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Abstract

Some results in half-space KPZ universality

Shalin Parekh

Stochastic partial differential equations (SPDEs) are a central object of study in the field of

stochastic analysis. Their study involves a number of different tools coming from probability

theory, functional analysis, harmonic analysis, statistical mechanics, and dynamical systems.

Conversely SPDEs are an extremely useful paradigm to study scaling limit phenomena

encountered throughout many other areas of mathematics and physics. The present thesis is

concerned mainly with one particular SPDE, introduced in [99], called the Kardar-Parisi-Zhang

(KPZ) equation, which appears universally as a fluctuation limit of height profiles of microscopic

models such as interacting particle systems, directed polymers, and corner growth models. Such

limit results are deemed instances of “weak KPZ universality," a field born from the seminal

paper of Bertini and Giacomin [16]. We extend results on weak KPZ universality in a number of

different directions. In one direction, we prove a version of Bertini-Giacomin’s result in a

half-space by adapting their methods to this setting, thus extending a result of [45] and

completing the final step towards the proof of a conjecture from [15]. In another direction, we

also prove a result for the free energy for directed polymers in an octant converging to the KPZ

equation in a half-space with a nontrivial normalization at the boundary. In a third direction, we

return to the whole-space regime and extend the Bertini-Giacomin result to the case of several

different initial data coupled together, proving joint convergence of ASEP with its basic coupling

to KPZ driven by the same realization of its noise. Finally we prove a “nonlinear" version of the

law of the iterated logarithm for the KPZ equation in a weak-noise but strong-nonlinearity

regime. Beyond their intrinsic purpose, one application of all these extensions and generalizations

is to take limits of known results and identities for discrete systems and pass them to the limit to

obtain nontrivial information about the KPZ equation itself, which is a well-known methodology

launched by I. Corwin and coauthors [40].
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Chapter 1: Introduction and Background

This thesis presents a collection of results about scaling limits of weakly asymmetric systems aris-

ing in probability theory and statistical mechanics. The central object throughout this thesis will

be the Kardar-Parisi-Zhang (KPZ) equation. This is a stochastic PDE first introduced in [99] that

arises naturally as a scaling limit of discrete growth models and interacting particle systems. The

projects described herein involve proving convergence of some of these models to the KPZ equa-

tion and its variants, and as corollaries taking limits of discrete identities for these models in order

to prove nontrivial continuum identities.

The KPZ equation can be formally written as a PDE on the domain R+ × R where intuitively

the R+ coordinate stands for the time variable and the R coordinate stands for the spatial variable.

It is given by

∂th(t, x) = ∂2xh(t, x) + (∂xh(t, x))
2 + ξ(t, x),

where ξ is a space-time white noise, that is, a random function characterized non-rigorously by the

property that its values are independent at distinct space-time values. One can formalize this by

realizing the noise ξ as a Gaussian measure on some infinite dimensional vector space of Schwarz

distributions with covariance structure given by the L2(R+ × R) inner product.

In light of the physical relevance of the KPZ equation, one often imagines the solution h as a

time-evolving height profile. The equation formally says that, starting from a given initial height

profile h(0, x), the time evolution of the height profile is governed by three separate phenomena:

a smoothing mechanism governed by the heat operator, a “lateral growth" (also called “slope-

dependent growth") mechanism governed by the nonlinear term, and a random forcing governed
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by the noise term.

1.1 The Kardar-Parisi-Zhang Equation

In the mathematical physics literature, the relevance of the KPZ equation is that it arises “univer-

sally" as a scaling limit of a vast collection of models, conjecturally any model that exhibits the

three mechanisms described above, namely smoothing, weakly slope-dependent growth, and ran-

dom forcing (noise). The weakly slope-dependent growth refers to the fact that one needs to tune

the asymmetry of any given model to zero (at a very specific rate) to find KPZ fluctuations in the

limit. This reflects the fact that the KPZ equation interpolates as a one-parameter orbit between

two bona fide fixed points, a symmetric one and a strongly asymmetric one. The former is the so-

called Edwards-Wilkinson fixed point (also known as the additive-noise stochastic heat equation)

which is a Gaussian object that appears in the small-time limit of the KPZ equation under a 1:2:4

scaling of the exponents in fluctuations, space, and time respectively. This object appears as the

limit of models exhibiting smoothing, symmetric growth, and random forcing. The other is the

KPZ fixed point which appears as the large-time limit of the KPZ equation under a 1:2:3 scaling of

the exponents in fluctuations, space, and time respectively (one also needs to subtract a divergent

height shift). This object has been rigorously constructed only recently [54, 117] and conjecturally

appears as the limit of models exhibiting smoothing, strongly slope-dependent growth, and random

forcing. See [40] for more detailed information about this crossover. The recent open problems in

the area have been to extend the class of models for which the convergence to the KPZ equation

and KPZ fixed point are known, and in this thesis we will present a few steps toward the former.

Despite the fairly straightforward interpretation of the KPZ equation, it is classically ill-posed

due to the singularity of the noise term ξ, and making sense of it (let alone proving convergence

of models to it) is a tremendous challenge in and of itself. Instead one often defines the Hopf-Cole

solution of the KPZ equation as h := log(Z) where Z solves the multiplicative-noise stochastic

2



heat equation (SHE)

∂tZ(t, x) = ∂2xZ(t, x) + Z(t, x)ξ(t, x).

This is still classically ill-posed because ξ is a Schwartz distribution and not a proper function,

but one can nonetheless make sense of this equation more sensibly than working directly with the

KPZ equation itself, exploiting the classical Itô-Walsh stochastic calculus as developed in [150].

Specifically one defines the solution to be any random function Z, adapted to the filtration of the

noise ξ, and satisfying the Duhamel relation

Z(T,X) =

∫
R
PT (X − Y )Z0(Y )dY +

∫ T

0

∫
R
PT−S(X − Y )Z(S, Y )ξ(dS, dY ), (1.1)

where PT (X) = (2πT )−1/2e−X
2/2T is the heat kernel. See Chapter 2.4 below where we discuss

how to rigorously perform the Picard iteration to obtain a solution to the above Duhamel relation

in some Banach space of functions. A result of [122] shows that the solution of the stochastic

heat equation started from any positive measure necessarily stays strictly positive for all t > 0 and

x ∈ R, hence we may indeed take the logarithm to obtain a solution of the KPZ equation. This

method of constructing solutions for the KPZ equations is called the Hopf-Cole solution and is

done in most of the projects described below.

One exception is Chapter 5 below, where we present some joint work with Yier Lin, in which

we work directly with the KPZ equation using Hairer’s theory of regularity structures [83]. This is

the only chapter in which we work directly with the KPZ equation and so let us briefly describe our

result there and how is a manifestation of weak universality. To motivate our result, recall that the

law of the iterated logarithm for Brownian motion states that if B is a standard Brownian motion

then lim supt→0(2t log log(1/t))
−1/2Bt = 1. Strassen in a seminal work [141] generalized this

statement to show the functional form of this statement, namely that if we let Bϵ(t) = ϵ−1/2B(ϵt)

then the set of limit points as ϵ→ 0 in C[0, 1] of the sequence {(2 log log(1/ϵ))−1/2Bϵ}ϵ is almost

surely equal to the unit ball of its Cameron-Martin space. Our goal in Chapter 5 is to prove a
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“nonlinear" version of Strassen’s law in which the fluctuations respect the Burgers-like structure

of the KPZ equation. We thus formulate the following.

For ϵ ∈ (0, e−e] let Cϵ := (log log(1/ϵ))1/2, and let hϵ denote the Hopf-Cole solution to the KPZ

equation

∂th
ϵ = ∂2xh

ϵ + Cϵ(∂xh
ϵ)2 + ξ,

with initial data h(0, x) = 0. Then for any s, y ≥ 0 the set of limit points as ϵ ↓ 0 in Cs,y :=

C([0, s] × [−y, y]) of the sequence of functions C−1
ϵ ϵ−1/2hϵ(ϵ2t, ϵx) is a.s. equal to the compact

set KZero given by the closure in Cs,y of the set of smooth functions h satisfying

h(0, x) = 0,
∥∥∂th− ∂2xh− (∂xh)

2
∥∥
L2([0,s]×[−y,y]) ≤ 1.

If we instead let hϵ(0, x) be a two sided Brownian motion (fixed for different values of ϵ) then the

same result holds but with compact limit setKBr given by the closure of smooth functions h ∈ Cs,y

satisfying

h(0, 0) = 0, ∥∂xh(0, ·)∥L2[−y,y] ≤ 1,
∥∥∂th− ∂2xh− (∂xh)

2
∥∥
L2([0,s]×[−y,y]) ≤ 1.

If we likewise define kϵ to be the solution of

∂tk
ϵ = ∂2xk

ϵ + C−1
ϵ (∂xk

ϵ)2 + ξ,

then the same compact limit set results hold for C−1
ϵ ϵ1/2kϵ(ϵ−2t, ϵ−1x). Moreover, the same results

hold in stronger topologies given by parabolic Holder seminorms up to but excluding exponent 1/2

(see Definition 5.4.7).

Note that in the first result stated above (for the family hϵ), the nonlinearity must be scaled along

with the parameter ϵ, so that it blows up in the ϵ → 0 limit. If we did not do this then the limiting
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compact set would simply agree with that of the linearized equation ∂thLinear = ∂2xhLinear + ξ,

namely

KLinear := {h ∈ Cs,y : h(0, x) = 0,
∥∥∂th− ∂2xh

∥∥
L2([0,s]×[−y,y]) ≤ 1}.

Indeed this can be proved by decomposing hKPZ = hLinear+v where hKPZ is the Hopf-Cole solu-

tion to KPZ with initial data zero and v is a remainder term which has better regularity than hLinear

(see e.g. Theorem 3.19 of [132]). Then under the scaling necessary to obtain Strassen’s law, it is

easy to check that the remainder term converges a.s. to zero in the topology of C([0, s]× [−y, y])

and the set of limit points for the part corresponding to hLinear can be shown to be KLinear by

applying Proposition 5.1.2 (see Example 5.4.6 below).

Likewise in the second result stated above (for the family kϵ), the nonlinearity must be scaled

along with the parameter ϵ so that it vanishes in the ϵ → 0 limit. If we did not do this then the

asymptotics would be wrong entirely and instead one would need to apply a scaling that respects

the tail behavior of the KPZ fixed point [117], namely (log log(1/ϵ))2/3, and this is done in [53].

The fact that the nonlinearity of the KPZ equation must be scaled along with the parabolic scaling

of space-time to obtain a nontrivial limit set in the Strassen law can be seen as a manifestation of

weak KPZ universality, which roughly states that the KPZ equation is only scale-invariant up to

a one-parameter family of equations which interpolates between two bona fide fixed points [40].

The manner in which we prove the above theorem uses the theory of regularity structures [86] and

is robust enough to prove similar theorems for other rough equations such as Φ4
2.

1.2 Interacting Particle Systems

An interacting particle system on the integer lattice is just a time-homogeneous Feller process on

the state space {0, 1}Z. In a seminal work [16], Bertini and Giacomin proved that a certain in-

teracting particle system called the asymmetric simple exclusion process (ASEP) converges to the

KPZ equation in a certain sense. The ASEP can be interpreted as a countable collection of particles
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performing asymmetric random walks on the integer lattice subject to hardcore repulsion, that is,

jumps are suppressed whenever one particle tries to jump onto another. The repulsion limits the

number of particles at each site to at most one, and makes the system physically interesting and

difficult to analyze.

One may define a time-evolving height profile ht(x) to the particle system in a natural way so

that ht(x + 1) − ht(x) is 1 if there is a particle at site x at time t and is −1 if there isn’t. The

dynamics of ht(x) can be independently described as follows: starting from some initial height

profile h0(x) each peak turns into a valley at some exponential rate p and independently each val-

ley turns into a peak at some exponential rate q. Here by peaks we mean points x ∈ Z such that

ht(x) is larger than both ht(x − 1) and ht(x + 1), and likewise valleys are the locations where it

is smaller, see Figure 2.1. Bertini and Giacomin showed that if one scales the system diffusively

in time and space, and if one tunes the parameters of the models simultaneously at the appropriate

rate, then nonlinear (non-Gaussian) fluctuations appear. Their precise result is that if hϵt(x) denotes

the height function with p = e
√
ϵ and q = e−

√
ϵ then ϵ1/2hϵϵ−2t(ϵ

−1x)− ϵ−1t converges in law to the

solution of the KPZ equation.

The proof of Bertini and Giacomin is done using the following idea: let η ∈ {0, 1}Z denote

the configuration space, i.e., ηt(x) = ht(x + 1) − ht(x). Bertini and Giacomin obtain a discrete

Hopf-Cole transform by defining

Zϵ
t (x) = exp

(
− λht(x) + νt

)
where λ, ν will be specified later. Then

dZϵ
t (x) = Ω(x)Zϵ

t (x)dt+ dMt(x)

6



with Mt a martingale, and

Ω(x) = ν + (e2λ − 1)cR(η, x) + (e−2λ − 1)cL(η, x)

where cR and cL are the left and right jump rates for the configuration η. Letting p = e
√
ϵ/2 and

q = e−
√
ϵ/2, and

ν = p+ q − 1, λ =
1

2
log

(
q

p

)
we get that

1

2
∆Zϵ

t (x) =
1

2
Zϵ
t (x)

(
e−ληt(x+1) + eληt(x) − 2

)
= Ω(x)Zϵ

t (x)

which is shown by considering the four different possible cases for (ηt(x), ηt(x+ 1)) ∈ {−1, 1}2.

For this choice of λ, ν, we thus obtain

dZϵ
t (x) =

1

2
∆Zϵ

t (x)dt+ dMt(x),

so that Zϵ
t (x) satisfies a discrete stochastic heat equation. One sees that the discrete martingales

satisfy

d

dt
⟨M(x),M(y)⟩t ≈


0, x ̸= y

ϵZt(x)
2 −∇+Zt(x)∇−Zt(x), x = y

,

so that the noise is “approximately uncorrelated and multiplicative." This discrete heat equation

can then be extensively analyzed using the Duhamel formula, from which convergence to KPZ can

be shown purely through discrete heat kernel estimates and martingale analysis.

Now let us discuss exclusion systems with open boundaries and their SPDE limits. Although

the spatial coordinate of the KPZ equation takes values on the full real-number line, one can ask

whether there exists a sensible version of the equation in which the spatial variable takes values

7



either on a half-space [0,∞) or on a bounded interval [0, 1]. One needs to impose boundary con-

ditions in order to make the equation on such a domain, but it can be sensibly done as in [45, 70].

One might ask what boundary conditions may arise naturally as the limit of discrete models such

as interacting particle systems, and this is the subject of Chapter 2 below.

It turns out that the Neumann boundary condition (suitably interpreted) on the KPZ equation on a

half-space can be made to arise as the limit of a natural probabilistic model called the open ASEP.

Open ASEP is a version of ASEP in which the particles are confined to just the non-negative in-

tegers and one imposes a boundary condition at the zero site in which particles can be created or

annihilated at any specified rates α and δ respectively. Half-line open ASEP may be viewed as a

Markov process on the state space {0, 1}Z+ . Our main result, which generalized [45] to the case

of arbitrary boundary conditions, states that there are tunings of the creation and annihilation rates

such that one can obtain the Neumann boundary KPZ equation with any desired boundary con-

dition. However the assumptions required for the convergence result of [45] is that the Neumann

boundary conditions are positive (both for the prelimiting model and consequently the continuum

equation as well). This is necessary to ensure that certain heat kernel estimates are true, which are

used crucially in proving tightness and identification of the limit points.

Our improvement of [45] is primarily a technical improvement of the heat kernel estimates so

that they do not depend on the positivity of the Neumann boundary parameters. Specifically we

develop an entire analysis for the deterministic Robin-boundary heat kernels in the discrete regime,

and our estimates are robust enough that they can be passed to the limit and used in the continuum

as well. We also clarify a number of omitted details and fix various small mistakes. Consequently

we extend their convergence result to all possible values of boundary conditions. This made rig-

orous an important identity from [15] that allows to prove the long-time fluctuation behavior of

half-space KPZ at the origin for the critical value of the boundary parameter A = −1/2 at which

a certain interesting phase transition occurs in half-space KPZ models (see Chapter 2.1).
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Following [45] we also prove a version of this result where there are two boundaries and the

limiting object is the KPZ equation on a bounded interval with Neumann boundary conditions at

both boundaries. The discrete system is depicted in Figure 1. This result also required us to im-

prove a separate collection of very fine heat kernel estimates. Our bounded interval result was used

in [42] in order to classify invariant measures for KPZ on a bounded interval by taking a limit of

the invariant measures for ASEP, which are known. All of this will be done in Chapter 2 below.

We also extend the Bertini-Giacomin result in a slightly different direction in Chapter 4. The

ASEP has a natural coupling of its dynamics when one starts from several distinct initial data

simultaneously. Specifically when a particle from one configuration jumps from x to y then a par-

ticle from the other configuration also jumps from x to y, assuming that there is a particle at x in

the second configuration and that site y is not blocked in the second configuration. This is called

the basic coupling for exclusion dynamics and it was introduced by Liggett in the 70s in order to

classify the steady states of exclusion systems [111]. We extend the convergence result of Bertini

and Giacomin to show that convergence of the height functions does hold jointly to the solution of

KPZ driven by the same noise. The two sequences of initial data can be anything near stationarity.

The manner in which we prove our result is by proving a result about space-time processes cou-

pled onto the same probability space that individually solve the KPZ equation in law. Namely

suppose we have two standard space-time white noises ξ1, ξ2 coupled onto the same probability

space. Suppose furthermore that they satisfy the following conditions:

1. E[(ξ1, f)(ξ2, g)] = 0 for all f, g ∈ L2(R+ × R) which have disjoint supports.

2. For every t > 0 the spatial process h2(t, ·) − h1(t, ·) has a.s. finite p-variation for some

p < 2, where hi is a solution of ∂thi = ∂2xh
i + λi(∂xh

i)2 + ξi, for i = 1, 2. Here λ1, λ2 ∈ R

and furthermore we assume Hölder continuity and sub-linear growth at infinity of the initial

data hi(0, ·).
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Then ξ1 = ξ2.

The intuition for this result is as follows: if the noises are uncorrelated or only partially correlated

then the spatial process in the difference of the solutions of the KPZ equations will be locally

Brownian with some diffusivity. One expects a sort of contrapositive to this, and hence our result.

The proof uses a result of Perkowski and Rosati [132] which developed the pathwise solution

theory for KPZ on the full line, similarly to Hairer’s seminal work on the circle [86].

1.3 Directed Polymers

Analogous to the Bertini-Giacomin result for interacting particle systems, in [3] it was shown that

the KPZ equation can also be made to arise as the limit of the partition function in a certain model

of random walks in random environments called directed polymers. Directed polymers are natu-

ral probabilistic objects that were first introduced in [94, 96]. They generalize directed first- and

last-passage percolation and have deep connections to statistical mechanics and stochastic anal-

ysis. Specifically, we consider an environment {ωi,j}(i,j)∈Z≥0×Z consisting of i.i.d., mean-zero,

finite-variance random variables. The standard deviation of the weights is referred to as the inverse

temperature. One may define a partition function Zω(n, x) as a sum over all directed nearest-

neighbor simple random walk paths (i, γi)0≤i≤n of length n starting from (0, x), of the product of

all weights eωi,γi along the path. Similarly, there is also a natural way to define random Markovian

transition densities associated to this environment ω, wherein a nearest-neighbor path γ has prob-

ability proportional to the product of weights eωi,γi along it. As is standard practice in statistical

mechanics, one may then ask questions about the existence of infinite-volume limits of these path

measures and their typical fluctuation scale, as well as the typical scale and shape of the fluctua-

tions of the partition function itself [37].

Many seminal results in these directions have been proved, perhaps most notably that there is a

phase transition which becomes apparent in high dimensions. Specifically, in spatial dimensions

greater than two, there is a strictly positive critical value of the inverse temperature below which
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weak disorder holds, meaning that the fluctuations of a typical polymer path look like Brownian

motion and one may construct infinite-length path measures [39, 37]. Such polymers are said to

exhibit weak disorder. In contrast, lower-dimensional polymers at any nonzero inverse tempera-

ture are known to be characterized by strong disorder, meaning that the path fluctuations are quite

different and there is no sensible notion of an infinite volume Gibbs measure [37]. The results

of [3, 2] examined the partition function in a regime that lies between strong and weak disorder.

Specifically, in spatial dimension one, they scaled the inverse temperature of the model like n−1/4

and simultaneously applied diffusive scaling to the partition function, and there they observed that

the fluctuations are governed by the multiplicative-noise stochastic heat equation and that the path

measures themselves have a continuum analogue. This is called intermediate disorder and is a

manifestation of weak KPZ universality.

To briefly describe the intermediate disorder result of [3] we consider an iid random environment

{ωij}i≥0,j∈Z. For a nearest-neighbor path S = (Si)
t
i=1 on Z, we define the weight of the path

ω(S) =
t∏
i=1

ωi,Si
.

One then defines the directed polymer partition function as

Zω(t, x) =
∑

paths S from
(0,0) to (t,x)

ω(S).

Let {ηij}i≥0,j∈Z be an iid random environment of mean-zero variables, with variance β2. Defining

Zωn

n (t, x) be the partition function associated to the rescaled environment

ωnij := 1 + n−1/4ηij,

the main result of [3] essentially states that 2−nTn1/2Zωn

n (nT, n1/2X) converges in distribution as

n→ ∞, to the solution of the multiplicative-noise stochastic heat equation (that is, the Hopf-Cole

11



transform of the KPZ equation):

∂TZ = ∂2XZ + βZξ,

with Dirac initial data. This is done by first writing

Zωn

n (t, x) = ESSRW
[ n∏
i=1

(1 + n−1/4ηi,Si
)

∣∣∣∣η],
for a simple symmetric random walk (SSRW) denoted by (Si) within the expectation. Then by ex-

panding the product and writing the expression in terms of transition densities of the random walk,

one obtains an nth degree polynomial in the variables ηt,x, whose coefficients consist of products

of transition densities. The authors then show, under the diffusive scalings of Zωn

n defined above,

term-by-term convergence of that series to an explicit random variable which admits a chaos series

expansion in terms of iterated integrals against a Gaussian space-time white noise. The latter chaos

series is none other than the Picard iteration of the Duhamel relation (1.1) for the stochastic heat

equation, which gives a sketch of the required convergence.

In this thesis, the main result of Chapter 3 below is to take a more complicated intermediate

disorder limit (involving inhomogeneous transition densities) of a nontrivial polymer identity at-

tributable to symmetries arising from representation theory, specifically Proposition 8.1 from [14]

which is depicted in Figure 3.1 below. It is an invariance in distribution for the partition function of

a certain polymer model (with inverse gamma weights) in an octant under a switching of the bound-

ary weights. The limiting identity turns out to relate the multiplicative-noise half-space stochastic

heat equation with Dirichlet boundary condition to the same equation with Robin boundary condi-

tion (latter corresponding to the Neumann-boundary KPZ under the Hopf-Cole transform).

Specifically we prove the following. Let Z(A)
Rob(T,X) denote the solution of the multiplicative

SHE with Robin boundary parameter A and delta initial data Z(A)
Rob(0, X) = δ0(X) (this is defined

precisely in Chapter 2.4 below). Let Z(A)
Dir(T,X) be the solution to the multiplicative SHE with
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Dirichlet (zero) boundary condition and initial data Z(A)
Dir(0, X) = eBX−(A+ 1

2
)X , where B is a stan-

dard Brownian motion independent of ξ. Then for each boundary value A ∈ R and all T ≥ 0 we

have the following equality of distributions:

Z
(A)
Rob(T, 0)

d
= lim

X→0

Z
(A)
Dir(T,X)

X
.

The main challenge in proving this was to find the limit of the Dirichlet side of the equation, one

may note that the normalization by X near the origin makes the result more difficult. Convergence

of polymers to Neumann KPZ on the left hand side was already known thanks to [151] based on

the seminal work of [2].

Our limiting identity seems to have been used in the physics literature to derive some moment

formulas and conjectural asymptotics for the half-space KPZ equation [101]. The ultimate mo-

tivation in proving this identity was to try to prove the law of large numbers and the Gaussian

fluctuation behavior of the supercritical half-space KPZ equation at the origin as conjectured in

[10], though this still seems out of reach.

1.4 Partitions

Returning to the topic of interacting particle systems, there is a canonical choice of initial data in

ASEP and TASEP called the “narrow wedge," in which one has all particles to the left of the ori-

gin and only empty sites to the right. When started from narrow-wedge initial data, one can view

TASEP and ASEP as a Markov process on partitions, by viewing a partition as a Young diagram

oriented in the Russian convention. For TASEP in particular, this viewpoint is useful because the

evolution up to time t can be discretized in time and then studied using the theory of Markov chains

on Schur processes, see [25]. Thus one may want to study other measures on partitions, such as

those weighted by the number of irreducible representations of the symmetric group associated to

that partition, or more generally by the number of chains of subpartitions.
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This will be done in Chapter 6. In joint work with Ivan Corwin [44], our goal was to answer a

question posed to us by Richard Stanley: find the limit shape (as n → ∞) of any sequence λn

of partitions of n which maximizes the number of subpartitions among all other partitions of n.

We found this problem to be interesting because it is a zero-temperature limit (β → ∞) of the

measure on partitions of n in which each partition λ has weight proportional to s(λ)β where s(λ)

is the number of subpartitions of λ. We expected to find a limit shape of the Young diagrams

as n → ∞ and the side lengths are normalized by n1/2. Our methods are similar in principle to

the one used for large deviations of the uniform measure on partitions of n, studied in [56] and

the limit shape we obtained is actually the same one. Our methods are purely variational and an-

alytic despite the problem having been motivated from exactly solvable models and algebraic tools.

Our limit shape, called Vershik’s Curve can be described as the graph of the function f(x) =

2
√
3

π
log(2 cosh( π

2
√
3
x)) lying above the graph of |x|. One advantage of our formulation is that

we can prove that the partition of n that maximizes k-chains of subpartitions also has the same

limit shape, for any fixed value of k. One possible future direction is to try to study the maxi-

mizer of k-chains where k grows with n. We expect so see a nontrivial transition from Vershik’s

Curve to a different curve called the Vershik-Kerov-Logan-Shepp curve (see [148] and [115]) when

k = ⌊αn1/2⌋ for α > 0. The limit shape should depend on α (and interpolate smoothly between

the two curves depending on whether α is close to zero or to infinity), and we expect to be able to

study this by looking at large deviations of domino tilings as in [36]. This particular result is not a

manifestation of KPZ universality, rather it is only peripherally related in that it was motivated by

methods that are related as described above, for instance via the relation to TASEP.
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Chapter 2: KPZ limit of open exclusion processes with Neumann boundary

It was recently proved in [45] that under weakly asymmetric scaling, the height functions for open

ASEP on the half-line and on a bounded interval converge to the Hopf-Cole solution of the KPZ

equation with Neumann boundary conditions. In their assumptions [45] chose positive values

for the Neumann boundary data, and they assumed initial data which is close to stationarity. By

developing more extensive heat-kernel estimates, we extend their results to negative values of the

Neumann boundary parameters, and we also show how to generalize their results to narrow-wedge

initial data (which is very far from stationarity). As a corollary via [15], we obtain the Laplace

transform of the one-point distribution for half-line KPZ, and use this to confirm t1/3-scale GOE

Tracy-Widom long-time fluctuations.

2.1 Introduction

2.1.1 Main Results

Fix parameters α, γ, p, q ≥ 0. We define half-space ASEP (or ASEP-H) to be the interacting parti-

cle system on positive integers Z>0 where particles at site x > 1 jump to site x− 1 at exponential

rate q if site x − 1 is unoccupied, and particles at site x > 0 jump to site x + 1 at rate p if site

x + 1 is unoccupied. If a neighboring site is occupied, then a particle feels no inclination to jump

there (i.e., rate 0). All jumps are independent of each other. Furthermore, particles at site x = 1

are created at rate α if site x = 1 is unoccupied, and particles at site x = 1 are destroyed at rate

γ if site x = 1 is occupied. We may define a height function associated to this particle system

as follows: let ht(0) denote twice the number of particles annihilated minus twice the number of

particles created at site x = 0 up to time t. Then define ht(x + 1) to be ht(x) + 1 if there is a

particle at site x + 1, and define ht(x + 1) to be ht(x) − 1 otherwise. By linear interpolation, we
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view the height function as a random element of C([0,∞),R).

The preceding paragraph gives a notion of ASEP on the half-line Z≥0, but we can also define

a similar particle system on the bounded interval {0, ..., N}. To do this, we fix two more param-

eters β, δ ≥ 0, and we create and annihilate particles at site N with rates δ, β, respectively. Our

main result may now be stated as follows:

Theorem 2.1.1 (Main Result). Fix some parameters A,B ∈ R. For half-line ASEP, we let I =

[0,∞) and for bounded-interval ASEP, we set I = [0, 1]. For ϵ > 0, we define:

p =
1

2
e
√
ϵ, q =

1

2
e−

√
ϵ, µA = 1− Aϵ, µB = 1−Bϵ.

Let us also define the creation/annihilation rates:

α =
p3/2(p1/2 − µAq

1/2)

p− q
, β =

p3/2(p1/2 − µBq
1/2)

p− q
,

γ =
q3/2(q1/2 − µAp

1/2)

q − p
, δ =

q3/2(q1/2 − µBp
1/2)

q − p
.

Let hϵt(x) denote the height function associated to this particle system. We then define

Hϵ(T,X) := ϵ1/2hϵϵ−2T (ϵ
−1X)−

(1
2
ϵ−1 +

1

24

)
T.

Assume that Hϵ(0, X) is near-equilibrium (see Definition 2.5.2), and converges weakly to some

initial data H0. Then Hϵ(T,X) converges in distribution to the Hopf-Cole solution of the KPZ

equation (cf. Definition 2.4.1) on the interval I with Neumann boundary parameters A (at X = 0)

and B (at X = 1 if I = [0, 1]), started from H0. The convergence occurs in the Skorokhod Space

D([0,∞), C(I)).

This result is proved as Theorem 2.5.7 below. Before this, we will first introduce the Hopf-Cole

solution of KPZ with Neumann boundary conditions, and prove some existence results about it
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(see Section 4). We get a similar result when the initial data is not near equilibrium, but we must

subtract a logarithmically-divergent height-shift:

Theorem 2.1.2 (Extension to Narrow-Wedge Initial data). Let A,B and I be as before. For ϵ > 0,

let p, q, α, β, γ, δ, and hϵt(x) be the same as in Theorem 2.1.1. We define

Hϵ(T,X) := ϵ1/2hϵϵ−2T (ϵ
−1X)−

(1
2
ϵ−1 +

1

24

)
T − 1

2
log ϵ.

Assume that we start from the initial configuration of zero particles (i.e., Hϵ(0, X) = −ϵ−1/2X).

Then we have that Hϵ(T,X) converges in distribution to the Hopf-Cole solution of the KPZ equa-

tion on the interval I with Neumann boundary parameters A (at X = 0) and B (at X = 1 if

I = [0, 1]). The initial data is narrow-wedge, and the convergence occurs in the Skorokhod Space

D((0,∞), C(I)), see Definition 2.6.4.

This will be proved as Theorem 2.6.8 below. See Section 6 for the precise result.

Let us discuss for a moment why our results are more general than those of [45]. There, the authors

prove convergence of open ASEP to the KPZ equation under the assumption of non-negative values

for the Neumann boundary conditions. However, the non-negativity only seems to be a technical

restriction which simply makes the analysis a little bit easier. In other words, the zero value for the

Neumann boundary condition does not actually correspond to any meaningful phase transition in

the associated particle system (see Remark 2.11 in [45]), hence one would expect that it is just a

superficial restriction. Thus, the main purpose of the current work is to generalize their results to

the case when the boundary parameters for the PDE are negative. This corresponds to branching in

the associated diffusion process, hence the associated kernels will be super-probability measures

in general. This brings about some new challenges which were not seen in [45], and we develop

several new heat-kernel estimates in order to resolve these challenges. We also found a few small

mistakes in the proofs of tightness in [45, 47] and related papers; therefore we will show how to fix

these issues in the current work (see the discussions at the beginning of the proofs of Propositions

17



2.5.4 and 2.6.2).

One further restriction which the authors used in [45] was to assume near-equilibrium initial data,

which roughly means that the sequence of initial conditions of the particle system are close to

stationarity. We also remove that assumption in the current work, and (as stated in Theorem 2.1.2

above) we extend their results to narrow-wedge initial data for the ASEP (which corresponds to δ0

initial data for the stochastic heat equation).

It may seem a little bit uncertain what the immediate usage of such a technical generalization

might be. The first application is the following theorem. It is the main result of [15] and was

proved modulo the main result of our paper, Theorem 2.1.2. Specifically, it gives us the exact

one-point statistics (via the moment-generating function) for half-line KPZ. We will combine our

result with theirs and reiterate it here:

Corollary 2.1.3. Let H(T,X) denote the solution to the KPZ equation on [0,∞) with Neumann

boundary parameterA = −1/2 (this choice ofA corresponds to the triple point of half-line ASEP;

see Section 1 and Remark 2.11 of [45]). Then for ξ > 0 we have that

E
[
exp

(
− ξ exp

(
H(T, 0) +

T

24

))]
= E

[ ∞∏
k=1

1√
1 + 4ξ exp[(T/2)1/3ak]

]

where a1 > a2 > ... forms the GOE Point process (see Definition 6.1 in [15]).

As an easy corollary of this fact, we obtain a limit theorem for the half-space KPZ equation with

Neumann(−1/2) boundary condition on [0,∞). As expected we get a random-matrix-type of

distribution in the limit.

Corollary 2.1.4. Let H(T,X) as in the previous theorem. Then one has weak convergence

P
(
H(T, 0) + T

24

(T/2)1/3
≤ x

)
T→∞−→ FGOE(x)
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where FGOE(x) = P(a1 ≤ x) is the Tracy-Widom GOE distribution.

Proof. This may be derived via Proposition 2.1.3 below together with [24, Lemma 4.1.39] in a

manner which is now standard, see for instance [26, Corollary 2.4]. However we also give an

original proof for completeness. Fix x, and let

Q(T ) := H(T, 0) +
T

24
− (T/2)1/3x.

Replacing ξ with ξe−(T/2)1/3x in Corollary 1.3, we find that

E[exp(−ξ exp(Q(T )))] = E

[
∞∏
k=1

1√
1 + 4ξ exp [(T/2)1/3 (ak − x)]

]
.

Letting T → ∞ on both sides, applying the dominated convergence theorem, and noting that

a1 = maxk ak, we find that for all ξ > 0,

lim
T→∞

E[exp(−ξ exp(Q(T )))] = E
[
1[a1−x≤0]

]
= P (a1 ≤ x) .

At this point in the proof, we state a general fact: If {Xn} is any collection of non-negative random

variables such that for every ξ > 0 we have that E
[
e−ξXn

] n→∞−→ c ∈ [0, 1], then we necessarily

have that Xn converges in distribution (as n → ∞ ) to a random variable which equals 0 with

probability c, and equals +∞ with probability 1 − c. To prove this, denote by C([0,∞],R) the

space of functions f which have a limit at infinity, and denote by f(∞) that limit. We clearly have

that E [f (Xn)]
n→∞−→ cf(0) + (1 − c)f(∞) for any function f ∈ C([0,∞],R) which is a finite

linear combination of functions of the form x 7→ e−ξx, with ξ ≥ 0. By Stone-Weierstrass, such

functions are uniformly dense in C([0,∞],R), therefore we conclude the same result for every

f ∈ C([0,∞],R). From the previous paragraph and the preceding computations, we conclude that

eQ(T ) d−→ 0 · 1[a1≤x] +∞ · 1[a1>x], as T → ∞.
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Consequently, we find that

lim
T→∞

P(Q(T ) ≤ 0) = lim
T→∞

P
(
eQ(T ) ≤ 1

)
= P (a1 ≤ x) ,

as desired.

Although the primary application of our results is the aforementioned limit theorem, we will men-

tion that there are also other applications which come to mind. The main key behind our approach

is the fine heat kernel estimates which are given in Section 3 below, and these are based on the work

of [57] and [45]. These heat kernels pRt may be interpreted as transition probabilities for random

walks with branching or killing in discrete-space/continuous-time. Indeed, positive choices for the

boundary parameter A correspond to the random walk particle being killed at the boundary with

some probability depending on A, whereas negative choices for A correspond to a new particle

being created at the boundary at some rate depending on A (so we get a branching process). As an

indirect corollary, we get some fairly intricate information about the behavior of continuous-time

random walks and branching processes.

2.1.2 Historical Background

Interacting particle systems in one spatial dimension have been extensively studied in recent years.

Of particular interest is the Asymmetric Simple Exclusion Process (ASEP), in which particles on

Z jump independently to the left and right at exponential rates in a collectively Markovian way,

subject to a drift in one chosen direction and with other particles acting as a deterrent to the general

movement. Such processes fall within what has come to be known as the “KPZ Universality

Class," a broad collection of space-time processes coming from both mathematics and physics,

which are unified by some salient features [40]. The “universality" of this class refers to the long-

time behavior of the model: how it looks on large scales in both time and space. Objects which

fall into this class will generally have temporal fluctuations on the order of t1/3 and the statistics
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will be described by probability distributions which come out of random matrix theory, such as the

GUE and GOE eigenvalue distributions. Moreover, the space-time fluctuations of such objects are

generally seen to converge under suitable weak scalings to the solution of the KPZ equation:

∂TH =
1

2
∂2XH + λ(∂XH)2 + ξ

where ξ is a Gaussian space-time white noise and λ > 0 is a constant. The first major result in this

direction was [16], where the authors used a Hopf-Cole transformation at the discrete level in order

to obtain the KPZ equation as a limit of ASEP on the whole line. Since then, this discrete Hopf-

Cole method has proved very useful in a number of generalizations, see for instance [5, 48, 57, 45,

47, 105]. Ever since the original Bertini-Giacomin result, a number of other methods have also

been developed to find the KPZ equation arising in some kind of weakly asymmetric environment.

In particular, the notion of energy solutions [73, 81] has been very useful under the assumption of

stationary initial data, see for instance [61]. Furthermore, Hairer in [83] has recently developed a

notion of regularity structures which has also proved successful in a number of weakly asymmetric

results [90] directly at the level of the KPZ equation. The theory of paracontrolled distributions

[79] has also yielded results in this direction, see [73] and [80] for one example of success in this

area using the notion of “energy solution."

While the aforementioned results were either on the whole line or on the circle, the subject of the

current paper is how to deal with ASEP on intervals with boundary (namely, Z≥0 and {0, ..., N}),

and to prove a small step towards KPZ universality of such a model. The features of such a model

were physically analyzed as early as the seventies: in [110], Liggett considered open ASEP on

the half-line in the special case that α
p
+ γ

q
= 1, and he characterized the invariant measures for

the process and found the domains of attractions of each invariant measure. Convergence to the

KPZ equation was first considered and proved in the primary reference [45], in the case that the

Neumann boundary parameters A,B ≥ 0.
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The key feature of open ASEP is that the boundary conditions are governed by sources and sinks,

where particles are created and annihilated at certain exponential rates. Under the weak scaling,

the choice of rates corresponds directly to choosing Neumann boundary parameters in the KPZ

equation (or equivalently, choosing Dirichlet boundary conditions for the stochastic Burgers equa-

tion, the spatial derivative of KPZ).

Derrida [59] has pointed out that on a bounded interval, open ASEP exhibits three distinct phases

as the number N of particle sites becomes very large. These phases are described by a statistic

called the current, which may be defined as the limit (as N → ∞) of the expected value (under the

stationary measure) of the number of particles to cross a single bond in one unit of time (usually we

also normalize by (p− q)−1, to account for the asymmetry). These three phases may be described

as high-density, low-density, and maximal current (we will not give many details but see and Sec-

tion 1 of [45]). In essence, the high-density phase occurs when the destruction rate β at the right

boundary is very small, hence particles do not leave the system fast enough, causing jamming. In

contrast, the low-density phase occurs when the creation rate α at the left boundary is very small,

thus particles are created so slowly that system still lacks efficiency. The maximal-current phase is

characterized by quick creation at the left boundary and quick destruction at the right boundary, so

that the system operates at maximal efficiency.

To put our work into the physical context described in the preceding paragraph, our main result

(Theorem 2.1.1) essentially states that the KPZ equation describes the height-function fluctuations

as we zoom into an ϵ1/2-window around the critical triple point between the three phases on the

open ASEP phase diagram, see page 4 of [45]. The boundary parameters A and B govern the

“direction” from which we approach the triple point.

We note that [26] and [22] contained the first results which recognized that the Laplace trans-
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form of various one-point distributions appearing in the KPZ universality class may be written

as a multiplicative functional of some determinantal point process (usually Airy or GOE/GUE),

and indeed [15] builds on such types of results. We should also mention that we are not the first

ones to study the heat kernels for random walks or Brownian motion with branching; [129] studies

Neumann-boundary heat kernels in continuous time and space. His work is for general bounded

domains in Rd, though his estimates are not as intricate as ours.

Two weeks prior to posting this preprint, there was a related result which was posted by Gonçalves,

Perkowski, and Simon in [74]. In that paper, they prove (under the assumption of stationary ini-

tial data and boundary parameters A = B = −1
2
) weakly asymmetric convergence of ASEP to

stochastic Burgers using very different methods than the ones we use here (the Hopf-Cole trans-

form). Instead, they use the notion of energy solutions which was developed in [73] and proved to

be unique in [81]. While their method has the advantage of avoiding the Hopf-Cole transform, it

is only able to deal with stationary initial data due to the fact that they use various hydrodynamic

estimates which are only available for stationary (Bernoulli) initial data with boundary parameters

A = B = −1
2
. We should mention that the energy solutions in [74] contain additional error terms

which are not observed in our work. These additional terms may effectively be seen as Itô correc-

tions which arise since we work at the level of the SHE and they work directly with KPZ.

Outline: The paper will be organized as follows. In Section 2 we will formally define ASEP

on the half-line and on bounded intervals. Furthermore, we will define the appropriate scaling of

the model under which it converges to the KPZ equation. Section 3 contains a number of heat ker-

nel estimates for the Robin-boundary Laplacian in discrete-space and continuous-time. We also

give a construction of the continuum Robin heat kernel and prove a couple of useful estimates

about it. Section 3 is the main key behind our approach, hence this is the longer section which

is extensively used in the remainder of the paper. In Section 4, we will define what it means to

solve the KPZ equation on [0,∞) and [0, 1] with Neumann boundary conditions. This involves
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the usual notions of mild solutions and weak solutions. In Section 5, we will prove that the model

defined in Section 2 converges to the KPZ equation with Neumann boundary conditions, under

the assumption of “near-equilibrium" initial data. The key behind this is to prove some uniform

Hölder estimates for the weakly-scaled, exponentially transformed height functions of the ASEP,

and to prove a “crucial cancellation" as in Section 5 of [45]. The key novelty of our approach will

be that we avoid the Green’s function analysis of [45] but instead rely purely on the heat kernel

estimates to prove this cancellation. In Section 6, we will try to generalize our results to the case

when the initial data in the stochastic heat equation is δ0, which is very far from equilibrium. The

idea here is to note that in short time, the solution to the stochastic heat equation started from δ0

stabilizes to equilibrium.

Acknowledgements: The author wishes to thank Ivan Corwin for suggesting the problem, for

providing helpful discussions about various issues which came up during the writing of the paper,

and also for thoroughly reading the preliminary drafts of this paper. We also wish to thank Hao

Shen and Li-Cheng Tsai, who provided some very useful discussions.

2.2 Definition of the Model and Scalings

Much of this section is adapted directly from the primary reference [45], but we reiterate all of the

definitions provided there (albeit emphasizing different points) so that the reader will have easy

access to this material.

Let us first introduce some notational conventions. Firstly, we will always use lowercase letters

s, t, x, y when working with our particle system on a microscopic (discrete) scale, or looking at “lo-

cal" properties. In contrast, we will use capital letters S, T,X, Y when working on a macroscopic

scale or dealing with objects which are continuous (or limiting to a continuous object). Hopefully

this will become clearer as the reader progresses through the paper.
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Let us define a few operators which we will work with throughout the paper. Firstly, if f : Z → R

is any function then

∇+f(x) := f(x+ 1)− f(x)

∇−f(x) := f(x− 1)− f(x)

∆f(x) := f(x+ 1) + f(x− 1)− 2f(x).

One should note that ∇+∇− = ∇−∇+ = ∆.

Also, we will always use Λ to denote either the discrete interval {0, ..., N} or the discrete half-

line Z≥0 or both (depending on context). Similarly, we will use I to denote the continuous interval

[0, 1] or [0,∞).

Definition 2.2.1 (ASEP-H). Fix p, q, α, γ ≥ 0. We define the half-line ASEP (or ASEP-H for

brevity), to be the following continuous-time Markov process. We let η(x) ∈ {−1, 1} denote the

occupation variable at site x ≥ 1, where the value −1 denotes an unoccupied site and +1 denotes

an occupied site. The state space is then η ∈ {−1, 1}Z≥1 . The dynamics are given as follows: For

x > 0, a particle jumps from site x to x+ 1 at exponential rate

p

4
(1 + ηt(x))(1− ηt(x+ 1)).

In other words, it jumps at rate p if site x is occupied and site x + 1 is not, otherwise it feels no

inclination to jump (or the site x may be unoccupied). Similarly, for x ≥ 1, a particle jumps from

site x+ 1 to x at rate
q

4
(1− ηt(x))(1 + ηt(x+ 1)).

Furthermore, a particle at site x = 1 is annihilated and created (respectively) at rates

γ

2
(1 + ηt(0)) and

α

2
(1− ηt(0)).
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All jumps and annihilations/creations occur independently of each other.

Definition 2.2.2 (ASEP-B). Fix p, q, α, γ, β, δ ≥ 0. We define the half-line ASEP (or ASEP-B for

brevity), to be the following continuous-time Markov process. We let η(x) ∈ {−1, 1} denote the

occupation variable at site x, where we think of −1 denoting an unoccupied site and +1 denoting

an occupied site. The state space is then η ∈ {−1, 1}{1,...,N}. The dynamics are the same as those

of the ASEP-H, except that a particle at site x = N is annihilated or created (respectively) at rates

β

2
(1 + ηt(0)) ,

δ

2
(1− ηt(0)).

All jumps and annihilations/creations occur independently of each other.

Definition 2.2.3 (Height Functions). Consider the model ASEP-H or ASEP-B defined above. For

t ≥ 0 we define ht(0) to be twice the net number of particles removed (i.e., twice annihilations

minus creations) that have occurred up to time t. We then define

ht(x) := ht(0) +
x∑
j=0

ηt(j)

which is an integrated version of the ASEP (in the sense that ∇+ht(x) = ηt(x+ 1)).

The purpose of the above definition of ht(0) is so that the annihilation or creation of particles does

not affect the value of the height function on the interior points of the interval.

We now move onto the appropriate scaling for our models. A well-known fact is that there is

no way to scale time, space, and fluctuations in the KPZ equation so as to leave its solution in-

variant in law (the universal fixed point for the [1:2:3] scaling is highly nontrivial and was recently

just proved for TASEP in [117]). However there are a couple of well-known weak scalings which

fix the law, in which we simultaneously scale the model parameters together with the time, space,

and fluctuations. The weak scaling considered for the ASEP height functions in this paper is the

following:
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Definition 2.2.4 (Weakly Asymmetric Scaling). Throughout this paper we will fix A,B ∈ R. Let

ϵ > 0 small enough so that all rates defined below are positive. We define p = 1
2
e
√
ϵ and q = 1

2
e−

√
ϵ,

and we also define µA = 1− Aϵ and µB = 1−Bϵ. We then define

α =
p3/2(p1/2 − µAq

1/2)

p− q
, β =

p3/2(p1/2 − µBq
1/2)

p− q
,

γ =
q3/2(q1/2 − µAp

1/2)

q − p
, δ =

q3/2(q1/2 − µBp
1/2)

q − p
,

and we will always consider ASEP-H and ASEP-B with these parameters. For ASEP-B, we make

the further assumption that ϵ = 1
N

, where N is the length of the bounded interval.

Remark 2.2.5. As in Remark 2.11 of [45], we note that we have the following asymptotics:

p =
1

2
+

1

2

√
ϵ+O(ϵ),

q =
1

2
− 1

2

√
ϵ+O(ϵ).

For the creation/annihilation rates, we have

α =
1

4
+
(3
8
+

1

4
A
)√

ϵ+O(ϵ), β =
1

4
+
(3
8
+

1

4
B
)√

ϵ+O(ϵ),

γ =
1

4
−
(3
8
+

1

4
A
)√

ϵ+O(ϵ), δ =
1

4
−
(3
8
+

1

4
B
)√

ϵ+O(ϵ).

As stated in [45], this physically corresponds to “zooming into an ϵ1/2-window" around the critical

triple point of the open ASEP.

Definition 2.2.6 (Gärtner Transform). For x ∈ Z≥0 we define the ASEP-H Gärtner transformed

height function as

Zt(x) := e−λht(x)+νt,
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Figure 2.1: A depiction of the height function at a time t, in bold. We also show the jump/cre-
ation/annihilation rates and the way the height function changes when jumps of this rate occur.

where

λ =
1

2
log

q

p
, ν = p+ q − 2

√
pq.

The definition is the same for ASEP-B, but we only consider x ∈ {0, ..., N}.

We remark that although the above Z depends on ϵ via the parameters p, q, we chose not to make

this explicit because of notational convenience. The choice for these specific values of λ, ν is not

immediately obvious, but becomes clear in the following theorem, which is really the key behind

proving weak convergence to SHE in the limit as ϵ→ 0. We also remark that

λ = −
√
ϵ, ν =

1

2
ϵ+

1

24
ϵ2 +O(ϵ3)

which is the reason behind the temporal drift in Theorem 2.1.1.

Lemma 2.2.7 (Hopf-Cole-Gärtner Transform). The Gärtner-transformed height functions Zt(x)

for ASEP-H satisfy the following discrete SHE:

dZt(x) =
1

2
∆Zt(x)dt+ dMt(x)

where Mt(x) is a pure-jump martingale (i.e., a sum of compensated Poisson processes) whose

predictable bracket ⟨M(x),M(y)⟩t satisfies the following asymptotics as ϵ→ 0:
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d

dt
⟨M(x),M(y)⟩t =


0 x ̸= y

ϵZt(x)
2 −∇+Zt(x)∇−Zt(x) + o(ϵ)Zt(x)

2 x = y > 0

ϵZt(x)
2 + o(ϵ)Zt(x)

2 x = y = 0

(2.1)

for all x ∈ Z≥0. Moreover, Zt satisfies a discrete Robin boundary condition for all t

Z(−1) = µAZt(0).

For ASEP-B, the same holds true for x ∈ {0, ..., N − 1}, but we have that the third asymptotic in

(2.1) holds for x = y = N and moreover

Zt(N + 1) = µBZt(N).

Proof. The complete proof is found in Lemmas 3.1 and 3.3 of [45]. We also note that the original

paper [69] was the first to recognize this transformation in the whole-line case, while [16] used it

to prove the first of these KPZ-type convergence results. We further remark that (for fixed choices

of p, q, µA, µB) this lemma only holds true for the exact values of α, γ, β, δ chosen in Definition

2.2.4 as well as the values of λ, ν chosen in Definition 2.2.6. See the proof in [45].

2.3 Heat Kernel Estimates

In this (fairly lengthy) section, we will provide all of the technical estimates which will be used in

the analysis used to prove convergence of the Gärtner-transformed height functions to the solutions

of the SHE. There will not be very much motivation, but the purpose of the estimates will become

clear as the reader progresses through Sections 5 and 6. Therefore, the reader may wish to skip

some of the more technical results of this section, and come back as needed while progressing

through the remainder of the paper.
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Before moving onto the estimates, one should remark that the Robin heat kernels pRt (x, y) which

are introduced below may be interpreted as transition probabilities for a continuous-time, discrete-

space random walk with killing and branching at the boundary with certain probability, according

the the corresponding parameters A,B. The case when A > 0 corresponds to killing, while the

case A < 0 corresponds to branching (and similarly for B). Likewise, the continuous-space ker-

nels PT which are introduced in Section 3.3 may be interpreted as transition densities for Brownian

motion with branching/killing. See for instance Section 4.1.1 of [45], [133], or [97] for more on

this subject.

As a notational convention, we will usually writeC for constants, and we will not generally specify

when irrelevant terms are being absorbed into the constants. We will also write C(A), C(A, T ), or

C(a, b, A,B, T ) whenever we want to specify exactly which parameters the constant depends on.

This will not always be specified, though.

We also mention that we will occasionally use estimates from Appendix A of [57], where they

derive very useful estimates for the (standard) whole-line heat kernel pt. Hence the reader may

wish to briefly look at that appendix while proceeding.

2.3.1 Half-Line Estimates

Unless otherwise specified, A ∈ R will be fixed. For ϵ > 0, we set µA = 1 − Aϵ, and we let

pRt (x, y) be the semi-discrete heat kernel on Z≥−1 with Robin boundary parameter µA: this is

defined as the fundamental solution to the discrete-space, continuous-time heat equation:

∂tp
R
t (x, y) =

1

2
∆pRt (x, y), pR0 (x, y) = 1{x=y}, x, y ∈ Z≥0

with the boundary condition

pRt (−1, y) = µAp
R
t (0, y).
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Here, the discrete Laplacian ∆ is taken in the second spatial coordinate. The “generalized image

method" of Section 4.1 of [45] says that

pRt (x, y) = pt(x− y) + µApt(x+ y + 1) + (1− µ−2
A )

∞∑
z=2

pt(x+ y + z)µzA (2.2)

where pt(x) is the standard heat kernel on the whole line Z (i.e., the unique solution to the

continuous-time, discrete-space equation ∂tpt(x) = 1
2
∆pt(x) with p0(x) = 1{x=0}). One may

also directly check that (2.2) holds true.

Proposition 2.3.1. FixA ∈ R and T > 0. For b ≥ 0, there is a constant C(A, b, T ) (not depending

on ϵ) such that for all t ∈ [0, ϵ−2T ], and all x, y ∈ Z≥0 we have that

pRt (x, y) ≤ C(A, b, T )(1 ∧ t−1/2)e−b|x−y|(1∧t
−1/2).

Proof. Note that the first two terms appearing in the right-hand-side of Equation (2.2) already

satisfy a bound of the desired form, by the standard (whole-line) heat kernel estimates (A.12) of

[57]. Therefore it suffices to show that the third term appearing in the right side of (2.2) also

satisfies a bound of the desired type. Since µA = 1 − Aϵ it follows that log(µA) ≤ C(A)ϵ. For

t ∈ [0, ϵ−2T ] we then have ϵ ≤ C(T )(1 ∧ t−1/2) and therefore log(µA) ≤ C(A, T )(1 ∧ t−1/2).

Summarizing, there exists C(A, T ) such that for all t ∈ [0, ϵ−2T ] we have that

µA ≤ eC(A,T )(1∧t−1/2).

If A ≥ 0 then we can just take C(A, T ) = 0, otherwise C will be positive. Using the standard heat
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kernel bound (A.12) of [57] it follows that for b > C(A, T ) we have

∞∑
z=2

pt(x+ y + z)µzA ≤ C(b)
∞∑
z=2

(1 ∧ t−1/2)e−b(x+y+z)(1∧t
−1/2) · eC(A,T )(1∧t−1/2)z

= C(b)e−b(x+y)(1∧t
−1/2)(1 ∧ t−1/2)

e2(C(A,T )−b)(1∧t−1/2)

1− e(C(A,T )−b)(1∧t−1/2)

≤ C(A, b, T )e−b(x+y)(1∧t
−1/2)

where we used the fact that e−2q/(1 − e−q) ≤ 1/q for any q ≥ 0. Since t ≤ ϵ−2T we have that

|1− µ−2
A | ≤ C(A)ϵ ≤ C(A, T )(1 ∧ t−1/2) and the result follows.

Proposition 2.3.2. FixA ∈ R and T > 0. For b ≥ 0, there is a constant C(A, b, T ) (not depending

on ϵ) such that for all t ∈ [0, ϵ−2T ], all x, y ∈ Z≥0, all |n| ≤ ⌈t1/2⌉, and all v ∈ [0, 1] we have that

|pRt (x+ n, y)− pRt (x, y)| ≤ C(A, b, T )(1 ∧ t−(1+v)/2)|n|ve−b|x−y|(1∧t−1/2).

When b = 0 this bound holds for all n, not just for n ≤ t1/2.

Proof. The corresponding bounds already hold for the whole-line kernel pt(x), by (A.13) of [57].

So we proceed exactly as in Proposition 2.3.1, using (2.2) with pt replaced by its n-point gradient

∇npt. The fact that the bound holds for all nwhen b = 0 is a consequence of the triangle inequality

applied to the case when n = 1 and v = 1.

Corollary 2.3.3. For any T ≥ 0 and a1, a2 ≥ 0, there exists some constant C = C(a1, a2, A, T )

such that for all x ≥ 0 and t ≤ ϵ−2T we have

∑
y≥0

pRt (x, y)e
a1|x−y|(1∧t−1/2)ea2ϵy ≤ Cea2ϵx,

∑
y≥0

|∇±pRt (x, y)|ea1|x−y|(1∧t
−1/2)ea2ϵy ≤ C(1 ∧ t−1/2)ea2ϵx.

If we replace ea2ϵy with ea2ϵ|x−y| in the first two expressions, then these bounds hold without the

factor ea2ϵx on the RHS.
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Proof. Using Proposition 2.3.1, we find that pRt (x, y) ≤ C(b, T, A)(1∧ t−1/2)e−b|x−y|(1∧t
−1/2), and

moreover

ea2ϵy ≤ ea2ϵxea2ϵ|x−y| ≤ ea2ϵxea2T
1/2(1∧t−1/2)|x−y|

since t ≤ ϵ−2T . Consequently,

∑
y≥0

pRt (x, y)e
a1|x−y|(1∧t−1/2)ea2ϵy ≤ Cea2ϵx

∑
y∈Z

(1 ∧ t−1/2)e(−b+a1+a2T
1/2)|x−y|(1∧t−1/2).

Letting b := 1 + a1 + a2T
1/2 we compute the sum on the RHS:

∑
y∈Z

(1 ∧ t−1/2)e−|x−y|(1∧t−1/2) = (1 ∧ t−1/2)
1 + e−(1∧t−1/2)

1− e−(1∧t−1/2)
≤ C

where we used the fact that (1 + e−q)/(1 − e−q) ≤ 1 + 2/q for q ≥ 0. This proves the first

inequality, and the second one is proved similarly using Proposition 2.3.2 instead of 2.3.1. The

final statement is proved in a similar way.

We now turn to proving temporal bounds for the semi-discrete heat kernel, which will be useful in

proving tightness. This involves different methods that the ones used to prove the spatial bounds

above.

Lemma 2.3.4. Let pt(x) denote the standard heat kernel on the whole line Z (as defined below

Equation (2.2)). Then for µ > 0, t ≥ 0 and x ∈ Z≥0 we have the equality

∞∑
z=−∞

pt(x+ z)µz = µ−x exp

[
1

2

(
µ+ µ−1 − 2

)
t

]
.

Proof. Fixing µ, let F (t, x) denote the sum on the left side. Note that F is defined by a convolution

involving pt, therefore

∂tF (t, x) =
1

2
∆F (t, x) =

1

2
(µ+ µ−1 − 2)F (t, x).

33



Furthermore F (0, x) = µ−x, because p0(x) = 1[x=0]. This proves the given formula. Another way

of putting this is that F is defined by convolving the semigroup pt with an eigenfunction of ∆,

whose eigenvalue is µ+ µ−1 − 2.

Proposition 2.3.5. Fix A ∈ R and T > 0. There is a constant C(A, T ) (not depending on ϵ) such

that for all s < t ∈ [0, ϵ−2T ], all x, y ∈ Z≥0, and all v ∈ [0, 1] we have that

|pRt (x, y)− pRs (x, y)| ≤ C(A, T )(1 ∧ s−1/2−v)(t− s)v.

Proof. First note that it suffices to prove these formulas when v = 0 and v = 1 since the middle

cases follow by a straightforward interpolation. The v = 0 case follows from Proposition 2.3.1,

and thus we only need to prove the v = 1 case. We will only consider the case when A ≤ 0 (so

µA ≥ 1), because the A > 0 case easier and involves similar methods (see Proposition 4.11 of

[45]). To this end, we define a function

F (t, x) =
∞∑

z=−∞

pt(x+ z)µzA = µ−x
A exp

[
1

2
(µA + µ−1

A − 2)t

]
.

We rewrite the right side of Equation (2.2) as

pt(x− y) + µApt(x+ y + 1) + (1− µ−2
A )F (t, x+ y)− (1− µ−2

A )
∞∑

z=−1

pt(x+ y − z)µ−z
A

=: J1(t, x, y) + J2(t, x, y) + J3(t, x, y) − J4(t, x, y).

Now we only need to bound each of the differences |Ji(t, x, y)− Ji(s, x, y)| for 1 ≤ i ≤ 4. When

i = 1, 2, the desired bounds follow directly from equation (A.10) of [57]. For the i = 3 bound,
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note that

|F (t, x)− F (s, x)| = µ−x
A e

1
2
(µA+µ−1

A −2)s

(
e

1
2
(µA+µ−1

A −2)(t−s) − 1

)
≤ 1 · e

1
2
(µA+µ−1

A −2)s ·
(
1

2
(µA + µ−1

A − 2)(t− s) e
1
2
(µA+µ−1

A −2)(t−s)
)

= e
1
2
(µA+µ−1

A −2)t · 1
2
(µA + µ−1

A − 2)(t− s)

where we used the bound eq − 1 ≤ qeq with q = 1
2
(µA + µ−1

A − 2)(t − s). Now we again recall

that µA = 1−Aϵ so that µ−1
A = 1+Aϵ+A2ϵ2 +O(ϵ3), and therefore µA+ µ−1

A − 2 ≤ CA2ϵ2 for

small enough ϵ. Hence when s, t ≤ ϵ−2T , the previous bound gives

|F (t, x)− F (s, x)| ≤ e
1
2
CA2T · 1

2
CA2ϵ2(t− s) = C(A, T ) ϵ2(t− s).

Now we recall that 1− µ−2
A ≤ C(A)ϵ and ϵ < C(T )s−1/2 so that

|J3(t, x, y)− J3(s, x, y)| = (1− µ−2
A )|F (t, x+ y)− F (s, x+ y)|

≤ C(A, T ) ϵ3(t− s)

≤ C(A, T )s−3/2(t− s)

which proves the desired bound for J3.

To prove the bound for J4, we again apply the whole-line estimate (A.10) of [57]

|J4(t, x, y)− J4(s, x, y)| ≤ (1− µ−2
A )

∞∑
z=−1

∣∣pt(x+ y − z)− ps(x+ y − z)
∣∣µ−z
A

≤ (1− µ−2
A )

∞∑
z=−1

Cs−3/2(t− s)µ−z
A

= Cs−3/2(t− s)µA(1 + µ−1
A )
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and we implicitly assume that ϵ is small enough so that µA(1 + µ−1
A ) ≤ C(A). This proves the

claim.

Proposition 2.3.6 (Long-time Estimate). There exist constants C = C(A,B) and K = K(A,B)

such that for every t ≥ 0 and x, y ≥ 0 we have that

pRt (x, y) ≤ C(t−1/2 + ϵ)eKϵ
2t.

We remark that these are “long-time" estimates because they are true uniformly over all t > 0, i.e.,

constants don’t depend on any terminal time ϵ−2T (as opposed to most results here).

Proof. In Equation (6.2.2), the first two terms are clearly bounded by Ct−1/2 by equation (A.10)

of [57] and the third term is bounded in absolute value by |1 − µ−2
A | exp

[
(µA + µ−1

A − 2)t
]

by

Lemma 2.3.4. Since µA = 1− Aϵ, it follows that |1− µ−2
A | < Cϵ and µA + µ−1

A − 2 ≤ Kϵ2. This

completes the proof.

Proposition 2.3.7. For all A and T > 0, there exists C = C(A, T ) such that for t ∈ [0, ϵ−2T ] and

v ∈ [0, 1] we have

sup
x∈Z≥0

∣∣∣∣∑
y≥0

pRt (x, y) − 1

∣∣∣∣ ≤ Cϵvtv/2.

Proof. One may use Lemma 2.3.8 (below) in order to prove this claim. However, we choose to

give a different proof which will generalize easily to the bounded-interval case. Let

f(t, x) =
∑
y≥0

pRt (x, y).

By (1) we know pRt (x, y) = pRt (y, x) and therefore

∂tf(t, x) =
1

2
∆f(t, x) =

1

2

∑
y≥0

(
pRt (y + 1, x) + pRt (y − 1, x)− 2pRt (y, x)

)
=

1

2

(
pRt (−1, x)− pRt (0, x)

)
=

1

2
(µA − 1)pRt (0, x)
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where we canceled out many terms in the first equality of the second line. Note that f(0, x) = 1,

and |µA − 1| = |A|ϵ. Finally (by Proposition 1.2) pRt (0, x) ≤ C(A, T )t−1/2, therefore when

v ∈ [0, 1] we have

|f(t, x)− 1| ≤
∫ t

0

|∂sf(s, x)|ds =
1

2
|A|ϵ

∫ t

0

pRs (0, x)ds

≤ C(A, T ) ϵ

∫ t

0

s−1/2ds = C(A, T ) ϵ t1/2 ≤ C(A, T )ϵvtv/2

where in the last inequality we used the fact that ϵ = ϵvϵ1−v ≤ C(T )ϵvt(v−1)/2 since t ∈ [0, ϵ−2T ].

This proves the claim.

We now turn to proving certain “cancellation estimates" which will be used in identifying the lim-

iting measure on C([0, T ], C([0,∞)) as the solution to the stochastic heat equation.

Lemma 2.3.8. For the next few estimates we will distinguish between different values of A by

writing pRt (x, y;A) for the (ϵ-dependent) Robin heat kernel of parameter A. For all A, all T > 0,

and all b ≥ 0, there exists C(A, b, T ) such that for all x, y ∈ Z≥0 and t ∈ [0, ϵ−2T ] we have

|pRt (x, y;A)− pRt (x, y; 0)| ≤ C(A, b, T ) ϵ e−b(x+y)(1∧t
−1/2),

|∇±pRt (x, y;A)−∇±pRt (x, y; 0)| ≤ C(A, b, T ) ϵ (1 ∧ t−1/2)e−b(x+y)(1∧t
−1/2).

where ∇± denotes the discrete gradient in the first spatial coordinate.

Proof. Note by (6.2.2) that

|pRt (x, y;A)− pRt (x, y; 0)| = (µA − 1)pt(x+ y + 1) + (1− µ−2
A )

∞∑
z=2

pt(x+ y + z)µzA

where pt is the standard (whole-line) heat kernel. Since µA = 1− Aϵ, it follows that |µA − 1| and

|1 − µ−2
A | are both bounded by C(A)ϵ. Moreover pt(x + y + 1) ≤ C(b)e−b(x+y)(1∧t

−1/2) by the
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standard heat kernel bound (A.12) of [57]. Hence we just need to show that

∞∑
z=2

pt(x+ y + z)µzA ≤ C(A, b, T )e−b(x+y)(1∧t
−1/2).

But this was done during Proposition 2.3.1. The proof for the gradient estimates is similar, but we

get left with an extra 1 ∧ t−1/2 by setting v = 1 in Proposition 2.3.2.

Lemma 2.3.9. For A ∈ R, t ≥ 0, and x, y ∈ Z≥0 we define

Kt(x, y;A) := ∇+pRt (x, y;A)∇−pRt (x, y;A).

For a, T ≥ 0 there exists a constant C = C(a,A, T ) such that

∑
y≥1

∫ ϵ−2T

0

|Kt(x, y;A)−Kt(x, y; 0)|eaϵ|x−y|dt ≤ Cϵ1/2.

Proof. Write

|Kt(x, y;A)−Kt(x, y; 0)| ≤ |∇+pRt (x, y;A)−∇+pRt (x, y; 0)||∇−pRt (x, y;A)|

+ |∇+pRt (x, y; 0)||∇−pRt (x, y;A)−∇−pRt (x, y; 0)|

=: J1(t, x, y) + J2(t, x, y).

By Lemma 2.3.8 we have that

J1(t, x, y) = |∇+pRt (x, y;A)−∇+pRt (x, y; 0)||∇−pRt (x, y;A)|

≤ C(A, T ) ϵ (1 ∧ t−1/2)|∇−pRt (x, y;A)|.

Since t ∈ [0, ϵ−2T ] we have that ϵ = ϵ1/2ϵ1/2 ≤ C(T )ϵ1/2(1 ∧ t−1/4) and thus we see that

J1(t, x, y) ≤ C(A, T ) ϵ1/2(1 ∧ t−3/4)|∇−pRt (x, y;A)|.
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Consequently

∑
y≥1

J1(t, x, y)e
aϵ|x−y| ≤ C(A, T )ϵ1/2(1 ∧ t−3/4)

∑
y≥1

|∇−pRt (x, y;A)|eaϵ|x−y|

≤ C(a,A, T )ϵ1/2(1 ∧ t−5/4).

In the last inequality we used the second bound in Corollary 2.3.3. Now integrating both sides of

this inequality from 0 to ϵ−2T we find that

∑
y≥1

∫ ϵ−2T

0

J1(t, x, y)e
aϵ|x−y|dt =

∫ ϵ−2T

0

(∑
y≥1

J1(t, x, y)e
aϵ|x−y|

)
dt

≤
∫ ∞

0

C(A, T, a)ϵ1/2(1 ∧ t−5/4)dt

= C(A, T, a)ϵ1/2.

A similar argument shows that J2 satisfies a similar bound. This proves the claim.

Lemma 2.3.10. Let us write pRt (x, y;A) as in the preceding lemma. For x, x̄ ∈ Z≥0, we have that

∑
y≥0

∫ ∞

0

∇+pRt (x, y; 0)∇+pRt (x̄, y; 0)dt = 1{x=x̄}.

Proof. Let us recall the summation-by-parts identity: if u, v : Z≥−1 → R are absolutely summable,

then
∞∑
y=0

u(y)∆v(y) = u(−1)∇−v(0)−
∞∑

y=−1

∇+u(y)∇+v(y).

Letting u = pRt (x, ·; 0) and v = pRt (x̄, ·; 0), the boundary terms will vanish and we get

−
∞∑
y=0

∇+pRt (x, y; 0)∇+pRt (x̄, y; 0) =
∞∑
y=0

pRt (x, y; 0)∆pRt (x̄, y; 0) =
∞∑
y=0

∆pRt (x, y; 0)p
R
t (x̄, y; 0).
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Since ∆pRt = 2∂tp
R
t , this implies that

−
∞∑
y=0

∇+pRt (x, y; 0)∇+pRt (x̄, y; 0) =
∞∑
y=0

pRt (x, y; 0)∂tp
R
t (x̄, y; 0) + ∂tp

R
t (x, y; 0)p

R
t (x̄, y; 0).

Integrating both sides from t = 0 to ∞ and using the semigroup property, we find that

−
∞∑
y=0

∫ ∞

0

∇+pRt (x, y; 0)∇+pRt (x̄, y; 0)dt =
∞∑
y=0

pRt (x, y; 0)p
R
t (x̄, y, 0)

∣∣∣∣∞
t=0

= pR2t(x, x̄; 0)

∣∣∣∣∞
t=0

= 0− 1{x=x̄}

which proves the claim.

Proposition 2.3.11. Let A ∈ R, T > 0, and a > 0. Let Kt be as in Lemma 2.3.9. There exists

some ϵ0 = ϵ0(A, T, a) and some c∗ = c∗(A, T, a) < 1 such that for ϵ < ϵ0 and x ≥ 1

∑
y≥1

∫ ϵ−2T

0

|Kt(x, y, A)|eaϵ|x−y|dt ≤ c∗.

Proof. For the moment being, let us suppose that we have already proved the claim when A = 0:

there exists some c∗ < 1 such that for small enough ϵ we have

∑
y≥1

∫ ϵ−2T

0

|Kt(x, y; 0)|eaϵ|x−y|dt ≤ c∗.

By Proposition A.8, we also have that

∑
y≥1

∫ ϵ−2T

0

|Kt(x, y;A)−Kt(x, y; 0)|eaϵ|x−y|dt ≤ C(a,A, T )ϵ1/2.
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Putting together both these bounds and using the triangle inequality, we find that

∑
y≥1

∫ ϵ−2T

0

|Kt(x, y;A)| eaϵ|x−y|dt ≤ c∗ + C(a,A, T )ϵ1/2.

Now consider ϵ small enough so that C(a,A, T )ϵ1/2 ≤ (1 − c∗)/2, and we see that the RHS is

smaller than (1 + c∗)/2 =: c′∗ < 1 which proves the claim for arbitrary A.

It remains to prove the claim when A = 0. From now on, we will implicitly assume that A = 0

and we will just write Kt(x, y) and pRt (x, y) with the understanding that A = 0. Let us first

consider the case when a = 0. For this, we imitate the proof of Proposition 5.4 in [45]. Using

Cauchy-Schwarz, it is true that

∑
y≥1

∫ ϵ−2T

0

|Kt(x, y)|dt <
(∑

y≥1

∫ ∞

0

(∇+pRt (x, y))
2dt

)1/2(∑
y≥1

∫ ∞

0

(∇−pRt (x, y))
2dt

)1/2

.

Using Lemma 2.3.10, it is easy to see that the RHS of this expression is equal to 1. Moreover, the

inequality is strict since ∇+pRt ̸= ∇−pRt . This proves that, for each fixed x ∈ Z≥0 and ϵ > 0,

the LHS is strictly less than 1. However, this strict inequality may no longer be true after taking

the supremum over all x and ϵ. Thus, a stronger argument is needed. Recall the Lagrange identity,

which says (∑
i

a2i

)(∑
i

b2i

)
−
(∑

i

aibi

)2

=
∑
i<j

(aibj − ajbi)
2.

This means that

(∑
y≥1

(∇+pRt (x, y))
2

)(∑
y≥1

(∇−pRt (x, y))
2

)
−
(∑

y≥1

|Kt(x, y)|
)2

=
∑

1≤ȳ<y

(
|∇+pRt (x, y)∇−pRt (x, ȳ)| − |∇−pRt (x, y)∇+pRt (x, ȳ)|

)2

. (2.3)

Now, just as in Corollary 5.4 of [45], we claim that there exists some t0 > 0 such that for every
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ϵ > 0, x ∈ Z≥0, and t ≤ t0 we have that

∇±pRt (x, x) ≤ −4

5
, and |∇−pRt (x, x+ 1)| ≤ 1

5
. (2.4)

Indeed, the corresponding bound may be seen to be true for the standard heat kernel on the whole

line Z: for t ≤ t0 we have

∇±pt(0) ≤ − 9

10
, and |∇−pt(−1)| ≤ 1

10
. (2.5)

In fact when t = 0 the left quantity is simply −1 and the right quantity is 0. Moreover, there is

no dependence on ϵ and both quantities are continuous in t, which shows that (2.5) is indeed true.

Now we use the simple relation (see Equation (6.2.2)) pRt (x, y) = pt(x − y) + pt(x + y + 1) in

order to deduce Equation (2.4) from (2.5).

Now, given that (2.4) is true, this implies that for t ≤ t0, x ∈ Z≥0, and ϵ > 0:

(
|∇+pRt (x, x+ 1)∇−pRt (x, x)| − |∇−pRt (x, x+ 1)∇+pRt (x, x)|

)2

≥
(
4

5
· 4
5
− 1

5
· 1
)2

>
1

6
.

This in turn implies that the expression in (2.3) is bounded below by 1/6, uniformly over t ∈

[0, t0], x ∈ Z≥0, and ϵ > 0, i.e.,

(∑
y≥1

(∇+pRt (x, y))
2

)(∑
y≥1

(∇−pRt (x, y))
2

)
−
(∑

y≥1

|Kt(x, y)|
)2

> 1/6

Now this expression is of the form f 2g2 − h2 > 1/6, where f, g, h are functions of (x, ϵ), defined

by the previous expression. We can rewrite this as (fg−h)(fg+h) > 1/6. Now, Cauchy-Schwarz

implies that h ≤ fg, so that fg + h ≤ 2fg. Moreover, the heat kernel estimates (Propositions

2.3.1, 2.3.2, and Corollary 2.3.3) imply that for t ≤ ϵ−2T , we have that f, g ≤ C for some absolute

constant C. Hence (fg−h) ·2C2 ≥ (fg−h)(fg+h) > 1/6, so that fg−h > 1/(12C2) =: c > 0.
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Summarizing, there exists c > 0 such that for all t ≤ t0, x ∈ Z≥0, and ϵ > 0, we have that

(∑
y≥1

(∇+pRt (x, y))
2

)1/2(∑
y≥1

(∇−pRt (x, y))
2

)1/2

−
∑
y≥1

|Kt(x, y)| > c.

Using the Cauchy-Schwarz inequality and Lemma 2.3.10, the time-integral of the first term on the

LHS (from t = 0 to ∞) is bounded above by 1, therefore we integrate both sides of the above

expression and we get

1−
∫ ∞

0

∑
y≥1

|Kt(x, y)|dt > ct0

which completes the proof when a = 0, with c∗ = 1− ct0.

To prove the general case with a > 0, Proposition 2.3.2 gives |Kt(x, y)| ≤ C(1∧t−2)e−b|x−y|(1∧t
−1/2),

so that

sup
x≥0

∑
y≥1

|Kt(x, y)|(eaϵ|x−y| − 1) ≤ C(1 ∧ t−2)
∑
z∈Z

e−b(1∧t
−1/2)|z|(eaϵ|z| − 1).

By the dominated convergence theorem, this in turn implies that:

lim
ϵ→0

∫ ∞

0

sup
x≥0

∑
y≥1

|Kt(x, y)|(eaϵ|x−y| − 1)dt = 0.

Note that by Equation (6.2.2), pRt does not actually depend on ϵ when A = 0, therefore the

preceding expression implies that

lim
ϵ→0

sup
x≥0

∫ ∞

0

∑
y≥1

|Kt(x, y)|eaϵ|x−y|dt = sup
x≥0

∫ ∞

0

∑
y≥1

|Kt(x, y)|dt ≤ c∗ < 1.

Hence for small enough ϵ > 0, the LHS is smaller than (1+c∗)/2 =: c′∗, completing the proof.

Corollary 2.3.12. In the same setting as Proposition 2.3.11, for any S ∈ [0, T ] there is a C =
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C(A, T, S, a) such that for s = ϵ−2S we have

∑
y≥1

∫ s

0

|∇+pRt (x, y)∇−pRt (x, y)|eaϵ|x−y|(s− t)−1/2dt ≤ Cϵ.

Proof. We mimic the proof given in Proposition 5.4 of [45]. We split the integral into two pieces,

one from 0 to s/2 and he other from s/2 to s. For the first integral, we note that (s − t)−1/2 ≤
√
2s−1/2 =

√
2S−1/2ϵ when t < s/2, and therefore

∑
y≥1

∫ s/2

0

|∇+pRt (x, y)∇−pRt (x, y)|eaϵ|x−y|(s− t)−1/2dt

≤ C(S) ϵ
∑
y≥1

∫ s/2

0

|∇+pRt (x, y)∇−pRt (x, y)|eaϵ|x−y|dt

< C(S) ϵ

where we used Proposition 2.3.11 in the final line. For the second part of the integral, we note

from Proposition 2.3.2 that |∇+pRt (x, y)∇−pRt (x, y)| ≤ Ct−1|∇−pRt (x, y)| and thus Corollary

2.3.3 shows ∑
y≥1

|∇+pRt (x, y)∇−pRt (x, y)|eaϵ|x−y| ≤ C(a,A, T )(1 ∧ t−3/2).

Integrating both sides from s/2 to s we see that

∑
y≥1

∫ s

s/2

|∇+pRt (x, y)∇−pRt (x, y)|eaϵ|x−y|(s− t)−1/2dt

≤ C(a,A, T )

∫ s

s/2

t−3/2(s− t)−1/2dt

= C(a,A, T )s−1

∫ 1

1/2

u−3/2(1− u)−1/2du

≤ C(a,A, S, T )ϵ2.

We made a substitution t = su in the third line, and we used s−1 = ϵ2S−1 in the final line. This

proves the claim.
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Finally we conclude this section with an estimate which falls into none of the above categories:

Proposition 2.3.13. For every t ≥ s ≥ 0 and x, y ≥ 0 we have that

pRs (x, y) ≤ et−spRt (x, y).

Proof. One may directly verify that

pRs (x, y) =
∞∑
n=0

e−s
sn

n!
pn(x, y)

where pn(x, y) is the fundamental solution to the discrete-time, discrete-space equation pn+1(x, y)−

pn(x, y) = 1
2
∆pn(x, y), with Robin boundary conditions pn(−1, y) = µAp

n(0, y). Therefore

pRs (x, y) =
∞∑
n=0

e−s
sn

n!
pn(x, y) ≤ et−s

∞∑
n=0

e−t
tn

n!
pn(x, y) = et−spRt (x, y)

which proves the claim.

2.3.2 Bounded Interval Estimates

In this section, we prove all of the estimates of Section 3.1 for the Robin heat kernel on the bounded

interval {0, ..., N}. We will fix A,B ∈ R, and we set µA := 1 − Aϵ and µB = 1 − Bϵ for

ϵ := 1
N

. Then we let pRt (x, y) be the Robin heat kernel satisfying pRt (−1, y) = µApRt (0, y) and

pRt (N + 1, y) = µBpRt (N, y). We will need a formula similar to (2.2), though unfortunately we

have to rely on a more complicated inductive formula.

In order to derive such a formula, [45] used the following procedure: Start with an arbitrary “test"

function φ : {0, ..., N} → R. Then extend φ to a function φ̃ on all of Z such that φ̃(z−1)−µAφ̃(z)

is an odd function, and such that φ̃(N + 1 + z) − µBφ̃(N + z) is also an odd function. This

may be done inductively, first defining φ̃ on {−N, ...,−1} and on {N + 1, ..., 2N}, then on

{−2N, ...,−N − 1} and {2N + 1, ..., 3N}, and so forth. Then it would necessarily hold true
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that for any x ∈ {0, ..., N}:

N∑
y=0

pRt (x, y)φ(y) =
∑
y∈Z

pt(x− y)φ̃(y)

where the pt on the RHS is the standard (whole-line) heat kernel. Indeed, both the LHS and RHS

solve the heat equation with Robin boundary conditions and initial data φ. Using this fact and

rearranging terms, Lemmas 4.6 and 4.7 in [45] proved the following semi-explicit formula

pRt (x, y) =
∑
k∈Z

Ikpt(x− i(y, k)) + ϵ
∑
k∈Z
k ̸=0

k(N+1)+N∑
z=k(N+1)

pt(x− z)Ek(z, y) (2.6)

where

i(y, k) =


(k + 1)(N + 1)− y − 1, k ≡ 1 (mod 2)

y + k(N + 1), k ≡ 0 (mod 2)

and the factors Ik and Ek(z, y) (which depend on µA and µB) satisfy the following inductive rela-

tions for m ≥ 0:

I0 = 1 and E0(x, y) = 0 for x, y ∈ {0, ..., N}. Then

I−(m+1) = µAIm,

Im+1 = µBI−m.

For x ∈ {(−m− 1)(N + 1), ..., (−m− 1)(N + 1) +N}, and y ∈ {0, ..., N}

E−(m+1)(x, y) := µAEm(−x− 1, y) + ϵ−1(µ2
A − 1)

m∑
k=0

µ
−x−2−i(y,k)
A Ik1{i(y,k)≤−x−2}

+ (µ2
A − 1)

m∑
k=0

k(N+1)+N∑
z=k(N+1)

µ−x−2−z
A 1{z≤−x−2}Ek(z, y).
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For x ∈ {(m+ 1)(N + 1), ..., (m+ 1)(N + 1) +N}, and y ∈ {0, ..., N}

Em+1(x, y) := µBE−m(2N + 1− x, y) + ϵ−1(µ2
B − 1)

0∑
k=−m

µ
x−2(N+1)+i(y,k)
B Ik1{i(y,k)≥2(N+1)−x}

+ (µ2
B − 1)

0∑
k=−m

k(N+1)+N∑
z=k(N+1)

µ
x−2(N+1)+z
B 1{z≥2(N+1)−x}Ek(z, y).

We will repeatedly use the fact that ϵ = N−1 throughout this section, so we strongly emphasize

this relation.

Lemma 2.3.14. There exists a constant C0 := C0(A,B) such that for all k ∈ Z,

sup
z∈{k(N+1),...,k(N+1)+N}

y∈{0,...,N}

|Ek(z, y)| ≤ C
|k|
0 .

Proof. Assuming C0 has already been fixed, we we prove the claim using induction on k (and we

will find an explicit lower bound for C0 later). It is clearly true for k = 0, since E0 = 0. So

suppose the result is true for all k such that |k| ≤ m. Using the recursive relation for E−(m+1) as

well as the fact that |µ2
A − 1| ≤ 3Aϵ for small enough ϵ, we find that

|E−m−1(x, y)| ≤ µAC
m
0 + 3A(m+ 1)µ

(m+1)N
A + 3Aϵ

( m∑
k=0

Nµ
(m+1−k)N
A Ck

0

)
.

Now notice that µ(m+1)N
A = (1− A/N)N(m+1) ≤ e|A|(m+1). Similarly, and using ϵ = N−1 we get

3Aϵ

( m∑
k=0

Nµ
(m+1−k)N
A Ck

0

)
≤ 3Ae|A|

m∑
k=0

e|A|(m−k)Ck
0 = 3Ae|A|

Cm+1
0 − e|A|(m+1)

C0 − e|A|
.

Therefore if ϵ is small enough so that µA < 2 then

|E−(m+1)(x, y)| ≤ 2Cm
0 + 3A(m+ 1)e|A|(m+1) + 3Ae|A|

Cm+1
0 − e|A|(m+1)

C0 − e|A|

≤ K(A)

(
e2|A|m +

Cm+1
0

C0 − e|A|

)
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where K(A) is a constant depending only on A and not m. We claim that for large enough choices

of C0 the last expression can be made smaller than Cm+1
0 . Indeed, take C0 ≥ e2|A| such that

2K(A)/(C0 − e|A|) ≤ 1. Then

C
−(m+1)
0 |E−(m+1)(x, y)| ≤ K(A)

[
1

C0

(
e2|A|

C0

)m
+

1

C0 − e|A|

]
≤ K(A)

[
1

C0

+
1

C0 − e|A|

]
≤ 1.

Thus the inductive hypothesis is satisfied for k = −(m+ 1). The case when k = m+ 1 is similar,

but one needs to replace A with B throughout the proof.

As a consequence of these explicit formulas, we have the same spatial bounds as those of the

half-line.

Proposition 2.3.15. Fix A,B ∈ R and T > 0. For b ≥ 0, there is a constant C(A,B, b, T ) (not

depending on ϵ = N−1) such that for all t ∈ [0, ϵ−2T ], and all x, y ∈ {0, ..., N} we have that

pRt (x, y) ≤ C(A,B, b, T )(1 ∧ t−1/2)e−b|x−y|(1∧t
−1/2).

Proof. We will prove the desired bound for both terms in the RHS of equation (2). For the first

term, we only need to consider terms in the sum with |k| > 2 since the other terms easily satisfy the

desired bound. Note by induction that Ik ≤ (µA ∨ µB)|k| for all k ∈ Z. Using the same argument

as in Proposition 2.3.1, we have

µA ∨ µB ≤ eC(A,B)ϵ ≤ eC(A,B,T )(1∧t−1/2)

for all t ∈ [0, ϵ−2T ]. By using the standard estimates [57] as well as the fact that |x − i(y; k)| ≥
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(|k| − 1)N for all x, y ∈ {0, ..., N} we find that if bN > C(A,B, T ) then

∑
|k|>2

Ikpt(x− i(y; k)) ≤
∑
|k|>2

eC(A,B,T )(1∧t−1/2)|k| · C(b)(1 ∧ t−1/2)e−b(|k|−1)N(1∧t−1/2)

= C(b)(1 ∧ t−1/2)
e2(C(A,B,T )−bN)(1∧t−1/2)

1− e(C(A,B,T )−bN)(1∧t−1/2)

≤ C(b)
e(C(A,B,T )−bN)(1∧t−1/2)

bN − C(A,B, T )

where we used e−2q/(1 − e−q) ≤ e−q/q in the last line. Now, we may as well assume that b

(or N ) is large enough so that bN − C(A,B, T ) > bN/2. Using this together with the fact that

N ≥ |x− y| we get that the last expression is bounded above by

C(b)N−1e−
1
2
b|x−y|(1∧t−1/2),

then using the fact that N−1 = ϵ ≤ C(T )(1∧ t−1/2) gives the desired bound on the second term in

equation (2), after replacing 1
2
b with b.

Now for the second term in (2.6). As before we only consider terms in the sum with |k| > 2. Note

by Lemma 2.3.14 that

ϵ
∑
|k|>2

k(N+1)+N∑
z=k(N+1)

pt(x− z)Ek(z, y) ≤ C(b)(1 ∧ t−1/2)
∑
|k|>2

e−b(|k|−1)N(1∧t−1/2)C
|k|
0

= C(b)(1 ∧ t−1/2)e−bN(1∧t−1/2)
∑
k∈Z

e

(
logC0−bN(1∧t−1/2)

)
|k|

where we used ϵ = N−1 and |x−z| ≥ (|k|−1)N in the first inequality. Noting thatN(1∧t−1/2) >

T−1/2 we may assume that b > 2T 1/2 logC0 so that logC0 − bN(1 ∧ t−1/2) < − logC0 and thus

the last expression is bounded by

C(b)(1 ∧ t−1/2)e−bN(1∧t−1/2) 1

1− C−1
0

≤ C(A,B, b, T )(1 ∧ t−1/2)e−b|x−y|(1∧t
−1/2)
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where we used |x− y| ≤ N and assumed wlog that C0 > 1. This proves the claim.

Proposition 2.3.16. Fix A,B ∈ R and T > 0. For b ≥ 0, there is a constant C(A,B, b, T ) (not

depending on ϵ = N−1) such that for all t ∈ [0, ϵ−2T ], all v ∈ [0, 1], all |n| ≤ ⌈t1/2⌉ and all

x, y ∈ {0, ..., N} we have that

|pRt (x+ n, y)− pRt (x, y)| ≤ C(A,B, b, T )(1 ∧ t−1/2−v)|n|ve−b|x−y|(1∧t−1/2).

When b = 0 this bound holds for all n, not just for n ≤ t1/2.

Proof. Again we use equation (2), replacing pt with ∇npt and noting that the corresponding bound

already holds for the whole-line kernel (A.13) of [57]. Then we proceed exactly as in Proposition

2.3.15. The fact that the bound holds for all n when b = 0 is a consequence of the triangle

inequality applied to the case when n = 1.

Corollary 2.3.17. Fix A,B ∈ R. For any T ≥ 0 and a ≥ 0, there exists some constant C =

C(a,A,B, T ) such that for all x ∈ {0, ..., N} and t ≤ ϵ−2T we have

∑
y≥0

pRt (x, y)e
a|x−y|(1∧t−1/2) ≤ C,

∑
y≥0

|∇+pRt (x, y)|ea|x−y|(1∧t
−1/2) ≤ C(1 ∧ t−1/2).

Proof. One may mimic the proof of Corollary 2.3.3 with a2 = 0, but use Propositions 2.3.15 and

2.3.16 instead of 2.3.1 and 2.3.2.

We will now prove the temporal estimate (analog of Proposition 2.3.5 on bounded intervals). For

this, the above spatial methods do not work well, so we need information on the spectrum of the

Laplacian with Robin boundary conditions.

Lemma 2.3.18. Consider the operator 1
2
∆ on R{0,...,N} with Robin boundary conditions f(−1) :=

µAf(0) and f(N + 1) := µBf(N). This is a symmetric operator (and hence orthonormally

diagonalizable with real eigenvalues). Consider N large. For 1 ≤ k ≤ N − 1, there is an
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eigenvalue of the form λk = 1− cosωk with ωk ∈ [kπ/(N + 1), (k + 1)π/(N + 1)]. In particular

there are at most two positive eigenvalues λN , λN+1, and moreover these satisfy the bound λN+1∨

λN ≤ C(A,B)ϵ2.

Proof. The fact that 1
2
∆ is symmetric follows from the matrix representation using the standard

basis {ex}0≤x≤N where ex(y) = 1[x=y]:

∆ =



µA − 2 1 0 . . . 0 0

1 −2 1 . . . 0 0

0 1 −2 . . . 0 0

...
...

... . . . ...
...

0 0 0 . . . −2 1

0 0 0 . . . 1 µB − 2


.

If A = B = 0 (which means that (µA, µB) = (1, 1)) then one may check directly that N + 1

independent eigenvectors are given by cos(ωkx) where ωk = kπ/(N + 1) for k ∈ {0, ..., N}. In

this case the eigenvalues are precisely λk = 1− cosωk.

If (µA, µB) ̸= (1, 1) then by equation (4.27) in [45], all negative eigenvalues of this operator are of

the form λ = 1− cosω, where ω ∈ (0, π) solves the following equation

f(ω) := sin(ω(N + 2))− (µA + µB) sin(ω(N + 1)) + µAµB sin(ωN) = 0.
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Letting ω = kπ/(N + 1), we see that

f

(
kπ

N + 1

)
= sin

(
kπ +

kπ

N + 1

)
+ µAµB sin

(
kπ − kπ

N + 1

)
= (1− µAµB) sin

(
kπ +

kπ

N + 1

)
= (−1)k(1− µAµB) sin

(
kπ

N + 1

)
= (−1)k

(
A+B

N
− AB

N2

)
sin

(
kπ

N + 1

)
.

Now notice that unless A = B = 0, the middle term in this last expression cannot vanish for ar-

bitrarily large N . We already ruled out this case, thus when N is large enough this last expression

will always alternate sign as a function of k ∈ {1, ..., N − 1}. By the intermediate value theorem

applied to f , we find N − 1 solutions to the eigenvalue equation above, one in each of the intervals(
kπ/(N + 1), (k+ 1)π/(N + 1)

)
for k ∈ {1, ..., N − 1} (this does not work for k ∈ {0, N} since

ω = 0, π are solutions which do not correspond to nontrivial eigenvectors). Thus the first claim is

proved.

Now let us consider the (at most two) positive eigenvalues. By the basic methods of recursive

sequences, there must be an associated eigenfunction of the form

ψ(x) = µ−x + cµx−N

for some µ > 0 and c ∈ R which satisfy the relations

µA =
µ+ cµ−(N+1)

1 + cµ−N =: h1(c, µ) , µB =
µ−(N+1) + cµ

µ−N + c
=: h2(c, µ).

Note that the functions h1, h2 just defined satisfy the relation h2(c, µ) = h1(c, µ
−1) = h1(c

−1, µ)

which means that we may assume µ > 1 and |c| ≤ 1, after possibly interchanging the roles of µA

and µB a couple of times (this does not change the eigenvalues or eigenfunctions).

52



If the above relations are satisfied with µ > 1 and c ∈ [−1, 0] then µ < h1(c, µ) and thus

1 < µ < µA so that the eigenvalue associated with µ satisfies

λ = µ+ µ−1 − 2 ≤ µA + µ−1
A − 2 ≤ C(A)ϵ2.

In the last inequality we used the fact that µA = 1− Aϵ so that µ−1
A = 1 + Aϵ+ A2ϵ2 +O(ϵ3).

On the other hand, if the above relations are satisfied with µ > 1 and c ∈ (0, 1], then µAµB > 1

(because h1(c, µ)h2(c, µ) > 1 for c > 0 by direct computation) and also µA < µ (which is because

h1(c, µ) < µ for c > 0). The fact that µAµB > 1 implies that A < 0 or B < 0, let’s say A < 0.

Note that

|µA − 1| = |µ− 1||1− cµ−(N+1)|
1 + cµ−N .

Since µ−1 < µ−1
A and c ∈ [0, 1], it follows that 1 − cµ−(N+1) ≥ 1 − µ

−(N+1)
A . But µ−(N+1)

A =

(1−A/N)−(N+1) ≤ e−|A| for large enoughN . Using these bounds together with the last expression

shows

|µ− 1| = 1 + cµ−N

1− cµ−(N+1)
|µ− 1| ≤ 2

1− e−|A| |µA − 1| = C(A)|µA − 1|

and thus µ < 1 + C(A)|µA − 1| = 1 + C(A)ϵ, so that the associated eigenvalue satisfies

λ = µ+ µ−1 − 2 ≤ C(A)ϵ2.

This completes the proof.

Remark 2.3.19. It is worth mentioning that positive eigenvalues will exist if and only if A + B +

AB < 0, though we do not need this stronger claim. Similarly, zero will be an eigenvalue iff

A + B + AB = 0. The key idea in proving these statements is to note that whenever 0 is an

eigenvalue, the corresponding eigenfunction must be of the form c + dx for some c, d ∈ R, and

then checking the boundary conditions necessarily forces A+B + AB = 0.
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Lemma 2.3.20. In the same setting as Lemma B.4, let ψk denote the L2-normalized eigenfunction

associated to the eigenvalue λk. There exists some C = C(A,B) such that for large enough N we

have that |ψk(x)| ≤ CN−1/2 for all 0 ≤ x, k ≤ N .

Proof. If λk < 0 then this is proved in Lemma 4.10 of [45].

If λk > 0, then we can write the non-normalized eigenfunction as

ψk(x) = µ−x + cµx−N

where µ > 1 and |c| ≤ 1 as in the proof of Lemma 2.3.18. Then

N∑
k=0

ψk(x)
2 = (1 + c2)

µ2(N+1) − 1

µ− 1
+ 2c(N + 1)

≤ 4(N + 1)µ2(N+1) + 2(N + 1)

where we used the fact that (xk − 1)/(x− 1) ≤ kxk for x > 1. From the proof of Lemma 2.3.18,

we know that µ ≤ 1 + C(A,B)ϵ, hence we see that µ2(N+1) ≤ e2C(A,B) = C ′(A,B). Hence the

expression above is bounded by (4C(A,B) + 2)(N + 1) ≤ C ′(A,B)N . So by renormalizing, we

find that ψk(x) ≤ C(A,B)N−1/2.

If λk = 0 then the associated eigenfunction is

ψk(x) = c+ dx.

This can happen for arbitrarily large N iff A + B + AB = 0 and d/c = A/N (as one may check

by writing out the boundary conditions, for instance 1 − d/c = ψ(−1)/ψ(0) = µA = 1 − A/N ,

etc). The condition for the eigenfunction to be normalized simplifies to

c2(N + 1) + cdN(N + 1) + d2N(N + 1)(2N + 1)/6 = 1.
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Then by writing d = Ac/N or c = dN/Awe can check that c2 ≤ C1(A)N
−1 and d2 ≤ C2(A)N

−3.

Consequently ψk(x) = c + dx ≤ C(A)(N−1/2 + (N−3/2)N) = C(A)N−1/2 for x ∈ {0, ..., N}.

This proves the claim.

Proposition 2.3.21. Fix A,B ∈ R and T > 0. There is a constant C(A,B, T ) (not depending on

ϵ = N−1) such that for all s < t ∈ [0, ϵ−2T ] and all v ∈ [0, 1] we have

|pRt (x, y)− pRs (x, y)| ≤ C(A,B, T )(1 ∧ s−1/2−v)(t− s)v.

Proof. Just like Proposition 2.3.5, we only need to prove this when v = 0 and v = 1. The v = 0

case follows from Proposition 2.3.15. So let us prove the v = 1 case.

Let S(t) := e
1
2
t∆ and let {ex} denote the standard basis functions on R{0,...,N}. Let ψk (1 ≤ k ≤

N + 1) denote the orthonormal eigenunctions of 1
2
∆. Then ex =

∑
k⟨ex, ψk⟩ψk =

∑
k ψk(x)ψk.

So letting ⟨·, ·⟩ denote the inner product on L2({0, ..., N}) we find

pRt (x, y) = ⟨S(t)ex, ey⟩ =
∑
k,ℓ

ψk(x)ψℓ(y)⟨S(t)ψk, ψℓ⟩ =
∑
k

ψk(x)ψk(y)e
λkt

which implies that

pRt (x, y)− pRs (x, y) =
∑
k

ψk(x)ψk(y)e
λks(eλk(t−s) − 1).

We will split this last sum into two pieces based on the sign of the eigenvalues. Let us first consider

negative eigenvalues. Using Lemmas 2.3.18 and 2.3.20, together with the following

|e−q − 1| ≤ q, q ≥ 0

c1u
2 ≤ |1− cosu| ≤ c2u

2, u ∈ [0, π]
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we obtain the following bound

∑
k:λk<0

ψk(x)ψk(y)e
λks(eλk(t−s) − 1) ≤ C(A,B)

∑
k:λk<0

N−1eλks|λk|(t− s)

≤ C(A,B)

N
(t− s)

∑
k:λk<0

eλks
∣∣∣∣1− cos

(
kπ

N + 1

)∣∣∣∣
≤ C(A,B)

N
(t− s)

N∑
k=0

e−c1sk
2/(N+1)2 c2k

2

(N + 1)2
.

This last expression can be interpreted as a Riemann sum for the integral

C(A,B)(t− s)

∫ 1

0

x2e−c1sx
2

dx ≤ C(A,B)(t− s)

∫ ∞

0

x2e−c1sx
2

dx

= C(A,B)(t− s)s−3/2

∫ ∞

0

u2e−c1u
2

du

= C(A,B)s−3/2(t− s) (2.7)

where we made the substitution x
√
s = u in the second line. So when N is large, we are close

enough to this integral that the same bound holds.

Next we consider the terms with positive eigenvalues. By Lemmas 2.3.18 and 2.3.20, and the fact

that eq − 1 ≤ qeq for q ≥ 0 we see that

∑
k:λk>0

ψk(x)ψk(y)e
λks(eλk(t−s) − 1) ≤ 2 · C

N
· eC(A,B)ϵ2s · ϵ2(t− s)eC(A,B)ϵ2(t−s)

= 2Cϵ3(t− s)eC(A,B)ϵ2t (2.8)

≤ C(A,B, T )s−3/2(t− s)

where in the last inequality we used the fact that s < t < ϵ−2T so that ϵ2t ≤ T and ϵ3 ≤

C(T )s−3/2. This proves the claim.

Proposition 2.3.22 (Long-time Estimate). There exist constants C = C(A,B) and K = K(A,B)
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such that for every t ≥ 0 and x, y ≥ 0 we have that

pRt (x, y) ≤ C(t−1/2 + ϵ)eKϵ
2t.

Just like Proposition 2.3.6 this is a “long-time" estimate because it is true uniformly over all t > 0,

i.e., constants don’t depend on any terminal time ϵ−2T .

Proof. In equations (2.7) and (2.8) above, note that the constants do not depend on the terminal

time T . This means that there are C and K such that for any s < t we have that

|pRt (x, y)− pRs (x, y)| ≤ Cϵ3(t− s)eKϵ
2t + Cs−3/2(t− s).

Dividing by t− s and letting s→ t, we find

|∂tpRt (x, y)| ≤ Cϵ3eKϵ
2t + Ct−3/2

By Proposition 2.3.15, the desired bound already holds when t ≤ ϵ−2, thus we only consider the

case when t > ϵ−2. Using the above expression and Proposition 2.3.15,

pRt (x, y) ≤ pRϵ−2(x, y) +

∫ t

ϵ−2

|∂spRs (x, y)|ds

≤ C(ϵ−2)−1/2 + C

∫ t

ϵ−2

(ϵ3eKϵ
2s + Cs−3/2)ds

= Cϵ+
C

K
ϵ(eKϵ

2t − eK) + 2C(ϵ− t−1/2)

≤ C ′ϵeKϵ
2t

which proves the claim.

Proposition 2.3.23. For all A,B ∈ R and T > 0, there exists C = C(A,B, T ) such that for
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t ∈ [0, ϵ−2T ] and v ∈ [0, 1] we have

sup
0≤x≤N

∣∣∣∣ N∑
y=0

pRt (x, y) − 1

∣∣∣∣ ≤ Cϵvtv/2.

Proof. The proof is basically the same as Proposition 2.3.7. We define

f(t, x) :=
N∑
y=0

pRt (x, y).

The fact that pRt is symmetric in x and y follows easily by symmetry of the operator 1
2
∆ with

Robin boundary conditions. The same arguments used in Lemma 2.3.7 then show that

∂tf(t, x) =
1

2
(µA − 1)pRt (0, x) +

1

2
(µB − 1)pRt (N, x)

so that |∂tf(t, x)| ≤ C(A,B, T ) ϵ t−1/2 by Proposition 2.3.15. Now we proceed exactly as in

Lemma 2.3.7.

We now turn to proving the cancellation estimates (the analogs of Propositions 2.3.11 and 2.3.12

for bounded-interval Robin heat kernels). For this we would like a result like Lemma 2.3.8, but we

are not able to prove the corresponding result on bounded intervals, so we opt for a weaker result

which will suffice for us (Lemma 2.3.25).

Lemma 2.3.24. Let M and N be symmetric n × n matrices (or more generally, self-adjoint op-

erators on some Hilbert space) whose set of eigenvalues (or spectral values) is bounded above by

α ∈ R. Then

∥eM − eN∥ ≤ eα∥M −N∥

where eM denotes the matrix exponential, and ∥ · ∥ is the operator norm with respect to the under-

lying Hilbert space norm.
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Proof. When M and N commute the proof is easy by simultaneous diagonalization. For the

general case, it is tempting to use ∥eM−eN∥ ≤ ∥M−N∥emax{∥M∥,∥N∥}, however this crude bound

fails since it only takes into account the magnitude of the eigenvalues and not their sign (note that

α might be negative). Instead we use Frechet calculus. If B is a Banach space, f : B → B is

Frechet differentiable, and γ : [0, 1] → B is a smooth curve,

f(γ(1))− f(γ(0)) =

∫ 1

0

Df(γ(t))γ′(t)dt

where Df(x) ∈ L(B,B) is the Frechet derivative. As an immediate corollary, we have for all

a, b ∈ B

∥f(a)− f(b)∥ ≤
(

sup
x∈[a,b]

∥Df(x)∥
)
∥a− b∥

where [a, b] := {(1 − t)a + tb : t ∈ [0, 1]}. We now specialize this bound to the case when

f(X) = eX with B = L(H,H) for a Hilbert space H. In this case, there is a well-known formula

for the Frechet derivative

Df(X)H =

∫ 1

0

esXHe(1−s)Xds

which immediately implies that the operator norm of Df(X) satisfies

∥Df(X)∥ ≤
∫ 1

0

∥esX∥ · ∥e(1−s)X∥ds.

Now suppose that M,N are self-adjoint operators on H which satisfy ⟨Mu, u⟩ ≤ α∥u∥2 and

⟨Nu, u⟩ ≤ α∥u∥2 (i.e., the largest eigenvalue of M and of N is bounded above by α, which can

be negative). In this case we easily have that ⟨Xu, u⟩ ≤ α∥u∥2 for all X in the interval [M,N ] (as

defined above). Consequently ∥esX∥ ≤ eαs for all s. Thus if X ∈ [M,N ]

∥Df(X)∥ ≤
∫ 1

0

esαe(1−s)αds = eα

so that ∥f(M)− f(N)∥ ≤ eα∥M −N∥ as desired.
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Lemma 2.3.25. For the next few estimates we will distinguish between different values of (A,B)

by writing pRt (x, y;A,B) for the (ϵ-dependent) Robin heat kernel of parameters A,B. For all

A,B ∈ R, all T > 0, and all b ≥ 0, there exists C = C(A,B, b, T ) such that for all x, y ∈ Z≥0,

all t ∈ [0, ϵ−2T ], and all v ∈ [0, 1] we have

|pRt (x, y;A,B)− pRt (x, y; 0, 0)| ≤ C ϵv (tv ∧ t(3v−1)/2) e−(1−v)b|x−y|(1∧t−1/2),

|∇±pRt (x, y;A,B)−∇±pRt (x, y; 0, 0)| ≤ C ϵv (tv ∧ t2v−1)e−(1−v)b|x−y|(1∧t−1/2),

where ∇± denotes the discrete gradient in the first spatial coordinate.

Proof. It suffices to prove the claim v = 0 and v = 1. The middle cases then follow from

interpolation. The v = 0 case follows easily from Propositions 2.3.15 and 2.3.16, thus we only

consider the v = 1 case. So we will show that

|pRt (x, y;A,B)− pRt (x, y; 0, 0)| ≤ C ϵ t,

|∇±pRt (x, y;A,B)−∇±pRt (x, y; 0, 0)| ≤ C ϵ t,

for some constantC = C(A,B, T ) (we postulate that these bounds are not optimal, but they suffice

to prove Proposition 2.3.26 below). To prove these bounds, we will use Lemma 2.3.24 with the two

matrices t
2
∆A,B and t

2
∆0,0. Here ∆A,B denotes the Laplacian on {0, ..., N} with Robin boundary

parameters µA, µB. Then Lemma 2.3.24 and Lemma 2.3.18 show that

∥e
1
2
∆A,Bt − e

1
2
∆0,0t∥ ≤ eC(A,B)ϵ2t · t

2
∥∆A,B −∆0,0∥.
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But t ≤ ϵ−2T so that ϵ2t ≤ T and thus eC(A,B)ϵ2t ≤ C(A,B, T ). Now notice that

∆A,B −∆0,0 =



µA − 1 0 . . . 0 0

0 0 . . . 0 0

...
... . . . ...

...

0 0 . . . 0 0

0 0 . . . 0 µB − 1


.

This is a diagonal matrix with eigenvalues {−Aϵ, 0, ..., 0,−Bϵ} and thus we see that ∥∆A,B −

∆0,0∥ ≤ C(A,B)ϵ. Summarizing, we have shown that

∥e
1
2
∆A,Bt − e

1
2
∆0,0t∥ ≤ C(A,B, T ) ϵ t.

Therefore

|pRt (x, y;A,B)− pRt (x, y; 0, 0)| =
∣∣∣∣〈(e 1

2
∆A,Bt − e

1
2
∆0,0t)1x,1y

〉∣∣∣∣
≤ ∥e

1
2
∆A,Bt − e

1
2
∆0,0t∥

≤ C(A,B, T )ϵt.

Similarly,

|∇±pRt (x, y;A,B)−∇±pRt (x, y; 0, 0)| =
∣∣∣∣〈(e 1

2
∆A,Bt − e

1
2
∆0,0t)(1x − 1x±1),1y

〉∣∣∣∣
≤ 2∥e

1
2
∆A,Bt − e

1
2
∆0,0t∥

≤ C(A,B, T )ϵt

which proves the claim.
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Lemma 2.3.26. For A,B ∈ R, t ≥ 0, and x, y ∈ Z≥0 we define

Kt(x, y;A,B) := ∇+pRt (x, y;A,B)∇−pRt (x, y;A,B).

For T ≥ 0 there exists a constant C = C(A,B, T ) such that

N−1∑
y=1

∫ ϵ−2T

0

|Kt(x, y;A,B)−Kt(x, y; 0, 0)|dt ≤ Cϵ1/8.

Proof. The proof is very similar to that of Lemma 2.3.9 with a = 0. The only difference is that

instead of using Lemma 2.3.8, we now use the second bound in Lemma 2.3.25 with v = 1/8, and

consequently we get a factor of ϵ1/8 instead of ϵ1/2.

Lemma 2.3.27. Let us write pRt (x, y;A,B) as in the preceding lemma. For x, x̄ ∈ {0, ..., N}, we

have

∑
y≥0

∫ ∞

0

∇+pRt (x, y; 0, 0)∇+pRt (x̄, y; 0, 0)dt = − 1

N + 1
1{x ̸=x̄} +

N

N + 1
1{x=x̄}.

Proof. Let us recall the summation-by-parts identity: if u, v : {−1, ..., N + 1} → R, then

N∑
y=0

u(y)∆v(y) = u(N + 1)∇+v(N) + u(−1)∇−v(0)−
N∑

y=−1

∇+u(y)∇+v(y).

Letting u = pRt (x, ·; 0, 0) and v = pRt (x̄, ·; 0, 0), the boundary terms will all vanish and we get

−
N∑
y=0

∇+pRt (x, y)∇+pRt (x̄, y) =
N∑
y=0

pRt (x, y)∆pRt (x̄, y) =
N∑
y=0

∆pRt (x, y)p
R
t (x̄, y).

Since ∆pRt = 2∂tp
R
t , this implies that

−
N∑
y=0

∇+pRt (x, y)∇+pRt (x̄, y) =
N∑
y=0

pRt (x, y)∂tp
R
t (x̄, y) + ∂tp

R
t (x, y)p

R
t (x̄, y).
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Integrating both sides from t = 0 to ∞ and using the semigroup property, we find that

−
N∑
y=0

∫ ∞

0

∇+pRt (x, y)∇+pRt (x̄, y)dt =
N∑
y=0

pRt (x, y)p
R
t (x̄, y)

∣∣∣∣∞
t=0

= pR2t(x, x̄)

∣∣∣∣∞
t=0

=
1

N + 1
− 1{x=x̄}

which proves the claim. In the final line, we used the fact that limt→∞ pRt (x, ·; 0, 0) is the uniform

measure on {0, ..., N}, which follows from the basic theory of finite-state Markov Chains.

Proposition 2.3.28. Let A,B ∈ R, and T > 0. Let Kt be as in Lemma 2.3.26. There exists some

ϵ0 = ϵ0(A,B, T ) and some c∗ = c∗(A,B, T ) < 1 such that for ϵ < ϵ0 and x ∈ {1, ..., N − 1}

N−1∑
y=1

∫ ϵ−2T

0

|Kt(x, y;A,B)|dt ≤ c∗.

Moreover, for any S ∈ [0, T ] there is a C = C(A,B, T, S) such that for s = ϵ−2S we have

N−1∑
y=1

∫ s

0

|Kt(x, y;A,B)|(s− t)−1/2dt ≤ Cϵ.

Proof. The proof of the first bound is the same as that of Proposition 2.3.11 with a = 0, the only

difference is the factor of ϵ1/8 rather than ϵ1/2. Obviously one should use Lemmas 2.3.26 and

2.3.27 instead of the analogous half-line estimates 2.3.9 and 2.3.10.

The proof of the second bound can be copied verbatim from the proof of Proposition 2.3.12, with

a = 0.

Finally we conclude this section with the analogue of Proposition 2.3.13:
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Proposition 2.3.29. For every t ≥ s ≥ 0 and x, y ≥ 0 we have that

pRs (x, y) ≤ et−spRt (x, y).

Proof. Similar to the proof of Proposition 2.3.13.

2.3.3 Continuum Estimates

Throughout this section, I will denote either [0,∞) or [0, 1]. Similarly, Λ will denote either Z≥0

or {0, ..., N}. We will fix Robin boundary parameters A and B. As before, pRt will denote the

(discrete-space, continuous-time, ϵ-dependent) Robin heat kernel on Λ, with boundary parameters

µA, µB. By an abuse of notation, we will write pt(x, y) even when x, y ∈ R, and this quantity is

meant to be understood as a linear interpolation of the values of pRt from nearby integer-coordinate

points.

Theorem 2.3.30 (Existence of the Continuum Robin Heat Kernel). For T ≥ 0 and X, Y ∈ I let

P ϵ
T (X, Y ) := ϵ−1pRϵ−2T (ϵ

−1X, ϵ−1Y ).

Then P ϵ
T (X, Y ) converges to a limit PT (X, Y ) as ϵ → 0. For any 0 < δ < τ , the convergence is

uniform over (T,X, Y ) ∈ [δ, τ ]× I × I . Moreover, the limit PT (X, Y ) satisfies

∂TPT (X, Y ) =
1

2
∂2XPT (X, Y ),

∂XPT (0, Y ) = APT (0, Y ),

∂XPT (1, Y ) = BPT (1, Y ), if I = [0, 1].

Furthermore, for every X ∈ I , PT (X, ·) converges weakly to δX as T → 0.

Proof. Let τ > δ > 0. Using Propositions 2.3.1, 2.3.2, and 2.3.5 (or 2.3.15, 2.3.16, and 2.3.21)

with b = 0 and v = 1, we easily verify that for every S < T ∈ [δ, τ ] and X, Y, Z ∈ I we have (say,
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for ϵ ≤ 1)

P ϵ
T (X, Y ) ≤ CT−1/2,

|P ϵ
T (X,Z)− P ϵ

T (Y, Z)| ≤ CT−1|X − Y |,

|P ϵ
T (X, Y )− P ϵ

S(X, Y )| ≤ CS−3/2|T − S|,

where C is a constant depending only on A,B, and the terminal time τ . Since S, T > δ, we find

that T−1/2 ≤ δ−1/2, also T−1 ≤ δ−1, and similarly S−3/2 ≤ δ−3/2. Therefore, we have proved

that the collection {P ϵ
· (·, ·)}ϵ∈(0,1] is uniformly bounded and uniformly Lipchitz (in both the time

variable and in both spatial variables by symmetry) on [δ, τ ]×I×I . By the Arzela-Ascoli theorem,

we conclude that the family {P ϵ
· (·, ·)}ϵ∈(0,1] is precompact in C([δ, τ ]× I × I), so there is at least

one limit point as ϵ→ 0.

We will now show that any limit point of the {P ϵ
· (·, ·)} coincides in a weak sense with the funda-

mental solution of the Robin-boundary heat equation on I (this weak formulation is good enough,

because any continuous weak solution is automatically a strong solution by the standard methods of

PDE). In other words, if PT (X, Y ) is a limit point, we will show that for any ϕ ∈ C∞
c ((0,∞)×R)

satisfying ∂Xϕ(T, 0) = Aϕ(T, 0) (and ∂Xϕ(T, 1) = Bϕ(T, 1) if I = [0, 1]),

−
∫
I

∫ ∞

0

PT (X, Y )∂Tϕ(T,X)dTdX =

∫
I

PT (X, Y )∂2Xϕ(T,X)dTdX. (2.9)

To prove this, first note that for any ϵ > 0 and any X, Y ∈ ϵZ, we have (by definition) that

∂TP
ϵ
T (X, Y ) = ϵ−2(P ϵ

T (X + ϵ, Y )+P ϵ
T (X− ϵ, Y )− 2P ϵ

T (X, Y )). By the linear interpolation, this

is still true for X, Y ∈ R. Therefore we find that

−
∫
I

∫ ∞

0

P ϵ
T (X, Y )∂Tϕ(T,X)dTdX =

∫
I

∫ ∞

0

∂TP
ϵ
T (X, Y )ϕ(T,X)dTdX (2.10)
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=

∫
I

∫ ∞

0

ϵ−2
[
P ϵ
T (X + ϵ, Y ) + P ϵ

T (X − ϵ, Y )− 2P ϵ
T (X, Y )

]
ϕ(T,X)dTdX. (2.11)

We can separate the expression (2.11) as the sum of three separate integrals based on the three

terms appearing in the square parentheses, then we make the substitution X 7→ X − ϵ in the first

integral, we make the substitutionX 7→ X+ϵ in the second integral, and we leave the third integral

as is. After those calculations we obtain the following expression:

∫
I

∫ ∞

0

P ϵ
T (X, Y ) · ϵ−2

[
ϕ(T,X + ϵ) + ϕ(T,X − ϵ)− 2ϕ(T,X)

]
dTdX + O(ϵ) (2.12)

where the error term is due to the boundary correction near the endpoints of I . The fact that

this boundary correction is O(ϵ) is a consequence of the boundary conditions: since pt(−1, y) =

µApt(0, y), it follows that ∂±XP
ϵ
T (0, Y ) = APT (0, Y ) + O(ϵ), where ∂±X denotes left/right deriva-

tives. Similarly if I = [0, 1], then we also have ∂±XP
ϵ
T (1, Y ) = BP ϵ

T (1, Y ) +O(ϵ). Also recall that

∂Xϕ(T, 0) = Aϕ(T, 0) (and ∂Xϕ(T, 1) = Bϕ(T, 1) if I = [0, 1]). Using these facts and perform-

ing a first-order Taylor expansion of the integrand of the boundary correction gives the O(ϵ) error.

Since ∂2Xϕ is continuous and compactly supported, it follows that

lim
ϵ→0

sup
T>0
X∈R

∣∣∣∣∂2Xϕ(T,X)− ϵ−2
[
ϕ(T,X + ϵ) + ϕ(T,X − ϵ)− 2ϕ(T,X)

]∣∣∣∣ = 0.

Indeed, this can be seen by using the fundamental theorem of calculus to rewrite the parenthetical

term: ϕ(T,X + ϵ) + ϕ(T,X − ϵ) − 2ϕ(T,X) =
∫ X+ϵ

X

∫ Z
Z−ϵ ∂

2
Xϕ(T,W )dWdZ, and then using

uniform continuity of ∂2Xϕ on (0,∞)× R.

So if PT (X, Y ) is a limit point of {P·(·, ·)}ϵ∈(0,1], then there is a subsequence of ϵ → 0 such

that P ϵ
T (X, Y ) → PT (X, Y ) along that subsequence. Letting ϵ → 0 along the same subsequence

in the LHS of (2.10) and in the equivalent expression (2.12) proves the desired identity (2.9), thus

completing the proof that P ϵ
T (X, Y ) converges to a function PT (X, Y ) which satisfies the heat
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equation with Robin boundary.

All that is left to show is that PT (X, ·) converges weakly to δX as T → 0. In other words, if

φ ∈ C∞
c (R), we wish to show that

∫
I
PR
T (X, Y )φ(Y )dY

T→0−→ φ(X). This will require the usage

of Propositions 2.3.31 and 2.3.33 proved below, hence the reader may wish to take a look at those

estimates and return to this proof a bit later (note that the proofs of those estimates do not use this

property of PT , hence there is no circular logic here). First note by Proposition 2.3.33 that there

exists some C > 0 such that for T ≤ 1 we have

∣∣∣∣ ∫
I

PT (X, Y )dY − 1

∣∣∣∣ ≤ CT 1/2.

Therefore by the triangle inequality

∣∣∣∣ ∫
I

PR
T (X, Y )φ(Y )dY − φ(X)

∣∣∣∣ ≤ ∫
I

PT (X, Y )
∣∣φ(Y )− φ(X)

∣∣dY +

∣∣∣∣ ∫
I

PT (X, Y )dY − 1

∣∣∣∣φ(X)

≤
∫
I

PT (X, Y )
∣∣φ(Y )− φ(X)

∣∣dY + CT 1/2φ(X).

Hence it suffices to show that

∫
I

PT (X, Y )
∣∣φ(Y )− φ(X)

∣∣dY T→0−→ 0.

Since φ ∈ C∞
c (R) it follows that φ is Lipchitz so that |φ(Y )− φ(X)| ≤ C|Y −X|. Moreover by

applying the first estimate in Proposition 2.3.31 with b = 1 we find that there exists C such that for
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T ≤ 1, we have PT (X, Y ) ≤ CT−1/2e−|X−Y |/
√
T . Thus for T ≤ 1,

∫
I

PT (X, Y )|φ(Y )− φ(X)|dY ≤ CT−1/2

∫
I

e−|X−Y |/
√
T |Y −X|dY

≤ CT−1/2

∫
R
e−|Z|/

√
T |Z|dZ

≤ CT−1/2

∫
R
e−|W ||T 1/2W |(T 1/2dW )

= CT 1/2

where we made the substitution Z = Y − X in the second line, and another substitution W =

Z/
√
T in the third line. Now we let T → 0 which proves the claim.

From now onward, PT (X, Y ) will denote the continuum Robin heat kernel which has been con-

structed in Theorem 2.3.30.

Proposition 2.3.31. Fix a terminal time τ > 0. For any b ≥ 0, there exists some constant C =

C(A,B, b, τ) such that for all S < T ≤ τ and X, Y, Z ∈ I we have that

PT (X, Y ) ≤ CT−1/2e−b|X−Y |/
√
T , (2.13)

|PT (X,Z)− PT (Y, Z)| ≤ CT−1|Y − Z|, (2.14)

|PT (X, Y )− PS(X, Y )| ≤ CS−3/2|T − S|. (2.15)

Proof. For ϵ > 0, let P ϵ
T (X, Y ) be as in Theorem 2.3.30. Note that all of these estimates already

hold for P ϵ
T (X, Y ), by Propositions 2.3.1, 2.3.2, and 2.3.5 (or by 2.3.15, 2.3.16, and 2.3.21). More-

over the constant C does not depend on ϵ. Letting ϵ → 0, it follows that these estimates still hold

in the limit.

Proposition 2.3.32. Fix a terminal time τ > 0. For any a ≥ 0, there exists a constant C =
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C(a, τ, A,B) such that for T ≤ τ and X ∈ I ,

∫
I

PT (X, Y )eaY dY ≤ CeaX .

Proof. Using (2.13) with b = 1 + aτ 1/2, and the fact that eaY ≤ eaXea|X−Y | for X ∈ I , one sees

that there exists C = C(a,A,B, τ) such that for all T ≤ τ and X ∈ I

∫
I

PT (X, Y )eaY dY ≤ CeaXT−1/2

∫
I

e−b|X−Y |/
√
T ea|X−Y |dY

≤ CeaXT−1/2

∫
R
e−b|Z|/

√
T ea|Z|dZ

= CeaX
∫
R
e−b|W |eaT

1/2|W |dW

≤ CeaX
∫
R
e−|W |dW

where we made a substitutionZ = Y −X in the second line, and another substitutionW = T−1/2Z

in the next line. In the final line we used the fact that aT 1/2 − b ≤ aτ 1/2 − b = −1.

Proposition 2.3.33. Fix a terminal time τ ≥ 0. Then there is a constant C = C(A,B, τ) such that

for T ≤ τ and X ∈ I we have

∣∣∣∣ ∫
I

PT (X, Y )dY − 1

∣∣∣∣ ≤ CT 1/2.

Proof. Let P ϵ
T (X, Y ) be as in Theorem 2.3.30. Using Proposition 2.3.7 or 2.3.23 with v = 1, there

exists C > 0 such that for all T ≤ τ , X ∈ I , and (small enough) ϵ > 0,

∣∣∣∣ϵ∑
Y ∈ϵΛ

P ϵ
T (X, Y )− 1

∣∣∣∣ ≤ CT 1/2. (2.16)

Notice that

ϵ
∑
Y ∈ϵΛ

P ϵ
T (X, Y ) =

∫
I

P ϵ
T (X, ϵ⌊ϵ−1Y ⌋)dY.

Moreover, P ϵ
T (X, ϵ⌊ϵ−1Y ⌋) ϵ→0−→ PT (X, Y ), by uniform convergence of P ϵ

T (X, ·) to PT (X, ·).
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Using Proposition 2.3.1 or 2.3.15 with b = 1, we have the following bound, uniformly over all

small enough ϵ > 0:

|P ϵ
T (X, Y )| ≤ CT−1/2e−|Y−X|/

√
T .

For each fixed X and T , the RHS is an integrable function of Y , so it follows from the dominated

convergence theorem (together with the preceding observations) that

lim
ϵ→0

ϵ
∑
Y ∈ϵΛ

P ϵ
T (X, Y ) = lim

ϵ→0

∫
I

P ϵ
T (X, ϵ⌊ϵ−1Y ⌋)dY =

∫
I

PT (X, Y )dY.

Letting ϵ→ 0 in (2.16) gives the result.

2.4 The SHE with Robin Boundary Conditions

Next we want to describe the continuum version of the height functions in our particle system,

which we expect will (in a sense) solve the KPZ Equation on the spatial domain I . Recall that this

equation is formally given by

∂TH =
1

2
∂2XH +

1

2
(∂XH)2 + ξ

where ξ is a Gaussian space-time white noise, meaning informally that E[ξ(S,X)ξ(T, Y )] =

δ(S − T )δ(X − Y ).

In order to solve this equation, let us first make precise how to rigorously define the noise term.

One may construct ξ as the distributional time-derivative ξ = ∂TW of a cylindrical Wiener process

W = (WT )T≥0 over L2(I), in which case each individual WT may be viewed as a random element

of the Sobolev space Hs
loc(I) for s < −1/2. This viewpoint will be very useful to us because

it allows one to define stochastic integrals against ξ, which in turn allows us to construct strong

solutions to parabolic PDEs which are driven by ξ. See for instance [85, 52, 150] for the general
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theory of space-time stochastic integrals.

Given the regularity (or lack thereof) of the noise ξ, one may then heuristically compute (using

Schauder estimates or the Kolmogorov continuity theorem) that the solution to the KPZ equation

should be locally Hölder 1/2− in space and Hölder 1/4− in time, but no better. In particular, we

are faced with two serious problems:

1. The nonlinear term (∂XH)2 is undefined, since it is not possible to square the derivative of a

function which is Hölder 1/2−. So the PDE is ill-posed.

2. To make matters worse, the boundary parameters for ASEP should somehow correspond to

Neumann boundary conditions for the PDE so that ∂XH(T, 0) = A in the half-line case (and

also ∂XH(T, 1) = −B for the bounded interval case). But once again these quantities are

ill-posed.

The first of the two problems described may be fixed by the well-known Hopf-Cole transform,

in which we define Z := expH and then formally Z solves the multiplicative Stochastic Heat

Equation (SHE):

∂TZ =
1

2
∆Z + Zξ

As it turns out, this transformation now makes the equation well-posed, and by considering the

noise as a cylindrical Wiener process, one can hope to make sense of solutions in a Duhamel form,

see Theorem 2.4.2 below. Once we construct this solution and prove it is positive, we can formally

just define H := logZ . One may wish to look at [73, 70, 74] for methods which avoid the Hopf-

Cole transformation.

So now we only need to make sense of the Neumann Boundary conditions described above for

the KPZ equation. Under the Hopf-Cole transform just discussed, the Neumann boundary condi-
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tions for the KPZ equation formally become Robin boundary conditions for the SHE:

∂XZ(T,X)|X=0 = AZ(T, 0)

(and also ∂XZ(T,X)|X=1 = −BZ(T, 1) for the bounded-interval case). If we were to forget about

the noise term in the SHE for the moment being (thus we consider the equation ∂TZ = 1
2
∆Z),

then by theorem 2.3.30 the solution is given by a semigroup kernel:

Z(T,X) = PT ∗ Z0(X) =

∫
I

PT (X, Y )Z(0, Y )dY.

This fact motivates the following definition of solutions in mild (Duhamel) form:

Definition 2.4.1 (Hopf-Cole Solution with Neumann Boundary Conditions). Let PT denote the

continuum Robin heat kernel constructed in Theorem 2.3.30, and let ξ denote a space-time white

noise on some probability space (Ω,F ,P). Let Z0 denote some (random) Borel measure which is

P-almost surely supported on I . We say that a space-time process Z = (Z(T,X))T>0,X∈I is a

mild solution to the SHE satisfying Robin boundary conditions if P-almost surely, for every T > 0

and X ∈ I we have

Z(T,X) =

∫
I

PT (X, Y )Z0(dY ) +

∫ T

0

∫
I

PT−S(X, Y )Z(S, Y )ξ(S, Y )dSdY

where the integral against the white noise is meant to be interpreted in the Itô-Walsh sense [150,

85, 52]. If ξ = ∂TW for a cylindrical Wiener Process W , then we may abbreviate the above

expression as

ZT = PT ∗ Z0 +

∫ T

0

PT−S ∗ (ZS · dWS)

where the ∗ always denotes a spatial convolution.

The following proposition gives us conditions for the existence, uniqueness, and positivity of so-

lutions, starting from initial data which is defined pointwise at each X ∈ I , and bounded in L2(P)
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under an exponential weight function.

Proposition 2.4.2 (Existence/Uniqueness/Positivity of Mild Solutions with L2-bounded initial

data). Let ξ be a space-time white noise. Suppose that we have some (random, function-valued)

initial data Z0 which satisfies the following condition for some a > 0:

sup
X∈I

e−aXE[Z0(X)2] <∞.

If I = [0, 1] we can just assume a = 0. Then there exists a mild solution to the SHE which

is adapted to the natural filtration generated by the noise, FT := σ({ξ(S, ·)}S≤T ). This mild

solution is unique in the class of adapted processes Z satisfying

sup
X∈I

S∈[0,T ]

e−aXE[ZS(X)2] <∞.

Furthermore, if Z0 is a.s. positive, then Z(S, ·) > 0, ∀S a.s.

Proof. The argument here is adapted from [150]. The informal argument is as follows: We fix a

terminal time τ > 0, and we define the following sequence of iterates for T ≤ τ and X ∈ I:

u0(T,X) :=

∫
I

PT (X, Y )Z0(Y )dY,

un+1(T,X) :=

∫ T

0

∫
I

PT−S(X, Y )un(S, Y )ξ(S, Y )dY dS.

The fact that the stochastic integral defining un+1 actually exists will follow from Equations (2.17)

and (2.18) below, but we will leave the formalism for later. If we let zN :=
∑N

0 un then we have

the relation that

zN+1(T,X) =

∫
I

PT (X, Y )Z0(Y )dY +

∫ T

0

∫
I

PT−S(X, Y )zN(S, Y )ξ(S, Y )dY dS.

By letting N → ∞, it follows that our mild solution should heuristically be given by Z =
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limN→∞ zN =
∑∞

0 un. Therefore, the aim is now to prove that the series
∑

n un converges abso-

lutely in the appropriate Banach Space.

Let us now formalize the argument. Consider the Banach space B consisting of C(I)-valued,

adapted processes u = (u(T, ·))T∈[0,τ ] which satisfy the condition

∥u∥2B := sup
X∈I
T∈[0,τ ]

e−aXE[u(T,X)2] <∞.

Let un be given as above. Define a sequence of functions (fn)n≥0 from [0, τ ] → R+ by

fn(T ) := sup
X∈I

S∈[0,T ]

e−aXE[un(S,X)2]

where the RHS is defined to be +∞ if the stochastic integral defining un fails to exist (which will

happen iff
∫
[0,T ]×I PT−S(X, Y )2E[un(S, Y )2]dY dS = +∞).

By Itô’s isometry and the definition of fn, we see that

E[un+1(T,X)2] =

∫ T

0

∫
I

PT−S(X, Y )2E[un(S, Y )2]dY dS

≤
∫ T

0

(∫
I

PT−S(X, Y )2 · eaY dY
)
fn(S)dS. (2.17)

By Propositions 2.3.31 and 2.3.32 above, we easily obtain the bound:

∫
I

PT (X, Y )2eaY dY ≤ CT−1/2eaX , ∀X ∈ I, T ≤ τ. (2.18)

Here C is a constant depending only on A,B and the time horizon τ . Note that fn is an increasing

function, which implies that T 7→
∫ T
0
(T − S)−1/2fn(S)dS is also increasing in T (which can be
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proved by substituting S = TU). Together with equations (2.17) and (2.18), this implies that

fn+1(T ) ≤ C

∫ T

0

(T − S)−1/2fn(S)dS

which we can iterate twice to obtain that

fn+2(T ) ≤ C ′
∫ T

0

fn(S)dS

By assumption, we have that supX∈I e
−aXE[Z0(X)2] < ∞ which implies (for instance by (2.18))

that f0(T ) < ∞ for all T ∈ [0, τ ]. So by iterating this recursion, one obtains the result that

fn(T ) ≤ CT n/2/(n/2)!, which implies that the stochastic integral defining un always exists, and

moreover that
∑

n ∥un∥B <∞, as desired.

Uniqueness is proved in a similar way: If Z,Z ′ are two different solutions then

Z(T,X)−Z ′(T,X) =

∫ T

0

∫
I

PT−S(X, Y )
[
Z(S, Y )−Z ′(S, Y )

]
ξ(S, Y )dY dS

Squaring both sides and taking expectations,

E
[(
Z(T,X)−Z ′(T,X)

)2]
=

∫ T

0

∫
I

PT−S(X, Y )2E
[(
Z(S, Y )−Z ′(S, Y )

)2]
dY dS

so now Gronwall’s lemma (or direct iteration) shows that both sides must be zero.

The positivity result can be adapted from [122].

Although the above proposition gives us existence and uniqueness results for a wide class of initial

data, there are still some natural choices of initial data which are not covered. In section 6, we will

especially need the case of δ0 initial data, which is clearly not covered by the above proposition

(since it is not function-valued).
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Proposition 2.4.3 (Existence/Uniqueness/Positivity of Mild Solutions with δ0-initial data). Fix

a space-time white noise ξ. There exists a C(I)-valued process (ZT )T≥0 which is adapted to

FT := σ({ξ(S, ·)}S≤T ), and satisfies the conditions of Definition 2.4.1 with Z0 = δ0:

ZT (X) = PT (X, 0) +

∫ T

0

∫
I

PT−S(X, Y )ZS(Y )ξ(S, Y )dY dS.

This mild solution is unique in the class of adapted processes Z satisfying

sup
X∈I

S∈[0,T ]

S · E[ZS(X)2] <∞.

Furthermore, ZS > 0, ∀S a.s.

Proof. Similar to before, let us fix a terminal time τ and then define a Banach space B which

consists of C(I)-valued, adapted processes u = (u(T, ·))T∈[0,τ ] satisfying

∥u∥2B := sup
X∈I
T∈[0,τ ]

T · E[u(T,X)2] <∞.

As before, define a sequence of iterates T ≤ τ and X ∈ I:

u0(T,X) := PT (X, 0),

un+1(T,X) :=

∫ T

0

∫
I

PT−S(X, Y )un(S, Y )ξ(S, Y )dY dS.

As before, we just need to show that
∑

n ∥un∥B <∞.

Similar to the proof of Proposition 2.4.2, we define

fn(T ) := sup
X∈I

S∈[0,T ]

S1/2PS(X, 0)
−1E[un(S,X)2]

where the RHS is defined as +∞ if the stochastic integral defining un fails to exist.
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Using the Itô isometry, the definition of fn, and the fact that (by Proposition 2.3.31) PT−S ≲

(T − S)−1/2, we compute

E[un+1(T,X)2] =

∫ T

0

∫
I

PT−S(X, Y )2E[un(S, Y )2]dY dS

≤
∫ T

0

∫
I

PT−S(X, Y )2 · S−1/2PS(Y, 0)fn(S)dY dS

≤ C

∫ T

0

(T − S)−1/2S−1/2

[ ∫
I

PT−S(X, Y )PS(Y, 0)dY

]
fn(S)dS

= CPT (X, 0)

∫ T

0

(T − S)−1/2S−1/2fn(S)dS

where we used the semigroup property in the final line. Multiplying both sides by T 1/2PT (X, 0)
−1,

we find that

T 1/2PT (X, 0)
−1E[un+1(T,X)] ≤ CT 1/2

∫ T

0

(T − S)−1/2S−1/2fn(S)dS.

Just like before, fn is an increasing function, therefore (by making a substitution S = TU) one

may see that the RHS of the last expression is an increasing function of T . It follows that

fn+1(T ) ≤ CT 1/2

∫ T

0

(T − S)−1/2S−1/2fn(S)dS

which we can iterate twice to obtain

fn+2(T ) ≤ C ′T 1/2

∫ T

0

S−1/2fn(S)dS.

Using the fact that (by Prop. 2.3.31) supT∈[0,τ ] f0(T ) ≤ C, we can iterate this recursion to obtain

fn(T ) ≲ T n/2/(n/2)!
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We have just proved that

E[un(T,X)2] ≤ CPT (X, 0)T
(n−1)/2/(n/2)!

for a constant C not depending on T ∈ [0, τ ], X ∈ I , or n ∈ N. By Proposition 2.3.31 we know

that PT (X, 0) ≤ CT−1/2, and therefore it follows that
∑

n ∥un∥B <∞, which proves existence of

the mild solution.

Uniqueness and positivity are proved in the same manner as in Proposition 2.4.2.

Although the mild solution is one notion of what it means to solve the SHE, it is not the only

natural definition of a solution. In particular, the notion of a weak solution (which uses the idea of

pairing against test functions) is also very useful, and is actually equivalent to the notion of a mild

solution:

Proposition 2.4.4 (Equivalence of Weak Solutions and Mild Solutions). Let W be a cylindrical

Wiener process defined on some (Ω,F ,P). Denote by T the collection of all φ ∈ S(R) such that

φ′(0) = Aφ(0) and also φ′(1) = Bφ(1) if I = [0, 1]. Then a C(I)-valued process (ZT )T≥0 is a

mild solution to the SHE if and only if for every φ ∈ T we have that

(ZT , φ) = (Z0, φ) +
1

2

∫ T

0

(ZS, φ
′′)dS +

∫ T

0

(ZSφ, dWS)

where (φ, ψ) :=
∫
I
φψ denotes the L2(I)-pairing. If the latter relation holds, we call (ZT ) a weak

solution of the SHE.

Proof. If Z0 is a mild solution as defined in 2.4.1, then

ZT = PT ∗ Z0 +

∫ T

0

PT−S ∗ (ZSdWS).
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Pairing both sides against a φ and using self-adjointness of 1
2
∆ with Robin boundary conditions,

(ZT , φ) = (PT ∗ Z0, φ) +

∫ T

0

(
ZS · (PT−S ∗ φ), dWS

)
. (2.19)

Next, noting that ∂T (PT ∗ Z0, φ) =
1
2
(PT ∗ Z0, φ

′′) we have that

(PT ∗ Z0, φ) = (Z0, φ) +
1

2

∫ T

0

(PS ∗ Z0, φ
′′)dS

= (Z0, φ) +
1

2

∫ T

0

(
ZS −

∫ S

0

PS−U ∗ (ZUdWU) , φ′′
)
dS

= (Z0, φ) +
1

2

∫ T

0

(ZS, φ
′′)dS − 1

2

∫ T

0

(
ZU ·

[ ∫ T

U

PS−U ∗ φ′′dS

]
, dWU

)
= (Z0, φ) +

1

2

∫ T

0

(ZS, φ
′′)dS −

∫ T

0

(
ZU ·

[
PT−U ∗ φ− φ

]
, dWU

)
. (2.20)

In the third line we distributed terms and switched the order of integration (cf. stochastic Fubini’s

theorem). In the last line we merely applied the fundamental theorem of calculus to the term within

the square bracket. Now Equations (2.19) and (2.20) together imply that (ZT ) is a weak solution.

Thus mild solutions are weak.

To prove the converse, note that if

(ZT , φ) = (Z0, φ) +
1

2

∫ T

0

(ZS, φ
′′)dS +

∫ T

0

(ZSφ, dWS).

Using Itô’s formula for Hilbert-space valued processes, we see that if φ ∈ C∞([0, τ ] × R) such

that φT := φ(T, ·) ∈ T for all T , then

d(ZT , φT ) = (dZT , φT ) + (ZT , dφT ) =
(
ZT ,

1

2
φ′′
T + ∂TφT

)
dT + (ZTφT , dWT ).
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Then fixing a time T > 0, and setting φS := PT−S ∗ φ, we can integrate from 0 to T to obtain:

(ZT , φ)− (PT ∗ Z0, φ) = (ZT , φT )− (Z0, φ0)

=

∫ T

0

(
ZS,

1

2
φ′′
S + ∂SφS

)
dS +

∫ T

0

(ZSφS, dWS)

= 0 +

∫ T

0

(
ZS · (PT−S ∗ φ), dWS

)
which (after rearranging terms) is equivalent to

(ZT , φ) =

(
PT ∗ Z0 +

∫ T

0

PT−S ∗ (ZSdWS) , φ

)

so that (ZT ) is a mild solution.

2.5 Proof of Tightness and Identification of the Limit

Let us first establish a few topological conventions. Throughout this section, I will denote either

the interval [0,∞) or [0, 1]. We will endow C(I) with the topology of uniform convergence on

compact sets if I = [0,∞), and the topology of uniform convergence when I = [0, 1]. The space

D([0, τ ], C(I)) will denote the space of all right-continuous functions from [0, τ ] → C(I) which

have left limits. We will endow D([0, τ ], C(I)) with the Skorokhod topology (see [17]), which

may be metrized by

σ(Φ,Ψ) = inf
λ∈Λ

max
{
∥λ− id∥L∞[0,τ ] , sup

T∈[0,τ ]
dC(I)

(
Φ(T ),Ψ(λ(T ))

)}
where Λ is the space of increasing homeomorphisms from [0, τ ] to itself, and dC(I) is a metric

inducing the topology on C(I).

Definition 2.5.1 (Parabolic Scaling). Let Λ = Z≥0 for ASEP-H and Λ = {0, ..., N} for ASEP-B.

Let Zt(x) denote the Gärtner-transformed height functions from Section 2. For ϵ > 0, X ∈ ϵ−1Λ,
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and T ≥ 0, we define the parabolically scaled process

Zϵ(T,X) = Zϵ−2T (ϵ
−1X)

where Zt(x) is the Gärtner-transformed height function from Definition 2.7. We extend Zϵ(T, ·)

from ϵΛ to the whole interval I by linear interpolation. Throughout this section, we will fix a

terminal time τ , and consider (the law of) Zϵ as a measure on the Skorokhod spaceD([0, τ ], C(I)).

We remark that Zϵ depends on ϵ in two completely different ways, first due to the space-time

scaling in Definition 2.5.1, but secondly also because the non-scaled discrete-space process Zt

depends on ϵ via the ϵ-scaled parameters p, q, α, β, γ, δ. This is what we meant by a weak scaling:

we scale the model parameters along with the height functions.

Assumption 2.5.2 (Near-Equilibrium Initial Conditions). For ASEP-H, we will always assume that

the initial data Zϵ satisfies the following bounds: There exists a ≥ 0 such that for each terminal

time τ > 0, each p ≥ 1, and each α ∈ [0, 1
2
) there exists some constant C = C(p, τ, α) such that

for all T ∈ [0, τ ], X, Y ∈ I , and ϵ > 0 small enough:

∥Zϵ
0(X)∥p ≤ CeaX ,

∥Zϵ
0(X)−Zϵ

0(Y )∥p ≤ C|X − Y |αea(X+Y ).

Here ∥Z∥p := E[|Z|p]1/p denotes the Lp-norm with respect to the probability measure. For ASEP-

B, we will assume the same bounds but with a = 0.

As a consequence of Kolmogorov’s continuity criterion, Assumption 2.5.2 ensures that with large

probability, the random functions {Zϵ
0}ϵ>0 are pointwise bounded and equi-Hölder 1/2− (locally).

In turn, Arzela-Ascoli’s theorem and Prohorov’s theorem ensure that as ϵ → 0 the Zϵ
0 converge

weakly (along a subsequence) to some random function which has the same regularity as Brownian

motion. Hence, Assumption 2.5.2 is merely a technical restriction which ensures that the initial

data have limit points which are not too wildly behaved on small scales, and whose moments grow
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exponentially in X (at worst). For instance a product of Bernoulli’s will satisfy the assumptions in

3.2, as the associated height function converges to a Brownian motion. On the other hand, narrow-

wedge (zero-particle) initial data will not satisfy Assumption 2.5.2. We will find a way to deal with

such data in Section 6 below.

We are almost ready to move onto the main results, however we will need a technical result which

will be a very useful black box for obtaining Lp estimates. This result was originally obtained

in Lemma 3.1 of [57] and was further elaborated in Lemma 4.18 of [45], so we will not give the

proof.

Lemma 2.5.3. Let ∥X∥p = E[|X|p]1/p denote the Lp norm with respect to the probability measure,

and let M denote the martingale appearing in Proposition 2.2.7. Let F : [0,∞) × Z≥0 → R be

any bounded function. There exists a constant C (not depending on the function F ) such that that

for any t > 1 we have that

∥∥∥∥∫ t

0

∑
y∈Λ

F (s, y)dMs(y)

∥∥∥∥2
p

≤ Cϵ

∫ t

0

∑
y

F (s, y)2∥Zs(y)∥2pds

where the bar denotes a local supremum:

F (s, y) := sup
|u−s|≤1

F (u, y).

In practice, we will almost always use the above lemma when F (s, y) = pRs (x, y) for some x ∈ Λ.

In this case, by proposition 2.3.29 or 2.3.13, it always holds true that

sup
|u−s|≤1

pRu (x, y) ≤ e1pRs+1(x, y)

and therefore by Proposition 2.3.1 or 2.3.15 (with b = 0) it then follows that

pRs (x, y)
2 ≤ e2pRs+1(x, y)

2 ≤ Cs−1/2pRs+1(x, y). (2.21)
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This fact will be used repeatedly during the technical estimates below.

We now move onto the main results.

Proposition 2.5.4 (Tightness). Fix a terminal time τ ≥ 0, and assume that the sequence {Zϵ
0}ϵ>0

of initial data satisfies Assumption 2.5.2. For all p ≥ 1 and α ∈ [0, 1/2), there exists a constant

C = C(α, p, τ) such that

∥Zϵ(T,X)∥p ≤ CeaX (2.22)

∥Zϵ(T, Y )−Zϵ(T,X)∥p ≤ C|X − Y |αea(X+Y ) (2.23)

∥Zϵ(T,X)−Zϵ(S,X)∥p ≤ Ce2aX(|T − S|α/2 ∨ ϵα) (2.24)

uniformly over all X, Y ∈ [0,∞) and S, T ∈ [0, τ ]. For ASEP-B, the same estimates are satisfied

for X, Y ∈ [0, 1] and a = 0. Consequently, the laws of the Zϵ are tight in the Skorokhod space

D([0, τ ], C(I)), and moreover the limit point lies in C([0, τ ], C(I)).

Proof. This was originally proved as Proposition 4.15 of [45]. However, after a thorough discus-

sion with the authors, we actually found a small mistake in equation (4.57) of that paper where

pRt−s(x, y) should be replaced by pRt−s+1(x, y), and this messes up the iteration. This is not so

obviously fixed; therefore we will give a new variant of the proof here, which is loosely based on

the argument in Proposition 3.2 of [57].

For the first estimate, note by Proposition 2.2.7 that Zt will satisfy the Duhamel-form equation

Zt(x) = pRt ∗ Z0(x) +

∫ t

0

∑
y∈Λ

pRt−s(x, y)dMs(y).
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Using this identity and the fact that (x+ y)2 ≤ 2x2 + 2y2, we find that

∥Zt(x)∥2p ≤ 2
∥∥pRt ∗ Z0(x)

∥∥2
p
+ 2

∥∥∥∥∫ t

0

∑
y∈Λ

pRt−s(x, y)dMs(y)

∥∥∥∥2
p

. (2.25)

The first term on the RHS of (2.25) can be bounded as follows:

∥∥∥∥∑
y∈Λ

pRt (x, y)Z0(y)

∥∥∥∥
p

≤
∑
y

pRt (x, y)∥Z0(y)∥p ≤
∑
y

pRt (x, y)e
aϵy ≤ Ceaϵx (2.26)

where we applied Assumption 2.5.2 in the second inequality and Corollary 2.3.3 in the next one.

For t ≥ 1, the second term on the RHS of (2.25) can be bounded using Lemma 2.5.3 with (2.21):

∥∥∥∥∫ t

0

∑
y∈Λ

pRt−s(x, y)dMs(y)

∥∥∥∥2
p

≤ Cϵ

∫ t

0

(t− s)−1/2
∑
y

pRt−s+1(x, y)∥Zs(y)∥2pds. (2.27)

Let us define the following quantity:

[Zt]p := sup
x∈Λ

e−aϵx∥Zt(x)∥p.

Multiplying both sides of (2.25) by e−2aϵx and then using (2.26) and (2.27), we see that

e−2aϵx∥Zt(x)∥2p ≤ C + Cϵe−2aϵx

∫ t

0

(t− s)−1/2

(∑
y

pRt−s+1(x, y)e
2aϵy

)
[Zs]

2
p ds.

Now, by Corollary 2.3.3 we know that

sup
x≥0

e−2aϵx
∑
y

pRt−s+1(x, y)e
2aϵy <∞

so by taking the sup over x on both sides of the previous expression, we find that

[Zt]
2
p ≤ C + Cϵ

∫ t

0

(t− s)−1/2[Zs]
2
pds. (2.28)
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Now we would like to iterate the inequality in (2.28), however the problem is that we have only

proved this bound for t ≥ 1 (see the statement of Lemma 2.5.3), but we also need to prove it

for t ∈ [0, 1] in order to apply the iteration. For t ≤ 1, we have (by the definition of Zt) that

Zt(x) ≤ e2
√
ϵN(t)Z0(x), where N(t) denotes the net number of jumps which occur at site x up to

time t. Since t ≤ 1, each N(t) is stochastically dominated by a Poisson random variable of rate 1.

Then by Assumption 2.5.2, ∥Zt(x)∥p ≤ E[epN(t)]1/p · ∥Z0∥p ≤ Ceaϵx, and thus supt≤1[Zt]p < ∞,

which proves that (2.28) holds for t ≤ 1 as well.

Iterating (2.28) twice, we find that

[Zt]
2
p ≤ C + C2ϵt1/2 + αC2ϵ2

∫ t

0

[Zs]
2
pds (2.29)

where α =
∫ t
u
(s − u)−1/2(t − s)−1/2ds, which is a constant not depending on u or t, as can be

verified by making the substitution v = (t − s)/(s − u). Since ϵt1/2 ≤ T 1/2, the second term on

the RHS of (2.29) may be absorbed into the first one, only changing the constant C. Then an easy

application of Gronwall’s lemma shows that

[Zt]p ≤ [Z0]pe
αC2ϵ2t ≤ C

where we used the fact that ϵ2t ≤ T which is a constant not depending on ϵ or t or x. We have

shown that

∥Zt(x)∥p ≤ Ceaϵx

which (after changing to macroscopic variablesX = ϵx and T = ϵ2t) proves the first bound (2.22).

Let us now move onto the second bound (2.23). Note that

Zt(x)− Zt(y) =
∑
z

(
pRt (x, z)− pRt (y, z)

)
Z0(z) +

∫ t

0

∑
z

(
pRt (x, z)− pRt (y, z)

)
dMs(z).
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Let us name the terms on the right side as I1, I2 respectively.

In order to bound I1, let us start by extending Z0 to a function Z̃0, defined on all Z, such that

Z̃0(z − 1) − µAZ̃0(z) is an odd function. In the bounded interval case, we also require that

Z̃0(N+1+z)−µBZ̃0(N+z) is an odd function. This extended Z̃0 can be constructed inductively:

first let Z̃0(−1) = µAZ(0), then define Z̃0(−2) = µAZ̃0(−1) −
(
Z0(0) − µAZ0(1)

)
, and so on.

In the bounded interval case, one would first construct Z̃0 on {−N, ...,−1} and {N + 1, ..., 2N},

then on {−2N, ...,−N − 1} and {2N + 1, ..., 3N}, etc.

By Assumption 2.5.2, we know that ∥Z0(z) − Z0(w)∥p ≤ Ceaϵ(x+y)(ϵ|z − w|)α for α < 1/2.

In the half-line case, one may check (using the defining property of Z̃0) that Z̃0 will satisfy the

same property with the same constant a. In the bounded interval case, Z̃0 will satisfy this prop-

erty on Z, for some large enough a > 0 which does not depend on ϵ (see Lemma 2.3.14). By

construction, it is true that

∑
z∈Λ

pRt (x, z)Z0(z) =
∑
z∈Z

pt(x− z)Z̃0(z)

where the pt on the RHS is the standard (whole-line) heat kernel on Z. Consequently,

∥I1∥p ≤
∑
z∈Z

pt(x− z)
∥∥Z̃0(z)− Z̃0(z + y − x)

∥∥
p

≤ C
∑
z∈Z

pt(x− z)(ϵ|x− y|)αeaϵ(2z+y−x)

≤ C(ϵ|x− y|)αeaϵ(x+y).

In the final line, we used the fact that
∑

z pt(x − z)e2aϵz = e2aϵxe(cosh(2aϵ)−1)t ∼ e2aϵxe2a
2ϵ2t ≤

Ce2aϵx, which is true because e2aϵz is an eigenfunction of 1
2
∆ on Z with eigenvalue cosh(2aϵ)− 1.

This proves that I1 satisfies the desired bound.

86



Next we need to bound I2, so we are going to apply Lemma 2.5.3 with F (s, z) = pRt−s(x, z) −

pRt−s(y, z). Note that if |t−s−u| ≤ 1, then by the triangle inequality, Proposition 2.3.2 (or 2.3.15),

and Proposition 2.3.13 (or 2.3.29), we have

(pRu (x, z)− pRu (y, z))
2 ≤ |pRu (x, z)− pRu (y, z)|(pRu (x, z) + pRu (y, z))

≤ C(1 ∧ u−(1+α)/2)|x− y|α · e1(pRt−s+1(x, z) + pRt−s+1(y, z))

≤ C(t− s)−(1+α)/2|x− y|α · (pRt−s+1(x, z) + pRt−s+1(y, z)).

Hence sup|s−u|≤1 Fu(s, z)
2 is bounded by the last expression. Thus by Lemma 2.5.3 and Equation

(2.22) above, we find that for t ≥ 1 and α ∈ [0, 1) we have:

∥I2∥2p ≤ Cϵ|x− y|α
∫ t

0

(t− s)−(1+α)/2
∑
z

(
pRt−s+1(x, z) + pRt−s+1(y, z)

)
∥Zs(z)∥2pds

≤ Cϵ|x− y|α
∫ t

0

(t− s)−(1+α)/2
∑
z

(
pRt−s+1(x, z) + pRt−s+1(y, z)

)
e2aϵzds

= Cϵ|x− y|αt(1−α)/2
(
e2aϵx + e2aϵy

)
≤ C(ϵ|x− y|)αe2aϵ(x+y).

Let us justify each of the inequalities above. In the second line we used (2.22) to bound ∥Zs(z)∥2p

by Ce2aϵz. In the third line, we applied Corollaries 2.3.3 and 2.3.17 in order to bound the sum over

z, and then we used the fact that
∫ t
0
(t−s)−(1+α)/2ds = Ct(1−α)/2. In the final line, we used the fact

that t(1−α)/2 ≤ Cϵα−1 since t ≤ ϵ−2T , and we also noted that e2aϵx + e2aϵy ≤ 2e2aϵ(x+y). Taking

square roots in the above expression, we find that for α < 1,

∥I2∥p ≤ C(ϵ|x− y|)α/2eaϵ(x+y)

which (after changing to macroscopic variables) completes the proof of the second bound (2.44).

Let us move onto the third estimate. Using Lemma 2.2.7 and the semigroup property of the heat
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kernel, we can write

Zt(x) =
∑
y≥0

pRt−s(x, y)Zs(y) +

∫ t

s

∑
y≥0

pRt−u(x, y)dMu(y)

where pRt is the Robin heat kernel on Z≥0 with Robin boundary conditions. Therefore

Zt(x)− Zs(x) =
∑
y≥0

pRt−s(x, y)
(
Zs(y)− Zs(x)

)
+

[∑
y≥0

pRt−s(x, y) − 1

]
Zs(x) +

∫ t

s

∑
y≥0

pRt−u(x, y)dMu(y).

Naming the terms on the RHS J1, J2, J3 (in that order), we will prove the desired bound for each

of the terms Ji.

For J1 we use the spatial Lp bound (2.23) at time S = ϵs, and the fact that rα ≤ er (since

α < 1) to obtain

∥J1∥p ≤
∑
y≥0

pRt−s(x, y)∥Zs(y)− Zs(x)∥p

≤ C
∑
y≥0

pRt−s(x, y) · |ϵx− ϵy|αea(ϵx+ϵy)

≤ C
∑
y≥0

pRt−s(x, y) · ϵα[1 ∨ (t− s)α/2]e|x−y|[1∧(t−s)
−1/2]ea(ϵx+ϵy)

≤ Cϵα[1 ∨ (t− s)α/2]e2aϵx. (2.30)

where we used Corollary 2.3.3 in the last inequality. Now bounding J2, we can simply use Propo-

sition 2.3.7 together with (2.22) to note that

∥J2∥p ≤
∣∣∣∣∑
y≥0

pRt−s(x, y) − 1

∣∣∣∣ · ∥Zs(x)∥p
≤ Cϵα(t− s)α/2 · eaϵx
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where C does not depend on x. As for J3, we use Lemma 2.5.3 and (2.21) to obtain for t− s ≥ 1,

∥∥∥∥∫ t

s

∑
y≥0

pRt−u(x, y)dMu(y)

∥∥∥∥2
p

≤ Cϵ

∫ t

s

(t− u)−1/2
∑
y≥0

pRt−u+1(x, y)∥Zu(y)∥2pdu.

Using (2.22) and then Corollary 2.3.3 we find that

∑
y≥0

pRt−u+1(x, y)∥Zu(y)∥2p ≤ C
∑
y≥0

pRt−u+1(x, y) · e2aϵy ≤ Ce2aϵx.

Consequently

Cϵ

∫ t

s

(t− u)−1/2
∑
y≥0

pRt−u+1(x, y)∥Zu(y)∥2pdu ≤ Cϵe2aϵx
∫ t

s

(t− u)−1/2du

= Cϵ(t− s)1/2e2aϵx

≤ Cϵ2α(t− s)αe2aϵx.

In the last line we used the fact that 2α < 1 and that t − s ≤ ϵ−2τ , so that ϵ = ϵ2αϵ1−2α ≤

Cϵ2α(t− s)α−1/2.

To show tightness on D([0, τ ], C(I)) for 0 < δ ≤ τ , these three estimates imply (respectively)

that the {Zϵ}ϵ∈(0,1] are uniformly bounded, uniformly spatially Hölder, and uniformly temporally

Hölder (except for jumps of order ϵα) with large probability. Now we apply the version of Arzela-

Ascoli for Skorokhod spaces (together with Prohorov’s theorem) to obtain tightness, see [Bil97,

Chapter 3] for the precise formulation of compactness in D.

The fact that any limit point lies in C([δ, τ ], C(I)) is a straightforward consequence of Kol-

mogorov’s continuity criterion.

Definition 2.5.5 (Martingale Problem for the SHE). Fix a terminal time τ ≥ 0. Let P be a probabil-

ity measure on Ω := C([0, τ ], C(I)), and for T ∈ [0, τ ], denote by LT : Ω → C(I) the evaluation

89



map at time T . Define T to be the set of all test functions φ ∈ C∞
c (R) such that φ′(0) = Aφ(0),

and also φ′(1) = Bφ(1) if I = [0, 1]. We say that P solves the martingale problem for the SHE

with Robin boundary parameters A and B on I if for every φ ∈ T , the processes

YT (φ) := (LT , φ)− (L0, φ)−
∫ T

0

(LS, φ′′)dS,

QT (φ) := YT (φ)
2 −

∫ T

0

∥LSφ∥2L2(I)dS

are P-local martingales (with respect to the filtration FT := σ({LS : S ≤ T})). Here (ψ, φ) :=∫
I
ψφ denotes the L2(I) pairing.

Here is the motivation behind the preceding definition. If L is the solution of the SHE, then

formally, we have that

LT − L0 −
1

2

∫ T

0

∆LSdS =

∫ T

0

LSdWS

for some cylindrical Wiener Process (WS)S≥0 over L2(I). Consequently, if we integrate both sides

in the above expression against any test function φ ∈ T , and use self-adjointness of the operator

∆ with Robin boundary conditions on I , we should have that

(LT , φ)− (L0, φ)−
∫ T

0

(LS, φ′′)dS =

∫ T

0

(LSφ, dWS) (2.31)

One may verify directly from the definition of mild solutions that this is indeed true. The RHS in

this expression is clearly a martingale for any φ (being an Itô integral against a cylindrical Wiener

process). Furthermore by the Itô isometry, the quadratic variation of the martingale appearing on

the RHS of (2.31) is given by ∫ T

0

∥LSφ∥2L2(I)dS

which shows that the expressions YT (φ) and QT (φ) appearing in Definition 2.5.5 are indeed mar-

tingales when Z is a solution to the SHE.
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Conversely, if L is any C(I)-valued process (not necessarily the solution to the SHE) such that

YT (φ) and QT (φ) are always local martingales, one might hope that (by some version of Levy’s

characterization theorem) it should be possible to construct a cylindrical Wiener Process W such

that (2.31) holds true for every φ, and thus L solves the SHE in some weak (PDE) sense. This is

indeed true, as proved in Proposition 5.9 of [45]. We will reiterate the proof here because it will be

needed later.

Proposition 2.5.6 (Uniqueness of Solution to Martingale Problem). Fix a terminal time τ , and let

Ω and LT be as in Definition 2.5.5. Suppose that P is a solution to the martingale problem for the

SHE. Then we may enlarge the probability space
(
Ω, Borel, P) so as to admit a space-time white

noise W such that P-almost surely, for any T ∈ [0, τ ] we have that

LT (X) = PT ∗ L0(X) +

∫ T

0

PT−S ∗ (LSdWS)

Proof. Let us first illustrate this same principle in a one-dimensional setting. Let b, σ : R → R,

and suppose that Lt is a process for which

Yt := Lt −
∫ t

0

b(Ls)ds,

Qt := Y 2
t −

∫ t

0

σ(Ls)
2ds

are both local martingales. Now suppose that we want to construct a Brownian motion Wt such

that dLt = b(Lt)dt+ σ(Lt)dWt. The solution is then to define

Wt :=

∫ t

0

σ−1(Ls)1{σ(Ls) ̸=0}dYs +

∫ t

0

1{σ(Ls)=0}dW s (2.32)

for an independent BMW . It is then easily checked that ⟨W ⟩t = t so thatW is a Brownian motion,

and W clearly satisfies the desired relation.
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The same general idea will apply in the infinite-dimensional setting, where b(z) = 1
2
∆z and σ(z) =

z. However, the formalisms needed to define integrals against the (now infinite-dimensional) pro-

cess Ys become much more subtle, therefore we will use the notion of martingale measures as

developed by Walsh, see for instance [150, Chapter 2].

Returning to the original statement, we define YT (φ) andQT (φ) to be the local martingales appear-

ing in Definition 2.5.5. By localization, we are just going to assume that Y and Q are themselves

martingales, with the understanding that we should technically choose a sequence of stopping

times τn → ∞ and apply the usual tricks used in localization.

By the assumption that QT (φ) is a martingale, we have that ⟨Y (φ)⟩T = YT (φ)
2 − QT (φ) =∫ T

0
∥LSφ∥2L2(I)dS and thus by polarization we see that

⟨Y (φ), Y (ψ)⟩T =

∫ T

0

(LSφ,LSψ)dS

so if φ and ψ have disjoint supports, then ⟨Y (φ), Y (ψ)⟩ = 0. Thus Y is actually an orthogonal

martingale measure [150, page 288], so we can define stochastic integrals of predictable space-time

processes against it. In particular, we define

WT (φ) :=

∫ T

0

∫
I

LS(X)−1φ(X)1{LS(X) ̸=0}Y (dX dS) +

∫ T

0

∫
I

1{LS(X)=0}φ(X)W (dX dS)

where W is an independent space-time white noise over [0, τ)× I . Note the analogy between this

formula and equation (2.32) in the one-dimensional setting. Then one may check that

⟨W (φ),W (ψ)⟩T = (φ, ψ)T

so by Levy’s characterization theorem, it follows thatW is a space-time white noise over [0, τ ]×I ,
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and moreover, it is true by construction that for every φ ∈ T ,

YT (φ) =

∫ T

0

(LSφ, dWS)

which implies that

(LT , φ) = (L0, φ) +
1

2

∫ T

0

(LS, φ′′)dS + YT (φ)

= (L0, φ) +
1

2

∫ T

0

(LS, φ′′)dS +

∫ T

0

(LSφ, dWS).

Thus (LT ) is a weak solution, which (by Proposition 2.4.4) coincides with the mild solution.

Theorem 2.5.7 (Main Theorem: Identification of Limit). Assume that as ϵ → 0, the sequence of

initial data Zϵ
0 converges weakly in C(I) to some initial data Z0. Then, as ϵ → 0, the laws of

the Zϵ converge weakly in D([0, T ], C(I)) to the law of the mild solution of the SHE with Robin

boundary conditions, and initial data Z0.

Proof. The previous proposition shows that the laws of the Zϵ do indeed converge (subsequen-

tially) to some limiting measure as ϵ → 0. When A,B ≥ 0 the identification of the limit is shown

in [45] via Lemma 5.8, Lemma 5.7, Proposition 5.6, and Proposition 5.9 (in that logical order).

When A < 0 or B < 0 the proof is very similar, but a small modification is needed in Lemma 5.8

(because it relies on a previous result, Proposition 5.1, which is only true for A,B ≥ 0). Rather

than trying to pinpoint the numerous little modifications which are needed, we will reproduce the

whole proof here in generality, for the sake of completeness and clarity.

By Proposition 2.5.6, it suffices to show that if P is a probability measure on C([0, τ ], C(I)) which

is a limit point of the laws of the Zϵ, then the processes

YT (φ) := (LT , φ)−
1

2

∫ T

0

(LS, φ′′)dS
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QT (φ) := YT (φ)
2 −

∫ T

0

(L2
T , φ

2)dS

are both P-local martingales, where LT : C([0, τ ], C(I)) → C(I) denotes the canonical projection

(e.g., evaluation at T ). The main idea is to note that for any (fixed) ϵ > 0, if we define

(φ, ψ)ϵ := ϵ
∑
x∈Λ

φ(ϵx)ψ(ϵx)

then by Theorem 2.2.7, the process

Zt(x)−
1

2

∫ t

0

∆Zt(x)dt

is a martingale, so after summing against a test function and changing to macroscopic variables,

the process

Y ϵ
T (φ) := (Zϵ

T , φ)ϵ −
1

2

∫ T

0

(∆ϵZϵ
S, φ)ϵdS

is also martingale, where

∆ϵφ(X) := ϵ−2(φ(X + ϵ) + φ(X − ϵ)− 2φ(X)).

Recall that φ ∈ T , which means that φ′(0) = Aφ(0). Using summation-by-parts and a Taylor

series expansion of φ near X = 0, we have:

(∆ϵZϵ
S, φ)ϵ − (Zϵ

S,∆ϵφ)ϵ = ϵ−2 · ϵ
[
Zϵ
S(−ϵ)

(
φ(0)− φ(−ϵ)

)
− φ(−ϵ)

(
Zϵ
S(0)−Zϵ

S(−ϵ)
)]

= ϵ−1

[
Zϵ
S(−ϵ) ·

(
ϵAφ(0) +O(ϵ2)

)
− φ(−ϵ) · ϵAZϵ

S(0)

]
= ϵ−1

[
(1− ϵA)Zϵ

S(0) ·
(
ϵAφ(0) +O(ϵ2)

)
−
(
φ(0)− ϵAφ(0) +O(ϵ2)

)
· ϵAZϵ

S(0)

]
= ϵ−1

[
Zϵ
S(0) ·O(ϵ2)

]

where the O(ϵ2) term is a non-random quantity depending only on the test function φ. This com-
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putation was specific to the half-line case, but the bounded-interval case is similar (except that the

number of boundary terms doubles since there are two boundary points instead of just one) and

we get the same bound (except that there will be a Zϵ
S(1) term appearing next to the O(ϵ2) term as

well).

Summarizing, we have shown that

∣∣(∆ϵZϵ
S, φ)ϵ − (Zϵ

S,∆ϵφ)ϵ
∣∣ ≤ Cϵ

∣∣Zϵ
S(0)

∣∣ (2.33)

and by (2.22) the RHS tends to zero in L2(Ω) as ϵ → 0. Now, by the fundamental theorem of

calculus, one may easily check that ∆ϵφ(X) =
∫ X+ϵ

X

∫ Z
Z−ϵ φ

′′(W )dWdZ, and hence by uniform

continuity of φ′′, it follows that

lim
ϵ→0

sup
X∈R

∣∣φ′′(X)−∆ϵφ(X)
∣∣ = 0. (2.34)

Letting F (ϵ) := supX∈R
∣∣φ′′(X)−∆ϵφ(X)

∣∣, we find that

∥∥(Zϵ
S,∆ϵφ)ϵ − (Zϵ

S, φ
′′)ϵ
∥∥
2
≤ ϵ

∑
X∈ϵΛ

∥Zϵ
S(X)∥2 · F (ϵ) · 1{φ(X)>0}

≤
(
ϵ
∑
X∈ϵΛ

CeaX · 1{φ(X)>0}

)
· F (ϵ)

≤ C|supp(φ)|ea|supp(φ)|F (ϵ)

= C · F (ϵ) (2.35)

where |supp(φ)| denotes the supremum of the support of φ. In the second line we used (2.22) to

bound ∥Zϵ
S(X)∥2 by CeaX , and in the third line we used compact support of φ.
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Using (2.33), (2.34), and (2.35), it follows that

∥∥(∆ϵZϵ
S, φ)ϵ − (Zϵ

S, φ
′′)ϵ
∥∥
2

ϵ→0−→ 0.

Here, as usual, we are denoting ∥X∥p := E[|X|p]1/p. Therefore, we can write for T ≤ τ :

Y ϵ
T (φ) = (Zϵ

T , φ)ϵ −
1

2

∫ T

0

(Zϵ
S, φ

′′)ϵdS +Rϵ
T (φ) (2.36)

where limϵ→0 ∥Rϵ
T∥2 = 0. Letting ϵ → 0 in this last expression, it follows that YT (φ) is a P-

martingale for any limit point P of the law of Zϵ. Here we are using the fact that (Zϵ
T , φ)ϵ con-

verges weakly along some subsequence to (LT , φ) under P, which can be seen using a Riemann

sum approximation.

Thus we only need to show that QT (φ) is a P-martingale (with respect to the canonical filtra-

tion on C([0, τ ], C(I))) for any limit point P of the law of Zϵ. This will be the the more difficult

part of the proof (due to the extra term appearing in (2.1)), and it is really where the brunt of our

efforts will go. The basic idea is as follows: We define

Qϵ
T (φ) := Y ϵ

T (φ)
2 − ⟨Y ϵ(φ)⟩T

where ⟨Y ϵ(φ)⟩ denotes the predictable bracket of the martingale Y ϵ
T (φ). Our goal will be to write

Qϵ
T in a form similar to (2.36), i.e.,

Qϵ
T (φ) = Y ϵ

T (φ)
2 −

∫ T

0

((Zϵ
S)

2, φ2)ϵdS +Rϵ
T

where Rϵ
T is some error term whose L2 norm vanishes as ϵ → 0. So the remainder of the proof
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will be devoted to this goal. Indeed, using Equation (2.1), it holds that

⟨M⟩t =
∫ t

0

(
(ϵ+ o(ϵ))Zs(x)

2 −∇+Zs(x)∇−Zs(x)

)
ds.

Consequently, we find that

⟨Y ϵ(φ)⟩T = ϵ−2

∫ T

0

(
(ϵ+ o(ϵ))2((Zϵ

S)
2, φ2)ϵ + ϵ · (∇+

ϵ Zϵ
S · ∇−

ϵ Zϵ
S , φ

2)ϵ

)
dS

where ∇±
ϵ φ(X) = φ(X)− φ(X ± ϵ). Since ϵ−2(ϵ+ o(ϵ))2 = 1 + o(1), it is clear that

ϵ−2

∫ T

0

(ϵ+ o(ϵ))2((Zϵ
S)

2, φ2)ϵdS

converges weakly to
∫ T
0
(L2

S, φ
2)dS (under P) as ϵ→ 0 (subsequentially). Thus defining

Rϵ
T (φ) := ϵ−1

∫ T

0

(∇+
ϵ Zϵ

S · ∇−
ϵ Zϵ

S , φ
2)ϵdS

the proof will be completed if we can show that E[Rϵ
T (φ)

2] → 0 as ϵ → 0. Changing back to

microscopic variables, we note that

Rϵ
T (φ) = ϵ2

∫ ϵ−2T

0

∑
x∈Λ

∇+Zs(x)∇−Zs(x)φ(ϵx)
2ds.

Using the identity
( ∫ t

0
f(s)ds

)2
= 2

∫ t
0

∫ s
0
f(s)f(s′)ds′ds, we find that

Rϵ
T (φ)

2 = 2ϵ4
∫ ϵ−2T

0

∫ s

0

∑
x,y∈Λ

φ(ϵx)2φ(ϵy)2∇+Zs′(x)∇−Zs′(x)∇+Zs(y)∇−Zs(y) ds
′ds.

Recall the filtration Fs = σ({ηs(x) : x ∈ Λ, s ≤ t}), and define

U ϵ(y, s′, s) := E
[
∇+Zs(y)∇−Zs(y)

∣∣Fs′
]
.
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Then we find that

E[Rϵ
T (φ)

2] = 2ϵ4
∫ ϵ−2T

0

∫ s

0

∑
x,y∈Λ

φ(ϵx)2φ(ϵy)2E
[
∇+Zs(x)∇−Zs′(x)U

ϵ(y, s′, s)
]
ds′ds.

Now since Zt(x) = e2
√
ϵht(x)−νt, and since |eq − ep| ≤ |q − p|eq for p < q, it follows that we have

the “brute-force" bound: |∇±Zt(x)| ≤ Cϵ1/2Zt(x), hence the preceding expression yields

E[Rϵ
T (φ)

2] ≤ Cϵ5
∫ ϵ−2T

0

∫ s

0

∑
x,y∈Λ

φ(ϵx)2φ(ϵy)2E
[
Zs′(x)

2U ϵ(y, s′, s)
]
ds′ds. (2.37)

Now, we make the following claim, the proof of which we will postpone until a bit later:

sup
x∈Λ

e−2aϵxE|U ϵ(x, s, t)| ≤ Cϵ1/8(t− s)−1/2, ϵ−3/2 ≤ s ≤ t ≤ ϵ−2T. (Claim 1)

The 1/8 appearing in the power is not sharp, it is just a convenient bound which suffices for our

purposes. Before proving (Claim 1), let us see why it implies the result. First we are going to split

up the integral in (2.37) as three terms:

∫ ϵ−3/2

0

∫ s

0

(−)ds′ds +

∫ ϵ−2T

ϵ−3/2

∫ ϵ−3/2

0

(−)ds′ds +

∫ ϵ−2T

ϵ−3/2

∫ s

ϵ−3/2

(−)ds′ds. (2.38)

To deal with the first two terms, we use the brute-force bound |∇+Zs(y)∇−Zs(y)| ≤ ϵZs(y)
2,

which in turn implies that the expectation appearing in (2.37) is bounded by ϵ · E[Zs′(x)2Zs(y)2].

By Cauchy-Schwarz, this is in turn bounded by ϵ · ∥Zs′(x)∥24∥Zs(y)∥24, which by (2.22) is further

bounded by ϵ · Ce2a(x+y). Noting (for instance by Riemann sum approximation) that

ϵ2
∑
x,y∈Λ

φ(ϵx)2φ(ϵy)2eCaϵ(x+y) ≤ C, (2.39)

it follows that the first integral in (2.38) will be bounded by Cϵ and the second one will be bounded

by Cϵ1/2, which is sufficient, since these quantities approach zero as ϵ→ 0.
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In order to deal with the third integral in (2.38), we define events AK,s′,x := {|Zs′(x)| ≤ K},

and we are going to split up the expectation in (2.37) according to whether or not AK,x,s′ occurs or

not:

E
[
Zs′(x)

2 · 1AK,x,s′
U ϵ(y, s′, s)

]
+ E

[
Zs′(x)

2 · 1Ac
K,x,s′

∇+Zs(y)∇−Zs(y)
]

(2.40)

whereAc denotes the complement ofA. The first term of (2.40) can be bounded byK2E[U ϵ(y, s′, s)],

which by (Claim 1) is bounded by CK2ϵ1/8(t − s)−1/2eaϵy. Now for the second term. Since

1Ac
K,x,s′

≤ K−2Zs′(x, y), and since ∇+Zs(y)∇−Zs(y) ≤ ϵZs(y)
2, the second term of (2.40) is

bounded by K−2ϵE[Zs′(x)4Zs(y)2], which (by the Cauchy-Schwarz inequality) is in turn bounded

by K−2ϵ∥Zs′(x)∥48∥Zs(y)∥24. By (2.22), this is further bounded by K−2ϵ · Ce4aϵx+2aϵy. Then ap-

plying (2.39), it will follow that the third term in (2.38) will be bounded by C(ϵ1/8K2 + K−2).

Letting ϵ→ 0 and thenK → ∞, it finally follows that the RHS of (2.37) approaches zero as ϵ→ 0.

Thus all that is left to do is to prove (Claim 1). This is done separately below. □

Proof of (Claim 1): To prove the “key estimate" (as [16] calls it) we are going to write:

Zt(x) = Lt(x) +Dt
t(x)

where L stands for the solution to the Linear equation:

Lt(x) := pRt ∗ Z0(x)

and D stands for the Duhamel contribution from the random noise:

Dt
s(x) :=

∫ s

0

∑
y

pRt−u(x, y)dMu(y).
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We note that

∇+Zt(x)∇−Zt(x) =∇+Lt(x)∇−Lt(x) +∇+Dt
t(x)∇−Dt

t(x)

+∇+Dt
t(x)∇−Lt(x) +∇+Lt(x)∇−Dt

t(x).

Noting that Dt
s(x) is a martingale in s, it follows that ∇±Dt

s(x) is a martingale in s, and hence

∇+Dt
s(x)∇−Dt

s(x) − ⟨∇+Dt(x),∇−Dt(x)⟩s is a martingale. Using the condition on the martin-

gales that ⟨M(x),M(y)⟩t = 0 if x ̸= y, it follows that

⟨∇+Dt(x),∇−Dt(x)⟩s =
∫ s

0

∑
y

Kt−u(x, y;A)d⟨M(y)⟩u,

where

Kt(x, y;A) := ∇+pRt (x, y;A)∇−pRt (x, y;A).

The reason we specify A here but not elsewhere will be made clear below. Summarizing the last

paragraph, we find that if s ≤ r ≤ t then

E
[
∇+Dt

r(x)∇−Dt
r(x)

∣∣ Fs

]
= ∇+Dt

s(x)∇−Dt
s(x) + E

[ ∫ r

s

Kt−u(x, y;A)d⟨M(y)⟩u
∣∣∣∣ Fs

]
.

Hence

U ϵ(x, s, t) =∇+Lt(x)∇−Lt(x) +∇+Dt
s(x)∇−Dt

s(x) + E
[ ∫ t

s

Kt−u(x, y;A)d⟨M(y)⟩u
∣∣∣∣ Fs

]
+∇+Dt

s(x)∇−Lt(x) +∇+Lt(x)∇−Dt
s(x).

Let us call the terms on the RHS as I1, ..., I5, respectively. In order to bound the expectations of

I1, I2, I4, and I5, it suffices (by the Cauchy-Schwarz inequality) to bound both E[(∇±Lt(x))
2] and

E[(∇±Dt
s(x))

2] by Cϵ1/8(t− s)−1/2e2aϵx, where C does not depend on x, ϵ, or s, t ∈ [ϵ−3/2, ϵ−2T ].

The bound for I3 is more involved, and will be done later.
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Let us start be getting the desired bound on E[(∇±Lt(x))
2]. Using Assumption 2.5.2 and then

Corollary 2.3.3 or 2.3.17, we have that

∥∇±Lt(x)∥2 ≤
∑
y

|∇±pRt (x, y)| · ∥Z0(y)∥2

≤ C
∑
y

|∇±pRt (x, y)|eaϵy

≤ Ct−1/2eaϵx.

Squaring both sides, we get

E[(∇±Lt(x))
2] ≤ Ct−1e2aϵx.

Using the assumption that t ≥ ϵ−3/2, we have that t−1/2 ≤ ϵ3/4, so that t−1 ≤ ϵ3/4t−1/2 ≤

ϵ3/4(t− s)−1/2. Noting that ϵ3/4 ≤ ϵ1/8 when ϵ ≤ 1, the desired bound for E[(∇±Lt(x))
2] follows.

Next, we are going to bound E[(∇±Dt
s(x))

2]. First note that ∥ d
du
⟨M(y)⟩u∥p ≤ Cϵe2aϵy, where

C does not depend on y. This follows by (2.1), the “brute-force" bound |∇+Zu(x)∇−Zu(x)| ≤

CϵZu(x)
2, and (2.22). Note that

E[(∇±Dt
s(x))

2] = E[⟨∇±Dt(x)⟩s]

= E
[ ∫ s

0

∑
y

(∇±pRt−u(x, y))
2d⟨M(y)⟩u

]
≤
∫ s

0

∑
y

(∇±pRt−u(x, y))
2 · E

∣∣ d
du

⟨M(y)⟩u
∣∣du

≤ Cϵ

∫ s

0

(t− u)−1
∑
y

∇±pRt−u(x, y)e
2aϵydu

≤ Cϵe2aϵx
∫ s

0

(t− u)−3/2du

≤ Cϵe2aϵx(t− s)−1/2.
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We used Proposition 2.3.2 or 2.3.16 in the fourth line, and Corollary 2.3.3 or 2.3.17 in the fifth

line. In the last line we just performed the integral and omitted the subtracted term. The desired

claim now follows by noting that ϵ ≤ ϵ1/8 for ϵ ≤ 1. This completes the proof of desired bounds

for I1, I2, I4, and I5.

Now we just need to bound I3, which was defined as E
[ ∫ t

s

∑
yKt−u(x, y;A)d⟨M(y)⟩u

∣∣Fs

]
. Us-

ing Equation (2.1), we can expand d⟨M(y)⟩u into (ϵ + o(ϵ))Zu(y)
2du + ∇+Zu(y)∇−Zu(y)du.

Consequently, we find that

|I3| ≤ Cϵ

∣∣∣∣ ∫ t

s

∑
y

Kt−u(x, y;A)E[Zu(y)2|Fs]du

∣∣∣∣+ ∫ t

s

∑
y

|Kt−u(x, y;A)||U ϵ(y, s, u)|du.

(2.41)

Now we make a claim which we hold off until later:

E
[
ϵ

∣∣∣∣ ∫ t

s

∑
y

Kt−u(x, y;A)E[Zu(y)2|Fs]du

∣∣∣∣] ≤ Cϵ1/8e2aϵx(t− s)−1/2. (Claim 2)

Before proving this, let us first see why it implies (Claim 1). Using the bounds for I1, I2, I4, and

I5 together with (2.41) and (Claim 2) shows that

E|U ϵ(x, s, t)| ≤ Cϵ1/8e2aϵx(t− s)−1/2 +

∫ t

s

∑
y

|Kt−u(x, y;A)|E|U ϵ(y, s, u)|du. (2.42)

Now we can iterate this, and we get that

E|U ϵ(x, s, t)| ≤ Cϵ1/8e2aϵx(t− s)−1/2

+Cϵ1/8
∞∑
n=1

∫
∆n(s,t)

(un−s)−1/2
∑

y1,...,yn

|Kt−u1(x, y1;A)|
n−1∏
i=1

|Kui−ui+1
(yi, yi+1;A)|e2aϵyndun · · · du1

where ∆n(s, t) := {(u1, ..., un) : s ≤ un ≤ · · · ≤ u1 ≤ t}. Now note by the triangle inequal-

ity that e2aϵyn ≤ e2aϵxe2aϵ|y1−x|
∏n

i=1 e
2aϵ|yi+1−yi|. Now using Propositions 2.3.11 and 2.3.12 (or
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2.3.28), one may check that the integral over ∆n(s, t) is at most Cϵ · cn∗ · e2aϵx, where c∗ < 1 is

a constant independent of x and ϵ. Using the fact that ϵ ≤ C(t − s)−1/2, the desired claim now

follows easily. □

Proof of (Claim 2): This will be the final part of the proof. We will prove that

E
[
ϵ

∣∣∣∣∑
y∈Λ

∫ t

s

Kt−u(x, y;A)E[Zu(y)2|Fs]du

∣∣∣∣] ≤ Cϵ1/8e2aϵx(t− s)−1/2

uniformly in x ∈ Z≥0 and s, t ∈ [0, ϵ−2τ ], where

Kt(x, y;A) = ∇+pRt (x, y;A)∇−pRt (x, y;A)

and pRt (·, ·;A) is the Robin heat kernel with parameter µA, and Ft = σ(ηs(x) : s ≤ t, x ∈ Λ).

In the special case of ASEP-H, the same result holds with ϵ1/8 improved to ϵ1/2−δ. This can be

seen by dissecting the proof below, and it is mainly because of the difference between the methods

used to prove Lemmas 2.3.9 and 2.3.26.

In order to prove the above inequality, we write

ϵ
∑
y∈Λ

∫ t

s

|Kt−u(x, y;A)|E[Zu(y)2|Fs]du

= ϵ
∑
y∈Λ

∫ t

s

|Kt−u(x, y;A)|E[Zu(y)2 − Zt(x)
2|Fs]du

+ ϵE[Zt(x)2|Fs]
∑
y∈Λ

∫ t

s

|Kt−u(x, y;A)−Kt−u(x, y; 0)|du

+ ϵE[Zt(x)2|Fs]
∑
y∈Λ

∫ t

s

|Kt−u(x, y; 0)|du.

Let us name the three terms on the RHS as J1, J2, J3, in that specific order. To bound J1, we
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write Zu(y)2 − Zt(x)
2 = (Zu(y) − Zt(x))(Zu(y) + Zt(x)), so by Cauchy-Schwarz we have that

∥Zu(y)2 − Zt(x)
2∥1 ≤ ∥Zu(y) + Zt(x)∥2∥Zu(y)− Zt(x)∥2. Using (2.22), we have that ∥Zu(y) +

Zt(x)∥2 ≤ Ceaϵx. Using (2.23) and (2.24), we have that for α < 1/2

∥Zu(y)− Zt(x)∥2 ≤ ∥Zu(y)− Zu(x)∥2 + ∥Zu(x)− Zt(x)∥2

≤ C(ϵ|x− y|)αeaϵ(x+y) + Cϵα(1 ∨ |t− u|α/2)e2aϵx.

Let us take α = 1/8 for this proof. Note from Proposition 2.3.2 (or 2.3.16) that |Kt(x, y;A)| ≤

(1∧t−1)|∇+pRt (x, y)|. Now we make a few observations: firstly, note that (1∧t−1)(1∨tα/2) = (1∧

t−(2−α)/2). Secondly, by the identity rα ≤ er, we find that (ϵ|x−y|)α ≤ ϵα(1∨tα/2)e−(1∧t−1/2)|x−y|.

Combining all of these observations, one finds that

E[|J1|] ≤ ϵ · Cϵα
∫ t

s

(1 ∧ (t− u)−(2−α)/2)
∑
y∈Λ

|∇+pRt−u(x, y)|
[
eaϵ(x+y)e−(1∧(t−u)−1/2)|x−y| + e2aϵx

]
≤ Cϵ · ϵ1/8

∫ t

0

(1 ∧ (t− u)−3/2)e2aϵxdu

≤ C(t− s)−1/2 · ϵ1/8e2aϵx
∫ ∞

0

(1 ∧ u−3/2)du.

In the second line we substituted α = 1/8, and we used Corollary 2.3.3 (or 2.3.17) to bound the

sum over y. In the next line we noted that ϵ ≤ C(t − s)−1/2 since t − s ≤ ϵ−2τ . In the final line

we made the substitution u→ t− u. This proves that J1 satisfies the desired bound.

To show that J2 satisfies a bound of the desired type, we apply Equation (2.22) together with

Lemma 2.3.9 or 2.3.26 to say that

E[|J2|] ≤ ϵ∥Zt(x)∥22
∑
y≥0

∫ ϵ−2τ

0

|Kt(x, y;A)−Kt(x, y; 0)|dt

≤ ϵ · Ce2aϵx · ϵ1/8

≤ C(t− s)−1/2e2aϵxϵ1/8
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where we used the fact that t− s ≤ ϵ−2τ .

As for J3, we can split it into two further terms

J3 = ϵE[Zt(x)2|Fs]

(∑
y≥0

∫ ∞

0

Ku(x, y; 0)du−
∑
y≥0

∫ ∞

t−s
Ku(x, y; 0)du

)
.

As a consequence of Proposition 2.3.10 or 2.3.27, the first term satisfies

ϵE[Zt(x)2|Fs]
∑
y≥0

∫ ∞

0

Kτ (x, y; 0)dτ = O(ϵ2)E[Zt(x)2|Fs].

After taking expectations, this will be bounded by Cϵ2∥Zt(x)∥22, which by (2.22) (and the fact that

t − s ≤ ϵ−2τ ) is bounded by Cϵ(t − s)−1/2e2aϵx. To bound the second term on the RHS, note by

Proposition 2.3.2 (or 2.3.16) and Corollary 2.3.3 (or 2.3.17) that
∑

y |Ku(x, y)| ≤ 1∧u−3/2. After

integrating from t− s to ∞, this will be bounded by C(t− s)−1/2, which completes the proof.

2.6 Extension of Results to Narrow-Wedge Initial Data

As usual, we adopt the notation Λ = {0, ..., N} or Λ = Z≥0, and respectively I = [0, 1] or

I = [0,∞), depending on the model under consideration.

In this section we will consider the weakly asymmetric limit of the height functions for open

ASEP started from an initial configuration which has zero particles. There are several reasons why

such initial data poses a problem. The first problem is as follows:

• The associated sequence of initial data for the rescaled Gärtner-transformed height functions

is Zϵ
0(X) = e−ϵ

−1/2X . Note that this converges weakly (in the PDE sense) to 0 as ϵ → 0,

therefore one may expect that Zϵ(T,X) will just converge almost surely to zero as ϵ → 0,

which is indeed the case. So the limit is trivial.

Hence it is clear that some sort of normalization is necessary in order to obtain a nontrivial limiting
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object. The solution to this problem is to introduce a logarithmically diverging correction to the

height function, as in [5, 40]. More specifically, we want our Gärtner-transformed initial data

Zϵ
0(X) = e−ϵ

−1/2X to converge to something nontrivial as ϵ → 0, and the only sensible way to do

this is to multiply by a factor of ϵ−1/2 since that will make Zϵ
0 converge weakly (in the PDE sense)

to δ0 as ϵ→ 0. Hence we will redefine Zt(x) and Zϵ(T,X) as the following quantities:

Zt(x) =
ϱ

ϵ1/2
eλht(x)+νt

Zϵ(T,X) = Zϵ−2T (ϵ
−1X)

where ϱ :=
( ∫

I
e−ZdZ

)−1. So ϱ = 1 if I = [0,∞), and ϱ = 1/(1− e−1) if I = [0, 1]. The choice

for this constant will be made clear later (see Lemma 2.6.6 below).

We hope that it is clear that this is not the same Zt(x) and Zϵ(T,X) appearing in Sections 2

and 4, due to the normalizing factor which is ϵ−1/2ϱ.

Although this normalization scheme should presumably give us a nontrivial object in the limit,

the proof involves some subtleties. The main issue is that

• The associated sequence of initial data for the (redefined) Gärtner-transformed height func-

tions Zϵ
0(T,X) = ϱ

ϵ1/2
e−ϵ

−1/2X is no longer “near-equlilbrium," as defined in Assumption

2.5.2. Therefore, the results of Section 5 no longer apply in our case.

The solution to this issue involves quite a few subtleties, and therefore we will devote this section

to proving convergence of Zϵ to the SHE in this case.

Recall that ∥X∥p = E[|X|p]1/p.
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Lemma 2.6.1. For all T ≥ 0, there exists C = C(T ) such that for every ϵ > 0 sufficiently small

sup
t≤T

∥Zt(x)∥p ≤ CZ0(x).

Proof. Since we are starting from an empty configuration of particles and since the exponential

jump rate satisfies p ∼ 1
2
+ O(

√
ϵ) ≤ 1, we know that the position of the largest occupied site

at time t is stochastically dominated by a Poisson random variable N(t), with mean t. Therefore

ht(x) is stochastically dominated by N(t) + h0(x). Therefore for all x ∈ Λ and t ≤ T , we have

that

Zt(x) = ϵ−1/2eϵ
1/2ht(x)+νt ≤ ϵ−1/2eϵ

1/2N(t)eϵ
1/2h0(x)+νt = eϵ

1/2N(t)Z0(x)

and consequently

∥Zt(x)∥p ≤ ∥eϵ1/2N(t)∥pZ0(x) = eϵ
1/2(ept−1)Z0(x)

from which one may deduce the claim.

Proposition 2.6.2. Fix a terminal time τ ≥ 0. Let α ∈ [0, 1/2). We have the following bounds,

uniformly over all (small enough) ϵ > 0, x, y ∈ Λ, and s, t ∈ [1, ϵ−2τ ] with s < t:

∥Zt(x)∥p ≤ C(ϵ2t)−1/2, (2.43)

∥Zt(x)− Zt(y)∥p ≤ C(ϵ|x− y|)α(ϵ2t)−(1+α)/2, (2.44)

∥Zt(x)− Zs(x)∥p ≤ Cϵα(1 ∨ |t− s|)α/2(ϵ2s)−(1+α)/2. (2.45)

Proof. The proof here will be loosely based on the one given in [, Proposition 1.8], however we

found a small mistake there (the same one mentioned in the proof of Proposition 2.5.4) so several

new ideas will also be used. These will involve the long-time estimates, Propositions 2.3.6 and

2.3.22.
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We have from Lemma 2.2.7 that

Zt(x) = pRt ∗ Z0(x) +

∫ t

0

∑
y≥0

pRt−s(x, y)dMs(y)

Using Lemma 2.5.3 and (2.21), and we obtain for t ≥ 1 that

∥∥∥∥∫ t

0

∑
y≥0

pRs (x, y)dMs(y)

∥∥∥∥2
p

≤ Cϵ

∫ t

0

(t− s)−1/2
∑
y≥0

pRt−s+1(x, y)∥Zs(y)∥2pds.

Since (x+ y)2 ≤ 2x2 + 2y2, we have

∥Zt(x)∥2p ≤ 2
∣∣pt ∗ Z0(x)

∣∣2 + Cϵ

∫ t

0

(t− s)−1/2
∑
y≥0

pRt−s+1(x, y)∥Zs(y)∥2pds.

Using pRt (x, y) ≤ Ct−1/2 together with
∑

y≥0 e
−ϵ1/2y = (1− e−ϵ

1/2
)−1 ∼ 1

2
ϵ−1/2 implies that

pRt ∗ Z0(x) = ϱϵ−1/2
∑
y

pRt (x, y)e
−ϵ1/2y ≤ Cϵ−1t−1/2 = C(ϵ2t)−1/2 (2.46)

which in turn implies that |pRt ∗ Z0(x)|2 ≤ C(ϵ2t)−1/2(pt ∗ Z0)(x).

Summarizing the above computations, we have proved that for all t ∈ [1, ϵ−2T ], we have

∥Zt(x)∥2p ≤ C(ϵ2t)−1/2(pRt ∗ Z0)(x) + Cϵ

∫ t

0

(t− s)−1/2
∑
y≥0

pRt−s+1(x, y)∥Zs(y)∥2pds. (2.47)

Now we would like to iterate this inequality, but the problem is that we have only proved (2.47) for

t ≥ 1, however we need to prove it for all t ≥ 0 in order to apply the iteration. By Lemma 2.6.1

and Proposition 2.3.13 (or 2.3.29), for t ≤ 1 we have

∥Zt(x)∥p ≤ CZ0(x) ≤ Cetpt(x, x)Z0(x) ≤ Ce1
∑
y

pt(x, y)Z0(y) = C(pt ∗ Z0)(x). (2.48)

108



Now squaring the LHS and RHS of (2.48), and then applying (2.46), we obtain that ∥Zt(x)∥2p ≤

C(ϵ2t)−1/2(pRt ∗ Z0)(x) for t ≤ 1. This proves that (2.47) still holds when t ≤ 1, thus justifying

our ability to iterate it.

Iterating (2.47) and applying the semigroup property of pRt proves that

∥Zt(x)∥2p ≤ C(ϵ2t)−1/2(pRt ∗ Z0)(x) (2.49)

+
∞∑
k=0

Ckϵk
(∫

∆k(t)

t
−1/2
0

k∏
j=1

(tj − tj−1)
−1/2(t− tk)

−1/2dt0 · · · dtk
)
(pRt+k ∗ Z0)(x)

where ∆k(t) = {(t0, ..., tk) ∈ Rk+1 | t0 < · · · < tk < t}. A recursion will reveal that the integral

within the parentheses is bounded Ctk/2/(k/2)!. Recall the long-time estimates (Proposition 2.3.6

or 2.3.22) which show that

pRt (x, y) ≤ C(t−1/2 + ϵ)eKϵ
2t

where C,K are constants not depending on the terminal time τ . This in turn implies that

pRt ∗ Z0(x) ≤ C(ϵ−1t−1/2 + 1)eKϵ
2t (2.50)

Using (2.49) and the remark underneath, we then see that

∥Zt(x)∥2p ≤ C(ϵ2t)−1/2(pRt ∗ Z0)(x) + C

∞∑
k=0

Ckϵktk/2

(k/2)!
(ϵ−1t−1/2 + 1)eKϵ

2(t+k)

≤ C(ϵ2t)−1/2(pRt ∗ Z0)(x) + C
[
(ϵ2t)−1/2 + 1

]
eK

′ϵ2t

≤ C(ϵ2t)−1/2
[
(pRt ∗ Z0)(x) + 1

]
. (2.51)

In the final inequality we used the fact that ϵ2t ≤ τ , and 1 ≤ τ 1/2(ϵ2t)−1/2. The proof of the first

bound (2.43) is completed by noting from (2.46) that (pRt ∗ Z0)(x) ≤ C(ϵ2t)−1/2, so that (2.51) is

bounded by C(ϵ2t)−1.
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To prove the second bound (2.44), note that

∥Zt(x)− Zt(y)∥p ≤ |pRt ∗ Z0(x)− pRt ∗ Z0(y)|+
∥∥∥∥∫ t

0

∑
z

(
pRt (x, z)− pRt (y, z)

)
dMs(z)

∥∥∥∥
p

.

Let us call the terms on the RHS as J1, J2, respectively. We will show that each Ji satisfies a bound

of the desired type. For J1, note by Proposition 2.3.2 (or 2.3.16) that

J1 ≤ ϵ−1/2
∑
z

∣∣pRt (x, z)− pRt (y, z)
∣∣e−ϵ1/2z ≤ Cϵ−1/2t−(1+α)/2|x− y|α

∑
z

e−ϵ
1/2z

≤ Cϵ−1t−(1+α)/2|x− y|α = C(ϵ2t)−(1+α)/2(ϵ|x− y|)α.

For J2, we are going to apply Lemma 2.5.3 with F (s, z) = pRt−s(x, z) − pRt−s(y, z). Note that if

|t−s−u| ≤ 1, then by the triangle inequality, Proposition 2.3.2 (or 2.3.16), and Proposition 2.3.13

(or 2.3.29), we have

(pRu (x, z)− pRu (y, z))
2 ≤ |pRu (x, z)− pRu (y, z)|(pRu (x, z) + pRu (y, z))

≤ C(1 ∧ u−(1+α)/2)|x− y|α · e1(pRt−s+1(x, z) + pRt−s+1(y, z))

≤ C(t− s)−(1+α)/2|x− y|α · (pRt−s+1(x, z) + pRt−s+1(y, z)).

Hence sup|s−u|≤1 Fu(s, z)
2 is bounded by the last expression. Thus by Lemma 2.5.3 and Equation

(2.51) above, we find that for t ≥ 1 and α ∈ [0, 1) we have:

J2
2 ≤ Cϵ|x− y|α

∫ t

0

(t− s)−(1+α)/2
∑
z

(
pRt−s+1(x, z) + pRt−s+1(y, z)

)
∥Zs(z)∥2pds

≤ C|x− y|α
∫ t

0

(t− s)−(1+α)/2s−1/2
∑
z

(
pRt−s+1(x, z) + pRt−s+1(y, z)

)[
(pRs ∗ Z0)(z) + 1

]
ds

= C|x− y|αt−α/2
(
(pRt+1 ∗ Z0)(x) + (pRt+1 ∗ Z0)(y) + 1 + 1

)
≤ C(ϵ|x− y|)α(ϵ2t)−(1+α)/2.
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Let us justify each of the inequalities above. In the second line we used (2.51) to bound ∥Zs(z)∥2p

by C(ϵ2s)−1/2
[
(pRs ∗ Z0)(z) + 1

]
. In the third line, we used the semigroup property to rewrite the

sum over z, moreover we applied Corollaries 2.3.3 and 2.3.17 with ai = 0 in order to bound the +1

term next to ps ∗ Z0, and then we used the fact that
∫ t
0
(t− s)−(1+α)/2s−1/2ds = Ct−α/2 which can

be proved by making the substitution s = tu. In the final line, we used (2.46) to bound pRt+1 ∗ Z0

by C(ϵ2t)−1/2. Taking square roots in the above expression, we find that for α < 1,

J2 ≤ C(ϵ|x− y|)α/2(ϵ2t)−(1+α)/4

and now we note that (ϵ2t)−(1+α)/4 ≤ T (1+α)/4(ϵ2t)−(1+α)/2 which completes the proof of the sec-

ond bound (2.44).

Now for the final bound (2.45). We again use the semigroup property and Proposition 2.2.7 to

write

Zt(x) = (pRt−s ∗ Zs)(x) +
∫ t

s

∑
y

pRt−u(x, y)dMs(y).

Therefore

∥Zt(x)− Zs(x)∥p ≤
∥∥(pRt−s ∗ Zs)(x)− Zs(x)

∥∥
p
+

∥∥∥∥∫ t

s

∑
y

pRt−u(x, y)dMs(y)

∥∥∥∥
p

.

Let us call the terms on the RHS as I1, I2 respectively. Note that

I1 =

∥∥∥∥∑
y

pRt−s(x, y)Zs(y)− Zs(x)

∥∥∥∥
p

≤
∥∥∥∥∑

y

pRt−s(x, y)
(
Zs(y)− Zs(x)

)∥∥∥∥
p

+

∣∣∣∣∑
y

pRt−s(x, y)− 1

∣∣∣∣ · ∥Zs(x)∥p
≤
∑
y

pRt−s(x, y)(ϵ
2s)−(1+α)/2(ϵ|y − x|)α + Cϵ(t− s)1/2 · (ϵ2s)−1/2. (2.52)

In the final inequality we applied Proposition 2.3.7 (or 2.3.23) together with (2.43) and (2.44). Just
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as in (2.30) with a = 0, we have that

∑
y

pRt−s(x, y)(ϵ|x− y|)α ≤ Cϵα(1 ∨ |t− s|α/2).

Also, since s, t ≤ ϵ−2T , it follows that ϵ(t−s)1/2 ≤ T (1−α)/2ϵα(t−s)α/2 and similarly, (ϵ2s)−1/2 ≤

Tα/2(ϵ2s)−(1+α)/2 for α < 1, hence by absorbing those powers of T into the constant C, we get

ϵ(t− s)1/2(ϵ2s)−1/2 ≤ Cϵα(t− s)α/2(ϵ2s)−(1+α)/2.

Together with (2.52), the preceding two expressions give the desired bound on I1. In fact the bound

holds for all α < 1, not just α < 1/2.

Now we consider I2. By the first bound (2.43), note that ∥Zu(y)∥p ≤ C(ϵ2u)−1/2 ≤ C(ϵ2s)−1/2

whenever u ∈ [s, t]. Furthermore, if r ≤ ϵ−2T , then we know by Corollary 2.3.3 (with a1 = a2 =

0) that
∑

y p
R
r (x, y) is bounded by a constant independent of x and r. Using these two facts,

I22 ≤ Cϵ

∫ t

s

(t− u)−1/2
∑
y

pRt−u+1(x, y)∥Zu(y)∥2pdu

≤ Cϵ(ϵ2s)−1

∫ t

s

(t− u)−1/2
∑
y

pRt−u+1(x, y)du

= Cϵ(ϵ2s)−1

∫ t

s

(t− u)−1/2du

= C(ϵ2s)−1 · ϵ(t− s)1/2.

So taking square roots, we see that for α < 1 we have

I2 ≤ C(ϵ2s)−1/2ϵ1/2(t− s)1/4 ≤ C(ϵ2s)−α/2ϵα/2(t− s)α/4

where we again used the fact that s, t ≤ ϵ−2T in the final line. This is equivalent to (2.45), thus

completing the proof of the estimates.
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Corollary 2.6.3. For any 0 < δ ≤ τ , the laws of the rescaled processes {Zϵ}ϵ>0 are tight on the

Skorokhod space D([δ, τ ], C(I)). Moreover, any limit point lies in C([δ, τ ], C(I)).

For T ∈ [δ, τ ], let L(T ) : C([δ, τ ], C(I)) → C(I) denote the evaluation map at T . Let P be

a limit point of the {Zϵ}. Then the process (L(T + δ))T∈[0,τ−δ] has the same distribution under P

as the solution of the SHE started from initial data distributed as that of L(δ) under P.

Proof. To show tightness onD([δ, τ ], C(I)) for 0 < δ ≤ τ , we rewrite the estimates of Proposition

2.6.2 in terms of the rescaled macroscopic processes Zϵ: for α < 1/2, S, T ∈ [δ, τ ], and X, Y ∈ I

we have

∥Zϵ(T,X)∥p ≤ CT−1/2

∥Zϵ(T,X)−Zϵ(T, Y )∥p ≤ CT−(1+α)/2|X − Y |α

∥Zϵ(T,X)−Zϵ(S,X)∥p ≤ CS−(1+α)/2(|T − S|α/2 ∨ ϵα)

With the assumption that S, T ≥ δ, it follows that T−1/2 ≤ δ−1/2, T−(1+α)/2, S−(1+α)/2 ≤

δ−(1+α)/2. Therefore. The {Zϵ}ϵ∈(0,1] are uniformly bounded, uniformly spatially Hölder, and

uniformly temporally Hölder (except for jumps of order ϵα) with large probability. Now we apply

the version of Arzela-Ascoli for Skorokhod spaces (together with Prohorov’s theorem) to obtain

tightness, see [17, Chapter 3].

The fact that any limit point lies in C([δ, τ ], C(I)) is a straightforward consequence of Kol-

mogorov’s continuity criterion.

To prove the final statement, note that the above bounds imply that the sequence of initial data

{Zϵ(δ, ·)} is “near-equilibrium” as defined in Assumption 2.5.2. Thus the results of Section 5

apply, and the proof is finished.

Definition 2.6.4. Let D((0,∞), C(I)) denote the set of all functions from (0,∞) → C(I) which
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are continuous on the right and have left limits. For 0 < δ ≤ τ , let Lδ,τ : D((0,∞), C(I)) →

D([δ, τ ], C(I)) be given by φ 7→ φ|[δ,τ ]. Henceforth, we will equipD((0,∞), C(I)) with the small-

est topology for which each of the maps Lδ,τ is continuous. We will also equip C((0,∞), C(I))

with the analogous topology.

As a notational convention, f∗µ will denote the pushforward of a measure µ under a map f .

A few remarks about the topology on D((0,∞), C(I)):

• Note that this topology is metrizable via
∑

n 2
−n(1 ∧ ρn), where ρn is a metric inducing the

topology of D([n−1, n], C(I)).

• Note ϕn
n→∞−→ ϕ in D((0,∞), C(I)) if and only if ϕn|[δ,τ ]

n→∞−→ ϕ|[δ,τ ] in D([δ, τ ], C(I)), for

every 0 < δ ≤ τ . Similarly, for a sequence of probability measures Pn on D((0,∞), C(I)),

we have that Pn → P weakly iff (Lδ,τ )∗Pn → (Lδ,τ )∗P weakly for all 0 < δ ≤ τ .

• This topology is an analogue of the topology of uniform convergence on compact sets, but

for the Skorokhod Space.

Lemma 2.6.5. Let Qϵ denote the law of Zϵ on D((0,∞), C(I)). Then there exists a measure Q on

C((0,∞), C(I)) which is a limit point of the Qϵ on D((0,∞), C(I)).

Proof. The basic idea is to use the Kolmogorov Extension Theorem in conjunction with the pre-

vious results. For 0 < δ ≤ τ , we will let Pϵδ,τ denote the law of Zϵ on D([δ, τ ], C(I)). For

0 < δ′ ≤ δ ≤ τ ≤ τ ′, we define Lδ
′,τ ′

δ,τ : D([δ′, τ ′], C(I)) → D([δ, τ ], C(I)) be the map φ 7→ φ|[δ,τ ].

We will use an inductive construction. Let P1 be a limit point of the {Pϵ1,1}ϵ∈(0,1] on D({1}, C(I)).

Then by Corollary 2.6.3 we can find a sequence ϵj ↓ 0 such that Pϵj1,1 → P1 weakly. Suppose (for

the inductive hypothesis) that for each k ≤ n− 1 we have constructed a probability measure Pk on

C([k−1, k], C(I)) and a sequence (ϵkj )
∞
j=1 with the following two properties:

1. For each 1 ≤ k ≤ n− 1, the sequence Pϵ
k
j

k−1,k converges weakly to Pk as j → ∞.
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2. For each 2 ≤ k ≤ n− 1, (ϵkj )
∞
j=1 is a subsequence of (ϵk−1

j )∞j=1

By Corollary 2.6.3, the sequence {Pϵ
n−1
j

n−1,n}j≥1 is tight, therefore we can find a probability measure

Pn on C([n−1, n], C(I)) and subsequence (ϵnj )
∞
j=1 of (ϵn−1

j )j such that Pϵ
n
j

n−1,n → Pn weakly as

j → ∞. Therefore the inductive hypothesis holds true for k = n.

In the end, we obtain a sequence Pk of probability measures on C([k−1, k], C(I)) which is consis-

tent in the sense that (L(k+1)−1,k+1

k−1,k )∗Pk+1 = Pk, for every k. By the Kolmogorov Extension Theo-

rem, there exists a unique probability measure Q on C((0,∞), C(I)) such that (Lk−1,k)∗Q = Pk

for all k.

To show that the measure Q is actually a limit point of the Qϵ, consider the sequences (ϵnj ) from

before. Then the “diagonal" sequence Qϵnn converges weakly to Q as n → ∞. Indeed ϵnn is an

eventual subsequence of ϵkn for every k, and therefore (Lk−1,k)∗Qϵnn = Pϵ
n
n

k−1,k converges weakly (as

n→ ∞) to (Lk−1,k)∗Q = Pk for every k.

Lemma 2.6.6. Let Q be a limit point of the {Zϵ} on C((0,∞), C(I)), as constructed in the previ-

ous lemma, and let LT : C((0,∞), C(I)) → C(I) denote the evaluation map at T . For any p ≥ 1,

there exists a constant C = C(p) such that for X ∈ I and T ≤ 1,

∥LT (X)∥2p ≤ CT−1/2PT (X, 0)

∥LT (X)− PT (X, 0)∥2p ≤ CPT (X, 0)

where as usual, ∥F∥p =
( ∫

|F |pdQ
)1/p.

Proof. Recall Equation (2.49) and the remark underneath, which say that

∥Zt(x)∥2p ≤ C(ϵ2t)−1/2(pRt ∗ Z0)(x) + C
∞∑
k=0

Ckϵktk/2

(k/2)!
(pRt+k ∗ Z0)(x).
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Rewriting the preceding expression in terms of the macroscopic variables, we have

∥Zϵ
T (X)∥2p ≤ CT−1/2(P ϵ

T ∗ϵ Zϵ
0)(X) +

∞∑
k=0

CkT k/2

(k/2)!
(P ϵ

T+ϵ2k ∗ϵ Zϵ
0)(X) (2.53)

where (f ∗ϵ g)(X) := ϵ
∑

y∈ϵΛ f(X, Y )g(Y ), for any functions f : (ϵΛ)2 → R and g : ϵΛ → R.

We define the quantity F (T,X, ϵ) to be the RHS of (2.53). We are going to prove that

lim sup
ϵ→0

F (T,X, ϵ) ≤ CT−1/2PT (X, 0)

where the PT on the RHS is the continuum Robin heat kernel. As a first step, we claim that for any

k > 0,

lim
ϵ→0

(P ϵ
T+ϵ2k ∗ϵ Zϵ

0)(X) = PT (X, 0) (2.54)

Indeed, we have that

ϱϵ1/2
∑
Y ∈ϵΛ

P ϵ
T+ϵ2k(X, Y )e−ϵ

−1/2Y = ϱϵ−1/2

∫
I

P ϵ
T+ϵ2k(X, ϵ⌊ϵ−1Y ⌋)e−ϵ1/2⌊ϵ−1Y ⌋dY

= ϱ

∫
I

P ϵ
T+ϵ2k(X, ϵ⌊ϵ−1/2Z⌋)e−ϵ1/2⌊ϵ−1/2Z⌋dZ

ϵ→0−→ ϱ

∫
I

PT (X, 0)e
−ZdZ

= PT (X, 0). (2.55)

In the first equality we used that ϵ
∑

Y ∈ϵΛ f(Y ) =
∫
I
f(ϵ⌊ϵ−1Y ⌋)dY , for any function f . In the

second equality we made the substitution Z = ϵ−1/2Y . In the third line we used uniform conver-

gence (see Theorem 2.3.30) of P ϵ
T+ϵ2k(X, ·) to PT (X, ·) together with the fact that ϵ⌊ϵ−1/2Z⌋ → 0

and ϵ1/2⌊ϵ−1/2Z⌋ → Z. In the final line we used the fact that ϱ =
( ∫

I
e−ZdZ

)−1, as defined earlier

in this section. This proves (2.54).
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In order to finish showing that limϵ→0 F (T,X, ϵ) ≤ CT−1/2PT (0, X), we will take the limit as

ϵ → 0 on the RHS of Equation (2.53), and then pass the limit through the infinite sum and apply

(2.54). However, we need to justify interchanging the limϵ→0 with the infinite sum
∑∞

k=0. To jus-

tify this interchange, we recall Equation (2.50) which says (after passing to macroscopic variables)

that

sup
ϵ∈(0,1]

(P ϵ
T ∗ϵ Zϵ

0)(X) ≤ C(T−1/2 + 1)eKT

where C,K do not depend on the terminal time τ . Note that T−1/2 + 1 ≤ CT−1/2eKT , hence the

RHS of the last expression may be further bounded by C ′T−1/2e2KT . Using this bound shows that

∞∑
k=0

CkT k/2

(k/2)!
sup
ϵ∈(0,1]

(P ϵ
T+ϵ2k ∗ϵ Zϵ

0)(X) ≤ CT−1/2e2KT
∞∑
k=0

CkT k/2

(k/2)!
e2Kk

≤ CT−1/2eK
′T . (2.56)

By (2.56) and the dominated convergence theorem, we can interchange the limit as ϵ→ 0 with the

infinite sum in (2.53), as discussed before. This completes the proof that

lim sup
ϵ→0

F (T,X, ϵ) ≤ CT−1/2PT (X, 0). (2.57)

In order to prove the second bound, we note from Lemma 2.5.3 and (2.21) that for t ≥ 1,

∥∥Zt(x)− pRt ∗ Z0(x)
∥∥2
p
≤ Cϵ

∫ t

0

(t− s)−1/2
∑
y

pRt−s+1(x, y)∥Zs(y)∥2pds.

In terms of macroscopic variables, this says that for T ≥ ϵ2

∥∥Zϵ
T (X)− (P ϵ

T ∗ϵ Zϵ
0)(X)

∥∥2
p
≤ C

∫ T

0

(T − S)−1/2
(
P ϵ
T−S+ϵ2 ∗ϵ ∥ZS∥2p

)
dS

≤ C

∫ T

0

(T − S)−1/2
(
P ϵ
T−S+ϵ2 ∗ϵ F (S, ·, ϵ)

)
(X)dS (2.58)
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where we used (2.53) in the last line. Now using (2.56), it is easily shown that

S 7→ (T − S)−1/2 · sup
ϵ∈(0,1]

(
P ϵ
T−S+ϵ2 ∗ϵ F (S, ·, ϵ)

)
(X)

is a function which is integrable over [0, T ]. Moreover, by (2.57) we have that

lim sup
ϵ→0

(
P ϵ
T−S+ϵ2 ∗ϵ F (S, ·, ϵ)

)
(X) ≤ S−1/2C

(
PT−S ∗ PS(·, 0)

)
(X) = CS−1/2PT (X, 0).

To finish the proof, let ϵ → 0 in (2.58) and apply the dominated convergence theorem to inter-

change the lim and the
∫ T
0

, and finally note that
∫ T
0
(T−S)−1/2S−1/2dS is a constant not depending

on T .

Lemma 2.6.7. Let Q and LT be as in the previous lemma. Then we can enlarge the probability

space
(
C((0,∞), C(I)), Borel, Q) so as to admit a space-time white noiseW such that Q-almost

surely, for every 0 < S < T :

LT = PT−S ∗ LS +
∫ T

S

PT−U ∗ (LUdWU).

Proof. Let us fix S ≥ 0 for now. Define

Y S
T (φ) = (LT+S, φ)− (LS, φ)−

1

2

∫ S+T

S

(LU , φ′′)dU.

By Corollary 2.6.3, we know that (LS+T )T≥0 has the same distribution (under Q) as the solution of

the SHE started from L(S)∗Q. Therefore (see (2.31)), the law of (LS+T )T≥0 solves the martingale

problem for the SHE, as defined in 2.5.5. Just as in the proof of Proposition 2.5.6, this shows that

Y S is an orthogonal martingale measure. So we letW be an independent white noise on [0,∞)×I

(not depending on S), then define the following space-time process for T ≥ 0:

W S
T (φ) :=

∫ T

0

∫
I

LS+U(X)−1φ(X)1{LS+U (X) ̸=0}Y
S(dX dU)+

∫ S+T

S

∫
I

1{LU (X)=0}φ(X)W (dX dU).
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Just as in the proof of proposition 2.5.6, W S is a cylindrial Wiener process such that Q-almost

surely, for any T ≥ 0 we have that

LS+T = PT ∗ LS +
∫ T

0

PT−U ∗ (LUdW S
U ). (2.59)

This construction actually shows that the white noises W S are consistent, in the sense that for any

S1 < S2 we have that W S2
T = W S1

S2−S1+T
−W S1

S2−S1
(because the Y S satisfy the same relation).

Finally, if T > 0, then we define

WT := W 1
(T−1)∨0 +

∞∑
k=1

W 2−k

2−k∧(T−2−k)∨0.

Using the property that that W S2
T = W S1

S2−S1+T
−W S1

S2−S1
for S1 < S2, it follows that the terms

appearing in the infinite sum are independent. Hence the convergence of the infinite series may be

checked by the martingale convergence theorem. The noise W may be equivalently described as

the a.s. and L2 limit of the W S as S → 0. One may then directly check that W is a cylindrical

Wiener process with the property that W S
T = WS+T −WS . This, together with (2.59), shows that

the desired relation holds.

Theorem 2.6.8 (Main Result of this Section). The rescaled processes Zϵ converge weakly in

D((0,∞), C(I)) to the solution of the SHE with δ0 initial data (as constructed in Proposition

2.4.3).

Proof. Let Q be any limit point of the laws of the {Zϵ} on C((0,∞), C(I)). By Lemma 2.6.5, we

know that at least one such Q exists.

As usual, we let LT : C((0,∞), C(I)) → C(I) denote the canonical T -coordinate, and we will let

∥F∥p :=
( ∫

|F |pdQ
)1/p. By Lemma 2.6.7, after possibly extending the probability space, there
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exists a white noise W such that Q-a.s., for any 0 < S < T we have that

LT = PT−S ∗ LS +
∫ T

S

PT−U ∗ (LUdWU).

Therefore, if we can prove that
∫ T
0
PT−U ∗ (LUdWU) exists and is in L2(Q) for any T > 0, then

we would have that

∥∥∥∥LT (X)− PT (X, 0)−
∫ T

0

PT−U ∗ (LUdWU)
∣∣
X

∥∥∥∥
2

≤
∥∥PT−S ∗ LS(X)− PT (X, 0)

∥∥
2
+

∥∥∥∥∫ S

0

PT−U ∗ (LUdWU)
∣∣
X

∥∥∥∥
2

. (2.60)

Notice that the top expression does not depend on S, whereas the bottom one does. So if we can

prove that (for any fixed T ) both of the terms in (2.60) tend to 0 as S → 0, then it will immediately

follow that Q is the distribution of the solution of the SHE started from δ0. Thus the remainder of

the proof will be dedicated to this purpose.

For the remainder of this proof, we will fix some time T > 0, and we will always consider

S < 1 ∧ T .

Let us start with the first term in (2.60). By the semigroup property and Minkowski’s inequal-

ity, we see that

∥∥PT−S ∗ LS(X)− PT (X, 0)
∥∥
p
=

∥∥∥∥∫
I

PT−S(X, Y )
[
LS(Y )− PS(Y, 0)

]
dY

∥∥∥∥
p

≤
∫
I

PT−S(X, Y )
∥∥LS(Y )− PS(Y, 0)

∥∥
p
dY

≤ C

∫
I

PT−S(X, Y ) · PS(Y, 0)1/2dY

where we used Lemma 2.6.6 in the final line. By applying Proposition 2.3.31 with b = 0, we see

that PT−S(X, Y ) ≤ C(T − S)−1/2. Similarly, applying Proposition 2.3.31 with b = 2, we see that

120



PS(Y, 0) ≤ CS−1/2e−2Y/
√
S . Therefore, continuing the above chain of inequalities, we find that

∫
I

PT−S(X, Y ) · PS(Y, 0)1/2dY ≤ C(T − S)−1/2S−1/4

∫
I

e−Y/
√
SdY

≤ C(T − S)−1/2S−1/4

∫ ∞

0

e−Z(S1/2dZ)

= C(T − S)−1/2S1/4

where we made the substitution Z = S−1/2Y in the second line. Since T was assumed to be fixed,

and since (T − S)−1/2 ≤
√
2T−1/2 whenever S < T/2, this computation shows that

lim sup
S→0

∥∥PT−S ∗ LS(X)− PT (X, 0)
∥∥
p
≲ lim

S→0
S1/4 = 0.

This shows that the first term appearing on the RHS of (2.60) approaches 0 as S → 0.

Next, we are going to consider the second term appearing on the RHS of (2.60). As stated above,

we first need to prove existence of the stochastic integral
∫ T
0
PT−U ∗ (LUdWU). This amounts to

showing that ∫ T

0

∫
I

PT−U(X, Y )2E[LU(Y )2]dY dU <∞

where the expectation is with respect to Q. Using Lemma (2.6.6), it holds that E[LU(Y )2] ≤

CU−1/2PU(Y, 0). Using the first bound in Proposition 2.3.31 with b = 0, we also have that

PT−U(X, Y )2 ≤ C(T − U)−1/2PT−U(X, Y ). Therefore,

∫ T

0

∫
I

PT−U(X, Y )2E[LU(Y )2]dY dU

≤ C

∫ T

0

(T − U)−1/2U−1/2

[ ∫
I

PT−U(X, Y )PU(Y, 0)dY

]
dU

≤ C

∫ T

0

(T − U)−1/2U−1/2dU · PT (X, 0)

= CPT (X, 0) <∞.
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In the second line, we used the semigroup property of the PT , and in the third line we used the fact

that
∫ T
0
(T − U)−1/2U−1/2dU is a constant not depending on T , which can be proved by making

the substitution V = U/T . This proves that the stochastic integral
∫ T
0
PT−U ∗ (LUdWU) exists.

Now we just need to show that the second term in (2.60) tends to 0 as S → 0. Applying the Itô

isometry and then using the same exact arguments as above, we see that

∥∥∥∥∫ S

0

PT−U ∗ (LUdWU)
∣∣
X

∥∥∥∥2
2

=

∫ S

0

∫
I

PT−U(X, Y )2E[LU(Y )2]dY dU

≤ C

∫ S

0

(T − U)−1/2U−1/2dU · PT (X, 0).

Clearly PT (X, 0) does not depend on S, and as long as U < S < T/2 we have (T − U)−1/2 ≤

(T − S)−1/2 ≤ (T/2)−1/2, which no longer depends on U or S. Therefore the last integral is

O(S1/2) as S → 0, which completes the proof.
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Chapter 3: Positive random walks and an identity for half-space SPDE’s

The purpose of this chapter is to investigate the continuum limit of a distributional identity for half-

space directed polymers given in [14]. The limiting identity turns out to relate the multiplicative-

noise half-space stochastic heat equation with Dirichlet boundary condition to the same equation

with Robin boundary condition. We view this identity as a precursor for proving Gaussian fluctu-

ation behavior of the supercritical half-space KPZ equation at the origin.

3.1 Introduction and context

We will focus on three related objects: uniform measures on collections of nearest-neighbor non-

negative paths (e.g., Brownian meander), directed polymers weighted by such measures, and

multiplicative-noise stochastic partial differential equations (SPDE) in a half-space.

3.1.1 Half-space stochastic heat equations

We begin our discussion with SPDE’s. The multiplicative-noise stochastic heat equation has been

a frequent subject of research within stochastic analysis and mathematical physics in recent years.

This equation arises naturally in the context of directed polymers and interacting particle systems,

as a weak scaling limit [40]. In spatial dimension one, the multiplicative-noise stochastic heat equa-

tion is also related to the so-called KPZ equation via the Hopf-Cole transform, and may be solved

by the classical Itô-Walsh construction [150] or by more modern techniques such as regularity

structures [88]. In the present article, we consider the stochastic heat equation with multiplicative

noise on a half-line:

∂TZ(T,X) =
1

2
∂2XZ(T,X) + Z(T,X) · ξ(T,X), X ≥ 0, T ≥ 0, (SHE)
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where ξ is a Gaussian space-time white noise on R+×R+. Naturally one needs to impose boundary

conditions at X = 0 in order to make sense of this equation. In the present work we consider two

types of boundary conditions, Robin and Dirichlet. First let us write the Robin boundary condition

of parameter A ∈ R:

∂XZ(T, 0) = AZ(T, 0). (3.1)

This type of homogeneous boundary condition has been considered in [45, 130, 74, 15] in the con-

text of interacting particle systems, and a robust solution theory has been developed in [70] using

techniques of [83]. This boundary condition transforms into a Neumann boundary condition for

the half-space KPZ equation upon taking the logarithm. Next, we consider the Dirichlet boundary

condition for the half-space SHE:

Z(T, 0) = 0. (3.2)

This type of boundary condition was considered, for instance, in [82], in the context of directed

polymers near an absorbing wall. Again, one can make sense of the equation using classical

techniques of [150] or more modern ones such as [83]. Our main result compares these two types

of boundary conditions; specifically it allows us to interchange information about the initial data

with that of the boundary condition imposed on the SHE:

Theorem 3.1.1. Fix A ∈ R. Let Z(A)
Rob(T,X) denote the solution of (SHE) with Robin boundary

parameter A as in (3.1) and delta initial data Z(A)
Rob(0, X) = δ0(X). Let Z(A)

Dir(T,X) be the solution

to (SHE) with Dirichlet boundary condition (3.2) and initial data Z
(A)
Dir(0, X) = eBX−(A+ 1

2
)X ,

where B is a standard Brownian motion independent of ξ. Then for each T ≥ 0 we have the

following equality of distributions:

Z
(A)
Rob(T, 0)

d
= lim

X→0

Z
(A)
Dir(T,X)

X
. (3.3)

This will be a consequence of Theorem 3.2.4, which in turn will use the work of [14, 151] and

Theorem 3.2.2 (our main technical result) as inputs. Let us now discuss the motivation for this
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result, the contexts in which it has arisen, and the methods used to prove it.

To give some motivation towards (3.3), we now explain it using the exact solvability framework

developed in [14], which is a crucial input to the proof of (3.3). Both the left and right sides of

(3.3) have interpretations in terms of partition functions of a certain family of probabilistic models

known as directed polymers (see Section 1.2). Specifically, the left side of (3.3) can be related to a

polymer that is modeled on a Brownian motion which gets reweighted according to its local time

at zero, whereas the right side can be related to a polymer that is modeled on a Brownian motion

conditioned to remain positive. In [14], the authors use certain nontrivial symmetries of Macdon-

ald polynomials in order to obtain information about the large-scale behavior of discrete versions

of these polymer models and others (which is similar in theme to, and builds on, older works of

[24, 43, 126, 136, 11]). One particular result in that paper (Proposition 8.1) is a highly non-obvious

identity in distribution for directed polymers with log-gamma weights, that effectively allows one

to switch some of the bulk weights of the random environment with those on the boundary without

changing the distribution of the associated partition function. Our main goal was to take the SPDE

limit of that identity, which effectively gives Theorem 3.1.1 under the appropriate scaling. Hence

our result can be viewed as a special case of more general algebraic principles that may be used to

extract certain nontrivial symmetries in certain half-space models.

The right side of (3.3) equals (∂XZ
(A)
Dir)(T, 0). It is not clear why this derivative should even

exist in the first place, since the spatial regularity of ZDir is much worse than C1. One of our main

technical results, given in Section 4, is that the limit in (3.3) is indeed well-defined (Corollary

3.4.3). In fact we will prove something stronger: the limit in the right side of (3.3) simultaneously

exists for all T ≥ 0 almost surely, and is Hölder 1/4− as a function of T almost surely.

In order to convince the reader that (3.3) is at least plausible, let us verify formally that the expec-

tations are the same on both sides of the equation. Let P (A)
Rob(T ;X, Y ) denote the Robin boundary
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heat kernel and let PDir(T ;X, Y ) denote the Dirichlet boundary one, where by heat kernel we

mean the fundamental solution of the heat equation with the associated boundary condition started

from the delta measure at point X . Letting P (T ;X) = 1√
2πT

e−X
2/2T , one may verify directly that

these kernels are given by the following explicit formulas for T,X, Y ≥ 0:

P
(A)
Rob(T ;X, Y ) = P (T ;X + Y ) + P (T ;X − Y )− 2A

∫ ∞

0

P (T ;X + Y + Z)e−AZdZ,

PDir(T ;X, Y ) = lim
A→∞

P
(A)
Rob(T ;X, Y ) = P (T ;X − Y )− P (T ;X + Y ).

By the Duhamel principle (see Definition 2.1) it holds that E[Z(A)
Rob(T,X)] = P

(A)
Rob(T ; 0, X) and

E[Z(A)
Dir(T,X)] = E[

∫∞
0
PDir(T ;X, Y )eBY −(A+1/2)Y dY ] =

∫∞
0
PDir(T ;X, Y )e−AY dY. One then

formally interchanges an expectation and a derivative to obtain

E[∂X
∣∣
X=0

Z
(A)
Dir(T,X)] =

∫ ∞

0

∂X
∣∣
X=0

PDir(T ;X, Y )e−AY dY

= 2

∫ ∞

0

∂Y PDir(T ; 0, Y )e−AY dY = P
(A)
Rob(T ; 0, X) = E[Z(A)

Rob(T, 0)],

where we integrate by parts in the third equality. This shows at a purely formal level that the ex-

pectations on either side of (3.3) are the same.

Theorem 3.1.1 suggests a duality between the initial data of a solution to the half-space SHE and

the boundary conditions one imposes on it. It may be interesting to see if more general versions of

this hold. For example, could it be possible that the identity holds as a process in T and not just in

the one-point sense? Using this type of idea, one may potentially obtain useful information about

objects of interest, such as the Neumann-boundary Kardar-Parisi-Zhang (KPZ) equation that was

considered in [45]. It was conjectured in Chapter 2 that one has the almost-sure convergence

lim
T→∞

1

T
logZ

(A)
Rob(T, 0) =


− 1

24
, A ≥ −1/2

(A+ 1/2)2 − 1
24
, A ≤ −1/2,
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which would give the exact law of large numbers for Neumann-boundary KPZ. Unfortunately The-

orem 3.1.1 alone is not enough to obtain this result. Nevertheless, it is plausible and even hopeful

that a clever use of (3.3) (perhaps combined with some new ideas and techniques) could lead to

quantitative results that are close to the above expression. Indeed, despite the fact that on the Robin

side of (3.3) there is no visible phase transition at A = −1/2, the appearance of the term A+ 1/2

on the Dirichlet side already indicates the presence of a nontrivial change in large-scale behavior

at A = −1/2. The introduction to Section 2 includes a further discussion of this. More than

just computing the above limit, we are also interested in computing the limiting distribution of the

fluctuations around the mean value. These should be of order T 1/2 and Gaussian in the A < −1/2

case, and they should be of order T 1/3 and random-matrix theoretic otherwise (with separate cases

when A = −1/2 and A > −1/2). See for instance [130, 15, 10, 23].

The main technical difficulties in the present work are of an analytic nature: translating the dis-

crete identity in [14] to that of (3.3) required us to prove a general convergence result for directed

polymers, stated below as Theorem 3.1.2. As we will now see, this involves the analysis of an

interesting object in its own right: the Brownian meander.

3.1.2 Directed polymers weighted by positive random walks

This brings us to the method of proof of Theorem 3.1.1. As suggested above, it will be proved

using an approximation via directed polymers with very specific weights, where a discrete version

of this identity holds.

Directed polymers are natural probabilistic objects that were first introduced in [94, 96]. They

generalize directed first- and last-passage percolation and have deep connections to statistical me-

chanics and stochastic analysis. Specifically, we consider an environment {ωi,j}(i,j)∈Z≥0×Z consist-

ing of i.i.d., mean-zero, finite-variance random variables. The standard deviation of the weights

is referred to as the inverse temperature. One may define a partition function Zω(n, x) as a sum
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over all directed nearest-neighbor simple random walk paths (i, γi)0≤i≤n of length n starting from

(0, x), of the product of all weights eωi,γi along the path. Similarly, there is also a natural way to

define random Markovian transition densities associated to this environment ω, wherein a nearest-

neighbor path γ has probability proportional to the product of weights eωi,γi along it. As is standard

practice in statistical mechanics, one may then ask questions about the existence of infinite-volume

limits of these path measures and their typical fluctuation scale, as well as the typical scale and

shape of the fluctuations of the partition function itself [37].

Many seminal results in these directions have been proved, perhaps most notably that there is a

phase transition which becomes apparent in high dimensions. Specifically, in spatial dimensions

greater than two, there is a strictly positive critical value of the inverse temperature below which

weak disorder holds, meaning that the fluctuations of a typical polymer path look like Brownian

motion and one may construct infinite-length path measures [39, 37]. Such polymers are said to

exhibit weak disorder. In contrast, lower-dimensional polymers at any nonzero inverse tempera-

ture are known to be characterized by strong disorder, meaning that the path fluctuations are quite

different and there is no sensible notion of an infinite volume Gibbs measure [37]. The results

of [3, 2] examined the partition function in a regime that lies between strong and weak disorder.

Specifically, in spatial dimension one, they scaled the inverse temperature of the model like n−1/4

and simultaneously applied diffusive scaling to the partition function, and there they observed that

the fluctuations are governed by (SHE) and that the path measures themselves have a continuum

analogue. Recent work of [34, 32] has investigated the intermediate-disorder behavior in two spa-

tial dimensions, where the scaling n−1/4 is replaced by (log n)−1/2. In a different direction, [151]

extended the work of [3] to the case of half-space polymers with Robin boundary condition.

We will be interested in the analogous half-space question of intermediate-disorder fluctuations of

the directed polymer partition function associated to uniform non-negative path measures. Specif-

ically, let
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• Pn
x denote the uniform probability measure on the collection of all paths (γi)0≤i≤n such that

γ0 = x, |γi+1 − γi| = 1 for i < n, and γi ≥ 0 for all i ≤ n.

• ωi,j be i.i.d. mean-zero, variance-one random variables that are uniformly bounded from

below by a deterministic constant.

• fn be a sequence of functions bounded uniformly by a function growing at-worst exponen-

tially fast near infinity such that fn(n1/2 ·) converges (as n → ∞) to some function f(·) in

the Hölder space Cα
loc(R+), for all α ∈ (0, 1/2).

Letting En
x denote the expectation with respect to Pn

x, and setting S to be the canonical process

associated to Pn
x, one defines a directed-polymer partition function as follows:

Zω
k (n, x) := En

x

[
fk(Sn)

n∏
i=0

(1 + k−1/4ωi,Si
)

]
.

Note that the expectation is taken only with respect to the random walk, conditional on the envi-

ronment ωi,j , which is always assumed to be independent of the walk. We consider the rescaled

partition function

Zn(T,X) := Zω
n (nT, n

1/2X), (3.4)

where the quantity on the right side is defined by linear interpolation between points of the lattice

L := {(x, n) ∈ Z2
≥0 : n− x ∈ 2Z}.

In a manner analogous to [3] we show that Zn converges in law to a random continuous space-time

field. The natural candidate for such a limit would be a continuum analogue of Zω
k (n, x), where

the expectation En
x over positive discrete random walks is replaced by that of continuous ones.

Indeed the limiting space-time field can be described as follows: it has the formal Feynman-Kac

interpretation that takes as its input the so-called Brownian meander [66, 65] on a finite time in-

terval, and exponentially weighs it by its integral against a space-time white noise field. More

precisely, if PT
t (X, Y ) denotes the inhomogeneous Markov transition density at time t of Brow-
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nian motion started from X and conditioned to stay positive until time T ≥ t, then this limiting

space-time field Z necessarily solves the multiplicative-noise SPDE on the half-space that is given

in Duhamel form by

Z (T,X) =

∫
R+

PT
T (X, Y )f(Y )dY +

∫ T

0

∫
R+

PT
T−S(X, Y )Z (S, Y )ξ(dY dS), (3.5)

where ξ is a space-time white noise and f is the limiting function from the third bullet point above.

An important step towards proving Theorem 3.1.1 will be to show that a solution of (3.5) exists

and makes sense even when X = 0, and then to show that it can in turn be related to the derivative

of the solution of the Dirichlet-boundary SHE at the origin. This will all be done in Section 4;

more specifically we will show that the solution of (3.5) equals

Z (T,X) =
ZDir(T,X)

2Φ(X/
√
T )− 1

, T,X > 0, (3.6)

where ZDir solves (SHE) with Dirichlet boundary condition (3.2) with the same initial data as Z ,

and Φ is the cdf of a standard normal variable so that Z (T, 0) = (2πT )1/2 limX→0
ZDir(T,X)

X
. We

then have the following result.

Theorem 3.1.2. The sequence of processes Zn defined in (3.4) converge in law to the solution of

(3.5) as n → ∞. The convergence occurs in the sense of finite-dimensional distributions. If we

assume that the ωi,j have p > 8 moments, then distributional convergence holds when the space

C(R+ × R+) is equipped with the topology of uniform convergence on compact sets.

This theorem will be proved in Section 5.2 in greater generality (where the distribution of the

weights ω may vary with n), see Proposition 3.5.9 and Theorem 3.5.11. It is actually a simplified

version of Theorem 3.2.2 which is the true input to proving Theorem 3.1.1. The main difficulty

towards this result will be in obtaining the necessary estimates for the inhomogeneous transition

densities (and their discrete analogues) appearing in (3.5).
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Thus the proof of Theorem 3.1.2 will lead to some new technical results related to the uniform

measures Pn
x and their continuum analogues. These will be collected in appendices at the end of

the paper. To illustrate a few such results, we will prove a coupling result for such random walks in

the nearest-neighbor case, and then we will use that coupling to show the following concentration

property: there exist constants c, C > 0 (independent of n, x ≥ 0) such that for all u > 0 and all

k ≤ n one has that

Pn
x

(
sup
0≤i≤k

|Si − x| > u
)
≤ Ce−cu

2/k.

We remind the reader that Si is the conditioned walk. The study of such random walks started with

the invariance principle of [95], further generalized in [19]. Later, the study expanded consider-

ably, with local limit theorems [29] and expansions to heavy-tailed increments [30]. We will see

that some of the estimates we derive are similar in spirit to some of those works, but the intricate

details are somewhat different. We will give proofs of many of these technical results because the

highly specific estimates needed to prove Theorem 3.1.2 were not found in those references (since

our random walk does not necessarily start at zero).

It should be noted that we work with a simplified version of the partition function as opposed

to much of the previous literature: [3, 38] and related works. There the partition function Zω
k (n, x)

is defined with weights ek
−1/4ωi,Si instead of the quantity 1 + k−1/4ωi,Si

that we have used in (3.4)

above. The reason for this is that the latter object is mathematically simpler because it is already

renormalized (has expectation exactly 1 rather than approximately 1), and hence leads to simpler

proofs and less stringent moment restrictions. However, it should be noted that the exponential

version is more natural from the physical point of view, and entire results such as [60] have been

devoted to finding the correct renormalization and phase transition behavior for that version as a

function of the moment assumptions.

Outline: In Section 2, we prove Theorem 3.1.1 as Theorem 3.2.4, which uses [14] and [151]

as important inputs. In Section 3, we will introduce and state some estimates about the transition
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densities associated to positive random walks, though the proofs are postponed to the appendices.

In Section 4, we will develop the existence and uniqueness theory of the limiting SPDE (3.5) from

Theorem 3.1.2, and as a corollary we prove that ∂XZDir(T, 0) exists. In Section 5, we prove The-

orem 3.1.2 by using the estimates developed in the appendices. In the appendices we derive some

elementary but powerful bounds related to the measures Pn
x, which are crucial for the proofs in the

main body.
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3.2 Main results

In this section, we show how to prove Theorem 3.1.1. We denote non-negative reals as R+ and

non-negative integers as Z≥0.

We will use the notion of mild solutions for SPDEs throughout this article. Thus for complete-

ness, we begin by giving the formal definition of such a solution, although it is peripheral to the

main goals of the section.

Definition 3.2.1 (Mild Solution). Recall the Dirichlet-boundary heat kernel

PDir
t (X, Y ) :=

1√
2πt

(
e−(X−Y )2/2t − e−(X+Y )2/2t

)
. (3.7)

Let ξ be a space-time white noise defined on a probability space (Ω,F ,P), and let µ be an indepen-
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dent random Borel measure on R+. A continuous space-time process ZDir = (ZDir(T,X))T,X≥0

is a mild solution of the Dirichlet-boundary SHE with initial data µ if P-almost surely, for all

X,T ≥ 0 one has that

ZDir(T,X) =

∫
R+

PDir
T (X, Y )µ(dY ) +

∫ T

0

∫
R+

PDir
T−S(X, Y )ZDir(S, Y )ξ(dS, dY ),

where the integral against ξ is meant to be interpreted in the Itô-Walsh sense [150].

The fact that this object exists will be established as a special case of the results in Section 4.

The definition of the Robin boundary version Z(A)
Rob of (SHE) is very similar, but one replaces the

Dirichlet heat kernel with the Robin boundary one throughout. We refer the reader to Section 2.4

above for more details, including the existence/uniqueness of this Robin boundary version.

The proof of Theorem 3.1.1 will be obtained by approximating both Z(A)
Dir and Z(A)

Rob by the partition

function of a directed polymer with log-gamma weights. For these weights we use a known identity

that allows us to switch the boundary weights with those on the initial data without changing the

distribution of the partition function along the boundary [14] (Proposition 8.1). The approximation

argument will strongly emulate the arguments given in [151, 3] although there are new challenges

that make the convergence result rather difficult and technical. These additional difficulties are a

byproduct of the inhomogeneous Markov transition densities for random walks conditioned to stay

above zero.

Let us explicitly state the Dirichlet-boundary approximation result now. For each n ∈ N, let

ωn = {ωni,j}i≥j≥0 denote a random environment indexed by the principal octant of Z2 with the

following properties:

• The “bulk-environment" random variables {ωni,j}i≥j≥1 are i.i.d., and the “lower-boundary"

random variables {ωni,0}i≥0 are also i.i.d. These two collections are independent.

• For j > 0 (the bulk variables) ωni,j have finite second moment. Furthermore one has E[ωni,j] =
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0 and E[(ωni,j)2] = 1 + o(1) as n→ ∞.

• For j = 0 (at the lower boundary) log(1 + n−1/4ωni,j) has finite second moment; moreover

there exist µ, σ ∈ R such that E[ωni,j] = µn−1/4 + o(n−1/4), and var(ωni,j) = σ2 + o(1) as

n→ ∞. We also assume ωi,0 have 2 + ϵ moments for some ϵ > 0.

An upright path in Z2 is a function γ = (γ1, γ2) : {0, ..., n} → Z2 such that both γ1 and γ2 are

weakly increasing, and γ1(i)+γ2(i)− i is constant in i. For p ≥ q ≥ 0 define the random partition

function

Zn(p, q) :=
∑

γ:(0,0)→(p,q)

2−#{i≤p+q : γ2(i)̸=0}
p+q∏
i=0

(1 + n−1/4ωnγ1(i),γ2(i)),

where the sum is taken over all upright paths γ from (0, 0) to (p, q) that stay in the octant {(i, j) :

i ≥ j ≥ 0}. As a convention, we also set Zn(p, q) = Zn(p, 0) for q ≤ 0. Let Φ denote the cdf of a

standard normal distribution. We define the rescaled processes

Zn(T,X) :=
1

2Φ
(
X+n−1/2

√
T

)
− 1

· Zn(nT + n1/2X,nT − n1/2X), T,X ≥ 0

where we interpolate linearly between integer values of Zn.

The following result is the primary technical contribution of this work.

Theorem 3.2.2. In the above notations and assumptions, the sequence of processes Zn converges

in distribution (in the sense of finite-dimensional marginals, as n → ∞) to the unique space-time

process satisfying (3.5) (equivalently given by (3.6)) with initial data Z (0, X) = ZDir(0, X) =

eσBX+(µ− 1
2
σ2)X , whereB is a standard Brownian motion independent of the space-time white noise

ξ. If we assume that all weights ωni,j have more than eight moments bounded independently of n,

then distributional convergence holds when the space C(R+ × R+) is equipped with the topology

of uniform convergence on compact sets.

We will see that Theorem 3.2.2 is essentially equivalent to a more complicated version of Theorem

3.1.2, where the distribution of the weights ω depends on n and the domain of the polymer paths
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has been changed from a quadrant to an octant of Z2, which makes the geometry more challenging

to work with. Accordingly, the proof of this theorem will proceed in two steps: first by reducing the

claim of the theorem to that of Theorem 3.1.2 with a specific initial data (which will be achieved

in Section 5.1), and then proving Theorem 3.1.2 which is simpler thanks to known methods and is

done in Section 5.2.

Remark 3.2.3. There are really two different regimes in which one should interpret Theorem

3.2.2. One regime is X > 0, where the result merely says that Zn(nT + n1/2X,nT ) con-

verges to ZDir(T,X). The more interesting regime is X = 0, in which case the theorem says

that (πnT/2)1/2Zn(nT, nT ) converges in law to limX→0
ZDir(T,X)

2Φ(X/
√
T )−1

, i.e.,

n1/2Zn(nT, nT )
d→ lim

X→0

ZDir(T,X)

X
.

An advantage of our approach is that the proof will simultaneously cover both regimes. In fact,

we will see that convergence even takes place in a parabolic Hölder space of the appropriate

regularity provided that the weights have more than eight moments.

We now combine this result with the Robin boundary result of [151] and the log-gamma identities

of [14] in order to obtain the following result, which clearly implies Theorem 3.1.1. In what

follows, we denote by Γ−1(θ, c) the inverse-gamma distribution of shape parameter θ and scale

parameter c, i.e., the law of the random variable cX , where X has pdf given by

f(x) =
x−θ−1

Γ(θ)
e−1/x, x > 0.

We will also write E[Γ−1(θ, c)] = c
θ−1

and var(Γ−1(θ, c)) = c2

(θ−1)2(θ−2)
to denote respectively the

expectation and variance of such a random variable.

For n ∈ N, let ζ1n = {ζ1n(i, j)}i≥j≥0 and ζ2n = {ζ2n(i, j)}i≥j≥0 be fields of independent random
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variables with the following distributions

ζ1n(i, j) ∼


Γ−1(2

√
n, 1

2
E[Γ−1(2

√
n, 1)]−1), i ̸= j

Γ−1(
√
n+ A+ 1

2
, 1

2
E[Γ−1(2

√
n, 1)]−1), i = j

ζ2n(i, j) ∼


Γ−1(2

√
n, 1

2
E[Γ−1(2

√
n, 1)]−1), j ̸= 0

Γ−1(
√
n+ A+ 1

2
, 1

2
E[Γ−1(2

√
n, 1)]−1), j = 0.

Let Z1
n and Z2

n denote the associated partition functions, i.e.,

Zα
n :=

∑
γ:(0,0)→(⌊nT ⌋,⌊nT ⌋)

2⌊nT ⌋∏
i=0

ζαn (γ1(i), γ2(i)), for α ∈ {1, 2}. (3.8)

Here the sum is taken over all upright paths γ from (0, 0) to (⌊nT ⌋, ⌊nT ⌋) that stay in the octant

{(i, j) : i ≥ j ≥ 0}.

Theorem 3.2.4 (Joint with [14, 151]). With Z1
n and Z2

n defined in (3.8), the following are true:

1.
√
nZ1

n converges in distribution as n→ ∞ to the left-hand side of (3.3).

2.
√
nZ2

n converges in distribution as n→ ∞ to the right-hand side of (3.3).

3. For every n, one has Z1
n

d
= Z2

n.

Proof. Item (1) is proved as Theorem 5.1(B) of [151] using techniques from [3]. Item (3) is proved

in Proposition 8.1 of [14] by developing the theory of half-space Macdonald processes. Thus we

only need to prove Item (2), and this will be done using Theorem 3.2.2, in the special case where

X = 0. As in Theorem 4.5 of [3], we define a family of independent weights ωn = {ωni,j}i≥j≥0

according to the rule:

2ζ2n(i, j) = 1 + (4n)−1/4ωni,j, j > 0,
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d=

d=

Z2
n Z1

n

Γ−1(a)

Γ−1(b)

SPDE Limit

“Normalized Dirichlet” Boundary SHE Robin Boundary SHE

Geometric Brownian Drift initial data δ0 initial data

Γ−1(b)

Γ−1(a)

Brownian motion condi-
tioned not to hit zero un-
til terminal time.

Brownian bridge which gets
re-weighted at rate A with re-
spect to its local time at zero.

exp(BX − (A+ 1/2)X)

n→∞∼ 1/2(blue weights)

Left side: point-to-Brownian
Right side: point-to-point

(one-point)

(one-point)

red weights

a = 2
√
n

b =
√
n + A + 1/2

Figure 3.1: A graphical description of Theorem 3.2.4. The weight of a given path is the product of
the weights along it, and the partition function Zα

n for α ∈ {1, 2} is given by summing the weights
of all upright paths from (0, 0) to (⌊nT ⌋, ⌊nT ⌋) that stay in the octant. We have represented the
SPDE limits by their respective (purely formal) Feynman-Kac representations.

ζ2n(i, 0) = 1 + n−1/4ωni,0.

There are now three things to verify, corresponding to the three bullet points preceding Theorem

3.2.2. Using the fact that

E[Γ−1(θ, 1)] =
1

θ − 1
, var(Γ−1(θ, 1)) =

1

(θ − 1)2(θ − 2)
,

one gets the desired asymptotics on E[ωi,j] and on E[(ωi,j)2], with µ = −A and σ2 = 1. This

proves the corollary (and thus also Theorem 3.1.1).
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Once again we would like to emphasize the tremendous importance of [14] as the primary input

to proving the preceding theorem, and thus the main result (3.3). It may be interesting to explore

more robust methods that might give a direct proof of (3.3) using purely stochastic analytic meth-

ods instead of exact solvability, but we have tried and this seems out of reach for us at the moment.

With Theorem 3.2.4 in place, we will now shift the goals of the paper to the analytical and techni-

cal aspects focusing on the methods used to prove Theorem 3.2.2.

Since the sum defining the partition function in the preceding results is over all upright paths that

stay in the principal octant of Z2, it is natural to relate those quantities to reflecting random walk

measures. However, if one does asymptotics in Corollary 3.2.4, she may verify that ζ2n(j, j) → 1/2

in probability as n→ ∞. What this means is that instead of pure reflection, our random walk path

loses mass by a factor of 1/2 each time it hits zero. Hence, it is clear that the analysis in proving

Theorem 3.2.2 will involve taking a close look at these random walk measures, as well as directed

polymers weighted by such measures, as suggested in the introduction.

More precisely, fix some x ∈ Z≥0, and define a sample space of non-negative random walk trajec-

tories by

Ωn
x := {(s0, ..., sn) ∈ Zn : |si+1 − si| = 1, si ≥ 0, s0 = x}.

Define a sub-probability measure µnx and a probability measure Pn
x on Ωn

x by

µnx(S) := 2−n, Pn
x(S) :=

1

#Ωn
x

=
µnx(S)

µnx(Ω
n
x)
, for all S ∈ Ωn

x.

As an intermediate step in proving Theorem 3.2.2, we obtain the following result.

Theorem 3.2.5. With the above notation, the following are true.

1. (Markov Property) Fix n, x ≥ 0. Let S = (Sk)
n
k=0 denote the coordinate process asso-

ciated to Pn
x, i.e., S is a Ωn

x-valued random variable with law Pn
x. Then (Sk)

n
k=0 is a

time-inhomogeneous Markov process, in fact conditionally on (Sk)
K
k=0 with K < n, the
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process (Sk+K)n−Kk=0 is distributed according to Pn−K
SK

. One has explicit transition densities

for 0 ≤ i1 < ... < ik ≤ n:

Pn
x(Si1 = s1, ..., Sik = sk) = pni1(x, s1)p

n−i1
i2−i1(s1, s2) · · · p

n−ik−1

ik−ik−1
(sk−1, sk),

where pni is given in Definition 3.3.2 below.

2. (Mass) For every x ∈ Z≥0, the total mass of µnx is asymptotically (x+ 1)
√

2
πn

:

lim
n→∞

n1/2µnx(Ω
n
x) = (x+ 1)

√
2/π.

3. (Concentration) There exist C, c > 0 such that for every x ≥ 0, every 0 ≤ m ≤ k ≤ n, and

every u > 0 one has that

Pn
x

(
sup
m≤i≤k

|Si − Sm| > u
)
≤ Ce−cu

2/(k−m).

4. (Convergence of Transition Densities) Let pNn be as in Item (1). One has the convergence

(n/2)1/2p
2⌊Tn⌋
2⌊tn⌋ (2⌊n

1/2X/
√
2⌋, 2⌊n1/2Y/

√
2⌋) n→∞−→ PT

t (X, Y ),

where PT
t is the transition probability for a certain (inhomogeneous) Markov process de-

fined in Definition 3.3.4 below. Moreover, for fixed (t, T,X) the convergence in the Y -

variable occurs in Lp(R+, e
aY dY ) for every p ∈ [1,∞).

The first part of the theorem is elementary and the last part is a more local version of the results

of [95, 19]. The third part is new as far as we know, and the second part will simply follow from

the local central limit theorem. All proofs may be found in the appendices, except for (1) which is

proved in Section 3.

Remark 3.2.6. One can actually formulate an invariance principle for this family of measures.
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This was done in greater generality in [95, 19]. Fix X,T ≥ 0. For each x,N ≥ 0, let (Sx,Nn )Nn=0

be distributed according to PN
x . Then the processes (N−1/2SN

1/2X,NT
Nt )t∈[0,T ] converge in law (with

respect to the uniform topology on C[0, T ], as N → ∞) to a time-inhomogeneous Markov process

B on [0, T ] whose transition densities PT
t (X, Y ) are given by the limit in Item (4). This limiting

processB may be interpreted as a standard Brownian motion conditioned to stay positive until time

T; see Proposition 3.3.5. This invariance principle will be immediate from the results of Appendix

A, but it will not be needed for the results above.

Let us now discuss the basic idea of the proof of Theorem 3.2.2 in the special case when (T,X) =

(1, 0) because this is enough to give the main idea. Denote by EKRW the expectation with respect

to a reflected random walk of length 2n that is started from 0 and killed at the origin with probabil-

ity 1/2, i.e., the one whose transition density is equal to p(1/2)n which is defined in Section 3 below.

By rotating the picture appropriately, one rewrites the partition function appearing in Theorem

3.2.2 as a discrete Feynman-Kac formula for this killed walk:

Zn =
∑

γ:(0,0)→(n,n)

2−#{i≤2n : γ2(i)>0}
2n∏
i=0

(1 + n−1/4ωnγ1(i),γ2(i))

= EKRW

[
zn0 (STn)

Tn−1∏
i=0

(1 + n−1/4ω̂ni,Si
) · 1{survival}

]
, (3.9)

where

• ω̂ni,j is defined to be ωn
(n− i−j

2
),(n− i+j

2
)

for all i, j.

• The expectation EKRW is taken only with respect to the random walk S, i.e., conditional on

the ωni,j (which are always assumed to be independent of S).

• Tn is the first time that (i, Si) hits the diagonal line {(2n− j, j) : 0 ≤ j ≤ 2n}.

• zn0 (x) :=
∏x

i=0(1 + n−1/4ωni,0) can be thought of as a sort of “initial data" for the above

discrete Feynman-Kac representation.
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• {survival} is the event that the random walk survives up to time 2n (or equivalently, up to

time Tn).

Now, using Theorem 3.2.5(2) with x = 0, one finds that PKRW (survival) ≈
√

2/πn. Moreover,

we can make the approximation Tn ≈ 2n for reasons justified later, see Proposition 3.5.8. This

essentially reduces the octant geometry to that of a quadrant, thus reducing the theorem statement

to that of Theorem 3.1.2, which is simpler as we see below. Combining this with the above gives

√
πn

2
Zn ≈ EKRW

[
zn0 (S2n)

2n∏
i=0

(1 + n−1/4ω̂ni,Si
)

∣∣∣∣ survival
]

= EKRW

[
zn0 (S2n)

2n∑
k=0

n−k/4
∑

1≤i1<...<ik≤2n

k∏
j=1

ω̂nij ,Sij

∣∣∣∣ survival
]
. (3.10)

In the notation of Theorem 3.2.5, the killed random walk conditioned to survive has law Pn
x and

the associated Markov process has transition densities pNn . Using theorem 3.2.5(1), the expectation

in the preceding expression may be expanded as

2n∑
k=0

n−k/4
∑

0≤i1<...<ik≤2n

∑
(x1,...,xk+1)∈Zk+1

≥0

zn0 (xk+1)
k+1∏
j=1

p
2n−ij−1

ij−ij−1
(xj−1, xj)

k∏
j=1

ω̂nij ,xj , (3.11)

with x0 := 0, i0 := 0, and ik+1 := 2n. Recall that log(1 + u) ≈ u− 1
2
u2, so by writing

zn0 (x) = e
∑x

0 log(1+n−1/4ωn
i,0) ≈ e

∑x
0

(
n−1/4ωn

i,0−
1
2
n−1/2(ωn

i,0)
2
)

= e
n−1/4

∑x
0 (ω

n
i,0−n−1/4µ)+n−1/2µx− 1

2n1/2

∑x
0 (ω

n
i,0)

2

, (3.12)

one may convince herself (using Donsker’s principle and the law of large numbers together with

the third bullet point preceding Theorem 3.2.2) that as n→ ∞,

(
zn0 (n

1/2X)
)
X≥0

d−→
(
eσBX+(µ− 1

2
σ2)X

)
X≥0

(3.13)

for a Brownian motion B. Then taking the limit of (3.11) as n → ∞ by using Theorem 3.2.5(4)
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(with some uniformity estimates), one obtains the Wiener-Itô chaos series

∞∑
k=0

∫
0≤t1<...<tk≤1

∫
Rk+1
+

eσBxk+1
+(µ− 1

2
σ2)xk+1

k+1∏
j=1

P
1−tj−1

tj−tj−1
(xj−1,xj)dxk+1ξ(dxk,dtk)···ξ(dx1,dt1),

with the convention x0 = 0, t0 = 0, tk+1 = 1, and where the PT
t are the conditional heat kernels

from the limit in Theorem 3.2.5(4), and ξ is a space-time white noise. But (as we will see in

Proposition 3.4.2 below) this chaos series is precisely equal to

lim
X→0

ZDir(1, X)

2Φ(X)− 1
=
√
π/2 lim

X→0

ZDir(1, X)

X
,

where the initial data is eσBX+(µ− 1
2
σ2)X , and Φ is the cdf of a standard normal, which implies that

Φ(0) = 1/2 and Φ′(0) =
√
π/2 giving the equality above. This will complete the argument for

Theorem 2.2. Note that no part of the argument relies on the finer details of the weights ωni,j beyond

their mean and variance.

3.3 Uniform measures on collections of positive paths

In this section we will introduce the inhomogeneous heat kernels pNn associated to random walks

conditioned to stay positive. We begin with an elementary discussion of the properties of these

measures, and later we state technical estimates about these measures that will be necessary in

subsequent sections, though their proofs are postponed to the appendices.

Definition 3.3.1. For n ∈ Z≥0 and x ∈ Z, let pn(x) denote the standard heat kernel on Z (i.e., the

transition function for a discrete-time simple symmetric random walk started from zero). Then we

define

p(1/2)n (x, y) = pn(x− y)− pn(x+ y + 2), n, x, y ≥ 0.

The kernels p(1/2)n have the following probabilistic interpretation. Consider a simple symmetric

random walk (Sn)n≥0 with S0 = 0 on the integer lattice Z. Impose the condition that this random

walk gets killed, i.e., enters an auxiliary death state, at the first instance that it hits the value −1.
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Equivalently one can consider a random walk reflected at 0 that dies independently with probability

1/2 each time it attempts to move from site 0 to site 1. Then p(1/2)n (x, y) is the probability of the

following event: the walk started from x is at position y at time n.

Definition 3.3.2. We define the following quantity for integers 0 ≤ n ≤ N

pNn (x, y) := p(1/2)n (x, y)
ψ(y;N − n)

ψ(x;N)
, where ψ(x;n) :=

∑
y≥0

p(1/2)n (x, y).

The probabilistic relevance of these kernels pNn will be demonstrated shortly in Proposition 3.3.3.

As in Theorem 3.2.5, let

ΩN
x := {(s0, ..., sN) ∈ ZN+1

≥0 : |si+1 − si| = 1, s0 = x}.

Then denote by PN
x the uniform probability measure on ΩN

x , and let S denote the coordinate

process associated to this measure (e.g., S can be the identity map on ΩN
x ). In plainer terms, S

is a simple symmetric random walk of length N conditioned to stay non-negative throughout its

course.

Proposition 3.3.3. S is an inhomogeneous Markov process on the discrete time interval {0, ..., N}.

In fact, for 0 ≤ i1 < ... < in ≤ N one has

PN
x (Si1 = s1, ..., Sin = sn) = pNi1 (x, s1)p

N−i1
i2−i1 (s1, s2) · · · p

N−in−1

in−in−1
(sn−1, sn)

= p
(1/2)
i1

(x, s1)p
(1/2)
i2−i1(s1, s2) · · · p

(1/2)
in−in−1

(sn−1, sn)
ψ(sn, N − in)

ψ(x,N)
.

In particular, for M < N the conditional law of (SM+k)
N−M
k=0 given (Sk)

M
k=0 is distributed accord-

ing to PN−M
SM

.

This proves Theorem 3.2.5(1) and shows that the pNn (x, ·) are probability measures.

Proof. Write S[0,M ] for the restriction of S to {0, 1, ...,M}, and write S[M,N ] for the restriction of S

to {M, ..., N} shifted by M places (so S[M,N ] is defined on {0, ..., N −M}). For nearest-neighbor
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paths s1 and s2 of lengths M and N −M , respectively, such that s1(M) = s2(0) one computes

that

PN
x (S

[M,N ] = s2|S[0,M ] = s1) =
PN
x (S = s1 ∗ s2)

PN
x (S[0,M ] = s1)

=

1
#ΩN

x

#{π∈ΩN
x : π|[0,M ]=s1}
#ΩN

x

=
1

#{π ∈ ΩN
x : π|[0,M ] = s1}

=
1

#ΩN−M
s1(M)

= PN−M
s1(M)(S = s2),

where s1 ∗ s2 denotes the concatenation of paths. This immediately implies that given (Sk)
M
k=0

the law of (SM+k)
N−M
k=0 is distributed according to PN−M

SM
. This also implies that (Sk)Mk=0 and

(SM+k)
N−M
k=0 are conditionally independent given SM . Therefore, in order to prove the given for-

mula for transition densities, it suffices to prove the claim for n = 1; then the claim for general

n follows from the conditional independence and induction (recall that n is the number of indices

0 ≤ i1 < ... < in ≤ N appearing in the transition formula).

To prove the formula for n = 1 it suffices by conditional independence to assume that in = N .

Note that PN
x is the probability measure associated to the killed random walk conditioned to sur-

vive, so that

PN
x (SN = s) =

p
(1/2)
N (x, s)∑

y≥0 p
(1/2)
N (x, y)

= p
(1/2)
N (x, s)

1

ψ(x,N)
,

which proves the claim.

Next we introduce the continuum analogues of the previously introduced measures. We will gen-

erally use capital letters to distinguish macroscopic variables from lowercase microscopic ones.

Definition 3.3.4. Let Pt(X) := e−X
2/2t/

√
2πt denote the standard heat kernel on the whole line

R. Recall the Dirichlet boundary heat kernel

PDir
t (X, Y ) := Pt(X − Y )− Pt(X + Y ).
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We then define the inhomogeneous kernel for 0 ≤ t ≤ T and X, Y > 0 :

PT
t (X, Y ) :=


PDir
t (X, Y )2Φ(Y/

√
T−t)−1

2Φ(X/
√
T )−1

t < T

PDir
T (X, Y ) 1

2Φ(X/
√
T )−1

t = T,

where Φ(x) = 1√
2π

∫ x
−∞ e−u

2/2du is the cdf of a standard normal. For X = 0, one analogously

defines the quantity for Y > 0 and T ≥ t ≥ 0:

PT
t (0, Y ) =


Y (T/t3)1/2e−Y

2/2t
(
2Φ(Y/

√
T − t)− 1

)
t < T

(Y/T )e−Y
2/2T t = T,

which is the limit of the previously defined PT
t (X, Y ) as X → 0.

We now discuss the relevance of these kernels as Markov transition densities. Specifically, forX >

0 define WT
X to be the probability measure on C([0, T ],R+) obtained by conditioning Brownian

motion on [0, T ] started from X to stay strictly positive until time T .1 We define B to be the

canonical process associated to WT
X . One can also define WT

0 as the weak limit of the WT
X as

X → 0. The fact that this limiting measure exists is not difficult but not entirely trivial either (see

the appendices). It is called the Brownian meander and has been studied extensively in [66, 65, 49,

95] and subsequent papers on the subject.

Proposition 3.3.5. Fix some T,X > 0 and let WT
X be as defined above, and let B denote the

associated canonical process. Consider the kernels PT
t defined before. Then for 0 ≤ t1 < ... <

tn ≤ T and Y1, ..., Yn > 0,

WT
X(Bt1 ∈ dY1, ..., Btn ∈ dYn)

= PT
t1
(X, Y1)P

T−t1
t2−t1(Y1, Y2) · · ·P

T−tn−1

tn−tn−1
(Yn−1, Yn) dY1 · · · dYn

1This is not the same as a 3D Bessel process, which is BM conditioned to stay positive for all time and is time-
homogeneous.
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In particular, if T < S then the conditional law of (Bt+S)t∈[0,T−S] given (Bt)t∈[0,S] is equal to

WT−S
BS

. The same statements hold true for X = 0.

Before moving on to the proof, we remark that when X ̸= 0 and tn ̸= T , the above formula for

transition densities reduces to

PDir
t1

(X, Y1)P
Dir
t2−t1(Y1, Y2) · · ·P

Dir
tn−tn−1

(Yn−1, Yn)
2Φ(Yn/

√
T − tn)− 1

2Φ(X/
√
T )− 1

dY1 · · · dYn.

When tn = T the numerator 2Φ(Yn/
√
T − tn) − 1 should be interpreted as 1. When X = 0 this

expression becomes 0/0, and one needs to take the limit, which gives the formula stated in the

above proposition.

Proof. Assuming X > 0 the proof is analogous to that of Proposition 3.3.3. Basically one first

shows that if S < T then the conditional law of (Bt+S)t∈[0,T−S] given (Bt)t∈[0,S] is equal to WT−S
BS

,

and furthermore that (Bt+S)t∈[0,T−S] and (Bt)t∈[0,S] are conditionally independent given BS . This

may be proven by a single computation using the basic properties of standard Brownian motion.

As in the proof of Proposition 3.3.3, this then reduces the claim to proving the formula for n = 1

and tn = T . In turn, this follows by noticing that WT
X is the same as Brownian motion killed at

zero but conditioned to survive. Hence one finds that

WT
X(BT ∈ dY ) =

PDir
T (X, Y )dY∫∞

0
PDir
T (X,Z)dZ

=
PDir
T (X, Y )dY

2Φ(X/
√
T )− 1

,

which proves the claim.

This concludes the introductory material on the subject, and we now state several technical esti-

mates on these inhomogeneous heat kernels that are used heavily in the sequel. The proofs may be

found in Appendix B.
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Proposition 3.3.6. Fix τ ≥ 0. Then for n ≥ 0, define

Pn(t, T ;X, Y ) := (n/2)1/2p
2⌊Tn⌋
2⌊tn⌋ (2⌊n

1/2X/
√
2⌋, 2⌊n1/2Y/

√
2⌋).

Then for each fixed X,T, t ≥ 0, as n → ∞ the map Y 7→ Pn(t, T ;X, Y ) converges pointwise

and in Lp(R+, e
aY dY ) to PT

t (X, Y ) for all p ≥ 1 and a ≥ 0. Furthermore for all X,T ≥ 0, the

map (t, Y ) 7→ Pn(t, T ;X, Y ) converges pointwise and in Lp(dt ⊗ eaY dY ) to PT
t (X, Y ) for all

p ∈ [1, 3) and a ≥ 0 (as n→ ∞).

We refer the reader to Proposition 3.7.7 of the appendix for the proof. We remark that the annoying

factors of 2 appearing in the definition of Pn are only necessary due to the periodicity of the simple

random walk.

Proposition 3.3.7. Let a, τ > 0 and let PT
t be the kernels from Definition 3.3.4. Then there exists

a constant C = C(τ, a) such that for all X, Y ≥ 0, all θ ∈ [0, 1/2], and all s ≤ t ≤ T ≤ τ one

has the following

∫
R+

PT
t (X,Z)e

aZdZ ≤ CeaX , (3.14)∫
R+

PT
t (X,Z)

2eaZdZ ≤ Ct−1/2eaX , (3.15)∫
R+

(
PT

t (X,Z)− PT
t (Y, Z)

)2
eaZdZ ≤ Ct−

1
2
−θea(X+Y )|X − Y |2θ, (3.16)∫

R+

(
PT−t+s

s (X,Z)− PT
t (X,Z)

)2
eaZdZ ≤ Cs−

1
2
−θe2aX |t− s|θ (3.17)

The proof may be found as the very last thing in Appendix B. We remark that these bounds will be

the key behind the proofs of Section 4 below.

3.4 Existence of the derivative in Dirichlet SHE

Note that in order to prove the identity (3.3), one first needs to prove that the mild solution of ZDir

exists and that the limit on the right-hand side of (3.3) also exists. In this section we actually do

147



something much stronger. We will prove that the mild solution ofZDir and the aforementioned lim-

its not only exist, but in fact one almost surely has the simultaneous existence of limX→0
ZDir(T,X)

X

for all T ≥ 0, for a fixed initial data. Furthermore this limit is Hölder-continuous as a function of T .

All of this will essentially be proved in a single step by showing that for X,T ≥ 0 the chaos

series

∞∑
k=0

∫
0≤t1<...<tk≤T

∫
Rk+1
+

f(Xk+1)
k+1∏
j=1

P
T−tj−1

tj−tj−1
(Xj−1, Xj)dXk+1ξT (dXk, dtk) · · · ξT (dX1, dt1),

converges uniformly over compact subsets of (T,X) ∈ R+ × R+, where t0 := 0, X0 := X ,

ξT (X, t) := ξ(X,T − t) for a space-time white noise ξ, and f is some random initial data with

at-worst exponential growth at infinity. Then we will show almost trivially that when X,T > 0

this chaos series equals ZDir(T,X)/
(
2Φ(X/

√
T ) − 1

)
, where Φ is the cdf of a standard normal

and ZDir satisfies the conditions of Definition 3.2.1. This would simultaneously prove existence

of ZDir and also the desired limit. This is because we know the above chaos series extends con-

tinuously to X = 0, which means limX→0
ZDir(T,X)

2Φ(X/
√
T )−1

exists, which is equivalent to showing that

limX→0
ZDir(T,X)

X
exists (for all T ≥ 0, a.s.).

In order to prove the uniform convergence of this chaos series, we are going to use the inhomoge-

neous heat kernel estimates stated at the end of Section 3. The proofs may be skipped without any

effect on the readability of Section 5, although some ideas are similar to ones used there.

With this motivation, we now move on to the main results of this section. Given some possibly

random initial data f : R+ → R+, recall from (3.5) the following Duhamel-form SPDE:

Z (T,X) =

∫
R+

PT
T (X, Y )f(Y )dY +

∫ T

0

∫
R+

PT
T−S(X, Y )Z (S, Y )ξ(dY dS), (3.18)
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where ξ is a space-time white noise and so the above should be interpreted as an Itô integral. Since

Z appears on both sides of this relation, it is not clear that a solution would even exist. Thus

we have the following result, which will be proved by rigorously expanding (3.18) into the chaos

series mentioned above.

Theorem 3.4.1. Fix a, τ > 0 and suppose that we have some random function-valued initial data

f satisfying

sup
X≥0

e−aXE[f(X)2] <∞.

Then, a unique solution to the SPDE (3.18) with initial data f exists in the class of space-time

functions Z (T,X) that satisfy

sup
X≥0
T∈[0,τ ]

e−aXE[Z (T,X)2] <∞.

Furthermore, the solution Z may be constructed in such a way that its law is supported on the

space of functions that are Hölder-continuous of exponent 1/2 − ϵ in the X variable and 1/4 − ϵ

in the T variable on any compact subset of (T,X) ∈ (0,∞)× [0,∞) for any ϵ > 0.

Proof. This is adapted from the proofs given in Section 2.4 above. Informally, one argues as

follows: define the following sequence of iterates:

u0(T,X) =

∫
R+

PT
T (X, Y )f(Y )dY,

un+1(T,X) =

∫ T

0

∫
R+

PT
T−S(X, Y )un(S, Y )ξ(dY dS).

In other words, un is just the nth term of a chaos series given by the expansion of (3.18). Thus it is

clear that the desired solution to (3.18) should be given by
∑

n≥0 un. Hence, in order to formalize

these ideas, we will show that the series
∑

n≥0 un converges in the appropriate Banach space of

random space-time functions.
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To this end, let us define a Banach space B of C(R+)-valued processes u = (u(T, ·))T∈[0,τ ] that are

adapted to the natural filtration of ξ and with norm given by

∥u∥2B := sup
X≥0
T∈[0,τ ]

e−aXE[u(T,X)2].

Then define a sequence of functions Fn : [0, τ ] → R for n ≥ 0 by

Fn(T ) := sup
X≥0
S∈[0,T ]

e−aXE[un(S,X)2],

where un are the iterates defined above. By Itô isometry, it is clear that

E[un+1(T,X)2] =

∫ T

0

∫
R+

PT
T−S(X, Y )2E[un(S, Y )2]dY dS

≤
∫ T

0

[ ∫
R+

PT
T−S(X, Y )2eaY dY

]
Fn(S)dS. (3.19)

Now by (3.15) we have that

∫
R+

PT
T−S(X, Y )2eaY dY ≤ C(T − S)−1/2eaX , ∀T ∈ [0, τ ], X ≥ 0, (3.20)

where C may depend on a and τ . Furthermore one notes that the Fn are increasing functions of T ,

and therefore T 7→
∫ T
0
(T − S)−1/2Fn(S)dS is also increasing (which may be verified by making

the substitution S = TU ). Combining this fact with (3.19) and (3.20), one obtains

Fn+1(T ) ≤ C

∫ T

0

(T − S)−1/2Fn(S)dS, (3.21)

where C does not depend on n. Now, we claim that F0(T ) ≤ C (with C = C(a, τ)). Indeed, by

Jensen’s inequality and Fubini’s theorem, one has

E[u0(T,X)2] = E
[(∫

R+

PT
T (X, Y )f(Y )dY

)2]
≤
∫
R+

PT
T (X, Y )E[f(Y )2]dY ≤ CeaX ,
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where in the last inequality we used (3.14) together with the assumption that E[f(X)2] ≤ CeaX .

This proves that F0 ≤ C, which means that one may iterate (3.21) to obtain

Fn(T ) ≲ CnT n/2/(n/2)!, (3.22)

which implies that
∑

n≥0 ∥un∥B <∞. This completes the proof of existence.

The proof of uniqueness is essentially the same. Indeed, if Z and Z ′ were two solutions in B

that are started from the same initial data f , then an application of Itô’s isometry reveals that

E
[
(Z (T,X)− Z ′(T,X))2] =

∫ T

0

∫
R+

PT
T−S(X, Y )2E[(Z (S, Y )− Z ′(S, Y ))2]dSdY.

Then one iterates as above and may obtain that the left-hand side is bounded above (uniformly in

T,X) by CnT n/2/(n/2)!, and by letting n→ ∞ this tends to zero.

Now we address the Hölder regularity. Let un be the iterates defined above. We know that u0

is a smooth function of (T,X) ∈ (0,∞) × [0,∞) because it is the solution to the deterministic

(i.e., noiseless) version of SPDE (3.18) which is just an inhomogeneous heat equation (e.g., one

may simply differentiate u0 under the integral sign). Thus, it suffices to prove that the function

Z0 := Z − u0 =
∑

n≥1 un has the required Hölder regularity, so this is what we will do.

Henceforth fix an exponent γ ∈ (0, 1/2). For the spatial regularity, one computes that

E[(un+1(T,X)−un+1(T,Y ))2]=

∫ T

0

∫
R+

(
PT

T−S(X,Z)−PT
T−S(Y,Z)

)2E[un(S,Z)2]dZdS
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≤
∫ T

0

[ ∫
R+

(
PT

T−S(X,Z)− PT
T−S(Y, Z)

)2
eaZdZ

]
Fn(S)dS

≤ C

∫ T

0

(T − S)γ−1|X − Y |1−2γea(X+Y )Fn(S)dS

(3.22)
≤ Cea(X+Y )|X − Y |1−2γ

∫ T

0

(T − S)γ−1C
nSn/2

(n/2)!
dS

≤ Cn+1ea(X+Y )|X − Y |1−2γ T
(n+2γ)/2

(n/2)!

∫ 1

0

(1− a)γ−1an/2da .

In the third line we used (3.16) with θ = 1
2
−γ, and in the final line we made a substitution S = Ta.

Note that the final integral is bounded independently of n, so it may be absorbed into the constant

(which will then depend on γ). Using hypercontractivity of the Ornstein-Uhlenbeck semigroup

associated to the Gaussian noise ξ, we can bound the pth moments of elements of the homogeneous

Wiener chaoses in terms of their second moments. Specifically, if p ≥ 2 then Equation 7.2 of [84]

says that:

E
[∣∣un+1(T,X)− un+1(T, Y )

∣∣p]1/p ≤ (p− 1)(n+1)/2E
[
(un+1(T,X)− un+1(T, Y ))2

]1/2
≤ C(n+1)/2p(n+1)/2ea(X+Y )/2 T

(n+1)/4√
(n/2)!

|X − Y |
1
2
−γ.

Using Minkowski’s inequality and summing over all n, we then obtain

E
[∣∣Z0(T,X)−Z0(T,Y )

∣∣p]1/p≤∑
n≥1

E
[∣∣un(T,X)−un(T,Y )

∣∣p]1/p≤D(p,T )ea(X+Y )/2|X−Y |
1
2
−γ.

Here D(p, T ) :=
∑

n
(CpT 1/2)(n+1)/2√

(n/2)!
, which is independent of X, Y and increasing as a function of

T . This is enough by Kolmogorov’s criterion to ensure that Z0 is Hölder continuous of exponent

1/2− γ − ϵ (on compact sets) in the spatial variable.

152



For the temporal regularity, one computes

E[(un+1(T,X)−un+1(S,X))2]

=E
[(∫ T

0

∫
R+

PT
T−U(X,Z)un(U,Z)ξ(dZdU)−

∫ S

0

∫
R+

PS
S−U(X,Z)un(U,Z)ξ(dZdU)

)2]

=

∫ S

0

∫
R+

(
PT

T−U(X,Z)− PS
S−U(X,Z)

)2E[un(U,Z)2]dZdU
+

∫ T

S

∫
R+

PT
T−U(X,Z)

2E[un(U,Z)2]dZdU.

Let us call the integrals in the final expression I1 and I2 respectively. As before, one has the bound

E[un(U,Z)2] ≤ eaZFn(U) ≤ eaZ C
nUn/2

(n/2)!
. Then one uses (3.17) with θ = 1

2
− γ to bound the inner

integral of I1 by

∫
R+

(
PT

T−U(X,Z)− PS
S−U(X,Z)

)2
eaZdZ ≤ Ce2aX(S − U)γ−1|T − S|

1
2
−γ,

and one also uses (3.15) to bound the inner integral of I2 as

∫
R+

PT
T−U(X,Z)

2eaZdZ ≤ C(T − U)−1/2eaX .

Then one finally performs the integral over U on the respective domains, and one can obtain (as in

the spatial case) that I1 + I2 ≤ Cn+1e2aXT (n+1)/2|T − S| 12−γ/(n/2)!. Then one uses hypercon-

tractivity and sums over n (exactly as in the spatial case), to get that

E
[∣∣Z0(T,X)− Z0(S,X)

∣∣p]1/p ≤ D(p, T )e2aX |T − S|
1
4
− γ

2 .

Here D(p, T ) is an increasing function of T (the same one as before), so it can be bounded from

above on any compact set of (T,X). This is enough to give Hölder regularity of 1
4
− γ

2
− ϵ in time,
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by Kolmogorov’s criterion.

Next, we discuss the relationship of the Z that we have constructed in Theorem 3.4.1 with the

Dirichlet-boundary SHE.

Proposition 3.4.2. Any solution of the SPDE (3.18) must a.s. satisfy the following relation for all

T,X > 0

Z (T,X)
(
2Φ(X/

√
T )− 1

)
= ZDir(T,X)

where ZDir solves the Dirichlet-boundary SHE as in Definition 3.2.1 with the same initial data f .

Proof. One notes the following relation for X > 0, which is immediate from Definition 3.3.4:

PT
t (X, Y )

(
2Φ(X/

√
T )− 1

)
=


PDir
t (X, Y )

(
2Φ(Y/

√
T − t)− 1

)
, t < T

PDir
T (X, Y ), t = T.

(3.23)

So suppose Z solves (3.18), and define

A(T,X) := Z (T,X)
(
2Φ(X/

√
T )− 1

)
.

By multiplying both sides of (3.18) by 2Φ(X/
√
T )− 1 and applying (3.23), one has the relation

A(T,X)=

∫
R+

PDir
T (X,Y )f(Y )dY+

∫ T

0

∫
R+

PDir
T−S(X,Y )

[
Z (S,Y )

(
2Φ(Y/

√
S)−1

)]
ξ(dY,dS)

=

∫
R+

PDir
T (X,Y )f(Y )dY+

∫ T

0

∫
R+

PDir
T−S(X,Y )A(S,Y )ξ(dY,dS),

so that A is indeed a mild solution to the Dirichlet-boundary SHE.

One thing we have not addressed is the uniqueness of solutions to the Dirichlet-boundary SHE

in some large enough class of random space-time functions. This can be obtained from Theorem

3.4.1 with minimal work, and with the same conditions on the initial data f , one can in fact ob-

tain existence/uniqueness in the space of ξ-adapted space-time functions A satisfying the bound
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supT≤τ, X≥0 E[A(T,X)2] <∞.

Corollary 3.4.3. Consider any solution ZDir of the Dirichlet-boundary SHE, started from any

initial data f satisfying the assumptions of Theorem 3.4.1. Then almost surely, for every T > 0 the

limit of ZDir(T,X)
X

exists as X → 0.

Proof. Consider the solution Z to (3.18) started from initial data f . By the preceding proposition,

we can couple this with the solution to the Dirichlet-boundary SHE in such a way so that

Z (T,X) =
ZDir(T,X)

2Φ(X/
√
T )− 1

for all X > 0 and T ≥ 0. But we know that Z extends continuously to X = 0 by Theorem 3.4.1,

hence we know that

lim
X→0

ZDir(T,X)

2Φ(X/
√
T )− 1

exists, and since 2Φ(X/
√
T )− 1 has nonzero derivative at X = 0, the claim follows.

3.5 Convergence of the partition function to SHE

In this section we use a discrete chaos expansion together with the methods of [3, 31] and the heat

kernel estimates of the previous sections in order to prove Theorem 3.2.2. The first step (Section

5.1) is to simplify the geometry of the region where our directed polymer lives, and then (in Sec-

tion 5.2) we will prove the convergence result in the simpler domain.

As a notational convention, we will usually writeC for constants, and we will not generally specify

when irrelevant terms are being absorbed into the constants. We will also write C(a), C(a, p), or

C(a, p,K) whenever we want to specify exactly which parameters the constant depends on. This

will not always be specified, though. This applies throughout the paper. Please be warned that we

will freely use many different bounds from the appendices in the following proofs, so the reader

may wish to skim those estimates first.
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3.5.1 Reduction from the octant model to the quadrant model

In this section, we reduce the technicality of working with the partition function in an octant to

working with it in a quadrant, which simplifies many computations. The dichotomy here is that

the quadrant has a simple geometry that makes polymer-convergence results of the desired type

quite straightforward; on the other hand, the octant has the advantage that one has nice identities

such as those of Corollary 3.2.4(3) which fail for a quadrant. Hence, one viewpoint is simpler for

technical computations while the other is well-adapted for exact solvability. The results of this

section are specific to the case of our positive random walk measures; however, the general outline

and arguments that will be given may be easily modified for other random walk measures, such

as the reflecting walk, as long as the analogous heat kernel bounds hold. Thus this section may

potentially prove useful to other works of a similar flavor.

In what follows, we fix a sequence ωn = {ωni,j}i,j≥0 of i.i.d. random environments with n ∈ N.

As always, we denote by E (resp. P) the expectation (resp. probability) with respect to the en-

vironment ωni,j and we denote by En
x (resp. Pn

x) the expectation (resp. probability) with respect

to the positive random walk measures of Section 3. Furthermore Tn will denote the first time that

this random walk (i, Si), started from (0, x) with x ≥ 0, hits the diagonal line {(j, 2n−j) : j ≥ 0}.

First we need an estimate on the variance of the discrete chaos series terms.

Lemma 3.5.1. Let pNn (x, y) be the positive random walk transition probabilities given in Definition

3.3.2. Then there exist constants B,C,K > 0 such that for all x, n, k ≥ 0 and a ≥ 0,

∑
0≤i1<...<ik≤n
(x1,...,xk)∈Zk

≥0

pni1(x, x1)
2pn−i1i2−i1(x1, x2)

2 · · · pn−ik−1

ik−ik−1
(xk−1, xk)

2eaxk ≤ Beax+Ka
2nCknk/2/(k/2)!,

where (k/2)! is a shorthand for Γ(1 + k/2).

Proof. We first state a bound, which is Proposition 3.7.3 in the appendix: there exist constants
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C,K > 0 such that for all x ≥ 0, all N ≥ n ≥ 0, all a ≥ 0, and all p ≥ 1 one has that

∑
y≥0

pNn (x, y)
peay ≤ Cp(n+ 1)−(p−1)/2eax+Ka

2n.

Applying this k times, one sees that

∑
(x1,...,xk)∈Zk

≥0

pni1(x, x1)
2pn−i1i2−i1(x1, x2)

2 · · · pn−ik−1

ik−ik−1
(xk−1, xk)

2eaxk

≤ Ckeax+Ka
2n(i1 + 1)−1/2(i2 − i1 + 1)−1/2 · · · (ik − ik−1 + 1)−1/2.

Thus the desired sum is bounded above by

eax+Ka
2n

∑
1≤i1<...<ik≤n+1

i
−1/2
1 (i2 − i1)

−1/2 · · · (ik − ik−1)
−1/2.

Now one recognizes that

n−k/2
∑

1≤i1<...<ik≤n+1

i
−1/2
1 (i2 − i1)

−1/2 · · · (ik − ik−1)
−1/2

=
1

nk

∑
1≤i1<...<ik≤n+1

(i1
n

)−1/2(i2
n
− i1
n

)−1/2 · · ·
(ik
n
− ik−1

n

)−1/2
, (3.24)

which as a Riemann sum approximation is bounded above by (say) twice

∫
0≤t1<...<tk≤1

t
−1/2
1 (t2 − t1)

−1/2 · · · (tk − tk−1)
−1/2dt1 · · · dtk ≤ B/(k/2)!,

where B > 0. Hence the lemma is proved.

Now we use the variance bound in conjunction with Doob’s martingale inequality to get a bound

on the expected supremum in the partition function.

Lemma 3.5.2. Take a sequence ωn = {ωni,j} of random environments with variance uniformly
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bounded above by 1. Furthermore let {zn0 (x)}x≥0 be some sequence of non-negative stochastic

processes, independent of the ωn, with the property that E[zn0 (x)2] ≤ Kean
−1/2x for some constants

K, a that are independent of n and x. Then there exists a constant C such that for all n, x ≥ 0 one

has that

E

[
sup

0≤k≤n
En
x

[
zn0 (Sn)

k∏
i=0

(1 + n−1/4ωni,Si
)

]2]
≤ Cean

−1/2x.

Proof. First we fix some n ∈ N and we note that the process

Mn
k := En

x

[
zn0 (Sn)

k∏
i=1

(1 + n−1/4ωni,Si
)

]

is a P-martingale in the k variable with respect to the filtration (Fn
k )k≥0, where Fn

k is gener-

ated by zn0 and {ωni,j}0≤j≤i≤k. Therefore by Doob’s martingale inequality E[sup0≤k≤n(M
n
k )

2] ≤

4E[(Mn
n )

2]. This reduces our work to proving the claim without the supremum inside the expecta-

tion (and replacing k by n in the upper limit of the product). To do this, we set x0 := x and we

write

E

[
En
x

[
zn0 (Sn)

n∏
i=1

(1 + n−1/4ωni,Si
)

]2]

= E
[( ∑

0≤k≤n
0≤i1<...<ik≤n

(x1,...,xk+1)∈Zk+1
≥0

n−k/4zn0 (xk+1)
k∏
j=1

p
n−ij−1

ij−ij−1
(xj−1, xj)ωijxj · p

n−ik
n−ik(xk, xk+1)

)2]

=
∑

0≤k≤n
0≤i1<...<ik≤n
(x1,...,xk)∈Zk

≥0

n−k/2
k∏
j=1

p
n−ij−1

ij−ij−1
(xj−1, xj)

2E
[( ∑

xk+1∈Z≥0

zn0 (xk+1)p
n−ik
n−ik(xk, xk+1)

)2]
,

where x0 := x by convention. By Jensen we then have that

( ∑
xk+1≥0

zn0 (xk+1)p
n−ik
n−ik(xk,xk+1)

)2

≤
∑

xk+1≥0

zn0 (xk+1)
2pn−ikn−ik(xk,xk+1).

We know by assumption that E[zn0 (xk+1)
2] ≤ ean

−1/2xk+1 . Thus we find that the expectation of
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the last expression is bounded above by Cean−1/2xk because of the inequality
∑

y≥0 p
N
n (x, y)e

ay ≤

Ceax+Ka
2n, which holds by Proposition 3.7.1 in the appendix. Thus by Lemma 3.5.1 we have

E

[
En
x

[
zn0 (Sn)

n∏
i=1

(1 + n−1/4ωni,Si
)

]2]
≤

∑
0≤k≤n

0≤i1<...<ik≤n
(x1,...,xk)∈Zk

≥0

n−k/2
k∏
j=1

p
n−ij−1

ij−ij−1
(xj−1, xj)

2 · Cean−1/2xk

≤
n∑
k=0

n−k/2BCk+1ean
−1/2xnk/2/(k/2)!

≤ Bean
−1/2x

∞∑
k=0

Ck+1/(k/2)!.

This completes the proof.

We now introduce a class of Banach spaces that will be useful for describing convergence of initial

data:

Definition 3.5.3. Let α, δ ∈ (0, 1). A function f : R → R is said to be in the exponentially

δ-weighted α-Hölder space C α
e(δ)(R) if

sup
x∈R

|f(x)|
eδ|x|

+ sup
x,y∈R

|x−y|≤1

|f(x)− f(y)|
eδ|x||x− y|α

<∞.

We turn C α
δ into a Banach space by defining the norm of f to be the above quantity.

A straightforward consequence of Arzela-Ascoli is that C α
e(δ) embeds compactly into C α′

e(δ′) for

α′ < α and δ < δ′. The key estimate of this section is as follows:

Theorem 3.5.4 (Key Estimate). Fix α ∈ (0, 1). Suppose that (zn0 (x))x∈Z≥0
is a family of deter-

ministic non-negative functions such that the linearly interpolated and rescaled family zn0 (n
1/2x)

are bounded with respect to the norm of C γ
e(δ) for some γ, δ ∈ (0, 1). Define the “error" random

variable

E(x, n) := sup
k∈[n−nα,n]

∣∣∣∣∣En
x

[
zn0 (Sn)

n∏
i=1

(
1 + n−1/4ωni,Si

)
− zn0 (Sk)

k∏
i=1

(
1 + n−1/4ωni,Si

)]∣∣∣∣∣.
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Then supx≥0 e
−3an−1/2xE[E(x, n)] → 0 as n→ ∞.

Proof. By the triangle inequality, we have E(x, n) ≤ E1(x, n) + E2(x, n), where

E1(x, n) := sup
k∈[n−nα,n]

∣∣∣∣∣En
x

[
zn0 (Sn)

( n∏
i=1

(
1 + n−1/4ωni,Si

)
−

k∏
i=1

(
1 + n−1/4ωni,Si

))]∣∣∣∣∣,

E2(x, n) := sup
k∈[n−nα,n]

∣∣∣∣∣En
x

[(
zn0 (Sn)− zn0 (Sk)

) k∏
i=1

(
1 + n−1/4ωni,Si

)]∣∣∣∣∣.
We separately show that both of these satisfy the desired bound. Henceforth when we write nα we

actually mean ⌈nα⌉.

First we consider E1. First we establish a martingale inequality. If (Mk)k≥0 is a martingale defined

on any probability space, then note that for r ≤ n one has that

sup
r≤k≤n

|Mn −Mk| ≤ |Mn −Mr|+ sup
r≤k≤n

|Mk −Mr|,

and by Doob’s inequality one has that
∥∥ supr≤k≤n |Mk −Mr|

∥∥
p
≤ p

p−1
∥Mn−Mr∥p, therefore one

has that

∥∥ sup
r≤k≤n

|Mn −Mk|
∥∥
p
≤ ∥Mn −Mr∥p +

p

p− 1
∥Mn −Mr∥p =

2p− 1

p− 1
∥Mn −Mr∥p. (3.25)

Now let us fix some n ∈ N. Let us define a martingale

Mn
k := En

x

[
zn0 (Sn)

k∏
i=1

(1 + n−1/4ωni,Si
)

]
.

This is a P-martingale in the k variable, for fixed n ∈ N. Consequently, using (3.25) with p = 2

gives us

E
[

sup
k∈[n−nα,n]

(Mn −Mk)
2
]
≤ 9E[(Mn

n −Mn
n−nα)2]. (3.26)

160



Computing the right-hand side, one gets

E[(Mn
n −Mn

n−nα)2] = E

[
En
x

[
zn0 (Sn)

( n∏
i=1

(
1 + n−1/4ωni,Si

)
−

n−nα∏
i=1

(
1 + n−1/4ωni,Si

))]2]

=
∑

0≤k≤n−nα

0≤i1<...<ik≤n−nα

(x1,...,xk)∈Zk
≥0

n−k/2 · pni1(x, x1)
2

k−1∏
j=1

p
n−ij−1

ij−ij−1
(xj, xj+1)

2Fn(ik, xk),

(3.27)

where Fn(ik, xk) is given by

∑
1≤ℓ≤nα

0≤j1<...<jℓ≤nα

(u1,...,uℓ)∈Zℓ
≥0

n−ℓ/2pnn−nα+j1−ik(xk, u1)
2

·
ℓ−1∏
v=1

p
nα−jv−1

jv−jv−1
(uj, uj+1)

2

( ∑
uℓ+1≥0

zn0 (uℓ+1)p
nα−jℓ
nα−jℓ(uℓ, uℓ+1)

)2

.

Note that the latter sum starts at ℓ = 1 rather than ℓ = 0 which is crucial. These expressions come

from writing

n∏
i=1

(
1 + n−1/4ωni,Si

)
−

n−nα∏
i=1

(
1 + n−1/4ωni,Si

)
=

n−nα∏
k=1

(1 + n−1/4ωnk,Sk
)

( nα∏
ℓ=1

(1 + n−1/4ωnℓ+n−nα,Sℓ+n−nα ) − 1

)
,

and then expanding both products and taking expectations. The subtraction of 1 from the second

product is what causes the sum defining Fn to start at ℓ = 1 rather than ℓ = 0. By Jensen and the

fact that zn0 (x) ≤ Cean
−1/2x (with say a = 2δ where δ is the same as in the theorem statement) we

then have that

( ∑
uℓ+1≥0

zn0 (uℓ+1)p
nα−jℓ
nα−jℓ(uℓ,uℓ+1)

)2

≤
∑

uℓ+1≥0

zn0 (uℓ+1)
2pn

α−jℓ
nα−jℓ(uℓ,uℓ+1)≤Cean

−1/2uℓ ,
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where we used Proposition 3.7.1 in the last bound. Then by repeatedly applying Proposition 3.7.3,

note that Fn(ik,xk) is bounded above by

nα+1∑
ℓ=1

n−ℓ/2Cℓean
−1/2xk

∑
1≤j1<...<jℓ≤nα+1

(n−nα+j1−ik)−1/2(j2−j1)−1/2···(jℓ−jℓ−1)
−1/2.

Consequently the entirety of (3.27) is bounded above, after again applying Proposition 3.7.3 several

more times, by

∑
0≤k≤n−nα

1≤i1<...<ik≤n−nα+1
1≤ℓ≤nα

1≤j1<...<jℓ≤nα+1

n−(k+ℓ)/2Ck+ℓean
−1/2xi

−1/2
1

·
k−1∏
r=1

(ir−ir−1)
−1/2(n−nα+j1−ik)−1/2

ℓ−1∏
v=1

(jv−jv−1)
−1/2.

We rewrite that as ean−1/2x multiplied by

∑
0≤k≤n−nα

1≤i1<...<ik≤n−nα+1
1≤ℓ≤nα

1≤j1<...<jℓ≤nα+1

n−ℓ(1−α)/2n−kn−ℓαCk+ℓ(
i1
n
)−1/2

·
k−1∏
r=1

(
ir
n
−ir−1

n
)−1/2(

n−nα+j1−ik
nα

)−1/2

ℓ−1∏
v=1

(
jv
nα

−jv−1

nα
)−1/2.

Except for the factor n−ℓ(1−α)/2 we recognize a Riemann sum approximation for

∑
k≥0
ℓ≥1

Ck+ℓ

∫
0≤t1<...<tk≤1

∫
tk≤s1<...<sℓ≤1

t
−1/2
1 ···(tk−tk−1)

−1/2(s1−tk)−1/2···(sℓ−sℓ−1)
−1/2dtds.

This series may be bounded by ∑
k≥0
ℓ≥1

Ck+ℓ/
(
(k+ℓ)/2

)
!

which converges absolutely to a constant independently of n. Since ℓ≥1 in all expressions above,
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the left over factor n−ℓ(1−α)/2 is at worst n−(1−α)/2. Summarizing the bounds, we showed that

E[E1(n,x)] is bounded above by at worst Cean−1/2xn−(1−α)/2 which implies the desired result on

E1.

Now we consider E2(x,n). Since zn0 is bounded in C γ
e(δ) we have the following bound with C

independent of x,y,n:

|zn0 (n1/2x)−zn0 (n1/2y)|≤C|x−y|γeδ(x+y).

Using positivity of Bn
k :=
∏k

1(1+n
−1/2ωni,Si

) we then find that

E2(x,n)≤ sup
k∈[n−nα,n]

En
x

[∣∣zn0 (Sn)−zn0 (Sk)∣∣Bn
k

]
≤Cn−γ/2 sup

k∈[n−nα,n]

En
x

[
|Sn−Sk|γeδn

−1/2(Sn+Sk)Bn
k

]
=Cn−γ/2 sup

k∈[n−nα,n]

En
x

[
En−k
Sk

[|S̃n−k−S̃0|γeδn
−1/2S̃n−k ]eδn

−1/2SkBn
k

]
,

where the final equality follows from the Markov property of the positive random walk S. Now

we recognize that

EN
y [|SN−S0|γeδSN ]≤EN

y [|SN−S0|2γ]1/2EN
y [e

2δSN ]1/2≤CNγ/2eδy+Kδ
2N ,

where C,K are independent of y,N , by Propositions 3.6.10 and 3.7.1. Consequently we find for

k∈[n−nα,n] that

En−k
Sk

[|S̃n−k−S̃0|γeδn
−1/2S̃n−k ]≤C(n−k)γ/2eδn−1/2Sk≤Cnαγ/2eδn−1/2Sk .

Combining our bounds, we find that

E2(x,n)≤Cn−(1−α)γ/2 sup
k∈[n−nα,n]

En
x[e

2δn−1/2SkBn
k ]. (3.28)

Now for any λ>0, (eλSk)k is a Pn
x-submartingale because (Sk) is a submartingale (Lemma 3.6.3)
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and since x 7→eλx is increasing and convex for any λ. Thus letting Gk denote the filtration generated

by the first k steps of the n-step positive random walk S, we find

En
x[e

λSkBn
k ]≤En

x[E
n
x[e

λSn|Gk]Bn
k ]=En

x[e
λSnBn

k ],

for all k≤n,λ>0 because Bn
k is Gk-measurable. Setting λ=2δn−1/2, this means that

E
[
sup
k≤n

En
x[e

2δn−1/2SkBn
k ]

2

]
=E[sup

k≤n
En
x[e

2δn−1/2SnBn
k ]

2]≤Ce2δn−1/2x, (3.29)

where we used Lemma 3.5.2 in the last bound, with zn0 (x):=e
2δn−1/2x. Combining (3.28) and (3.29)

gives the required result.

Next we give some Kolmogorov-type moment conditions that ensure tightness of the sequence zn0

of initial data in C α
e(δ).

Proposition 3.5.5. Suppose that {zn}n≥1 is a family of random functions on R that satisfies the

following moment conditions for some constants a, p, β, C independent of n, x, y.

• E[|zn(x)− zn(y)|p] ≤ C|x− y|pβ/2ea(|x|+|y|).

• there exist positive integrable random variables D(n) such that supn E[D(n)] < ∞ and

zn(x) ≤ D(n)ea|x|.

Then assuming p > 1/β, there exist δ > a and α < β − p−1 such that (zn) is tight with respect to

the topology of C α
e(δ).

Before the proof, we remark that when we apply this result, the functions will be defined on R+

as opposed to all of R and thus the absolute values on x, y are unnecessary. Furthermore, the zn

appearing in the proposition statement will actually be rescaled and linearly interpolated functions

zn0 (n
1/2x).

Proof. Recall from earlier that C α
e(δ) embeds compactly into C α′

e(δ′) whenever δ′ > δ and α′ < α.

Therefore to prove the lemma, it suffices to show that if the two inequalities in the lemma statement
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hold uniformly over a family F of real-valued functions, then there exist α, δ such that

lim
a→∞

sup
z∈F

P(∥z∥Cα
e(δ)

> a) = 0.

We actually show something stronger, namely that under the given assumptions, there exists C > 0

such that for all a > 0

sup
n∈N

P(∥zn∥Cα
e(δ)

> a) ≤ Ca−1. (3.30)

To prove this, for a function z we write ∥z∥Cα
e(δ)

= ∥z∥δ + [z]α,δ where ∥z∥δ := supx∈R
|z(x)|
eδ|x|

and

[z]α,δ := supx∈R e
−δ|x| sup|y−x|≤1

|z(x)−z(y)|
|x−y|α .

To prove (3.30), the following fact will be useful to us: For any γ ∈ (0, 1), the γ-Hölder semi-

norm [f ]γ of a function f : [0, 1] → R is equivalent (as a seminorm) to the quantity given by

supv∈N,1≤k≤2v 2
γv|f(k2−v)−f((k−1)2−v)|. This is proved as an intermediate step in the standard

proof of the classical Kolmogorov-Chentsov criterion.

The exact choices of α, δ will be specified later, but for now let them denote generic constants.

Now to prove (3.30) let us write for a function z,

∥z∥δ ≤ sup
v∈Z

e−δ|v|
(
|z(v)|+ sup

x∈[v,v+1]

|z(x)− z(v)|
)

≤ sup
v∈Z

e−δ|v|
(
|z(v)|+ sup

x∈[v,v+1]

|z(x)− z(v)|
|x− v|α

)
≲ sup

v∈Z
e−δ|v|

(
|z(v)|+ sup

r∈N,1≤k≤2r
2αr|z(v + k2−r)− z(v + (k − 1)2−r)|

)
,

where ≲ denotes the absorption of some universal constant which can depend on α, δ but not on

the function z. Likewise let us note that

[z]α,δ ≲ sup
v∈Z

e−δ|v| sup
r∈N,1≤k≤2r

2αr|z(v + k2−r)− z(v + (k − 1)2−r)|.
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Consequently we find that

∥z∥Cα
δ
≲ A(z, δ) +B(z, α, δ),

where

A(z, δ) := sup
v∈Z

e−δ|v||z(v)|,

B(z, α, δ) := sup
v∈Z

e−δ|v| sup
r∈N,1≤k≤2r

2αr|z(v + k2−r)− z(v + (k − 1)2−r)|.

Now, with zn uniformly satisfying the bounds given in the lemma statement, let us bound these

terms A(zn, δ) and B(zn, α, δ) individually to obtain (3.30). We will do this by using the hypothe-

ses in the lemma. Note that by a brutal union bound and Markov’s inequality followed by the

hypothesis zn ≤ D(n)ean
−1/2x, we have

P(A(zn, δ) > a) ≤
∑
v∈Z

P(|hϵ(v)| > eδ|v|a)

≤
∑
v∈Z

a−1e−δ|v|E[zn(v)]

≤ sup
j

E[D(j)] · a−1
∑
v∈Z

e−(δ−a)|v|,

The series converges to a finite value independent of n as long as δ is chosen larger than a. Next
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we control B, which will also just use a brutal union bound and Markov’s inequality:

P(B(zn, α, δ) > a) ≤
∑
v∈Z
r∈N

1≤k≤2r

P(2αr|zn(v + k2−r)− zn(v + (k − 1)2−r)| > eδ|v|a)

≤
∑
v∈Z
r∈N

1≤k≤2r

a−p2αpre−δ|v|pE
∣∣zn(n+ k2−r)− zn(v + (k − 1)2−r)

∣∣p

≤ a−p
∑
v∈Z
r∈N

1≤k≤2r

2(α−β)pre(2a−δ)p|v|

= a−p
∑
v∈Z
r∈N

2

[
1+(α−β)p

]
re(2a−δ)p|v|

The double series converges to a finite value independent of n so long as δ, α are chosen so as to

satisfy δ > 2a and 1 + (α− β)p < 0. This is permissible so long as p > β−1.

Lemma 3.5.6. Let (Xn)n≥0 be a non-negative L1 supermartingale. Then

P
(
sup
n
Xn > a

)
≤ E[X0]

a
.

Proof. We apply Doob-Meyer decomposition to write X =M −A, where M is a martingale with

M0 = X0, and A0 is a non-decreasing process with A0 = 0. Then M is a positive martingale and

X ≤M . Doob’s first martingale inequality then gives

P
(
sup
n≤N

Xn > a
)
≤ P

(
sup
n≤N

Mn > a
)
≤ E[MN ]

a
=

E[M0]

a
.

Since M0 = X0, letting N → ∞ gives the claim because the right side does not depend on N and

the left side approaches P
(
supnXn > a

)
by monotone convergence.

Proposition 3.5.7. For each n ∈ N, let {ωni,0}i≥1 be a family of i.i.d. random variables such

that ωni,0 has finite pth moment, with p > 2. Also assume that 1 + n−1/4ωni,0 > 0 a.s. and that

supn E[|ωn1,0|p] < ∞. Furthermore assume that E[ωni,0] = µn−1/4 + o(n−1/4) and var(ωni,0) =

167



σ2 + o(1) as n → ∞. Define zn0 (x) :=
∏x

i=1(1 + n−1/4ωni,0). Then zn0 satisfies the first two

conditions of Proposition 3.5.5:

• E[|zn0 (x)− zn0 (y)|p] ≤ Cn−p/4|x− y|p/2ean−1/2(x+y) for some constants C, a independent of

n, x, y.

• with the same a, there exist square-integrable random variablesD(n) such that supn E[D(n)2] <

∞ and zn0 (x) ≤ D(n)ean
−1/2x for all n, x almost surely.

Proof. Before proving either bullet point, we prove a preliminary bound. By Taylor expanding up

near u = 1 we see (1 + n−1/4ωni,0)
p = 1 + pn−1/4ωni,0 +

1
2
(p2 − p)n−1/2(ωni,0)

2 + o(n−1/2), which

has expectation roughly 1 + n−1/2(pµ + p2−p
2
σ2) + o(n−1/2). For some a = a(p) this is bounded

above by 1 + an−1/2, and so we see that

E[zn0 (x)p] =
x∏
i=1

E[(1 + n−1/4ωni,0)
p] ≤ (1 + n−1/2a)x ≤ ean

−1/2x, (3.31)

since 1 + v ≤ ev. With this preliminary bound in mind, we proceed to the proof of the first

bullet point. It suffices to prove the claim when y = 0 (i.e., zn0 (y) = 1), by independence of the

multiplicative increments of zn0 . Let us begin by writing

E[|zn0 (x)− 1|p] ≤ 2p
(
E
[∣∣∣∣zn0 (x)− zn0 (x)

E[zn0 (x)]

∣∣∣∣p]+ E
[∣∣∣∣ zn0 (x)

E[zn0 (x)]
− 1

∣∣∣∣p]).
Let us denote these expectations on the right side as E1 and E2, respectively. We bound each of

these separately. For E1, one notes by using (3.31) that

E1 = E[zn0 (x)p]
∣∣∣∣1− 1

E[zn0 (x)]

∣∣∣∣p ≤ ean
−1/2x

∣∣1− e−an
1/2x
∣∣p

≤ ean
−1/2x

(
an−1/2x

)p
= apean

−1/2xn−p/2xp,

where we used E[zn0 (x)] ≤ E[zn0 (x)p]1/p ≤ ean
−1/2x (by (3.31)) in the first inequality, and we used

1 − e−v ≤ v in the second one. Finally, note that upeu ≤ Cup/2e2u for some C > 0 independent
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of u, and applying this with u = an−1/2x already gives the desired bound on E1.

Now we bound E2. This is the difficult part, and one needs to somehow exploit cancellations that

occur at the quadratic scale (e.g., via a Burkholder-type inequality). To do this, first note that the

process Mn
x :=

zn0 (x)

E[zn0 (x)]
is a martingale in the x-variable (for fixed n). Define ζni :=

1+n−1/4ωn
i,0

E[1+n−1/4ωi,0]
.

Then Burkholder-Davis-Gundy says

E2 ≤ CE
[( x∑

i=1

(Mn
i −Mn

i−1)
2

)p/2]
= CE

[( x∑
i=1

(ζn1 )
2 · · · (ζni−1)

2(ζni − 1)2
)p/2]

(3.32)

Now, using the given conditions, |ζni − 1| is easily seen to be bounded above by C(n−1/4|ωni,0| +

n−1/2), so the square is bounded by C(n−1/2(ωni,0)
2+n−1). Writing ∥A∥p := E[|A|p]1/p, we notice

by the triangle inequality and independence of ζni that

∥∥∥∥ x∑
i=1

(ζn1 )
2···(ζni−1)

2(ζni −1)2
∥∥∥∥
p/2

≤Cn−1/2

x∑
i=1

∥(ζn1 )2∥p/2···∥(ζni−1)
2∥p/2∥(ωni,0)2+n−1/2∥p/2.

Now, it holds that ∥(ζn1 )2∥p/2 ≤ e2an
−1/2/p, by (3.31) (with x = 1). Hence each term of the sum can

be bounded above by e2an−1/2x/p. The contribution of the n−1/2 term next to (ωni,0)
2 is then seen to

be negligible, so we disregard it. Hence the the entire sum may be bounded by Cn−1/2xe2an
−1/2x/p,

which, combined with (3.32) and the fact that ∥(ωni,0)2∥p/2 is bounded independently of n by as-

sumption, completes the proof.

Now we prove the second bullet point. Note that zn0 (x)
p

E[zn0 (x)p]
is a positive martingale in the x-

variable. Let D(n) := supx≥0 z
n
0 (x)/E[zn0 (x)p]1/p. Then it is clear from Lemma 3.5.6 that

P(D(n)p > a) ≤ a−1, so that P(D(n) > a) ≤ a−p. If p > 2, then this easily implies that

supn E[D(n)2] <∞. But (3.31) tells us that E[zn0 (x)p]1/p ≤ Cean
−1/2x, so we are done.

Next, we finally prove the octant-quadrant reduction theorem, i.e., that we can replace Tn with 2n
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as discussed in the proof sketch at the end of Section 2. Let us reformulate the main notational

conventions here:

• S is a simple symmetric random walk of length n started from x and conditioned to stay

positive throughout its course (i.e., the canonical process associated to the measures Pn
x).

We assume n− x is even.

• ω̂ni,j is defined to be ωn
(n− i−j

2
),(n− i+j

2
)

for all i, j of the same parity, where ωni,j is a family

of random environments satisfying the conditions of the three bullet points before Theorem

3.2.2, but now the bulk random variables are indexed by all pairs (i, j) with |i| ≥ j.

• Tn is the first time that n− i = Si.

• zn0 (x) :=
∏x

i=0(1 + n−1/4ω̄ni,0), where the ω̄i,0 have p > 2 moments.

We remark that all conditions of Theorem 3.5.4 are almost satisfied by this environment. The only

caveat is that the sequence of initial data is not deterministic, however by Propositions 3.5.5 and

3.5.7 and Skorohod’s Lemma (and the fact that zn0 are independent of the bulk weights) we may

choose a probability space on which zn0 → z0 almost surely with respect to the topology of C α
e(δ)

for some choice of α, δ ∈ (0, 1). Here z0(x) is a geometric Brownian motion with the appropriate

diffusion and drift coefficients. Note that a.s. convergence is stronger than a.s. boundedness in

that norm which is the condition required in Theorem 3.5.4. Thus there is no loss of generality in

assuming that the initial data are in fact deterministic.

Proposition 3.5.8 (Octant-Quadrant Reduction). In the notation of the bullet points immediately

above, we define the following random variable for n, x ≥ 0:

E (x, n) := En
x

[
zn0 (Sn)

n−1∏
i=0

(1 + n−1/4ω̂ni,Si
)

]
− En

x

[
zn0 (STn)

Tn−1∏
i=0

(1 + n−1/4ω̂ni,Si
)

]
.

Let xn be a sequence of non-negative integers such that xn ≤ Cn1/2 for some C > 0. Then

E (xn, n) → 0 in probability.

170



Proof. First we will show that
∑

nP
n
xn(Tn ≤ n−n2/3) <∞. By Borel-Cantelli, this would imply

that all Pn
xn may be coupled to the same probability space in such a way that one almost surely has

Tn > n − n2/3 for large enough n. Then the result follows immediately from Theorem 3.5.4 by

taking α = 2/3 in the definition of E(x, n). Note that the choice of exponent 2/3 is arbitrary and

could be replaced by any α > 1/2.

To prove that
∑

nP
n
xn(Tn ≤ n − n2/3) < ∞, one first notes that the event {Tn ≤ n − n2/3}

can only happen if supi≤n Si ≥ n2/3. But by Theorem 3.6.8, we know that there are universal

constants C, c, c′ > 0 so that

Pn
xn

(
sup
i≤n

Si ≥ n2/3
)
≤ Ce−c(n

2/3−xn)2/n ≤ Ce−c(n
2/3−Cn1/2)2/n ≤ Ce−c

′n1/3

.

The right side is summable as a function of n, completing the proof.

Note that by equations (3.9) and (3.10) and the surrounding discussion (but replacing n above by

2n), the above proposition reduces the proof of Theorem 3.2.2 to that of Theorem 3.1.2 but with

varying weights, so this is what we focus on now.

3.5.2 Convergence for the quadrant model

In this section we finally complete the main goals of the paper. Unless otherwise stated, we always

implicitly assume the following:

• All families {ωni,j} of i.i.d. weights satisfy the assumptions that were stated in the bullet

points before Theorem 3.2.2.

With the reduction (Proposition 3.5.8) finished, we define a partition function in the quadrant that

is modified to take parity into account. Specifically, given (n, x) in the lattice L := {(n, x) ∈ Z2
≥0 :
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n− x ≡ 0 (mod 2)} we define

Zk(n, x) := En
x

[
zk0 (Sn)

n∏
i=1

(1 + k−1/4ωkn−i,Si
)

]
=

n∑
r=0

k−r/4
∑

1≤i1<...<ir≤n
(x1,...,xr+1)∈Zr+1

≥0

r∏
j=1

p
n−ij−1

ij−ij−1
(xj−1, xj)ω

k
n−ij ,xj ·

(
zk0 (xr+1)p

n−ir
n−ir(xr, xr+1)

)
,

(3.33)

with i0 := 0, x0 := x, and zk0 (x) =
∏x

i=0(1+k
−1/4ωki,0) (in fact zk0 can be any sequence of functions

converging weakly and also satisfying the two bullet points of Proposition 3.5.7). Consider the

following family of diffusively rescaled processes

Zn(T,X) := Zn(nT, n
1/2X), T,X ≥ 0, (3.34)

where we interpolate linearly between points of the lattice L. We will now show that Zn converge

in law as n → ∞ with respect to the topology of uniform convergence on compact subsets of

R+×R+ to the solution of (3.18). The first step for doing this is proving tightness in the appropriate

Hölder space. This part is not necessary if one is only interested in following the minimal logical

flow for the proof of Theorem 3.1.1, and thus some of the proofs are not included. As always we

denote ∥X∥p := E[|X|p]1/p.

Proposition 3.5.9 (Tightness). Let Zn be defined as in (3.34), and assume that (for each k), the

i.i.d. weights {ωki,j}i,j have p > 8 moments, bounded independently of k. Then for every a ≥ 0,

θ ∈ [0, 1), and compact set K ⊂ [0,∞)2 there exists C = C(a, p, θ,K) > 0 such that one has the

following estimates uniformly over all pairs of space-time points (T,X), (S, Y ) ∈ K:

∥Zn(T,X)∥p ≤ C, (3.35)

∥Zn(T,X)− Zn(T, Y )∥p ≤ C|X − Y |θ/2, (3.36)

∥Zn(T,X)− Zn(S,X)∥p ≤ C|T − S|θ/4. (3.37)

172



In particular, the laws of the Zn are tight with respect to the topology of uniform convergence on

compact subsets of C(R+ × R+).

The restriction p > 8 is only necessary to obtain tightness in the Hölder space. Using more elegant

arguments, this may be extended to p ≥ 6 (see Appendix B of [3]). The one-point convergence

result will only require two moments though.

Proof. Note that the functions Zk defined in (3.33) satisfy the following Duhamel-form relation

Zk(n, x) =
∑
y≥0

pnn(x, y)z
k
0 (y) + k−1/4

n−1∑
i=0

∑
y≥0

pnn−i(x, y)Zk(i, y)ω
k
i,y. (3.38)

Define the martingale Mr(x, n, k) := k−1/4
∑r−1

i=0

∑
y≥0 p

n
n−i(x, y)Zk(i, y)ω

k
i,y. This is a martin-

gale in the r-variable, with respect to the filtration Fk
r := σ({ωki,j}1≤i≤r;j≥0). This is because

Zk(i, y) is Fk
r -measurable, and Fk

r is independent of the mean-zero random variables ωkr,y with

y ≥ 0. Applying Burkholder-Davis-Gundy and then Minkowski’s inequality to Mr(x, n, k) shows

that

∥Mr(x, n, k)∥2p ≤ C

∥∥∥∥k−1/2

r−1∑
i=0

[∑
y≥0

pnn−i(x, y)Zk(i, y)ω
k
i,y

]2∥∥∥∥
p/2

≤ Ck−1/2

r−1∑
i=0

∥∥∥∥∑
y≥0

pnn−i(x, y)Zk(i, y)ω
k
i,y

∥∥∥∥2
p

. (3.39)

Next, we notice that since the ωki,y are independent of Zk(i, y), another application of Burkholder-

Davis-Gundy (or in this case, its more elementary version for independent sums, the Marcinkiewicz-

Zygmund inequality) shows that

∥∥∥∥∑
y≥0

pnn−i(x, y)Zk(i, y)ω
k
i,y

∥∥∥∥2
p

≤ C
∑
y≥0

pnn−i(x, y)
2∥Zk(i, y)∥2p∥ωki,y∥2p. (3.40)

Since p ≤ p0 and the pth0 moments of ωki,y are bounded independently of k, i, y it follows that

173



∥ωki,y∥2p may be absorbed into the constant. Combining (3.38),(3.39),(3.40), one finds that

∥Zk(n, x)∥2p ≤ C

(∑
y≥0

pnn(x, y)∥zk0 (y)∥p
)2

+ Ck−1/2

n−1∑
i=0

∑
y≥0

pni (x, y)
2∥Zk(n− i, y)∥2p. (3.41)

Now, we note that ∥zk0 (y)∥p ≤ eak
−1/2y by (3.31). Hence,

∑
y p

n
n(x, y)∥zk0 (y)∥p may be bounded

above by Ceak−1/2x+Ka2k−1n by Proposition 3.7.1. After this, we set x0 := x and i0 := 0 and we

iterate (3.41). Then we get

∥Zk(n, x)∥2p ≤ C

n∑
r=0

k−r/2
∑

0≤i1<...<ir<n
(x1,...,xr)∈Zr

≥0

r∏
j=1

p
n−ij
n−ij−1

(xi−1, xi)
2 · eak−1/2xr+Ka2n/k

Lemma 3.5.1

≤ Ceak
−1/2x+Ka2n/k

n∑
r=0

Ckk−r/2nr/2/(r/2)!

≤ Ceak
−1/2x+Bn/k, (3.42)

where we use
∑

r C
kk−r/2nr/2/(r/2)! ≤ eC

2n/k and then rename B := Ka2 + C2. Now replace

x by n1/2X , n by nT , and k by n. This will give ∥Zn(T,X)∥2p ≤ CeaX+BT . But eaX+BT can be

bounded from above on any compact set, proving (3.35).

Now we will prove (3.36). By applying Burkholder-Davis-Gundy (twice) in the same way which

was used in proving (3.41), one sees that

∥Zk(n, x)− Zk(n, y)∥2p ≤ C

∥∥∥∥∑
w≥0

(
pnn(x,w)− pnn(y, w)

)
zk0 (w)

∥∥∥∥2
p

+ Ck−1/2

n−1∑
i=0

∑
w≥0

(
pnn−i(x,w)− pnn−i(y, w)

)2∥Zk(i, w)∥2p. (3.43)

We will bound the first term using the coupling lemma. Specifically, let P (and its expecta-

tion operator E) denote a coupling of En
x and En

y as in Proposition 3.6.4, and let (Sx, Sy) be

the associated coordinate process. Recall from Proposition 3.5.7 that E[(zk0 (x) − zk0 (y))
4] ≤
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Ck−1|x − y|2eak−1/2(x+y) for some constants C, a independent of n, x, y. Then by independence

of zk0 and S, one may apply Minkowski and Jensen to commute the respective expectations and

obtain

∥∥∥∥∑
w≥0

(
pnn(x,w)− pnn(y, w)

)
zk0 (w)

∥∥∥∥2
p

=
∥∥En

x[z
k
0 (Sn)]− En

y [z
k
0 (Sn)]

∥∥2
p

=
∥∥E[zk0 (Sxn)− zk0 (S

y
n)]
∥∥2
p
≤ E

[∥∥zk0 (Sxn)− zk0 (S
y
n)∥2p

]
≤ CE

[
k−1/2|Sxn − Syn|eak

−1/2(Sx
n+S

y
n)] ≤ Ck−1/2|x− y|En

x[e
2ak−1/2Sn ]1/2En

y [e
2ak−1/2Sn ]1/2

Prop. 3.7.1
≤ Ck−1/2|x− y|eak−1/2(x+y),

where we noted that ec + ed ≤ 2ec+d. Next, we geometrically interpolate (i.e., c ∧ d ≤ cθd1−θ for

θ ∈ [0, 1]) between the bound of Proposition 3.7.3 and that of (3.56) (with p = 2 for both). This

will yield the following for all α ≥ 0:

∑
z≥0

(
pNn (x, z)− pNn (y, z)

)2
eαz ≤ Ceα(x+y)+Kα

2n(n− 1
2
− 1

2
θ + αθn− 1

2 )|x− y|θ (3.44)

Using these bounds and using equation (3.43) in macroscopic coordinates, we will obtain:

∥Zk(n, x)− Zk(n, y)∥2p

≤ Ck−1/2|x− y|eak−1/2(x+y) + Ck−1/2

n−1∑
i=0

∑
w≥0

(
pnn−i(x,w)− pnn−i(y, w)

)2∥Zk(i, w)∥2p
(3.42)
≤ Ck−1/2|x− y|eak−1/2(x+y) + Ck−1/2

n∑
i=1

∑
w≥0

(
pnn−i(x,w)− pnn−i(y, w)

)2
Ceak

−1/2w+Bi/k

(3.44)
≤ Ck−1/2|x− y|eak−1/2(x+y)

+ Ck−1/2

n∑
i=1

eak
−1/2(x+y)

[
(n− i)−

1
2
− 1

2
θ + aθk−θ/2(n− i)−1/2

]
|x− y|θeBn/k

≤ Ck−1/2|x− y|eak−1/2(x+y) + C(n
1
2
− 1

2
θ + k−θ/2n1/2)k−1/2eak

−1/2(x+y)|x− y|θeBn/k. (3.45)

In the last line, we used the bound
∑

i(n − i)−
1
2
− 1

2
θ ≤ Cn

1
2
− 1

2
θ for θ < 1. Now we convert to
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macroscopic coordinates (k → n; n→ nT ; x→ n1/2X; y → n1/2Y ), to get

∥Zn(T,X)− Zn(T, Y )∥2p ≤ Ce2a(X+Y )
(
|X − Y |+ (T

1
2
− 1

2
θ + T 1/2)|X − Y |θ

)
eBT .

On any compact set |X − Y | may be bounded by C|X − Y |θ (since θ < 1).Similarly, we can also

absorb (1 + T
1
2
− 1

2
θ + T 1/2)e2a(X+Y )+BT into the constant, proving (3.36).

Now we will prove (3.37). Let m ≤ n. For this, one writes

Zk(n, x) =
∑
y≥0

pnn−m(x, y)Zk(m, y) + k−1/4

n−m∑
i=1

∑
y≥0

pnn−m−i(x, y)Zk(i+m, y)ωk(i+m)y.

Again imitating the proof of (3.41) and using the fact that pnn−m(x, ·) is a probability measure (then

applying Jensen), one sees

∥Zk(n, x)− Zk(m,x)∥2p ≤ C
∑
y≥0

pnn−m(x, y)∥Zk(m, y)− Zk(m,x)∥2p

+ Ck−1/2

n−m∑
i=1

∑
y≥0

pnn−m−i(x, y)
2∥Zk(i+m, y)∥2p.

Let us call the sums on the right side S1(m,n, k, x), S2(m,n, k, x), respectively. We bound these

separately. We first compute that

∑
y≥0

pNn (x, y)|x− y|θea(x+y) = EN
x [|Sn − x|θea(Sn+x)]

≤ EN
x [|Sn − x|2θ]1/2EN

x [e
2a(Sn+x)]1/2 ≤ Cnθ/2e2ax+Ka

2n,

where the last inequality follows from Propositions 3.6.10 and 3.7.1. Using this and (3.45) we see
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that

S1 ≤ C
∑
y≥0

pnn−m(x, y) ·
[
k−1/2|x− y|eak−1/2(x+y)

+ C(m
1
2
− 1

2
θ + k−θ/2m1/2)k−1/2eak

−1/2(x+y)|x− y|θeBm/k
]

≤ Ck−1/2(n−m)1/2e2ak
−1/2x+Ka2n/k

+ C(m
1
2
− 1

2
θ + k−θ/2m1/2)k−1/2eBm/k(n−m)θ/2e2ak

−1/2x+Ka2n/k.

Next, to bound S2, we are going to use (3.42) with Proposition (3.7.1) and we obtain

S2 ≤ Ck−1/4

n−m∑
i=1

∑
y≥0

pnn−m−i(x, y)
2eak

−1/2y+B(i+m)/k

≤ Ck−1/2

n−m∑
i=1

(n−m− i)−1/2eak
−1/2x+Bn/k

≤ Ck−1/2(n−m)1/2eak
−1/2x+Bn/k.

Combining the bounds for S1, S2 and then converting to macroscopic coordinates (n→ nT ;m→

nS; k → n;x→ n−1/2X) will yield the following bound:

∥Zn(T,X)− Zn(S,X)∥2p ≤ C(|T − S|1/2 + (S
1
2
− 1

2
θ + S1/2)|T − S|θ/2

)
e2aX+B′T ,

where B′ is a large constant depending on a2 and B. Since |T − S|1/2 ≤ C|T − S|θ/2 on compact

sets and since (1 + S
1
2
− 1

2
θ + S1/2)e2aX+B′T may be bounded from above on compact sets, this

finishes the proof of (3.37).

Now that we have proved tightness, we only need to obtain convergence of finite-dimensional

marginals of Zn to those of SPDE (3.18). Thanks to the Cramer-Wold device (and linearity of

integration with respect to space-time white noise) this will not be more difficult than just proving

convergence of one-point marginals. This can be done by using the convergence result in Proposi-

tion 3.3.6 together with the machinery developed in the papers [3, 31].
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Specifically, we will use Theorem 2.3 of [31], which in turn was inspired by the results of Section

4 in [3]. We state this result in a version that is adapted to our own context. Throughout, we will

fix T > 0 and we will denote ∆k(T ) := {(t1, ..., tk) : 0 < t1 < ... < tk < T, ti ∈ R}. Also denote

by ∆n
k(T ) := {( t1

n
, ..., tk

n
) : 0 < t1 < ... < tk < Tn, ti ∈ Z}, and let (Rd)n := (n−1/2Z)d. Then

define

Lnk := ∆n
k(T )× (Rk)n,

and equip Lnk with the σ-finite measure that assigns mass n−3/2 = n−1 · n−1/2 to each distinct

space-time point ( t
n
, x√

n
). We denote by L2(Lnk) the L2-space associated to this measure.

Theorem 3.5.10 (Theorem 2.3 of [31]). For each n ∈ N, let {ωni,j}i,j≥0 be a family of random

weights with mean zero and var(ωni,j) = σ2 + o(1) (as n → ∞). Let {F n
k }n,k∈N be a family of

functions defined on Lnk . Suppose that Fk : ∆k(T ) × Rk → R is a family of continuous functions

such that ∥F n
k − Fk∥L2(Ln

k )
→ 0 as n→ ∞, for every k ∈ N. Furthermore assume that

sup
n

∑
k≥0

∥F n
k ∥2L2(Ln

k )
<∞.

Then define random variables

Xn :=
∑
k≥0

n−3k/4
∑

(⃗t,x⃗)∈Ln
k

F n
k (⃗t, x⃗)ω(nt1),(n1/2x1) · · ·ω(ntk),(n1/2xk)

.

Then Xn converges in distribution as n→ ∞ to the random variable

∞∑
k=0

σk
∫
∆k(T )

∫
Rk
+

Fk(t1, ..., tk;x1, ..., xk)ξ(dx1dt1) · · · ξ(dxkdtk),

where ξ is a space-time white noise on R+ × R.

We refer the reader to Section 4 of [3] for an explanation of the scaling exponent n−3k/4. With this

result in place, we are now ready to prove the main result of this section, which is a generalization
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of Theorem 3.1.2 to the case where the weights ω vary with n.

Theorem 3.5.11. Let Zn be as defined in (3.34). Then the finite-dimensional marginals of Zn

converge to those of SPDE (3.18). More precisely, if F ⊂ R+×R+ is finite, then (Zn(T,X))(T,X)∈F

converges in law to (Z (T,X))(T,X)∈F where Z solves (3.18) with initial data given by Z (0, X) =

eσBX+(µ−σ2/2)X for a standard Brownian motion B.

Proof. Using the discussion at the end of Section 2 (more specifically, equations (3.12) and (3.13)),

we know that zn0 (n
1/2X) converges in law to a geometric Brownian motion with drift, specifically

eσBX+(µ−σ2/2)X .We exploit Skorohod’s lemma to couple all of the zn0 to the same probability space

in such a way so that this convergence occurs a.s. uniformly on compact sets.

Fix x, t > 0. In our case, we set

F n
k (t1, ..., tk;x1, ..., xk) :=

∑
xk+1∈n−1/2Z≥0

zn0 (n
1/2xk+1)

k+1∏
j=1

Pn(tj − tj−1, T − tj−1;xj−1, xj),

Fk(t1, ..., tk;x1, ..., xk) :=

∫
R+

eBxk+1
−(A+1/2)xk+1

k+1∏
j=1

P
T−tj−1

tj−tj−1
(xj−1, xj) dxk+1,

where PT
t was given in Definition 3.3.4, Pn was defined in Proposition 3.3.6 and where (x0, t0) :=

(x, t). The condition that

sup
n

∑
k≥0

∥F n
k ∥2L2(Ln

k )
<∞,

follows quite simply from Lemma 3.5.1. Also the condition that ∥F n
k −Fk∥L2(Ln

k )
→ 0 as n→ ∞,

follows by inducting on the last statement in Proposition 3.3.6.

By Theorem 3.5.10, we conclude that the one-point marginals of Zn converge to those of the

solution of (3.18). The proof for multi-point marginals is similar, but one defines a new family F̃ n
k

by taking linear combinations of the F n
k that are defined above, then one applies the Cramer-Wold

device to make the conclusion.
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Note that (via Proposition 3.5.8) this result also implies Theorem 3.2.2, thus completing the main

goals of the paper. One thing that we have not yet explained the normalization
(
2Φ
(
X+n−1/2

√
T

)
−

1
)−1 appearing in Theorem 3.2.2. This is an easy consequence of the fact that (by the local central

limit theorem and (3.47)), the asymptotic mass of the measures µnT
n1/2X

appearing in Theorem 3.2.5

is equal to 2Φ
(
X+n−1/2

√
T

)
− 1 + o(n−1/2).

3.6 Appendix 1: Preliminary estimates and concentration of measure

The purpose of this appendix is to gather estimates for the simple symmetric random walk con-

ditioned to stay positive. The results and proofs are classical in spirit, and the literature on such

measures is extensive [95, 19, 29, 30, 66] etc. However, we will only give a brief exposition of

those selected estimates that apply to our nearest-neighbor weights, many of which we could not

find in the above references, and might be applicable to other models.

We recall the uniform positive random walk measures Pn
x and the three associated quantities

(pNn , p
(1/2)
n , and ψ) that were defined in Section 3. The main goal of this appendix will be to

prove the following concentration inequality for the measures Pn
x:

Pn
x

(
sup

1≤j≤k
|Sj − x| > u

)
≤ Ce−cu

2/k,

where C, c are independent of n, x, k with k ≤ n. This will in turn allow us to prove various Lp

moment bounds that are used in Section 5. The methods used in proving these results will be cou-

pling arguments and martingale techniques, some of which might be useful in and of themselves.

More specifically, the main key will be to notice that for fixed n ∈ N, the process

Mn
k :=

Sk + 1

ψ(Sk, n− k)
, 0 ≤ k ≤ n,

is a Pn
x-martingale with respect to the k-variable. Moreover we will use the fact that (Sk) is itself

a submartingale. First we state a few preliminary lemmas.

180



Lemma 3.6.1. Let ψ(x,N) be as in Definition 3.3.2. Then there exists a constant C > 0 such that

for all x,N ≥ 0 one has

x+ 1

x+ 1 + C
√
N

≤ ψ(x,N) ≤ 1 ∧
(
C(x+ 1)√

N

)
.

Furthermore for each x ≥ 0 one has that

lim
N→∞

√
Nψ(x,N) = (x+ 1)

√
2/π.

Note that this already proves Theorem 3.2.5(2). Furthermore note that the upper and lower bounds

on ψ are strong enough to give an upper and lower envelope on ψ, i.e.,

C−1 x+ 1

x+ 1 +
√
N

≤ ψ(x,N) ≤ C
x+ 1

x+ 1 +
√
N
. (3.46)

This is because 1 ∧ w ≤ 2w
1+w

. We now proceed to the proof.

Proof. First we prove the upper bound. Let pN denote the standard heat kernel on the whole line

Z. Using Definitions 3.3.1 and 3.3.2 and the fact that pN is symmetric and sums to 1, it holds that

ψ(x,N) =
∑
y≥0

(
pN(x− y)− pN(x+ y + 2)

)
= pN(x+ 1) + pN(0) + 2

∑
1≤u≤x

pN(u). (3.47)

Now, we use the simple uniform bound pN ≤ CN−1/2 to see that the right side of the last expres-

sion is bounded above by 2C(x + 1)N−1/2. On the other hand, it is obvious that ψ(x,N) ≤ 1 for

all x,N . So, we have obtained the desired upper bound.

Next, we prove the lower bound. We consider two different cases: x ≤ 2
√
N and x > 2

√
N .

First we consider the case x > 2
√
N . One may apply Hoeffding’s inequality for the simple
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random walk to deduce that

ψ(x,N) = pN(x+ 1) + pN(0) + 2
∑

1≤u≤x

pN(u) ≥
∑

−x≤u≤x

pN(u) ≥ 1− 2e−(x+1)2/2N .

Now set q := (x+1)2

2N
. Then q ≥ 2, so q + 2 ≤ eq, and thus 1

1−2e−q ≤ 1 + 2
q
. This means that

ψ(x,N)−1 ≤ 1 + N
2(x+1)2

. But since x + 1 ≥
√
N , it follows that N

(x+1)2
≤

√
N

x+1
. Hence we obtain

ψ(x,N) ≥ x+1
x+1+0.5

√
N

, whenever x > 2
√
N .

Now we consider the case x ≤ 2
√
N . The local central limit theorem tells us that pN(u) ≥

c√
N
e−2u2/N ≥ c√

N
e−8, for some c > 0 and all u,N with u ≤ 2

√
N . Hence

ψ(x,N) = pN(x+ 1) + pN(0) + 2
∑

1≤u≤x

pN(u) ≥
∑

0≤u≤x

pN(u) ≥
ce−8

√
N

(x+ 1).

Now one simply notes that ce
−8

√
N

≥ 1
x+1+c−1e8

√
N

. This proves the lower bound.

Finally, we prove the last statement about the limit. For this, let us write

ψ(x,N) = pN(x+ 1) + pN(0) + 2
∑

1≤u≤x

pN(u)

The local limit theorem tells us that for each u, the quantity
√
NpN(u) oscillates back and forth

between
√
2/π and zero (depending on the parity of N ) as N becomes large. This already implies

that N1/2 times the right side converges to
(
1 + x

)√
2/π.

Lemma 3.6.2. Let (ax)x≥0 be a sequence of non-negative numbers such that

ax ≤ ax+1, ax+2 − ax+1 ≤ ax+1 − ax, for all x ≥ 0.
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Then for all x ≥ 0 and k ≥ 0, one has that

ax
ax+k

≤ ax+1

ax+k+1

.

Proof. It suffices to prove the claim when k = 1, because then one has that

ax
ax+k

=
k−1∏
j=0

ax+j
ax+j+1

≤
k−1∏
j=0

ax+j+1

ax+j+2

=
ax+1

ax+k+1

.

To prove the claim for k = 1, one uses the mean value theorem to extract u ∈ [ax, ax+1] and

v ∈ [ax+1, ax+2] such that

log ax+1 − log ax =
1

u
(ax+1 − ax), log ax+2 − log ax+1 =

1

v
(ax+2 − ax+1).

Then clearly 1
v
≤ 1

u
, and by hypothesis, it is also true that ax+2−ax+1 ≤ ax+1−ax. So we conclude

that log ax+2 − log ax+1 ≤ log ax+1 − log ax.

Lemma 3.6.3 (Monotonicity). Fix n ∈ N. Then ψ(x, n) is an increasing function of x. Thus,

pn1 (x, x + 1) ≥ 1/2 ≥ pn1 (x, x − 1) for all x, n ≥ 0. Furthermore, pn1 (x, x + 1) is a decreasing

function of x, and pn1 (x, x− 1) is an increasing function of x.

Proof. As in the proof of Lemma 3.6.1, we write

ψ(x, n) = pn(0) + pn(x+ 1) + 2
x∑
y=1

pn(y).

Consequently, it holds that

ψ(x+ 1, n)− ψ(x, n) = pn(x+ 1) + pn(x+ 2), (3.48)

and the right side is clearly non-negative, which proves the first statement. For the second state-
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ment, we just note that

pn1 (x, x+ 1) =
ψ(x+ 1, n− 1)

2ψ(x, n)
≥ ψ(x− 1, n− 1)

2ψ(x, n)
= pn1 (x, x− 1).

To prove the final statement, we note that pn is a non-increasing function of |x|, and thus the right

side of (3.48) is also a non-increasing function of x. Thus we may apply Lemma 3.6.2 with k = 2

and ax = ψ(x, n), to conclude that ψ(x,n)
ψ(x+2,n)

is an increasing function of x. Now we write

1

pn1 (x, x+ 1)
= 2

ψ(x, n)

ψ(x+ 1, n− 1)
= 1 +

ψ(x− 1, n− 1)

ψ(x+ 1, n− 1)
,

where we use the relation ψ(x, n) = 1
2
ψ(x+1, n−1)+ 1

2
ψ(x−1, n−1). By the discussion of the

previous paragraph, the right side is an increasing function of x, and so pn1 (x, x+1) is a decreasing

function of x. Finally, this implies that pn1 (x, x − 1) = 1 − pn1 (x, x + 1) is an increasing function

of x.

Proposition 3.6.4 (Coupling lemma for Positive Walks). Fix n ∈ N and x ≥ 0. There exists a

coupling Qn
x,x+1 of the measures Pn

x and Pn
x+1 that is supported on pairs (γ, γ′) of paths such that

|γ′i − γi| ≤ 1 for all i ≤ n. More generally, for fixed n ∈ N, the measures {Pn
x}x≥0 may all be

coupled together in such a way that the coordinate processes associated to neighboring values of

x are never more than distance 1 apart.

Proof. Let {Ui}ni=1 be a sequence of i.i.d. Uniform[0, 1] random variables. We make an inductive

construction as follows. Let S0 = x and S ′
0 = x+ 1.

Suppose that S0, ..., Sk and S ′
0, ..., S

′
k have been constructed in such a way that |Si − S ′

i| = 1
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for all k. If S ′
k = Sk + 1, we define

(Sk+1, S
′
k+1) :=


(Sk − 1, S ′

k − 1), Uk+1 > pn−k1 (Sk, Sk + 1)

(Sk + 1, S ′
k − 1), pn−k1 (Sk, Sk + 1) > Uk+1 > pn−k1 (S ′

k, S
′
k + 1)

(Sk + 1, S ′
k + 1), Uk+1 < pn−k1 (S ′

k, S
′
k + 1)

.

We know by lemma 3.6.3 that one of these cases must hold. Similarly, if S ′
k = Sk − 1, then we

define (Sk+1, S
′
k+1) in a symmetric fashion. This completes the inductive step.

A close look at this construction reveals that for x1, ..., xn ≥ 0 one has

P (S1 = x1, S2 = x2, ..., Sn = xn) = pn1 (x, x1)
n−1∏
j=1

pn−j1 (xj, xj+1),

P (S ′
1 = x1, S

′
2 = x2, ..., S

′
n = xn) = pn1 (x+ 1, x1)

n−1∏
j=1

pn−j1 (xj, xj+1).

By Proposition 3.3.3, S is distributed as Pn
x and S ′ is distributed as Pn

x+1.

The proof of the more general statement is very similar. One simply uses a uniform coupling

together with the Lemma 3.6.3, and the argument is a straightforward generalization of the one

given above for two values of x.

Proposition 3.6.5 (Martingales for Positive Walks). Fix x, n, k ≥ 0 with k ≤ n. Let S be dis-

tributed according to Pn
x. For i ≤ k define a function f (k,n)(x, i) := En−i

x [Sk−i]. Then the process

Mi =M
(k,n)
i := f (k,n)(Si, i), 0 ≤ i ≤ k

is a martingale with respect to the natural filtration of S. Furthermore it has bounded increments

|Mi+1 −Mi| ≤ 2, 0 ≤ i ≤ k − 1.
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In the special case when k = n, one has the explicit form f (n,n)(x, i) = −1 + x+1
ψ(x,n−i)

Proof. We suppress the superscript (k, n) on f from now on. Letting Fk denote the natural filtra-

tion of S, it is a consequence of the Markov property that f(Si, i) = En
x[Sk|Fi], which shows that

M is a martingale in the i-variable for fixed x, n, k.

To prove that it has bounded increments, first note that

f(x, i)− f(x+ 1, i) = En−i
x [Sk−i]− En−i

x+1[Sk−i].

By the coupling lemma (Proposition 3.6.4), this is bounded in absolute value by 1. Consequently,

one finds that

|f(x± 1, k + 1)− f(x, k)| =
∣∣∣∣f(x± 1, k + 1)−

∑
y∈{x−1,x+1}

pn−k1 (x, y)f(y, k + 1)

∣∣∣∣
≤

∑
y∈{x−1,x+1}

pn−k1 (x, y)
∣∣f(x± 1, k + 1)− f(y, k + 1)

∣∣ = pn−k1 (x, x∓ 1) · 2 ≤ 2,

which gives the desired result.

For the final statement, if k = n one may compute En−i
x [Sn−i] =

∑
y≥0 yp

n−i
n−i(x, y) = ψ(x, n −

i)−1
∑

y≥0 yp
(1/2)
n−i (x, y). Now the claim follows from the fact that y 7→ y + 1 is a unipotent eigen-

function of the semigroup p(1/2), i.e.,
∑

y≥0(y + 1)p
(1/2)
n (x, y) = x+ 1 for every n, x ≥ 0.

Lemma 3.6.6. Let b ≥ 0. There exists a constant C = C(b) > 0 such that for all n ≥ 0 and all

x, y, z ≥ 0 one has

p(1/2)n (x, y) ≤ C

[
1√
n+ 1

∧ x+ 1

n+ 1

]
e−bn

−1/2|x−y|.

∣∣p(1/2)n (x, y)− p(1/2)n (x, z)
∣∣ ≤ C

[
1

n+ 1
∧ x+ 1

(n+ 1)3/2

]
|z − y|e−bn

−1/2
(
|x−y|∧|x−z|

)
.
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Proof. The proof given here is inspired by the methods of Appendix A of [57].

Let us start with the first bound. Note that it suffices to prove the bound for y ≥ x. Indeed,

if x ≥ y, then by symmetry one has that p(1/2)n (x, y) = p
(1/2)
n (y, x) ≤ C y+1

n+1
e−b|x−y|n

−1/2 ≤

C x+1
n+1

e−b|x−y|n
−1/2 .

Let pn(x) denote the standard discrete heat kernel on Z. One first notes that for z ∈ C one

has that
∑

x∈Z pn(x)z
x = 2−n(z + z−1)n, i.e., E[zUn ] = E[zU1 ]n for a simple random walk U on

Z. Letting C denote the unit circle of C oriented counterclockwise, Cauchy’s integral formula says

pn(x) =
1

2πi

∮
C

z−x−12−n(z + z−1)ndz.

Since the integrand is analytic away from the origin, one may deform the contour without changing

the value. Specifically, we will expand the radius of the circle to ebn−1/2 . Parametrizing this as

z = ebn
−1/2

eit, one finds that

pn(x) =
1

2π

∫ π

−π
e−xbn

−1/2

e−itx
[
cosh(b/

√
n) cos t+ i sinh(b/

√
n) sin t

]n
dt. (3.49)

Now, by Taylor expanding sinh and cosh, the key observation is that

fn(t) : =

∣∣∣∣ cosh(b/√n) cos t+ i sinh(b/
√
n) sin t

∣∣∣∣n
=

[
cosh2(b/

√
n) cos2 t+ sinh2(b/

√
n) sin2 t

]n/2
=

[(
1 + b2/(2n) +O(n−2)

)
cos2 t+

(
b2/n+O(n−2)

)
sin2 t

]n/2
≤
[
cos2 t+

b2

n
+O(n−2)

]n/2
,

where the O(n−2) terms denote quantities which are uniformly bounded above by ebb4n−2. Since

n−2 decays faster than n−1, this means that the last expression is bounded above by
[
cos2 t +
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Cn−1
]n/2, where C = C(b). Now, there exist constants c,D > 0 such that for t ∈ [−π/2, π/2]

and n ≥ 1 we have [
cos2 t+ Cn−1

]n/2 ≤ De−nct
2

. (3.50)

Indeed, on [π/2, π/2] it holds that cos2 t ≤ e−2ct2 for some (small enough) c > 0 so that the left side

of (3.50) is bounded above by e−nct2(1 + Ce2ct
2

n
)n/2. Since 1 + u ≤ eu, note that (1 + Ce2ct

2

n
)n/2 ≤

e
C
2
e2ct

2

≤ e
C
2
ecπ

2/2
=: D on [−π/2, π/2], giving (3.50).

Because the left side of (3.50) is an upper bound for fn(t), it easily follows from (3.50) that∫ π/2
−π/2 fn(t)dt ≤ Cn−1/2 and

∫ π/2
−π/2 |t|fn(t) ≤ Cn−1 (where additional terms have been absorbed

into C). With this in mind, we compute via (3.49) that

pn(y − x)− pn(y + x+ 2) ≤ 1

2π

∫ π

−π

∣∣e−(y−x)(bn−1/2+it) − e−(y+x+2)(bn−1/2+it)
∣∣fn(t)dt. (3.51)

Thanks to the absolute value and the trigonometric nature of the integrand, we may replace the

integral over [−π, π] with twice the integral over [−π/2, π/2]. Furthermore, using |eis − 1| ≤ |s|

one computes that

∣∣e−(y−x)(bn−1/2+it) − e−(y+x+2)(bn−1/2+it)
∣∣ = ∣∣e−(y−x)bn−1/2

e−(y−x)it(1− e−2(x+1)(bn−1/2+it)
)∣∣

= e−(y−x)bn−1/2∣∣1− e−2(x+1)(bn−1/2+it)
∣∣

≤ e−(y−x)bn−1/2∣∣1− e−2(x+1)bn−1/2∣∣+ e−(y+x+2)bn−1/2∣∣1− e−2(x+1)it
∣∣

≤ 2be−(y−x)bn−1/2 x+ 1

n1/2
+ 2e−(y+x+2)bn−1/2

(x+ 1)|t|. (3.52)

Now we note that e−(y+x+2)bn−1/2 ≤ e−(y−x)bn−1/2 since x, y ≥ 0. Combining (3.51) and (3.52),

together with the fact that
∫ π/2
−π/2 fn(t)dt ≤ Cn−1/2 and

∫ π/2
−π/2 |t|fn(t)dt ≤ Cn−1, proves that for

y ≥ x one has p(1/2)n (x, y) ≤ C x+1
n+1

e−bn
−1/2(y−x), as desired. In order to obtain the other bound
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p
(1/2)
n (x, y) ≤ 1√

n+1
e−bn

−1/2|x−y|, one replaces (3.52) with the easier bound

∣∣e−(y−x)(bn−1/2+it) − e−(y+x+2)(bn−1/2+it)
∣∣ ≤ 2e−bn

1/2|x−y|,

where we used the triangle inequality and the fact that |eis| ≤ 1. Then one uses (3.51) and the fact

that
∫
fn ≤ Cn−1/2. This completes the proof of the first bound.

Now we prove the second bound stated in the proposition. For this, one uses the same arguments,

but one needs to replace (3.52) with the appropriate bound. Specifically, we need to consider

e−(y−x)(bn−1/2+it) − e−(y+x+2)(bn−1/2+it) −
(
e−(z−x)(bn−1/2+it) − e−(z+x+2)(bn−1/2+it)

)
.

We write this as

g(y − x)− g(y + x+ 2)− g(z − x) + g(z + x+ 2) =

∫ y+x+2

y−x

∫ v+z−y

v

g′′(u)dudv,

where g(u) = e−u(bn
−1/2+it). So one computes g′′(u) = (bn−1/2 + it)2g(u). Now, for u in the

relevant range, it is clear that |g(u)| = e−bn
−1/2u ≤ e−bn

−1/2(|z−x|∧|y−x|). Hence

|g′′(u)| = |bn−1/2 + it|2|g(u)| ≤
(
2b2n−1 + 2t2

)
e−bn

−1/2(|z−x|∧|y−x|),

where we used |p+ q|2 ≤ 2|p|2 + 2|q|2. Combining the previous two expressions, we find that

∣∣g(y − x)− g(y + x+ 2)− g(z − x) + g(z + x+ 2)
∣∣

≤ 2(x+ 1)|z − y|
(
2b2n−1 + 2t2

)
e−bn

−1/2(|z−x|∧|y−x|).
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Now multiplying by fn(t) and integrating over [−π, π], we finally obtain

|p(1/2)n (x, y)− p(1/2)n (x, z)| ≤ C(b)(x+ 1)|z − y|e−bn−1/2(|z−x|∧|y−x|)
∫ π

−π
(n−1 + t2)fn(t)dt

≤ C(x+ 1)|y − z|(n+ 1)−3/2,

where we use the bound (3.50) for fn(t) in the last inequality. This already proves one part of the

second bound, namely |p(1/2)n (x, y) − p
(1/2)
n (x, z)| ≤ C|y−z|(x+1)

(n+1)3/2
e−bn

−1/2(|z−x|∧|y−x|). For the other

bound p(1/2)n (x, y) ≤ C|y−z|
n+1

e−bn
−1/2(|z−x|∧|y−x|), we simply note that

|g(y − x)− g(y + x+ 2)− g(z − x) + g(z + x+ 2)|

≤ |g(y − x)− g(z − x)|+ |g(y + x+ 2)− g(z + x+ 2)|

≤
∫ z−x

y−x
|g′(u)|du+

∫ z+x+2

y+x+2

|g′(u)|du,

and then we apply similar arguments as before, noting |g′(u)| ≤ |bn−1/2 + it||g(u)|.

Lemma 3.6.7. There exists a constant C > 0 such that for all x ≥ 0 and all n ≥ k ≥ 1 one has

that

En
x[Sk] ≤ x+ Ck1/2.

Proof. We consider two cases, k > n/2 and k ≤ n/2.

Case 1. k > n/2. First, we claim that En
x[Sk] ≤ En

x[Sn]. In fact, it is even true that S forms

a Pn
x-submartingale and thus En

x[Sk] is an increasing function of k for every n. This follows im-

mediately from Lemma 3.6.3 after noticing that En
x[Sk+1|Fk] = Sk+(2pn−k1 (Sk, Sk+1)−1) ≥ Sk.

Now, from the preceding proposition, we know that Mk := Sk+1
ψ(Sk,n−k)

forms a martingale. Thus,

we see that

En
0 [Sn + 1] = En

x[M0] =
x+ 1

ψ(x, n)
≤ x+ 1 + Cn1/2,
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where we applied the lower bound of Lemma 3.6.1 in the final bound. Since k > n/2, we see that

n1/2 ≤ 21/2k1/2, which gives the desired bound in this case.

Case 2. k ≤ n/2. First we use the coupling lemma (Proposition 3.6.4) to see that En
x[Sk] ≤

1 + En
x−1[Sk]. Iterating this x times shows that

En
x[Sk] ≤ x+ En

0 [Sk].

Thus we only need to show that En
0 [Sk] ≤ Ck1/2. To prove this, write En

0 [Sk] =
∑

y≥0 p
n
k(0, y)y.

Now we write pnk(0, y) = p
(1/2)
k (0, y)ψ(y,n−k)

ψ(0,n)
. By Lemma 3.6.1 we know 1

ψ(0,n)
≤ C

√
n. Further-

more we also know from the same lemma that ψ(y, n−k) is bounded above by 1∧(Cy(n−k)−1/2),

which is in turn bounded above by 1 ∧ (Cyn−1/2) since k ≤ n/2. Moreover, we also know from

Lemma 3.6.6 that p(1/2)k (0, y) ≤ C
k+1

e−y/
√
k. Thus, we find that

En
0 [Sk] ≤

C

k + 1

[ ∑
0≤y≤

√
n

e−y/
√
kn1/2(n−1/2y2) +

∑
y≥

√
n

e−y/
√
k(n1/2y)

]
. (3.53)

Let us refer to the two sums inside the square brackets on the right side as J1 and J2, respectively.

First we bound J1. Now, we use the bound
∑

r≥0 r
2αr ≤ 2

(1−α)3 (valid for α < 1) and we see

that

J1 ≤ C
∑
y≥0

y2e−y/
√
k ≤ C

(1− e−1/
√
k)3

≤ Ck3/2.

In the last bound, we used the elementary bound (1 − e−q)−1 ≤ 1 + q−1 (which in turn implies

(1− e−q)−3 ≤ 23(1 + q−3)) with q = k−1/2.

Next, we bound J2. Using the bound
∑

r≥s rα
r ≤ C

[
αs

(1−α)2 +
sαs

1−α

]
, we see that

J2 = n1/2
∑
y≥

√
n

e−y/
√
ky ≤ n1/2

[
e−

√
n/k

(1− e−1/
√
k)2

+
n1/2e−

√
n/k

1− e−1/
√
k

]
.
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Now

n1/2e−
√
n/k = k1/2(n/k)1/2e−

√
n/k ≤ k1/2 sup

u>0
ue−u = Ck1/2.

Similarly, one finds that ne−
√
n/k ≤ Ck. We also note that (1 − e−q)−1 ≤ 1 + q−1, and thus

(1 − e−q)−2 ≤ 2 + 2q−2. Taking q = k−1/2 and then combining the last few expressions, one

finally gets J2 ≤ Ck3/2.

Combining the bounds of J1 and J2 with (3.53), we obtain the desired bound.

Finally we have our concentration theorem, the main result of this appendix.

Theorem 3.6.8 (Concentration). As before, let S = (Sk)0≤k≤n denote the canonical process asso-

ciated to Pn
x. Then there exist C, c > 0 such that for every x ≥ 0, every 0 ≤ k ≤ n, and every

u > 0 one has that

Pn
x

(
sup
0≤i≤k

|Si − x| > u
)
≤ Ce−cu

2/k.

In other words, on time scales of length k, the path measure Pn
x concentrates on spatial scales of

order
√
k around x. The idea of the proof is to exploit the martingales from Proposition 3.6.5 and

apply well-known concentration inequalities for bounded-increment martingales. The Gaussian

decay constant c will be obtained as 1/32, which is not sharp (presumably c = 1/2 should be

possible, but we do not have a proof).

Proof. Throughout this proof, x, n, and k will be fixed. Let us write

Pn
x

(
sup
0≤i≤k

|Si − x| > u
)
= Pn

x

(
sup
0≤i≤k

Si > x+ u
)
+Pn

x

(
inf

0≤i≤k
Si < x− u

)
.

Let us refer to the terms on the right side as p1, p2 respectively.

First we bound p2. Recall from Lemma 3.6.3 that pn1 (x, x + 1) ≥ 1/2 ≥ pn1 (x, x − 1) for all

n, x ≥ 0. This trivially shows that S is a submartingale, which directly gives the claim for p2 by

Azuma’s inequality [9] for submartingales, with c = 1/2.
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Now we will bound p1, which is more difficult. Letting M = (M
(n,k)
i )ki=0 denote the martingale

from Proposition 3.6.5, it is clear that Sk =Mk. FurthermoreM0 = f(x, 0) = En
x[Sk] ≤ Ck1/2+x

by Proposition 3.6.7. Since the increments of M are bounded above by 2, we may apply Azuma’s

inequality again to see that

Pn
x(Sk > x+ u) = Pn

x

(
Mk > x+ u

)
≤ Pn

x

(
Mk −M0 > u− Ck1/2

)
≤ e−(u−Ck1/2)2/8k ≤ Ce−u

2/16k.

In the last inequality, we used the fact that (u − Ck1/2)2 ≥ 1
2
u2 − C2k. This, in turn, is because

(a+ b)2 ≤ 2(a2 + b2). Combining the bounds on p1 and p2 shows that

Pn
x(|Sk − x| > u) ≤ Ce−u

2/16k. (3.54)

Since (Si) is a submartingale (Lemma 3.6.3) and since x 7→ eλx is increasing and convex it follows

that the process (eλSi)ni=0 is a Pn
x-submartingale as well. Thus, we may apply Doob’s martingale

inequality to see that

p1 ≤ Ce−λ(x+u)En
x[e

λSk ] = Ce−λ(x+u)
(
1 +

∫ ∞

0

λeλyPn
x(Sk > y)du

)
.

Now we split the integral as
∫ x
0

plus
∫∞
x

. We use the crude bound Pn
x(Sk > y) ≤ 1 for the integral

over [0, x], and we use the bound (3.54) for the other. This gives

p1 ≤ Ce−λu + Ce−λu
∫ ∞

x

λeλ(y−x)−(y−x)2/16kdy ≤ C(e−λu + λk1/2e4λ
2k−λu).

Setting λ = u
8k

gives a bound of C(e−u2/8k + uk−1/2e−u
2/16k). Now one simply notes that r ≤

Cer
2/32, so that uk−1/2 ≤ Ceu

2/32k. This gives the desired bound on p1, where the constant

appearing in the theorem statement is c := 1/32.
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We now give a slightly generalized version of the concentration theorem.

Corollary 3.6.9. In the same setting as the previous theorem, there exist C, c > 0 such that for

every x ≥ 0, every 0 ≤ m ≤ k ≤ n, and every u > 0 one has that

Pn
x

(
sup
m≤i≤k

|Si − Sm| > u
)
≤ Ce−cu

2/(k−m).

Here, C, c are the same as in the previous theorem.

Proof. Define

g(k, n, x, u) := Pn
x

(
sup
0≤i≤k

|Si − x| > u
)
.

By the Markov property (conditioning on the first m steps), we have that

Pn
x

(
sup
m≤i≤k

|Si − Sm| > u
)
= En

x

[
g(k −m,n−m,Sm, u)

]
.

But Theorem 3.6.8 tells us that g(k, n, x, u) ≤ Ce−cu
2/k independently of x, n.

Corollary 3.6.10. Let p > 0. There exists a constant C = Cp > 0 such that for every x ≥ 0 and

every 0 ≤ k ≤ m ≤ n, one has

En
x

[
|Sk − Sm|p

]
≤ C|k −m|p/2.

Proof. Let us write

En
x

[
|Sk − Sm|p

]
=

∫ ∞

0

pup−1Pn
x(|Sk − Sm| > u)du.

By Corollary 3.6.9, this is bounded above by

C

∫ ∞

0

pup−1e−cu
2/(k−m)du = Cp(k −m)p/2

∫ ∞

0

vp−1e−cv
2

dv = Cp(k −m)p/2,

where we made a substitution y = (k −m)−1/2u in the first equality.
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By Arzela-Ascoli, the preceding corollary clearly implies tightness of the diffusively rescaled pro-

cess mentioned in Remark 3.2.6. Indeed we can use this to easily recover classical results such

as [95, 27] in this nearest-neighbor case, for instance by showing that any subsequential limit has

the same finite-dimensional marginal distributions as WT
X which in turn can be shown e.g. by

Proposition B.6 below.

3.7 Appendix 2: Heat kernel estimates for conditioned walks

We now prove various estimates for the heat kernels pNn defined in Section 3. Not much motivation

will be given here, but the content of Sections 4 and 5 has illustrated the applicability of these

estimates. The methods used in proving these bounds will be elementary bounds together with the

results of Appendix A (specifically Propositions 3.6.6 and 3.6.4, and Theorem 3.6.8).

Proposition 3.7.1. There exist constants C,K > 0 such that for all x ≥ 0, all N ≥ n ≥ 0, and all

a ≥ 0 one has that ∑
y≥0

pNn (x, y)e
ay ≤ Ceax+Ka

2n.

Proof. In the notation of Appendix A, let us write

∑
y≥0

pNn (x, y)e
ay = EN

x [e
aSn ] = 1 +

∫ ∞

0

aeauPN
x (Sn > u)du.

Now we split the integral as
∫ x
0
+
∫∞
x

. For the integral over [0, x] we use the crude bound PN
x (Sn >

u) ≤ 1. For the integral over [x,∞), we use the result of Theorem 3.6.8. This will give

EN
x [e

aSn ] ≤ eax + C

∫ ∞

x

aeaue−c(u−x)
2/ndu ≤ eax + C · an1/2eax+

a2n
4c .

Since an1/2 ≤ ea
2n, this gives the result with K := 1 + 1

4c
.

We remark that c = 1/32 from the proof of Theorem 3.6.8, so we can obtain K = 9 in the

preceding proposition. Conjecturally, the optimal value of K should be 1/2, as is the case for the

simple random walk (as seen from cosh(a) ≤ e
1
2
a2).
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Lemma 3.7.2. Fix b > 0. There exists C = C(b) > 0 such that for all x ≥ 0 and all N ≥ n ≥ 0

one has that

pNn (x, y) ≤
C√
n+ 1

e−b|x−y|/
√
n.

We remark that this bound is fairly strong, and many of our estimates could have been derived

from this result rather than from the concentration theorem (but only in a weaker form because the

decay is merely exponential rather than Gaussian).

Proof. We consider four different cases.

Case 1. x ≥
√
N . Then, one has ψ(y,N−n)

ψ(x,N)
≤ 1

ψ(x,N)
≤ C by Lemma 3.6.1. Thus it holds

that pNn (x, y) ≤ Cp
(1/2)
n (x − y) ≤ C(n + 1)−1/2e−b|x−y|/

√
n. The final inequality comes from the

first bound of Lemma 3.6.6.

Case 2. n < N/2 and y ≤ x. Then one has

pNn (x, y) ≤ Cp(1/2)n (x, y)

[
x+ 1 +

√
N

x+ 1

][
y + 1

y + 1 +
√
N − n

]
≤ C(n+ 1)−1/2e−b|x−y|/

√
n

[
x+ 1 +

√
N

x+ 1

][
x+ 1

x+ 1 +
√
N − n

]
≤ C(n+ 1)−1/2e−b|x−y|/

√
n

[
N

N − n

]1/2
.

We used (3.46) in the first line and we used Lemma 3.6.6 and that y 7→ y+1

y+1+
√
N−n is monotone

increasing in the second line. Then we canceled the x+1 and used the fact that x 7→ x+1+
√
N

x+1+
√
N−n is

monotone decreasing in the last line. Since n < N/2 it follows that
[

N
N−n

]1/2 ≤ 21/2 so that term

may be absorbed into C.
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Case 3. n < N/2 and y ≥ x. Then

pNn (x, y) ≤ Cp(1/2)n (x, y)

[
x+ 1 +

√
N

x+ 1

][
y + 1

y + 1 +
√
N − n

]
≤ Cp(1/2)n (x, y)

[
x+ 1 +

√
N

x+ 1

][
y + 1

x+ 1 +
√
N − n

]
≤ C

[
N

N − n

]1/2
p(1/2)n (x, y)

y + 1

x+ 1

= C

[
N

N − n

]1/2
p(1/2)n (x, y)

[
y − x

x+ 1
+ 1

]
≤ C

[
y − x

n+ 1
+ C(n+ 1)−1/2

]
e−b|x−y|/

√
n. (3.55)

Here we noted y ≥ x in the second line, and we used the fact that x 7→ x+1+
√
N

x+1+
√
N−n is monotone

decreasing in the third line. In the final line, we used
[

N
N−n

]1/2 ≤ 21/2 (since n < N/2) and also

the first bound of Lemma 3.6.6. Now, we know that the bound (3.55) is true for all b, in particular

it is true with b replaced by b+ 1, after perhaps making the constant bigger. Thus we see that

|x− y|
n+ 1

e−(b+1)|x−y|/
√
n ≤ 1√

n+ 1
e−b|x−y|/

√
n

[
|x− y|√

n
e−|x−y|/

√
n

]
.

≤ 1√
n+ 1

e−b|x−y|/
√
n sup
u>0

ue−u =
C√
n+ 1

e−b|x−y|/
√
n.

Case 4. x ≤
√
N and n ≥ N/2. Since x ≤

√
N ≤

√
2n, we can apply Lemmas 3.6.1 and

3.6.6 to see that

pNn (x, y) ≤ Cp(1/2)n (x, y)
x+ 1 +

√
N

x+ 1

≤ C
x+ 1

n+ 1
e−b|x−y|/

√
n · 2

√
2n+ 1

x+ 1
≤ C(n+ 1)−1/2e−b|x−y|/

√
n.

This completes the proof of all cases.

Proposition 3.7.3. There exist constants C,K > 0 such that for all x ≥ 0, all N ≥ n ≥ 0, all
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a ≥ 0, and all p ≥ 1 one has that

∑
y≥0

pNn (x, y)
peay ≤ Cp(n+ 1)−(p−1)/2eax+Ka

2n.

Proof. Using Lemma 3.7.2 with b = 0, one finds that

pNn (x, y)
p = pNn (x, y)

p−1pNn (x, y) ≤
Cp−1

(n+ 1)(p−1)/2
pNn (x, y).

Then the claim follows immediately from Proposition 3.7.1.

We now bound space-time differences of the heat kernels pNn .

Lemma 3.7.4. There exists a constant C > 0 such that for all x, y, z ≥ 0 one has that

∣∣pNn (x, y)− pNn (x, z)
∣∣ ≤ C

n+ 1

[
N + 1

N − n+ 1

]1/2
|y − z|.

Proof. Without loss of generality, assume y ≥ z. It suffices to prove the bound in the case y =

z + 1. In the general case, one simply adds the bound y − z times. Let us write

∣∣pNn (x, z + 1)− pNn (x, z)
∣∣ = ∣∣∣∣p(1/2)n (x, z + 1)ψ(z + 1, N − n)− p

(1/2)
n (x, z)ψ(z,N − n)

ψ(x,N)

∣∣∣∣
≤|p(1/2)n (x,z+1)−p(1/2)n (x,z)|ψ(z+1,N−n)

ψ(x,N)
+p(1/2)n (x,z)

|ψ(z+1,N−n)−ψ(z,N−n)|
ψ(x,N)

.

Let us call the two terms of the last expression I1, I2 respectively. From here, one considers two

cases (x ≤
√
N and x ≥

√
N) and bound I1, I2 separately each time. The arguments are similar

to the ones above, so the proof is not included.

Proposition 3.7.5. Fix p ≥ 1. There exists a constant C = C(p) > 0 such that for all x, y ≥ 0, all
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N ≥ n ≥ m ≥ 0, and all a ≥ 0 one has that

∑
z≥0

∣∣pNn (x, z)− pNn (y, z)
∣∣2peaz ≤ Cea(x+y)+Ka

2n
(
n

1
2
− 3

2
p + apn

1
2
−p)|x− y|p, (3.56)

∑
z≥0

∣∣pN−n+m
m (x, z)− pNn (x, z)

∣∣2peaz ≤ Ce2ax+Ka
2n
(
m

1
2
− 3

2
p + apm

1
2
−p)|n−m|p/2. (3.57)

In the spatial bound (3.56), the constant C grows at worst exponentially in p.

We remark that in the special case that p = 1 and a ≤ Cn−1/2, one has that n
1
2
− 3

2
p + apn

1
2
−p ≤

Cn−1 and similarly for m. This is the case in which this bound will most often be applied.

Proof. We first start out by proving an auxiliary bound:

∑
z≥0

(
pNn (x, z)−pNn (y, z)

)2
eaz ≤ Cea(x+y)+Ka

2n
(
n−1+an−1/2

)[ N + 1

N − n+ 1

]1/2
|x−y|. (3.58)

Let us prove this. The coupling lemma (3.6.4) and the preceding lemma will be key here. First,

by the coupling lemma, we know that PN
x and PN

y may be coupled in such a way so that the

respective coordinate processes (call them (Sxn)
N
n=0 and (Syn)

N
n=0) are never a distance more than

|y − x| apart (i.e., supn≤N |Sxn − Syn| ≤ |x− y| a.s.). Let E denote the expectation with respect to

the coupled measure. Now, by writing
(
pNn (x, z)− pNn (y, z)

)2
= pNn (x, z)

(
pNn (x, z)− pNn (y, z)

)
−

pNn (y, z)
(
pNn (x, z)− pNn (y, z)

)
we may write

∑
z≥0

(
pNn (x, z)− pNn (y, z)

)2
eaz

= EN
x [(p

N
n (x, Sn)− pNn (y, Sn))e

aSn ]− EN
y [(p

N
n (x, Sn)− pNn (y, Sn))e

aSn ]

= E[(pNn (x, S
x
n)− pNn (y, S

x
n))e

aSx
n ]− E[(pNn (x, S

y
n)− pNn (y, S

y
n))e

aSy
n ]

= E[(pNn (x, S
x
n)− pNn (x, S

y
n))e

aSx
n ] + E[pNn (x, S

y
n)(e

aSx
n − eaS

y
n)]

+ E[(pNn (y, S
y
n)− pNn (y, S

x
n))e

aSy
n ] + E[pNn (y, S

x
n)(e

aSy
n − eaS

x
n)].

Let us refer to the terms in the last expression as J1, J2, J3, J4, respectively. Since J1 and J3 oc-
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cupy symmetric roles, it suffices to bound J1 and then the analogous bound for J3 automatically

follows. The same thing happens for J2 and J4. With this understanding, we will only prove the

desired bound for J1 and J2.

Let us start by bounding J1. By Lemma 3.7.4, we see that

|pNn (x, Sxn)− pNn (x, S
y
n)| ≤

C

n+ 1

[
N + 1

N − n+ 1

]1/2
|Sxn − Syn|

≤ C

n+ 1

[
N + 1

N − n+ 1

]1/2
|x− y|.

Here we applied the coupling in the second inequality. Applying the definition of J1 and then

Proposition 3.7.1, we therefore obtain that

J1 ≤
C

n+ 1

[
N + 1

N − n+ 1

]1/2
|x− y|E[eaSx

n ] ≤ C

n+ 1

[
N + 1

N − n+ 1

]1/2
|x− y|eax+Ka2n.

This already gives the desired bound on J1. As discussed, the analogous bound on J3 is obtained in

an identical fashion, but one will get eay instead of eax. The final bound on J1+J3 is then obtained

by noting that eax + eay ≤ 2ea(x+y).

Now we bound J2. First note that |eu − ev| ≤ |u − v|eu∨v for all u, v ∈ R. Thus |eaS
y
n − eaS

x
n | ≤

a|Syn − Sxn|ea(S
y
n∨Sx

n) ≤ a|y − x|ea(S
y
n+S

x
n). By Cauchy-Schwarz, we in turn bound E[ea(S

y
n+S

x
n)] ≤

EN
x [e

2aSn ]1/2EN
y [e

2aSn ]1/2 ≤ Cea(x+y)+Ka
2n, by Proposition 3.7.3. Now, we also know from

Lemma 3.7.2 that pNn (x, S
y
n) ≤ C(n+ 1)−1/2. Using these facts, we find that

J2 ≤ Ca|y − x|E[pNn (x, Syn)ea(S
y
n+S

x
n)] ≤ Can−1/2|x− y|ea(y+x)+Ka2n.

Already this proves the required bound on J2. The analogous bound on J4 follows immediately.

This completes the proof of (3.58).
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Now let us prove the spatial estimate (3.56). For m ≤ n, we use the semigroup property to

write pNn (x, z) =
∑

y≥0 p
N
m(x, y)p

N−m
n−m (y, z) and then using Jensen’s inequality, we find that

∣∣pNn (x, z)− pNn (y, z)
∣∣2p = ∣∣∣∣∑

w≥0

(
pNm(x,w)− pNm(y, w)

)
pN−m
n−m (w, z)

∣∣∣∣2p
≤
(∑
w≥0

(
pNm(x,w)− pNm(y, w)

)2
pN−m
n−m (w, z)

)p

Denoting by I the left-hand side of (3.56), we then find by Minkowski’s inequality that

I1/p ≤

(∑
z≥0

[∑
w≥0

(
pNm(x,w)− pNm(y, w)

)2
pN−m
n−m (w, z)eaz/p

]p)1/p

Minkowski
≤

∑
w≥0

[∑
z≥0

(
pNm(x,w)− pNm(y, w)

)2p
pN−m
n−m (w, z)peaz

]1/p
=
∑
w≥0

(
pNm(x,w)− pNm(y, w)

)2[∑
z≥0

pN−m
n−m (w, z)peaz

]1/p
Prop.3.7.3

≤ C
∑
w≥0

(
pNm(x,w)− pNm(y, w)

)2
(n−m)

1−p
2p e(aw+Ka

2(n−m))/p

(3.58)
≤ C(n−m)

1−p
2p
(
m−1 + am−1/2

)[ N + 1

N −m+ 1

]1/2
|x− y|e

(
a(x+y)+Ka2n

)
/p.

Setting m := n/2 then gives (3.56), because
[

N+1
N− 1

2
n+1

]1/2 ≤ [ N+1
1
2
N+1

]1/2 ≤ 21/2. Note that the con-

stant C does not depend on p, which also proves the final sentence given in the theorem statement

after noting that
(
n−1 + an−1/2

)p ≤ 2p(n−p + apn−p/2).

We move on to the temporal estimate (3.57). The main idea is to use Jensen’s inequality together
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with the spatial estimate. Specifically, we start off by writing

∣∣pN−n+m
m (x, z)− pNn (x, z)

∣∣2p = ∣∣∣∣pN−n+m
n (x, z)−

∑
y≥0

pNn−m(x, y)p
N−n+m
m (y, z)

∣∣∣∣2p
=

∣∣∣∣∑
y≥0

pNn−m(x, y)
(
pN−n+m
m (x, z)− pN−n+m

m (y, z)
)∣∣∣∣2p

Jensen
≤
∑
y≥0

pNn−m(x, y)
∣∣pN−n+m
m (x, z)− pN−n+M

m (y, z)
∣∣2p.

Next, we multiply by eaz, then sum over z, and interchange the sum over z with the sum over y.

Letting J denote the left-hand side of (3.57), this gives

J ≤
∑
y≥0

pNn−m(x, y)
∑
z≥0

∣∣pN−n+m
m (x, z)− pN−n+m

m (y, z)
∣∣2peaz

≤ Cp
∑
y≥0

pNn−m(x, y)e
a(x+y)+Ka2m

(
m

1
2
− 3

2
p + apm

1
2
−p)|y − x|p

= Cpeax+Ka
2m
(
m

1
2
− 3

2
p + apm

1
2
−p)EN

x [|Sn−m − x|peaSn−m ].

All that is left to do is to show that one has EN
x [|Sn−m − x|peaSn−m ] ≤ Ceax+Ka

2(n−m)|n−m|p/2.

This is an easy consequence of the concentration theorem. Indeed, for any k ≤ N one may write

EN
x [|Sk − x|peaSk ] ≤ EN

x [|Sk − x|2p]1/2EN
x [e

2aSk ]1/2,

and then the claim follows immediately from Propositions 3.7.1 and Corollary 3.6.10.

Corollary 3.7.6 (Spatial/Temporal Estimates). There exists C > 0 such that for all x, y, z ≥ 0 and

all N ≥ n ≥ m ≥ 0 one has that

∣∣pNn (x, z)− pNn (y, z)
∣∣ ≤ C(n+ 1)−3/4|x− y|1/2, (3.59)∣∣pN−n+m

m (x, z)− pNn (x, z)
∣∣ ≤ C(m+ 1)−3/4|n−m|1/4. (3.60)

These pointwise bounds are quite useful, in the sense that that the exponents (despite not being
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sharp) are ones which actually give meaningful information. However, we will not actually need

this estimate, but it could potentially be useful if one wanted to develop the results of Section 4

with Dirac initial data (for instance).

Proof. Let I(2p) denote the left-hand side of (3.56) with a = 0. Then I(2p)
1
2p is bounded above

by C(n+ 1)
1
4p

− 3
4 |x− y|1/2, where the constant C is independent of p (by the final sentence in the

statement of Proposition 3.7.5). Letting p → ∞ already proves the first bound (since ℓp norms

converge to the ℓ∞ norm).

For the second bound, we cannot do the same thing, since the constant in (3.57) could (in principle)

have worse-than-exponential dependence on p. However, we can use the semigroup property to

write

∣∣pN−n+m
m (x, z)− pNn (x, z)

∣∣ ≤∑
y≥0

pNn−m(x, y)
∣∣pN−n+m
m (x, z)− pN−n+m

m (y, z)
∣∣,

and then one may use the spatial bound (3.59) with Corollary 3.6.10 to obtain the result.

Next we prove a strong convergence result for the discrete kernels pNn to the continuous ones PT
t

from Definition 3.3.4, from which we can easily obtain estimates for the continuous kernels as

well. In the case of Brownian meander at terminal time (X = 0 and t = T ), the following result

is weaker than the local convergence result of [29], but we actually need it for all (t, T ) so we give

an original proof.

Proposition 3.7.7. Fix τ ≥ 0. Then for n ≥ 0, define

Pn(t, T ;X, Y ) := (n/2)1/2p
2⌊Tn⌋
2⌊tn⌋ (2⌊n

1/2X/
√
2⌋, 2⌊n1/2Y/

√
2⌋).

Then for each fixed X,T, t ≥ 0, the map Y 7→ Pn(t, T ;X, Y ) converges pointwise and in

Lp(R+, e
aY dY ) to PT

t (X, Y ) for all p ≥ 1 and a ≥ 0 (as n→ ∞).
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Furthermore for all X,T ≥ 0, the map (t, Y ) 7→ Pn(t, T ;X, Y ) converges pointwise and in

Lp(dt⊗ eaY dY ) to PT
t (X, Y ) for all p ∈ [1, 3) and a ≥ 0 (as n→ ∞).

From now on, we will abbreviate quantities such as p2⌊Tn⌋2⌊tn⌋ (2⌊n1/2X/
√
2⌋, 2⌊n1/2Y/

√
2⌋) by just

writing p2nT2nt ((2n)
1/2X, (2n)1/2Y ) instead. We hope that this abuse of notation will not cause any

confusion, but in reality one should keep in mind that all quantities are only defined with even

integers. The reason for this is the periodicity of the simple random walk: pNn (x, y) vanishes if n

and x− y have different parity. If it were not for this parity consideration, we could take a limit of

the simpler quantity n1/2p
⌊nT ⌋
⌊nt⌋ (⌊n1/2X⌋, ⌊n1/2Y ⌋).

Proof. First, let us prove pointwise convergence. Letting pn denote the standard heat kernel on all

Z, we recall that

p(1/2)n (x, y) = pn(x− y)− pn(x+ y + 2).

ψ(x, n) = pn(0) + pn(x+ 1) + 2
∑

1≤y≤x

pn(y) =
∑

−x≤y≤x+1

pn(y).

Let Fn denote the cdf associated to pn, so that ψ(x, n) = Fn(x+ 1)− Fn(−x) = Fn(x) + Fn(x+

1)− 1. By uniformity of convergence of cdf’s in the central limit theorem we know that Fn(n1/2x)

converges uniformly (on R) to Φ(x), where Φ is the cdf of a standard normal. From this it is clear

that ψ(n, n1/2x) = Fn(n
1/2x)+Fn(n

1/2x+1)−1 converges uniformly to 2Φ(x)−1 (because Φ has

no atoms). In turn, one deduces that ψ(2nT, (2n)1/2X) = ψ(2nT, (2nT )1/2X/
√
T ) converges to

2Φ(X/
√
T )−1. From here, completing the proof of pointwise convergence is easy using the local

central limit theorem (though notice thatX = 0 requires a separate proof) as done in earlier proofs.

Now we will fix t, T,X , and we will address convergence in Lp(R+, e
aY dY ). The main idea is

simply to use dominated convergence in conjunction with Lemma 3.7.2. Specifically, that lemma

(applied with b = 2at1/2/p) tells us that

Pn(t, T ;X, Y ) ≤ Ct−1/2e−2a|X−Y |/p. (3.61)
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Here C is a constant independent of Y (but it will depend on t, a, p). Letting p ≥ 1, it is then clear

from (3.61) that for fixed X,T, t, the sequence of maps

Y 7→ Pn(t, T ;X, Y )peaY

is dominated (uniformly in n) by a function that is integrable on R+. This is enough to guarantee

by dominated convergence that

∫
R+

|Pn(t, T ;X, Y )− PT
t (X, Y )|peaY dY → 0.

Similarly, one uses (3.61) in conjunction with the dominated convergence theorem to obtain con-

vergence in Lp(R+ × R+, dt ⊗ eaY dY ) of (Y, t) 7→ Pn(t, T ;X, Y ). This argument only works

for p ∈ [1, 3), since the singularity of
∫
R+
t−p/2e−pt

−1/2|X−Y |dY ∼ t−(p−1)/2 fails to be absolutely

integrable near t = 0, if p ≥ 3.

Proposition 3.7.8. Let a, τ > 0 and let PT
t be the kernels from Definition 3.3.4. Then there exists

a constant C = C(τ, a) such that for all X, Y ≥ 0, all θ ∈ [0, 1/2], and all s ≤ t ≤ T ≤ τ one

has the following

∫
R+

PT
t (X,Z)e

aZdZ ≤ CeaX , (3.62)∫
R+

PT
t (X,Z)

2eaZdZ ≤ Ct−1/2eaX , (3.63)∫
R+

(
PT

t (X,Z)− PT
t (Y, Z)

)2
eaZdZ ≤ Ct−

1
2
−θea(X+Y )|X − Y |2θ, (3.64)∫

R+

(
PT−t+s

s (X,Z)− PT
t (X,Z)

)2
eaZdZ ≤ Cs−

1
2
−θe2aX |t− s|θ (3.65)

Proof. The claims follow from the L1 and L2 convergence in Proposition 3.7.7. More specifically,

(3.62) follows from Proposition 3.7.1 and convergence in L1(R+, e
aY dY ). Next, (3.63) follows

from Proposition 3.7.3 and convergence inL2(eaY dY ). Expressions (3.64) and (3.65) with θ = 1/2

follow immediately from Proposition 3.7.5 and convergence in L2(eaY dY ). The appearance of the
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terms Ka2n in the exponent will be absorbed into the constant because a effectively becomes

replaced by n−1/2a. The θ = 0 cases of (3.64) and (3.65) follow immediately from (3.63) and

the fact that eaX + eaY ≤ 2ea(X+Y ). The proofs for general θ then follow easily by geometric

interpolation (i.e., min{a, b} ≤ aθb1−θ for all a, b ≥ 0 and all θ ∈ [0, 1]).
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Chapter 4: Convergence of ASEP to KPZ with basic coupling of the

dynamics

We prove an extension of a seminal result of Bertini and Giacomin. Namely we consider weakly

asymmetric exclusion processes with several distinct initial data simultaneously, then run accord-

ing to the basic coupling, and we show joint convergence to the solution of the KPZ equation

with the same driving noise in the limiting equation. Along the way, we analyze fine properties of

nontrivially coupled solutions-in-law of KPZ-type equations.

4.1 Introduction and context

Interacting particle systems on the integer lattice have been a popular area of research in recent

years. Of particular interest is the asymmetric simple exclusion process (ASEP), which was in-

troduced by Spitzer [140] and subsequently generalized and explored in many works. ASEP is a

Feller process on {0, 1}Z in which one starts with an initial configuration on Z consisting of some

particles (1’s) and some empty sites (0’s), and the evolution of the dynamics can be described by

having the particles independently perform asymmetric nearest-neighbor (continuous-time) ran-

dom walks on Z, but with jumps suppressed whenever one particle tries to jump onto another one.

This hard-core repulsion effect between the particles makes the system physically interesting but

also mathematically difficult to analyze.

In a seminal paper, Bertini and Giacomin [16] showed that under a certain scaling regime and

specific tuning of the jump parameters, the fluctuations of ASEP are described by a nonlinear
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stochastic partial differential equation called the Kardar-Parisi-Zhang (KPZ) equation:

∂th(t, x) = ∂2xh(t, x) + (∂xh(t, x))
2 + ξ(t, x), x ∈ R, t ≥ 0,

where ξ is Gaussian space-time white noise, specified by the formal space-time covariance func-

tion E[ξ(t, x)ξ(s, y)] = δ(t − s)δ(x − y). More specifically, Bertini and Giacomin considered

ASEP where the right jump rate for each particle equals 1 + ϵ1/2 and the left jump rate equals 1.

They consider initial data which is “near stationarity" in a certain precise way. They then define a

discrete height function hϵt(x) (t ≥ 0, x ∈ Z) as follows: hϵt(0) is the number of particles up to time

t that have passed from 0 to 1, minus the number of particles that have passed from 1 to 0. Then

hϵt(x) equals hϵt(0), plus the number of particles at time t which are between 0 and x (inclusive),

minus the number of vacant sites between 0 and x (understood to be linearly interpolated when x

is not an integer). They then prove that ϵ1/2hϵ(ϵ−2t, ϵ−1x) − ϵ−1t − t/24 converges as ϵ → 0, to

the Hopf-Cole solution of the KPZ equation (see Theorem 4.3.1 for a precise version).

The result was striking because it was one of the first examples of a particle system in a regime

that exhibited non-Gaussian fluctuation behavior, and it was one of the works that paved the way to

the field of KPZ universality for random growth models, see the survey [40] as well as subsequent

recent work on particle systems that built on, generalized, or was inspired by the work of Bertini

and Giacomin, e.g. [5, 12, 73, 57, 48, 47, 45, 153] just to name a few.

The main goal of the present work is to prove that in the fluctuation regime of [16], if one starts

with two or more different initial data, and then one runs the particle system according to the same

dynamics, then convergence to KPZ holds jointly with the same realization of the noise appearing

in the limiting equation. When we refer to the “same dynamics," we are referring to the so-called

basic coupling, a natural and important object that appears in many contexts when dealing with

exclusion systems, e.g. in providing a full description of the ergodic theory of exclusion processes,
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see [111, 112, 72]. This basic coupling is described as follows: for each pair of sites (x, y) ∈ Z2

if a particle from both systems is present at x, and if a particle from one system jumps from x

to y, then a particle from the other system also jumps from x to y at the same time assuming the

target site is not blocked in the other configuration. This coupling can be constructed by the so-

called “graphical construction" of ASEP, which randomly assigns directed arrows to each bond in

Z according to independent Poisson point processes, see e.g. [93, 137]. A slightly more general

definition and construction of the coupling is given in Subsection 3.1.

With this setup, let us now state our main result. We will say that an ϵ-indexed sequence of macro-

scopically scaled pairs (ϵ1/2h1,ϵ(0, ϵ−1x), ϵ1/2h2,ϵ(0, ϵ−1x)) of initial data for the height functions

is admissible if it converges (jointly) in law to some limiting pair of height functions, and if it is

tight in the sense that the Lp moments of its absolute value and of its spatial differences can be

bounded via a Kolmogorov-Chentsov criterion with a sublinear growth rate at infinity. The precise

assumption is given in Section 3, see Theorem 4.3.8.

Theorem 4.1.1. Consider the weakly asymmetric scaling of ASEP from [16]. Let (h1,ϵ0 , h2,ϵ0 ) be an

admissible sequence of initial data. Evolve the corresponding height functions h1,ϵ(t, x), h2,ϵ(t, x)

according to the basic coupling described above. Then (h1,ϵ, h2,ϵ) converge jointly as ϵ→ 0 to the

solution of the KPZ equation driven by the same noise.

This result will be stated more precisely and proved as Theorems 4.3.7 and 4.3.8 below. The main

difficulty lies in the fact that for interacting particle systems such as ASEP, some of the jumps are

suppressed due to the fact that particles are not allowed to jump onto other particles. To prove the

result, one may convince themselves that it is somehow necessary to keep track of the noise as

well as the height profile in the limit, not just the latter. At first glance, one might try to show that

(h1,ϵ, h2,ϵ, ξϵ) converge jointly as ϵ → 0 to (h1, h2, ξ), where hi,ϵ are the rescaled, renormalized,

and basically coupled height profile as described earlier, where ξϵ keeps track of the Poisson clocks

which excite the particles to jump, and where h1, h2 both solve the KPZ equation with the same

noise ξ. Unfortunately, this approach is bound to fail because approximately half of the Poisson
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clocks go unused by the system due to suppressed jumps. In reality, the “correct" discretization

of the noise consists of only those Poisson clocks which are used by the system. But this de-

pends intricately on the initial data of the system. In other words, there is no natural choice of ξϵ

above: there is always a ξ1,ϵ associated with h1,ϵ and likewise there is ξ2,ϵ for h2,ϵ. And the pri-

mary technical task is to relate the ξi,ϵ for i = 1, 2, in particular to prove that these converge to the

same noise in the limit. So one runs into a vicious cycle which creates a difficulty in the arguments.

In terms of applications of our theorem, one can recover a few results about how joint solutions

of KPZ behave when run according to the same noise ξ. Here is just one example: consider the

stochastic Burgers equation

∂tu = ∂2xu+ ∂x(u
2) + ∂xξ,

which is formally related to the KPZ equation by u = ∂xh, and indeed one can define the solution

this way interpreted in terms of distributions. Consider two solutions u1, u2 of stochastic Burgers

driven by the same realization of ξ, started from two initial data u10, u
2
0 respectively. Suppose that

the initial data are ordered, i.e., u10 ≤ u20 deterministically in the sense that u20 − u10 is a positive

Borel measure. Then Theorem 4.1.1 implies that u1(t, •) ≤ u2(t, •) almost surely for all t, again

interpreted in the sense that the difference is a positive measure. In other words, the KPZ dynamics

preserve the property that the difference of height functions is nondecreasing. This is because the

ordering is preserved at the level of the particle systems, see (A) below. This result can very likely

be proved using other methods as well, for instance proving the result first for smooth noises ξ

(see for instance Section 3 of [64]) and then using an approximation of space-time white noise

by spatial mollifications and using the fact that the desired result is stable under limits and that

the associated solutions converge after height renormalization (see e.g. [132]). One advantage in

our discretization via ASEP is that the result is already obvious at the level of the particle system

without using PDE techniques.

The input to proving our main theorem will require two steps. First we will prove a result (The-
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orem 4.2.3 below) about nontrivially coupled KPZ’s, which says that two solutions-in-law of the

KPZ equation with the property that their difference has zero quadratic variation in the x variable

must in fact be driven by the same noise. This result may be of independent interest, and it will be

the main tool to identify joint limit points of the coupled height functions. The other tool we will

use is the monotonicity and attractivity properties of ASEP and related systems. It should be noted

that our methods are easily generalizable to other types of basically coupled systems that satisfy

these properties as well, such as joint convergence of the symmetric simple exclusion process to

the Edwards-Wilkinson fixed point as well as higher-spin processes for which KPZ fluctuations

are known, such as ASEP(q, J) [47]. We discuss the latter model in Subsection 3.5.

Outline: In Section 2, we prove a result about coupled solutions-in-law of the KPZ equation.

In Section 3 we prove Theorem 4.1.1. Subsection 3.1 introduces the basic coupling model and the

notations, Subsection 3.2 describes the result of Bertini-Giacomin in some detail, Subsection 3.3

contains the proof of our main result in the case of deterministic initial data (Theorem 4.3.7) and

then Subsection 3.4 contains the main result for randomized initial data, Theorem 4.3.8. Subsec-

tion 3.5 then includes a discussion of how to generalize our argument to more complex models.

Acknowledgements: We thank Ivan Corwin for suggesting the problem. The author was partially

supported by the Fernholz Foundation’s Summer Minerva Fellows program, as well as summer

support from Ivan Corwin’s NSF grant DMS:1811143.

4.2 A result about nontrivially coupled KPZ’s

To prove the main result, we use a continuum apparatus which allows us to efficiently identify joint

limit points of the coupled particle system. To formulate our result we consider a slightly more

general version of the KPZ equation with a parameter λ ∈ R:

∂th(t, x) = ∂2xh(t, x) + λ(∂xh(t, x))
2 + ξ(t, x), x ∈ R, t ≥ 0. (KPZ)
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We use the notion of the so-called Hopf-Cole solution, which uses the fact that if h solves (KPZ)

then Z := eλh solves the multiplicative noise equation given by ∂tZ = ∂2xZ + λZξ which actu-

ally turns out to be well-posed using classical methods from [150]. To make this rigorous, one

formulates all of this using the Duhamel principle:

Definition 4.2.1 (Hopf-Cole solution). Let P (T,X) = 1√
2πT

e−X
2/2T , and let ξ denote a space-time

white noise on some probability space (Ω,F ,P). Let Z0 denote some (random) Borel measure on

R. We say that a continuous space-time process h = (h(T,X))T>0,X∈R is a solution of (KPZ) if

P-almost surely, for every T > 0 andX ∈ R, the process Z(T,X) := eλh(T,X) satisfies the identity

Z(T,X) =

∫
R
P (T,X − Y )Z0(dY ) + λ

∫ T

0

∫
R
P (T − S,X − Y )Z(S, Y )ξ(dS, dY ),

where the integral against the white noise is meant to be interpreted in the Itô-Walsh sense [150].

Next we will define the class of initial data for which our apparatus will be applicable. This class

of functions will also be used extensively in later sections of the paper.

Definition 4.2.2. Let α, δ ∈ (0, 1). A function f : R → R is said to be in the δ-weighted α-Hölder

space C α
δ (R) if

sup
x∈R

|f(x)|
(1 + |x|)δ

+ sup
x,y∈R

|x−y|≤1

|f(x)− f(y)|
(1 + |x|)δ|x− y|α

<∞.

We turn C α
δ into a Banach space by defining the norm of f to be the above quantity.

We are going to prove a result which roughly says that if we have two space-time processes defined

on the same probability space, each solving (KPZ) in law, not necessarily driven by the same noise

but their difference satisfies some specific nontrivial deterministic condition, then the two noises

must in fact be the same.

Theorem 4.2.3. Suppose we have two standard space-time white noises ξ1, ξ2 coupled onto the

same probability space. Suppose furthermore that they satisfy the following conditions:

1. E[(ξ1, f)(ξ2, g)] = 0 for all f, g ∈ L2(R+ × R) which have disjoint supports.
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2. For every t > 0 the spatial process h2(t, ·) − h1(t, ·) has a.s. finite p-variation for some

p < 2, where hi is a solution of ∂thi = ∂2xh
i + λi(∂xh

i)2 + ξi, for i = 1, 2. Here λ1, λ2 ∈ R

and furthermore we assume that the initial data hi(0, ·) ∈ C α
δ for some α, δ ∈ (0, 1).

Then ξ1 = ξ2.

We remark that the two noises are not assumed to be jointly Gaussian. This will be important while

applying the theorem later.

Proof. Define a bilinear form I on L2(R+ × R) by I(ϕ, ψ) := E[(ξ1, ϕ)(ξ2, ψ)]. By Cauchy-

Schwarz

|I(ϕ, ψ)| ≤ E[(ξ1, ϕ)2]1/2E[(ξ2, ψ)2]1/2 = ∥ϕ∥2∥ψ∥2.

Thus I is bounded, so by Riesz representation theorem there exists some bounded operator A :

L2(R+ × R) → L2(R+ × R) such that I(ϕ, ψ) = ⟨ϕ,Aψ⟩L2(R+×R) and ∥A∥ ≤ 1.

Note that ⟨ϕ,Aψ⟩L2(R+×R) = 0 whenever ϕ and ψ have disjoint supports on R+ × R. The reader

may show that any operator on an L2 space (associated with a sigma finite measure) which satisfies

this property is necessarily a multiplication operator. Thus there exists some v ∈ L∞(R+ × R)

such that Aϕ = v · ϕ for all ϕ ∈ L2(R+ × R). Note that ∥v∥L∞(R+×R) = ∥A∥ ≤ 1.

We have shown that if ϕ, ψ ∈ L2(R+ × R) then

E[(ξ1, ϕ)(ξ2, ψ)] =
∫
R+×R

ϕ(t, x)ψ(t, x)v(t, x)dt dx, (4.1)

where |v(t, x)| ≤ 1 a.e. Note that ξ1, ξ2 have not been shown or assumed to be jointly Gaussian.

Our goal is now to show that v = 1 a.e. on R+ × R.

For i = 1, 2 we define X i(t, x) for t ≥ 0 and x ∈ R as the solution of the linear SPDE

∂tX
i = ∂2xX

i + ξi,
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with X i(0, x) = 0. Letting hi be as in the theorem statement, we can write hi(t, x) = X i(t, x) +

vi(t, x), where hi0(x) = hi(0, x) and vi is a remainder term which is locally Holder continuous of

exponent strictly greater than 1/2 in the spatial variable. For the KPZ equation on the circle T, the

existence of such a remainder term vi was first proved as Theorem 1.10 in [86] using a preliminary

version of the theory of regularity structures. We believe that the result on the full line R (which

is what we need) can also be proved using regularity structures, however it has not been done in

the literature thus far (in the introduction of [88], there is a discussion of the difficulties involved

with making direct sense of the full-line KPZ equation). However, the full line result can instead

be deduced from Definitions 3.2, 3.3, and Theorem 3.19 in [132] which uses the theory of para-

controlled products [79] to make direct sense of the full-line KPZ equation. The fact the notion of

solution used there coincides with the Hopf-Cole solution also follows Theorem 3.19 there. How-

ever, that theorem assumes that the initial data lie in C α
δ (see Assumptions 3.7 and Remark 3.8 in

[132]) which is the only reason we have assumed such a restriction on the class of initial data in

this theorem and in later parts of this paper. This assumption can likely be relaxed, but it does not

seem to have been done in the literature thus far.

Now let Y := X2 −X1. Then

Y (t, x) =
[
h2(t, x)− h1(t, x)

]
+
[
v1(t, x)− v2(t, x)

]
.

By assumption, for each fixed t > 0, each of the two terms in the square brackets have a.s. finite

p-variation in the x variable, for some p < 2 (since the vi are spatially Holder continuous of expo-

nent strictly greater than 1/2). Thus, Y has a.s. finite p-variation in the x variable.

Define a sequence of random variables

QN(t) :=
2N∑
k=1

(
Y (t, 2−Nk)− Y (t, 2−N(k + 1))

)2
.

214



Since Y is of finite p-variation in the x variable with p < 2, and since QN is approximating

the quadratic variation, it follows that QN(t) → 0 almost surely as N → ∞. We claim that

E[QN(t)] → 0 as well. To prove this, it suffices to show that supN E[QN(t)
q] <∞ for some q > 1,

as that implies uniform integrability. To show this uniform Lq bound, note that (a−b)2 ≤ 2a2+2b2

for all a, b, and recall that Y = X1 −X2. Therefore

QN(t) ≤ 2
2N∑
k=1

∑
i=1,2

(
X i(t, 2−Nk)−X i(t, 2−N(k + 1))

)2
,

so that

E[QN(t)
q] ≤ 2 · 2(N+1)(q−1)

2N∑
k=1

∑
i=1,2

E[
∣∣X i(t, 2−Nk)−X i(t, 2−N(k + 1))

∣∣2q]
= 4 · 2(N+1)(q−1)

2N∑
k=1

E[
∣∣X1(t, 2−Nk)−X1(t, 2−N(k + 1))

∣∣2q]
= 2Nq+q+1E[

∣∣X1(t, 2−N)−X1(t, 0))
∣∣2q]

≤ Cq · 2NqE
[(
X1(t, 2−N)−X1(t, 0))

)2]q
Here the first inequality is obtained by using the Hölder (or Jensen) inequality on the double sum

from the previous expression, which allows us to bring the qth power inside the sum at a cost of

an extra factor 2(N+1)(q−1). The equality in the second line holds because X1 and X2 have the

same distribution as space-time fields, so the sum over i = 1, 2 simply doubles the expectation of

the i = 1 case. The equality in the third line holds because X1 is stationary in x (recall that it

was started from zero initial data) and thus the terms in the sum do not depend on k. In the last

inequality Cq is a constant depending on q but not N , and it holds because X1(t, 2−N)−X1(t, 0)

has a centered normal distribution, and thus satisfies the standard “reverse Jensen" bounds. With

all of this in place, we just need to show that E[
(
X1(t, 2−N) − X1(t, 0))

)2
] ≤ C2−N . But this

is standard, see for instance Section 2.3 of [85] for a precise computation which shows that

E[(X1(t, x) − X1(t, y))2] ≤ C|x − y| where C is independent of t, x, y. Thus we have shown
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that E[QN(t)] → 0 as N → ∞.

Recall that the goal is to show that v = 1 a.e. To do this, we will now compute E[QN(t)] in a

different manner using v. We can write Y in mild form as Yt = p ∗ (ξ1 − ξ2), where ∗ denotes

space-time convolution and p is the standard heat kernel as always. Thus, by using (4.1) we see

that

E[QN(t)] = 2

∫ t

0

∫
R

[ 2N∑
k=1

(
pt−s(xk − z)− pt−s(xk+1 − z)

)2](
1− v(s, z)

)
dz ds, (4.2)

where xk := k · 2−N . Now we will show that the limit of this quantity is strictly positive for

some t > 0 unless 1 − v vanishes a.e. on R+ × R. The only major difficulty is that v has L∞

regularity at best, and the part of the integrand in the square brackets is converging weakly as

N → ∞ to a measure which is singular with respect to 2D Lebesgue measure, so taking a limit of

the above integral is somewhat tricky and will involve using the Lebesgue differentiation theorem

from measure theory. Define

α := min
t∈[1,2]
x∈[1,3]

(pt(x− 1)− pt(x+ 1)) > 0.

By using the relation pt(x) = ϵ−1pϵ−2t(ϵ
−1x), valid for all ϵ, t > 0 and x ∈ R, we see that

min
t∈[ϵ2,2ϵ2]
x∈[ϵ,3ϵ]

(pt(x− ϵ)− pt(x+ ϵ)) = ϵ−1α, for all ϵ > 0.

Thus
(
pt(x−ϵ)−pt(x+ϵ)

)2 ≥ α2ϵ−2
(
1[ϵ,3ϵ]+1[−3ϵ,−ϵ])(x), for all t ∈ [ϵ2, 2ϵ2]. Taking ϵ = 2−N−1,

we see that
2N∑
k=1

(
pt−s(xk − z)− pt−s(xk+1 − z)

)2 ≥ 4N+1α2, (4.3)

whenever s ∈ [t− 2 · 4−N−1, t− 4−N−1] and z ∈ [0, 1]. Here xk = 2−Nk as always.
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For t ≥ 0 define u(t) :=
∫ 1

0

∫ t
0
(1− v(s, z))dsdz. By combining (4.2) and (4.3), we see that

E[QN(t)] ≥ 4N+1α2
(
u(t− 4−N−1)− u(t− 2 · 4−N−1)

)
.

By the Lebesgue differentiation theorem for nicely shrinking sets (see Theorem 3.21 in [68]), there

exists a measure zero zet S ⊂ [0,∞) such that for t /∈ S, the right side of the last expression con-

verges as N → ∞ to α2u′(t) = α2
∫ 1

0
(1 − v(t, z))dz. But we know that E[QN(t)] → 0 for

every t, so we have shown that u′(t) = 0 for all t /∈ S. Thus u(t) = u(0) = 0. Since v ≤ 1,

this implies that v(s, z) = 1 for a.e. (s, z) ∈ [0,∞) × [0, 1]. Of course, there is nothing special

about the interval [0, 1] here. By changing the definition of QN(t) so that the sum ranges over all

k from ⌊2Na⌋ to ⌊2Nb⌋, we can obtain the same result on [0,∞)×[a, b] for any real numbers a < b.

We conclude that v = 1 a.e. Thus by (4.1) we see that E[(ξ1−ξ2, ϕ)2] = 0 for all ϕ ∈ L2(R+×R),

and thus ξ1 = ξ2.

We now define a cylindrical Wiener process to be a family of Brownian motions WT (f), indexed

by f ∈ L2(R), defined on the same probability space, and satisfying

E[WT (f)WS(g)] = (S ∧ T )⟨f, g⟩L2(R).

for all f, g ∈ L2(R). Any space-time white noise ξ uniquely defines a cylindrical Wiener process

W such that WT (f) = (ξ, f ⊗ 1[0,T ])L2(R+×R), and vice versa, so the two may be viewed as

equivalent objects [150, 85].

Corollary 4.2.4. Suppose we have two standard cylindrical Wiener processes W 1,W 2 coupled

onto the same probability space. Suppose furthermore that they satisfy the following conditions:

1. E[W 1
T (f)W

2
T (g)] = 0 for all T ≥ 0 and all f, g ∈ L2(R) which have disjoint supports.

2. For f, g ∈ L2(R), the processes (W 1
T (f))T≥0 and (W 2

T (g))T≥0 are both martingales with

respect to their joint filtration.
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3. For every t > 0 the spatial process h2(t, ·) − h1(t, ·) has a.s. finite p-variation for some

p < 2, where hi is a solution of ∂thi = ∂2xh
i+F i(∂xh

i) + dW i. Here F 1, F 2 are admissible

nonlinearities as mentioned above.

Then W 1 = W 2.

Proof. Define ξ1, ξ2 to be the random elements of S ′(R+ × R) such that

(ξi, ϕ) :=

∫ ∞

0

⟨ϕ(T, ·), dW i
T ⟩L2(R); for all ϕ ∈ S(R+ × R).

Note that E[(ξi, ϕ)2] = ∥ϕ∥2L2(R+×R) so the ξi are space-time white noises and we can stochasti-

cally extend the definition of (ξi, ϕ) to all ϕ ∈ L2(R+ × R).

Let f, g ∈ L2(R). Since W 1(f) and W 2(g) are martingales in their joint filtration we see that

E
[(
W 1
T (f)−W 1

S(f)
)(
W 2
T (g)−W 2

S(g)
)]

= E[W 1
T (f)W

2
T (g)]− E[W 1

S(f)W
2
S(g)],

which equals zero whenever f, g have disjoint supports. From this it follows (using approximation

by elementary integrands) that E[(ξ1, ϕ)(ξ2, ψ)] = 0 whenever ϕ and ψ have disjoint supports on

R+ × R. Thus the conditions of Theorem 4.2.3 are satisfied, so ξ1 = ξ2, i.e., W 1 = W 2.

4.3 Proof of the main theorem

We will now derive some consequences of Theorem 4.2.3 in the context of interacting particle

systems. In particular we will prove Theorem 4.1.1 in the case of [16] and [47]. Although our

results are for WASEP, they can be extended quite easily to some other systems, so we describe in

some generality a class of particle systems that we use.
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4.3.1 The basic coupling, height functions, and notation

Although we consider ASEP for most of the paper, we would like to describe some extensions to

more complicated models in later subsections. Thus we give a slightly more general description of

the types of processes that are covered by our result.

In order to describe our result in full generality, fix J ∈ N and consider a function b : {−1, 1} ×

{0, ..., J}2 → [0, 1]. We consider Feller processes on the state space S := {0, ..., J}Z which are

described by the following dynamics. Each ordered pair (x, x + 1) and (x, x − 1) has a Poisson

clock of rate 1. Every time the clock associated to (x, y) rings, one particle jumps from x to y with

probability b(y−x, η(x), η(y)) and stays there with probability 1− b(y−x, η(x), η(y)). However,

the jump is suppressed if there is no particle at x, or if there are already J particles at y (equiva-

lently we can just impose that b(i, 0, ·) = 0 = b(i, ·, J) for all i = −1, 1). The pre-generator of

such a process acts on local functions f by the formula

Lf(η) =
∑

x,y∈Z:|x−y|=1

b(y − x, η(x), η(y))
(
f(η + ey − ex)− f(η)

)
, (4.4)

where ex(z) = 1{x=z}, and f : S → R is some local function. This process is called a nearest-

neighbor generalized-misanthrope process if b is increasing in the η(x) variable and decreasing in

the η(y) variable. Examples include ASEP and more generally ASEP(q, j) as considered in [47].

See Subsection 3.5 for more on the latter.

For nearest-neighbor generalized misanthrope processes there is a natural way to run the dynam-

ics associated to several initial data coupled together. This is usually called the basic coupling.

Specifically for x ∈ Z we associate to each directed bond (x, x+ 1) and (x, x+ 1) Poisson clocks

of rate one, as well as iid uniform random variables {Ui(x, x+1)}i≥1 and {Ui(x+1, x)}i≥1 which

are independent of the Poisson clocks on that bond. Whenever the ith Poisson clock associated to

(x, x + 1) rings, a particle jumps from x to x + 1 only when b(1, η(x), η(x + 1)) < Ui(x, x + 1),
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and similarly for (x, x− 1) with b(−1, η(x), η(x− 1)) and Ui(x, x− 1). In this way, we can define

a Markov process on the product S×S of the individual state spaces which describes the evolution

of two particle systems coupled so that each marginal onto S is a Feller process with generator L

given above, and moreover (by the monotonicity properties of b) the two individual particle sys-

tems stay dominated for all time if they start dominated (see (A) below). When J = 1 there is a

straightforward way to describe the coupling without any uniform variables, instead using Poisson

clocks of different rates on each bond. For the seminal work on coupled processes, see e.g. [111,

93]. Our description of the basic coupling is in the spirit of [93], while [111] instead chooses to

explicitly write the generator for the entire coupled system on the product space.

If (ηt(x))t≥0 is a generalized misanthrope process on the state space {0, ..., J} then we define

the height function

ht(x) :=


ht(0) +

∑x
k=0(2ηt(k)− J), x ≥ 0,

ht(0) +
∑−x

k=0(2ηt(−k)− J), x < 0,

,

where ht(0) equals twice the current through the origin up to time t, i.e., twice the number of par-

ticles which have moved from the site x = 0 to the site x = 1 minus twice the number of particles

which have moved from the site x = 1 to the site x = 0 up to time t.

The height functions associated to nearest-neighbor misanthrope processes have two useful prop-

erties. The dynamics preserve their ordering as well as the ordering of their spatial derivative:

h1t (x) ≤ h2t (x) for all t ≥ 0, x ≥ 0 if h10(x) ≤ h20(x) for all x ≥ 0, (M)

η1t (x) ≤ η2t (x) for all t ≥ 0, x ≥ 0 if η10(x) ≤ η20(x) for all x ≥ 0. (A)

Property (M) is usually called monotonicity of the particle system, whereas property (A) is usually

called attractivity of the system. Both properties are easily proved by considering the action of a
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single jump excitation in the joint system. In terms of the SPDE limits, (M) says that the limiting

height functions h1 and h2 are coupled so that h1 ≤ h2 if h1(0, ·) ≤ h2(0, ·), and (A) says that

h2(t, ·)− h1(t, ·) is a nondecreasing function for every t > 0 if it is nondecreasing for t = 0.

Let us now establish some notation. A function h : Z → Z is called viable if there is a parti-

cle system associated to it, in other words if ht(x+1)−ht(x) ∈ {−J,−J +2, ..., J − 2, J} for all

x. Likewise a function from R → R will be called viable if its restriction to Z is viable and if its

value at non-integers is linearly interpolated from the two nearest integer values. An obvious but

important property used below is that the class of admissible height functions is closed under the

operations max and min.

Given some collection h1, ..., hn : R+ × Z → R of time-evolving height profiles, we will of-

ten define “rescaled and renormalized" versions of them which converge in law to the solution of

the KPZ equation. In all of these cases what we will mean is that there exist some constants aϵ, bϵ

such that

hi,ϵ(t, x) := aϵh
i(ϵ−2t, ϵ−1x) + bϵt (4.5)

converges in law to the solution of (KPZ).

Whenever we have an evolving height function h(t, x) in our model, we will denote by hϵ its

rescaled and renormalized version converging to KPZ. Thus hϵ is a random function from R+ ×

ϵZ → R that depends on ϵ in three different ways: through the initial data which is generally chang-

ing with ϵ, through the parameters of the model which are being weakly scaled as p = 1
2
+ 1

2

√
ϵ

and q = 1
2
− 1

2

√
ϵ (this will be explained below), and through the renormalization constants and

diffusive scaling as in (4.5). Often we will have several height functions h1, h2, ..., hn which are

coupled via the same dynamics, we will denote their rescaled versions as h1,ϵ, h2,ϵ, ..., hn,ϵ. We

will use the capital letters (H1, H2, ..., Hn) to denote the joint continuum limits of the rescaled

fields (h1,ϵ, h2,ϵ, ..., hn,ϵ). Thus the H i are random continuous functions from R+ ×R → R which
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are defined on the same probability space as each other. We will always use the subscript 0 to de-

note the initial data both in the prelimit and the limit, i.e.,H i
0 = H i(0, ·), hi,ϵ0 = hi,ϵ(0, ·), and so on.

Often we will have some initial data h1,ϵ0 , h2,ϵ0 , ..., hk,ϵ0 and from these we will build more initial

data hk+1,ϵ
0 , ..., hk+n,ϵ0 . We will always denote by hi,ϵ (i.e., without the zero subscript) to denote

the evolution of the coupled the process started from hi,ϵ0 . In other words, the dynamics of the

newly constructed hi,ϵ are always implicitly assumed to be driven by the same realization of the

Poissonian clocks (and uniform variables, if J > 1) as those of the original hi,ϵ.

Whenever we refer to “convergence" of (hi,ϵ0 )ki=1 to (H i
0)
k
i=1, we mean convergence in C(R)k,

where C(R) is the space of continuous functions on R equipped with the the topology of uniform

convergence on compacts, which is completely metrizable via the same metric

d(f, g) :=
∑
n≥1

2−nmax
{
1, sup

x∈[−n,n]
|f(x)− g(x)|

}
.

Sometimes we use the stronger topology of C α
δ (R) from Definition 4.2.2 and we specify whenever

we do this. When we refer to the convergence of the entire height profile hi,ϵ to H i, we mean in

the Skorohod space D([0, T ], C(R)k) for every T > 0.

4.3.2 The convergence result of Bertini-Giacomin

Throughout Subsections 3.2, 3.2, and 3.4 we consider ASEP, which corresponds in (4.4) to the

choices J = 1, b(1, 1, 0) = p, and b(−1, 1, 0) = q where p, q ≥ 0. In our ϵ-dependent model

below, p will be scaled as 1
2
+ 1

2
ϵ1/2 while q will be scales as 1

2
− 1

2
ϵ1/2.

The main result of [16] can be formulated as follows. We would like to emphasize once again

that the height functions considered in the theorem below depend on ϵ in three different ways:

through the initial data which is generally changing with ϵ, through the parameters of the model
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which are being weakly scaled as p = 1
2
+ 1

2
ϵ1/2 and q = 1

2
− 1

2
ϵ1/2, and through the renormalization

constants and diffusive scaling as in (4.5).

Theorem 4.3.1 (Theorem 2.3 of [16]). Let hϵ0 be a deterministic sequence of initial data such that

ϵ1/2hϵ0(ϵ
−1x) converges in C α

δ to some H0, where 0 < α < 1/2 and 0 < δ < 1. Let hϵ denote the

rescaled and renormalized height function as in (4.5), with aϵ = ϵ1/2 and bϵ = 1
2
ϵ−1 + 1

24
. Then

hϵ converges in law to the Hopf-Cole solution of (KPZ). The initial data of the limiting object is

given by the limit in C α
δ of ϵ1/2hϵ0(ϵ

−1x). The convergence is obtained with respect to the topology

of the Skorohod space D([0, T ], C(R)), for all T > 0.

Let us remark that convergence in C α
δ is slightly different than the actual assumption on the initial

data given in [16]. Specifically, in Definition 2.2 of [16], the authors considered possibly random

initial data which are “near stationarity" in the sense that if Zϵ
0 := exp(hϵ0) then one has the moment

bounds ∥Zϵ
0(x)∥p ≤ Ceax and ∥Zϵ

0(x) − Zϵ
0(y)∥p ≤ C|x − y|1/2ea(|x|+|y|), uniformly in x, y, ϵ.

Here p is some exponent larger than 10 and ∥A∥p := E[|A|p]1/p. The substance of their proof is

unchanged when the exponent 1/2 in the second bound is changed to arbitrary α ∈ (1/p, 1/2). For

technical reasons we will find it convenient to work with deterministic initial data which converge

in C α
δ , which clearly satisfy these bounds. In fact even functions of linear growth would satisfy

these bounds, so our assumption of sublinear growth and deterministic data is actually substantially

more restrictive. We will randomize the assumptions on our initial data in Subsection 3.4.

4.3.3 Main result: joint convergence for ASEP

Our goal is to extend Theorem 4.3.1 so that one may consider the limiting height field started

from any finite collection of (sequences of) initial data (hi,ϵ0 )ki=1 whose dynamics are jointly run

according to the basic coupling. The goal is to obtain convergence in D([0, T ], C(R)k). We are

going to do this in a manner which is essentially orthogonal to proof of the original convergence

result of [16], by exploiting Theorem 4.2.3 and (M) and (A).
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Lemma 4.3.2. Suppose that we have two deterministic sequences of initial data h1,ϵ0 and h2,ϵ0 which

both converge in C α
δ to the same initial data. For any joint limit point (H1, H2) of the basically

coupled space-time processes, we have H1(t, x) = H2(t, x) for all t, x a.s.

Proof. One readily checks that if two height functions are viable, then so are their maximum and

minimum. We thus define h3,ϵ0 := max{h1,ϵ0 , h2,ϵ0 } and h4,ϵ0 := min{h1,ϵ0 , h2,ϵ0 }. It is clear that h3,ϵ0

and h4,ϵ0 both converge in C α
δ to the same initial data as h1,ϵ0 and h2,ϵ0 . By (M) is also clear that

h4,ϵ(t, x) ≤ hi,ϵ(t, x) ≤ h3,ϵ(t, x) for i = 1, 2 and all t, x, ϵ.

Letting (H1, H2, H3, H4) denote a joint limit point of all four processes, we see that it must satisfy

H4 ≤ H i ≤ H3 for i = 1, 2. It is also true that H1
0 = H2

0 = H3
0 = H4

0 because h1,ϵ0 and h2,ϵ0 con-

verge in C α
δ to the same function and hence so do their max and min. The KPZ equation satisfies

uniqueness in law, thus two solutions started from the same initial data have the same expectation,

i.e., E[H4(t, x)] = E[H3(t, x)].

Since H4(t, x) ≤ H3(t, x) and E[H4(t, x)] = E[H3(t, x)], we conclude that H4 = H3 a.s. Since

H1, H2 are nested in between H3 and H4, we conclude that H1 = H2.

The next lemma will be the key behind all subsequent results. It proves the main result in the very

special case that the two initial data are ordered as in (A), and it will be proved using the results of

Section 2.

Lemma 4.3.3. If h1,ϵ0 and h2,ϵ0 which are both deterministic, their difference is nondecreasing for

every ϵ, and they converge weakly to initial data H1
0 and H2

0 , then h1,ϵ and h2,ϵ converge jointly to

the solution of the KPZ equation driven by the same noise.

Proof. Note by (A) that the dynamic of the particle system preserves the condition that the differ-

ence of height functions is nondecreasing. Thus if h2,ϵ0 − h1,ϵ0 is nondecreasing, then we know that

h2,ϵ(t, ·)−h1,ϵ(t, ·) is a.s. nondecreasing for every t. In particular, if (H1, H2) is a joint limit point

of (h1,ϵ, h2,ϵ), then H2(t, ·) − H1(t, ·) is nondecreasing (and in particular, of finite variation) for
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every t. Thus condition (3) of Corollary 4.2.4 is satisfied.

Now we just need to make sure that the conditions (1) and (2) of Corollary 4.2.4 is satisfied.

For this we need to look into the precise details of how exactly Bertini and Giacomin proved their

result. They first noted that of one defines

Zi,ϵ
t (x) := exp

(
ϵ1/2hi,ϵ(t, x)− (

1

2
ϵ−1 − 1

24
)t
)
,

then the Zi,ϵ solve a discrete parabolic martingale-driven SPDE:

dZt(x) = (1 + 2ϵ1/2)1/2∆Zi,ϵ(x)dt+ dM i,ϵ
t (x), (4.6)

where ∆f(x) := 1
2
(f(x + 1) + f(x − 1) − 2f(x)), and M i,ϵ(x) are jump martingales with the

property that

⟨M i,ϵ(x),M j,ϵ(y)⟩t = 0 if x ̸= y (4.7)

for all i, j = 1, 2. See equation (3.13) in [16].

Bertini and Giacomin then proceed to show that, for smooth functions ϕ ∈ C∞
c (R), if one de-

fines the martingale M i,ϵ
t (ϕ) := ϵ

∑
x∈Z ϕ(ϵx)M

i,ϵ
t (x), then any limit point (joint over all ϕ ∈ C∞

c

and all i = 1, 2) of M i,ϵ
t (ϕ) as ϵ → 0 is a continuous martingale M i

t (ϕ). In the language of [150],

the collection of martingales M i
t (ϕ), as ϕ ranges over all smooth functions, form an orthogonal

martingale measure, in the sense that ⟨M i
t (ϕ),M

j
t (ψ)⟩ = 0 whenever ϕ, ψ have disjoint supports

and i, j = 1, 2 (this is clear because the corresponding statement is true even in the prelimit, by the

property that ⟨M i,ϵ(x),M j,ϵ(y)⟩t = 0 if x ̸= y and i, j = 1, 2).

Now consider any joint limit point (H1, H2) of (h1,ϵ, h2,ϵ). Let Z1 := eH
1 and Z2 := eH

2 . Bertini
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and Giacomin show using (4.6) that the Zi must satisfy the relation

(Zi
t , ϕ)L2(R) −

∫ t

0

(Zi
s, ϕ

′′)L2(R)ds =M i
t (ϕ).

Using the language of [100] and [150], Bertini and Giacomin then use this to show that for

each i = 1, 2 one can construct the driving noise W i of Zi as an Ito-Walsh stochastic integral

against M i. By the properties of Ito-Walsh stochastic integrals, it then automatically follows that

⟨W i(ϕ),W j(ψ)⟩ = 0 for i, j = 1, 2 and ϕ, ψ of disjoint supports. Indeed, thus is is because the

corresponding property is true for M i and because W i is a stochastic integral against M i. Thus

the conditions of Corollary 4.2.4 are satisfied and so H1 = H2.

Remark 4.3.4. Note that the results of the previous two lemmas generalize fairly straightforwardly

to the case where we have k > 2 distinct initial data converging in C α
δ (R)k. Indeed, if (H1, ..., Hk)

is a joint limit point of the height functions and if any subpair (H i, Hj) is driven by the same noise,

then they are all driven by the same noise. Here we are implicitly using the fact that the driving

noise can be deterministically recovered from any solution-in-law of the KPZ equation, which is

a nontrivial fact that can be deduced by combining the orthomartingale theory of [150] with the

Hopf-Cole transform and a positivity result of [122]. Alternatively this fact can also be deduced

more directly from the pathwise theories developed by [86, 132]. Alternatively, even without using

any of those aforementioned results, one can recognize that our proof strategy in both lemmas was

done in such a way that the proofs generalize directly to several initial data. Indeed, in the proof

of Lemma 4.3.2 one can consider the max and min of k distinct initial profiles, and these are still

viable and convergent to the same limit in C α
δ . In the proof of Lemma 4.3.3, it is clear that one

can keep track of both the noises as well as the height functions in the limit. Likewise, subsequent

results such as Proposition 4.3.6, Theorem 4.3.7, and Theorem 4.3.8 also generalize to more than

two initial profiles, either by using the nontrivial fact mentioned earlier or by working through the

logic in the proofs directly.

Now that we have proved the main result in the special case when the two initial data are ordered
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deterministically at the level of the particle system, the next step will be to prove the claim for two

initial data which are smooth or at least differentiable in some strong enough sense. Then we can

dominate both of the initial data by some third initial data whose derivative is larger than both of

the individual initial data, and then apply Lemma 4.3.3 to conclude that the noises for all three are

the same. This will be done in Proposition 4.3.6 below, but first we need a lemma.

We henceforth define Vϵ to be all functions of the form ϵ1/2f(ϵ−1x) where f is a viable height

function as defined in Subsection 3.1. We also let C 1
δ to be the set of all continuously differen-

tiable functions on R such that supx∈R(1 + |x|)−δ(|f ′(x)| +
∫ x
0
|f ′(u)|du) < ∞. It is clear that

C 1
δ is a Banach space if we define its norm to be |f(0)| plus that quantity1 and that it embeds

compactly into C α
δ′ whenever α < 1 and δ′ > δ. More generally we will often use the fact that if

0 < α1 < α2 ≤ 1 and 1 > δ1 > δ2 > 0 then C α2
δ2

embeds compactly into C α1
δ1
. This follows from

Arzela-Ascoli together with the interpolation properties of Hölder seminorms, see e.g. Lemma

24.14 of [62] for the elementary proof, or [118] for a more general theory on Hölder spaces and

their embeddings via Littlewood-Paley theory (Section 2 of [132] also has a nice discussion of

the latter). We now give an approximation algorithm Aϵ for smooth functions by rescaled viable

functions, and moreover the algorithm preserves the property that the difference of two functions

is nondecreasing.

Lemma 4.3.5. Fix α ∈ (0, 1/4) and δ < δ′ ∈ (0, 1). Then there exists a family of maps Aϵ : C 1
δ →

C α
δ ∩ Vϵ with the following properties:

• For all f ∈ C 1
δ , we have that Aϵ(f) → f in C α

δ′ as ϵ→ 0.

• Aϵ(g)−Aϵ(f) is nondecreasing whenever g − f is nondecreasing.

Proof. We will construct Aϵ(f) on ϵZ. The values in between are understood to be linearly inter-

polated.

1This is not a standard definition of C 1
δ , we have only defined it in this way for convenience of the arguments given

later. Strictly speaking, we should really call this space BVδ or something similar due to the defining condition that
the variation is bounded by C|x|δ .
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Note that (1+|x|)−δ′(|f(x)|+|f ′(x)|) can be viewed as a continuous function on the closed interval

[−∞,∞], which vanishes at the endpoints −∞ and ∞. Suppose (1 + |x|)−δ′(|f(x)|+ |f ′(x)|) <

2ϵ1/2 on [−∞,−M ] ∪ [M,∞] where implicitly M =Mϵ ≥ 1. We define Aϵ(f) on (−∞,−M ] to

just oscillate between the two values in ϵ1/2Z which are closest to f(−M).

Next we define Aϵ(f) on the interval [−M,M ]. Break [−M,M ] into ⌊ϵ−1/4⌋ equally sized in-

tervals of length 2M/⌊ϵ−1/4⌋. On each of those intervals I , let xϵI := min I ∩ ϵZ. For x ∈ ϵZ

such that xI ≤ x ≤ max{xI + |f ′(xI)|ϵ3/4,max I ∩ ϵZ} we define f inductively by the formula

Aϵf(x+ϵ)−Aϵf(x) := sign(f ′(xI))ϵ
1/2. For x ∈ ϵZ such that xI+|f ′(xI)|ϵ3/4 ≤ x ≤ max I∩ϵZ

we simply define Aϵf(x+ ϵ)−Aϵf(x) := ϵ1/2(−1)x/ϵ.

Finally, define Aϵ(f) on [M,∞) by the formula Aϵ(f)(x+ ϵ)−Aϵ(f)(x) := ϵ1/2(−1)x/ϵ.

From our construction it is clear that Aϵ(g) − Aϵ(f) is nondecreasing whenever g − f is non-

decreasing. This is because the latter is equivalent to g′ ≥ f ′.

Note that for all x ∈ [−M,M ], the quantity Aϵ(f)(x) is always within O(ϵ1/4) of f(−M) +

ϵ1/4
∑

I:sup I<x f
′(xI), which is a Riemann sum approximation to f(−M) +

∫ x
−M f ′(t)dt. Conse-

quently Aϵ(f) converges pointwise to f as ϵ→ 0.

Next we prove that there exists C > 0 independent of x, y, ϵ (but in general dependent on f )

such that |Aϵf(x) − Aϵf(y)| ≤ C|x|δ|x − y|1/4 whenever |y − x| ≤ 1 and x ∈ R. This is

enough to prove relative precompactness of {Aϵ(f)}ϵ∈(0,1] inside of C α
δ′ (because α < 1/2 and

δ′ > δ), which would finish the proof. To prove this inequality, we first consider the case where

x, y ∈ [−M,M ] and 1 ≥ |x− y| > ϵ3/4. In this case, note that Aϵf(x)−Aϵf(y) is always within

∥f ′∥L∞([y,x])ϵ
1/4 of ϵ1/4

∑
I:y<sup I<x f

′(xI). Now the number of intervals I in the approximation
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scheme such that such that y < sup I < x is bounded above by ϵ−1/4/2M ≤ ϵ−1/4. Consequently

we find that |Aϵf(x)−Aϵf(y)| ≤ 2ϵ1/4∥f ′∥L∞([y,x]). Now since f ∈ C 1
δ and |y − x| ≤ 1 we find

that ∥f ′∥L∞[y,x] ≤ ∥f∥C 1
δ
|x|δ, proving the claim in this case since ϵ1/4 can be bounded above by

|x− y|1/3 (recall we assumed |x− y| > ϵ3/4). Next we consider the case where ϵ < |x− y| ≤ ϵ3/4.

Then we can use the naive bound

|Aϵf(x)−Aϵf(y)| ≤ ϵ1/2 +
∑

u∈ϵZ∩[x,y]

|Aϵf(u+ ϵ)−Aϵf(u)|

≤ ϵ1/2 + ϵ−1/2|x− y|

≤ ϵ1/2 + ϵ1/4 ≤ 2|x− y|1/4.

Finally, we consider the case where |x−y| < ϵ. In this case it is clear that since the global Lipchitz

constant of Aϵ(f) never exceeds ϵ−1/2 that one has

|Aϵ(f)(x)−Aϵ(f)(y)| ≤ ϵ−1/2|x− y| ≤ ϵ−1/2ϵ1/2|x− y|1/2 = |x− y|1/2.

Proposition 4.3.6. Suppose that we have two viable deterministic sequences of initial data such

that their re-scaled versions h1,ϵ0 and h2,ϵ0 converge in C α
δ to functions H1

0 and H2
0 respectively,

where 0 < α < 1/2 and 0 < δ < 1. Assume that H1
0 , H

2
0 ∈ C 1

δ . Then for any joint limit point

(H1, H2) of (h1,ϵ, h2,ϵ), H1 and H2 are solutions of the KPZ equation driven by the same noise.

Proof. Choose some probability space (Ω,F ,P) on which one may define, for each ϵ ∈ (0, 1], a

system of i.i.d. Poisson clocks of rate p = 1
2
+ 1

2

√
ϵ and rate q = 1

2
− 1

2

√
ϵ associated to each

bond {x, x+ 1} with x ∈ Z. For different values of ϵ these can be coupled in an arbitrary manner;

ultimately it is irrelevant.

Define H3
0 (x) :=

∫ x
0
max{∂xH1

0 (u), ∂xH
2
0 (u)}du, so that H3

0 −H1
0 and H3

0 −H2
0 are both nonde-

creasing functions. Note that H3
0 also lies in C 1

δ .
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Next, use the algorithm in Lemma 4.3.5 to construct viable height functions hi,ϵ0 for 3 ≤ i ≤ 5 in

such a way that

• ϵ1/2h3,ϵ0 (ϵ−1x) converges in C α′

δ′ to H3(x) for some δ′ > δ and α′ < α.

• ϵ1/2h4,ϵ0 (ϵ−1x) converges in C α′

δ′ to H1(x) for some δ′ > δ and α′ < α.

• ϵ1/2h5,ϵ0 (ϵ−1x) converges in C α′

δ′ to H2(x) for some δ′ > δ and α′ < α.

• h3,ϵ0 − hi,ϵ0 are nondecreasing in x for i = 4, 5 and all ϵ.

On the same probability space, let h1,ϵ and h2,ϵ be the (time-evolving) height profiles started from

initial data h1,ϵ0 and h2,ϵ0 (respectively) and whose dynamics are governed by the Poisson clocks

described above. Then let h3,ϵ, h4,ϵ and h5,ϵ be the height functions associated with initial data

h3,ϵ0 , h4,ϵ0 , h5,ϵ0 , respectively.

Let (H1, H2, H3, H4, H5) be a joint limit point of (h1,ϵ, h2,ϵ, h3,ϵ, h4,ϵ, h5,ϵ), which is not nec-

essarily defined on the same probability space as above. Then let (ξ1, ξ2, ξ3, ξ4, ξ5) denote the

respective driving noises. By Lemma 4.3.2 we know that H4 = H1 and H5 = H2, therefore

ξ4 = ξ1 and ξ5 = ξ2 (for instance by Theorem 4.2.3). But since h3,ϵ0 − hi,ϵ0 are nondecreasing in

x for i ∈ {4, 5}, Lemma 4.3.3 implies that ξ4 = ξ3 and ξ5 = ξ3. So all noises are equal, and in

particular ξ1 = ξ2.

We are now ready to state and prove the main result for two arbitrary initial data which converge

in C α
δ . The idea will be to nest the two initial data between smooth initial data satisfying the

hypotheses of Proposition 4.3.6, and then take advantage of the monotonicity (M). Recall our

notation that the subscript “0" in H i
0 denotes the (deterministic) initial data of the height profile,

while H i without the subscript denotes the entire space-time profile viewed as a random variable

in some Skorohod space D([0,∞), C(R)).
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Theorem 4.3.7. Let η1,ϵt and η2,ϵt be sequences (indexed by ϵ ∈ (0, 1]) of exclusion processes with

generator (4.4) on {0, 1}Z with b(−1, 1, 0) = 1
2
+ 1

2

√
ϵ and b(1, 1, 0) = 1

2
− 1

2

√
ϵ. Assume that the

dynamics are run via the basic coupling as described above in Subsection 3.1. Let h1,ϵ, h2,ϵ denote

the rescaled height functions as in (4.5). Suppose that the deterministic sequences of initial data

h1,ϵ0 , h2,ϵ0 converge in C α
δ as ϵ → 0 to H1

0 , H
2
0 respectively, where 0 < α < 1/2 and 0 < δ < 1.

Then one has joint convergence in law as ϵ→ 0 of the entire time-evloving height profile (h1,ϵ, h2,ϵ)

to (H1, H2) where H1, H2 both solve the KPZ equation with the same noise and with initial data

H1
0 , H

2
0 , resp. The convergence holds with respect to the topology of D([0, T ], C(R)2).

Proof. Choose some probability space (Ω,F ,P) on which one may define, for each ϵ ∈ (0, 1], a

system of i.i.d. Poisson clocks of rate p = 1
2
+ 1

2

√
ϵ and rate q = 1

2
− 1

2

√
ϵ associated to each

bond {x, x+ 1} with x ∈ Z. For different values of ϵ these can be coupled in an arbitrary manner;

ultimately it is irrelevant.

Choose arbitrary sequences of smooth approximating height functions aN0 , b
N
0 , c

N
0 , d

N
0 , for N ∈ N,

satisfying the following five properties:

• aN0 , b
N
0 , c

N
0 , d

N
0 ∈ C 1

δ′ for some δ′ > δ.

• bN0 ≤ H1
0 ≤ aN0 .

• dN0 ≤ H2
0 ≤ cN0 .

• aN0 , b
N
0 converge in C α′

δ′ to H1
0 for some α′ < α and δ′ as above.

• cN0 , d
N
0 converge in C α′

δ′ to H2
0 with α′, δ′ as above.

The existence of such sequences is straightforward. Indeed, one can even choose (α′, δ′) arbitrarily

from (0, α)× (δ, 1) and then take aN0 and cN0 to coincide with |x|(δ+δ′)/2 in some neighborhood of

±∞ and similarly one can choose bN0 and dN0 to coincide with −|x|(δ+δ′)/2 in some neighborhood

in ±∞ (this neighborhood will obviously depend on N though).
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Now use Lemma 4.3.5 to define viable height functions aN,ϵ0 , bN,ϵ0 , cN,ϵ0 , dN,ϵ0 which are jointly ad-

missible and converge under the appropriate scaling to aN0 , b
N
0 , c

N
0 , d

N
0 , respectively. Denote by

(h1,ϵt , h
2,ϵ
t , a

N,ϵ
t , bN,ϵt , cN,ϵt , dN,ϵt )t≥0 the (time-evolving) height profiles associated with initial data

(h1,ϵ0 , h2,ϵ0 , aN,ϵ0 , bN,ϵ0 , cN,ϵ0 , dN,ϵ0 ), respectively. The dynamics for each of these objects are run ac-

cording to the Poisson clocks described above.

Let (H1, H2, aN , bN , cN , dN) denote a joint limit point of all of these objects (as ϵ → 0), which is

not necessarily defined on the same probability space. By Proposition 4.3.6, all of aN , bN , cN , dN

solve the KPZ equation with the same realization of the noise ξ (we are using Remark 4.3.4 here).

Recall by construction, aN0 and bN0 converge in C α′

δ′ to H1
0 as N → ∞, and moreover bN0 ≤

H1
0 ≤ aN0 . Note that for a fixed realization of ξ, the solution of the KPZ equation is continuous

as a function of the initial data, viewed as a function from C α′

δ′ (R) → C(R+ × R). This can be

proved directly from Definition 4.2.1 by exploiting Mueller’s positivity result [122], and it can also

be proved more directly by using more modern techniques such as [86, 132]. Thus as N → ∞,

the function bN − aN converges uniformly to 0 on compact sets of R+ × R, and moreover by (M)

it is true that bN ≤ H1 ≤ aN for all N . Thus aN , bN both converge uniformly to H1 on compact

subsets of R+ × R, and on the other hand they also converge to the solution of the KPZ equation

driven by the common noise of the ai, bi and initial data H1
0 . Thus, we conclude that H1 is driven

by the same noise as the ai, bi.

A completely analogous argument will show that H2 is driven by the same noise as the ci, di,

completing the proof.

One can ask why, in the above proof, one could not have defined simpler approximations H i ∗ ϕδ

and then just used the fact the the KPZ equation is continuous as a function of the initial data on

C α′

δ′ (R), and used Proposition 4.3.6 without relying on (M). The problem with this idea is that it

would be circular: we do not know beforehand that the joint limit points all solve the KPZ equation
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with the same noise: therefore we do not know that they are continuous as a function of the initial

data. Hence some kind of monotonicity property must be leveraged.

4.3.4 Random initial conditions near stationarity

In the above theorem we assumed that h1,ϵ0 and h2,ϵ0 were deterministic and converged with respect

to the topology of C α
δ (R) for some 0 < α < 1/2 and some 0 < δ < 1. In this subsection we

relax these conditions slightly to allow for random sequences of pairs of initial data that may only

converge in distribution and satisfy some pth moment bounds that are generally easy to check in

practice. The prototypical examples to keep in mind for this subsection are the height function pairs

generated by iid Bernoulli configurations. These two product Bernoulli configurations may be in-

dependent or correlated by some parameter; it does not matter so long as the finite-dimensional

marginals for the pair of height functions converge jointly in law.

We denote by ∥X∥p := E[|X|p]1/p for a random variable X defined on some probability space.

Theorem 4.3.8. The conclusion of Theorem 4.3.7 still holds for random initial data (h1,ϵ0 , h2,ϵ0 ) so

long as this pair converges jointly in the sense of finite dimensional distributions to (H1
0 , H

2
0 ) and

there exist α ∈ (0, 1/2],δ ∈ (0, 1), C > 0, and p > max{α−1, (1−δ)−1} such that for all ϵ ∈ (0, 1]

the pair satisfies the moment bounds

∥hi,ϵ0 (x)∥p ≤ C(1 + |x|)δ for all x ∈ R

∥hi,ϵ0 (x)− hi,ϵ0 (y)∥p ≤ C(1 + |x|)δ|x− y|α whenever |x− y| ≤ 1.

The proof is immediately obtained by combining the results of Lemmas 4.3.9 and 4.3.10 given just

below. Note that the rescaled height functions associated to iid Bernoulli configurations satisfy

these bounds with α = δ = 1/2 (in fact, one does not even need the extra factor of (1 + |x|)δ in

the second bound).
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Lemma 4.3.9. The conclusion of Theorem 4.3.7 still holds for random initial data (h1,ϵ0 , h2,ϵ0 ) so

long as this pair converges in law to (H1
0 , H

2
0 ) with respect to the topology of C α

δ × C α
δ for some

α ∈ (0, 1/2) and δ ∈ (0, 1).

Proof. Recall Vϵ which is the set of all functions of the form ϵ1/2h(ϵ−1x) where h is a viable height

function. Fix T > 0 and let M denote the set of all probability measures on D([0, T ], C(R)2).

Define Qϵ : (V ϵ ∩ C α
δ )

2 → M by sending a rescaled pair of viable height functions (h10, h
2
0) to

the law of the (entire time evolution of the) basically coupled ASEP height process started from

(h10, h
2
0), with right jump parameter 1

2
+ 1

2
ϵ1/2 and left jump parameter 1

2
− 1

2
ϵ1/2.

Likewise, define Q : C α
δ (R)2 → M by sending (h10, h

2
0) the solution of the KPZ equation driven

by the same realization of ξ started from h10, h
2
0 respectively. Theorem 4.3.7 says precisely that

Qϵ(h1,ϵ0 , h2,ϵ0 ) → Q(h10, h
2
0) whenever (h1,ϵ0 , h2,ϵ0 ) → (h10, h

2
0) in (C α

δ )
2.

Now suppose that the hypothesis of the lemma holds, i.e., (h1,ϵ0 , h2,ϵ0 ) converges in law to (H1
0 , H

2
0 )

with respect to the topology of C α
δ (R)2. By Skorohod’s representation theorem2 we may find

a probability space (Ω,F ,P) such that (h1,ϵ0 , h2,ϵ0 ) → (h10, h
2
0) in (C α

δ )
2 almost surely. Then

by the discussion above, Qϵ(h1ϵ0 , h
2,ϵ
0 ) → Q(h10, h

2
0) in M almost surely. This is enough to

give the required result. Indeed it shows that E[f
(
Qϵ(h1ϵ0 , h

2,ϵ
0 )
)
] → E[f

(
Q(h10, h

2
0)
)
] for all

bounded continuous f : M → R. To finish the proof one simply takes f of the form f(ν) :=∫
D([0,T ],C(R)) g(h)ν(dh) where g is a bounded real-valued continuous function on D([0, T ], C(R)).

Then one may disintegrate the law of hi,ϵ by decoupling the initial data and the dynamics to obtain

the desired result.

Lemma 4.3.10. Suppose that {hϵ}ϵ∈(0,1] is a family of C(R)-valued random variables such that

there exist α ∈ (0, 1/2),δ ∈ (0, 1), C > 0, and p > max{α−1, (1 − δ)−1} which satisfy the
2One technical remark here is that the spaces C α

δ are not separable and thus Skorohod’s representation theorem
may not hold, strictly speaking. In practice this is not an issue, because for δ < δ′ and α′ < α it is actually true that
C α
δ embeds compactly into C α′

δ′ , as we already mentioned earlier. Any compact metric space is separable, thus in our
argument above, one should instead use almost sure convergence with respect to the weaker topology of C α′

δ′ for some
α′ < α and δ′ > δ. This does not cause any issues for the proof.
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following moment bounds uniformly over all ϵ ∈ (0, 1]:

∥hϵ(x)∥p ≤ C(1 + |x|)δ for all x ∈ R

∥hϵ(x)− hϵ(y)∥p ≤ C(1 + |x|)δ|x− y|α whenever |x− y| ≤ 1.

Then there exist α′ ∈ (0, α) and δ′ ∈ (δ, 1) such that {hϵ}ϵ∈(0,1] is tight with respect to the topology

of C α′

δ′ .

Proof. Recall from earlier that C α
δ embeds compactly into C α′

δ′ whenever δ′ > δ and α′ < α.

Therefore to prove the lemma, it suffices to show that if the two inequalities in the lemma statement

hold, then there exist α′, δ′ such that

lim
a→∞

sup
ϵ∈(0,1]

P(∥hϵ∥Cα′
δ′
> a) = 0.

We actually show something stronger, namely that under the given assumptions, there existsC ′ > 0

such that for all a > 0

sup
ϵ∈(0,1]

P(∥hϵ∥Cα′
δ′
> a) ≤ C ′a−p, (4.8)

where p is the same exponent given in the lemma statement. To prove this we write ∥hϵ∥Cα′
δ′

=

∥hϵ∥δ′ + [hϵ]α′,δ′ where

∥h∥δ′ := sup
x∈R

|h(x)|
(1 + |x|)δ′

, and [h]α′,δ′ := sup
x∈R

(1 + |x|)−δ′ sup
|y−x|≤1

|h(x)− h(y)|
|x− y|α′ .

To prove (4.8), the following fact will be useful to us: For any γ ∈ (0, 1), the γ-Hölder semi-

norm [f ]γ of a function f : [0, 1] → R is equivalent (as a seminorm) to the quantity given by

supn∈N,1≤k≤2n 2
γn|f(k2−n) − f((k − 1)2−n)|. This is proved as an intermediate step in the stan-

dard proof of the classical Kolmogorov-Chentsov criterion.

The exact choices of α′, δ′ will be specified later, but for now let them denote generic constants.
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Now to prove (4.8) let us write for a function h,

∥h∥δ′ ≤ sup
n∈Z

(1 + |n|)−δ′
(
|h(n)|+ sup

x∈[n,n+1]

|h(x)− h(n)|
)

≤ sup
n∈Z

(1 + |n|)−δ′
(
|h(n)|+ sup

x∈[n,n+1]

|h(x)− h(n)|
|x− n|α′

)
≲ sup

n∈Z
(1 + |n|)−δ′

(
|h(n)|+ sup

r∈N,1≤k≤2r
2α

′r|h(n+ k2−r)− h(n+ (k − 1)2−r)|
)
,

where ≲ denotes the absorption of some universal constant which can depend on α′, δ′ but not on

the function h. Likewise let us note that

[h]α′,δ′ ≲ sup
n∈Z

(1 + |n|)−δ sup
r∈N,1≤k≤2r

2α
′r|h(n+ k2−r)− h(n+ (k − 1)2−r)|.

Consequently we find that

∥h∥Cα′
δ′

≲ A(h, δ′) +B(h, α′, δ′),

where

A(h, δ′) := sup
n∈Z

(1 + |n|)−δ′ |h(n)|,

B(h, α′, δ′) := sup
n∈Z

(1 + |n|)−δ′ sup
r∈N,1≤k≤2r

2α
′r|h(n+ k2−r)− h(n+ (k − 1)2−r)|.

Now, with hϵ as given in the lemma statement, let us bound these terms A(hϵ, δ′) and B(hϵ, α′, δ′)

individually to obtain (4.8). We will do this by using the hypotheses in the lemma. Note that by a

brutal union bound and Markov’s inequality followed by the hypothesis ∥hϵ(x)∥p ≤ (1+ |x|)δ, we
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have

P(A(hϵ, δ′) > a) ≤
∑
n∈Z

P(|hϵ(n)| > (1 + |n|)δ′a)

≤
∑
n∈Z

a−p(1 + |n|)−δ′pE[|hϵ(n)|p]

≤ a−p
∑
n∈Z

(1 + |n|)(δ−δ′)p,

The series converges as long as δ′ is chosen so that (δ− δ′)p < −1, for instance δ′ := 1
2
(1+ δ+ 1

p
)

which is less than 1 by the hypothesis that p > (1− δ)−1. Next we control B, which will also just

use a brutal union bound and Markov’s inequality:

P(B(hϵ, α′, δ′) > a) ≤
∑
n∈Z
r∈N

1≤k≤2r

P(2α′r|hϵ(n+ k2−r)− hϵ(n+ (k − 1)2−r)| > (1 + |n|)δ′a)

≤
∑
n∈Z
r∈N

1≤k≤2r

a−p2α
′pr(1 + |n|)−δ′pE

∣∣hϵ(n+ k2−r)− hϵ(n+ (k − 1)2−r)
∣∣p

≤ a−p
∑
n∈Z
r∈N

1≤k≤2r

2(α
′−α)pr(1 + |n|)(δ−δ′)p

= a−p
∑
n∈Z
r∈N

2

[
1+(α′−α)p

]
r(1 + |n|)(δ−δ′)p

The series converges so long as (δ− δ′)p < −1 and 1+ (α′−α)p < 0. We already chose δ′ earlier

so as to satisfy the condition (δ − δ′)p < −1. Now α′ can be chosen for instance 1
2
(α − 1

p
) which

is positive since p > α−1.

4.3.5 More general models and further problems

One may ask the question of how robust the above method of proof is. The answer is that it is

generalizable to more complex systems than ASEP, but it is not all-encompassing. More precisely,

the method is applicable to any particle system where
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• both (M) and (A) hold.

• one has a discrete martingale equation as in (4.6).

• the discrete martingales from (4.6) satisfy (4.7).

Then one can essentially copy and paste the proof above (with minor modifications) to prove joint

convergence in those systems as well.

For instance, by taking λi = 0 in Theorem 4.2.3, our method will also work to show joint con-

vergence of the nearest-neighbor symmetric simple exclusion process to the Edwards-Wilkinson

fixed point. Actually this is even simpler, as one need not perform a nonlinear transform to obtain

a discrete SPDE as in (4.6). The height function itself will satisfy an equation similar to (4.6) with

the martingales satisfying (4.7). The proofs of all other propositions and lemmas work in precisely

the same way as done above.

Less trivial examples of systems satisfying all three of the points above are higher-spin misan-

thrope processes. One concrete example of such a particle system is the ASEP(q, J) model from

[47]. This comes from the generator (4.4) on {0, ..., J}Z by taking

b(1, a, b) :=
1

2[J ]q
qa−b−(J+1)[a]q[J − b]q, b(−1, a, b) :=

1

2[J ]q
qa−b−(J+1)[J − a]q[b]q,

where [a]q :=
qq−q−a

q−q−1 for q ∈ (0, 1). ASEP(q, J) satisfies (A) as well as (M) thanks to the nearest-

neighbor interaction. The main result of [47] then proves convergence of the associated (diffusively

scaled and renormalized) height function to the KPZ equation by scaling the model parameter as

q = e−ϵ. Note that this recovers the results of [16] by setting J = 1. Proposition 2.1 in [47]

says precisely that (4.6) and (4.7) are satisfied with Zt defined in expression (1.8) there and aϵ, bϵ

defined accordingly in (4.5). We then have the following result:

Theorem 4.3.11. Theorems 4.3.7 and 4.3.8 still hold if we replace ASEP by ASEP(q, J), scaling q
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as e−ϵ in the model parameters above.

Proof. The proof of Lemma 4.3.2 holds essentially verbatim as given. For the proof of Lemma

4.3.3, we need to replace (4.6) with the appropriate modification and then verify that (4.7) still

holds. See equation (1.8) of [47] for the appropriate modification of the discrete equation (4.6),

and see Proposition 2.1 of [47] for the proof that (4.7) still holds. The proof of Lemma 4.3.5 still

holds verbatim, since height functions which are viable for ASEP are still viable for ASEP(q, J)

(after perhaps multiplying by 2 in the case that J is even). In the proofs of Proposition 4.3.6 and

Theorem 4.3.7, the argument requires a slight modification: on the probability space (Ω,F ,P) one

should just take the Poisson clocks to be of rate one, and to account for the jump rate differences

one should instead add i.i.d. uniform variables to each bond, which are independent of the Poisson

clocks. The reason for this is discussed in Subsection 3.1: if J > 1 then the construction of the

basic coupling is slightly more complicated than for single-spin systems. The proof of Theorem

4.3.8 is unchanged.

Examples of interesting systems that do not satisfy property (M) are the non-simple exclusion pro-

cesses studied for instance in [57, 153]. These processes have a generator similar to (4.4), the only

difference is that non-neighboring sites may interact with one another, so b can be a function from

Z × {0, ..., J}2 → [0, 1] and the sum in (4.4) would be over all pairs (x, y) ∈ Z2. Particles may

jump over other particles in these systems, which locally allows height functions to overtake one

another. These systems still satisfy (A), and thus our proof still works as long as the two sequences

of near-stationary initial data are coupled so that one always dominates the other (Lemma 4.3.3),

however for arbitrary sequences one probably needs to use a different method without appealing to

a black box like Theorem 4.2.3. For instance one can hope to directly study the quadratic variations

appearing in (4.6).

Then there are also open boundary systems such as those considered in [45]. These do seem

to satisfy (M) but the missing part of the argument is the boundary analogue of Theorem 4.2.3.

Furthermore, there are also discrete-time vertex models and their degenerations, such as those
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studied in [48, 71, 41, 113], for which KPZ fluctuations are known. We do not know if these

systems fall within the scope of our work, since the rules of their evolution are more complex and

do not exactly fit the framework of the misanthrope-type exclusion processes we have described

in Subsection 3.1. In particular it is unclear what exactly the basic coupling even means for these

models. Some of the aforementioned systems may be explored in future work.

Here is another direction in which one can hope to generalize Theorem 4.3.7. Rather than making

the model more complicated, one can instead hope to strengthen the topology in which conver-

gence occurs. Specifically one can hope to prove uniform convergence of the entire stochastic flow

of ASEP to that of the KPZ equation, on compact subsets of the space of continuous functions.

More precisely, fix a compact setK ⊂ C α
δ (R) and letKϵ ⊂ Vϵ∩C α

δ be a sequence of compact sets

that converge to K in the sense of Hausdorff distance, as ϵ→ 0 (where Vϵ was defined just before

Lemma 4.3.5). Consider the random maps Φϵ
t : Kϵ → C(R) which (for a fixed realization of the

Poisson clocks) sends a rescaled initial height function h to the height profile at time t of the ASEP

profile started from h and whose dynamics are run according to those Poisson clocks. Consider

also the continuum version Φ : K → C(R) which (for a fixed realization of ξ) sends a function

h to the time t solution of the KPZ equation started from h and driven by ξ. Let G(Φϵ
t) denote

the set of all (h,Φϵ
t(h)) such that h ∈ Kϵ, and likewise let G(Φt) denote the set of all (h,Φt(h))

such that h ∈ K. Also let dH denote the Hausdorff distance on compact subsets of C(R)× C(R)

(one could also hope to use the stronger topology of C α
δ (R) × C α

δ (R)). Then one can hope to

prove convergence of the entire flow (Φϵ
t)t∈[0,T ] to (Φt)t∈[0,T ] where the convergence is meant to be

interpreted, for instance, in the sense that (via Skorohod’s representation theorem) there exists a

coupling of all Φϵ
t,Φt onto some probability space and some α ∈ (0, 1/2) such that

lim sup
δ→0

lim sup
ϵ→0

[
sup
t∈[0,T ]

dH(G(Φ
ϵ
t), G(Φt)) + sup

|s−t|≤δ

dH(G(Φ
ϵ
t), G(Φ

ϵ
s))

|t− s|α ∨ ϵα

]
= 0,

where the extra factor ϵα in the denominator is to account for jumps. Theorem 4.3.7 and Remark
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4.3.4 show (in some sense) that convergence of these flows holds in the sense of finite-dimensional

distributions, but extending the convergence to this uniform Hölder sense might be more interest-

ing. The goal would be to prove this for arbitrary compact sets K and arbitrary approximating

sequences Kϵ. We do not have strong enough spatial or temporal estimates required to do this,

except for the trivial case where K,Kϵ are all finite sets with cardinality bounded in ϵ, in which

case the methods of [16] combined with our methods used to prove Theorem 4.3.7 are enough.
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Chapter 5: A dynamical systems perspective on Strassen’s Law

This chapter is based on joint work with Yier Lin. A result of Arcones [6] implies that if a measure-

preserving linear operator S on an abstract Wiener space (X,H, µ) is mixing, then the set of limit

points of the random sequence ((2 log n)−1/2Snx)n∈N equals the unit ball of H for a.e. x ∈ X .

We extend this result to the case of a continuous parameter n and higher Gaussian chaoses, and we

also prove a contraction-type principle for Strassen laws. We then use these extensions to recover

or prove Strassen-type laws for a broad collection of processes derived from a Gaussian measure,

culminating with a general machinery to derive “nonlinear" Strassen laws for singular SPDEs such

as Φ4
2 and KPZ.

5.1 Introduction

The law of the iterated logarithm for Brownian motion states that if B is a standard Brownian mo-

tion then lim supt→0(2t log log(1/t))
−1/2Bt = 1. Strassen in a seminal work [141] generalized this

statement to show the functional form of this statement, namely that if we let Bϵ(t) = ϵ−1/2B(ϵt)

then the set of limit points as ϵ→ 0 in C[0, 1] of the sequence {(2 log log(1/ϵ))−1/2Bϵ}ϵ is almost

surely equal to the unit ball of its Cameron-Martin space. Since Strassen’s original work there has

been a tremendous effort resulting in a large literature expanding the scope of the theorem into

many different settings including invariance principles and Banach space-valued processes [104,

103, 76, 4], Gaussian processes and higher chaoses [127, 77, 75, 6], iterated processes [28, 6, 50,

123], stronger topologies [13], sharper envelopes [134], as well as more complicated stochastic

processes driven by multiparameter fields and fractional processes [131, 55, 114, 128, 67], etc. For

surveys of classical topics and results on the law of the iterated logarithm, see [109, Chapter 8] or

[102, 18].
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The goal of the present paper is to extend Strassen’s law in yet another general direction, related to

many of the aforementioned extensions, eventually culminating with a compact limit set theorem

for the small-noise regime of subcritical singular SPDEs such as KPZ and Φ4
d, which have been

of popular interest in the probability literature recently, see e.g. [40, 33, 46], etc. One difference

from the aforementioned results is that we take a dynamical-systems and semigroup-theory per-

spective on Strassen’s law, rather than considering an arbitrary sequence of random variables in a

Banach space. We are uncertain if this perspective is novel, or if it merely provides a convenient

notational framework to summarize proof methods that may already be well-known to experts in

the area. Nonetheless the dynamics perspective does allow us to concisely recover and generalize

some of the more classical results cited above, in particular our main result Theorem 5.1.3 below

will recover some of the main results from [104, 131, 13, 75, 28, 75, 50, 6, 123, 55], see Section 5.4.

First we establish some notation. If H is any real Hilbert space and S : H → H is any bounded

operator, we denote by S∗ its adjoint operator with respect to the inner product of H . Through-

out this work we will use the notion of abstract Wiener spaces introduced by Leonard Gross [78].

These are formal triples (X,H, µ) where X is a Banach space, µ is a centered Gaussian measure

on X , and H ↪→ X is the embedded Cameron-Martin space (see e.g. [85]).

Let (X,H, µ) be an abstract Wiener space. Given any bounded linear map S : H → H satisfying

SS∗ = I , there exists a µ-a.e.-defined Borel-measurable linear extension Ŝ on X which is unique

up to a.e. equivalence (see Proposition 3.46 and Theorem 3.47 of [85]). Moreover the condition

SS∗ = I guarantees that this extension is measure-preserving. In the sequel we will not distinguish

between Ŝ and S and simply write Ŝ = S.

The following result is most likely attributable to Arcones [6, Theorem 2.1], and the main fo-

cus of the present paper will be to extend it to continuous-parameter settings and higher Gaussian

chaoses, ultimately culminating in a nonlinear version of Strassen’s Law for some singular SPDEs.

Proposition 5.1.1. Let (X,H, µ) be an abstract Wiener space. Let S : H → H be a bounded
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operator and write SN := SN . Suppose S satisfies the following two properties:

1. SS∗ = I .

2. ⟨SNx, y⟩H → 0 as N → ∞ for all x, y ∈ H.

Then for µ-almost every x ∈ X , the set of limit points of { SNx√
2 logN

: N ∈ N} is equal to the unit

ball of H.

Just to be clear, we are talking about limits points with respect to the topology of X and SNx is

meant to be understood in terms of the unique measurable linear extensions mentioned above if

x ∈ X . We will see later (Lemma 5.2.3) that condition (2) can be stated as
⋂
n∈N Im(S∗

N) = {0},

where Im(S) denotes the image of S. This is easier to check in certain instances.

Now we will formulate a continuous-time version of Proposition 5.1.1. Recall that a strongly

continuous semigroup on a Banach space X is a semigroup (St)t≥0 of bounded operators from

X → X such that ∥Stx− x∥X → 0 as t→ 0 for all x ∈ X . Moreover, if X is a Banach space and

if γ : [0,∞) → X is any function, then we call x ∈ X a cluster point at infinity of γ if there exists

a sequence tn ↑ ∞ such that ∥γ(tn) − x∥X → 0. Similarly if γ : (0, 1] → X then we will call

x ∈ X a cluster point at zero of γ if there exists a sequence tn ↓ 0 such that ∥γ(tn)− x∥X → 0.

Proposition 5.1.2. Let (X,H, µ) be an abstract Wiener space. Suppose that (St)t≥0 is a family of

bounded operators from H → H satisfying the following four properties:

1. St+u = StSu for all t, u ≥ 0.

2. StS∗
t = I .

3. ⟨Stx, y⟩H → 0 as t→ ∞ for all x, y ∈ H .

4. (St)t≥0 extends to a strongly continuous semigroup on the larger space X.

Then for µ-almost every x ∈ X , the set of cluster points at infinity of { Stx√
2 log t

: t ≥ e} is equal to

the unit ball of H.

244



Now let us relate this to the usual law of the iterated logarithm. Recall that a strongly continuous

multiplicative semigroup is a family of bounded operators (Rϵ)ϵ∈(0,1] satisfying RϵRδ = Rϵδ and

moreover ∥Rϵx− x∥X → 0 as ϵ ↑ 1 for all x ∈ X . Then by setting St := Re−t , Proposition 5.1.2

can be restated in terms of multiplicative semigroups as follows.

Let (X,H, µ) be an abstract Wiener space. Suppose that (Rϵ)ϵ∈(0,1] is a family of bounded op-

erators from H → H satisfying the following four properties:

1. RϵRδ = Rϵδ for all ϵ, δ ∈ (0, 1].

2. RϵR
∗
ϵ = I .

3. ⟨Rϵx, y⟩H → 0 as ϵ→ 0 for all x, y ∈ H .

4. (Rϵ)ϵ∈(0,1] extends to a strongly continuous semigroup on the larger space X.

Then for µ-almost every x ∈ X , the set of cluster points at zero of { Rϵx√
2 log log(1/ϵ)

: ϵ ∈ (0, e−e]} is

equal to the unit ball of H.

The quintessential example of such a setup is the classical Wiener space X = C[0, 1], H =

H1
0 [0, 1], and µ is the law of a standard Brownian motion. Then one sets Rϵf(x) = ϵ−1f(ϵ2x) and

the above statement recovers the classical version of Strassen’s law. We will give a self-contained

proof of Propositions 5.1.1 and 5.1.2 in Subsection 5.2.2 below, as well as a partial converse which

says that Strassen’s law necessarily implies ergodicity of S.

Next let us discuss our main result of the paper, the generalization to higher chaos and the contrac-

tion principle. If (X,H, µ) is an abstract Wiener space, then the nth homogeneous Wiener chaos,

denoted by Hk(X,µ) is defined to be the closure in L2(X,µ) of the linear span of Hk ◦ g as g

varies through all elements of the continuous dual space X∗, where Hk denotes the kth Hermite

polynomial (normalized so that Hk(Z) has unit variance for a standard normal Z). Letting Y be
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another separable Banach space, a Borel-measurable map T : X → Y is called a chaos of order k

over X if f ◦ T ∈ Hk(X,µ) for all f ∈ Y ∗. For such a chaos we may define (following [108, 91])

its “homogeneous form" Thom : H → Yi by the Bochner integral formula

Thom(h) :=

∫
X

T (x+ h)µ(dx) =
1

k!

∫
X

T (x)⟨x, h⟩kµ(dx),

which may be shown to converge as shown in the appendix. Our main result in this work is the

following, which will be restated as Corollary 5.2.21 below.

Theorem 5.1.3. Let (X,H, µ) be an abstract Wiener space, let (Rϵ)ϵ∈(0,1] be a family of Borel-

measurable a.e. linear maps fromX → X which are measure-preserving and satisfy ⟨Rϵx, y⟩H →

0 as ϵ → 0 for all x, y ∈ H . Let T i : X → Yi be a chaos of degree ki over X for 1 ≤ i ≤ m.

Suppose that there exist strongly continuous semigroups (Qi
ϵ)ϵ∈(0,1] of operators from Yi → Yi for

1 ≤ i ≤ m with the property that

T i ◦Rϵ = Qi
ϵ ◦ T i, µ-a.e. for all ϵ ∈ (0, 1] and 1 ≤ i ≤ m. (5.1)

Let Z be a Banach space, and let M ⊂ Y1 × · · ·Ym be a closed subset, such that for all δ > 0

µ({x ∈ X : (δk1T 1(x), ..., δkmTm(x)) ∈ M}) = 1.

Let Φ : M → Z be continuous (possibly nonlinear). Then the compact set

K := {(T 1
hom(h), ..., T

m
hom(h)) : h ∈ B(H)}

is necessarily contained in M, and moreover the set of cluster points at zero of the random set

{
Φ
(
(2 log log(1/ϵ))−k1/2T 1(Rϵx), . . . , (2 log log(1/ϵ))

−km/2Tm(Rϵx)
)
: ϵ ∈ Q ∩ (0, 1]}

is almost surely equal to Φ(K).
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Note that one recovers the previous result by setting m = 1, k1 = 1, Y1 = X = Z = M, and

making Φ the identity map. It may seem unclear what the application of such a generalization is,

but a number of examples recovering previously known results are given in Section 5.4 below. One

particular example of interest (which sparked our interest in this problem) is the following.

Theorem 5.1.4. For ϵ ∈ (0, 1/3] let Cϵ := (log log(1/ϵ))1/2, and let hϵ denote the Hopf-Cole

solution to the KPZ equation

∂th
ϵ = ∂2xh

ϵ + Cϵ(∂xh
ϵ)2 + ξ,

with initial data h(0, x) = 0. Then for any s, y ≥ 0 the set of limit points as ϵ ↓ 0 in Cs,y :=

C([0, s] × [−y, y]) of the sequence of functions C−1
ϵ ϵ−1/2hϵ(ϵ2t, ϵx) is a.s. equal to the compact

set KZero given by the closure in Cs,y of the set of smooth functions h satisfying

h(0, x) = 0,
∥∥∂th− ∂2xh− (∂xh)

2
∥∥
L2([0,s]×[−y,y]) ≤ 1.

If we instead let hϵ(0, x) be a two sided Brownian motion (fixed for different values of ϵ) then the

same result holds but with compact limit set KBr given by the closure of smooth functions h ∈ Cs,y

satisfying

h(0, 0) = 0, ∥∂xh(0, ·)∥L2[−y,y] ≤ 1,
∥∥∂th− ∂2xh− (∂xh)

2
∥∥
L2([0,s]×[−y,y]) ≤ 1.

If we likewise define kϵ to be the solution of

∂tk
ϵ = ∂2xk

ϵ + C−1
ϵ (∂xk

ϵ)2 + ξ,

then the same compact limit set results hold for C−1
ϵ ϵ1/2kϵ(ϵ−2t, ϵ−1x). Moreover, the same results

hold in stronger topologies given by parabolic Holder seminorms up to but excluding exponent 1/2

(see Definition 5.4.7).
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In the theorem statement, we are interpreting the derivatives in a weak sense, so the L2 norms are

defined (by convention) to be infinite if the weak derivatives ∂th, ∂xh, ∂2xh do not exist.

Note that in the first result stated in the theorem (for the family hϵ), the nonlinearity must be scaled

along with the parameter ϵ, so that it blows up in the ϵ→ 0 limit. If we did not do this then the lim-

iting compact set would simply agree with that of the linearized equation ∂thLinear = ∂2xhLinear+ξ,

namely

KLinear := {h ∈ Cs,y : h(0, x) = 0,
∥∥∂th− ∂2xh

∥∥
L2([0,s]×[−y,y]) ≤ 1}.

Indeed this can be proved by decomposing hKPZ = hLinear+v where hKPZ is the Hopf-Cole solu-

tion to KPZ with initial data zero and v is a remainder term which has better regularity than hLinear

(see e.g. Theorem 3.19 of [132]). Then under the scaling necessary to obtain Strassen’s law, it is

easy to check that the remainder term converges a.s. to zero in the topology of C([0, s]× [−y, y])

and the set of limit points for the part corresponding to hLinear can be shown to be KLinear by

applying Proposition 5.1.2 above (see Example 5.4.6 below).

Likewise in the second result stated above (for the family kϵ), the nonlinearity must be scaled

along with the parameter ϵ so that it vanishes in the ϵ → 0 limit. If we did not do this then the

asymptotics would be wrong entirely and instead one would need to apply a scaling that respects

the tail behavior of the so-called KPZ fixed point [117], namely (log log(1/ϵ))2/3, see [53].

The fact that the nonlinearity of the KPZ equation must be scaled along with the parabolic scaling

of space-time to obtain a nontrivial limit set in the Strassen law can be seen as a manifestation

of the so-called weak KPZ universality, which roughly states that the KPZ equation is only scale-

invariant up to a one-parameter family of equations which interpolates between two bona fide fixed

points [40]. The manner in which we prove the above theorem uses the theory of regularity struc-

tures [86] and is robust enough to prove similar theorems for other rough equations such as Φ4
2 and

Φ4
3 (modulo the difficulty of developing the solution theory for the latter equation on the full space
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R3 using regularity structures). We also prove a similar result for mollified smooth versions of the

noise, specifically we show that even though mollifying is not a measure-preserving operation on

the noise, it is enough to be “asymptotically rapidly measure-preserving," see Subsection 5.4.3.

In principle other theories such as paracontrolled products [79] should also be able to prove such

SPDE results, but the main problem is the nonlocality of the Bony paraproduct decomposition

makes it difficult to check the scale invariance condition (i.e. the commutation relation) in Theo-

rem 5.1.3, which is inherently a local phenomenon.

5.2 Proofs of main theorems

5.2.1 Ergodicity properties of measure preserving linear operators

In this subsection we review the fact that the ergodic properties of measure-preserving linear opera-

tors on an abstract Wiener space are necessarily determined by their action on the Cameron-Martin

space.

Definition 5.2.1. Let (X,H, µ) be an abstract Wiener space, and letE ⊂ X be a Borel-measurable

linear subspace with µ(E) = 1. We say that S : E → X is an a.e. defined measure-preserving

linear map if µ(S−1(F )) = µ(F ) for all Borel subsets F ⊂ X.

Note that any a.e. defined measure preserving linear map may be measurably extended to all of X

by defining it to be zero outside of E (though this extension is no longer linear), and in this case

one still has µ(S−1(F )) = µ(F ) for all Borel sets F .

Lemma 5.2.2. Consider the set of a.e.-defined measure-preserving linear maps S : E → X where

E is some Borel linear subspace of measure 1. The set of all such linear transformations (modulo

a.e. equivalence) is in bijection with the set of bounded linear maps from H → H satisfying

SS∗ = I . Moreover the bijection is given by simply restricting S to H .

Proof. We need to show that any a.e. defined measure-preserving linear transformation fromX →

X necessarily maps H → H boundedly and satisfies SS∗ = I on H . To prove this, let S : E →
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X be a measure preserving Borel-measurable linear map, where E ⊂ X is a Borel measurable

linear subspace satisfying µ(E) = 1. It is known (see Proposition 3.42 in [85]) that H equals

the intersection of all Borel-measurable linear subspaces of X of measure 1. If F is any Borel-

measurable linear subspace of measure 1, then so is E ∩ S−1(F ), and thus x ∈ H implies x ∈

S−1(F ) so that Sx ∈ F . Since F is arbitrary, we have shown that Sx ∈ H for all x ∈ H . Thus S

is a globally defined Borel measurable linear map from H → H , from which it follows that S is

automatically bounded (see remark 3.38 in [85]). In order for S to be measure-reserving, it must

clearly satisfy SS∗ = I (e.g. by computing the covariance structure of S∗µ).

Conversely, given any bounded linear map S : H → H satisfying SS∗ = I , there exists a µ-a.e.-

defined Borel-measurable linear extension Ŝ on X which is unique up to a.e. equivalence (this

follows from e.g. Proposition 3.46 and Theorem 3.47 of [85]). Moreover the condition SS∗ = I

guarantees that this extension is measure-preserving (in the sequel we simply write Ŝ = S without

specifying that it actually denotes the unique extension).

Next we have a lemma about the structure of such measure-preserving transformations, namely

that they can be orthogonally decomposed into a unitary part and a part converging strongly to

zero.

Lemma 5.2.3. Let H be a Hilbert space and consider any linear operator S : H → H satisfying

SS∗ = I . Then we can orthogonally decompose H = A⊕ B where A and B are invariant under

S and S∗. Moreover S : A → A is unitary and ∥Snx∥H → 0 for all x ∈ B. Explicitly one can

write A =
⋂
n Im(S∗

n) and B =
⋃
n∈N ker(Sn), which is the closure of

⋃
n∈N ker(Sn) in H .

Proof. Since SS∗ = I , we have SnS∗
n = I . It is clear that S and S∗ both leave

⋂
n∈N Im(S∗

n)

invariant and S∗S is the identity there. For each n, one has H = Im(S∗
n) ⊕ ker(Sn) via the

decomposition x = S∗
nSnx + (x − S∗

nSnx). Hence, S∗
nSn is merely the projection map from H

onto Im(S∗
n) and indeed the two given subspaces A,B are orthogonal. Moreover it is clear that

∥Snx∥ → 0 on the closure of
⋃
n∈N ker(Sn), since ∥Snx∥ is eventually zero for all x in the dense

subspace
⋃

ker(Sn).
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Given Lemma 5.2.2, it is natural then to ask what conditions on S, when viewed as a map from

H → H , ensure that the measure-preserving extension S is ergodic, weakly mixing and strongly

mixing. Our first proposition addresses this.

Proposition 5.2.4. Let (X,H, µ) be an abstract Wiener space. Consider any linear operator

S : H → H satisfying SS∗ = I . Then we have the following equivalences.

1.
⋂
n≥1 σ(Sn) is a 0-1 sigma algebra if and only if ∥Snx∥H → 0 as n→ ∞ for all x ∈ H.

2. S is mixing if and only if ⟨Snx, y⟩H → 0 as n→ ∞ for all x, y ∈ H .

3. S is ergodic if and only if any of the following equivalent conditions hold:

(a) 1
n

∑n
j=1⟨Sjx, y⟩kH → 0 as n→ ∞ for all x, y ∈ H and k ∈ N.

(b) 1
n

∑n
j=1 |⟨Sjx, y⟩H | → 0 as n→ ∞ for all x, y ∈ H.

(c) S is weakly mixing.

(d) S does not admit an invariant subspace of dimension two, on which it acts by rotation.

(e) The spectral measure µx of S is atomless for every x in the unitary part of S (the latter

was defined in Lemma 5.2.3).

In various formulations, these statements have been well-known for several decades. For example,

Item (3e) is a reformulation of the well-known Maruyama theorem on ergodicity of shifts of Gaus-

sian fields [116]. The equivalence of ergodicity and weak mixing is a special case of e.g. [135].

Regarding (2) and (3), Ustunel and Zakai have proved stronger results than these, even considering

ergodic random (nonlinear) rotations of the Wiener space, see e.g. [142, 143, 144]. We are not

aware of Item (1) in the literature, but it is basically a version of Blumenthal’s 0-1 law for Gaussian

processes (and indeed implies it for Brownian motion). We give a proof of the proposition only for

the sake of completeness.

In the proof we will use the standard fact that for each h ∈ H there exists an a.e. defined linear

extension of the map from H → R given by v 7→ ⟨v, h⟩H . By an abuse of notation we denote this
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linear extension as ⟨·, h⟩ as well, and the map from H → L2(X,µ) given by h 7→ ⟨·, h⟩ is a linear

isometry (in particular the law of each ⟨·, h⟩ is a Gaussian of variance ∥h∥2H with respect to µ), see

e.g. Section 3.2 in [85].

Proof of Item (1). Assume first that ∥Snx∥H → 0 for all x ∈ H. Then one can decompose H into

an orthogonal direct sum: H =
⊕

n≥0Hn where Hn := ker(Sn+1) ∩ Im(S∗
n), via the formula

x =
∞∑
k=0

S∗
kSkx− S∗

k+1Sk+1x.

The series converges to x in H because the N th partial sum equals x− S∗
N+1SN+1x and we know

that ∥S∗
N+1SN+1x∥H ≤ ∥SN+1x∥H → 0. Moreover one easily checks that S∗

kSkx− S∗
k+1Sk+1x ∈

ker(Sk+1) ∩ Im(S∗
k), and that ker(Si) ∩ Im(S∗

i−1) is orthogonal to ker(Sj) ∩ Im(S∗
j−1) for i < j.

Let ξ be a B-valued random variable with law µ and define ξn to be the projection of ξ onto Hn.

Note that the ξn are independentX-valued random variables (but not necessarily iid). Note also that

Snξ is measurable with respect to {ξj}j≥n. Consequently
⋂
n≥1 σ(Snξ)⊆

⋂
n≥1 σ({ξj : j ≥ n}),

which by Kolmogorov’s 0-1 law is a 0-1 sigma algebra.

Conversely, suppose that ∥Snx∥ ̸→ 0 for some x ∈ H. Then by Lemma 5.2.3, the closed subspace

A :=
⋂
n≥0 Im(S∗

n) is nonzero. Letting ξ denote a random variable in X with law µ, let ξA denote

the projection onto A applied to ξ. Since S|A is unitary (again by Lemma 5.2.3) it is clear that⋂
n σ(Sn) contains at least σ(ξA), which is nontrivial since A ̸= {0} so that at least one nonzero

Gaussian random variable is measurable with respect to it.

Proof of Item (2). Suppose that ⟨Snx, y⟩H → 0 for all x, y ∈ H . We wish to show that as n→ ∞,

∫
X

f(Snx)g(x)µ(dx) → 0

for all bounded measurable functions f, g : X → R such that
∫
X
fdµ =

∫
X
gdµ = 0. By an

application of Cauchy-Schwarz and the measure-preserving property of Sn, it suffices to prove this
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in a dense subspace of L2(X,µ).

By using the Wick forumla (aka Isserlis’ theorem), one can easily show that the claim is at least

true whenever f and g are both of the form x 7→ p(⟨x, e1⟩, ..., ⟨x, ek⟩) for some k ∈ N, some

polynomial p : Rk → R and some orthonormal set of vectors e1, ..., ek in H . Then by a density

argument and the fact that the ⟨x, ei⟩ has Gaussian tails, one can extend this from k-variable poly-

nomials p to all continuous functions f, g : Rk → R with at-worst polynomial growth at infinity.

One can then extend to all bounded Borel-measurable functions f, g : Rk → R by density of con-

tinuous functions in L2(Rk, γk) where γk is the standard Gaussian measure on Rk.

Thus, to finish the argument, it suffices to show that the set of all functions of the form x 7→

f(⟨x, e1⟩, ..., ⟨x, ek⟩), where f : Rk → R is bounded and measurable, is dense in L2(X,µ). To

show this, choose an orthonormal basis {ej} for H and Let Fn denote the sigma algebra gener-

ated by ⟨x, e1⟩, ..., ⟨x, en⟩. Let f ∈ L∞(X,µ) and let fn := E[f |Fn]. Then fn is bounded and

measurable and of the form x 7→ h(⟨x, e1⟩, ..., ⟨x, en⟩). Furthermore by martingale convergence

∥fn − f∥L2 → 0, completing the proof.

The converse direction is striaghtforward: if S is mixing, then apply the mixing definition to

f(x) := ⟨x, a⟩ and g(x) := ⟨x, b⟩ to conclude that ⟨Sna, b⟩ → 0.

Proof of Item (3). We are going to show that ergodicity implies (a) which implies (b) which im-

plies (c). Clearly (c) implies ergodicity. Then we show that (d) is equivalent to (e) for the unitary

part of the operator from the decomposition in Lemma 5.2.3. Then we will show that for unitary

operators, (e) holds if and only if (b) holds.

So assume that S is ergodic as a map from X → X. This is equivalent to the statement that∫
X

(
1
n

∑n
j=1 f(Sjx)

)
g(x)µ(dx) → 0 for all f, g ∈ L2(X,µ) such that

∫
X
fdµ =

∫
X
gdµ = 0.

Now fix k ∈ N and a, b ∈ H . Letting Hk denote the kth Hermite polynomial, we set f(x) :=

1√
k!
Hk(⟨x, a⟩) and g(x) := 1√

k!
Hk(⟨x, b⟩). Then

∫
X
f(Sjx)g(x)dµ = ⟨a, Sjb⟩kH (see e.g. [125]),

so by ergodicity we obtain (a).
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Now assume (a) holds. Let a, b ∈ H with ∥a∥ = ∥b∥ = 1. Fix ϵ > 0 and let p : [−1, 1] → R

be a polynomial such that supx∈[−1,1]

∣∣p(x) − |x|
∣∣ < ϵ. Since |⟨a, Sjb⟩| ≤ 1 for all j ∈ N,

it follows that 1
n

∑n
j=1

∣∣p(⟨a, Sjb⟩) − |⟨a, Sjb⟩|
∣∣ < ϵ. Moreover, since (a) holds we know that

1
n

∑n
j=1 p(⟨a, Sjb⟩) → 0. Consequently we find that lim supn

1
n

∑n
j=1 |⟨a, Sjb⟩H | ≤ ϵ. Since ϵ is

arbitrary, it follows that (b) holds.

Now assume that (b) holds. To show (c), we want that 1
n

∑n
j=1

∣∣ ∫
X
f(Sjx)g(x)µ(dx)

∣∣ → 0 for

all f, g ∈ L2(X,µ) that have mean zero. First note that, by essentially the same series of den-

sity arguments given in the proof of Item (2), it suffices to prove this whenever f, g are of the

form x 7→ p(⟨x, e1⟩, ..., ⟨x, ek⟩) for some k ∈ N, some polynomial p : Rk → R and some

orthonormal set of vectors e1, ..., ek in H . In turn, by Wick formula it suffices to show that

1
n

∑n
j=1 |⟨a, Sjb⟩H |k → 0 for all a, b ∈ H and all k ∈ N. Note that we have |⟨a, Sjb⟩| ≤ ∥a∥∥b∥,

so |⟨a, Sjb⟩H |k ≤ ∥a∥k−1∥b∥k−1|⟨a, Sjb⟩H |. Summing over j and applying (b), we conclude

1
n

∑n
j=1 |⟨a, Sjb⟩H |k → 0.

It is straightforward to show that (using the spectral theorem of the unitary operator) atoms of

µx correspond precisely to complex eigenvalues of S, i.e., two-dimensional subspaces on which S

acts by rotation. Thus (d) implies (e) and vice versa (by focusing only on the unitary part of the

operator).

Finally we explain why (e) is equivalent to (b). The spectral measure µx of S is supported on

T := {z ∈ C : |z| = 1} and defined via its Fourier transform: µ̂x(k) := ⟨Skx, x⟩ where k ∈ Z

and Sk := S∗
−k if k < 0. Thus, to show that (b) and (e) are equivalent, we just need to show that a

finite measure µ on T is atomless if and only if 1
n

∑n
k=−n |µ̂(k)| → 0 as n → ∞. This is a direct

consequence of Wiener’s Lemma.
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5.2.2 Strassen’s law for mixing linear operators

In this subsection we prove Propositions 5.1.1 and 5.1.2. First we need three preliminary lemmas

and then we will formulate the result as Theorem 5.2.10. Some of the results given in this sub-

section are due to Arcones [6] and others, but we state the proofs because some of these will be

important in generalizing later.

Lemma 5.2.5. Let (Xi)i≥1 be a stationary sequence of real-valued jointly Gaussian random vari-

ables. Suppose that var(X0) = 1 and cov(X0, Xn) → 0 as n→ ∞. Then

lim sup
n→∞

Xn√
2 log n

= 1, a.s.

This lemma is classical and is a special case of Lemma 2.1 of [6], which in turn is an improvement

of results from [106, 124]. Nonetheless we give a proof just to illustrate the fact that this is the only

place where the mixing condition is used, and is also the reason why we are not able to extend the

result to the ergodic case (i.e., we cannot prove or find a counterexample to the above fact under

the weaker assumption 1
n

∑n
1 |cov(X0, Xn)| → 0).

Proof. Define cn := cov(X0, Xn) and fix ϵ > 0. Choose r ∈ N such that cn < ϵ for n ≥ r. Let

Yn := ϵξ +
√
1− ϵZn where ξ, Zn are iid standard Gaussians.

Note that if i < j then cov(Yi, Yj) = ϵ > cr(j−i) = cov(Xri, Xrj). Therefore by Slepian’s Lemma

[139] we find that

E[max{Y0, Y1, Y2..., Yn}] ≤ E[max{X0, Xr, X2r, ..., Xnr}]

for any n ∈ N. Since the Zn are i.i.d. standard normals it is clear that

lim
n→∞

(2 log n)−1/2E[max
1≤i≤n

Zi] = 1
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and therefore

lim
n→∞

(2 log n)−1/2E[max
1≤i≤n

Yi] =
√
1− ϵ.

Consequently we find that

lim sup
n→∞

(2 log n)−1/2E[max
0≤i≤n

Xri] ≥
√
1− ϵ.

Because limn→∞
logn)1/2

(log(rn))1/2
= 1 for any r ∈ N, we get

lim sup
n→∞

(2 log n)−1/2E[max
0≤i≤n

Xi] ≥
√
1− ϵ.

Since ϵ is arbitrary this means that

lim sup
n→∞

(2 log n)−1/2E[max
0≤i≤n

Xi] ≥ 1.

LettingGn := (2 log n)−1/2max1≤i≤nXi we claim that there exists a random variableW ≥ 0 with

E[W ] <∞ such that supnGn ≤ W . Indeed, it is clear that

Gn ≤ max1≤i≤n |Xi|
max{1, log i}1/2

≤ supk∈NXk

max{1, log k}1/2
=: W.

To see that W is integrable, note that if a > 2, then by a union bound we have

P(W > a) ≤
∑
k∈N

P(Xk > a(log k)1/2) ≤ C
∑
k≥1

k−a
2/2 ≤ Ce−ca

2

where C, c > 0 are appropriately chosen constants, and we have used the fact that each Xk is a

standard Gaussian. Thus by the “reverse Fatou Lemma" we find that

E[lim sup
n→∞

(2 log n)−1/2 max
0≤i≤n

Xi] ≥ lim sup
n→∞

(2 log n)−1/2E[max
0≤i≤n

Xi] ≥ 1.

Note that, by replacing log n (and log k) with log(n + N) (and log(k + N)) throughout the proof
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so far, we can show that

E[lim sup
n→∞

(2 log(n+N))−1/2 max
0≤i≤n

Xi] ≥ 1,

for any N ∈ N. Since

(2 log(n+N))−1/2 max
0≤i≤n

Xi ≤ max
0≤i≤n

(2 log(i+N))−1/2Xi,

the previous expression implies that

E[sup
k∈N

(2 log(k +N))−1/2Xk] ≥ 1

for all N ∈ N. By stationarity of (Xi)i, we can replace Xk by Xk+N here to obtain

E[sup
k>N

(2 log k)−1/2Xk] ≥ 1

for all N ∈ N. Since supk>N(2 log k)
−1/2Xk ≤ W for all N ≥ 2, and since E[W ] < ∞, the

dominated convergence theorem shows that

E[lim sup
k→∞

(2 log k)−1/2Xk] = lim
N→∞

E[sup
k>N

(2 log k)−1/2Xk] ≥ 1. (5.2)

On the other hand, since each Xk is standard normal, it is clear that for any δ > 0,

∑
k∈N

P(Xk >
√

(2 + δ) log k) ≤
∑
k∈N

Ck−1−δ/2 <∞,

which implies via Borel Cantelli lemma that

lim sup
k→∞

(2 log k)−1/2Xk ≤ 1 (5.3)

almost surely. Now combining (5.2) and (5.3) completes the proof.

257



Next we deduce an easy corollary which generalizes the above lemma to RN . We denote the unit

sphere of RN to be the set of all points (a1, ..., aN) with
∑N

1 a
2
i = 1.

Corollary 5.2.6. Let (X⃗n)n≥1 be a stationary sequence of jointly Gaussian random variables in

RN , say X⃗n = (X1
n, X

2
n, ..., X

N
n ). Suppose that cov(X i

0, X
j
0) = δij and that cov(X i

0, X
j
n) → 0 as

n → ∞ for all 1 ≤ i, j ≤ N . Then the unit sphere of RN is contained in the set of limit points of

the random sequence ((2 log n)−1/2X⃗n)n≥1.

Proof. By Lemma 5.2.5, if we restrict our attention to only the first coordinate, then the set of

limit points of the random sequence ((2 log n)−1/2X⃗n)n≥1 must contain a point on the set A :=

{(a1, ..., aN) : a1 = 1}. On the other hand, by the same Borel-Cantelli argument used in proving

(5.3) (with Xk replaced by ∥X⃗k∥ where ∥ · ∥ denotes the Euclidean norm), it follows that the set of

limit points must be contained in the set B := {(a1, ..., aN) :
∑N

i=1 a
2
i ≤ 1}.

Since A∩B = {(1, 0, ..., 0)} it follows that (1, 0, ..., 0) is a.s. a limit point of the random sequence

((2 log n)−1/2X⃗n)n≥1. The fact that any point on the unit sphere is a limit point then follows from

rotational invariance of the conditions that cov(X i
0, X

j
0) = δij and cov(X i

0, X
j
n) → 0 (i.e., these

conditions remain true if we replace (X⃗n)n by (U(X⃗n))n for some orthogonal N × N matrix

U ).

Lemma 5.2.7. Let (X,H, µ) be an abstract Wiener space of infinite dimension. Let S(H) := {h ∈

H : ∥h∥H = 1} and let B(H) := {h ∈ H : ∥h∥H ≤ 1}. Then the closure in X of S(H) is B(H).

Proof. B(H) is a compact (hence closed) subset of X which contains S(H), so the set of limit

points of S(H) must be contained inB(H). Choose an orthonormal basis {en}n forH . Since en ∈

B(H), since B(H) is compact in X , and since en → 0 weakly in H , it follows that ∥en∥X → 0

as n → ∞. Now fix h ∈ H with ∥h∥H ≤ 1. Choose cn ∈ R such that ∥h + cnen∥H = 1. It is

clear that |cn| ≤ 2 (otherwise 1 = ∥cnen + h∥H ≥ |cn|∥en∥ − ∥h∥ > 2 − 1 = 1), and therefore

∥cnen∥X → 0. Thus h + cnen is a sequence in S(H) converging to h ∈ B(H) with respect to the

topology of X.
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Lemma 5.2.8. Let (X,H, µ) be an abstract Wiener space. Suppose that S : H → H is some

operator satisfying SS∗ = I . Let SN := SN . If ∥SNx∥H → 0, then for any a /∈ K there exists

ϵ > 0 such that

µ

({
x ∈ X :

Skx√
log k

∈ B(a, ϵ) i.o.

})
= 0.

Proof. By definition of the Cameron Martin space, for every x ∈ X , we have

sup{ℓ(x) : ℓ ∈ X∗,

∫
ℓ2dµ = 1} = ∥x∥H

(we set ∥x∥H = ∞ when x /∈ H). For any x ∈ X\K, there exists ℓ ∈ X∗ such that ℓ(x) >
√
2 and∫

X
ℓ2dµ = 1. For each n ∈ N, under µ, ℓ(Snx) is a standard Gaussian random variables. Using

Borel-Cantelli lemma and Gaussian tail bound, together with ℓ(x) >
√
2, there exist small enough

ϵx > 0 such that

P
({ ℓ(Snξ)√

log n

}∞
n=1

∈ B(ℓ(x), ϵx) i.o.
)
= 0

By making ϵx smaller, we have

P
({ Snξ√

log n

}∞
n=1

∈ B(x, ϵx) i.o.
)
= 0.

Lemma 5.2.9. [108, Equation (4.4)] Let µ be a centered Gaussian measure on a separable Banach

space, then for all a > 0

µ({x ∈ X : ∥x∥X > a+

∫
X

∥u∥Xµ(du)}) ≤ e−a
2/(2σ2),

where σ := sup∥f∥X∗≤1

∫
X
f(x)2µ(dx) = sup∥h∥H≤1 ∥h∥X .

Finally we are ready to prove the main result of the section, a restatement of Proposition 5.1.1 in

addition to a partial converse.

Theorem 5.2.10. Let (X,H, µ) be an abstract Wiener space. Let E ⊂ X be a Borel measurable

linear subspace of measure 1, and suppose S : E → X is linear and measure-preserving. If S is
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mixing, then the set of limit points of the random sequence ((2 log n)−1/2Snx)n∈N equals the unit

ball of H for a.e. x ∈ X . Conversely, if S is any measure-preserving linear operator such that the

set of limit points of the random sequence ((2 log n)−1/2Snx)n∈N equals the unit ball of H for a.e.

x ∈ X , then S must be ergodic.

Proof. Fix h ∈ H with ∥h∥H = 1, and let ϵ > 0. We wish to show that ∥(2 log n)−1/2Snx−h∥H <

ϵ infinitely often. To this end, let {ei}i be an orthonormal basis of H with e1 = h. Let Pk denote

the orthogonal projection onto the subspace Mk which is spanned by {ei}ki=1.

Choose some k ∈ N so that
∫
X
∥x− Pkx∥2Xµ(dx) < (ϵ/5)2. Then for all n we have that

P(∥Snξ − Pk(Snξ)∥X > a) = P(∥ξ − Pk(ξ)∥X > a) ≤ e−Ma2E[eM∥ξ−Pk(ξ)∥2X ] (5.4)

for any a > 0 and for any M > 0 such that the expectation on the right side is finite. By Lemma

5.2.9, it is true that
∫
X
eα∥x∥

2
ν(dx) is finite whenever α < (2

∫
X
∥x∥2ν(dx))−1, for any centered

Gaussian measure ν on X. Consequently in (5.4) we can take M to be (5/ϵ)2 and we can take a to

be ϵ
√
2 log n/4 and we find

∑
n∈N

P
(
∥Snξ − Pk(Snξ)∥X√

2 log n
> ϵ/4

)
<∞,

where ξ is distributed according to µ. Consequently by Borel-Cantelli lemma, we find that

(2 log n)−1/2∥Snξ − Pk(Snξ)∥X < ϵ/4

for all but finitely many n, a.s.. Thus we just need to show that ∥(2 log n)−1/2Pk(Snx)−h∥X < ϵ/4

infinitely often. But this is just a finite dimensional statement which immediately follows from

Corollary 5.2.6. Indeed, by assumption h lies on the unit sphere of Mk, and the joint covariances

tend to zero precisely because of the condition that S is mixing (via Item (2) in Proposition 5.2.4).
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In the notation of Lemma 5.2.7, we have shown that any point on S(H) is almost surely a limit

point of (2 log n)−1/2Snx. By that same lemma, any point of B(H) is also a limit point. It is clear

from Lemma 5.2.8 that no point outside of B(H) can be a limit point of (2 log n)−1/2Snx. That

lemma is still valid in this case, since it only relies on the measure-preserving property of Sn and

nothing else. This completes the proof of the first statement.

Next we prove that S must be ergodic if the set of limit points of ((2 log n)−1/2Snx)n∈N equals the

unit ball of H for a.e. x ∈ X . Indeed, if S is not ergodic, then by Item (3d) in Proposition 5.2.4,

there is a two-dimensional invariant subspace M on which S acts by rotation. We claim that no

nonzero point which lies in M can be visited infinitely often, since (2 log n)−1/2Snx converges to

zero a.s. for any x ∈ M . Indeed, let P be the projection onto M and let Q = I − P denote the

projection onto M⊥. Let ξ be sampled from µ, so that Qξ has Cameron-Martin space M⊥. Since

M andM⊥ are invariant under S, it follows that PSn = SnP andQSn = SnQ. By Lemma 5.2.8 it

is clear that the set of limit points of (2 log n)−1/2QSnξ = (2 log n)−1/2Sn(Qξ) must be contained

in the unit ball of the Cameron-Martin space of Qξ, namely M⊥ (this lemma only relies on the

measure-preserving property of Sn and nothing else). Furthermore, since (2 log n)−1/2Snx con-

verges to zero a.s. for any x ∈ M , it follows that (2 log n)−1/2PSnξ = (2 log n)−1/2Sn(Pξ) con-

verges to zero a.s. Consequently the set of limit points of (2 log n)−1/2Snξ = (2 log n)−1/2PSnξ+

(2 log n)−1/2QSnξ must also be contained in M⊥, and hence contain no nonzero points of M ,

proving the claim.

This already proves Proposition 5.1.1, and to prove Proposition 5.1.2 one just needs the following

lemma.

Lemma 5.2.11. Let (X,H, µ) be an abstract Wiener space. Suppose that St : H → H is some

family of operators satisfying StS∗
t = I . Moreover assume that (St) extends to a strongly con-

tinuous semigroup on X . Then there exists a deterministic function C : [0, 1] → R+ such that
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C(ρ) → 0 as ρ ↓ 0 and such that

µ

({
x ∈ X : lim sup

k→∞

supt∈[kρ,(k+1)ρ] ∥Stx− Skρx∥X√
log k

≤ C(ρ)

})
= 1

for all ρ ∈ [0, 1]. In particular (Stx)t≥0 has the same set of cluster points as (SNx)N∈N for x in a

set of full µ-measure.

Proof. Let ξ denote a random variable in X with law µ, defined on some probability space

(Ω,F ,P). Then (Stξ)t∈[0,1] is continuous in t, thus it can be viewed as a Gaussian random vari-

able taking values in the Banach space C([0, 1], X) of continuous paths in X , endowed with norm

∥F∥C([0,1],X) := supt∈[0,1] ∥F (t)∥X . By Fernique’s theorem, E[supt∈[0,1] ∥Stξ − ξ∥pX ] < ∞ for all

p ≥ 1. By continuity, we also know that supt∈[0,ρ] ∥Stξ − ξ∥X → 0 as ρ ↓ 0. Letting

C(ρ) := E[ sup
t∈[0,ρ]

∥Stξ − ξ∥2X ],

we thus have by uniform integrability that limρ↓0C(ρ) = 0. Letting

A(k, ρ) := sup
t∈[kρ,(k+1)ρ]

∥Stx− Skρx∥X ,

the stationarity of the process (Stξ)t≥0 implies that A(k, ρ) d
= A(0, ρ) for all k ∈ N. We thus find

that

P(A(k, ρ) > E[A(0, ρ)] + u) = P(A(0, ρ) > E[A(0, ρ)] + u) ≤ e−u
2/(2C(ρ)),

where we used Lemma 5.2.9 in the last inequality. But E[A(0, ρ)] ≤ E[A(0, ρ)2]1/2 = C(ρ)1/2,

and therefore

P(A(k, ρ) > u) ≤ e−(u−C(ρ)1/2)2/(2C(ρ)) ≤ e1/2 · e−u2/(4C(ρ))

where we used (a− b)2 ≥ 1
2
a2 − b2 in the last inequality. Thus

P(A(k, ρ) > 4C(ρ)
√

log k) ≲ k−4,
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so by the Borel-Cantelli lemma we find that

lim sup
k→∞

A(k, ρ)√
log k

≤ 4C(ρ), a.s.

As we already observed eariler C(ρ) → 0 as ρ ↓ 0, completing the proof.

To summarize the main results of this section, let (X,H, µ) be an abstract Wiener space, let S :

X → X be measure-preserving and a.e. linear, and consider the following statements:

1.
⋂
n σ(Sn) is a trivial sigma algebra.

2. S is mixing.

3. The set of limit points of the random sequence ((2 log n)−1/2Snx)n∈N equals the unit ball of

H for a.e. x ∈ X .

4. S is ergodic/weakly mixing.

What we have shown is that (1) implies (2) (which is actually true for any dynamical system, by

e.g. the reverse martingale convergence theorem), that (2) implies (3), and that (3) implies (4).

From Proposition 5.2.4, it is clear that (2) does not imply (1) in general, and that (4) does not

imply (2) in general.

We do not know if (3) implies (2) or if (4) implies (3), although obviously both cannot be true in

general. To show that (4) implies (3), one would need to prove Lemma 5.2.5 with the condition

cov(X0, Xn) → 0 replaced by the condition 1
n

∑n
j=1 |cov(X0, Xj)| → 0. We do not know how to

prove this, nor are we certain that it is even true. We have reason to suspect that “(4) implies (3)"

may actually be false, and a counterexample might be given by an operator whose spectral measure

is atomless but highly singular with respect to Lebesgue measure. For instance, in the case that the

spectral measure looks like the usual two-thirds Cantor measure, we have some reason to suspect

that the set of limit points of the random sequence ((2 log n)−1/2Snx)n∈N equals the ball in H of

radius
√

log3 2 for a.e. x ∈ X , rather than the unit ball. However, we do not have a proof of this.
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5.2.3 Higher Gaussian Chaos

The main goal of this subsection is to prove a version of Strassen’s law for higher Gaussian chaoses,

which reduces to the previous version for first-order chaos.

If (X,H, µ) is an abstract Wiener space, then the kth homogeneous Wiener chaos, denoted by

Hk(X,µ) is defined to be the closure in L2(X,µ) of the linear span of Hk ◦ g as g varies through

all elements of the continuous dual space X∗, where Hk denotes the kth Hermite polynomial

Hk(x) := (−1)ke
x2

2
dk

dxk
e−

x2

2 .

Equivalently it can be described as the closure in L2(X,µ) of the linear span of Hk(⟨·, v⟩) as v

ranges through all elements of H . One always has the orthonormal decomposition L2(X,µ) =⊕
k≥0Hk(X,µ), see e.g. [125, Section 1.1]. Sometimes the kth chaos is also described slightly

differently as linear combinations of products of Hermite polynomials, for instance in [91], but

our formulation is equivalent by the umbral identity for Hermite polynomials, see Corollary 2.3 in

[84].

Definition 5.2.12. Let (X,H, µ) be an abstract Wiener space, and let Y be another separable

Banach space. A Borel-measurable map T : X → Y is called homogeneous of order k if f ◦ T ∈

Hk(X,µ) for all f ∈ Y ∗.

Before formulating the main result of this section, we collect a few important results about homo-

geneous variables, whose proofs may be found in Appendix 1 below.

Proposition 5.2.13. Let (X,H, µ) be an abstract Wiener space and let T : X → Y be homoge-

neous of order k. Let ∥T∥2L2(X,µ;Y ) :=
∫
X
∥T (x)∥2Y µ(dx). Then ∥T∥L2(X,µ;Y ) <∞ and moreover

µ({x ∈ X : ∥T (x)∥Y > u}) < C exp
[
− α

(
u/∥T∥L2(X,µ;Y )

)2/k]
, (5.5)

where C, α > 0 depend on k but are independent of the choice of X,H, µ, Y, T, and u > 0.
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This is proved as Corollary 5.5.14 of the appendix.

Let (X,H, µ) be an abstract Wiener space. Choose an orthonormal basis {ei}i for H, and let

PNx :=
N∑
j=1

⟨x, ej⟩ej, QNx :=
∞∑

j=N+1

⟨x, ej⟩ej = x− PNx.

Note that PNx,QNx are independent. Therefore if (x, y) is sampled from µ⊗2, then PNx + QNy

is distributed as µ. If T : X → Y is homogeneous of order k, we thus define a sequence of

“finite-rank Cameron-Martin projections for T " by the formula

TN(x) :=

∫
X

T (PNx+QNy)µ(dy). (5.6)

This is a well-defined Bochner integral for µ a.e. x ∈ X . Indeed, since

∫
X

∫
X

∥T (PNx+QNy)∥Y µ(dy)µ(dx) =
∫
X

∥T (u)∥Y µ(du) <∞,

it follows that
∫
X
∥T (PNx+QNy)∥Y µ(dy) is finite for a.e. x.

Proposition 5.2.14. Let (X,H, µ) be an abstract Wiener space, and let T : X → Y be homo-

geneous of order k. If TN is defined as in (5.6), then TN is also homogeneous of order k, and

moreover ∥TN − T∥Y → 0 a.e. and in every Lp(X,µ) as N → ∞. In fact, one has the following

super-polynomial convergence bound:

µ({x ∈ X : ∥TN(x)− T (x)∥Y > u}) ≤ C exp
[
− α

(
u/∥TN − T∥2L2(X,µ;Y )

)2/k] (5.7)

where C, α are independent of X,H, µ, Y, T, u,N and the choice of basis {ei}i, but may depend

on the homogeneity k.

This is proved as Proposition 5.5.15 in the appendix.

If (X,H, µ) is an abstract Wiener space and T : X → Y is homogeneous of order k, then we
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define the associated map Thom : H → Y by

Thom(h) :=

∫
X

T (x+ h)µ(dx) =
1

k!

∫
X

T (x)⟨x, h⟩kµ(dx).

See (5.45) and (5.46) of the appendix for the proof of the equality.

Lemma 5.2.15. Let (X,H, µ) be an abstract Wiener space, and let T : X → Y be homogeneous

of order k. Choose an orthonormal basis {ei} of H and let TN be the finite-rank approximation

given in (5.6). Then we have the uniform convergence

lim
N→∞

sup
∥h∥H≤1

∥∥(TN)hom(h)− Thom(h)
∥∥
Y
= 0.

Letting B(H) denote the unit ball of H , it follows that Thom is continuous from B(H) → Y , where

B(H) is given the topology of X (not of H).

Corollary 5.2.16. Let (X,H, µ) be an abstract Wiener space, and let T i : X → Yi be homoge-

neous of order ki for 1 ≤ i ≤ m, where m ∈ N. Then the set

{(T 1
hom(h), ..., T

m
hom(h)) : h ∈ B(H)}

is a compact subset of Y1 × · · ·Ym.

These results are proved as Lemma 5.5.21 and Corollary 5.5.22 in the Appendix. With all of these

preliminaries in place, we are ready to formulate the main theorem of this subsection, which is a

generalization of the main theorem to homogeneous variables of order k.

Theorem 5.2.17. Let (X,H, µ) be an abstract Wiener space, and let T i : X → Yi be homogeneous

of order ki for 1 ≤ i ≤ m, where m ∈ N. Let S : X → X be a.e. linear, measure-preserving, and

mixing. Then almost surely, the set of limit points of the random set

{(
(2 log n)−k1/2T 1(Snx), . . . , (2 log n)

−km/2Tm(Snx)
)
: n ∈ N}
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is equal to the compact set

K := {(T 1
hom(h), ..., T

m
hom(h)) : h ∈ B(H)}.

Note that Proposition 5.1.1 can be viewed as a special case where k1 = 1, m = 1, Y = X , and T 1

is the identity on X.

Proof. Let S(H) := {h ∈ H : ∥h∥H = 1}. Note by Lemma 5.2.7 that S(H) is dense in B(H)

with respect to the topology of X . Therefore, the set

D := {(T 1
hom(h), ..., T

m
hom(h)) : h ∈ S(H)}

is dense in K. Thus is suffices to show that any point in D is a limit point of the given sequence.

So fix a point (T 1
hom(h), ..., T

m
hom(h)) ∈ D, where ∥h∥H = 1, and let ϵ > 0. We wish to show that

m∑
i=1

∥∥(2 log n)−ki/2T i(Snx)− T ihom(h)
∥∥
Yi
< ϵ (5.8)

infinitely often. Fix an orthonormal basis {ei} for H , with e1 = h, and let T iN be the associated

finite rank Cameron Martin projections as in (5.6). We claim that it is enough to prove (5.8) with

each T i(Snx) replaced by T iN(Snx) and T ihom(h) replaced by (T iN)hom(h) (and also replacing ϵ by

ϵ/2), for some large enough N .

Indeed, by Proposition 5.2.14 we can choose N so large that
∫
X
∥T iN − T i∥2Yidµ < ϵ/(2m). Then

by (5.7) and the fact that Sn is measure preserving, it is clear that

∑
n≥2

µ({x : (2 log n)−ki/2∥T iN(Snx)− T i(Snx)∥Y > ϵ/m}) <∞, (5.9)

so by Borel Cantelli lemma, (2 log n)−ki/2∥T iN(Snx)−T i(Snx)∥Y < ϵ/m for all but finitely many

n ∈ N almost surely. Furthermore, by Lemma 5.2.15 we can (by making N larger) ensure that

∥(T iN)hom(h)− T ihom(h)∥Y < ϵ/m.
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Thus we just need to show that

m∑
i=1

∥∥(2 log n)−ki/2T iN(Snx)− (T iN)hom(h)
∥∥
Yi
< ϵ/2 (5.10)

infinitely often. Note that each T i is homogeneous of order k and measurable with respect to a

finite collection {⟨·, ei⟩}Ni=1 of i.i.d. standard Gaussians, therefore one can verify that each T iN can

be written as

T iN(x) =

Mi∑
j=1

yijHki(⟨vij, x⟩), (5.11)

for some finite collection of vectors {vij} ⊂ span({ei}Ni=1), {yij} ⊂ Y , and Mi ∈ N. Here Hk is

the kth Hermite polynomial. Using Cameron Martin theorem, one can see that

(T iN)hom(h) =

Mi∑
j=1

yij⟨vij, h⟩ki . (5.12)

Note that

∣∣⟨vij, (2 log n)−1/2Snx⟩ki − (2 log n)−ki/2Hki(⟨vij, Snx⟩)
∣∣→ 0 a.s.,

by Borel-Cantelli lemma and the fact that x 7→ ⟨vij, Snx⟩ are standard Gaussians under µ. Thus it

suffices to show that

∑
1≤i≤m
1≤j≤Mi

∥yij∥Y
∣∣⟨vij, (2 log n)−1/2Snx⟩ki − ⟨vij, h⟩ki

∣∣ < ϵ/2

happens infinitely often. Letting PN : H → span{ei}Ni=1 denote the orthogonal projection, it

is clear that vij = PN(v
i
j), thus by exploiting self-adjointness of PN , the previous expression is

equivalent to showing that

∑
1≤i≤m
1≤j≤Mi

∥yij∥Y
∣∣⟨vij, (2 log n)−1/2PN(Snx)⟩ki − ⟨vij, h⟩ki

∣∣ < ϵ/2
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infinitely often. Since h = e1, we know from Corollary 5.2.6 that ∥(log n)−1/2PN(Snx)−h∥H < δ

infinitely often, for arbitrary δ > 0. By choosing δ small enough and noting that ⟨vij, ·⟩ is a

continuous function on span{ei}Ni=1 (because there are only finitely many variables), the claim

(5.10) immediately follows, and thus (5.8) is proved.

Now the only thing left to show is that the set of limit points of the given sequence cannot contain

points outside of the set K. This will be done in the following lemma.

Lemma 5.2.18. In the setting of Theorem 5.2.17, let

an(x) :=
(
(2 log n)−k1/2T 1(Snx), . . . , (2 log n)

−km/2Tm(Snx)
)
.

For a.e x ∈ X one has that dist(an(x), K) < ϵ for all but finitely many n.

Proof. Note that if our abstract Wiener space (X,H, µ) is finite dimensional, then the statement is

straightforward, since T and Thom are of the form (5.11) and (5.12) respectively, and since all of

the relevant quantities are continuous functions.

Now we move to the infinite-dimensional case. Suppose for contradiction the claim was false.

Let U denote a neighborhood of size ϵ around K. Then since S is mixing (hence ergodic) and

since the event “dist(U c, an(x)) < ϵ/5 infinitely often" is shift invariant, it follows that it actu-

ally occurs with probability 1. By the same argument used in deriving (5.9), we can choose N

so large that
∑m

n=1(2 log n)
−ki/2∥T i(Snx) − T iN(Snx)∥Yi < ϵ/5 for all but finitely many n al-

most surely, and moreover by Lemma 5.2.15 we can ensure (by making N possibly larger) that∑m
n=1 sup∥h∥≤1 ∥T ihom(h)− (T iN)hom(h)∥Yi < ϵ/5. By the latter bound and the definition of U it is

clear that

dist

(
U c ,

(
(T 1

hom)N(h), ..., (T
m
N )hom(h)

) )
> 4ϵ/5

for any h such that ∥h∥H ≤ 1. On the other hand the former bound and our shift-invariant event of
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full probability guarantees that dist(U c, aNn (x)) < 2ϵ/5 infinitely often (for a.e. x), where

aNn (x) :=
(
(2 log n)−k1/2T 1

N(Snx), ..., (2 log n)
−km/2TmN (Snx)

)
.

The preceding two sentences imply (by finite dimensionality) that the sequence (aNn (x))n≥1 con-

tains a limit point outside of the set

{((T 1
N)hom(h), ..., (T

m
N )hom(h)) : ∥h∥H ≤ 1},

since the distance of aNn (x) to that set must be greater than 2ϵ/5 infinitely often. This contradicts

the finite dimensional version of the statement that the set of limit points must be contained in K,

which is impossible as noted earlier.

Next we formulate a continuous-time version of the above results. If Y is a Banach space, we

denote by C([0, 1], Y ) the space of continuous maps from [0, 1] → Y, equipped with the Banach

space norm ∥γ∥C([0,1],Y ) := supt∈[0,1] ∥γ(t)∥Y . For t ∈ [0, 1] we define πt : C([0, 1], Y ) → Y by

sending γ 7→ γ(t).

Theorem 5.2.19. Let (X,H, µ) be an abstract Wiener space, let (St)t≥0 be a family of Borel-

measurable a.e. linear maps from X → X which are measure-preserving and mixing, and let

T i : X → Yi be homogeneous of degree ki for 1 ≤ i ≤ m. Suppose that there exist strongly

continuous semigroups (Gi
t)t≥0 of operators from Yi → Yi for 1 ≤ i ≤ m with the property that

T ◦ St = Gi
t ◦ T, µ-a.e. for all t ≥ 0. (5.13)

Then almost surely, the set of cluster points at infinity of the random set

{(
(2 log t)−k1/2T 1(Stx), . . . , (2 log t)

−km/2Tm(Stx)
)
: t ∈ Q ∩ [0,∞)}
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is equal to the compact set

K := {(T 1
hom(h), ..., T

m
hom(h)) : h ∈ B(H)}.

Note that we impose no semigroup condition on (St) itself. This is because we do not need to,

though in practice (St) will usually be a strongly continuous semigroup on X . The reason we are

intersecting with Q is purely technical: we need to ensure that the given event is actually Borel-

measurable. Also note that this theorem implies Proposition 5.1.2: set k = 1, m = 1, Y = X , let

T 1 be the identity on X , and let G1
t = St.

Proof. First we claim that that (Gi
t(T

i(ξ)))t∈[0,1] is homogeneous variable of order ki taking values

in the space C([0, 1], Yi). To prove this, note that if Y, Z are Banach spaces, if T : X → Y is

homogeneous of order k, and if A : Y → Z is a bounded linear map, then A ◦ T is also ho-

mogeneous of order k. We simply apply this to the case where Y = Yi, Z = C([0, 1], Yi) and

A : Yi → C([0, 1], Yi) sends a point y to (Gi
ty)t∈[0,1]. This linear map is bounded by the uniform

boundedness principle.

Next, note that the set of cluster points must contain K by Theorem 5.2.17. Thus we just need

to show it contains no other points. Note that by (5.13), we can instead equivalently consider the

random set

{(
(2 log t)−k1/2G1

t (T
1(x)), . . . , (2 log t)−km/2Gm

t (T
m(x))

)
: t ∈ [0,∞)}.

The argument that this set contains no cluster points outside of K is very similar to that of Lemma

5.2.11. More precisely, we show that there exists deterministic functions Ci : [0, 1] → R+ such

that Ci(ρ) → 0 as ρ ↓ 0 and such that

µ

({
x ∈ X : lim sup

n→∞

supt∈[nρ,(n+1)ρ] ∥Gi
t(T

i(x))−Gi
nρ(T

i(x))∥Yi
(log n)ki/2

≤ Ci(ρ)

})
= 1
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for all ρ ∈ [0, 1] and 1 ≤ i ≤ m. In particular (Gi
t(T

i(x)))t≥0 has the same set of cluster points as

(GN(T
i(x)))N∈N for x in a set of full µ-measure.

To prove the above claim, one uses precisely the same arguments as we did in the proof of Lemma

5.2.11. Namely one defines Ci(ρ) := CE[supt∈[0,ρ] ∥Gi
t(T

i(ξ)) − T i(ξ)∥2Yi ], where ξ is sampled

from µ and C > 0 is to be determined later. Then one uses the fact that (Gi
t(T

i(ξ)))t∈[0,1] is

homogeneous variable of order ki taking values in the space C([0, 1], Yi), by the discussion above.

Finally one uses the associated tail bounds for such homogeneous variables as given in Proposition

5.2.13, and concludes using Borel-Cantelli.

One can also formulate the preceding theorem in multiplicative form, as we did in the introduction.

5.2.4 Pushforward or “contraction principle" for Strassen’s Law

Next we derive a corollary that will be used in deriving Strassen’s Law for singular semilinear

SPDEs later. The following can be viewed as a sort of “contraction principle" for Strassen’s law.

Corollary 5.2.20. Let (X,H, µ) be an abstract Wiener space, and let T i : X → Yi be homoge-

neous of order ki for 1 ≤ i ≤ m, wherem ∈ N. Let Z be a Banach space, and let M ⊂ Y1×· · ·Ym

be a closed subset, such that for all δ > 0 one has

µ({x ∈ X : (δk1T 1(x), ..., δkmTm(x)) ∈ M}) = 1. (5.14)

Let Φ : M → Z be continuous (possibly nonlinear). Then the compact set

K := {(T 1
hom(h), ..., T

m
hom(h)) : h ∈ B(H)}

is necessarily contained in M, and moreover the set of cluster points at infinity of the random set

{
Φ
(
(2 log n)−k1/2T 1(Snx), . . . , (2 log n)

−km/2Tm(Snx)
)
: n ∈ N

}
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is almost surely equal to Φ(K).

Proof. Note that if (a1, ..., am) ∈ K then by Theorem 5.2.17 there exists a subset E ⊂ X of full

measure such that for each x ∈ E, then
(
(2 log n)−k1/2T 1(Snx), . . . , (2 log n)

−km/2Tm(Snx)
)

converges to (a1, ..., am) along some (x-dependent) subsequence. Since Sn are measure-preserving

it holds by (5.14) that

(
(2 log n)−k1/2T 1(Snx), . . . , (2 log n)

−km/2Tm(Snx)
)
∈ M

for a.e. x ∈ X . Consequently (a1, ..., am) is a limit point of M and thus belongs to M (since M

is closed). This implies that K is contained in M.

Now we prove that the limit set is necessarily Φ(K). The fact that any point z ∈ Φ(K) is a

limit point is due to the fact that Φ is continuous and any point of K is a limit point of the sequence

(
(2 log n)−k1/2T 1(Snx), . . . , (2 log n)

−km/2Tm(Snx)
)

as n→ ∞ (see Theorem 5.2.17).

Now we need to prove that points outside of Φ(K) are not limit points. Suppose z /∈ Φ(K).

The latter set is closed so we may choose ϵ > 0 such that ∥z − b∥Z > ϵ for all b ∈ Φ(K). Choose

δ > 0 so that dist(Φ(a),Φ(K)) < ϵ whenever dist(a,K) < δ (this δ exists by compactness of K).

(need to specify what is dist) We choose points a1, ..., aN so that B(ai, ϵ) form an open cover of

Φ(K), then consider the open cover Ui := Φ−1(B(ai, ϵ)) of K, then let U denote the union of the

Ui, and take δ := minx∈K dist(x, U
c) > 0). Letting

an(x) :=
(
(2 log n)−k1/2T 1(Snx), . . . , (2 log n)

−km/2Tm(Snx)
)
,

by Lemma 5.2.18 we know that for a.e x ∈ X that dist(an(x), K) < δ for all but finitely many n
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and therefore z is not a limit point of Φ(an(x)).

The next corollary deals with the continuous setting.

Corollary 5.2.21. Let (X,H, µ) be an abstract Wiener space, let (St)t≥0 be a family of Borel-

measurable a.e. linear maps from X → X which are measure-preserving and mixing, and let

T i : X → Yi be homogeneous of degree ki for 1 ≤ i ≤ m. Suppose that there exist strongly

continuous semigroups (Gi
t)t≥0 of operators from Yi → Yi for 1 ≤ i ≤ m with the property that

T i ◦ St = Gi
t ◦ T i, µ-a.e. for all t ≥ 0. (5.15)

Let Z be a Banach space, and let M ⊂ Y1 × · · ·Ym be a closed subset, such that for all δ > 0

µ({x ∈ X : (δk1T 1(x), ..., δkmTm(x)) ∈ M}) = 1.

Let Φ : M → Z be continuous (possibly nonlinear). Then the compact set

K := {(T 1
hom(h), ..., T

m
hom(h)) : h ∈ B(H)}

is necessarily contained in M, and moreover the set of cluster points at infinity of the random set

{
Φ
(
(2 log t)−k1/2T 1(Stx), . . . , (2 log t)

−km/2Tm(Stx)
)
: t ∈ Q ∩ [0,∞)}

is almost surely equal to Φ(K).

Note that the previous two corollaries are the most general version of the Strassen’s Law that we

have stated so far (e.g. set Z = Y1 × · · ·Ym = M and let Φ be the identity). Note also that

Corollary 5.2.21 will be used in multiplicative form later (this is precisely Theorem 5.1.3 from the

introduction), not the additive form stated above.
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5.3 Technical lemmas for Gaussian measures on spaces of distributions

Recall that the goal of this work is to give a broad collection of examples of Strassen’s Law for

stochastic processes, cluminating with SPDEs. Thus we devote a section to some basic lemmas

which will be useful in this regard.

Our first lemma is a result which roughly says that if X is a Banach space of distributions that

is “nested" in between S(Rd) and S ′(Rd) in such a way that X densely contains S(Rd), then its

dual space also admits a natural “nesting" between S(Rd) and S ′(Rd). The dual space may no

longer densely contain S(Rd), but in the weak* topology it still does. We will use (·, ·) to denote

the natural pairing between S(Rd) and S ′(Rd).

Let S(Rd) be the set of Schwartz functions on Rd and let S ′(Rd) be the set of tempered distribution.

Lemma 5.3.1. Suppose X is a Banach space of tempered distributions on Rd such that one has

continuous inclusion maps S(Rd) ↪→ X ↪→ S ′(Rd). Suppose that the image of the first embedding

is dense with respect to the norm topology on X . Then there exists a Banach space Xdu of distri-

butions on Rd such that one has continuous inclusions S(Rd) ↪→ Xdu ↪→ S ′(Rd), and furthermore

there exists a "canonical" bilinear pairing B : X ×Xdu → R with the following properties:

• |B(x, f)| ≤ ∥x∥X∥f∥Xdu .

• The map from Xdu → X∗ given by f 7→ B(·, f) is an isomorphism and a linear isometry.

• B(ϕ, f) = (f, ϕ) and B(x, ϕ) = (x, ϕ) for all x ∈ X , all f ∈ Xdu, and all ϕ ∈ S(Rd).

The image of the first embedding S(Rd) ↪→ Xdu may not be dense in the norm topology of Xdu,

but it is always dense with respect to the weak* topology on Xdu.

Before proving the lemma, let’s give a few examples. If X = Lp(Rd) with 1 ≤ p < ∞, then

Xdu = Lq(Rd) with 1
p
+ 1

q
= 1. If X = C0(Rd) then Xdu consists of finite signed Borel measures

on Rd equipped with total variation norm. Note in this case that the norm-closure of S(Rd) in
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Xdu is L1(Rd), which is a proper closed subspace of Xdu, but still dense with respect to weak (i.e.

Prohorov) convergence of measures. Further examples are given by Sobolev spaces X = Hs(Rd)

andXdu = H−s(Rd) with s ∈ R. A rich class of examples is given by more general Sobolev spaces

and Besov spaces (of exponent less than infinity) including those defined with weight functions.

Note that the assumptions in the lemma automatically imply separability of X (because S(Rd)

is second countable and completely metrizable), though Xdu may not be separable in its norm

topology (e.g. take X to be L1(R) or C0(R)).

Proof. Note that we have a map G from X∗ → S ′(Rd) given by restriction to the Schwartz class,

i.e., f G7→ f |S(Rd). The map clearly defines a continuous linear operator from X∗ → S ′(Rd). We

define Xdu to be the image of X∗ under G. We also note that G is injective since S(Rd) is norm-

dense in X . We thus define the norm on Xdu by ∥Gf∥Xdu = ∥f∥X∗ . Then clearly Xdu is a Banach

space that is isometric to X∗ (via G) and the inclusion Xdu ↪→ S ′(Rd) is clearly continuous.

We now claim that S(Rd) is contained in Xdu. To prove this we need to check that if ϕ ∈ S(Rd)

then the map aϕ from X → R given by x 7→ (x, ϕ) is continuous. This is clear because if xn → x

in X , then xn → x in S ′(Rd) so that (xn, ϕ) → (x, ϕ). Next, we note that ϕ = Gaϕ ∈ Xdu,

proving the claim. By the closed graph theorem, it follows that the inclusion map S(Rd) ↪→ Xdu

is automatically continuous.

Now we construct the bilinear map B. For this, we simply define B(x,Gf) := f(x) whenever

x ∈ X and f ∈ X∗. Clearly |B(x,Gf)| ≤ ∥f∥X∗∥x∥X = ∥Gf∥Xdu∥x∥X , so that B is bounded.

Note that if ϕ ∈ S(Rd) then B(ϕ,Gf) = f(ϕ) = (f |S(Rd), ϕ) = (Gf, ϕ), as desired. Also

B(x, ϕ) = B(x,Gaϕ) = aϕ(x) = (x, ϕ), completing the proof. The map f 7→ B(·, f) is an isome-

try from Xdu → X∗ because it is inverse to the isometry G.

Finally we need to show that S(Rd) is weak* dense in Xdu. This follows immediately from the

fact that S(Rd) is a total set inXdu, i.e., it separates points ofX (which is clear because it separates
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points of the larger space S ′). For the equivalence of totality and weak* density, see [63, p. 439,

Exercise 41].

A corollary of this lemma is that if we want to check that a given Hilbert space H is the Cameron

Martin space of a Gaussian measure µ on some separable Banach space X of distributions as

above, then it suffices to check the action of the covariance function only on smooth test functions

in the Schwartz class, as opposed to the entire dual space of X .

Lemma 5.3.2. LetH be a Hilbert space and letX be a Banach space such that one has continuous

inclusions S(Rd) ↪→ H ↪→ S ′(Rd) and S(Rd) ↪→ X ↪→ S ′(Rd). Suppose that S(Rd) is dense in

H and in X . Let µ be a Gaussian measure on X . If

∫
X

(x, ϕ)(x, ψ)µ(dx) = ⟨ϕ, ψ⟩H (5.16)

for all ϕ, ψ ∈ S(Rd), then µ has Cameron Martin space Hdu.

For instance, a simple intuitive corollary of this lemma is that regardless of the choice of Banach

space X taken to contain a simple Brownian motion, it always has Cameron martin space H1
0 .

Proof. The Cameron Martin norm may be defined for h ∈ X by

∥h∥CM = sup{f(h) : f ∈ X∗,

∫
X

f 2dµ ≤ 1}.

By weak* density of S(Rd) in Xdu the supremum on the right is the same as

sup{(h, ϕ) : ϕ ∈ S(Rd),

∫
X

(x, ϕ)2µ(dx) ≤ 1},

which by our assumption (5.16) is the same as

sup{(h, ϕ) : ϕ ∈ S(Rd), ∥ϕ∥2H ≤ 1},
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which by definition (and density of S in H) equals the operator norm of the linear functional on

H given by (·, h), which by construction equals the conjugate norm ∥h∥Hdu (to be understood as

+∞ if h /∈ Hdu).

So far this argument shows that the Cameron-Martin space of µ equals X ∩ Hdu (with the norm

of Hdu), which is therefore closed in Hdu. To finish the proof we need to show that Hdu does

not contain any vectors outside of X . Assume for contradiction that such a vector does exist; then

X ∩Hdu would have a nonzero orthogonal complement with respect to the inner product of Hdu.

Take some nonzero bounded linear functional u : Hdu → R which vanishes on the closed subspace

X ∩Hdu. Since H is reflexive, every linear functional on Hdu is represented as B(f, ·) for some

f ∈ H where B is the bilinear form constructed in the previous lemma. Thus write u = B(f, ·)

for some f ∈ H . Since X ∩Hdu contains S we see that (f, ϕ) = B(f, ϕ) = 0 for all ϕ ∈ S. This

means that f = 0 so that u = 0, a contradiction.

Remark 5.3.3. Often in cases of interest the condition that H densely contains S(Rd) fails, for

examples in linear SPDEs where we want to impose a initial or boundary condition (see example

5.4.6 below). To resolve this one may define for an open set U ⊂ Rn the class S(U) of Schwartz

functions on Rd vanishing on the complement of U . This is a Frechet space under the same family

of seminorms (in fact it is a closed subspace of S(Rd)), and one can define its continuous dual

S ′(U). Moreover S(U) embeds into its dual using the L2 pairing as in the case of the full space.

Then all of the above lemmas still hold with Rd replaced by U . Usually we will take U to be

R+ × Rd in examples below, e.g. Example 5.4.6.

Next we identify conditions for a semigroup St of operators on a Banach space X embedded in S ′

to be strongly continuous.

Lemma 5.3.4. Suppose X is a Banach space of distributions on Rd such that one has continuous

inclusion maps S(Rd) ↪→ X ↪→ S ′(Rd) and such that S(Rd) is dense in X . Let St : X → X be a

semigroup of bounded operators for t ≥ 0 such that
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• each St maps S(Rd) to itself.

• Stϕ
S(Rd)→ ϕ as t→ 0 for all ϕ ∈ S(Rd).

• such that ∥St∥X→X ≤ Ceat for some C, a > 0.

Then St is a strongly continuous semigroup on X .

The proof follows immediately from Exercise 4.2 in [85].

5.4 Examples and applications to SPDEs

With the above lemmas in place, we now move onto the core examples.

Example 5.4.1 (Brownian motion). Consider the Gaussian Banach space (X,H, µ) where X =

C[0, 1], H = H1
0 ([0, 1]) and µ is the Wiener measure. For w ∈ C[0, 1], define Rϵ : C[0, 1] →

C[0, 1] by w 7→ ϵ−1w(ϵ2•). It is standard to check that {Rϵ}ϵ∈(0,1] satisfies the four conditions

stated after Proposition 5.1.2. Thus with probability 1, the set of cluster points as ϵ → 0 of

{(ϵ log log(1/ϵ))− 1
2w(ϵ•)}ϵ∈(0,1] is equal to {x ∈ H1

0 [0, 1] :
1
2

∫ 1

0
ẋ(s)2ds ≤ 1}.

But we can say much more than this. We claim that the set of limit points of ϵ−1w(ϵ2•) equals the

unit ball of H1
0 [0, 1] not only with respect to the uniform norm, but also with respect to all of the

Hölder seminorms up to (but not including) 1/2. To prove this, we would like to set X to be the

Hölder space of exponent α < 1/2. But this space is not separable, so Proposition 5.1.2 is not

applicable. However, the Hölder space of exponent α embeds into the fractional Sobolev space

X := Wα−γ,p for any γ > 0 and p > 1, and this space is indeed separable and satisfies the

conditions stated after Proposition 5.1.2. Moreover, by the Sobolev embedding Wα−γ,p embeds

into the Hölder space of exponent α − p−1 − 2γ for any γ > 0, so by making p very large, γ very

small, and α close to 1/2, we can approach Hölder spaces of exponent arbitrarily close to 1/2.

As an alternative to Sobolev embedding, one may also realize Brownian motion as a Gaussian

measure on the closure of smooth functions with respect to a Holder seminorm, which will be a

separable space. This recovers the main result of [13].
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Example 5.4.2. Note that the space X = {f ∈ C[0,∞) : limt→∞
|f(t)|
t

= 0} with norm given

by supt>0
|f(t)|
1+t

is a separable Banach space which supports Brownian motion B (for all time,

not just the unit interval) almost surely, and moreover the Cameron martin space is given by

H1
0 [0,∞) = {f :

∫∞
0
f ′(s)2 < ∞}. Furthermore one checks that the family of operators

Rϵf(x) = ϵ1/2f(ϵ−1x) is mixing with respect to this norm (note the large-time as opposed to

small-time regime). Consequently one obtains the Strassen’s Law for ϵ1/2B(ϵ−1t)/
√

2 log log(1/ϵ)

with respect to the norm of X . Note here that one could just as well take multidimensional

Brownian motion or even Brownian motion BY (t) taking values in some Banach space Y (defin-

ing the norm of X to be supt>0
∥f(t)∥Y
1+t

), in which case the Cameron-Martin space is given by

H1
0 ([0,∞), K) := {f ∈ C([0, 1], Y ) :

∫∞
0

∥f ′(s)∥2Kds < ∞} where K ⊂ Y denotes the embed-

ded Cameron-Martin space of the random variable BY (1). This easily recovers the main result of

[104] without any additional difficulty, see that paper for more details.

Example 5.4.3 (Fractional Brownian motion (FBM)). Consider the FBM (BH(t), t ∈ [0, 1]) with

Hurst parameter H ∈ (0, 1). By [55], the Cameron Martin space of fractional Brownian motion is

given by

HH =
{
h : ∃ ℓ ∈ L2([0, 1],R) s.t. h(t) =

∫ t

0

KH(t, s)ℓ(s)ds, t ∈ [0, 1]
}
,

where KH may be viewed as the inverse kernel for the fractional Laplacian (−∆)H/2+1/4. We set

∥h∥HH
:= ∥ℓ∥L2 (ℓ is uniquely determined by h). The expression of the kernel KH is given by [55,

Eq. (6)]. Note that KH(ϵt, ϵs) = ϵH− 1
2KH(t, s). In addition, the map ℓ→

∫ ·
0
KH(·, s)ℓ(s)ds is an

isometry between L2([0, 1],R) and HH . To prove the Strassen’s law for the FBM note for any path

w ∈ HH , let wϵ(·) = ϵ
H
2 w(ϵ−1·)1[0,ϵ](·) and ℓϵ(·) = ϵ

1
2 ℓ(ϵ−1·)1[0,ϵ](·). Then ∥wϵ∥HH

= ∥ℓ∥L2 and

therefore,

lim
ϵ→0

∥wϵ∥HH
= lim

ϵ→0
∥ℓϵ∥L2 = 0.

The Strassen’s law follows from (the multiplicative form of) Proposition 5.1.2.

Example 5.4.4. Here is a simple example in the second chaos. Let X = C([0, 1],R2), take µ =
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2d BM, and H = {(f1, f2) ∈ X :
∫ 1

0
(f ′

1(t)
2 + f ′

2(t)
2)dt <∞}. then let Y = C[0, 1] and consider

the (discontinuous) map ψ : X → Y given by

ψ(B1, B2) =

∫ •

0

B1(t)dB2(t).

For f ∈ Y and (f1, f2) ∈ X

Qϵf(t) := ϵ−1f(ϵt),

Rϵ(f1, f2)(t) := (ϵ−1/2f1(ϵt), ϵ
−1/2f2(ϵt)).

Then it is clear that ψ ◦Rϵ = Qϵ ◦ψ a.s., and thus one can obtain the LIL (as ϵ→ 0) for the family

of processes {(
(2ϵ log log(1/ϵ))−1

∫ ϵt

0

B1(s)dB2(s)

)
t∈[0,1]

}
0<ϵ≤1/3

.

The compact limit set is easily checked to be {
∫ ·
0
f1(s)f

′
2(s)ds :

∫ 1

0
f ′
1(s)

2+ f ′
2(s)

2 ≤ 1}. Note that

one may strengthen the topology of Y to the closure of smooth functions with respect to the Holder

norm of any exponent less than 1/2.

Example 5.4.5 (Compositions of processes). Burdzy in [28] proved that if B,W are two indepen-

dent two-sided Brownian motions, then

lim sup
t→0

B(W (t))

t1/4 log(log(1/t))3/4
= 25/43−3/4.

In [50], the authors extend this to prove a functional version of this theorem, namely that that the

set of limit points of the family of random functions Zϵ : [−1, 1] → R defined by

Zϵ(t) := ϵ−1/4(log log(1/ϵ))−3/4B(W (ϵt)),

as ϵ→ 0 equals the compact set of functions given by

Q := {f ◦ g : f, g ∈ C([−1, 1]), f(0) = g(0) = 0,

∫ 1

−1

f ′(t)2 + g′(t)2 ≤ 1}.
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Note that the composition is well-defined because the integral condition implies that g maps [−1, 1]

to itself. We can easily recover this result using our framework as follows. Define Bϵ(t) :=

(ϵ log log(1/ϵ))−1/2B(ϵt) and define W ϵ(t) = (ϵ log log(1/ϵ))−1/2W (ϵt). Note that Zϵ has the

same distribution as Bϵ ◦ W ϵ. This is true not only for fixed ϵ, but also as a process in ϵ, so it

suffices to study the limit points of Bϵ ◦ W ϵ as ϵ → 0. Note by Lemmas 5.2.11 and 5.2.18 that

with probability 1, W ϵ has image contained in [−2, 2] for small ϵ almost surely. Note that the

map F from C[−2, 2] × C([−1, 1], [−2, 2]) → C[−1, 1] defined by (f, g) 7→ f ◦ g is continu-

ous, thus by Theorem 5.2.21, the set of limit points of Bϵ ◦ W ϵ is given by the image of the set

K := {(f, g) :
∫ 2

−2
f ′(t)2dt +

∫ 1

−1
g′(t)2dt ≤ 1} under the continuous map F , which equals the

set of f ◦ g such that
∫ 2

−2
f ′(t)2dt +

∫ 1

−1
g′(t)2dt ≤ 1. But this condition automatically implies

that |g(x)| ≤ 1 so that this set necessarily coincides with the set K defined above. Note that, as

in the first example, we can straightforwardly obtain this result in stronger topologies of Holder-

continuous functions.

We can also prove similar theorems for composition processes derived from higher chaoses. For

instance in [123], the author proves that if W,B1, B2 are independent two-sided standard Brown-

ian motions, and if one defines Z(t) := A(W (t)) whereA(t) := 1
2

∫ t
0
B2(s)dB1(s)−B1(s)dB2(s),

then

lim sup
t→0

A(W (t))

t1/2(log log(1/t))3/2
= (2/3)−3/2/π.

We can obtain a functional version of this using essentially the same method as above. Define

Zϵ(t) := ϵ−1/2(log log(1/ϵ))−3/2A(W (ϵt)), and note that Zϵ is equal in law to Aϵ ◦W ϵ, where

Aϵ(t) := (ϵ log log(1/ϵ))−1A(ϵt) and W ϵ(t) = (ϵ log log(1/ϵ))−1/2W (ϵt). Hence, mimicking the

proof from above but using the higher chaos results in lieu of the first chaos version (see Example

5.4.4), we see that Aϵ ◦W ϵ has the set of limit points given by f ◦ g where f, g ∈ C[−1, 1] and f

is of the form 1
2

∫ •
0
h2h

′
1 − h1h

′
2 where

∫ 1

−1
g′(t)2 + h′1(t)

2 + h′2(t)
2dt ≤ 1, and g(0) = hi(0) = 0

for i = 1, 2.
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Example 5.4.6. Consider the stochastic heat equation

∂th(t, x) = ∂2xh(t, x) + ξ(t, x), h(0, x) = 0, t ≥ 0, x ∈ Rd,

where ξ is a Gaussian space-time white noise.

We define the Frechet space S ′
0(R+ × Rd) to be the set of all f ∈ S ′(R× Rd) such that f(ϕ) = 0

for all ϕ ∈ S(R× Rd) such that ϕ is supported on (−∞, 0)× Rd.

Suppose that Y is some separable Banach space which embeds continuously into S ′
0(R+ × Rd),

such that the law of h can be realized as a Gaussian measure on Y . When d = 1, an explicit

example of such a space Y is the weighted space

Y :=
{
h ∈ C(R+ × R) : h(0, x) = 0, lim sup

t+|x|→∞

h(t, x)

t+ |x|
= 0
}

(5.17)

and with norm given by ∥h∥Y := supt,x
h(t,x)

1+t+|x| . For d > 1 the equation cannot be realized as

a continuous function, thus one has to use a space of generalized functions for Y . An example

would be the closure of Schwartz functions in a weighted parabolic Besov-Holder space of negative

exponent α := 1
2
− d

2
− κ where κ > 0 is arbitrary. More specifically, one takes the closure of

S(Rd+1) under the norm

∥ϕ∥Y := sup
∥ψ∥Cr≤1

sup
λ∈(0,1],(t,x)∈R+×R

λ−α|(ϕ, ψλt,x)|
w(t, x)

, (5.18)

where r = −⌊α⌋, ψλt,x(s, y) = λ−d−2ϕ(λ−2(t − s), λ−1(x − y)). Here w is some specific weight

function, see for instance [33] for more information on these spaces and see Section 2 in particular

for the proof that the solution may indeed be realized in these spaces.
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We claim that the solution of the equation has Cameron Martin space given by

H := {h ∈ S ′
0(R× Rd) : ∂th− ∂2xh ∈ L2(R+ × Rd)},

with norm given by ∥h∥H := ∥∂th − ∂2xh∥L2(R+×Rd). To prove this, note that if h solves the

equation, then h = Ks ∗ ξ where Ks(t, x) = 1√
2π|t|

e−x
2/2|t|1{t≤0} and thus E[(h, ϕ)(h, ψ)] =

⟨Ks ∗ ϕ,Ks ∗ ψ⟩L2(R+×R) where ∗ denotes convolution in both space and time. Since Ks is the

kernel for the inverse operator of (∂t + ∂2x) which is adjoint to ∂t − ∂2x, it follows immediately that

the by Lemma 5.3.2 that H is indeed the Cameron-Martin space.

If we define Rϵh(x) = ϵ
d
2
−1h(ϵ2t, ϵx), (to be interpreted in the sense of distributions, i.e., integra-

tion against a test function). Then one easily verifies that Rϵ sends Y boundedly to itself and sat-

isfies all of the conditions of Lemma 5.3.4 for either choice (5.17) or (5.18) of Y . Consequently by

Proposition 5.1.2 (or the discussion afterwards) one finds that the set {(log log(1/ϵ))−1/2Rϵh}ϵ∈(0,1]

is precompact and that its set of limit points in Y as ϵ → 0 equals the unit ball of H as defined

above.

5.4.1 Strassen Law for Φ4
2

In this subsection we finally show how the above results can be used to prove a “nonlinear" Strassen

law for singular stochastic PDEs. The two specific examples we focus on are Φ4
2 and KPZ, though

our method is more general and can be used in much broader contexts. In the specific case of KPZ

our result can be a manifestation of weak universality, as discussed in the introduction.

Definition 5.4.7 (weighted Holder space). Let s = (k1, 1, ..., 1) be a scaling of Rd, that is a formal

(d + 1)-tuple. The Euclidean scaling is defined with k1 = 1 and the parabolic scaling is defined

with k1 = 2. Let w : Rd+1 → R be a weight function, that is, there exists C > 0 such that

uniformly over x, y ∈ Rd

C−1 < w(x)/w(y) < C.
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Define the weighted parabolic Holder space Cα
s,w(Rd+1) to be the the closure of S(Rd+1) under

the norm

∥ϕ∥ := sup
∥ψ∥Cr≤1

sup
λ∈(0,1]

sup
(t,x)∈R×Rd

λ−α|(ϕ, ψλt,x)|
w(t, x)

, (5.19)

where r = −⌊α⌋, ψλt,x(s, y) = λ−d−k1ϕ(λ−k1(t− s), λ−1(x− y)).

Following Hairer [83], we usually omit the subscript s whenever we use the Euclidean scaling and

we include it whenever we use the parabolic scaling.

Now let us explain what exactly is a solution for Φ4
2, and how to obtain Strassen’s Law for it.

Based on seminal work of Da Prato and Debuscche [51], it was proved in [121] that if we fix a

smooth even compactly supported function ψ : R3 → R which integrates to 1, and if we define

ξδ = ξ ∗ ψδ where ψδ(t, x) = δ−3ψ(δ−2t, δ−1x) then for any choice of h(0, x) ∈ C−ν
w (R2) and

α > 0 the classical solutions of the equation

∂thδ = ∆hδ − (h3δ − α2Cδhδ) + αξδ

converge in C([0, T ], C−ν
w (R2)) to a limiting object independent of the choice of mollifier, for a

suitable choice of constant Cδ depending on the mollifier. We call this object the solution of the

Φ4
2 equation

∂th = ∆h− h:3: + αξ.

Theorem 5.4.8. For any T > 0 the random set hϵ of solutions to

∂th
ϵ(t, x) = ∆hϵ(t, x)− hϵ(t, x):3: + (log log(1/ϵ))−1/2ϵ2ξ(ϵ2t, ϵx)

with hϵ(0, x) = 0 is almost surely precompact in C([0, T ], C−ν
w (R2)) with limit set equal to the

closure in that space of the set of space-time Schwartz functions f such that

f(0, x) = 0, ∥∂tf −∆f + f 3∥L2([0,T ]×R2) ≤ 1.
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To prove this, we consider the first, second, and third Wick powers of the 2+1 dimensional additive

SHE. This is important because one can show that there exists a locally Lipchitz continuous and

globally-defined solution map S : C
(
[0, T ], C−ν

w (R2)
)3 → C−ν

w (R2) such that S sends this Wick-

power triple to the renormalized solution of the ϕ4
2 equation

∂tϕ = ∆ϕ− ϕ:3: + ξ,

where ξ is the same noise from which the wick powers of the linearized equation are derived, and

C−ν
w (R2) denotes an appropriately weighted Besov-Hölder space of negative exponent on R2. For

the definition S, see for instance Theorem 3.2 of [120] or equations (1.6) and (1.7) of the compan-

ion paper on which that theorem is based [121].

We use the letters z, a, b as a shorthand to denote space-time points (t, x1, x2) ∈ R+ × R2, and

we write K(z) := 1
2πt
e−(x21+x

2
2)/2t1{t≥0}. Given a space-time white noise ξ, these Wick Powers are

defined by the following formulas:

Z(z) :=

∫
R+×R2

K(z − a)ξ(da),

Z :2:(z) :=

∫
(R+×R2)2

K(z − a)K(z − b)ξ(da)ξ(db),

Z :3:(z) :=

∫
(R+×R2)3

K(z − a)K(z − b)K(z − c)ξ(da)ξ(db)ξ(dc).

These objects are at-best distributions in C
(
[0, T ], C−ν

w (R2)
)
, they are not actually definable as

pointwise functions and therefore the above formulas are somewhat nonsensical: one actually

needs to interpret the above by integrating against a Schwartz test function in space-time. For

instance in the case of Z :2:, if ϕ is a smooth compactly supported test function then the quantity

(Z :2:, ϕ)L2 :=

∫
(R+×R2)2

[ ∫
R+×R2

ϕ(z)K(z − a)K(z − b)dz

]
ξ(da)ξ(db),
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will be a well-defined stochastic integral (i.e., the integrand in square brackets is in L2
(
(R+ ×

R2)2
)
) and therefore it defines a bona fide random variable on the probability space of ξ. Moreover

it lies in the second homogeneous chaos for all ϕ.

With this setup in place, define a measure-preserving SCS (Rϵ)ϵ∈(0,1] to act on ξ by the formula

Rϵξ(t, x1, x2) := ϵ2ξ(ϵ2t, ϵx1, ϵx2),

which as usual needs to be interpreted by integrating against a test function. Letting ψ1(ξ) := Z,

ψ2(ξ) := Z :2: and ψ3(ξ) := Z :3: one can formally verify (and then make rigorous via test functions)

that Qi
ϵ ◦ ψi = ψi ◦Rϵ a.s. for 1 ≤ i ≤ 3, where

Qi
ϵf(t, x1, x2) = f(ϵ2t, ϵx1, ϵx2).

This uses the fact that for all t > 0 and x1, x2 ∈ R the (2+1)-dimensional heat kernel K satis-

fies K(c2t, cx1, cx2) = c−2K(t, x1, x2) for any c > 0. Once we choose the appropriate Banach

spaces for these chaoses to reside, it is fairly clear that for any δ > 0 the random distribution

S(δψ1(Rϵξ), δ
2ψ2(Rϵξ), δ

3ψ3(Rϵξ) will solve the equation

∂th(t, x) = ∆h(t, x)− h(t, x):3: + δϵ2ξ(ϵ2t, ϵx),

which is precisely the object we want to study (with δ = log log(1/ϵ)−1/2). To make all of this

precise, on needs to choose the appropriate separable Banach spaces on which ξ, Z, Z :2:, Z :3: will

lie such that the operator semigroups defined above are strongly continuous on these spaces. For

this we can choose X := C−5/2−κ(R+ ×R) and Yk = C([0, T ], C−ν
w (R2)) and it is shown in [121]

that these spaces do indeed contain these objects. The proof is done by using Lemma 9 in Section

5 of that paper. The fact that the operator semigroups are strongly continuous on these spaces

follows from Lemma 5.3.4 (note that all of these spaces are defined in that reference as the closure
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of Schwartz functions under the appropriate norm, so Schwartz functions are trivially dense there).

It remains to be seen why the compact limit set is the one described in our theorem above. This

boils down to the fact that (Qi)hom(h) = (K ∗h)i (where ∗ denotes space-time convolution and K

is the heat kernel) for i = 1, 2, 3, and h ∈ L2(R+ × R), and also the fact that if f : R+ × R is any

Schwartz function and if S denotes the solution map above, then S(K ∗ f, (K ∗ f)2, (K ∗ f)3) is

the classical solution of the equation ∂tv = ∂2xv−v3+f, with zero initial data, which is clear from

the way that the solution map S is defined in Equations (1.6) and (1.7) of [121]. Thus the proof of

Theorem 5.4.8 follows immediately from Corollary 5.2.21 (in multiplicative form) applied to the

chaoses ψi composed with the solution map S.

5.4.2 Strassen’s Law for KPZ

Here we do the computation for some of the higher-order objects appearing in the solution map for

the KPZ equation, using methods from [88]. Let ξ be a standard space-time white noise on R+×R

and define the following distribution-valued chaoses for z ∈ R+ × R:

Πξ
zΞ(ψ) :=

∫
R+×R

ψ(w)ξ(dw),

Πξ
z

[
ΞI[Ξ]

]
(ψ) :=

∫
(R+×R)2

ψ(w)(K(w − a)−K(z − a))ξ(da)ξ(dw),

Πξ
z

[
ΞI[ΞI[Ξ]]

]
(ψ) :=

∫
(R+×R)3

ψ(w)(K(w − a)−K(z − a))

· (K(a− b)−K(z − b))ξ(db)ξ(da)ξ(dw),

Πξ
z

[
ΞI[ΞI[ΞI[Ξ]]]

]
(ψ) :=

∫
(R+×R)4

ψ(w)(K(w − a)−K(z − a))(K(a− b)−K(z − b))

·
(
K(b− c)−K(z − c)− (tz − tc)∂tK(z − c)− (xz − xc)∂xK(z − c)

)
ξ(dc)ξ(db)ξ(da)ξ(dw),

Πξ
z

[
ΞI[X1Ξ]

]
(ψ) :=

∫
(R+×R)2

ψ(w)K(w − a)(xz − xa)ξ(da)ξ(dw)
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where z = (tz, xz), a = (ta, xa), b = (tb, xb), and c = (tc, xc) ∈ R+ × R. Now for τ ∈ W :=

{Ξ,ΞI[Ξ],ΞI[ΞI[Ξ]],ΞI[ΞI[ΞI[Ξ]]],ΞI[X1Ξ]}, we define the order |τ | to be −3/2 − κ,−1 −

2κ,−1/2− 3κ,−4κ,−2κ respectively, where κ ∈ (0, 1/8) is arbitrary but fixed.

Given a Schwartz function Π : (R× R)2 → R and −α < 0 one may define a norm

∥Π∥ := sup
z∈Rd

w(z)−1∥Π(z, ·)∥C−α
s,w
,

where C−α
s,w is a weighted Holder space of exponent α and weight w defined in the previous sub-

section. One may then define Eα
w to be the closure of S

(
(R× R)2

)
under this norm.

[88] prove that the above symbols Πτ defined above are supported in the spaces E|τ |
wτ for the appro-

priate choice of wτ . [88] actually prove the following: there exists a certain nonlinear subspace X

(called the space of “admissible models") contained in
⊕

τ∈W E
|τ |
wτ with the property that (Πτ)τ∈W

are supported on X and there exists a deterministic continuous map Φ : X → Cα
w such that Φ

sends (Πτ)τ∈W to the Hopf-Cole solution of the KPZ equation (actually the SHE, but log is a con-

tinuous map on positive functions, so the result follows) driven by the same realization of the noise

ξ that appears in the integrals defining Πτ above. In fact, [88] prove something stronger, namely

if we replace ξ by δξ in the above chaoses, then Φ sends (Πτ)τ∈W to the Hopf-Cole solution of

KPZ driven by δξ, for any δ > 0. The remarkable thing is that the solution map Φ itself does not

depend on δ. This is elaborated in Appendix 2.

Here is another important property possessed by Φ. For τ ∈ W , let ψτ (z; ξ) := Πξ
zτ. as de-

fined above. Then it is clear that (ψτ )hom(z; f) is given by the expression for Πξ
zτ but with

ξ(dw), ξ(da), ξ(db), ξ(dc) replaced by f(w)dw, f(a)da, f(b)db, f(c)dc, respectively (so these are

now classical integrals, not stochastic Itô integrals as above). Here f can be an arbitrary smooth

function. Then using the method of [91], it is easy to show that the map Φ described above above
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send (ψτ )hom(·; f) to the classical solution of the deterministic equation ∂th = ∂2xh+
1
2
(∂xh)

2+ f,

with initial data zero. This is also explained in Appendix 2, see the discussion of canonical models.

With this in mind, let us now prove Strassen’s Law for KPZ (Theorem 5.1.4) by defining the

appropriate semigroups on the spaces Eτ . The semigroup acting on the noise is Rϵf(t, x) =

ϵ3/2f(ϵ2t, ϵx). Then by using the fact that each of the functions K(t, x), t · ∂tK(t, x), x · ∂xK(t, x)

are invariant under the scaling cf(c2t, cx) one easily checks that the follow semigroups Qτ on Eτ
w

will satisfy the commutation relation Qτ
ϵ ◦ ψτ = ψτ ◦Rϵ :

QΞ
ϵ f(t, x, s, y) = ϵ3/2f(ϵ2t, ϵx, ϵ2s, ϵy),

QΞI[Ξ]
ϵ f(t, x, s, y) = ϵf(ϵ2t, ϵx, ϵ2s, ϵy),

QΞI[ΞI[Ξ]]
ϵ f(t, x, s, y) = ϵ1/2f(ϵ2t, ϵx, ϵ2s, ϵy),

QΞI[ΞI[ΞI[Ξ]]]
ϵ f(t, x, s, y) = f(ϵ2t, ϵx, ϵ2s, ϵy),

QΞI[X1Ξ]
ϵ f(t, x, s, y) = f(ϵ2t, ϵx, ϵ2s, ϵy)

where the (t, x) stands for the z variable and the (s, y) stands for the w variable in the integrals

above (note that the f appearing here will be distributional in the latter variable and thus, as usual,

the rescaling of coordinates needs to be interpreted in an integrated sense). In other words one

simply has Qτ
ϵ f(t, x, s, y) = ϵ−|τ |0f(ϵ2t, ϵx, ϵ2s, ϵy) where |τ |0 denotes the order of τ without the

κ term. Furthermore they are strongly continuous by Lemma 5.3.4.

5.4.3 “Noise-smoothing" and non-measure-preserving systems

Recall that we defined solutions to the Φ4
2 equation in terms of the limit of a mollification proce-

dure. Thus one may want to consider proving Strassen’s law for a family of processes that is being

diffusively scaled while being simultaneously approximated by mollified noise, similar to what

was done in [91].
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Specifically consider δ = δ(ϵ) and look at the family of processes hϵ defined similarly to the

Φ4
2 example above but with smooth noises at scale δ(ϵ), i.e., letting L2 := log log we want to

consider

∂th
ϵ = ∆hϵ + (Cδ(ϵ)/ϵL2(1/ϵ)

−1hϵ − (hϵ)3) + (L2(1/ϵ))
−1/2ϵ3/2ξδ(ϵ)(ϵ

2t, ϵx),

and the goal is to try to find the set of limit points of the sequence of functions given by

(L2(1/ϵ))
−1/2hϵ(ϵ2t, ϵx).

The main result of this section will be that the limit points in C([0, T ], C−ν
w (R2)) coincide with

those found previously if δ(ϵ) = ϵ1+u for some u > 0, they depend on the mollifier if δ(ϵ) = ϵ,

and it is a trivial set consisting of a one-dimensional family of functions if δ(ϵ) = ϵ1−u.

To prove this consider a multiplicative SCS (Rϵ)ϵ∈(0,1] on a Banach space X . Writing St := Re−t

note that ∥St+s∥ ≤ ∥St∥∥Ss∥ and thus by Fekete’s subadditive lemma we know that the following

quantity exists as a real number

κ(R) := lim
t→∞

t−1 log ∥St∥ = inf
t>0

t−1 log ∥St∥.

In other words ∥Rϵ∥X→X ≤ ϵ−κ(R) and κ(R) is the optimal such exponent. Suppose we have a

Gaussian measure µ on X such that Rϵ is measure-preserving and satisfies the mixing condition

on H .

Now suppose we are given a family of bounded linear operators Aϵ on X (where x 7→ Aϵ(x)

is continuous for all x but Aϵ is not necessarily a semigroup). Suppose that there exists a Banach

space Y and a constant C > 0 such that
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1. Y embeds continuously into X .

2. µ(Y ) = 1.

3. ∥Aϵy − y∥X ≤ Cϵκ(R) for all y with ∥y∥Y ≤ 1.

Then we have the bounds ∥RϵAϵx− Rϵx∥X ≤ ∥Rϵ∥∥Aϵx − x∥ ≤ ϵ−κ(R)∥Aϵx − x∥. Now for all

x in a set of full measure (namely x ∈ Y ) we can bound ∥Aϵx− x∥ ≤ C∥x∥Y ϵκ(R). Consequently

we find that

∥RϵAϵx−Rϵx∥X ≤ C∥x∥Y ,

and thus as long as x ∈ Y (which is almost every x) we have proved that the set of limit points of

(log log(1/ϵ))−1/2RϵAϵx coincides with those of (log log(1/ϵ))−1/2Rϵx, namely B(H).

Intuitively what this implies is the seemingly obvious fact that the Strassen’s law still holds as

long as we mollify fast enough relative to the rescaling operation (Rϵ). Consider the simple ex-

ample of two-sided Brownian motion for instance, say Wiener measure on X = C[−1, 1]. Let

Aϵf(x) = f ∗ ϕϵ where ϕ is a smooth even mollifier and ϕϵ(x) = ϵ−1ϕ(ϵ−1x) (by convention we

let Aϵf be constant on each of [−1,−1 + ϵ] and [1 − ϵ, 1]). Let Rϵf(x) = ϵ−u/2f(ϵux) where

u > 0, so that κ(R) = −u/2. If u < 1 then we may define Y to be the closure of smooth functions

with respect to the Holder norm of exponent u/2 and we know that this space supports Wiener

measure almost surely. Moreover an easy computation shows that ∥y ∗ ϕϵ − y∥C[−1,1] ≤ Cϵu/2

as long as ∥y∥Y ≤ 1 (where C =
∫
R ϕ(v)|v|

u/2dv). Consequently by the discussion in the pre-

vious paragraph, one obtains the same Strassen law as Brownian motion for the family RϵAϵ on

C[−1, 1]. On the other hand if u = 1 then the limit points will be the mollifier-dependent compact

set {ϕ ∗ f : f(0) = 0, ∥f ′∥L2[−1,1] ≤ 1}, since one easily verifies that RϵAϵf = ϕ ∗ Rϵf in this

case. Thus we find that u < 1 is necessary to obtain a nontrivial limit set that coincides with the

non-mollified case. For u > 1 the smoothing dominates the rescaling, so one obtains a trivial limit

set consisting only of constant functions of absolute value bounded above by 1, as may be checked

by hand.
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We thus formulate the following abstract result:

Theorem 5.4.9. Let (X,H, µ) be an abstract Wiener space, let (Rϵ)ϵ∈(0,1] be a family of Borel-

measurable a.e. linear maps from X → X which are measure-preserving and mixing, and let

T i : X → Yi be homogeneous of degree ki for 1 ≤ i ≤ m. Suppose that there exist strongly

continuous semigroups (Qi
ϵ)t≥0 operators from Yi → Yi for 1 ≤ i ≤ m with the property that

T i ◦Rϵ = Qi
ϵ ◦ T i, µ-a.e. for all ϵ ∈ (0, 1].

For ϵ ∈ (0, 1] suppose that J iϵ : X → Yi is a family of chaoses of order ki such that there exist

measurable functions Ci : X → R+ such that one has the bound

∥J iϵ(x)− T i(x)∥Yi ≤ Ci(x)ϵκ(Q
i).

Let Z be a Banach space, and let M ⊂ Y1 × · · ·Ym be a closed subset, such that the semigroup

Q1
ϵ ⊕ · · · ⊕Qm

ϵ sends M to itself, and moreover for all δ, ϵ > 0

µ({x ∈ X : (δk1T 1(x), ..., δkmTm(x)) ∈ M}) = 1,

µ({x ∈ X : (δk1J1
ϵ (x), ..., δ

kmJmϵ (x)) ∈ M}) = 1.

Let Φ : M → Z be uniformly continuous on bounded sets. Then the compact set

K := {(T 1
hom(h), ..., T

m
hom(h)) : h ∈ B(H)}

is necessarily contained in M, and moreover the set of cluster points at infinity of the random set

{
Φ
(
(2 log log(1/ϵ))−k1/2Q1

ϵJ
1
ϵ (x), . . . , (2 log log(1/ϵ))

−km/2Qm
ϵ J

m
ϵ (x)

)
: ϵ ∈ (0, 1]}
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is almost surely equal to Φ(K).

The proof is fairly straightforward despite the long statement; one makes the bound

∥Qi
ϵJ

i
ϵ(x)−Qi

ϵT
i(x)∥ ≤ ∥Qi

ϵ∥Y i→Y i∥J iϵ(x)− T i(x)∥ ≤ ∥Qi
ϵ∥Y i→Y iCi(x)ϵκ(Q

i) ≤ Ci(x)

where we used by definition of κ(Qi) that ∥Qi
ϵ∥ϵκ(Q

i) ≤ 1. Hence the set of limit points of the

desired sequence must coincide with that of Theorem 5.2.21. Note that one needs the additional

assumption of uniform continuity of Φ on bounded subsets of Y1 × · · · × Ym to argue this last part.

Finally we note that we recover the result of the discussion above (for first order chaos) when we

set m = 1 with X = Y1 = Z = M and J1
ϵ = Aϵ and Qi

ϵ = Rϵ and Φ = I and C1(x) = C∥x∥Y .

Note also that we do not make the requirement that Qi
ϵJ

i
ϵ = J iϵRϵ and in general this will be false.

Finally we remark that when J iϵ = T i the above theorem recovers Theorem 5.2.21, at least in the

case that Φ is uniformly continuous and M is invariant under the semigroup (which is usually true

in practice).

Now let us argue how this result allows us to recover the Strassen law for a version of Φ4
2 driven

by a smooth noise mollified in both time and space. One defines

J1
ϵ (ξ)(z) :=

∫
R+×R

Kϵ(z − z1)ξ(dz1),

J2
ϵ (ξ)(z) :=

∫
(R+×R)2

Kϵ(z − z1)K
ϵ(z − z2)ξ(dz1)ξ(dz2),

J3
ϵ (ξ)(z) :=

∫
(R+×R)3

Kϵ(z − z1)K
ϵ(z − z2)K

ϵ(z − z3)ξ(dz1)ξ(dz2)ξ(dz3),

where Kϵ = K ∗ ϕϵ for a smooth even compactly supported function ϕ : R3 → R and ϕϵ(t, x) =

ϵ−3ϕ(ϵ−2t, ϵ−1x), and K is the 2+1 dimensional heat kernel as usual. Letting S denote the solution

map of the system and letting Rϵξ(t, x) := ϵ2uξ(ϵ2ut, ϵux) and Qi
ϵf(t, x) = f(ϵ2ut, ϵux), we claim
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for each ϵ > 0 that v := S(δQ1
ϵJ

1
ϵ ξ, δ

2Q2
ϵJ

2
ϵ ξ, δ

3Q3
ϵJ

3
ϵ ξ) is the solution of the equation

∂tv(t, x) = ∆v(t, x)− (v(t, x)3 − Cϵ1−uδ2v(t, x)) + δϵ2uξϵ(ϵ
2ut, ϵux)

where v(0, x) = 0 and ξϵ = ξ ∗ ϕϵ and Cϵ is a logarithmic correction depending on ϕ. Indeed one

may verify that Qi
ϵJ

i
ϵξ = J iϵ1−u(Rϵξ). Furthermore by the results of Subsection 5.4.1 it is clear that

S(δJ1
γη, δ

2J2
γη, δ

3J3
γη) necessarily solves the equation

∂tu = ∆u− (u3 − Cγδ
2u) + δηγ

whenever η is sampled from the Gaussian measure µ. Setting γ = ϵ1−u and η = Rϵξ then proves

the claim, since one may verify easily that ηγ(t, x) = ϵ2uξγϵu(ϵ
2ut, ϵux) for all γ, ϵ > 0.

Now to finish our analysis of the mollified equation, one needs to show a bound of the type

∥J iϵ(ξ) − T i(ξ)∥Yi ≤ Ci(x)ϵκ(Q
i). The method of obtaining this is effectively summarized in [33,

Section 2.3.1] and we do not reproduce the computation here. The main point is that κ(Qi) = νu

whenever Yi = C([0, T ], C−ν
w (R2)) and we can obtain a bound as good as ϵ(1−ρ)ν for the norm of

J iϵ − T i for any choice of ρ > 0. Thus we choose ρ = 1− u, which works as long as u < 1.

Note that one may obtain very similar results for KPZ, however one cannot simply let M be

the entire space Y1 × ...× Ym in theorem 5.4.9. The local uniform continuity is guaranteed by [88,

Theorem 5.3] which says that the solution map for the SHE is locally Lipchitz, and the Hopf-cole

transform can also be shown to be locally Lipchitz wherever the solution is bounded away from

zero.

5.5 Appendix 1: Exponential bounds on Gaussian chaoses in Banach spaces

In this appendix we collect some results about homogeneous variables of order k, which are

“higher-order generalizations" of Gaussian variables in Banach spaces. Most of the material in
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this appendix is an adapted and slightly more general version of the material from Borell’s original

works on Gaussian chaoses [21, 20], as well as [7] and Section 2 of Chapter 3 of [109], and a few

results from [91, Section 3]. The reason we included this material (despite being seemingly stan-

dard) is because it was difficult to find the exact results we needed in the literature; certain results

seem to be sporadically given without proof or only partial proof in some of the aforementioned

references, and we wanted to give a more explicit and comprehensive overview for convenience of

usage.

If (X,H, µ) is an abstract Wiener space, then the nth homogeneous Wiener chaos, denoted by

Hk(X,µ) is defined to be the closure in L2(X,µ) of the linear span of Hk ◦ g as g varies through

all elements of the continuous dual space X∗, where Hk denotes the kth Hermite polynomial (nor-

malized so that Hk(Z) has unit variance for a standard normal Z). Equivalently it can be described

as the closure in L2(X,µ) of the linear span of Hk(⟨·, v⟩) as v ranges through all elements of H .

One always has the orthonormal decomposition L2(X,µ) =
⊕

k≥0Hk(X,µ), see e.g. [125].

Definition 5.5.1. Let (X,H, µ) be an abstract Wiener space, and let Y be another separable

Banach space. A Borel-measurable map T : X → Y is called a chaos of order k if f ◦ T ∈

Hk(X,µ) for all f ∈ Y ∗.

The main goal of this appendix is to show that if T is homogeneous of order k for some k, then

∥T∥Y has nice tail bounds (matching the kth power of a Gaussian) and satisfies equivalence of mo-

ments. Our first step in this direction is to associate a natural multi-linear form to any homogeneous

variable of order k.

Definition 5.5.2. Let (X,H, µ) be an abstract Wiener space, and let Xk denote the k-fold product

of X with itself. A subset E ⊂ Xk is called a k-linear domain if the following hold:

1. E is a Borel set and µ⊗k(E) = 1.

2. E is symmetric: if (x1, ..., xk) ∈ E then (xσ(1), ..., xσ(k)) ∈ E for all σ ∈ Sk where Sk is the

symmetric group on k letters.

296



3. If (x1, ..., xk−1, a) ∈ E and (x1, ..., xk−1, b) ∈ E then (x1, ..., xk−1, a + rb) ∈ E for all

r ∈ R.

Let Y be another Banach space. A function F : E → Y is called symmetric and multilinear if

• F is Borel measurable.

• F (x1, ..., xk) = F (xσ(1), ..., xσ(k)) for all σ ∈ Sk and all (x1, ..., xk) ∈ E.

• F (x1, ..., xk−1, a + rb) = F (x1, ..., xk−1, a) + rF (x1, ..., xk−1, b), whenever r ∈ R and

(x1, ..., xk−1, a) ∈ E and (x1, ..., xk−1, b) ∈ E.

Similarly F : E → R will be called symmetric and sub-multilinear if the equality in the third bullet

point is replaced by ≤ and r is replaced by |r| in the right-hand side.

We make the trivial remark that the class of k-linear domains is closed under countable intersec-

tions, which will be implicitly used on occasion. The point of these domains is that there may

be multilinear functions (even very simple ones) which are not measurably extendable to a full

subspace of the form Ek with E a Borel subspace of X of full measure, see [154] for an example

(it should be noted that a possibly non-measurable multilinear extension to the entire space Xk

always exists, see [8], but this is not useful here).

Lemma 5.5.3. Let (X,H, µ) be an abstract Wiener space, and let E ⊂ Xk be a k-linear domain.

Then Hk ⊂ E (where Hk denotes the k-fold Cartesian product of the Cameron-Martin space).

Proof. We proceed by induction on k. The k = 0 case is vacuously true.

Assume that any (k − 1)-linear domain contains Hk−1. Assume E ⊂ Xk is a k-linear domain.

For x ∈ X define Ex := {(a1, ..., ak−1) ∈ Xk−1 : (x, a1, ..., ak−1) ∈ E}. Since µ⊗k(E) = 1, an

application of Fubini’s theorem shows that µ(F ) = 1, where F := {x ∈ X : µ⊗(k−1)(Ex) = 1}.

It’s clear that Ex ∩ Ey ⊂ Ex+ry for all x, y ∈ X and r ∈ R, so that F is a Borel measurable linear

subspace of full measure and thus contains H . Thus µ⊗(k−1)(Ev) = 1 for all v ∈ H , and thus Ev is
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a (k− 1)-linear domain. Thus by the inductive hypothesis we have that Hk−1 ⊂ Ev, which means

that (v, h1, ..., hk−1) ∈ E for all h1, ..., hk−1 ∈ H . Thus Hk ⊂ E.

Lemma 5.5.4. Let E ⊂ Xk be a k-linear domain. Then there exists a Borel set A ⊂ E of full

measure such that for every x = (x1, ..., xk) ∈ A and every ℓ ≤ k, the set {(a1, ..., aℓ) ∈ Xℓ :

(x1, ..., xk−ℓ, a1, ..., aℓ) ∈ E} is an ℓ-linear domain. In particular, for every (x1, ..., xk) ∈ A, every

h = (h1, ..., hk) ∈ Hk and every I ⊂ [k] one has that (xI , hIc) ∈ E, where (xI , hIc) denotes the

vector whose ith component equals xi if i ∈ I and equals hi if i /∈ I .

Proof. For ℓ ≤ k, and (x1, ..., xℓ) ∈ Xℓ, let

Bk−ℓ
(x1,...,xℓ)

:= {(a1, ..., ak−ℓ) ∈ Xk−ℓ : (x1, ..., xℓ, a1, ..., ak−ℓ) ∈ E},

Fℓ := {(x1, ..., xk) ∈ Xk : µ⊗(k−ℓ)(Bk−ℓ
(x1,...,xℓ)

) = 1}.

Since µ⊗k(E) = 1 it follows that µ⊗k(Fℓ) = 1. Then let A :=
⋂

0≤ℓ≤k Fℓ. Clearly µ⊗k(A) =

1. If (x1, ..., xk) ∈ A then Bk−ℓ
(x1,...,xℓ)

is a (k − ℓ)-linear domain, and thus the required claim

follows. Furthermore by Lemma 5.5.3 it follows that Bk−ℓ
(x1,...,xℓ)

contains Hk−ℓ. In other words

if (x1, ..., xk) ∈ A then (x1, ..., xℓ, h1, ..., hk−ℓ) ∈ E for all h1, ..., hk−ℓ ∈ H. By permutation

invariance of E it then follows that (xI , hIc) ∈ E for all I ⊂ [k] with |I| = ℓ.

Lemma 5.5.5. Let (X,H, µ) be an abstract Wiener space, and let ψ ∈ Hk(X,µ). There exists

a multilinear domain E ⊂ Xk and a symmetric multilinear function ψ̂ : E → R such that the

following relation holds for µ⊗k-a.e. (x1, ..., xk) ∈ Xk:

ψ̂(x1, ..., xk) =
kk/2

2kk!

∑
ϵ∈{−1,1}k

ϵ1 · · · ϵk · ψ
(
k−1/2

k∑
i=1

ϵixi

)
. (5.20)

Proof. The main point is that if p : R → R is any monic polynomial of degree k then

1

2kk!

∑
ϵ∈{−1,1}k

ϵ1 · · · ϵk · p
( k∑

i=1

ϵixi

)
= x1 · · ·xn. (5.21)
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This may be verified combinatorially.

Since ψ ∈ Hk(X,µ), there exists a Borel subset F ⊂ X of measure 1, a sequence pj ↑ ∞

of natural numbers, and a collection of vectors {fi,j}1≤i≤pj ⊂ X∗ and a collection of scalars

{ci,j}1≤i≤pj ⊂ R, with the property that ψ(x) = limj→∞
∑pj

i=1 ci,jHk(fi,j(x)) for all x ∈ F (actu-

ally the limit is in L2(X,µ), but we can always pass to a subsequence to obtain an a.e. limit of this

form).

Let Gϵ := {(x1, ..., xk) ∈ Xk : k−1/2
∑k

1 ϵixi ∈ F} for ϵ ∈ {−1, 1}k, and let G :=
⋂
ϵ∈{−1,1}k Gϵ.

Then µ⊗k(G) = 1 since k−1/2
∑k

1 ϵixi is distributed as µ, for every ϵ.

Let q(x1, ..., xk) denote the right-hand side of (5.20). Then by (5.21), if (x1, ..., xk) ∈ G,

q(x1, ..., xk) = lim
j→∞

pj∑
i=1

ci,jfi,j(x1) · · · fi,j(xk). (5.22)

We define E to be the set of all (x1, ..., xk) ∈ Xk such that the right hand side of (5.22) converges,

and we define ψ̂ : E → R to be the value of the limit in the right side of (5.22). Then E is a

Borel set, since the set of values where a sequence of measurable functions converges is always

measurable. SinceE containsG, it follows that µ⊗k(E) = 1. Furthermore it is clear thatE satisfies

conditions (2) and (3) of Definition 5.5.2. It is also clear that ψ̂ is a symmetric and multilinear

function from E → R.

Our next proposition gives an explicit formula for ψ̂ on Hk.

Lemma 5.5.6. Let (X,H, µ) be an abstract Wiener space. For h1, ..., hk ∈ H and ψ ∈ Hk(X,µ)
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one has that

ψ̂(h1, ..., hk) =
1

k!

∫
X

ψ(x)⟨x, h1⟩ · · · ⟨x, hk⟩µ(dx) (5.23)

=

∫
Xk

ψ̂(x1, ..., xk)⟨x1, h1⟩ · · · ⟨xk, hk⟩µ⊗k(dx1, ..., dxk). (5.24)

In particular there exists a constantC > 0 which may depend on k but is independent ofX,H, µ, ψ

such that the following bounds hold:

sup
∥h1∥H ,...,∥hk∥H≤1

ψ̂(h1, ..., hk)
2 ≤ C

∫
X

ψ(x)2µ(dx) (5.25)

sup
∥h1∥H ,...,∥hk∥H≤1

ψ̂(h1, ..., hk)
2 ≤ C

∫
Xk

ψ̂(x1, ..., xk)
2µ⊗k(dx1, ..., dxk). (5.26)

Proof. First we prove (5.23). Given the construction of ψ̂ in the proof of Lemma 5.5.5, it suffices

to prove the claim when ψ(x) = Hk(⟨x, v⟩) for some fixed v ∈ H . Note by (5.21) that in this case

ψ̂(h1, ..., hk) = ⟨h1, v⟩ · · · ⟨hk, v⟩. Furthermore, since any symmetric multilinear map is uniquely

determined by its value on “diagonal elements" of the form (h, h, ..., h), it suffices to prove the

claim when all hi are equal. Summarizing this paragraph, it suffices to show that for all v, h ∈ H

one has

⟨h, v⟩k = 1

k!

∫
X

Hk(⟨x, v⟩)⟨x, h⟩kµ(dx).

Since Hk(⟨·, v⟩) ∈ Hk(X,µ), it suffices to prove the claim with ⟨x, h⟩k replaced by its projection

onto Hk(X,µ) in the right hand side. But that projection is just Hk(⟨x, h⟩). In other words we just

need to prove that

⟨h, v⟩k = 1

k!

∫
X

Hk(⟨x, v⟩)Hk(⟨x, h⟩)µ(dx).

But this is true, see e.g. Corollary 2.3 in [84].
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Next we prove (5.25). Note by Hölder’s inequality and (5.23) that

|ψ̂(h1, ..., hk))| ≤
1

k!

∫
X

|ψ(x)⟨h1, x⟩ · · · ⟨hk, x⟩|µ(dx)

≤ 1

k!

[ ∫
X

ψ(x)2kµ(dx)

]1/(2k) k∏
j=1

[ ∫
X

⟨hi, x⟩2kµ(dx)
]1/(2k)

Since ⟨hi, ·⟩ is distributed under µ as a centered Gaussian of variance ∥hi∥2H , we have

[ ∫
X

⟨hi, x⟩2kµ(dx)
]1/(2k)

= C1/(2k)∥hi∥H ,

where C is the (2k)th moment of a standard (variance 1) Gaussian. Furthermore, since ψ lies in

the kth Wiener chaos, we have the hypercontractive bound

[ ∫
X

ψ(x)2kµ(dx)

]1/(2k)
≤ (2k − 1)k/2

[ ∫
X

ψ(x)2µ(dx)

]1/2
,

see for instance equation (7.2) in [84].

The proof of (5.24) is completely analogous to the proof of (5.23) above: it suffices to prove it when

ψ = Hk(⟨·, v⟩) for some v ∈ H, in which case ψ̂(x1, ..., xk) = ⟨x1, v⟩ · · · ⟨xk, v⟩. By splitting the

integrals using Fubini’s theorem, it in turn suffices to show that
∫
X
⟨xi, hi⟩⟨xi, v⟩µ(dxi) = ⟨hi, v⟩.

But this is a trivial. The proof of (5.26) is then done in a completely analogous manner to the proof

of (5.25), using the same hypercontractive bounds but exploiting (5.24) rather than (5.23).

Equations (5.24) and (5.26) can be generalized as follows:

Lemma 5.5.7. Let (X,H, µ) be an abstract Wiener space, and let ψ ∈ Hk(X,µ). Let ψ̂ : E → R

denote the associated multilinear form, where E is a k-linear domain. Let A ⊂ E denote the

subset constructed in Lemma 5.5.4. Then for every (x1, ..., xk) ∈ A, every h1, ..., hk ∈ H and
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every I ⊂ [k] one has the following identity:

ψ̂(xIc , hI) =

∫
Xk

ψ̂(xIc , uI)
∏
i∈I

⟨ui, hi⟩µ⊗k(du). (5.27)

In particular there exists C > 0 which may depend on k but is independent of X,H, µ, ψ such that

sup
∥hi∥H≤1,∀i∈I

ψ̂(xIc , hI)
2 ≤ C

∫
Xk

ψ̂(xIc , uI)
2µ⊗k(du). (5.28)

For I ⊂ [k], we have as usual used (xIc , uI) to denote the vector whose ith component equals xi

if i /∈ I and equals ui if i ∈ I . Notice that integral over Xk integrates out only those components

whose index lies in I . The proof of (5.27) is done in a completely analogous fashion to the proof

of equations (5.24) and (5.23) above. One first proves the claim for ψ̂ of the form (x1, ..., xk) 7→

⟨x1, v⟩ · · · ⟨xk, v⟩, where v ∈ H such that x 7→ ⟨x, v⟩ is in X∗. The claim then follows since ψ̂

is a pointwise limit of finite linear combinations of such functions on its entire domain E (see the

proof of Lemma 5.5.5). The proof of (5.28) is then done using hypercontractivity and (5.27) as

before.

Definition 5.5.8. Let (X,H, µ) be an abstract Wiener space, let Y be another separable Banach

space, and let T : X → Y be homogeneous of order k. We define the decoupled chaos QT : Xk →

Y as follows:

QT (x1, ..., xk) :=
kk/2

2kk!

∑
ϵ∈{−1,1}k

ϵ1 · · · ϵk · T
(
k−1/2

k∑
i=1

ϵixi

)
.

Notice that if T : X → Y is a homogeneous variable of order k on the abstract Wiener space

(X,H, µ), then QT is also a homogeneous variable of order k on the abstract Wiener space

(Xk, Hk, µ⊗k). By Lemma 5.5.5 it is intuitively clear that there should exist a k-linear domain

E ⊂ Xk and a multilinear function T̂ : E → Y which coincides with QT almost everywhere. This

will be proved later in Proposition 5.5.18, but first we need some preliminaries.
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Proposition 5.5.9. Let (X,H, µ) be an abstract Wiener space, let Y be another separable Banach

space, and let T : X → Y be homogeneous of order k. There exists a multilinear domain E ⊂ Xk

and a symmetric sub-multilinear map JT : E → R with the property that the following relation

holds for µ⊗k-a.e. (x1, ..., xk) ∈ Xk:

JT (x1, ..., xk) = ∥QT (x1, ..., xk)∥Y . (5.29)

Furthermore, there exists a universal constant C such that the following bounds hold:

sup
∥h1∥H ,...,∥hk∥H≤1

JT (h1, ..., hk)
2 ≤ C sup

∥f∥Y ∗≤1

∫
X

f(T (x))2µ(dx) <∞. (5.30)

sup
∥h1∥H ,...,∥hk∥H≤1

JT (h1, ..., hk)
2 ≤ C sup

∥f∥Y ∗≤1

∫
Xk

f(QT (x1, ..., xk))
2µ⊗k(dx). (5.31)

Here C may depend on the homogeneity k but is independent of the choice of (X,H, µ, Y, T ).

Proof. Choose {fn}n≥1 ⊂ Y ∗ such that supn fn(y) = ∥y∥Y for all y ∈ Y . Such a collection of

functionals exists because Y is separable.

We an find by Lemma 5.5.5 a k-linear domain En ⊂ Xk and a multilinear symmetric map

gn : En → R such that fn(QT (x1, ..., xk)) = gn(x1, ..., xk) whenever (x1, ..., xk) ∈ Fn where

Fn is Borel and µ⊗k(Fn) = 1.

Define E to be the set of all (x1, ..., xk) such that supn gn(x1, ..., xk) <∞, and define JT : E → R

to be that supremum. Since supn fn(y) = ∥y∥Y , it’s clear that supn gn(x1, ..., xk) equals the

right side of (5.29) whenever (x1, ..., xk) ∈
⋂
n Fn. Consequently E contains

⋂
n Fn and thus

µ⊗k(E) = 1. Furthermore, it is obvious that E satisfies conditions (2) and (3) of Definition 5.5.2,

so that E is a k-linear domain. It is also clear that JT is sub-multilinear on E.

Next we prove (5.30). The first inequality is clear directly from (5.25) and the fact that JT =
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supn gn, since gn
a.e
= fn ◦QT ∈ Hk(X,µ) and since ∥fn∥Y ∗ = 1. To prove that

sup
∥f∥Y ∗≤1

∫
X

f(T (x))2µ(dx) <∞,

just apply the closed graph theorem to the linear map from Y ∗ → L2(X,µ) given by f 7→ f ◦T to

deduce that it must be bounded.

The proof of (5.31) is similar to the proof of (5.30), but one uses (5.26) rather than (5.25).

Bound (5.31) generalizes as follows:

Lemma 5.5.10. Let JT : E → R be as in the previous lemma, and let A ⊂ E be as constructed in

Lemma 5.5.4. Then there exists a Borel set B ⊂ A of full measure such that for all x ∈ B one has

the following bound:

sup
∥hi∥H≤1,∀i∈I

JT (xIc , hI)
2 ≤ C sup

∥f∥Y ∗≤1

∫
Xk

f(QT (xIc , uI))
2µ⊗k(du) <∞. (5.32)

Proof. Let gn be as in the proof of the previous lemma so that JT = supn gn. Then for all x ∈ A

one has

sup
∥hi∥H≤1,∀i∈I

JT (xIc , hI)
2 ≤ C sup

n

∫
Xk

gn(xIc , uI)
2µ⊗k(du). (5.33)

The proof of this is completely analogous to the first inequality in (5.31), however one uses (5.28)

rather than (5.26). Note that since gn = fn ◦QT µ
⊗k-a.e., it follows by Fubini that

∫
Xk

gn(xIc , uI)
2µ⊗k(du) =

∫
Xk

fn(QT (xIc , uI))
2µ⊗k(du), for µ⊗k-a.e. x ∈ A.

We letB denote the set of all x ∈ A such that the above equality holds for all I ⊂ [k]. Then clearly

B has measure 1 and satisfies the required condition since ∥fn∥Y ∗ = 1. The fact that the sup over

∥f∥Y ∗ ≤ 1 is finite follows once again from the closed graph theorem, as applied in the proof of

the previous lemma.
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Next we prove that the sub-multilinear form associated to any homogeneous variable has finite

moments of all orders and that all of its moments are equivalent. Later we will use this to show that

the homogeneous variable itself has finite moments of all orders and all its moments are equivalent.

Proposition 5.5.11. Let (X,H, µ) be an abstract Wiener space and let T : X → Y be homoge-

neous of order k, and let JT denote the associated sub-multilinear form. Then

m̂T (r) :=

∫
Xk

JT (x1, ..., xk)
rµ⊗k(dx1, ..., dxk) <∞

for all r > 0, and moreover

µ⊗k({(x1, ..., xk) ∈ Xk : JT (x1, ..., xk) > a}) < Ce−α
(
a2/m̂T (2)

)1/k
, (5.34)

where C, α > 0 are universal constants which depend on k but are independent of the choice of

X,H, µ, Y, T, and a > 0.

Proof. The proof given here uses the Gaussian isoperimetric inequality and is adapted from Chap-

ter 3 of [109], which in turn is adapted from Borell’s original work [21, 20].

Assume E ⊂ Xk is a k-linear domain, let A ⊂ E be a subset as constructed in Lemma 5.5.4,

and let B ⊂ A be a further subset as constructed in Lemma 5.5.10. Note by Lemma 5.5.10 that

(5.32) holds for all x ∈ B and all I ⊂ [k]. For x ∈ B ,let SI(x) denote the left-hand side of (5.32).

Define Stotal : B → R by

Stotal(a) :=
∑
I⊂[k]
I ̸=∅

SI(a).

For M > 0 let

AM := {a ∈ B : Stotal(a) ≤M and JT (a) ≤M}. (5.35)
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Now choose M0 > 0 such that µ⊗k(AM0) ≥ 1/2. For t ≥ 0 let

AM0(t) := {(a1 + th1, ..., ak + thk) : (a1, ..., ak) ∈ AM0 and
k∑
1

∥hi∥2H ≤ 1}.

By the Gaussian isoperimetric inequality, µ⊗k
∗ (AM0(t)) ≥ 1 − 1

2
e−t

2/2, where µ⊗k
∗ denotes inner

measure. On the other hand, if (a1 + th1, ..., ak + thk) ∈ AM0(t) then by sub-multilinearity of

JT on E and the fact that (aI , hIc) ∈ E for all a ∈ B and h ∈ Hk (recall Lemma 5.5.4 and note

B ⊂ A) we have that

JT (a1 + th1, ..., ak + thk) ≤
∑
I⊂[k]

t|I|JT (aIc , hI)

≤M0 +
∑
I⊂[k]
I ̸=∅

t|I|SI(a) ≤M0 + tkStotal(a) ≤M0 + tkM0.

In particular, {(a1, ..., ak) ∈ B : JT (a1, ..., ak) > M0 + tkM0} is contained in the complement of

AM0(t), and since B has full measure this means that

µ⊗k({(a1, ..., ak) ∈ Xk : JT (a1, ..., ak) > M0 + tkM0}) ≤
1

2
e−t

2/2. (5.36)

This already shows that m̂T (r) < ∞ for all r ≥ 0. Thus it only remains to show (5.34). For this

we will obtain precise bounds onM0 and then use (5.36). First note by Chebyshev that if we define

M1 := 2m̂T (2)
1/2, then

µ⊗k({(x1, ..., xk) : JT (x1, ..., xk) > M1}) ≤M−2
1 m̂T (2) = 1/4. (5.37)

Recall JT = supn gn, so by (5.33) we have SI(a) ≤
[ ∫

Xk JT (aIc , uI)µ
⊗k(du)

]1/2
, so that by
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Chebyshev, if we define M2 := 6km̂T (2)
1/2 then for every ℓ ≤ k,

µ⊗k({a ∈ Xk : SI(a) > 2−kM2) ≤ 4kM−2
2

∫
Xk

SI(a)
2µ⊗k(da)

≤ 4kM−2
2

∫
Xk

∫
Xk

JT (aIc , uI)
2µ⊗k(du)µ⊗k(da) = 4kM−2

2 m̂T (2) ≤ (4/36)k = 9−k.

Thus we can apply a union bound to obtain

µ⊗k({a ∈ Xk :Stotal(a) > M2}) ≤
∑
I⊂[k]
I ̸=∅

µ⊗k({a ∈ Xk : SI(a) > 2−kM2})

≤
∑
I⊂[k]
I ̸=∅

9−k ≤ 2k9−k ≤ 1/4. (5.38)

Combining equations (5.37) and (5.38) we see that µ⊗k(Acmax{M1,M2}) ≤ 1/2 with AM defined in

(5.35). Thus we can take M0 := max{M1,M2} = 6km̂T (2)
1/2, and then by equation (5.36) we

obtain

µ⊗k({(x1, ..., xk) : JT (x1, ..., xk) > a}) ≤ 1

2
e−

1
2
(M−1

0 a−1)2/k .

As long as a > 2M0 we know that M−1
0 a − 1 > (2M0)

−1a, hence if a > 2M0 then the last

probability is bounded above by 1
2
e−2−1−2k−1

a2/kM
−2/k
0 .

Since JT = ∥QT∥Y a.e. by construction, we have the following.

Corollary 5.5.12. The results of Proposition 5.5.11 still apply if we replace JT (x1, ..., xk) by

∥QT (x1, ..., xk)∥Y throughout the statement.

Proposition 5.5.13. Let (X,H, µ) be an abstract Wiener space and let T : X → Y be homoge-

neous of order k. For r ≥ 1 let

mT (r) :=

∫
X

∥T (x)∥rY µ(dx),

and let m̂T (r) be as defined in Proposition 5.5.11. There exist constants c, C > 0 which may
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depend on k but are independent of (X,H, µ, Y, T, r) such that

crmT (r) ≤ m̂T (r) ≤ Crm(r). (5.39)

In particular mT (r) <∞ for all r ≥ 1.

Proof. First we show that m̂T (r) ≤ Crm(r). To do this note by Jensen that

∥QT (x1, ..., xn)∥rY =

∥∥∥∥ 1

2k

∑
ϵ∈{−1,1}k

kk/2

k!
ϵ1 · · · ϵnT

(
k−1/2

k∑
1

ϵixi

)∥∥∥∥r
Y

≤ 1

2k

∑
ϵ∈{−1,1}k

kkr/2

(k!)r

∥∥∥∥T(k−1/2

k∑
1

ϵixi

)∥∥∥∥r
Y

,

for µ⊗k-a.e. (x1, ..., xk) ∈ Xk. Thus we integrate both sides of the above inequality over Xk and

we use the fact that k−1/2
∑k

1 ϵixi has law µ under µ⊗k, and we see that

m̂T (r) ≤ 2−k
∑
ϵ

kkr/2

(k!)r
m(r) = Crm(r),

where C := kk/2/k!.

Now we need to prove thatmT (r) ≤ c−rm̂T (r) for small enough c > 0. Henceforth if F : Xℓ → Y

is any function, where ℓ ∈ N, then we will abbreviate F (y1, ..., yℓ) by F ((yi)ℓ−1
i=1 , yℓ). We claim

that the following relation holds for µ⊗k-a.e. (x1, ..., xk) ∈ Xk:

QT ((2
−i/2k1/2xi)

k−1
i=1 , 2

−(k−1)/2k1/2xk) = kk/22−(k+1)(k−1)/4QT ((xi)1≤i≤k). (5.40)

To prove this, we choose {fn}n≥1 ⊂ Y ∗ such that supn fn(y) = ∥y∥Y . Since {fn}n separates

points of Y , it suffices to show, for each n, that (5.40) holds a.e. after applying fn to both sides. In

turn it suffices to show that for any f ∈ Y ∗, the composition of f with both sides can be modified

on a set of measure zero to yield a multilinear function defined on some k-linear domain, since the
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right side is formally obtained from the left side by pulling constants out of each coordinate. For

the right hand side, this is true, simply by Lemma 5.5.5 and the fact that f ◦ T ∈ Hk(X,µ). To

prove this for the left side, note that f composed with the left side equals

kk/2

2kk!

∑
ϵ∈{−1,1}k

ϵ1 · · · ϵkf ◦ T
( k−1∑

i=1

2−i/2ϵixi + 2−(k−1)/2ϵkxk

)
.

Note that the sum of squares of the coefficients of the xi equals 1. In particular this means that∑k−1
i=1 2

−i/2ϵixi+2−(k−1)/2ϵkxk has the same distribution as µ. Thus the proof that the above func-

tion can be modified on a set of measure zero to yield a multilinear function can thus be done

in a similar fashion to the proof of Lemma 5.5.5 (i.e., one defines Gϵ := {(x1, ..., xk) ∈ Xk :∑k−1
i=1 2

−i/2ϵixi + 2−(k−1)/2ϵkxk ∈ F} and proceeds exactly in the same way as that proof, using

equation (5.21)).

Next we will inductively define measurable maps Tj : Xℓ → Y for 1 ≤ ℓ ≤ k as follows.

Let T1(x) := T (x), and then define

Tℓ+1(x1, ..., xℓ+1) := Tℓ
(
(xi)

ℓ−1
i=1 , 2

−1/2(xℓ − xℓ+1)
)
− Tℓ

(
(xi)

ℓ−1
i=1 , 2

−1/2(xℓ + xℓ+1)
)
.

It is clear that each Tℓ is homogeneous of order k. By induction it is easy to show that Tℓ is

equivalently given by

Tℓ(x1, ..., xℓ) =
∑

ϵ∈{−1,1}ℓ
ϵ1 · · · ϵℓT

( ℓ−1∑
i=1

2−i/2ϵixi + 2−(ℓ−1)/2ϵℓxℓ

)
.

In particular, Tk(x1, ..., xk) equals the left side of (5.40) multiplied by k−k/22kk!. We also define
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another inductive family of functions gℓ : Xℓ → Y for 1 ≤ ℓ ≤ k by gk := 0 and

gℓ(x1, ..., xℓ) =

∫
X

[
gℓ+1

(
x1, ..., xℓ−1, 2

−1/2(xℓ − xℓ+1), 2
−1/2(xℓ − xℓ+1)

)
+ Tℓ

(
x1, ..., xℓ−1, xℓ+1

)]
µ(dxℓ+1).

Inductively one can see that gℓ does not actually depend on xℓ (the definition is somewhat mislead-

ing), thus g1 = 0.

We now claim the following series of relations:

∫
Xℓ+1

∥Tℓ+1(x1, ..., xℓ+1)− gℓ+1(x1, ..., xℓ+1)∥rY µ⊗(ℓ+1)(dx)

=

∫
Xℓ+1

∥∥Tℓ+1

(
x1, ..., xℓ−1, 2

−1/2(xℓ − xℓ+1), 2
−1/2(xℓ + xℓ+1)

)
− gℓ+1

(
x1, ..., xℓ−1, 2

−1/2(xℓ − xℓ+1), 2
−1/2(xℓ + xℓ+1)

)∥∥r
Y
µ⊗(ℓ+1)(dx)

≥
∫
Xℓ

∥∥∥∥∫
X

Tℓ+1

(
x1, ..., xℓ−1, 2

−1/2(xℓ − xℓ+1), 2
−1/2(xℓ + xℓ+1)

)
− gℓ+1

(
x1, ..., xℓ−1, 2

−1/2(xℓ − xℓ+1), 2
−1/2(xℓ + xℓ+1)

)
µ(dxℓ+1)

∥∥∥∥r
Y

µ⊗ℓ(dx1, ..., dxℓ)

=

∫
Xℓ

∥∥∥∥∫
X

[
Tℓ(x1, ..., xℓ−1, xℓ)− Tℓ(x1, ..., xℓ−1, xℓ+1)

− gℓ+1

(
x1, ..., xℓ−1, 2

−1/2(xℓ − xℓ+1), 2
−1/2(xℓ + xℓ+1)

)
µ(dxℓ+1)

∥∥∥∥r
Y

µ⊗ℓ(dx1, ..., dxℓ)

=

∫
Xℓ

∥∥Tℓ(x1, ..., xℓ)− gℓ(x1, ..., xℓ)
∥∥r
Y
µ⊗ℓ(dx1, ..., dxℓ).

Here the integrals of Tℓ over X are meant to be interpreted in the sense of Bochner. The first

equality is from rotational invariance of the last two coordinates, the next inequality is by Jensen,

the next equality is just the definition of Tℓ+1 in terms of Tℓ, and the last equality is the definition

of gℓ. Note that the inequality we have just derived is of the form p(ℓ+1) ≥ p(ℓ), so recalling that
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g1 = 0 and gk = 0, we find that

∫
Xk

∥Tk(x1, ..., xk)∥rY µ⊗k(dx1, ..., dxk) ≥
∫
X

∥T1(x1)∥rY µ(dx1).

By (5.40) and our inductive scheme we know that Tk(x1, ..., xk) = k!2−(k−1)2/4QT (x1, ..., xk)

µ⊗k-a.e., which gives desired claim.

Corollary 5.5.14. Let (X,H, µ) be an abstract Wiener space and let T : X → Y be homogeneous

of order k. Let mT (r) be as defined in Proposition 5.5.13. Then there exists some α > 0 such that

µ({x ∈ X : ∥T (x)∥Y > a}) < Ce−α
(
a2/mT (2)

)1/k
, (5.41)

where C, α > 0 depend on k but are independent of the choice of (X,H, µ, Y, T ) and a > 0.

Proof. It suffices to show that
∫
X
exp

(
λ ·mT (2)

−1/k∥T (x)∥2/kY

)
µ(dx) < C where λ,C depend on

k but not on X,H, µ, Y, T . To do this, write

exp
(
λ ·mT (2)

−1/k∥T (x)∥2/kY

)
=

∞∑
r=0

λrmT (2)
−r/k∥T (x)∥2r/kY

r!
.

Now notice that

mT (r)
2/r

(5.39)
≤ Cm̂T (r)

2/r ≤ C

[ ∫ ∞

0

rxr−1µ⊗k({a ∈ Xk : ∥QT (a)∥Y > x})dx
]2/r

(5.34)
≤ Cm̂T (2)f(r)

2/r
(5.39)
≤ CmT (2)f(r)

2/r,

where C may grow with each inequality but only depends on k, and

f(r) :=

∫ ∞

0

rxr−1e−αx
2/k

dx =
1

2
krα−k/2Γ(kr/2).

Here α is the same constant appearing in (5.34). Combining the previous three expressions, we see
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that

∫
X

exp
(
λ ·mT (2)

−1/k∥T (x)∥2/kY

)
µ(dx) =

∞∑
r=0

λrmT (2)
−r/kmT (2r/k)

r!

≤
∞∑
r=0

λrCrf(2r/k)

r!

Notice that f(2r/k)/r! = 1
2
kα−k/2 is a constant depending on k but nothing else, hence the above

sum will indeed converge (independently of X,H, µ, Y, T ) for λ < 1/C.

Next we prove that any homogeneous variable of order k can be approximated in the strongest

sense by a sequence of finite rank Cameron-Martin projections, in the same way as a Gaussian

variable in any Banach space.

Let (X,H, µ) be an abstract Wiener space. Choose an orthonormal basis {en}n for H, and let

Pnx :=
n∑
j=1

⟨x, ej⟩ej, Qnx :=
∞∑

j=n+1

⟨x, ej⟩ej = x− Pnx.

Note that Pnx,Qnx are independent. Therefore if (x, y) is sampled from µ⊗2, then Pnx + Qny

is distributed as µ. If T : X → Y is homogeneous of order k, we thus define a sequence of

“finite-rank Cameron-Martin projections for T " by the formula

Tn(x) :=

∫
X

T (Pnx+Qny)µ(dy). (5.42)

This is a well-defined Bochner integral for a.e. x ∈ X . Indeed, since

∫
X

∫
X

∥T (Pnx+Qny)∥Y µ(dy)µ(dx) =
∫
X

∥T (u)∥Y µ(du) <∞,

it follows that
∫
X
∥T (Pnx+Qny)∥Y µ(dy) is finite for a.e. x.

Proposition 5.5.15. Let (X,H, µ) be an abstract Wiener space, and let T : X → Y be homo-
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geneous of order k. If Tn is defined as in (5.42), then Tn is also homogeneous of order k, and

moreover ∥Tn − T∥Y → 0 a.e. and in every Lp(X,µ) as n → ∞. In fact, one has the following

super-polynomial convergence bound:

µ({x ∈ X : ∥Tn(x)− T (x)∥Y > u}) ≤ C exp
[
− α

(
u/∥Tn − T∥L2(X,µ;Y )

)2/k] (5.43)

where C, α are independent of X,H, µ, Y, T, u, n and the choice of basis {en}.

Proof. The proof of a.e. convergence follows immediately from the Banach space-valued martin-

gale convergence theorem [35]. Indeed, Tn can be viewed as the conditional expectation of T given

{⟨x, ei⟩}1≤i≤n. The proof of Lp convergence follows similarly, since supn
∫
X
∥Tn(x)∥pµ(dx) ≤∫

X
∥T (x)∥pµ(dx) < ∞ by Jensen’s inequality. The fact that Tn is also homogeneous of order k

follows from the fact that the random variable (x, y) 7→ T (Pnx + Qny) is homogeneous of order

k on the abstract Wiener space (X2, H2, µ⊗2) and the fact that integrals of homogeneous variables

are still homogeneous of the same order. Since Tn − T is homogeneous of order k, (5.43) follows

immediately from Corollary 5.5.14 and Proposition 5.5.15.

Definition 5.5.16. Let (X,H, µ) be an abstract Wiener space, and let Y be another separable

Banach space. For p ≥ 1 we define the following Banach spaces:

1. Lp(X,µ;Y ) is the space of all Borel measurable functions ϕ : X → Y such that
∫
X
∥ϕ∥pY dµ <

∞, up to a.e. equivalence.

2. Hk
0(X,µ;Y ) is the closed subspace of L2(X,µ;Y ) consisting of all ϕ such that f ◦ ϕ ∈

Hk(X,µ) for all f ∈ Y ∗.

3. Hk(X,µ;Y ) consists of the closure in L2(X,µ;Y ) of the linear span of x 7→ Hk(g(x))y, as

g varies through all elements of the continuous dual space X∗ and y varies through Y . Here

Hk is the kth Hermite polynomial as usual.

Note that L2(X,µ;Y ) is not a Hilbert space unless Y is a Hilbert space (which is seldom true in
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practical applications). Also note by Corollary 5.5.14 that all of the Lp norms on Hk
0(X,µ;Y ) are

equivalent.

Lemma 5.5.17. In the notation of Definition 5.5.16, we have Hk
0(X,µ;Y ) = Hk(X,µ;Y ).

Proof. It is clear that Hk ⊂ Hk
0 . Conversely let T ∈ Hk

0(X,µ;Y ). Fix an orthonormal basis {en}

for H and let Tn ∈ Hk
0(X,µ;Y ) be given by (5.42). Then Tn are measurable with respect to a

finite family {⟨x, ei⟩}1≤i≤n of iid standard Gaussians, therefore it is clear that Tn can be written

as x 7→
∑pn

j=1 y
n
jHk(⟨x, vnj ⟩), where pn ∈ N, ynj ∈ Y , and vnj ∈ span{ei}ni=1. In particular

Tn ∈ Hk(X,µ;Y ). By Proposition 5.5.15we know that Tn → T in L2(X,µ;Y ), and thus T ∈

Hk(X,µ;Y ).

Next we prove that QT can be modified on a measure-zero set to yield a multilinear function.

Proposition 5.5.18. Let (X,H, µ) be an abstract Wiener space, and let T : X → Y be homoge-

neous of order k. There exists a k-linear domain E ⊂ Xk and a multilinear function T̂ : Xk → Y

such that T̂ (x1, ..., xk) = QT (x1, ..., xk) for µ⊗k-a.e. (x1, ..., xk).

Proof. By Lemma 5.5.17, we know that there exists a Borel set F with µ(F ) = 1 such that

limn→∞ ∥T (x) −
∑pn

j=1 y
n
jHk(g

n
j (x))∥Y = 0, for every x ∈ F , where pn ∈ N, ynj ∈ Y , and

gnj ∈ X∗ (actually the limit is in L2(X,µ;Y ), but we can always pass to a subsequence to extract

an a.e. limit).

As we did in the proof of Lemma 5.5.5, we define Gϵ := {(x1, ..., xk) ∈ Xk : k−1/2
∑k

1 ϵixi ∈ F}

for ϵ ∈ {−1, 1}k, and let G :=
⋂
ϵ∈{−1,1}k Gϵ. Then µ⊗k(G) = 1 since k−1/2

∑k
1 ϵixi is distributed

as µ, for every ϵ.

Recalling the definition of QT (see Definition 5.5.8) and equation (5.21), it is clear that when-

ever (x1, ..., xk) ∈ G

QT (x1, ..., xk) = lim
n→∞

pn∑
j=1

ynj g
n
j (x1) · · · gnj (xk). (5.44)
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We define E to be the set of all (x1, ..., xk) ∈ Xk such that the right hand side of (5.44) converges

(with respect to the norm topology on Y ), and we define T̂ : E → Y to be the value of the

limit in the right side of (5.44). Then E is a Borel set, since the set of values where a sequence

of measurable functions converges is always measurable. Since E contains G, it follows that

µ⊗k(E) = 1. Furthermore it is clear that E satisfies conditions (2) and (3) of Definition 5.5.2. It is

also clear that T̂ is a symmetric and multilinear function from E → Y.

Next we characterize T̂ on the subset Hk ⊂ E. The following is attributed to Section 3 of [91].

Lemma 5.5.19. Let (X,H, µ) be an abstract Wiener space, and let T : X → Y be homogeneous

of order k. For h1, ..., hk ∈ H , one has the Bochner integral representation:

T̂ (h1, ..., hk) =
1

k!

∫
X

T (x)⟨x, h1⟩ · · · ⟨x, hk⟩µ(dx). (5.45)

In particular for h ∈ H we have

T̂ (h, ..., h) =

∫
X

T (x+ h)µ(dx). (5.46)

Proof. To prove (5.45), it suffices to show that equality holds if after applying any f ∈ Y ∗. But

since f ◦ T ∈ Hk(X,µ), this follows easily from (5.23).

To prove (5.46), note by the Cameron-Martin formula that

∫
X

T (x+ h)µ(dx) =

∫
X

T (x)e⟨x,h⟩−
1
2
∥h∥2Hµ(dx) =

∫
X

T (x)
∞∑
r=1

1

r!
Hr(⟨x, h⟩)µ(dx)

=

∫
X

T (x)
1

k!
Hk(⟨x, h⟩)µ(dx) =

∫
X

T (x)
1

k!
⟨x, h⟩kµ(dx) = T̂ (h, ..., h).

In the second equality we expanded the exponential in terms of its Hermite polynomial generating

series, in the third equality we used that T is homogeneous of order k so that only the kth Hermite

polynomial is not orthogonal to T , and in the fourth equality we again used the fact that T is ho-
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mogeneous of order k so that T is orthogonal to any polynomial of degree less than k (in particular

it is orthogonal to Hk(⟨x, h⟩)− ⟨x, h⟩k). In the final equality we used (5.45).

Definition 5.5.20. Let (X,H, µ) be an abstract Wiener space, and let T : X → Y be homogeneous

of order k. We define the canonical functional Thom : H → Y by sending h ∈ H to the expression

in (5.46).

Lemma 5.5.21. Let (X,H, µ) be an abstract Wiener space, and let T : X → Y be homogeneous

of order k. Choose an orthonormal basis {en} of H and let Tn be the finite-rank approximation

given in (5.42). Then we have the uniform convergence

lim
n→∞

sup
∥h∥≤1

∥∥(Tn)hom(h)− Thom(h)
∥∥
Y
= 0.

Letting B(H) denote the unit ball of H , it follows that Thom is continuous from B(H) → Y , where

B(H) is given the topology of X (not of H).

Proof. The proof given here is taken directly from Section 3 of [91]. It is clear that each Tn is

continuous from (B(H), ∥ · ∥X) to (Y, ∥ · ∥Y ), since it can be identified with a polynomial function

from Rn → Y (i.e., a function of the form (x1, ..., xn) 7→
∑N

j=1 pj(x1, ..., xn)yj where pj are

polynomials and yj ∈ Y ). To prove that (Tn)hom → Thom uniformly on B(H), note that

∥(Tn)hom(h)− Thom(h)∥Y ≤
∫
X

∥Tn(x+ h)− T (x+ h)∥Y µ(dy)

=

∫
X

∥Tn(x)− T (x)∥Y e⟨x,h⟩−
1
2
∥h∥2Hµ(dx)

≤ ∥Tn − T∥L2(X,µ;Y )

[ ∫
X

e2⟨x,h⟩−∥h∥2µ(dx)

]1/2
= ∥Tn − T∥L2(X,µ;Y ) · e∥h∥

2/2.

Here we applied the definition of Thom in the first inequality, then we used the Cameron-Martin

formula in the next line, then we used Cauchy-Schwarz in the following line, then we computed

the integral in the last line. Hence we can finally obtain that sup∥h∥≤1 ∥(Tn)hom(h)−Thom(h)∥Y ≤

316



e1/2∥Tn − T∥L2(X,µ;Y ), which tends to 0 by Proposition 5.5.15.

Corollary 5.5.22. Let (X,H, µ) be an abstract Wiener space, and let T i : X → Yi be homoge-

neous of order ki for 1 ≤ i ≤ m, where m ∈ N. Then the set

{(h, T 1
hom(h), ..., T

m
hom(h)) : h ∈ B(H)}

is a compact subset of X × Y1 × · · ·Ym.

Proof. It is well-known that B(H) is a compact subset of X. By Lemma 5.5.21, the map h 7→

(h, T 1
hom(h), ..., T

m
hom(h)) is continuous from B(H) to X × Y1 × · · ·Ym, and the claim follows

immediately.

We conclude this appendix with the remark that the bounds we have derived here are not sharp, but

see the seminal work [107] for a derivation of sharp bounds, as well as subsequent papers on that

subject such as [1].

5.6 Appendix 2: Regularity Structures and the solution map Φ

Let us explain the map above by giving a rapid introduction to the theory of regularity structures.

We reproduce without motivation only the formalities which are important to us in the KPZ ex-

ample, but gentler introductions with more background and intuition can be found in [33, 83, 87].

Whenever we write Rd+1 below it should be thought of as R× Rd which stands for space-time.

Definition 5.6.1. A regularity structure is defined to be a triple (T,A,G) where T =
⊕

α∈A Tα is

a graded vector space indexed by A ⊂ R which is a discrete set bounded from below, and G is a

group of (invertible) linear transformations T → T satisfying Γτ − τ ∈
⊕

β<α Tβ for all τ ∈ Tα.

Furthermore each Tα is required to be finite-dimensional. A model for (T,A,G) on Rd+1 consists

of two maps Π : Rd+1 → L(T,S ′(Rd)) and Γ : Rd+1 × Rd+1 → G such that for any compact set
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K ⊂ Rd+1 and γ > 0 there exists C > 0 such that for all β < α ≤ γ and x, y ∈ K one has the

bounds

|Πx(ϕ
λ
x)| ≤ Cλα∥τ∥α

∥Γxyτ − τ∥β ≤ C|x− y|α−β∥τ∥α

ΠxΓxy = Πy, ΓxyΓyz = Γxz,

where we abbreviated ∥τ∥α := ∥τα∥Tα where τα is the component of τ in Tα, where Πx = Π(x),

where Γxy = Γ(x, y), and where ϕλ(t,x)(s, a) := λ−d−2ϕ(λ−2(t − s), λ−1(x − a)), with t, s ∈ R,

and a, x ∈ Rd and λ > 0.

Given a kernel K : Rd+1 → R which can be decomposed as
∑

n≥0Kn where K0 is smooth and

each Kn with n ≥ 1 is smooth and compactly supported and satisfies the bounds |∂kKn(x)| ≤

2n(d+k−ρ) for some ρ > 0 one may then define a model (Π,Γ) for (T,A,G) to be admissible with

respect to the kernel K if the following properties hold:

1. (T,A,G) contains a copy of the polynomial regularity structure, that is {0, 1, 2, ...} ⊂ A and

each Tα with α = k contains a linear subspace spanned by formal indeterminates in d + 1

variables, say Xk with k ∈ Nd+1 in multi-index notation, such that each Γ ∈ G acts on Xk

by sending it to (X − h)k :=
∑k

i=0

(
k
i

)
hk−iX i for some h ∈ R.

2. There exists a linear map I : T → T which sends each Tα to Tα+ρ and sends the polynomial

part of the regularity structure to zero. Moreover for each symbol τ ∈ T and k ∈ N one has

the identities

ΠxX
k(z) = (z − x)k,

ΠxIτ(z) =
∫
Rd+1

K(z − a)Πxτ(da)−
∑

|k|s≤|τ |+ρ

(z − x)k

k!

∫
Rd+1

∂kK(x− a)Πxτ(da),

where the integrals can be shown to be well-defined quantities by decomposingK =
∑

nKn

and using the given bounds onKn and their derivatives. Again k here is a multi-index in Nd+1
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and ak =
∏
akii , with k! =

∏
ki!, and |k|s = 2k0 + k1 + ...+ kd.

Definition 5.6.2. Given a model (Π,Γ) for (T,A,G) one can define for γ > 0 Frechet spaces

Dγ(Π,Γ) to be the set of all functions f : Rd+1 → T−
γ (where the latter is shorthand for

⊕
α<γ Tα)

such that one has for all compact sets K and α < γ

sup
x∈K

∥f(x)∥α + sup
x,y∈K

∥f(x)− Γxyf(y)∥α
|x− y|γ−α

<∞.

These spaces generalize Holder spaces and recover them in the case of the polynomial regularity

structure.

Given two models (Π,Γ) and (Π̄, Γ̄) one can define for each compact set K ⊂ Rd+1 a distance

between them by the formula

max
β<α<γ

sup
x,y∈K

sup
λ∈(0,1]

sup
∥ϕ∥Cr≤1

sup
∥τ∥α=1

[
|(Πxτ − Π̄xτ)(ϕ

λ
x)|

λα
+

∥Γxyτ − Γ̄xyτ∥β
|x− y|α−β

]
,

where r := −(⌊minA⌋ ∧ 0). Given a model (Π,Γ) for (T,A,G) we say that (Π,Γ, f) is a γ-

relevant triple if f ∈ Dγ(Π,Γ). One can likewise define for each compact K ⊂ Rd+1 a pseudo-

metric on the space of γ-relevant triples for (T,A,G) by the same formula above but with an

additional term inside the supremum given by

∥f(x)− f̄(x)− Γxyf(y) + Γ̄xyf̄(y)∥α
|x− y|γ−α

.

Instead of looking at compact sets, in many contexts one may also work spatially on a compact

torus R × Td to simplify things, or alternatively one may take the supremum over all of Rd after

introducing a suitable weight function w(x) in the denominators of each of the expressions above.

One then has the following “Reconstruction Theorem" with the relevant “Schauder Estimate":

Theorem 5.6.3. Given a model (Π,Γ) for (T,A,G) and γ > 0 there exists a unique continuous

linear map R = R(Π,Γ) : Dγ(Π,Γ) → S ′(Rd+1) satisfying |
(
Πxf(x)−Rf

)
(ϕλx)| ≲ λγ uniformly
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on compact sets of x and λ ∈ (0, 1] and uniformly over ∥ϕ∥Cr ≤ 1 where r := −(⌊minA⌋ ∧ 0).

Furthermore the map (Π,Γ, f) 7→ R(Π,Γ)f is locally Lipchitz continuous from the space of γ-

relevant triples to the Holder space C−r−ϵ for any ϵ > 0.

Assume furthermore that γ > 0 and that the model (Π,Γ) is admissible with respect to a ker-

nel K =
∑

nKn as above. Assume each Kn with n ≥ 1 integrates to zero against all polynomials

of degree less or equal to γ + ρ. Then there exists a bounded linear operator Kγ = K(Π,Γ)
γ :

Dγ(Π,Γ) → Dγ+ρ(Π,Γ) which satisfies K ∗ R = RKγ .

Hairer proves that the heat kernel admits a decomposition of the above type, where each Kn with

n ≥ 1 does integrate to zero. From now on when we refer to an admissible model it will always be

with respect to the heat kernel, for which we can optimally take ρ = 2. The latter part of the above

theorem is what allows us to construct the continuous parts of solution maps to singular SPDEs

on spaces of admissible models, which are inherently nonlinear spaces. First one must introduce

products:

A product on (T,A,G) is simply a symmetric bilinear map T × T → T , usually denoted by

a simple juxtaposition of elements, such that τ τ̄ ∈ Tα+β whenever τ ∈ Tα, τ̄ ∈ Tβ. From now on-

ward assume (T,A,G) is “normal" meaning that it contains the polynomial structure and admits a

linear map I as above, and has a unique element Ξ, which together with the product on T and the

operator I and the polynomial elements of T generate the entire regularity structure.

Given a continuous function ξ : Rd+1 → R and a “normal" regularity structure (T,A,G) as

described above, an admissible model (Π,Γ) (admissible with respect to the heat kernel) will be

said to be a canonical model lifting the continuous function ξ up to order γ if one has the following

properties:

1. ΠxΞ(z) = ξ(z) for all x, z.
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2. Πxτ τ̄(z) = Πxτ(z)Πxτ̄(z) for all x, z whenever |τ |+ |τ̄ | ≤ γ.

Any “normal" regularity structure as described above and any continuous function ξ can be shown

to admit a canonical model lifting it, denoted (Π,Γ) =: ιξ by using a fairly straightforward recur-

sive construction. The most important property of canonical models is that for all f ∈ Dγ(ιξ) the

distribution Rιξf actually exists as a continuous function, moreover Rιξf(x) =
(
Πxf(x)

)
(x), and

most strikingly

Rιξ(fg) = Rιξf · Rιξg,

for all f, g ∈ Dγ(ιξ) assuming fg ∈ Dβ for some β ∈ (0, γ] where the product on the left hand

side is the abstract product on T and the product on the right hand side is pointwise product of

functions. While it is the case that canonical models thusly constructed are automatically admissi-

ble, it is not the case that all admissible models are of this form, or even limits of such models with

respect to the natural metric. This fact is crucial for the renormalization of singular SPDEs such as

KPZ and Φ4
3.

With all of this machinery in place, let us now show how to construct the continuous part Φ of the

solution map for the multiplicative SHE mentioned above. The spatial dimension d is always set

to 1 here. One constructs a regularity structure as follows. One first constructs a set of words W as

follows: one imposes that formal symbols Ξ, 1, X0, X1 ∈ W with homogeneity −3/2 − κ, 0, 2, 1

resp (here X0 stands for the time variable which has parabolic degree two). Then one imposes

τ τ̄ ∈ W whenever τ, τ̄ ∈ W , and I[τ ] ∈ W whenever τ ∈ W , subject to the additional constraints

that

• Ξ2 = 0,

• τ1 = τ ,

• τI[Ξ] = 0 for τ ̸= Ξ,

• I[I[Ξ]] = 0,
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• XjXℓ = Xj+ℓ for multi-indices k, ℓ, and

• I[Xk] = 0 for all multi-indices k.

Modulo these constraints, the order of elements is defined so that |τ τ̄ | = |τ | + |τ̄ | and |I[τ ]| =

|τ |+ 2. One then defines T to be the linear span of all of these formal symbols W , with a product

on T defined suggestively by the given juxtaposition rules of the formal symbols (and extended

bilinearly), and A is the set of all possible orders of symbols. Note that W can be decomposed as

U ∪ F where U denotes all symbols of the form I[Ξτ ] for some τ ∈ W and F denotes the set of

all symbols of the form I[τ ] for some τ ∈ W together with polynomial elements. The structure

group G in its entirety will not be defined here but the elements of G relevant to the problem will

be defined just below.

For any map Π satisfying the requirements of an admissible model, there is a way to define a corre-

sponding family of invertible transformations Γxy of T such that one has the relations ΠxΓxy = Πy

and ΓxyΓyz = Γxz. The first condition and the fact that ΠxX
k(z) = (z − x)k forces Γxy to act on

elements I[τ ] by the formula

ΓxyI[τ ] = I[τ ] +
∑

|k|s≤|τ |+2

Xk

k!

∫
Rd+1

(
∂kK(y − a)− ∂kK(x− a)

)
(Πxτ)(da)

+
∑

|k|s≤|τ |+2

(X + y − x)k −Xk

k!

∫
Rd+1

∂kK(y − a)(Πxτ)(da).

Furthermore it is clear that ΓxyΞ = Ξ. Finally one has Γxy(ΞX
kI[τ ]) = ΞXkΓxyI[τ ] and

ΓxyX
k = (X + y − x)k, which finishes specifying how each Γxy acts on T. Note that Γxy leaves

invariant both the span of each of U and F , meaning our regularity structure can be “orthogonally

decomposed" as a direct sum of two separate structures related only by the abstract product on T .

The part corresponding to U has elements of only positive order which is used in the arguments.

One then proves that for each admissible model (Π,Γ) the map f 7→ 1 + Kγ(fΞ) is a con-
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traction from Dγ(Π,Γ;U) to itself, where Dγ(Π,Γ;U) is the subspace consisting those elements

f ∈ Dγ(Π,Γ) that take values in the linear span of U (note that one must take a suitable terminal

time for the system, and introduce a suitable weight to make this argument work, and this is the

subject of Sections 3 and 4 of [88]). Consequently for each model there is a unique fixed point

u(Π,Γ) satisfying u(Π,Γ) = 1 +Kγ(u
(Π,Γ)Ξ). Here we add “1" because the initial data of zero in the

KPZ equation (for which we are trying to prove the LIL) corresponds to initial data 1 for the mSHE.

The local Lipchitz continuity of the fixed point map (Π,Γ) 7→ u(Π,Γ) can be obtained using an

extension of the aforementioned contraction estimate via the following general principle. Suppose

that X, Y are complete metric spaces and h : X × Y → X is a map satisfying

dX(h(x, y), h(x
′, y′)) ≤ ϱdX(x, x

′) + CdY (y, y
′)

where ϱ ∈ (0, 1) and C > 0. Then h(·, y) is a contraction on X for all y ∈ Y and thus it has a

unique fixed point u(y) ∈ X . To prove Lipchitz continuity of u : Y → X note one has the estimate

dX(u(y), u(y
′)) = dX(h(u(y), y), h(u(y

′), y′)) ≤ ϱdX(u(y), u(y
′)) + CdY (y, y

′). By rearranging

terms one then immediately obtains

dX(u(y), u(y
′)) ≤ C

1− ϱ
dY (y, y

′),

as desired. The argument of [88] is of this type with Y being the set of admissible models (Π,Γ)

and X = Dγ(Π,Γ;U). This is not a product space but the argument works in precisely the same

way with X × Y replaced by the space of γ-relevant triples. Here the map h : X × Y → X

corresponds to the map sending (Π,Γ, f) 7→ 1 +Kγ(fΞ).

Once we have local Lipchitz continuity of (Π,Γ) 7→ u(Π,Γ) it automatically follows that the map

(Π,Γ) 7→ (Π,Γ, u(Π,Γ)) is also locally Lipchitz continuous, so that by the reconstruction theorem

the composition map (Π,Γ) 7→ (Π,Γ, u(Π,Γ)) 7→ R(Π,Γ)u(Π,Γ) is also locally Lipchitz.
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This composition will be called Φ0 below. This map Φ0 is almost the map Φ that we want to

address above except for the fact that Φ is defined not defined on admissible models (Π,Γ) but

rather on objects of the form (Πzτ)z∈Rd+1,τ∈W− where W− denotes all those symbols from W

which are of negative order. We call such a collection an admissible pre-model (in the sense that it

extends to an admissible model and uniquely determines the action of Π on all elements of negative

order). It follows directly from Proposition 3.31 and Theorem 5.14 of [83] that there is a locally

Lipchitz map E sending Π 7→ (Π,Γ) from admissible pre-models to their unique extension to an

admissible model. Then the map Φ can be factored as Φ0E .

First we claim that if ξ is a smooth function, and if ιξ denotes the canonical model associated

to it, then Φ0(ιξ) = Rιξuιξ solves the PDE ∂tu = ∂2xu + ξu. Indeed, letting v := Φ0(ιξ) we find

by the fundamental property of canonical models, namely Rιξ(fg) = Rιξf · Rιξg, as well as the

fact that u0 is a fixed point of the map f 7→ 1 +Kγ(fΞ), that

v−1 = Rιξ(uιξ−1) = Rιξ(Kγ(u
ιξΞ)) = K ∗(Rιξ(uιξΞ)) = K ∗

(
(Rιξuιξ) ·(RιξΞ)

)
= K ∗(v ·ξ),

which is precisely the equation ∂tv = ∂2xv + ξv with initial data identically 1, written in Duhamel

form. Here we used the fact that ξ is smooth so that RιξΞ(x) = (ΠxΞ)(x) = ξ(x) and likewise

Rιξ1 = 1. From this it immediately follows that for f ∈ L2 (approximating by smooth functions

if necessary) if we replace ξ(dw), ξ(da), ξ(db), ξ(dc) by f(w)dw, f(a)da, f(b)db, f(c)dc, then Φ

maps the five objects above to the classical solution of the equation ∂tu = ∂2xu + fu. Indeed one

easily checks that the extension map E sends those five (classical) integrals to the canonical model

ιf.

Next we need to show that for all δ > 0 if we replace ξ by δξ then Φ maps those five stochas-

tic integrals to the Ito-Walsh solution of mSHE driven by δξ.
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Hairer and Pardoux actually showed the following: Letting M denote the space of admissible mod-

els for (T,A,G), there exists a finite dimensional subgroup R of the space of isomorphisms T →

T , and a continuous “renormalization map" R× M → M denoted by (M,Π,Γ) 7→ (ΠM ,ΓM)

(see [89, Theorem 4.2]). Furthermore there are explicitly defined operators L,L(1) : T → T

such that for arbitrary c, c(1) ∈ R if we define M := exp(−cL − c(1)L(1)) then M ∈ R (see

[89, Proposition 4.3]) and furthermore the unique fixed point Φ0(u
(ΠM ,ΓM )), where (Π,Γ) = ιξ

for some continuous ξ, solves the equation ∂tv = ∂2xv + v(ξ − c − c(1)) (see [89, Proposition

4.4]). Finally given some smooth even mollifier ρ, they show that there are explicit (fixed) choices

of c, c(1) (depending on the mollifier) such that if we let M ϵ := exp(−cϵ−1L − c(1)L(1)), then

(ΠMϵ

ϵ ,ΓM
ϵ

ϵ ) obtained by applying the renormalization map to the canonical model (Πϵ,Γϵ) = ιξϵ

(where ξϵ = ξ ∗ ρϵ with ρϵ(t, x) = ϵ−3ρ(ϵ−2t, ϵ−1x)), converges as ϵ → 0 to a limiting (admissi-

ble) model (Π∞,Γ∞) (see [89, Theorem 4.5]) such that the admissible pre-model coincides with

the five stochastic integrals we have defined above and such that Φ0(u
(Π∞,Γ∞)) coincides with the

Ito-Walsh solution of mSHE (see [89, Corollary 6.5]).

The arguments from [89] described above are much more general and can be used to prove the

following stronger fact: for δ > 0 if one replaces ξ, ξϵ by δξ, δξϵ and if one replaces c by δ2c

and c(1) by δ4c(1) respectively, then one also obtains a limiting model (Π∞,δ,Γ∞,δ) as ϵ → 0 such

that the admissible pre-model coincides with the five stochastic integrals we have defined above

with each instance of ξ replaced by δξ and such that Φ0(u
(Π∞,δ,Γ∞,δ)) coincides with the Ito-Walsh

solution of mSHE driven by δξ. Indeed the correct choice of constants can be verified by setting

G(u) = δu and H(u) = 0 in their paper, which will give precisely these scalings of constants, see

Proposition 4.4 and equations (1.4) and (1.7) as described in that proposition. This is enough to

prove our claim. One caveat is that [89] works on the torus not on the full line, but this discrepancy

is a completely superficial one after the relevant theorems have been proved for weighted spaces

as in [88], as explained in Section 5 of [88].
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Chapter 6: Limit shape of subpartition-maximizing partitions

This is joint work with Ivan Corwin. This is an expository note answering a question posed to us

by Richard Stanley, in which we prove a limit shape theorem for partitions of n which maximize

the number of subpartitions. The limit shape and the growth rate of the number of subpartitions

are explicit. The key ideas are to use large deviations estimates for random walks, together with

convex analysis and the Hardy-Ramanujan asymptotics. Our limit shape coincides with Vershik’s

limit shape for uniform random partitions.

6.1 Maximizing the number of subpartitions

Given a partition λ = (λ1 ≥ ... ≥ λk) of n, we can identify it with a 1-Lipschitz function which

is a finite perturbation of |x| by following the Russian convention for drawing it. Specifically, start

with the English convention for the Young diagram for λ (λ1 boxes on the top row, then λ2 below it

and so on, all justified to line up on the left) and rotate it by 135◦. Then we place this rotated picture

immediately adjacent to the graph of the function x 7→ |x| so that each box has unit length. This

defines a 1-Lipschitz function gλ(x) with the property that gλ(x) ≥ |x| and gλ(x) = |x| for large x.

We also define a rescaled version of gλ as fλ(x) := n−1/2gλ(n
1/2x) so that each box has side length

n−1/2 and area n−1 when depicted beneath the graph of fλ. In particular
∫
R(fλ(x)− |x|)dx = 1.

A subpartition of a partition λ = (λ1 ≥ ... ≥ λk) is a partition µ = (µ1 ≥ ... ≥ µℓ) such

that ℓ ≤ k and µi ≤ λi for all i ≤ ℓ. Our main result is as follows.

Theorem 6.1.1 (Theorems 6.4.2 and 6.5.2). For each n, let λn denote a partition of n which

maximizes the number of subpartitions among all other partitions of n. Then the number of sub-

partitions of λn grows as eπ
√

2n/3−o(
√
n) as n→ ∞. Moreover fλn converges uniformly as n→ ∞
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to the function f(x) = 2
√
3

π
log
(
2 cosh( π

2
√
3
x)
)
.

The limit shape here is known as Vershik’s curve and was first described as the limit of uniformly

sampled partitions of n in [146]. Our result can be shown by using large-deviations estimates for

uniformly sampled partitions of n which were found in the follow-up paper [56]. In particular,

to prove Theorem 6.1.1, first note by the Hardy-Ramanujan asymptotics that the number of sub-

partitions of any partition of n is bounded above (up to some constant factor) by eπ
√

2n/3. We let

µn be a partition of n which is closest to Vershik’s curve (after normalization by
√
n), among all

other partitions of n. Fixing ϵ > 0, it follows from Theorem 1 of [56] that for large enough n,

“most" partitions of ⌈(1 − ϵ)n⌉ are going to be subpartitions of µn, which means that the number

of subpartitions of µn is bounded below by 1
n
eπ
√

2(1−ϵ)n/3−o(
√
n). Since ϵ can be made arbitrarily

small, this gives tight bounds on the exponential scale which can then be used (via elementary

topological arguments) to show that the maximizing partitions λn are very close to µn on the
√
n

scale, so that the λn also converge to Vershik’s curve.

The main purpose of this note is to exposit the power of large deviations theory in this particu-

lar context of partition/subpartition problems. Specifically we are going to give a proof of The-

orem 6.1.1, which is essentially a more rigorous version of the sketch given in the preceding

paragraph. However, our exposition is more self-contained and based entirely on foundational

principles. Specifically we do not use [56] or any other previous work on integer partitions, but

instead rely on the seminal result of Mogulskii [119] which gives a large deviations rate function

for the full sample path of a random walk with iid increments, and is arguably a central result of

large deviations theory.

We also have the following similar result for k-chains of subpartitions, i.e., simply ordered sets

of k subpartitions. The ordering may be strict or unstrict; our results do not depend on this con-

vention.
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Theorem 6.1.2 (Section 6.6). Let k ≥ 1, and let λn denote a partition of n which maximizes the

number of k-chains of subpartitions, among all other partitions of n. Then the number of k-chains

of subpartitions of λn grows as ekπ
√

2n/3−o(
√
n) as n → ∞. Furthermore fλn converges uniformly

to the same limit shape as in Theorem 6.1.1.

We close out this introduction by noting a few questions that may warrant further study. In some

cases, there are related results though we do not attempt to make a survey of them.

One natural question is to consider fluctuations around limit curves, as done in [152, 147, 145,

98] for instance. For the problem we have considered, this is a bit difficult to phrase since for each

n we expect only a few maximizing partitions. On the other hand, if we let s(λ) denote the number

of subpartitions of λ, then we may, for β ≥ 0 define a measure on partitions of n with probability

of λ proportional to s(λ)β . When β → ∞, this measure concentrates on those λ which maximize

s(λ), hence our problem. When β = 0, this measure reduces to the uniform measure on partitions

considered by Vershik. While we expect (in particular, based on our arguments in this paper) that

the limit shape does not depend on β, it would be interesting to probe the dependence of β on

the fluctuations around that shape. It might also be interesting to obtain concentration and large

deviations bounds for such measures, as established in [149, 56] for instance.

While there are many other types of measures on partitions, one of particular importance is the

Plancherel measure. This involves defining the dimension of λ to be the number of standard

Young Tableaux of that shape. In terms of subpartitions, this is the number of n-chains of sub-

partitions where we restrict that a subpartition cannot equal the partition. The Plancherel measure

is then proportional to that dimension squared. For that measure, seminal and independent works

of Logan-Shepp [115] and Vershik-Kerov [148] established a limit shape as n → ∞ now known

as the Logan-Shepp-Vershik-Kerov (LSVK) curve. This limit curve is not the same as Vershik’s

curve. Hence, a natural question is to find a way to interpolate the model so as to find limit shapes

which likewise interpolate between these two curves.
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Theorem 6.1.2 shows that taking k-chains for k fixed does not achieve this aim of crossing over

between the Vershik and LSVK curves. However, we speculate that taking k = k(n) = cn1/2 may

result in such a crossover. In fact, this problem can be reduced to a rhombus tiling limit shape prob-

lem for which there are some methods which may be useful. Another natural question involves

increasing the dimension and considering higher dimensional partitions. In three dimensions, these

would correspond with plane partitions, which are also nicely interpreted as rhombus tilings.

Acknowledgements: The authors are thankful to Greg Martin and Richard Stanley who initiated a

conversation on MathOverflow two years ago on this question, and in particular to Richard Stanley

who posed this question to the first author of this work. I. Corwin was partially supported by a

Packard Foundation Science and Engineering Fellowship as well as NSF grant DMS:1811143 and

DMS:1664650. S. Parekh was partially supported by the Fernholz Foundation’s “Summer Minerva

Fellows" program, as well as summer support from I. Corwin’s NSF grant DMS:1811143.

Outline: In Section 6.2 we will derive exponentially sharp upper bounds for the number of nearest-

neighbor paths which stay below a given barrier. In Section 6.3 we introduce a certain functional

which will describe the limit shape and the growth rate of the maximizing partitions; this func-

tional appears naturally from the upper bounds of Section 6.2. In Section 6.4 we prove the limit

shape theorem abstractly (without identifying the limit shape explicitly), by using nice convexity

properties of the functional defined in Section 6.3. In Section 6.5 we use Lagrange multipliers and

Hardy-Ramanujan asymptotics to derive the limit shape explicitly (thus completing the proof of

Theorem 6.1.1). In Section 6.6 we prove Theorem 6.1.2.

6.2 Preliminary upper bounds

First we introduce some notation. Always I will denote a subinterval of Z or of R. The specific

type of interval will always be made clear from the context. For a (continuous) function f : I → R,
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we define the lower convex envelope of f to be the supremum of all convex functions which are

less than or equal to f . Note that this is a convex function, which is also the supremum of a count-

able number of linear functions which are equal (and in fact tangent, if I = [0, 1]) to f at certain

special points. We also define the decreasing lower convex envelope to be the sup of all decreas-

ing convex functions less than or equal to f , which is a (weakly) decreasing convex function.

Our first lemma is elementary (albeit tedious to state precisely) and says that the lower convex

envelope necessarily optimizes a certain type of convex functional over the set of functions less

than a given one.

Lemma 6.2.1. Let ψ : R → R ∪ {+∞} be a convex function. Let I be the discrete interval

{a, a + 1, ..., b} ⊂ Z. We let C(I) denote the space of all functions from I → R. Define a

functional J : C(I) → R by the formula

J(f) :=
∑

i∈I\{a}

ψ
(
f(i)− f(i− 1)

)
,

Fix some f ∈ C(I), and let Kf := {g ∈ C(I) : g ≤ f, g(a) = f(a), g(b) = f(b)}. Then one

has that infg∈Kf
J(g) = J(h), where h is the lower convex envelope of f . Similarly, if K̄f :=

{g ∈ C(I) : g ≤ f, g(a) = f(a)}, and if we also assume that ψ achieves its minimum at 0, then

infg∈K̄f
J(g) = J(h̄), where h̄ is the decreasing lower convex envelope of f .

Proof. We will work with Kf rather than K̄f , briefly indicating the necessary modifications at the

end of the proof. The argument is essentially a geometric one which proceeds in two steps.

Step 1. Firstly, we show that J(f) ≥ J(h) whenever f(a) = h(a), f(b) = h(b), and h is the

lower convex envelope of f . Let C := {x ∈ I : f(x) = h(x)}. The complement of C is the

union of some finite collection of disjoint intervals
⋃N
n (an, bn) ∩ Z. On each interval (ai, bi) ∩ Z

it is clear from the definition of the lower convex envelope that h is just a linear function, i.e.,
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h(x) = x−an
bn−anf(bn) +

bn−x
bn−anf(an) for x ∈ [an, bn]. By Jensen’s inequality, one sees that

bn∑
an+1

ψ(f(i)− f(i− 1)) ≥ (bn − an)ψ
(f(bn)− f(an)

bn − an

)
=

bn∑
an+1

ψ(h(i)− h(i− 1)).

This is already enough to prove Step 1, since f coincides with h outside of the [an, bn].

Step 2. Secondly, we show that J(h) ≥ J(k) whenever h, k are both convex functions with the

property that h(a) = k(a), h(b) = k(b), and h ≤ k. To do this, we inductively define a sequence

{hj}bj=a of functions: ha = h, and

hj+1(x) = max{hj(x), (x− j + 1)k(j) + (j − x)k(j − 1)}.

In more geometric terms, we are simply taking hj+1 to be the maximum of hj with the “tan-

gent line" to k at {j − 1, j}. In particular each hj is convex, and it follows from convexity of

k that hb = k. Thus the claim will be proved if we can show that J(hj) ≥ J(hj+1) for all

j ∈ {a, ..., b − 1}. But this is clear, because hj(x) agrees with hj+1(x) except for x in some in-

terval [u, v] where it equals x−u
v−uhj(v) +

v−x
v−uhj(u). Hence the same argument from Step 1 (using

Jensen’s inequalty) applies to show J(hj) ≥ J(hj+1). This completes the proof of step 2.

Step 1 and Step 2 easily imply the claim because if g ≤ f with g(a) = f(a) and g(b) = f(b),

and if h ≤ k are their respective lower convex envelopes then we have that J(g) ≥ J(h) ≥ J(k),

where the first inequality is from Step 1 and the second is from Step 2.

Now suppose we replace Kf by K̄f . Let c ∈ {a, ..., b} be the point at which f achieves its mini-

mum value. Let h and h̄ denote the lower convex envelope and decreasing lower convex envelope

(respectively) of f . Note that h = h̄ on {a, ..., c}, and h(c) = f(c), and therefore if g ≤ f then the

above argument gives
∑c

a+1 ψ(g(i) − g(i − 1)) ≥
∑c

a+1 ψ(h̄(i) − h̄(i − 1)). On the other hand,

note that h̄(x) = f(c) for x ∈ {c, ..., b}, and thus by assuming that ψ achieves its minimum at 0,
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we get that
∑b

c+1 ψ(h̄(i)− h̄(i− 1)) =
∑b

c+1 ψ(0) ≤
∑b

c+1 ψ(g(i)− g(i− 1)), as desired.

Lemma 6.2.2. Let f : {0, ..., n} → R with f(0) = 0. Let S denote a simple symmetric nearest-

neighbor random walk on Z. Also, let g denote the decreasing lower convex envelope of f . We also

let Λ∗ be the large deviation rate function associated with S, which means that Λ∗ is the Legendre

transform of λ 7→ logE[eλS1 ]. Then

P
(
Si ≤ f(i),∀i ≤ n

)
≤ e−

∑n
i=1 Λ

∗(g(i)−g(i−1)). (6.1)

Proof. The proof uses a standard method for obtaining LDP upper bounds [58]. Note that for real

numbers λ1, ..., λn, and any Borel set C ⊂ Rn,

inf
x∈C

e
∑n

1 λi(xi−xi−1)P(S ∈ C) ≤ E[e
∑n

1 λi(Si−Si−1)] = e
∑n

i=1 Λ(λi),

where Λ(λ) = logE[eλS1 ] and we impose that x0 := 0 in the relevant sum. Rearranging this gives

us

P(S ∈ C) ≤ e− infx∈C
∑n

1 λi(xi−xi−1)−Λ(λi).

Now we optimize over all λ1, ..., λn. If we assume that C is compact and convex we can use the

minimax theorem for concave-convex functions [138] to interchange the sup over λ with the inf

over x, specifically

P(S ∈ C) ≤ e− supλ∈Rn infx∈C
∑n

1 λi(xi−xi−1)−Λ(λi) (6.2)

= e− infx∈C supλ∈Rn
∑n

1 λi(xi−xi−1)−Λ(λi)

= e− infx∈C
∑n

1 supλ∈R

(
λ(xi−xi−1)−Λ(λ)

)
= e− infx∈C

∑n
1 Λ∗(xi−xi−1).

Now we let C = {x ∈ Rn : −i ≤ xi ≤ f(i),∀i}, which is clearly compact and convex. Note

that S ∈ C is equivalent to the left-hand side of (6.1) (owing to the fact that S only takes ±1
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sized jumps). Applying (6.2) and using Lemma 6.2.1 to show that infx∈C
∑n

1 Λ
∗(xi − xi−1) =∑n

1 Λ
∗(g(i)− g(i− 1)), we arrive at (6.1).

Corollary 6.2.3. Let f : {0, ..., n} → R with f(0) = f(n) = 0, and let g denote the lower convex

envelope of f (not the decreasing one). Then the number of nearest neighbor bridges which stay

below f (i.e., functions γ : {0, ..., n} → Z such that γ(0) = γ(n) = 0, and |γ(i)− γ(i− 1)| = 1,

and γ(i) ≤ f(i) for all i) is bounded above by 2ne−
∑n

i=1 Λ
∗(g(i)−g(i−1)).

Proof. Let us pick a point k ∈ {0, ..., n} at which g attains its minimum value. Note that g(k) =

f(k). Note by Lemma 6.2.2 the number of nearest neighbor paths of length k starting from 0 and

lying below f |{0,...,k} is less than or equal to 2ke−
∑k

1 Λ∗(g(i)−g(i−1)). Similarly the number of nearest

neighbor paths of length n− k starting from 0 and lying below f |{k+1,...,n} is less than or equal to

2n−ke−
∑n

k+1 Λ
∗(g(i)−g(i−1)). Note that the number of bridge paths of length n lying below f is less

than the number of pairs of paths (γ, γ′) where γ is of the former type and γ′ is of the latter type.

Thus the total number of such bridges is bounded above by product of the two individual upper

bounds, which equals 2ne−
∑n

1 Λ∗(g(i)−g(i−1)).

An important thing to keep in mind is that the bounds of Propositions 6.2.2 and 6.2.3 are actually

sharp up to some subexponential decay factor (see Section 6.4). At an intuitive level, what this

says is that if we condition a random walk to stay underneath a fixed barrier, then the path which

minimizes the energy of the random walk is none other than the lower convex envelope of that

barrier. Another thing to keep in mind is that the bounds of this section hold uniformly over all

partitions, which makes them a little bit stronger than ordinary LDP upper bounds.

6.3 The functional describing the limit shape

For a partition λ, one recalls the definitions of fλ and gλ given at the beginning of Section 6.1. A

1-Lipschitz function will always refer to a real-valued function f with the property that |f(x) −

f(y)| ≤ |x− y|, or equivalently f is absolutely continuous and |f ′| ≤ 1.
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Let us now estimate (or at least upper bound) the number of subpartitions of a given partition.

Each subpartition of a given λ can be interpreted as a trajectory of a simple symmetric random

walk bridge which stays below the graph of gλ (or alternatively of fλ after rescaling). By Corol-

lary 6.2.3, the number of such bridges can be upper bounded quite easily. Specifically let hλ denote

the lower convex envelope of fλ, and let k denote a large enough integer so that gλ(x) = |x| when-

ever |x| ≥ k. Then by Corollary 6.2.3 we know that the number of subpartitions of λ (i.e., the

number of unit-length random walk bridges which lie in between the graphs of gλ(x) and |x|) is

upper bounded by

22ke−
∑k

i=−k Λ∗
(
n1/2
[
hλ(n

−1/2i)−hλ(n−1/2(i−1))
])

= e
∑k

−k

[
log 2−Λ∗

(
n1/2
[
hλ(n

−1/2i)−hλ(n−1/2(i−1))
])]

= e
√
2n

∫
R ϕ(h

′
λ(x))dx, (6.3)

where in the final equality we are using the piece-wise linearity of hλ and defining ϕ(x) :=

log 2 − Λ∗(x). This function ϕ will be very important in the ensuing analysis. In particular, note

that ϕ(x) is a concave and even function defined on [−1, 1] which achieves its maximum value of

log 2 at x = 0, and its minimum of 0 at x = ±1. The explicit expression for ϕ is given in Definition

6.4.1 below.

The functional f 7→
∫
R ϕ ◦ f ′ appearing in (6.3) will describe the optimal rate of growth of the

number of subpartitions, as we will show in the following section. Therefore the remainder of this

section will be devoted to analyzing this functional. To start, we make the following important

definition:

Definition 6.3.1. We define X to be the space of all 1-Lipschitz functions f : R → R such that

f(x) ≥ |x| and furthermore
∫
R(f(x) − |x|)dx ≤ 1. We equip X with the topology of uniform

convergence on compact sets. Furthermore, we define the functional F : X → R+ by F (h) :=∫
R ϕ ◦ h′, where

ϕ(x) := log 2−
(1
2
log(1− x2) + x tanh−1 x

)
,
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and h′ is the derivative of h.

A few remarks are in order about this definition. Firstly, note that X is a compact space. Indeed,

this is a consequence of Arzela Ascoli: equicontinuity is obvious, and pointwise boundedness fol-

lows from the integral condition on elements of X combined with the 1-Lipschitz property (in fact

any f ∈ X is bounded above by x 7→
√
x2 + 2, since this curve is the locus of all points such that

the rectangle which has one vertex at that point and another one at the origin, and is also adjacent

to the graph of |x|, has area exactly 1).

Secondly, we remark that even though we equipped X with the topology of uniform convergence

on compact sets, this convergence is actually equivalent to uniform convergence on all of R. This

once again follows from the fact that for all f ∈ X one has that |x| ≤ f(x) ≤
√
x2 + 2, and also

because of the fact that
√
x2 + 2−|x| → 0 as |x| → ∞. In particular it is true that X is a complete

metric space with respect to the uniform metric

d(f, g) = sup
x∈R

|f(x)− g(x)|.

The completeness is a consequence of Fatou’s Lemma (to ensure that the value of the integral re-

mains ≤ 1 after taking a limit). This metric will be used very briefly in the proof of a later theorem

(6.4.2).

Thirdly, it is not immediately clear that the integral defining the functional F (f) actually con-

verges for every f ∈ X , but this will be taken care of by the following proposition which also

highlights the nicest and most important property of F , and will crucially be used later.

Proposition 6.3.2. The integral defining the functional F converges for every f ∈ X . Further-

more, F is upper semicontinuous on X .

Proof. We will prove that if fn is a family of 1-Lipschitz functions such that fn → f uniformly,

then lim supn→∞ F (fn) ≤ F (f) <∞. The key difficulty here is that F is defined on functions on
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the whole real line, which is not compact. The proof will therefore proceed in two steps: first we

replace R with a large compact interval and prove the upper semicontinuity in this simpler case;

second we prove a certain “tightness" property (6.5) for functions in X which will simultaneously

also show that the integral defining F (f) necessarily converges for all f ∈ X .

The first step is to show that for each fixed (large) A > 0 one has that

lim sup
n→∞

∫
[−A,A]

ϕ ◦ f ′
n ≤

∫
[−A,A]

ϕ ◦ f ′. (6.4)

The proof of this is quite standard, and purely topological (e.g., does not rely on properties of the

space X ). Nevertheless we include a proof of (6.4) for completeness.

For simplicity, let us replace the interval [−A,A] by [0, 1] (the same argument works in the former

case with some extra scaling factors). Let X [0, 1] denote the space of 1-Lipschitz functions on [0, 1]

equipped with the uniform topology. We will show that the functional G(f) :=
∫ 1

0
ϕ ◦ f ′ is upper

semicontinuous from X [0, 1] → R. To prove this it suffices to write G as the infimum of some col-

lection of continuous functionals. To do this, we consider partitions P = (0 ≤ t1 ≤ ... ≤ tn ≤ 1)

of [0, 1], and we define GP(f) :=
∑n

1 (ti − ti−1)ϕ
(f(ti)−f(ti−1)

ti−ti−1

)
. It is then clear that each GP

is continuous from X [0, 1] → R. We then claim that G = infP GP (where the infimum is

taken over all partitions of [0, 1]) which would prove upper semicontinuity. To prove this equal-

ity, first note by Jensen’s inequality and concavity of ϕ that for all a < b and all f one has∫ b
a
ϕ ◦ f ′ ≤ (b − a)ϕ

(f(b)−f(a)
b−a

)
, which proves that G ≤ infP GP . To prove the other direc-

tion, we define the partition Pn to be the one consisting of dyadic intervals [k2−n, (k + 1)2−n)

with 0 ≤ k ≤ 2n − 1. For a 1-Lipschitz function f let fn denote the continuous function with

fn(0) = 0 and whose derivative f ′
n(x) takes the constant value 2n

(
f((k + 1)2−n) − f(k2−n)

)
for x ∈ [k2−n, (k + 1)2−n). Note that f ′

n forms a bounded martingale with respect to the dyadic

filtration on the probability space [0, 1] (i.e., the filtration associated with the nested family of par-
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titions {Pn}n). Consequently f ′
n converges to f ′ a.e, and thus ϕ ◦ f ′

n → ϕ ◦ f ′ a.e. Hence by

the bounded convergence theorem we conclude that GPn(f) =
∫ 1

0
ϕ ◦ f ′

n →
∫ 1

0
ϕ ◦ f ′ = G(f).

This shows thatG ≥ infP GP . This proves upper semicontinuity ofG and in turn also proves (6.4).

Now given that (6.4) holds, we want to take A → ∞, but this involves a nontrivial interchange of

limits and this is where noncompactness of the real line gets in the way. So now we actually need

to use special properties of the space X .

We will show that for every ϵ > 0, there exists some A = A(ϵ) > 0 (large) so that for all

f ∈ X one has that ∫
R\[−A,A]

ϕ ◦ f ′ < ϵ. (6.5)

Note that together with (6.4), this is enough to complete the proof that lim supn F (fn) ≤ F (f).

The key here is, of course, that the bound of (6.5) is uniform over all functions f ∈ X . Note that

(6.5) also shows that F (f) <∞ for all f ∈ X .

To prove (6.5), we first note that if f is 1-Lipschitz, then f(x) − x is necessarily (weakly) de-

creasing for x ≥ 0, thus

1− f(n) + f(n− 1) =
(
f(n− 1)− (n− 1)

)
−
(
f(n)− n

)
≥ 0 for n ≥ 1. (6.6)

The condition that
∫
R(f(x) − |x|)dx ≤ 1 shows that

∑
n≥0 f(n) − n ≤ 3 (e.g., via an integral

comparison test, since we know f(n)− n is decreasing and f(0) ≤
√
2 < 2). Then for all N ≥ 1

we find that

N∑
n=1

n(1− f(n) + f(n− 1)) =
N∑
n=1

n∑
k=1

(1− f(n) + f(n− 1))

=
N∑
k=1

N∑
n=k

(1− f(n) + f(n− 1)) =

[ N∑
k=1

f(k − 1)− (k − 1)

]
−N(f(N)−N),
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where in the last line we used (6.6) so that the inner sum telescopes. Since N(f(N) − N) ≥ 0

we can upper bound the last expression by
∑

k≥0(f(k) − k). Hence we can let N → ∞ in the

preceding expression and we see that

∑
n≥1

n(1− f(n) + f(n− 1)) ≤
∑
k≥0

f(k)− k ≤ 3. (6.7)

Appealing to the definition of ϕ(x) we see that in (−1, 1), ϕ′(x) = − tanh−1 x which has logarith-

mic singluarities at ±1. Thus, it follows that ϕ asymptotically looks like x| log x| near x = ±1,

i.e., limx→±1
ϕ(x)

|x∓1| log |x∓1| will be a finite nonzero value. Since | log x| ≤ Cx−1/3 near x = 0, this

implies that there exists some C > 0 such that ϕ(x) ≤ C(1 − |x|)2/3 for all x ∈ [−1, 1]. In

particular, for all A ≥ 0 one has

∑
n≥A

ϕ
(
f(n)− f(n− 1)

)
≤ C

∑
n≥A

(
1− f(n) + f(n− 1)

)2/3
≤ C

(∑
n≥A

n−2

)1/3(∑
n

n(1− f(n) + f(n− 1))

)2/3

≤ C · A−1/3 · 32/3.

For the second inequality, note that if an are nonnegative real numbers such that
∑

n nan < ∞,

then by Holder’s inequality
∑

n≥A a
2/3
n ≤

(∑
n≥A nan

)2/3(∑
n≥A n

−2
)1/3. The final inequality

uses the bound derived in (6.7), as well as
∑

n≥A n
−2 ≤ A−1.

To finish our proof, observe that Jensen’s inequality and the concavity of ϕ show that
∫
[n−1,n]

ϕ ◦

f ′ ≤ ϕ(f(n)− f(n− 1)). This, together with the preceding arguments, then shows that

∫ ∞

A

ϕ ◦ f ′ ≤
∞∑
n=A

ϕ
(
f(n)− f(n− 1)

)
≲ A−1/3,

independently of f , which finally proves (6.5).
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At this point it is important to remark that Proposition 6.3.2 is not just some technical and other-

wise unimportant intermediate step. Really it is where the “meat" of the proof of the limit shape

(Theorem 6.1.1) really lies. Specifically, the important thing here is the second half of the proof

where we prove a type of “tightness" estimate (6.5) for functions in X . In terms of partitions, what

it really shows (in an equivalent formulation) is that the sequence of partitions maximizing the

number of subpartitions, stays bounded on the n1/2 scale, i.e., that the sequence fλn from Theorem

6.1.1 does not lose any mass in the limit (meaning that any subsequential limit f of fλn satisfies∫
(f(x) − |x|)dx = 1). We remark that the bound A−1/3 appearing at the end of the proof may

actually be improved optimally to logA
A

, but this is slightly more difficult.

As a corollary of Proposition 6.3.2, we can combine it with compactness of the space X in or-

der to obtain the following key result.

Corollary 6.3.3. The functional F from Definition 6.3.1 admits a maximum M(F ) on the space

X . There is a unique function f at which the maximum is attained and this maximizer f is a convex

and symmetric function (i.e. f(x) = f(−x)) and moreover
∫
R(f(x)− |x|)dx = 1.

Proof. Any upper semicontinuous function on a compact space achieves its maximum.

The uniqueness of the maximizer is a concavity property. Specifically we note that ϕ is a strictly

concave function, meaning ϕ((1− t)a+ tb) > (1− t)ϕ(a) + tϕ(b) whenever t ∈ (0, 1) and a ̸= b.

This then easily implies that F ((1 − t)f + tg) > (1 − t)F (f) + tF (g) for t ∈ (0, 1) and f ̸= g.

Clearly this rules out the existence of two distinct maxima.

Symmetry is another consequence of concavity. Specifically, if the maximizer f was not sym-

metric, then we can define its reflection fs(x) := f(−x). Clearly F (fs) = F (f) and thus if f ̸= fs

then as above we have that F (1
2
f + 1

2
fs) >

1
2
F (f) + 1

2
F (fs) = F (f), which is a contradiction.

Let f be the maximizer. To prove that
∫
(f(x) − |x|)dx = 1, suppose that this integral took
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some value α < 1. Then we let h(x) = α−1/2h(α1/2x). Clearly
∫
(h(x) − |x|)dx = 1, and h is

1-Lipschitz. Moreover a simple substitution reveals that F (h) = α−1/2F (f) > F (f) which is a

contradiction.

To prove convexity of f , suppose (for contradiction) that a, b are two points of R such that there

is a linear function ℓ equal to f at both a and b, and such that ℓ < f on (a, b). We define h

to be equal to f on R\[a, b], and equal to ℓ on [a, b]. Then by Jensen’s inequality one has that∫ b
a
ϕ ◦ f ′ < (b− a)ϕ

(f(b)−f(a)
b−a

)
=
∫ b
a
ϕ ◦ h′, which means that F (f) < F (h); a contradiction. This

completes the proof.

6.4 The limit shape Theorem

Note that in (6.3) we already proved that for any sequence λn of partitions of n, the number of

subpartitions is bounded above by e
√
2nM(F ) where M(F ) is the maximum value of the functional

F from above. A natural question is whether there exists a sequence of partitions for which the

number of subpartitions actually grows at this optimal rate. It turns out that the answer is yes (up to

some subexponential factor which is irrelevant), which retrospectively justifies why we performed

such an in-depth analysis of the functional F in the first place.

Proposition 6.4.1. There exists a sequence of partitions µn of n such that the number of subparti-

tions of µn actually grows as e
√
2nM(F )−o(

√
n) as n→ ∞.

The key behind proving this proposition is Mogulskii’s theorem [119], which is really the primary

underlying idea behind this entire work. This result essentially says that the bound in (6.3) (and also

in Propositions 6.2.2 and 6.2.3) is actually sharp (again, up to some subexponential factor which

is not relevant to us). But before getting to the proof, let us first prove the following important

corollary.

Theorem 6.4.2 (Limit shape theorem). Let λn and fλn be as in Theorem 6.1.1. As n → ∞, the

sequence fλn converges uniformly to the unique maximizer fmax of the functional F from Definition

6.3.1.
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Proof. Let s(λn) denote the number of subpartitions of λn, and let hλn denote the lower convex

envelopes of fλn . By Proposition 6.4.1 and equation (6.3) we have that

e
√
2nM(F )−o(

√
n) ≤ s(λn) ≤ e

√
2nF (hλn ) ≤ e

√
2nM(F ), as n→ ∞,

which means that M(F )− o(1) ≤ F (hλn) ≤M(F ) as n→ ∞.

Thus we see that F (hλn) → M(F ) as n → ∞. This is already enough to imply that hλn → fmax

uniformly on compact sets as n→ ∞. Indeed it is true that for every ϵ > 0 there exists δ > 0 such

that (for all f ∈ X ) F (f) > M(F ) − δ implies that d(f, g) < ϵ (here d denotes the metric on X

which was specified following Definition 6.3.1). If this was not the case then we can choose an

ϵ > 0 such that supd(fmax,g)≥ϵ F (g) =M(F ). But the space A of 1-Lipschitz functions g such that

d(fmax, g) ≥ ϵ is again a compact subset of X (being a closed subset of X ). Furthermore F is still

an upper semicontinuous function on A, hence it achieves its maximum value which we already

know is M(F ). Then there exists some gmax ∈ A such that F (gmax) = M(F ), which clearly

contradicts uniqueness of the maximizer since d(fmax, gmax) ≥ ϵ by construction.

So we have proved that the convex envelopes hλn (though not necessarily the functions fλn them-

selves) converge uniformly to fmax. Note that since fλ ≥ hλ (by definition of the convex envelope)

we have

∫
R
|fλn − hλn| =

∫
R
(fλn(x)− hλn(x))dx

=

∫
R

(
(fλn(x)− |x|)− (hλn(x)− |x|)

)
dx

= 1−
∫
R
(hλn(x)− |x|)dx.

Now hλn converges to fmax and by Corollary 6.3.3 we know that
∫
(fmax(x)−|x|)dx = 1, therefore
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by applying the preceding calculation and then Fatou’s Lemma, we see that

lim sup
n

∫
R
|fλn − hλn| = 1− lim inf

n

∫
R
(hλn(x)− |x|)dx ≤ 1−

∫
(fmax(x)− |x|)dx = 0.

Therefore ∥fλn − hλn∥L1(R) → 0, and since all functions are 1-Lipschitz, this L1 convergence also

implies uniform convergence.

Although this abstractly proves convergence to some limit shape, we still do not know anything

about what the limit shape looks like geometrically. For instance is it bounded, and if so, is it a

triangular shape or something more complicated? This question will be addressed in the following

section.

Let us now start to get to the proof of Proposition 6.4.1. As mentioned before, the key is the

following result, which essentially gives matching lower bounds to the upper bounds which we

gave in Section 6.2. A proof may be found in Theorem 5.1.2 of [58] or in the original paper [119].

Theorem 6.4.3 (Mogulskii 1992). Let µn denote the law on C0[0, 1] of ( 1
n
Snt)t∈[0,1] where S is any

i.i.d. random walk (whose increment distribution has exponential moments), and the values of S at

non-integer points are understood to be linearly interpolated from the two nearest integer points.

Then µn satisfies an LDP with rate n and good rate function

I(f) =

∫ 1

0

Λ∗ ◦ f ′,

where Λ∗ denotes the Legendre transform of λ 7→ logE[eλS1 ], and the integral is meant to be

understood as +∞ if f is not absolutely continuous.

It should be noted that Mogulskii’s result is a vast strengthening of Cramer’s theorem (from just

the endpoint of an iid sample path to its entire history), in the same way that Donsker’s invariance

principle for iid random walks is a strengthening of the classical central limit theorem. Finally we

are ready to prove Proposition 6.4.1.
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Proof of Proposition 6.4.1. Let fmax be the maximizer from Corollary 6.3.3. We choose a se-

quence µn of partitions of n such that fµn converges uniformly to fmax. This can be done as

follows. First we construct an intermediate partition µ̃n by putting boxes of side length n−1/2 be-

neath the graph of of fmax until no more boxes can be put in such a way that the graph of fµ̃n

remains below that of f . Since fµ̃n ≤ f , one notices that µ̃n will not actually be a partition of n

but rather of some number k(n) ≤ n. However, it is true that |fµ̃n − fmax| ≤ Cn−1/2 for some

constant independent of n (otherwise more boxes could be added to µ̃n without eclipsing the graph

of fmax). Now we can define µn to be equal to µ̃n but with the remaining n− k(n) boxes added to

the first column of µ̃n. This will not change the limiting function fmax.

We define fδ(x) := max{|x|, fmax(x) − δ}, and we define the support of fδ to be the set of x

where fδ(x) > |x| (this is an interval centered at 0, by convexity and symmetry of fmax). Note

that for large enough values of n, the δ/2 neighborhood of fδ lies strictly below fµn on the support

of fδ (this is because fµn → fmax uniformly). We are now going to consider nearest-neighbor

(random walk) paths of grid-size n−1/2 which lie in between the graphs of fδ/2 and f3δ/2. Such

a path will be called (δ, n)-admissible. Let k = k(n, δ) denote the positive integer such that

n−1/2k = argminy∈ 1√
n
Z|y − a| where a = a(δ) := inf{x > 0 : fδ(x) = x}.

Note by Mogulskii’s Theorem that the number of (δ, n)-admissible paths terminating on the verti-

cal axis (i.e., nearest-neighbor functions γ : n−1/2Z≤0 → n−1/2Z where Z≤0 denotes non-positive

integers) is greater or equal to 2ke
−
√
2n

∫ 0

−n−1/2k
Λ∗◦f ′δ−o(

√
n)

= e
√
2n

∫ 0
−∞ ϕ◦f ′δ−o(

√
n), as n → ∞ (with

δ fixed).

Now we notice that two independent such random walks which are started from (−n−1/2k, n−1/2k)

and conditioned to stay between fδ/2 and f3δ/2 have probability at least 1
δ
√
n

of terminating at the

same point. Indeed, this is because there are at most δ
√
n possible points {xi}δ

√
n

i=1 at which such

a walk can terminate (because the grid size is n−1/2), and if pi is the probability of terminating at
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point xi, then by Cauchy-Schwarz one finds that 1 =
∑δ

√
n

1 pi ≤ (
∑

i p
2
i )

1/2(δ
√
n)1/2, and because

the probability of two independent such walks terminating at the same point equals
∑

i p
2
i .

Now, a random walk bridge of grid size n−1/2 which lies between fδ/2 and f3δ/2 (which defines a

subpartition of µn for large enough n) can be viewed as the concatenation of a pair of these ran-

dom walk paths started from (−n−1/2k, n−1/2k) terminating at the same point on the vertical axis

(note here that we are using the property that fδ(x) = fδ(−x)). By the observations of the pre-

ceding two paragraphs, the number of such pairs is bounded below by 2
δ
√
n

(
e
√
2n

∫ 0
−∞ ϕ◦f ′δ−o(

√
n)
)2
.

The prefactor 2
δ
√
n

may be absorbed into the o(
√
n) term in the exponent, giving a lower bound of

e
√
2nF (fδ)−o(

√
n). The o(

√
n) term may depend on δ but this is not a problem.

Since this lower bound holds true for arbitrary δ > 0, the claim now follows if we can show

that F (fδ) → F (fmax) as δ → 0. To do this, note that f ′
δ → f ′

max pointwise (trivially by the

definition of fδ). Thus by Fatou’s Lemma and maximality of F (fmax) it is true that F (fmax) ≤

lim infδ→0 F (fδ) ≤ lim supδ F (fn) ≤ maxg F (g) = F (fmax), which completes the argument.

6.5 Characterizing the limit shape

So far, many of our methods could have been used for more general types of models than the sim-

ple symmetric random walk (replacing ϕ with a more general concave function). We now move

onto trying to find the limit shape fmax exactly, which will involve working with specific details

of the function ϕ, and thus most of the subsequent arguments and analysis will be specialized just

to the case of the simple random walk. In particular we will show that fmax has, up to scaling and

centering, the shape of the curve x 7→ log coshx. In particular it is not just the triangular function

x 7→ max{1, |x|}, nor is it the Vershik-Kerov curve. It is, in fact, the Vershik curve which is the

limit shape of uniformly sampled partitions of n [146].

Since fmax is an even convex function there exists a maximal interval (−amax, amax) (which we
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will henceforth refer to as the support of fmax) on which f(x) > |x|. This interval is the interior

of the largest closed interval containing the support (in the usual sense) of the second distributional

derivative f ′′
max (which is a nonnegative Borel measure since fmax is convex). Note that it is possi-

ble that amax = +∞, and in a moment we will show that this is indeed the case.

Let ψ be a smooth function with support contained in (−amax, amax), such that
∫
R ψ = 0. Then

we claim ∫
R
(ϕ′ ◦ f ′

max) · ψ′ = 0. (6.8)

Indeed, one easily checks that limϵ→0 ϵ
−1
(
F (fmax+ϵψ)−F (fmax)

)
=
∫
R(ϕ

′◦f ′
max) ·ψ′. However,

since
∫
ψ = 0 and since the support of ψ is contained in the support of fmax, it follows that for

ϵ in a small enough neighborhood of zero, the function fmax + ϵψ is an element of X , and thus

F (fmax+ ϵψ) ≤ F (fmax). Hence if limϵ→0 ϵ
−1
(
F (fmax+ ϵψ)−F (fmax)

)
exists then it must equal

zero, proving (6.8).

Now if h : [−a, a] → R is any measurable function such that
∫
h · ψ′ = 0 for every func-

tion ψ ∈ C∞
c with

∫
ψ = 0, then this precisely means that the distributional derivative of h is

orthogonal (with respect to the L2 pairing) to all except the constant functions. In particular it

means that h′ is itself a constant function. Applying this principle to h := ϕ′ ◦ f ′
max, we see that

ϕ′(f ′
max(x)) = βx + C for some β, C ∈ R. But ϕ and fmax are even functions, so ϕ′ ◦ f ′

max is

and odd function, and thus C = 0. Now recall that ϕ = log 2 − Λ∗ where Λ∗ is the Legenrde

transform of Λ(x) = log coshx. This implies that Λ′ ◦ ϕ′ is the negative of the identity function

on [−1, 1]. In particular ϕ′(f ′
max(x)) = βx implies that −f ′

max(x) = Λ′(βx), which in turn implies

that fmax(x) = − 1
β
log cosh(βx) +D for all x in the support of fmax. Here D is some constant of

integration. Of course, we know that fmax is convex, which implies β ≤ 0. Thus, by renaming β

to be −β we have proved the following.

Proposition 6.5.1. There exists some βmax ≥ 0 and some Dmax > 0 such that for every x ∈
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(−amax, amax) one has that fmax(x) =
1

βmax
log cosh(βmaxx) +Dmax.

In the possibility where βmax = 0, the statement of the above Proposition is of course nonsensical,

but (because the condition
∫
(fmax(x) − |x|)dx = 1 determines Dmax uniquely from βmax) it is

meant to be interpreted in the sense that fmax(x) = Dmax on its support, meaning that the limit

shape would be the triangular function x 7→ max{1, |x|}. We will rule out this possibility shortly.

Our next goal is to find out whether or not amax < +∞, i.e., whether the limit shape is some-

thing compact or not. The next theorem tells us that the answer is no.

Theorem 6.5.2. In the notations of Proposition 6.5.1, amax = +∞, βmax = π
2
√
3
, Dmax =

1
βmax

log 2, and F (fmax) = π/
√
3. In particular, fmax(x) =

2
√
3

π
log
(
2 cosh( π

2
√
3
x)
)
.

Proof. The key will be to use the Hardy-Ramanujan asymptotics together with the identity

∫ ∞

0

log(1 + e−2x)dx =

∫ ∞

0

∑
n≥1

(−1)n+1 e
−2nx

n
dx =

∑
n≥1

(−1)n+1

2n2
=
π2

24
. (6.9)

Here we Taylor expanded the logarithm and then used the identity
∑

n≥1 n
−2 = π2

6
and its corol-

laries:
∑

n even n
−2 = π2

24
and

∑
n odd n

−2 = 3π2

24
.

We now recall the Hardy-Ramanujan asymptotics [92] for the partition numbers. Specifically,

if p(n) denotes the number of partitions of n, then p(n) = eπ
√

2n/3−o(
√
n) as n → ∞. Notice that

p is an increasing function of n, and every subpartition of a partition of n is a partition of some

integer i ≤ n. Thus the number of subpartitions of any given partition λ of n is upper bounded by∑n
i=0 p(i) ≤ (n+1)p(n) = (n+1)eπ

√
2n/3−o(

√
n). The prefactor (n+1) may be absorbed into the

o(
√
n) term in the exponent, and thus by Proposition 6.4.1 we conclude that F (fmax) ≤ π/

√
3.

Now, let f(x) := α−1/2 log(2 cosh(α1/2x)), where α :=
∫∞
−∞(log(2 coshx)−|x|)dx = 2

∫∞
0

log(1+

e−2x)dx = π2

12
by (6.9). Note that f is 1-Lipschitz (because it has derivative given by tanh(α1/2x)

which is bounded in absolute value by 1), and also note (by substituting u = α1/2x) that
∫
R(f(u)−
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|u|)dx = 1 so that f ∈ X . Now we claim that F (f) = π/
√
3 = 2α1/2, which would indeed

prove that f = fmax. To prove this, note that F (f) = α−1/2
∫
R ϕ(tanhu)du, so that proving that

F (f) = 2α1/2 now amounts to showing that
∫
R ϕ(tanhu)du = 2α. In other words, we want to

show ∫ ∞

0

ϕ(tanhu)du = 2

∫ ∞

0

log(1 + e−2u)du. (6.10)

One readily checks that ϕ(tanhu) = log(eu+e−u)−u tanhu, from which proving (6.10) amounts

to checking that
∫∞
0

(
log(eu+e−u)−2u+u tanhu

)
du = 0. But the integrand here has an explicit

antiderivative given by u log(eu+e−u)−u2, which is readily seen to evaluate to zero at both u = 0

and as u→ ∞. This proves (6.10), which finally shows that f = fmax.

A further direction of study is to try to gain more precise asymptotics on the exact number of

subpartitions of the maximizing sequence. Specifically we would like to find precise asymptotics

on the o(
√
n) term in the optimal growth rate eπ

√
2n/3−o(

√
n), and we believe this can be done using

more precise large deviations estimates. A similarly difficult “local" asymptotic problem would be

to find the rate at which the side lengths go to ∞ (note that Theorem 6.5.2 merely proves that they

grow faster than
√
n).

6.6 Extension to k-chains of subpartitions

We now extend the limit shape theorem to the case of partitions which maximize the number of

k-chains of subpartitions, which will prove theorem 6.1.2. Since the proof is not significantly more

complicated, we briefly indicate the changes which need to be made at each stage of the argument.

First we address the necessary modifications in Section 6.2. In the notation of Corollary 6.2.3,

consider k-chains γk ≤ ... ≤ γ2 ≤ γ1 ≤ f of nearest-neighbor bridges which stay below f . Then

(by viewing the chain as just a k-tuple of paths and disregarding the ordering) the same corollary
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says that the number of these k-chains is bounded above by

(
2ne−

∑n
1 Λ∗(g(i)−g(i−1))

)k
.

Then, in equation (6.3) at the beginning of Section 6.3, this bound will tell us that for a given

partition λ of n, the number of k-chains of subpartitions of λ (i.e., k-chains of random walk bridges

of grid size n−1/2 which are nestled in between the graphs of fλ(x) and |x|) is upper-bounded by

ek
√
2nF (h′λ), (6.11)

where as usual hλ is the lower convex envelope of fλ, and F is the functional of Definition 6.3.1.

Hence, all that is left to do is to show that the upper bound (6.11) is actually sharp up to the

exponential scale (after replacing F (h′λ) with M(F ) = π/
√
3 there). The way to do this is by

modifying the proof of Proposition 6.4.1 to lower bound the number of ensembles of k distinct

paths staying below the graph of fmax. In the notation of that proof, we consider ensembles (im-

plicitly depending on n) of nearest neighbor bridges (γi)ki=1 from n−1/2Z → n−1/2Z, with the

property that fiδ ≤ γi ≤ f(i+1)δ for each 1 ≤ i ≤ k. Clearly each such ensemble defines a k-

chain of subpartitions of µn. Moreover the number of such k-chains is merely the product over

i ∈ {1, ..., k}, of the individual number of paths lying between the graphs of fiδ and f(i+1)δ, and

we already know a good individual lower bound from the proof of Proposition 6.4.1. Specifically,

we can lower bound this number of k-chains by

k∏
i=1

(
e
√
2nF (f

(i+1
2 )δ

)−o(
√
n))

= e
√
2n

∑k
i=1 F (f

(i+1
2 )δ

)−o(
√
n)
.

As we already showed in the proof of Proposition 6.4.1, F (fη) → 0 as η → 0, which means (by

making δ close to 0) that we can actually lower bound the maximal number of k-chains of subpar-

titions by ek
√
2nM(F )−o(

√
n), as n → ∞. This already proves Theorem 6.1.2. We remark here that
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the proof does not rely on whether or not the k-chains are strictly ordered or not, so the statement

of Theorem 6.1.2 does not depend on this interpretation.

Unfortunately our proof makes it clear that we cannot easily generalize to the case of k(n)-chains,

i.e., where k grows to +∞ with n. As stated in the introduction, we actually expect that if k(n)

grows slowly enough (at a rate of o(n1/2)) then one has the same limit shape. One the other hand if

n1/2 = o(k(n)), then we expect the limit to be the LSVK curve [115, 148]. We expect a nontrivial

crossover when k(n) ∼ αn1/2 (with limit depending on α), because this is precisely the minimal

growth rate at which the typical ensemble of sub-paths no longer has a tendency to just concentrate

near the boundary of the partition, but actually distributes itself throughout the bulk of the partition

according to some density (as can be shown via a random matrix argument, or alternatively using

variational principles for domino tilings). This may or may not be pursued in a future work, but

we believe that a similar overall approach will work.
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