, and 94.49%, respectively. In the next step, the framework uses 

predicted labels from multiple ROIs per each DTI volume to decide the quality label for the DTI 

volume as a whole, hence there is no need for achieving higher accuracies on ROI-level 

classification.  

3.3.4 Voting Systems for Volume-Level Label Prediction 

In section 3.2.3 we presented the logic behind the two proposed voting systems in 

Equations (3.1) and (3.2). As discussed earlier, voting system 1 includes 4 hyperparameters. In 

order to have a fair comparison between the two voting systems, we used the same value for N 

(i.e., number of small ROIs). Specifically, in our implementation, we chose N = 10 which resulted 

in the best performance on the validation set. Due to the observation that CNN 2 is performing 

better than CNN 1 (CNN 2 works based on the center-cropped large ROI which captures more 

regions of the brain making it easier for the model to detect any artifacts), a larger weight is placed 
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on the scores associated with CNN 2 (i.e., Scenter-cropped-ROI). Consequently, we chose α = 0.6 and β 

CNN 1:

CNN 2:

Figure 3.3: Training histories of CNN 1 (top) and CNN 2 (bottom). The histories depict the 

training and validation loss (left) as well as the training and validation classification 

accuracies (right) of the two CNNs. The best performing models are marked using red 

circles. Figure from (Ettehadi et al. 2021) copyright © 2021, IEEE. 

Figure 3.4: ROI-level confusion matrices of CNN 1 (left) and CNN (2) on their respective test 

sets. CNN 1 results in an average test set classification accuracy of 89.15% while CNN 2 

demonstrates a better performance with an average test set accuracy of 94.49%. Figure from 

(Ettehadi et al. 2021) copyright © 2021, IEEE. 
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= 0.4. The function for calculating Stot presented in Equation (3.1) is a non-continuous function 

since it takes finite discrete values as inputs. As a result, Stot will also have a finite number of 

discrete values. Therefore, to find the optimal value for the threshold hyperparameter, we search 

over the entire possible values of Stot and chose the one corresponding to the best classification 

performance on the validation set. In Fig. 3.5a, we illustrate this search process by demonstrating 

the model’s total accuracy as well as its true positives and true negatives.  As indicated by the 

black arrow in Fig. 3.5a, the framework achieves the best volume-level classification performance 

on the validation set over a range of possible threshold values. We chose a threshold value of 2.5 

resulting in the same performance between total accuracy, true negatives, and true positives 

(Ettehadi et al. 2021). In the same way, we varied the threshold value for voting system 2 over the 

entire space of possible values of the SAVG-ROIs and selected the one resulting in the highest 

validation accuracy. Fig. 3.5b illustrates this fine-tuning experiment. The desired model is one that 

performs as well on both classes (i.e., ‘good’ and ‘poor’ quality). As shown in Fig. 3.5b, this voting 

system achieved high accuracies (although slightly less than that of voting system 1) over a more 

expansive range of thresholding values compared to voting system 1. This provides evidence that 

this voting system is more robust to the choice of the thresholding value than voting system 1. The 

value of 0.1 was chosen resulting in similar behaviors across total accuracy, true positives, and 

negatives as desired. Next, the chosen threshold values for both voting systems were used to 

predict the volume-level quality labels on the test set. The result on the test set reported 

classification accuracy of 100% and 98% for voting frameworks 1 and 2, respectively 

(99.85±0.15%, and 97.95±0.76% Wilson adjusted accuracy and confidence interval (Wilson 

1927)). Moreover, precision, recall, and F1-score were 1, 1, 1 for voting system 1, and, 1, 0.962, 

0.981, for voting system 2. Differences in performance between the two voting systems may arise 
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from situations where individual ROI scores predicted by the two CNNs have a high false-positive 

rate. In such cases, voting system 1 is more accurate than voting system 2, because, unlike the 

latter, it does not require that Scenter-cropped-ROI be equal to 1 (i.e., good ROI) to declare the overall 

DTI volume as good. Utilizing these two voting systems (separately), confusion matrices for 

volume-level QA of DTI scans in the test set were calculated and shown in Fig. 3.6. Based on these 

two confusion matrixes, it is evident that our developed deep learning-based quality control tool 

A

B

Figure 3.5: Hyperparameters fine-tuning process for (a) voting system 1, and (b) voting 

system 2 on the validation set. As depicted by the black arrows, voting system 2 shows 

more robustness to the choice of the thresholding value at the price of being slightly less 

accurate compared to voting framework 1. Figure from (Ettehadi et al. 2021) copyright © 

2021, IEEE. 
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is a practical tool for automatic quality assessment of DTI whole volumes, irrespective of the 

voting system chosen. 

3.4 Discussion and Conclusion 

 In this chapter, we discussed the details of a developed weakly-supervised learning 

framework for quality assessment of DTI whole volumes using artificial intelligence. Our 

framework operates in 2 steps. In the first step, using two carefully designed CNNs of different 

sizes the quality labels associated with multi-scale ROIs are predicted. The predicted labels are 

then used in the second step to predict the volume-level quality label through a voting procedure. 

We proposed two different voting systems performing similarly but with different set of 

hyperparameters.  Our results demonstrated the effectiveness of the proposed framework for 

automated QA of DTI whole volumes (i.e., 100% and 98% accuracy on the test set using voting 

systems 1 and 2, respectively) which eliminates the need for manual inspection prior to conducting 

any subsequent analysis.  

A B

Figure 3.6: Whole volume QA confusion matrices for (a) voting system 1, and (b) voting 

system 2. Both voting systems result in accurate QA of DTI whole volumes as evident by 

the insignificant misclassification rates. Figure from (Ettehadi et al. 2021) copyright © 

2021, IEEE. 
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 Although our model performs well on QA of DTI whole volumes it suffers from artifact 

class resolution. In other words, the model only provides the user with crude information about 

the overall quality of a DTI whole volume (i.e., ‘good’ vs ‘bad’) and it does not suggest what 

artifact(s) is present in the volume under investigation or which slices are affected. While in most 

practices the entire volume identified as a bad quality volume is discarded from subsequent 

analysis, there are cases where one might want to restore the bad volumes (if possible). Example 

of such a scenario is when one is conducting research based on a limited number of DTI volumes. 

In that case, it is not affordable to discard the entire bad volumes that might be restored through 

some appropriate preprocessing steps. Hence, it is useful to have a model that can tell the user the 

type(s) of the existing artifact(s) in a bad quality volume (e.g., motion, out of field-of-view, 

ghosting, etc.). In the next chapter, we propose a solution for this task and detail all of the steps.  
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Chapter 4: Weakly-Supervised Learning for Multi-Class Artifact 

Patterns Detection in Brain Diffusion MRI 

4.1 Introduction 

Diffusion-weighted imaging (DWI) (Stejskal and Tanner 1965; Le Bihan et al. 1986; 

Huisman 2003; Baliyan et al. 2016) and diffusion tensor imaging (DTI) (Basser and Jones 2002; 

Alexander et al. 2007) are commonly used techniques today in brain research and clinical 

neuroimaging (Huisman 2010). Based on the difference in diffusion rates of water across various 

brain tissues measured using dMRI, one can gain insights into white matter’s development (Hüppi 

and Dubois 2006; Ladouceur et al. 2012; Simmonds et al. 2014). In addition, dMRI can be used to 

assess white matter abnormalities such as schizophrenia (Roalf et al. 2015; Tønnesen 2018) and 

Alzheimer’s disease (Hoy et al. 2017; Lo Buono et al. 2020). Furthermore, in large population 

studies, such as the Human Connectome Project (Van Essen et al. 2012), dMRI data is used for 

measuring different brain biomarkers. There are, however, many sources of artifacts in dMRI data, 

including but not limited to motion, Eddy currents, low signal-to-noise ratio (SNRs), corrupted 

field-of-views (FOV), gradient distortions, susceptibility, Gibbs rings, and others (Le Bihan et al. 

2006; Krupa and Bekiesińska-Figatowska 2015). If such artifacts are present in dMRI volumes 

without any exclusion or correction, their presence may lead to unreliable results in any subsequent 

analysis (Bammer et al. 2003; Van Dijk, RA, Sabuncu, and Buckner 2012; Reuter et al. 2015). It 

is therefore important to conduct quality control and artifact detection before analyzing dMRI data. 

Since manual quality control and artifact identification in dMRI volumes through visual 

inspection is a highly labor intensive as well as a subjective task, recently computerized methods 

have emerged to alleviate this challenge. In particular, a number of tools have been proposed to 

find a level of automation for quality control of dMRI over the years, including FSL (Jenkinson et 
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al. 2010; Andersson et al. 2016; Bastiani 2019), DTIPrep (Oguz et al. 2014), DtiStudio (Jiang et 

al. 2006), and TORTOISE (Pierpaoli et al. 2010). More recent advances in dMRI quality control 

and artifact detection have been made possible by various statistical (Roalf et al. 2016) and 

artificial intelligence (Kelly et al. 2017; Iglesias et al. 2017; Fantini et al. 2018; Alfaro-Almagro 

et al. 2018; Graham., Drobnjak, and Zhang 2018; Samani et al. 2020; Ettehadi et al. 2021; Ahmad 

et al. 2021) approaches. Despite this, most of these approaches either work only on a binary level 

(i.e., distinguishing between ‘poor-quality’ and ‘good-quality’ data without identifying the specific 

artifact category) (Samani et al. 2020; Ettehadi et al. 2021; Ahmad et al. 2021), or are designed to 

detect one particular type of artifact (e.g., motion) (Kelly et al. 2017; Iglesias et al. 2017; Fantini 

et al. 2018). An in-depth analysis of the performance of these tools can be found in (Liu, Zhu, and 

Zhong 2015; Haddad et al. 2019). 

In this chapter, we propose a weakly-supervised deep learning-based framework for 

automatic multiclass artifact classification in poor-quality dMRI volumes. As opposed to previous 

works, our method is not tailored to one specific type of artifact and identifies a broader range of 

artifacts. More precisely, we consider the problem of classifying four categories of artifacts 

namely: motion, out of field of view (FOV), low signal to noise ratio (SNR), and MRI 

miscellaneous artifacts. All other MRI artifacts that do not necessarily fall into one of the other 

three classes fall into the MRI miscellaneous artifacts category, which serves as a control group 

for the classifier. The proposed method is based on two steps. First, dMRI volumes are divided 

into mutually exclusive collectively exhaustive (MECE) slabs, which are then fed into a designed 

convolutional neural network (CNN). As a result, the slabs are labeled according to their artifact 

class identified by the developed CNN. In the second step, the final artifact label for the dMRI 

whole volume is then decided via a proposed voting algorithm using the predicted slab-level labels. 
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Our approach was tested across two datasets separately. Our results indicate that the proposed 

framework can be used to rapidly classify the four artifact categories under consideration. 

4.2 Method 

4.2.1 Overview 

The proposed framework applies a two-step process to classify dMRI volumes of poor 

quality into four types of artifacts, as described in the introduction section. The first step involves 

designing and training a residual squeeze and excitation (SE) CNN to predict the dominant artifact 

class labels associated with individual MECE 3D slabs extracted from dMRI whole volumes. Next, 

in the second step, a voting algorithm is proposed based on the rationale of selecting the most 

consistent artifact type from the predicted slab labels to be reported as the prominent artifact class 

detected in the dMRI volume at hand. A diagram illustrating the proposed multiclass artifact 

identification framework is shown in Fig. 4.1. In what follows we discuss the two steps of the 

proposed framework in detail. 

Input:
3D raw DTI whole 

volume

Slab extraction

Slab 1

Slab N

.

N MECE slabs

.
. SE-CNN

Slabs 
predicted labels

Voting
Output:

Input volume’s 
main artifact label

Figure 4.1: An overview of the proposed 2-step multiclass artifact classifier. The 3D 

input volume is divided into N MECE slabs and fed to a residual SE-CNN classifier. The 

resulting labels are then fed to the voting block to output the final artifact class of the 

input volume. Figure from (Ettehadi et al. 2022) copyright © 2022, Frontiers. 
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4.2.2 Slab-Level Artifact Label Prediction using a Residual SE-CNN 

Given the limited memory capacity of the currently marketed GPUs, it may not always be 

feasible to feed an entire 3D dMRI volume into a CNN. Thus, partitioning images is necessary 

before they can be fed to a GPU. To overcome this difficulty while capturing artifact patterns 

across the entire 3D image without missing any part, we partition the dMRI volumes into MECE 

slabs covering the entire volume. This technique, in addition to addressing GPU memory 

limitations, has two additional advantages: a) by scanning the entire volume through 3D MECE 

slabs, the residual SE-CNN model is able to extract local information while achieving global 

coherence, and b) it allows for the use of a voting methodology to predict the artifact type in a 

whole dMRI volume, thereby making the predictions more robust to slab-level errors. 

We use a custom-designed residual SE-CNN structure to identify the main type of artifact 

in each slab within a dMRI volume. Using a number of stacked modified versions of original 

residual blocks (He et al. 2016) equipped with squeeze and excitation components (Hu, Shen, and 

Sun 2018), we have designed a custom residual SE-CNN architecture. Fig. 4.2 (left) shows the SE 

block, while Fig. 4.2 (right) shows the modified residual block upgraded with an SE unit. An SE 

block represents the interdependencies between the different channels within layers by modeling 

their interactions (Hu, Shen, and Sun 2018). To put it another way, SE blocks learn how to select 

the most relevant features for the classification task under investigation by filtering information 

across channels. Thus, one can think of an SE block as a self-attention mechanism operating on 

the channel dimension (Hu, Shen, and Sun 2018). The SE block achieves its goal by learning the 

relative importance weights associated with different channels. To learn the channel weights, a 

global average pooling along the image spatial dimensions (i.e., x, y, and z) is performed, followed 

by two fully connected layers with nonlinear activation functions operating on the channel 
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dimension. One of the key attributes of a SE block is the squeeze hyperparameter r (in the first 

fully connected layer), which reduces the number of channels by a factor of r to determine which 

representation is most critical for the classification task. Using element-wise multiplication, the 

learned channel weights are then mapped onto the original feature tensor (see Fig. 4.2, left). The 

interested reader is directed to (Hu, Shen, and Sun 2018) for additional information on this topic. 

A SE block is then inserted into the double convolutional path of the modified residual block, 

which allows the channel weights of the two preceding 3D convolutional kernels to be learned (see 

Fig. 4.2, right). The resulting block is referred to as the modified residual block with SE and it is 

used consecutively in the architecture of our classifier. 

3D MaxPooling

Batch Normalization 

RELU Activation

Sigmoid Activation 

Squeeze and Excitation (SE) block

3D Global Avg Pooling

Fully connected

Fully connected

Input X of shape (x,y,z,c)

Multiply 

Output  Y of shape (x,y,z,c)

(1,1,1,c)

(1,1,1,c/r)

(1,1,1,c)

(x,y,z,c)

(x,y,z,c)

3D Conv 

3D Conv 3D Conv 

+
Output  Y = F(X) + G(x)

With N channels

G(X)

F(X)

Modified Residual Block with SE
Input X of shape (x,y,z,c)

Squeeze and Excitation 
Block

Legend

Figure 4.2: Left: The components of an SE block. Right: A modified residual block 

with SE. A SE block is incorporated into the double convolutional path of the 

modified residual block to capture relative importance weights for each of the 

channels of the convolutional filters. This block is the major block used in the 

architecture of our classifier. Figure from (Ettehadi et al. 2022) copyright © 2022, 

Frontiers. 
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Fig. 4.3 depicts the architecture of the proposed residual SE-CNN artifact classifier. The 

residual SE-CNN model is constructed using 5 sequential residual blocks with SE. To reduce the 

image size after each block, a 3D Maxpooling layer is used. As the network grows deeper, the 

number of channels is increased while the spatial dimension of the images is reduced. In Fig. 4.3, 

the kernel sizes and number of channels are shown for each layer. Upon completion of the fifth 

residual block with SE, the features vector (4,096 elements) is unrolled and fed through two 

successive fully connected layers. Lastly, the slab-level main artifact type classification is 

performed via a SoftMax unit with four possible classes (motion, out of FOV, low SNR, and MRI 

miscellaneous artifacts). As a regularizer and to minimize potential overfitting effects, a dropout 

unit is added after each fully connected layer. The model has a total of 1,283,029 trainable 

parameters.  
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Figure 4.3: An overview of the residual SE-CNN multi-class artifact classifier’s 

architecture. Figure from (Ettehadi et al. 2022) copyright © 2022, Frontiers. 
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4.2.3 Whole Volume Artifact Classification  

Following the prediction of the slab-level labels using the residual SE-CNN model, we 

utilize these labels to identify the dominant artifact label associated with the entire 3D dMRI 

volume by using the voting block, as previously displayed in Fig. 4.1. The voting block makes a 

decision on the primary existing artifact type of a dMRI whole volume by taking the predicted 

labels for the N MECE slabs associated with that volume. Algorithm 1 describes how to achieve 

this decision through maximum consensus between the predicted labels of the N MECE slabs. 

Algorithm 1: Generating whole volume artifact labels  
    

   Input: N slabs’ predicted labels: 𝐿 = {𝑙1, 𝑙2, … , 𝑙𝑁} 

  Output: Whole volume’s predicted artifact label: 𝐿𝑉𝑜𝑙 

 

  Procedure:  

- Let integers 0, 1, 2, and 3 denote the four possible values for each label 𝑙𝑖 

- Let 𝑛𝑗  denote the count for the 𝑗𝑡ℎ possible label:  

• Then for each vector 𝐿 we have:  

𝑁 = {𝑛0, 𝑛1, 𝑛2, 𝑛3} 

- The whole volume label is predicted as follows:  

               𝐿𝑉𝑜𝑙 = 𝑎𝑟𝑔𝑚𝑎𝑥{𝑛𝑗} for j = 0, 1, 2, and 3 

 

4.3 Experiments and Results 

4.3.1 Data and Preprocessing 

Due to various reasons such as scanner differences, various diffusion directions (multiple 

gradient directions), diverse demographics, etc., dMRI data tend to be highly heterogeneous. As a 

result of this heterogeneity, it is nearly impossible to train a CNN on a dataset and use the trained 

model as is (without changing the learned parameter values) to adjust for differences across studies 
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(Ahmad et al. 2021). We, therefore, trained our model on two different datasets (separately) and 

evaluated the results in order to demonstrate the feasibility of automatic artifact classification using 

the proposed residual SE-CNN architecture. Specifically, we used data from the Adolescent Brain 

Cognitive Development (ABCD) (Casey et al. 2018) and Healthy Brain Network (HBN) 

(Alexander et al. 2017) datasets. With separate training for each dataset, the parameters of the 

proposed residual SE-CNN are optimized according to the target distribution. We describe the two 

datasets as well as the manual annotation and pre-processing procedures in this section 

ABCD dataset: ABCD is a study that is designed to track individual brain development 

over time (from childhood through adolescence) (Casey et al. 2018). The study recruited more 

than 10,000 participants aged nine to ten years old to accomplish this goal. The design of this study 

was approved by the institutional review boards of 21 different sites involved in the study. We 

used diffusion MR scans from 85 subjects, with b values of 0, 500, 1000, 2000, and 3000 s/mm2. 

In all scans, the matrix size is [141×141×81] and the diffusion directions are identical (96). Since 

the imaging has been performed at 21 different sites, the acquisition parameters are slightly 

different, which enables the model to learn robustness to heterogeneity in acquisition parameters 

within the dataset. 

HBN dataset: this study was initiated by the Child Mind Institute (CMI, 

https://childmind.org/) in 2017 (Alexander et al. 2017). The HBN study aimed to create a large 

dataset of 10,000 children and adolescents aged 5-21 years old living in the New York City area. 

It recruited participants through community referrals. Chesapeake’s Institutional Review Board 

(https://www.chesapeakeirb.com) approved the study design. Here, we utilized dMRI scans from 

100 different subjects with b values of 0, 1000, and 2000 s/mm2. In all scans the resolution is 

isotropic (1.8×1.8×1.8 mm3), there are 72 slices, and the diffusion directions are identical (64). We 
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resized the HBN images in XY plane using Bi-cubic interpolation since the in-plane matrix size 

of HBN datasets (mostly 104×104) varies from that of ABCD datasets (140×140). HBN volumes 

that have been resized end up having a matrix size of [140×140×72]. 

Since this model is designed to classify the types of artifacts present in poor-quality data, 

all clean volumes in both ABCD and HBN datasets were excluded from the study. Several tools 

discussed in the introduction section can be applied to perform binary quality assessment of the 

data into poor and good quality volumes, such as our AI-based automated quality assessment tool 

(Ettehadi et a. 2021) discussed in Chapter 3. dMRI volumes with poor quality in both datasets 

(2,494 in ABCD and 4,226 in HBN) have been manually annotated (weak annotations, i.e., 

labeling is conducted at the volume level, not the slice level, thus reducing the complexity of 

manual annotation) into 4 main artifact classes (0 being motion, 1 being out of FOV, 2 being low 

SNR, and 3 being MRI miscellaneous artifacts), by an expert with 12 years of experience in MRI 

and DTI analysis. The MRI miscellaneous artifacts class corresponds to any artifacts (such as Eddy 

currents, ghosting, etc.) that do not fall into any of the other three classes considered here. Among 

the reasons for having this broad class is the difficulty in identifying a single major source of 

artifacts in some dMRI volumes. Therefore, this class can be used to train the model to distinguish 

between the three other prominent artifact types and classify a low-quality volume into a 4th class 

if it does not fall into the other three. Fig. 4.4 shows the class distributions of manually annotated 

volumes in ABCD and HBN datasets. A split ratio of 6:2:2 is used to assign the labeled volumes 

to train, validation, and test sets. Every volume’s intensity is normalized to a range of [0, 1]. We 

did not undertake any brain extraction or background removal in order to capture the visual 
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patterns of the artifacts that exhibit themselves better at the boundary between the brain and 

background (such as motion and out of FOV). 

4.3.2 MECE Slab Extraction from Whole Volumes 

All whole dMRI volumes are partitioned into N MECE 3D slabs as discussed in the method 

section. The original dMRI volume can be formed by connecting these slabs along the z-axis 

without losing any information. The slab size was set to [140, 140, 9]. Based on this slab size, we 

are left with 9 slabs per dMRI volume for ABCD and 8 slabs for HBN dataset. These slabs are 

then fed as inputs to the proposed residual SE-CNN artifact classifier. 

4.3.3 Model Hyperparameters 

Fig. 4.3 illustrates our proposed residual SE-CNN architecture. In both ABCD and HBN 

datasets, this particular architecture and its chosen set of hyperparameters were used. The choice 

of non-linearity was the RELU activation function (Nair and Hinton 2010) for all convolutional 

filters unless otherwise stated. Glorot initialization (Glorot and Bengio 2010) was used to initialize 

the kernels’ parameters. The size of all convolutional kernels was set to [1, 1, 1] with zero paddings 

A B

Figure 4.4: Class distribution for the two datasets. A) The ABCD dataset has 1,353 volumes 

contaminated with motion, 933 volumes being out of FOV, 67 volumes with low SNR, and 141 

volumes with MRI miscellaneous artifacts. B) The HBN dataset contains 449 volumes with 

motion, 2,583 volumes being out of FOV, 258 volumes with low SNR, and 936 volumes with 

MRI miscellaneous artifacts. Figure from (Ettehadi et al. 2022) copyright © 2022, Frontiers. 
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in order to maintain the same spatial dimension before and after convolutional filtering. The Max-

pooling layers used a pooling size of [2, 2, 2] during the first three successive blocks, and [2, 2, 1] 

during the last two blocks. The reason for this asymmetry in the z component of the last two 

Maxpooling layers is due to the fact that after the 3rd Maxpooling block we are left with a tensor 

of size [17, 17, 1] with 64 channels. Hence, it is not possible to further reduce the image dimension 

in the z direction. For the SE block’s hyperparameter, we set the squeeze parameter r to 8. For the 

last two fully connected layers (with 256 and 128 nodes, respectively), we applied the RELU 

activation function. We set both dropout units probabilities to 0.5. Lastly, to perform the slab-level 

artifact classification from the previous feature vector (i.e., the output of the last fully connected 

layer with 128 nodes), we used a SoftMax layer (Goodfellow, Bengio, and Courville 2016) with 

four categories: 0 (motion), 1 (out of FOV), 2 (low SNR), and 3 (miscellaneous MRI artifacts). 

Using Keras (Chollet et al. 2015) with Tensorflow (Abadi et al. 2016) as the backend, the 

architecture was implemented in Python. The training hyperparameters for both datasets were, 

except for epoch number, identical. For the ABCD dataset, the model was trained for 2000 epochs, 

while HBN provided faster convergence and was trained for 1500 epochs. The batch size of 32 

was chosen for both datasets to feed the slabs into the GPU for training. Using the manually labeled 

data included in each training set, the ABCD and HBN models were trained separately to minimize 

the Cross-entropy loss function. To optimize the cost function, SGD with Nesterov optimizer 

(Sutskever et al. 2013) (initial learning rate = 0.0001, Momentum = 0.6, and decay rate = 10-6) 

was used. The following sections discuss the results of each dataset separately. 

4.3.4 ABCD Results  

Fig. 4.5 depicts the ABCD training history. Based on the epochs shown here, the training 

is stable and the overall accuracy is increasing. Model selection was based on the highest overall 
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classification accuracy on the validation set. Fig. 4.6 indicates the slab-level test set’s confusion 

matrix for the best performing model (at epoch 1999). For the training, validation, and test sets, 

the model’s slab-level classification accuracy was 96.80%, 92.00%, and 91.86%, respectively. We 

evaluated the performance of the model for the classification of whole volume major artifacts using 

the voting procedure described in Algorithm 1. On average the model was 96.61% accurate for the 

classification of the test set’s primary artifacts. Fig. 4.7 displays the confusion matrix for whole 

volume predictions. As depicted, no significant misclassification was observed between the four 

classes demonstrating the accuracy of the framework in distinguishing between artifacts 

considered in this work. 

Figure 4.5: Training history on the ABCD dataset. Loss (top), and accuracy (bottom) of the 

model are shown on the train and validation sets. Best model is achieved at epoch 1999 

shown by the red arrow. Figure from (Ettehadi et al. 2022) copyright © 2022, Frontiers. 
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Best model’s performance

Figure 4.6: Slab-level confusion matrix on the test set of the ABCD dataset. 

Figure from (Ettehadi et al. 2022) copyright © 2022, Frontiers. 

Best model’s performance

Figure 4.7: Volume-level confusion matrix for ABCD dataset’s test set. Using the voting 

system discussed in Algorithm 1, the model becomes more accurate. Figure from (Ettehadi et 

al. 2022) copyright © 2022, Frontiers. 
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4.3.5 HBN Results 

Using the exact same training hyperparameters as in ABCD, the model was trained for 

1500 iterations on the HBN dataset, as shown in Fig. 4.8. The training process for the HBN dataset 

shows a similar stable behavior as the ABCD dataset. At epoch 1462, the highest validation 

accuracy model (i.e., the best performing model) led to the slab-level classification accuracy of 

95.00%, 94.69%, and 95.77% on the train, validation, and test sets, respectively. The confusion 

matrix for slab-level artifact classification is shown in Fig. 4.9. It is observed through this 

confusion matrix, that the classification accuracy is below 90% for the motion class. As the voting 

process progresses, however, this accuracy will rise, as the individual slab-level misclassification 

errors will play a less significant role in deciding the volume-level labels. Fig. 4.10 illustrates this 

concept using the volume-level classification confusion matrix. Overall, the model achieved an 

accuracy of 97.52% at the volume level, and the accuracy of the motion class significantly 

improved. Moreover, there is no significant misclassification between the 4 categories of artifacts. 

4.4 Discussion and Conclusion 

In this chapter, we presented an automatic four-class major artifact classifier for 3D 

diffusion MRI volumes. The exact architecture was trained with the exact same hyperparameters 

(both model’s and training’s hyperparameters) on two different dMRI datasets, namely ABCD and 

HBN. The trained model provided predictions at slab-level. Using a voting algorithm, slab-level 

predictions were turned into volume-level artifact class predictions. Based on our results, we 

demonstrated the ability of the overall proposed framework (i.e., architecture and hyperparameter 

choices, followed by the voting algorithm) to accurately classify four different categories of 

artifacts in 3D dMRI volumes. 
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As discussed previously, data obtained from diffusion MRI is extremely diverse in nature. 

For example, an important source of heterogeneity among studies using dMRI data is the 

difference in diffusion directions. Consequently, designing and training an architecture that 

generalizes with an acceptable degree of accuracy to unseen and different distributions is 

extremely challenging. One key reason is that, when trained on a dataset with a specific set of 

diffusion directions, 3D convolutional kernels learn their spatial parameters’ optimal values 

according to those directions. Thus, when the model is applied to a new dataset with different 

diffusion directions, the same learned values for the convolutional kernels are not optimal 

according to the new diffusion directions. Furthermore, in our architecture, the channel attention 

Figure 4.8: Training history on the HBN dataset. Loss (top), and accuracy (bottom) 

of the residual SE-CNN multiclass artifact classifier are shown on the train and 

validation sets. The red arrow denotes the best model at epoch 1462. Figure from 

(Ettehadi et al. 2022) copyright © 2022, Frontiers.  
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weights learned in SE blocks are also computed according to the diffusion directions of the original 

Best model’s performance

Figure 4.9: Slab-level confusion matrix on the test set of the HBN dataset. 

Figure from (Ettehadi et al. 2022) copyright © 2022, Frontiers. 

Best model’s performance

Figure 4.10: Volume-level confusion matrix for HBN’s test set. Using the voting system 

discussed in Algorithm 1, the accuracy on the motion class improved significantly. This 

demonstrates the importance of the voting process in the final classification. Figure from 

(Ettehadi et al. 2022) copyright © 2022, Frontiers. 
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dataset on which they were trained. For a dataset with different diffusion directions, these learned 

attention weights are not necessarily optimal. As a result, applying a model that is trained on a 

specific dataset, while fixing its parameter values, to a different dataset is not a viable option.  

To address this issue, we proposed a system that includes a set of model’s hyperparameters 

(not learnable parameters, this distinction is important) as well as the hyperparameters for the 

training process. We showed that the optimal model parameters values for a new dataset (with 

various sources of heterogeneity, such as different diffusion directions) can be found by training 

the architecture using a small subset of the data. Studies that examine binary (i.e., ‘poor’ vs. 

‘good’) quality control of dMRI volumes such as (Ahmad et al. 2021), which is a simpler task than 

an artifact classification with four classes, have also proposed re-training the network on a small 

subset of manually annotated data to overcome the generalization problem when faced with a new 

dMRI dataset. 

A neural network’s training process often faces two major challenges: 1) the tedious task 

of manual annotation, and 2) determining the model’s and the training’s hyperparameters. To 

ensure potential users can train the model according to their target diffusion MRI datasets, we have 

attempted to address these two challenges within our proposed framework. First, because our 

framework is based on a 3D architecture, the manual annotation task can take place only at the 

volume level (not slice/voxel level) by assigning a single label to an entire volume. In other words, 

we are using a weakly-supervised method to train the network. As a result, the manual annotation 

process will be significantly reduced. In our case, for instance, our expert annotated one subject 

(~110 volumes) with four classes of artifacts in only ~17 minutes. Second, we identified a set of 

hyperparameters for both the model’s architecture and its training process that provided 

comparable results across two distinct datasets. Considering these findings, we believe that 
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potential users may be able to use these sets of hyperparameters for training the residual SE-CNN 

classifier on a different dataset, or at the very least as a base for reducing the domain of search. 

As previously discussed, most work on the detection of artifacts or quality control of dMRI 

scans has been conducted at the binary (‘poor’ vs. ‘good’) level. At the time of this writing, the 

proposed approach is the first automated and accurate method that considers a broader range of 

artifact classifications (in particular, 4 classes of motion, out of FOV, low SNR, and MRI 

miscellaneous artifacts). Obtaining dMRI scans is a labor-intensive and expensive process. It 

involves a time-consuming scheduling process (especially in research settings) and a great deal of 

human-to-human interactions. As a result, we believe that by identifying the type of artifact in 

low-quality volumes using our method, one may be able to correct for the detected artifact (if 

possible) and restore the volumes in order to lower the cost of acquiring dMRI scans. 

Although we demonstrated that our method can be used to automatically classify four 

categories of artifacts in dMRI volumes of poor quality, we are aware that it is not perfect. 

Currently, our method is limited to detecting only four types of artifacts. In future work, the 

framework could be further improved upon to be able to consider a broader range of artifacts. To 

put it another way, we plan to extensively examine the different types of artifacts associated with 

MRI miscellaneous (the fourth class). Additionally, each volume is currently identified with only 

one major artifact type. It might be possible to adapt the model in the future to output multiple 

artifact types in cases where there are various artifact categories in the volume being examined.  
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Chapter 5: Supervised Learning and Robust Labeling of Spatially-

Informed Lung Texture Patterns Associated with CT Emphysema 

Subtypes 

5.1 Introduction 

Emphysema refers to the irreversible loss of lung tissue that does not result from fibrosis 

(Mets et al. 2012). Particularly, emphysema is defined as the expansion of the airspaces 

accompanied by the destruction of alveolar walls (Aoshiba, Yokohori, and Nagai 2003). The 

condition of pulmonary emphysema is a major contributing factor to Chronic Obstructive 

Pulmonary Disease (COPD), which is considered to be the third leading cause of death worldwide, 

according to the World Health Organization (World Health Organization 2020). Emphysema and 

its various types are not fully understood. Traditionally, before the availability of computed 

tomography (CT) technology, three distinct types of emphysema were identified using a small 

number of autopsy sessions. Namely, centrilobular (CLE), panlobular (PLE), and paraseptal (PSE) 

emphysema (Anderson and Augustus et al. 1964; Dahl et al. 2002). Due to their associations with 

different risk factors and clinical manifestations (Dahl et al. 2002), these subtypes may suggest 

three distinct lung diseases. Pathologists are, however, not certain whether these three pure 

subtypes exist (Anderson and Augustus et al. 1964) because of various factors, such as a lack of 

CT-based lung texture analysis and the small set of autopsy series leading to their discovery. Latest 

advances in CT technology and computerized lung texture analysis have identified ten groups of 

Spatially-informed Lung Texture Patterns (sLTPs) on full lung and cardiac CT scans, that have 

been associated with the traditional three Emphysema subtypes as well as potentially novel 

Emphysema subtypes (Häme et al. 2014; Häme et al. 2015; Yang et al. 2016a; Yang et al. 2016b; 
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Yang et al. 2017; Yang et al. 2019; Yang et al. 2021). With the help of unsupervised machine 

learning techniques, (Yang et al. 2021) have discovered ten sLTPs from MESA-Lung (Bild et al. 

2002) and SPIROMICS (Couper et al. 2014) data sets. Additionally, visual inspection of these 10 

sLTPs by expert radiologists as well as the use of statistical data reduction techniques have 

concluded that they cluster into six CT Emphysema Subtypes (CTES) that extend beyond the 

commonly recognized subtypes (paper under review). 

Due to the difficulties associated with labeling lung CT scans manually with multiple 

texture patterns (e.g., 10 sLTPs) to determine emphysema subtypes, automated computerized 

labeling methods have recently become popular. A variety of image processing techniques and 

artificial intelligence approaches, such as supervised machine learning, have been employed to 

label the traditional emphysema subtypes on lung CT scans, as shown in (Sørensen, Shaker, and 

Bruijne 2010; Ginsburg et al. 2012; Gangeh et al. 2010; Asherov, Diamant, and Greenspan 2014; 

Häme et al. 2015; Binder et al. 2016; Yang et al. 2016b; Ross et al. 2017; Bermejo-Peláez et al. 

2018; Peng et al. 2018; Peng et al. 2019a; Peng et al. 2019b; Li and Mukundan 2021; Wu et al. 

2021). These approaches, however, only addressed the three traditional emphysema subtypes and 

did not cover the novel 6 CTES or 10 sLTPs. In more recent work, (Yang et al. 2021) classified 

the 10 sLTPs and 6 novel CTES (paper under review) in the MESA and SPIROMICS cohort lung 

CT images using machine learning approaches. Despite the high and acceptable accuracy of the 

sLTP classification reported in (Yang et al. 2021), the approach is not fully robust to variations in 

cohorts and scanner types as it requires exhaustive parameter tuning or domain adaptation. Hence 

there is a need for Emphysema classification approaches that are more robust to change in cohorts 

and scanner types. 
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In this chapter, we present a supervised deep learning framework for robust classification 

of the 10 sLTPs leading to 6 CTES. In order to classify the 10 SLTPs, we have developed an 

attention-based Convolutional Neural Network (CNN). Following the automated labeling of the 

10 sLTPs by the proposed CNN, we then utilize the definition of 6 CTES (derived from clustering 

of 10 sLTPs mentioned in (paper under review)) to classify the novel emphysema subtypes. Using 

the SPIROMICS inspiratory dataset (Couper et al. 2014), we trained, validated, and tested our 

model. Our model is also tested on the MESA-Lung exam 5 dataset (Bild et al. 2002) to test its 

robustness to different cohorts. Additionally, we present the classification accuracy for each 

scanner type in each cohort. Our results demonstrate that our method can be used to accurately 

classify sLTPs clustered into CTES in human lung CT images obtained by different scanners from 

multiple cohorts. 

5.2 Method 

5.2.1 Overview 

The proposed framework employs randomly sampled Regions of Interest (ROIs) 

automatically labeled by the method described in (Yang et. al 2021). The model takes ROIs of 

fixed size as inputs, and outputs their sLTP class labels. More specifically, in order to train, 

validate, and test the proposed attention-based convolutional neural network, ROIs and their labels 

are used in a supervised learning approach. The following section provides a general overview of 

our framework for supervised classifications of ROIs based on 10 sLTPs and 6 CTES. 

5.2.2 ROI Sampling  

We randomly sampled ROIs of size 36×36×36 voxels from all over the lung. This choice 

of ROI size in SPIROMICS and MESA-Lung cohorts, which results in cubes of approximately 

25mm3 (similar to the size of secondary pulmonary lobules), was exactly the same as in (Yang et 
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al. 2017) where the sLTPs were originally discovered. Fig. 5.1 depicts an example of an ROI of 

this size. An sLTP label (generated by the method in (Yang et al. 2021)) is stored for each ROI to 

be used for supervised training of the proposed model. More detail on sampling criteria for ROIs 

is presented in section 5.3.2. 

5.2.3 Residual Squeeze and Excitation Convolution Neural Network sLTP Classifier 

In Fig. 5.2, we illustrate the overall architecture of our model, which takes inputs of size 

36×36×36 voxels and predicts their sLTP labels. The model is primarily composed of two blocks: 

1) residual blocks (He et al. 2016), and 2) squeeze and excitation (SE) blocks (Hu, Shen, and Sun 

2018). As depicted in Fig. 5.2a, a modified version of the residual block is utilized in this 

framework. According to Fig. 5.2a, the residual block contains two branches. On the left, there are 

two successive 3D convolutional layers with N channels. The first convolutional layer is followed 

by batch normalization and a RELU activation function (Nair and Hinton 2010). The second 

convolutional layer involves only a batch normalization layer. The right branch, on the other hand, 

uses a single 3D convolutional layer with N channels prior to a batch normalization layer. As a 

final step, the outputs from the two branches are combined and then activated by the RELU 

Figure 5.1: Three 2D views of the lung of a subject showing an arbitrary 3D ROI of 

36×36×36 voxels. The ROI is highlighted in white and is pointed to by the red arrows. 
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nonlinearity activation function. Fig. 5.2b illustrates the SE block architecture. As mentioned in 

the previous chapter, SE blocks provide a form of self-attention mechanism designed by (Hu, Shen, 

and Sun 2018) specifically for CNNs. Essentially, a SE block seeks to find a representation 

between channels that captures their interdependencies to facilitate the classification task (Hu, 

Shen, and Sun 2018). In Fig. 5.2b, we see that the SE block is divided into two branches: a) a skip 

connection branch (left) and b) a branch that determines the optimal channel representation. The 

latter takes the input feature tensor and passes it through a 3D global average pooling and two fully 

connected layers. Through the pooling layer, the 3D image is reduced to 1×1×1 while the channel 

dimension remains intact (the squeeze operation). The first level of fully connected layers reduces 

the channel numbers by a factor of r in an attempt to find the most important channels for 

classifying the data. Afterward, a RELU non-linearity is applied. The 2nd fully connected layer 

restores the channel’s number to its original value. During this step, various channels are given 

different weights, which reflect their importance in the overall classification (the excitation 

operation). This is followed by a Sigmoid activation function (Han and Moraga 1995). Lastly, the 

outputs of both branches are multiplied together (element-by-element) to produce a 4D tensor of 

the same size as the original input to the SE block combined with channel attention weights. As 

shown in Fig. 5.2c, residual and SE blocks are mixed to form a single block, called the modified 

residual block with SE. The final deep learning architecture comprises four stacked residual blocks 

with SE as shown in Fig. 5.2d. For the purpose of reducing the spatial dimensions of the images 

after each block, we utilize the 3D Maxpooling operator. The features are unrolled following the 

completion of the last 3D Maxpooling layer, and are then fed to two consecutive fully-connected 

layers (each followed by a RELU activation function) with 512, and 128 nodes, respectively. We 

used two Dropout units in order to minimize the effects of overfitting on the fully connected layers. 
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The sLTP classification is completed by a SoftMax layer with 10 classes. There are a total of 

2,914,890 parameters in this model, of which 5,760 are not trainable. 
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Figure 5.2: A) The architecture of the residual block used in this work, B) the architecture 

of an SE block, C) the modified residual block with SE, and D) the overall architecture of 

the proposed residual SE-CNN sLTP classifier.  
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5.3 Experiments and Results 

5.3.1 Data and Preprocessing 

 In order to train, validate, and test our proposed residual SE-CNN sLTP classifier we used 

lung CT images from the SPIROMICS Visit 1 inspiratory cohort. This cohort includes 2,973 full-

lung CT scans (2,400 participants with COPD, 600 without COPD, and 200 non-smoking controls) 

(Couper et al. 2014). Participants were 40-80 years old and imaging took place in six US field 

centers. A total of 10 scanner types were used for imaging. All participants underwent the CT scan 

at baseline and one-year follow-up. The lung CT scanning protocol in SPIROMICS is identical to 

that in MESA-Lung (detailed below) (Bild et al. 2002; Sieren et al. 2016). Images were 

reconstructed with an in-plane pixel resolution within the range [0.48, 0.98] mm, and a slice 

thickness of 0.625 or 0.75 mm (Couper et al. 2014). Specifically in this work, we used lung CTs 

from 2,922 distinct subjects from this cohort.  

 In addition to testing the model’s performance on the SPIROMICS V1, we also tested the 

model on MESA-Lung exam 5 to assess its robustness to different cohorts and scanner types. It is 

worth mentioning that this dataset was used only for the purpose of testing the model, and no 

training procedure was applied using data from this cohort. MESA-Lung is a subset of the MESA 

study. The data in MESA-Lung exam 5 includes 3,200 subjects on 64-slice helical scanners 

(Couper et al. 2014) in accordance with MESA-Lung/SPIROMICS inspiration protocol detailed 

in (Sieren et al. 2016). Participants were 45-84 years old and free of clinical cardiovascular disease 

(Couper et al. 2014). In total, six scanner types were used for CT imaging. Images were 

reconstructed with an in-plane resolution within the range [0.47, 0.92] mm, and a slice thickness 

of 0.625 or 0.75 mm. In our experiment, we used lung CT images from 2,524 distinct subjects in 

this cohort.  
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 The APOLLO® software (VIDA Diagnostic, Iowa) was used to generate lung masks for 

each subject in both SPIROMICS and MESA-Lung exam 5. Using the method in (Yang et al. 

2021), sLTP masks were generated to create the ground truth labels on the segmented lungs. We 

linearly normalized all scans (separately for SPIROMICS and MESA-Lung) according to the 

global distribution of their intensity values in order to have an intensity range of [0,1] for training 

our residual SE-CNN model.  

5.3.2 Detailed ROI Sampling Procedure and Data Augmentation  

SPIROMICS data from 2,922 subjects was used to randomly sample ROIs of size 

36×36×36 voxels from all 10 sLTP classes. ROIs were selected according to the following criteria: 

1) For each 3D sampled ROI belonging to sLTP class i (i.e., the sLTP class of the voxel in the 

center of the ROI), the percentage of that sLTP class was at least 30% (i.e., percent sLTPi ≥30%), 

and 2) no more than 20% overlap was allowed between any two ROIs. Since the distribution of 

sampled ROIs in the SPIROMICS dataset is nonuniform, we balanced the distribution of sampled 

ROIs according to the least frequent class by randomly selecting ROIs (without replacement) from 

the nonuniform distribution. Doing so helps the model to avoid running into class imbalance issues 

and getting stuck in local minima during the training procedure. Overall, 86,400 3D ROI samples 

were sampled across all 10 sLTP classes. To form train, validation, and test sets, a 6:2:2 split ratio 

was used. Fig. 5.3 depicts the balanced distribution of the 3D ROIs in SPIROMICS. In order to 

further enhance the training process by providing the model with more samples per class, we used 

a data augmentation technique applied only to the training set. Specifically, we flipped (mirrored) 

all 3D ROIs in the training set along each axis (i.e., x, y, and z) resulting in a training set that was 
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4 times larger (i.e., the original ROI, plus the flipped versions along each axis). As a result, the 

model was provided with a total of 207,360 (20,736, per sLTP class) 3D ROIs in the training set. 

We also used the MESA-Lung exam 5 dataset, in addition to the SPIROMICS dataset, to 

evaluate the robustness of our model across different cohorts. A total of 26,636 3D ROIs from 

2,524 distinct subjects in MESA-Lung exam 5 were sampled based on the same criteria used in 

SPIROMICS (no data augmentation procedure was used). However, in order to evaluate the 

performance of the model according to a fair estimate of the true distribution of sLTPs in this 

cohort, this time we did not carry out any balancing procedure and tested the model against the 

actual, nonuniform sampled sLTP distribution for MESA-Lung exam 5 shown in Fig. 5.4. 

5.3.3 Hyperparameters, Training History, and Performance on sLTP Classification 

 Fig. 5.2d shows the architecture of our model. As illustrated in Fig. 2, kernels of size [1, 1, 

1] with no padding were used in all 3D convolutional layers to capture fine details within each 

sLTP class. For 3D convolutional layers, the number of kernels started at 64 and doubled after 

each residual block with SE to reach 512 by the 4th block. All four residual blocks with SE had a 

Legend

Train

Validation

Test

SPIROMICS V1 Inspiration 

Figure 5.3: The balanced distribution of sampled ROIs in SPIROMICS divided into train, 

validation, and test sets using a split ratio of 6:2:2.   
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fixed channel reduction factor r of 16. For all 3D Maxpooling layers the kernels were of size [2,2,2] 

without padding, thereby halving the feature maps in all directions. Furthermore, the probability 

of both Dropout units was set to 0.5 to minimize the overfitting effects associated with the two 

fully connected layers. 

 The residual SE-CNN sLTP classifier was implemented in Python using Keras with 

TensorFlow as backend on an Nvidia 2080 ti RTX (Titan RTX) GPU with 24GB memory. The 

model was trained for 350 epochs with a batch size of 32 to minimize 10 class Cross-entropy loss 

function. In order to minimize the cost function, stochastic gradient descent (SGD) with Nesterov 

optimizer (Sutskever et al. 2013) was used (initial learning rate = 0.0001, Momentum = 0.6, and 

decay rate = 10-6). Although the ADAM optimizer (Kingma and Ba 2014) has proven to be highly 

successful in training deep learning models substantially faster than SGD, it suffers from 

generalizability issues when compared to SGD (Zhou et al. 2020). Our model was initially trained 

using ADAM, but it did not generalize well to the test set. In keeping with the claim made in (Zhou 

et al. 2020) about SGD’s generalizability power, we selected SGD in this study and used 

MESA-Lung Exam 5

Figure 5.4: The distribution of sampled ROIs in MESA-Lung for testing the model’s sLTP 

classification performance on a separate cohort. 
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momentum to speed up the training process. In Fig. 5.5, we present the training history of our 

model (the loss and accuracy as functions of epochs). We selected the model which provided the 

highest accuracy in our validation set as the most accurate model. Based on this, at epoch 336, the 

best model was found yielding 95.99% accuracy for training, 94.16% accuracy for validation, and 

94.57% accuracy for the test set. Fig. 5.6 illustrates the confusion matrix for SPIROMICS V1’s 

test set. According to Fig. 5.6, there are no significant misclassifications for any of the classes, and 

the matrix shows a diagonal pattern. Additionally, the average inference time of our model per 

ROI was 1.49ms. 

As discussed earlier, our model was tested against the MESA-Lung exam 5 dataset in order 

to assess its robustness against a different cohort. The model was tested on all ROIs sampled from 

this cohort (distribution of the sampled ROIs is shown in Fig. 5.4). As a result, MESA-Lung exam 

5 sLTP classification average accuracy was 93.85% (only 0.72% drop from SPIROMICS). Fig. 

5.7, displays the confusion matrix for this analysis. The matrix shows a diagonal behavior with no 

per class classification accuracy below 90%, which indicates the robustness of our proposed sLTP 

classifier with respect to change in cohorts. 

Figure 5.5: The training history of the residual SE-CNN sLTP classifier on SPIRMOICS V1. Best 

model is achieved at epoch 336. 
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Figure 5.6: sLTP classification confusion matrix on SPIROMICS V1’s test set. 

Figure 5.7: sLTP classification confusion matrix on the MESA-Lung exam 5 cohort. 
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5.3.4 Performance on CTES Classification 

As noted previously, visual inspection and statistical analysis of sLTPs indicate that they 

can be divided into six CTES classes with clinical relevance (paper under review). The clustering 

of sLTPs is as follows: sLTPs 1 and 2 are grouped into CTES 1 named the vanishing lung, sLTPs 

3, 5, and 9 are merged into CTES 2 named apical, sLTPs 4 and 6 are clustered into CTES 3 named 

diffuse, sLTP 7 forms CTES 4 named senile, sLTP 8 forms CTES 5 named obstructive Combined 

Pulmonary Fibrosis/Emphysema (CPFE), and sLTP 10 forms CTES 6 named restrictive CPFE 

(paper under review). Below we demonstrate how our model performs on SPIROMICS V1’s test 

set as well as the MESA-Lung Exam 5 cohort with respect to CTES classification. 

The confusion matrix for the 6 class CTES classification on SPIROMICS’s test set is 

shown in Fig. 5.8. Overall, the CTES classification accuracy of the model is 96.02%. This matrix 

shows a diagonal distribution with minimal misclassification. Similar to the CTES confusion 

matrix shown in Fig. 5.8, MESA-Lung exam 5 also exhibits diagonal patterning as illustrated in 

Fig. 5.9. Based on the results of this cohort, the overall accuracy for 6 class CTES classification is 

95.10% (only a 0.92% drop compared to SPIROMICS), demonstrating how robust our model is 

across different cohorts. 

5.3.5 Performance Across Individual Scanner Types  

The sLTP and CTES classification overall accuracies were quantified for each of the 

scanner types (separately for SPIROMICS and MESA-Lung) to provide evidence that the model 

can learn scanner-invariant features for sLTP classification. We present the results pertaining to 

the SPIROMICS test set and MESA-Lung in Tables 5.1 and 5.2, respectively. Almost all the 

scanner types performed similarly, indicating that the model is learning scanner-invariant features 
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from sLTP data. Note that not all scanner types include every class of sLTPs/CTES. As some sLTP 

Figure 5.8: six-class CTES classification confusion matrix for SPIROMICS’s test set. 

Figure 5.9: six-class CTES classification confusion matrix for MESA-Lung exam 5. 
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classes are very rare in the MESA-Lung exam 5 cohort, we sampled twice as many ROIs in section 

5.3.2 for this cohort in order to be able to report credible accuracies for different scanner types. 

Particularly, we sampled 30,900 additional ROIs from the MESA-Lung cohort in addition to the 

ones sampled in section 5.3.2., resulting in 57,536 ROIs for this analysis.  

5.4 Discussion and Conclusion 

As depicted in Figs. 5.6, 5.7, 5.8, and 5.9 for SPIROMICS and MESA-Lung cohorts, there is no 

significant misclassification in sLTP and CTES by the model. We demonstrated by training the 

model on the SPIROMICS cohort and testing it against an unseen cohort (i.e., the MESA-Lung) 

that it is capable of learning cohort-invariant features for emphysema subtyping. Furthermore, our 

model learns scanner-invariant features from the data that are informative for sLTP and CTES 

classifiers based on our per-scanner accuracy results summarized in Table 5.1 and Table 5.2. 

However, SPIROMICS’s and MESA-Lung’s Definition and Discovery CT 750 HD scanners, 

respectively, perform less accurately than the other scanners in their respective cohort. This issue 

likely originates from the small number of ROIs that exist and have been sampled for these two 

scanners (i.e., 11 ROIs for the Definition in SPIROMICS and 38 ROIs for the Discovery CT 750 

HD in MESA-Lung). Despite these differences, the accuracies for all scanner types are comparable 

within in each cohort, indicating the model’s ability to learn meaningful features for sLTP/CTES 

classification irrespective of scanner types. Our cohort and scanner-invariant model, in 

combination with the relatively fast ROI classification performance (average of 1.49 ms/ROI) 

makes our framework a quick and robust end-to-end classifier for emphysema learning and 

labeling. 
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Chapter 6: Investigation and Characterization of Ipsilateral and 

Contralateral Negative BOLD Response Patterns in Human Brain 

fMRI Scans1 

6.1 Introduction 

fMRI stands for functional magnetic resonance imaging. It is a non-invasive imaging tool 

used to study human brain activity in-vivo via endogenous blood oxygenation level dependent 

(BOLD) contrast (Ogawa et al. 1992). When a targeted stimulus evokes neuronal activity in part(s) 

of the brain, the MR signal in the activated area(s) usually changes in comparison to its pre-

stimulus state. This change in MR signal is referred to as the positive BOLD response (PBR), and 

it has been characterized as the hemodynamic response function (HRF) of the BOLD signal. Aside 

from the PBR, fMRI responses in the opposite direction have also been observed in regions near 

and remote to the PBRs. The inverse direction BOLD responses are referred to as negative BOLD 

responses (NBRs). 

PBR hemodynamics and their underlying mechanisms have already been extensively 

studied, but NBR hemodynamics and their underlying mechanisms have yet to be fully explored 

(Logothetis 2008; Liu et al. 2011). Studies have reported observing NBRs following sensory 

cortical unilateral stimulation in proximity to the PBR (Shmuel et al. 2002; Shmuel et al. 2006), 

as well as in ipsilateral regions (Shmuel et al. 2003; Stefanovic, Warnking, and Pike 2004; Smith 

A.T. et al. 2004; Kastrup et al. 2008; Mullinger et al. 2014). However, it is unknown how these 

two types of NBRs emerge and what their properties are. It has been hypothesized that NBRs may 

 
1 Disclaimer: this work was done under supervision of Dr. Qolamreza “Ray” Razlighi at Quantitative Neuroimaging 

Laboratory of Columbia University Medical Center between 2018 to 2019. Hengda He, and Dr. Amir Shmuel are also 

coauthors on the draft of the manuscript of this work that, at the time of this writing, is being prepared for re-

submission to a journal of interest. Parts of this chapter are taken from the draft of the manuscript.  
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result from the following mechanisms: 1) Inhibition of neuronal activity at the local level (Smith 

A.T. et al. 2000; Smith A.T. et al. 2004; Shmuel et al. 2002; Shmuel et al. 2006; Stefanovic et al. 

2004), 2) Reduced cerebral blood flow (CBF) in regions close to PBR, possibly as a result of 

sharing upstream arterial supply (known as blood steal), irrespective of changes in neuronal 

response (Shmuel et al. 2002; Harel et al. 2002; Hu and Huang 2015), 3) Active reduction in CBF 

(known as blood sharing) caused by neural control signals leading muscles to contract around the 

arteries supplying the NBR regions (Smith A.T. et al. 2004), and 4) Venous back-pressure from 

limited drainage capacity of venous compartments as a result of increased CBF in the PBR region 

(Shmuel et al. 2006; Boas et al. 2008; Goense, Merkle, and Logothetis 2012). These mechanisms, 

however, cannot account for simultaneous observation of NBRs adjacent to PBR and in the 

hemisphere opposite to the one receiving the stimulation. 

During unilateral visual hemifield stimulation, two types of NBR can be detected 

concurrently: contralateral NBR (cNBR) from the proximal regions of the PBR, and ipsilateral 

NBR (iNBR) from the other hemisphere. Therefore, the question arises as to what are the temporal 

and spatial influences between these two NBRs, as well as whether their relationship supports or 

refutes the existing hypotheses. To investigate this, we measured PBR and both NBRs elicited in 

human visual cortex following unilateral visual stimulation. We first determined whether the 

magnitudes of the two NBRs have a linear relationship with the duration of the stimulus since 

linearity of the BOLD response is crucial for many statistical analyses performed in fMRI. Our 

next step was to extract the HRFs of both NBRs to determine whether their magnitudes and 

dynamics differed. Additionally, we explored the correlation between the subject-wise expression 

of both NBRs and the PBR, their interhemispheric spatial similarity, and their behavioral 

relationship. Lastly, we studied whether attention affected the two NBRs. Our observations suggest 
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that the two NBRs may share a common neural and/or vascular mechanism, which is controlled 

by a brain structure likely located deep within the cerebral cortex controlling cerebral blood flow 

distribution. 

6.2 Method 

6.2.1 Overview 

In order to investigate the characteristics of cNBR and iNBR, we first designed a specific 

fMRI experiment to elicit these two responses in human visual cortex. After data collection, we 

used fMRI preprocessing steps to extract the signals of interest. Following the extraction of all 3 

BOLD responses (i.e., PBR, cNBR, and iNBR), we carefully investigated their properties through 

conducting a series of analyses which are detailed in the following sections. 

6.2.2 Data Collection and fMRI Preprocessing Steps  

In this study, 42 healthy adults (mean age ± SD = 40.05 ± 20.56, female/male = 26/16, 

right-handed) were recruited. Random mailings were used to recruit candidates within a 50-mile 

radius of Columbia University Irving Medical Center. All participants were given compensation 

for the time they spent participating in this study. Written informed consent was obtained prior to 

the scanning sessions. Columbia University’s institutional review board approved our study design 

and recruitment process. 

Our fMRI experimental task design utilized an event-related approach. Task components 

included two types of ongoing stimuli: 1) A flashing checkerboard with maximum contrast (visual 

stimulus) displayed either on the left or right side of the screen, and 2) A right- or left-sided 

alternating tone (auditory stimulus) paradigm played on the ear. We administered both sensory 

stimuli with random onsets and durations (uniform distribution, durations ranging from 1 to 5 

seconds). While visual and audio stimulation overlaps were permitted, bilateral exhibition of the 
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same sensory stimulus (left-visual with right-visual or left-auditory with right-auditory) was 

disallowed. Data collection took place in 2 separate runs (happening on the same day). During the 

first run, participants were instructed to focus on only one sensory modality (e.g., visual or tonal) 

while neglecting the other. In the second run, we instructed them to pay attention to the other 

modality which they ignored in the first run. There were a total of 120 events presented in each 

scan session, 60 of which were visual and 60 of them were auditory. Furthermore, half of the 

events in each modality were confined to one side (left or right) and were presented at inter-

stimulus intervals ranging from 1 to 16 seconds, selected from a uniform distribution. As soon as 

the attended stimulus stopped, subjects were asked to press a button twice with their right/left 

index fingers (contingent on the right/left polarity of the attended stimulus) in order to track their 

attendance. Additionally, all subjects were instructed to continuously maintain their gaze on a tiny 

green fixation point in the middle of the screen throughout the scan. The fixation point’s color was 

changed to red anytime the subject’s response was incorrect or out of time (over 3 seconds). Using 

an eye-tracking system, the position of the eyes was continuously monitored to determine eye 

fixation. Prior to scanning, subjects practiced outside of the scanner to learn and perform the task 

correctly on short training trials. A diagram of an example of this fMRI experiment is shown in 

Fig. 6.1. 

A 3 Tesla Siemens Magnetom Prisma MRI scanner was used to image all participants. For 

capturing fMRI signals, the T2*-weighted echo-planar imaging (EPI) sequence was used with 

interleaved slice acquisition. The fMRI acquisition parameters are summarized in Table 6.1. 

During the experiment, subjects wore noise-isolating MR safe earbuds to listen to the auditory 

stimuli while placed supine inside the magnet bore. An area placed in the center of each hemifield 

contained the flashing checkerboard visual stimuli. A screen with back-projection was used to 
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display the visual stimuli in the scanner. The task-based fMRI (tb-fMRI) scans took approximately 

8 minutes (equal to 480 volumes). Participants also underwent a resting-state fMRI (rs-fMRI) scan 

with the same parameters and duration. For registration of fMRI volumes, a T1-weighted image 

was also obtained for each participant. Details of this acquisition are summarized in Table 6.1. 

Table 6.1: Acquisition parameters for all T2*-weighted and T1-wieghed images used in this work 

Parameters T2*-weighted T1-weighted 

TR/TE (ms) 1000/30 2300/2.32 

Flip angle (degrees) 62 8 

Field of view (mm) 200 × 200 256 × 256 

Matrix size 100 × 100 256 × 256 

Voxel size (mm) 2 × 2 × 2 1 × 1 × 1 

Number of slices 64 axial slices1 196 sagittal slices 

Bandwidth (Hz/px) 1852 - 

Multiband factor 4 - 

 
1 With alternating phase encoding directions of anterior-posterior and posterior-anterior 

Figure 6.1: An example of the fMRI task design. In the blue line are the timings for the 

auditory stimuli, while in the red line are the timings for the visual stimuli, and in the black 

line are the responses from the subject (i.e., when they hit the button). Subjects were asked 

to ignore the auditory stimulus for this sample demonstration and focus on the visual 

stimulus. An indication of this is the pattern of responses, where the button is pressed 

twice by the subject as soon as the visual stimulus has ended. 
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FSL V5.0.7 (Smith S.M. et al. 2004) and in-house software packages were employed to 

process the fMRI data. The raw fMRI time-series were corrected for slice acquisition delays via 

slice timing correction techniques (Parker, Liu, and Razlighi 2017; Parker and Razlighi 2019). 

Meanwhile, raw fMRI scans (uncorrected for slice timing) were used to estimate motion 

parameters via registrations of all volumes to the first one. Furthermore, using the topup algorithm 

(Andersson, Skare, and Ashburner 2003) included in FSL, the compensatory fields for adjusting 

susceptibility-induced geometric deformations were calculated from the first volumes of the raw 

fMRI scans with opposite phase encoding direction. Following this, the motion parameters along 

with the estimated compensatory field were applied together to the slice timing corrected fMRI 

time-series to clear the data from such artifacts. The preprocessed fMRI data were modeled with 

6 predictors (aside from the linearity analysis) for all 6 stimulation categories (i.e., left and right 

visual, audio, and motor responses). The canonical double-gamma HRF (Friston et al. 1998) was 

used to obtain the 6 predictors through convolution with their respective stimulation. An in-house 

Python software package was used to perform first-level analysis via multiple regression. Finally, 

the T1-weighted scans were processed by Freesurfer (Fischl et al. 2002; Fischl et al. 2004). 

6.2.3 Linearity Analysis  

Here, we examine the linearity of the two NBRs in relation to the change in stimulation 

duration. In terms of duration, stimuli are grouped into four distinct categories (category 1 includes 

stimuli with durations of 1 to 2 seconds, while categories 2, 3, and 4 include stimuli with durations 

of 2 to 3, 3 to 4, and 4 to 5 seconds, respectively). Our standardization procedure involves making 

the fMRI time series have zero mean and dividing them by their standard deviation. Voxel 

selection is carried out using a bootstrapping technique in which each trial is randomly split in half 

for voxel selection (training) and BOLD response extraction (testing). Such a method of voxel 
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selection prevents the analysis from having any bias in favor of voxels showing random linear 

properties by luck. During each epoch, general linear modeling (GLM) analysis is employed on 

the training boxcars to identify the significantly responsive voxels (t-test, |t| > 3). The selected 

voxels are then used in the testing trials to examine the linearity. To ensure a unit area under the 

curve in each trial’s boxcar, the amplitude of each trial in the testing set is normalized according 

to its duration. Depending on the categorized stimulus durations, each trial is then classified into 

one of the four different regressors. Using each of the four regressors, four separate GLM analyses 

are then conducted to estimate the BOLD response magnitude for each of the duration categories. 

During the booting process, 500 epochs are repeated. To calculate the corresponding BOLD 

response amplitude, the resultant cNBR and iNBR point estimates are averaged (separately) across 

all epochs and stimulation lateralization (i.e., right and left sides). A plot is then drawn showing 

the amplitudes of subject-wise mean point estimates corresponding to each duration class against 

their four duration categories. Lastly, we perform a least-squares line regression analysis and a t-

test of the slope to determine if there is a significant linear relationship between the amplitudes 

and stimulus duration. This method is also used as a sanity check to determine the linearity of the 

PBR. 

6.2.4 Generating ROIs   

In this work, our group-level analysis is conducted in the subjects’ native space (unless 

otherwise noted), not in standard space (e.g., brain atlas). In comparison with the regular group-

level analysis in the standard space, native space analysis has the advantage of being more precise 

at localizing ROIs in each subject. In this manner, two ROIs are created per hemisphere for each 

subject. For each hemisphere, the first ROI is constructed by selecting the voxels where PBR is 

statistically significant using the z-statistical map derived from the first-level analysis (z > 4). To 
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locate the neighboring voxels required for identifying the cNBR, this ROI is then dilated using a 

spherical kernel with a radius of 10 mm. To detect voxels with iNBR, we use the union of two 

masks on the opposite hemisphere as the searching ROI. The two generated ROIs are then further 

refined by eliminating any intersection with the inferior parietal and precuneus regions. This 

refinement was made in light of the fact that the NBRs elicited by these two regions might be part 

of the responses associated with the default mode network (DMN), which may possess completely 

different properties. Lastly, each bilateral ROI is restricted to fall within each hemisphere of the 

brain to avoid any potential overlap or signal leakage. 

6.2.5 Hemodynamic Response Functions Extraction   

For the purpose of investigating the two HRFs’ shapes, voxel selection cannot be 

conducted using the canonical double Gamma HRF. The reason for this is to prevent bias towards 

a particular HRF shape. As a result, we select voxels for this experiment using the FMRIB’s linear 

optimal basis set (FLOBS) method (Woolrich, Behrens, and Smith 2004) which does not suffer 

from bias issues. The criterion for choosing the significantly responsive voxels within the ROIs 

extracted in the previous section was set to F statistics of |F|>6. Based on the estimated beta values 

in the first-level FLOBS GLM analysis, an initial response function is computed for each voxel by 

averaging over the FLOBS basis functions. To identify the direction (i.e., the sign) of the extracted 

BOLD response, we utilize the sign of the measured area under the curve of the first 10 seconds 

of the response function. Then, the FIR deconvolution method (Goutte, Nielsen, Hansen 2000) is 

applied to extract the impulse response function from the time series of the selected voxels. Using 

the explained procedure, all voxel-level iNBR and cNBR HRFs corresponding to each subject, are 

extracted for both attended and unattended stimuli. Finally, the HRFs are averaged for each subject 
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with respect to lateralization of the visual stimuli to obtain the average subject-level HRFs. The 

same exact process is utilized to extract the PBR HRF. 

6.2.6 Subject-wise Expressions for BOLD Responses   

In this analysis, we intend to examine the relationship between subject-wise expressions of 

BOLD responses, which may provide clues to the underlying cause of NBRs. Expressions for each 

subject are calculated using point estimates from significantly affected voxels. Pearson correlation 

coefficient (PCC) is used separately for the attended and unattended cases for each pair of BOLD 

amplitudes (i.e., PBR vs cNBR, PBR vs iNBR, and cNBR vs iNBR) to assess their relationship. 

Lastly, the significance of the difference in correlation values between pairs of BOLD responses 

is tested using the statistical test of the difference between two correlation coefficients. 

6.2.7 Analysis of Interhemispheric Spatial Similarities  

This analysis aims to explore the relationship between the spatial patterns of BOLD 

responses of the opposite hemispheres (i.e., iNBR vs PBR, and iNBR vs cNBR). Dice similarity 

coefficient (DSC) is used as the metric for evaluating the strength of spatial similarity. Bilateral 

ROIs are mapped into MNI standard space (Evans et al. 1993) in order to measure the spatial 

pattern similarity across them. Following that, by flipping the mapped ROIs along the mid-sagittal 

plane and using the DSC score the strength of their spatial similarity is calculated. The student t-

test is then used to assess the significance of the difference (if any) between the calculated DSC 

scores. 

6.2.8 Behavioral Correlates of the BOLD Responses 

As a performance measure, we use the subject-wise median response time to examine the 

relationship between the NBR and task performance. PCC was used to measure the potential 
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association (if any) between the task performance and corresponding expressions for PBR, cNBR, 

and iNBR. 

6.2.9 Analyzing Attention Dependency of the BOLD Responses 

The purpose of this analysis is to determine whether attention alters BOLD signals. We 

define attention dependency as the difference of the amplitudes and dynamics of the extracted 

HRFs between attended and unattended cases. We use the student t-test (with Bonferroni 

correction) to measure the significance of any difference (if there is one) between attended and 

unattended cases at each second following stimulus onset. 

6.3 Experiments and Results  

This section presents the results of our analyses. Independent of the attention case, all 

subjects showed sustained PBR, iNBR, and cNBR due to visual stimulation in visual areas of the 

Occipital lobe. To demonstrate this, an overview of a sample subject’s PBR, cNBR, and iNBR in 

response to a unilateral display of attended visual stimuli on the right hemifield is shown in Fig. 

6.2 using z-statistics heatmap superimposed on three orthogonal slices of the subject’s T1-

weighted image. 

Figure 6.2: An example of the spatial patterns of the fMRI responses of a subject to the 

attended right hemifield visual stimulation. On the Axial slice (the left most image), 

statistically significant PBR, cNBR, and iNBR are shown using the green arrows and 

circles.  
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6.3.1 Stimulus Duration vs BOLD Magnitude Linearity   

The averaged point estimates for cNBR, iNBR, and PBR are plotted as a function of 

stimulus duration in Fig. 6.3. As depicted in this figure, the amplitudes of both cNBR and iNBR 

are linearly related to stimulus duration. The significance of this linear relationship for both NBRs 

is quantified as: cNBR: β = -0.298, p < 0.015; and iNBR: β = -0.184, p < 0.031. In simple terms, 

the results of this analysis suggest that a longer stimulus can elicit a more negative (i.e., larger 

amplitude) cNBR and iNBR in the stimulated regions of the brain. To confirm whether or not our 

approach of assessing linearity is a valid method, we also checked the linearity of PBR (which has 

been shown previously in the literature (Boynton et al. 1996)) with it. Using our method, the 

linearity of PBR with respect to the stimulus duration holds (β = 0.810, p < 2.134×10-4). 

6.3.2 Relationship Between HRFs of cNBR and iNBR   

In Fig. 6.4, we present the HRFs of all three BOLD responses for both attention cases. 

Irrespective of the attention case, the shape of cNBR and iNBR HRFs are fairly similar. As a 

measure of similarity, we examined whether there was any statistically significant difference in 

the amplitudes, as well as onset, peak, falling edge, and undershoot times of the two NBRs using 

the individual subject-level HRFs. No significant differences between the amplitudes of the two 

Figure 6.3: Results of the linearity analysis. For each duration category, the black dots 

represent the mean (over subjects) amplitude of the corresponding BOLD response. 

Regression lines are depicted with black dashed lines. Both iNBR and cNBR show 

statistically significant linear relationships with stimulus duration. 
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NBRs were detected in both the attended (Δ = -1.34%, p > 0.8975) and the unattended (Δ = 2.30%, 

p > 0.7444) groups. Additionally, neither the attended (Δt = -0.1517 s, p > 0.3382) nor the 

unattended (Δt = -0.0031 s, p > 0.9834) cases exhibited any significant difference in the onset 

times of the two NBRs. Similar results were obtained with respect to the difference in the peak 

time of the two NBRs (attended Δt = -0.0093 s, p > 0.9536; unattended Δt = -0.0699 s, p > 0.7915). 

Moreover, neither of the NBRs’ falling edge times were significantly different in the attended 

condition (Δt = -0.3666 s, p > 0.5117). In contrast, the unattended (Δt = -1.4657 s, p < 0.0252) 

case demonstrated a significant difference, but it failed to survive the multiple comparison 

correction. Lastly, in terms of undershoot time for both the attended (Δt = -0.5155 s, p > 0.5520) 

and unattended (Δt = -0.0707 s, p > 0.9274) cases, there was no statistically significant difference 

between the two NBRs. These results suggest that the two NBRs are likely to arise from the same 

mechanism. We also compared the iNBR and cNBR HRFs with the PBR HRF. Fig. 6.5 

demonstrates the result of this comparison. The statistically significant differences are highlighted 

with asterisk symbols in the figure. 

6.3.3 Association of Subject-Level Expressions of cNBR and iNBR   

This experiment sought to determine whether cNBR and/or iNBR are driven by the PBR 

in the visual cortex. In light of this, we compared the magnitude of the relationships between PBR 

and the two NBRs, with the strength of the relationships between the two NBRs. The scatter plots 

in Fig. 6.6 depict the subject-wise mean expressions of iNBR versus cNBR, PBR versus iNBR, 

and PBR versus cNBR, for both attention cases separately. Even though the PBR and cNBR were 

elicited in regions close to each other on the same brain hemisphere, the cNBR showed a 

significantly greater correlation with the iNBR than with the PBR (attended case: z = 3.1001, p < 
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0.0019, and unattended case: z = 2.9969, p < 0.0027). This suggests that PBR is less likely to 

directly cause the cNBR or iNBR. 

6.3.4 Spatial Patterns Similarity Between Interhemispheric BOLD Responses    

We examined the spatial similarity of the visual patterns of the evoked BOLD responses 

in the brain. Fig. 6.7 demonstrates the result of this analysis on inflated visual regions of the brain. 

The regions associated with iNBR and cNBR showed minimal spatial similarity quantified by the 

dice score (DSC = 0.0517 ± 0.0249; mean ± SD). This similarity was significantly lower (p < 

0.0163) than the spatial similarity between regions occupied by iNBR and PBR (DSC = 0.0668 ± 

0.0312; mean ± SD) for the attended visual stimulation. This observation provides evidence that 

the structural connections between the two hemifields such as Callosal pathways (Bocci et al. 

2014; Fabri et al. 2011) could not account for the tight coupling of the two NBRs demonstrated in 

the previous analysis. 

Figure 6.4: Extracted HRFs of the BOLD response for: a) the attended, and b) the unattended 

cases. The HRFs are adjusted by averaging their values for 5 seconds before the stimulus 

begins. HRF magnitudes are calculated using percent change.  Error bars indicate the 

standard error of the mean. The iNBR and cNBR’s HRFs are significantly different from one 

another (* p < 0.05; ** p < 0.01; Bonferroni correction). 



83 

 

6.3.5 Relationship with Task Performance    

We investigated the relationship between NBRs and task performance, as mentioned 

previously. Fig. 6.8 illustrates the result of behavioral correlates of all 3 BOLD signals. As shown, 

despite a marginally significant relationship between PBR and performance (r = -0.1799, p > 

0.2541), the cNBR (r = 0.0469, p > 0.7678) and the iNBR (r = 0.0504, p > 0.7510) did not show 

any statistically significant relationship. This suggests that neither of the two NBRs may directly 

contribute to task performance or get modulated by it. 

 

Figure 6.5: A) Definitions of amplitude, as well as peak, onset, falling edge, and undershoot 

times of the BOLD signals. B-F) Student’s t-test of any statistically significant difference 

between the B) amplitude, C) peak time, D) onset time, E) falling edge time, and F) 

undershoot time of the two NBRs and PBR HRFs. Error bars indicate the standard error of 

the mean. Statistically significant differences are marked with asterisk symbols (* p < 0.05; ** 

p < 0.01; uncorrected). 
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Figure 6.6: Comparisons between the mean strengths of the BOLD responses to the attended 

(a, b, and c) and unattended stimuli (d, e, and f). Regression lines including all data points 

are depicted by dashed black lines, while the solid red lines depict the regression lines in the 

absence of the few outlier data points. As quantitatively shown here, independent of the 

attention case, the correlation between iNBR and cNBR is significantly higher than those 

with PBR. 

Figure 6.7: Visualization of spatial similarities between the BOLD response patterns. The 

margins for different visual areas are shown in different colors. 
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6.3.6 Attention Modulation of PBR, cNBR, and iNBR    

In this analysis, we investigated the effect of attention on the BOLD responses. Our null 

hypothesis was that there would be no difference between extracted HRFs (resulting from visual 

stimulation) between the attended and unattended cases at each time point. Results are illustrated 

in Fig. 6.9. As shown here, attention did not significantly modulate PBR, except at t=2 seconds 

post-stimulation where a significant change between the amplitudes of attended and unattended 

HRFs was observed. Meanwhile, the amplitude of both NBRs’ HRFs significantly increased 

around 3-4 seconds after the stimulus began as a result of attention (cNBR: 18.89%, t = 1.4977, p 

> 0.1380; iNBR: 23.28%, t = 3.3751, p < 0.0011). Similarly, attention modulated the return to 

baseline times for both NBR HRFs by reducing them (cNBR: ∆t=-0.6921 s, t = -1.3098, p > 

0.1939; iNBR: ∆t= -1.7913 s, t = -2.6791, p < 0.0090). While there are some key differences 

between the iNBR and cNBR HRFs’ modulations by attention in terms of reaching the statistical 

significance level, overall, they seem to share a similar trend of attention dependency (Fig. 6.9 b 

and c, highlighted by the red shades). This modulation trend seems to be different than the effect 

of attention on PBR’s HRF (Fig. 6.9 a). These results suggest that the potential mechanism 

underlying iNBR and cNBR is likely to be different from that of PBR. 

Figure 6.8: Relationship of the amplitudes of the a) cNBR, b) iNBR, and c) PBR with task 

performance. The dashed lines show the trend in the data. 
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6.4. Discussion and Conclusion 

 In this chapter, we studied the characteristics of two NBRs induced simultaneously by 

unilateral visual stimulation in the human visual cortex contralaterally and ipsilaterally. To our 

knowledge, no prior study has detected and characterized the cNBR and iNBR evoked 

simultaneously following the same unilateral visual stimulation. First, we showed that the 

strengths of both NBRs increased linearly with visual stimulus duration. Although linearity of 

individual NBR types has been investigated before (Shmuel et al. 2002; Klingner et al. 2010), 

however, the linearity of concurrent occurrence of iNBR and cNBR due to unilateral stimulation 

is under investigated. The linearity assessment is of extreme importance since most fMRI analyses 

use the linearity assumption to extract the BOLD signals (e.g., general linear modeling). 

 Furthermore, the analysis of the HRFs extracted from the cNBR and iNBR revealed no 

significant difference in amplitudes and dynamics after the multiple comparison correction. 

Figure 6.9: The effect of attention on a) PBR, b) cNBR, and c) iNBR. PBR gets affected by 

attention only at t=2 s while cNBR and iNBR show similar modulation trends by 

attention. Statistically significant differences are marked with asterisk symbols (* α = 0.05, 

Bonferroni correction). 
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However, this was not the case for PBR’s HRF which showed significant differences with the 

HRFs of the two NBRs. Similar findings have been reported in the literature on the difference 

between PBR and NBR HRFs. For example, (Shmuel et al. 2002) reported a significant difference 

between the falling edge times of PBR and cNBR HRFs extracted from the visual cortex of the 

human brain. Moreover, our results were consistent with (Shmuel et al. 2002) in that there was a 

significant correlation between the expression of cNBR and PBR. Interestingly, in our analysis, 

the correlation between cNBR and iNBR was significantly higher than the correlation between the 

BOLD responses of the same brain hemisphere (i.e., PBR and cNBR). This novel observation 

suggests that the two NBRs, despite being separated by two brain hemispheres, are likely to be 

generated by a common process. Furthermore, we illustrated that the spatial similarities between 

the fMRI patterns of iNBR and both cNBR (Dice score below 5%) and PBR (Dice score below 

6%) are very low. This evidence illustrates that the callosal pathways, could not be responsible for 

simultaneous observation of tightly coupled cNBR and iNBR, otherwise there would have been a 

higher spatial similarity score between the two NBRs than between the iNBR and PBR. 

 Furthermore, we did not find a significant correlation between task performance and the 

two NBRs. Although behavioral correlates of PBR have been reported (Pessoa et al. 2002), there 

is no consensus on the behavioral correlates of NBRs. Some studies suggest a significant 

correlation between task performance and the amplitude of iNBR (Kastrup et al. 2008). In contrast, 

under similar experimental conditions as in (Kastrup et al. 2008), authors in (Schäfer et al. 2012) 

did not find such a statistically significant relationship. Further experiments with larger sample 

sizes are needed to thoroughly investigate the behavioral correlates of the two NBRs. 

 We also found that attending to visual stimuli led to a very small but significant increase 

in the ipsilateral NBR. Similarly, other studies have reported an increase in the overall NBR size 
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in response to increased attention (Bressler et al. 2013; Heinemann, Kleinschmidt, and Müller 

2009; Müller and Kleinschmidt 2004). In addition to the magnitude, by analyzing the dynamics of 

the extracted HRFs time-series corresponding to the two NBRs, we observed similar patterns of 

differences between the two in the presence and absence of attention. Similar findings have been 

reported about the attention modulation on NBR HRFs in macaque monkeys’ visual cortex 

(Shmuel et al. 2006). 

 Considering the similarities in the properties and characteristics of the two NBRs 

investigated in this research, we speculate that they are the result of the same process. In other 

words, our findings suggest that the cNBR and iNBR are associated with similar neural and/or 

vascular mechanisms. Since the characteristics of the two NBRs were mostly different from PBR, 

this mechanism is perhaps different from the PBR’s underlying mechanism, and it may involve 

subcortical brain structures with projections into both hemispheres. 
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Conclusion 

Summary 

In this dissertation, we applied Artificial Intelligence and Signal Processing techniques to 

large cohorts of MRI and CT images with the goal of intelligent interpretation of complex visual 

patterns in imaging data. As more MRI and CT scans are conducted every day, it is essential to 

design and develop frameworks that enable automatic, reliable, and fast processing of such images 

for clinical and research purposes. Doing so results in substantial savings in costs and experts’ 

time. Additionally, Artificial Intelligence can detect patterns in the imaging data that might not 

necessarily be visible to the human eye. This results in less biased and less subjective interpretation 

of the data.  

In particular, in this dissertation we applied Artificial Intelligence and Signal Processing 

methods to four medical imaging problems, namely: 1) Weakly-supervised automated quality 

assessment of dMRI volumes; 2) Weakly-supervised automated major artifact type identification 

in dMRI poor-quality volumes; 3) Supervised automated labeling of spatially-informed lung 

texture patterns (sLTPs) associated with Emphysema subtypes on lung CT images; and 4) 

Detection and characterization of ipsilateral and contralateral negative BOLD responses in human 

visual cortex on fMRI scans.  

In the first problem, through the use of weakly-supervised learning strategies, we 

demonstrated that dMRI volumes can be reliably, quickly, and automatically quality controlled 

into good and poor-quality volumes. Specifically, we developed a 2-step framework for this task. 

In the first step, we designed and implemented two convolutional neural networks (CNNs) to 

predict the quality labels associated with ROIs of two different sizes (i.e., small and large) 

extracted from the dMRI volume under investigation. In the second step, we utilized these 
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predicted labels in a tailored voting algorithm to predict the final quality label associated with the 

whole dMRI volume under investigation. Our results demonstrated the practicality of our proposed 

artificial intelligence-based framework for fast and automatic quality control of dMRI volumes.  

We motivated the second problem by acknowledging that a binary quality assessment is a 

necessary but not sufficient step prior to carrying out any further analysis on medical images. Since 

acquiring medical images such as dMRI are expensive, it is often beneficial to detect the type of 

the existing artifact in poor-quality volumes, and try to restore the image (if possible). Hence, in 

order to address this problem, by using weakly-supervised learning strategies, we designed and 

implemented a 2-step framework for automatic and reliable artifact type classification in dMRI 

volumes. In the first step, we developed a Squeeze-and-Excitation (SE) CNN to predict quality 

labels of N mutually exclusive and collectively exhaustive (MECE) slabs extracted from the dMRI 

whole volume under examination. In the second step, we used the predicted slab-level artifact 

labels to predict the volume-level artifact class using a voting algorithm. We tested our model on 

two different cohorts of dMRI data and demonstrated the practicality of our framework for 

automatic four class artifact classification.    

In the third problem, we transited from MRI modality to CT. Specifically, we focused on 

large cohorts of lung CT scans of human subjects with history of Emphysema disease. Through 

the use of supervised learning approach, we designed a framework for automatic, and cohort-

invariant labeling of ten class of sLTPs associated with six novel CT Emphysema subtypes 

(CTES). In particular, we designed and implemented a SE-CNN to predict the sLTP class labels 

of small ROIs randomly sampled from lung CT images. Following this step, by using the mapping 

between sLTPs and CTES, we used the predicted sLTP labels of sampled ROIs to perform 

Emphysema subtyping and predict their CTES class label. We trained, validated, and tested our 
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model on one cohort, namely SPIROMICS V1, and then in order to show robustness with respect 

to change in cohort, we tested our model (as is, without any modifications or parameter tuning) on 

MESA-Lung exam 5. Our results demonstrated robustness of our proposed sLTP and CTES 

classifier with respect to different cohorts and scanner types.  

Finally, in the fourth and last problem, we focused on two types of negative BOLD 

responses (NBR) elicited in human brain during unilateral visual stimulation that are captured via 

fMRI scans. In particular, we designed an event-related fMRI experiment with two unilateral 

sensory stimulations (i.e., visual and audio stimuli) that resulted in sustained ipsilateral negative 

BOLD response (iNBR) and contralateral negative BOLD response (cNBR) in human brain. We 

focused on iNBR and cNBR due to visual stimulation and conducted several experiments to 

visualize and characterize these two responses. In particular, through the use of mathematical 

modeling and signal processing techniques, we showed the linearity of both NBRs with respect to 

stimulus duration. We then extracted the hemodynamic response functions (HRFs) of the two 

NBRs and demonstrated that the two HRFs have no statistically significant difference in their 

overall shape and dynamic. Next, we showed that the two NBRs are tightly coupled as quantified 

by their strong and statistically significant Pearson correlation coefficients. Following that, we 

tested the relationship between the fMRI task performance and the two NBRs and realized that 

there is no association between the two. In order to investigate if bilateral structural connections 

such as Callosal pathways could account for the above-mentioned similarities between the two 

NBRs, we tested the spatial similarity between the response patterns of the two NBRs. The result 

of this analysis provided evidence that Callosal pathways are most likely not the underlying 

process behind iNBR and cNBR. Finally, we investigated the effect of attention on the HRFs of 

iNBR and cNBR and realized that attention modulates the two HRFs a few second following the 
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onset of stimulation by increasing their magnitudes. Putting all results together, we concluded that 

there is a common mechanism underlying iNBR and cNBR and this mechanism is potentially 

different from the one giving rise to the positive BOLD response.  

Future Directions  

Despite the contributions made in this dissertation, there still remains room for more 

contribution to further advance the field. In this section, we briefly discuss some potential future 

directions for each one of the four projects discussed in this dissertation.  

Future directions for Problem 1 and 2: One avenue for future directions for these two 

problems, is to learn artifact finger prints directly from the K-space (i.e., raw MRI measurements 

space containing spatial frequencies) instead of the image domain. K-space contains all 

information needed to construct an MR image. Hence, in theory, one should be able to detect 

artifacts directly from K-space prior to image reconstruction. Since K-space contains complex 

numbers, one approach would be to either design CNNs that directly operate with complex-valued 

numbers, or to treat the real and imaginary parts of the measurements as two separate channels 

that are related to each other by satisfying the magnitude constraint (i.e., ‖𝐶‖ =

√(𝑅𝑒{𝐶})2 + (𝐼𝑚{𝐶})2 where C is a complex number, Re{} denotes the real part, and Im{} 

denotes the imaginary part of C). Detecting artifacts directly from K-space prior to image 

reconstruction is beneficial in the sense that one does not need to wait for the image to be fully 

reconstrued to perform quality control. This allows for integration of an intelligent real-time 

quality control tool with the MRI scanner. Hence, in the event that the acquired MR scan is 

contaminated with artifact(s), the MR technician is able to conduct another scan while the patient 

(or subject in research settings) is still in the scanner. 
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Another path for future work is to expand the number of artifact classes for the artifact 

classifier that was designed and implemented in this thesis. In particular, the fourth class (i.e., MRI 

miscellaneous artifacts) served as an umbrella artifact category. One can further divide this class 

to a number of sub-classes corresponding to different artifacts such as Eddy currents, susceptibility 

artifacts, etc.   

Future directions for Problem 3: In this project we developed a classifier for sLTP and 

CTES labeling using only the information available in a lung CT scan. However, lung CT scans 

are not the only source of information for investigating COPD diseases such as Emphysema. The 

genomic data contain a great deal of information on risk factors associated with COPD diseases. 

One future direction would be to use the genomic information in combination with the CT imaging 

data for studying Emphysema subtyping and progression. One way to approach this would be to 

design a CNN that takes both CT images and genomic data as inputs to process the emphysema 

related information. Another future direction is to investigate the longitudinal progression of 

sLTPs and CTES and to see whether an artificial intelligence-based model is capable of predicting 

the transition between different sLTPs as Emphysema progresses over time in the lung.  

Future directions for Problem 4: In this project, we investigated the properties of iNBR and 

cNBR and concluded that the two possibly have the same underlying mechanism. However, we 

were unable to identify what exactly this mechanism could be. Identifying such a mechanism 

requires more experiments perhaps by including data from other modalities (such as EEG 

recordings). Since fMRI is an indirect way of measuring neuronal activities, it would be better to 

combine fMRI data with other direct measurements of neuronal activity to investigate the 

underlying mechanism of the two NBRs. Doing so can tell us more about the possibility of having 

a pure or partial neuronal mechanism underlying iNBR and cNBR.   
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