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Abstract 

 

Learning enhances encoding of time and temporal surprise in primary sensory 

cortex  

Rebecca Rabinovich 

 

Primary sensory cortex has long been believed to play a straightforward role in the initial 

processing of sensory information. Yet, the superficial layers of cortex overall are sparsely 

active, even during strong sensory stimulation; moreover, cortical activity is influenced by 

other modalities, task context, reward, and behavioral state. The experiments described in 

this thesis demonstrate that reinforcement learning dramatically alters representations 

among longitudinally imaged neurons in superficial layers of mouse primary 

somatosensory cortex. Cells were confirmed to be sparsely active in naïve animals; however, 

learning an object detection task recruited previously unresponsive neurons, enlarging the 

neuronal population sensitive to tactile stimuli. In contrast, cortical responses habituated, 

decreasing upon repeated exposure to unrewarded stimuli. In addition, after conditioning, 

the cell population as well as individual neurons better encoded the rewarded stimuli, as 

well as behavioral choice. Furthermore, in well-trained mice, the neuronal population 

encoded of the passage of time. We further found evidence that the temporal information 

was contained in sequences of cell activity, meaning that different cells in the population 

activated at different moments within the trial. This kind of time-keeping was not observed 



 

 

in naïve animals, nor did it arise after repeated stimulus exposure. Finally, unexpected 

deviations in trial timing elicited even stronger responses than touch did. In conclusion, 

the superficial layers of sensory cortex exhibit a high degree of learning-dependent 

plasticity and are strongly modulated by non-sensory but behaviorally-relevant features, 

such as timing and surprise.
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Chapter 1 : Introduction 

 

In order to survive in the world, humans and other animals must have adaptive 

interactions with their environment. Sense organs collect information about one’s 

surroundings, and transmit this information to the brain, which must register these signals 

and interpret them, and then translate them into a behavioral output. Whether we see a 

movement in the leaves, hear thunder, or smell smoke, the information—visual, auditory, 

olfactory—must guide an appropriate behavior: depending on the sensory stimulus, we 

may freeze, seek shelter, or relocate.  

The cerebral cortex, the six-layered structure thought to underlie mammalian 

cognition and sensory perception, has expanded over evolutionary history, presumably 

yielding richer sensory experiences and more complex behavioral responses to sensory 

stimuli. Among the sensory regions of the cortex, primary sensory cortex is traditionally 

believed to constitute an early stage in a sensory processing hierarchy. The simplest model 

of sensory information flow through primary sensory cortex can be summarized as follows: 

sensory information enters from the periphery, via sensory thalamus, and arrives at layer 4 

of cortex; from here, signals continue to superficial layers (layers 2/3), which send 

information to other cortical areas; signals also project to deep layer 5, which relays 

information to subcortical brain structures. After the initial processing by primary sensory 

cortices, information is thought to be further manipulated by cortical regions “higher” in 

the hierarchy. This hierarchy of increasing complexity also implies that neural responses 
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should become sparser in higher-order areas: while primary cortical responses should be 

robust to a wider range of sensory stimuli (Avidan et al., 2002; Boynton et al., 1999), cells 

in higher-order areas are expected to be more selective.  

In recent years, new information has changed our view of sensory processing, and 

these models have been updated. However, even decades ago, studies revealed that the 

response properties of the supposedly “downstream” deep layers do not necessarily depend 

on activity in the superficial layers: when the superficial layers of the visual cortex were 

inactivated, many cells in the deep layers remained unaffected (Schwark et al., 1986). More 

recently, Constantinople & Bruno (2013), as well as other authors since then (Egger et al., 

2020; Pluta et al., 2019), identified thalamocortical inputs directly projecting to the deep 

layers of the somatosensory cortex (bypassing layer 4 and the superficial layers). 

Furthermore, the recorded responses in deep layer cells were unaffected by silencing of 

layer 4 (Constantinople and Bruno, 2013). Additional research confirmed that layer 4 and 

the superficial layers were not required for deep layer activity; in fact, layer 4 activity was 

found to suppress rather than drive layer 5 responses (Pluta et al., 2015). Moreover, while 

responses in layer 4 are indeed strongly driven by sensory stimuli, cells in superficial layers 

exhibit sparse activity (Barth and Poulet, 2012; Estebanez et al., 2012; Ramirez et al., 2014).  

Finally, the presence of top-down inputs to primary sensory cortices suggests that 

these “early” sensory regions may be involved in more complex computations than 

originally believed: feedback connections from association cortices modulate activity in 

primary sensory regions, rendering responses in these areas more sensitive to expectation, 

attention, and motivation (Gilbert and Sigman, 2007; Poort et al., 2022). A balance 
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between top-down feedback projections and bottom-up feedforward inputs is required for 

adaptive sensation to be preserved; imbalances have been theorized to play a role in 

conditions like schizophrenia (Gilbert and Sigman, 2007; Teufel and Fletcher, 2020).  

Indeed, evidence increasingly suggests a more multifaceted role of primary sensory 

cortex, in which the activity of any given primary sensory cortical region is influenced by a 

variety of factors, such as other modalities, task context, reward, and behavioral state 

(Brosch et al., 2011; Budinger et al., 2006; Lacefield et al., 2019; Mima et al., 1998; Pantoja 

et al., 2007; Pleger et al., 2008; Rodgers et al., 2021; Shuler and Bear, 2006; Weis et al., 

2013; Zhang et al., 2020). In this chapter, I will examine the ways in which primary sensory 

cortical activity depends on elements other than bottom-up sensory inputs from the 

periphery, focusing first on the effects of learning and then on the influence of expectation 

(and violations of expectations). Then, I will propose that a function of primary sensory 

cortex is to use temporal processing to model the external environment and internal state 

of the animal—this model may then be used to predict outcomes and guide actions.  

 

1.1 Primary sensory cortical activity is modulated by learning 

 

Learning the relationship between a stimulus and an outcome is likely to affect 

primary sensory cortical responses, as evidenced by studies of multiple modalities, and 

across a variety of animal models. In some cases, cells in primary sensory cortical areas 

exhibit responses to reward, even in the absence of the sensory stimulus. For instance, the 

activity of some neurons in the deep layers of rat primary visual cortex (V1) not only 
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responded to visual stimuli, but also predicted the timing of subsequent reward delivery 

(Shuler and Bear, 2006). The reward-related signal was only observed after animals became 

proficient at the behavioral task—in naïve rats, cells only responded to visual stimuli, not 

reward; then, over the course of learning, a subset of neurons began to respond at the time 

of the reward as well. In fact, these cells responded at the expected time of reward delivery 

even when the reward itself was unexpectedly omitted. Reward-related activity has also 

been discovered in primary somatosensory cortex (S1): recordings in rat S1 revealed 

neuronal activity in anticipation of reward (Pantoja et al., 2007). An analogous human 

fMRI study found S1 to reactivate at the presentation of a reward following a tactile stimulus 

during a somatosensory discrimination task, though no tactile stimulus was present during 

this second peak of activity (Pleger et al., 2008); this reward-related signal, in turn, was 

found to correlate with performance on the behavioral task (Pleger et al., 2009, 2008). A 

calcium imaging study of mouse S1 also revealed a late peak of activity in both deep and 

superficial layers; the authors hypothesized that it was related to reward delivery rather 

than stimulus presentation (Lacefield et al., 2019). Specifically, delaying the reward delivery 

by a variable amount led to a corresponding delay of this late calcium signal. Finally, a 

study of monkey auditory cortex also identified various forms of reward-related activity: 

among different groups of cells, response magnitudes varied depending on reward 

expectations, reward size, and prediction error (Brosch et al., 2011). 

Not only do primary sensory cortical cells respond to reward, but also their stimulus-

driven responses may be modulated by learning: numerous studies have illustrated that 

learning leads to changes in cortical representations. Even three decades ago, early studies 
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in guinea pigs identified a degree of plasticity in primary sensory (auditory) cortex (Bakin 

and Weinberger, 1990). More recently, in superficial layers (layer 2/3) of mouse V1, cells 

were found to become more selective  to a rewarded oriented grating stimulus after mice 

learned an association between the stimuli and reward (Henschke et al., 2020). In fact, 

across the neuronal population, cells’ orientation preferences shifted toward the 

orientation of the rewarded stimulus (Henschke et al., 2020). Stimulus representations also 

stabilized as animals learned a behavioral task (Poort et al., 2015). However, it does seem 

that different characteristics of behavioral paradigms (such as whether the outcome is 

appetitive or aversive) yield different effects on primary cortical activity: Makino & 

Komiyama (2015) saw that layer 2/3 cells responded to stimuli even in naïve mice when 

those stimuli were paired with aversive outcomes. Nonetheless, they did still observe 

changes in the cells’ activity over the course of learning, with neuronal responses peaking 

in anticipation of the aversive event as mice learned the avoidance task (Makino and 

Komiyama, 2015). Learning-related plasticity of stimulus-responses by primary sensory 

cortical cells is further supported by structural modifications observed in S1 during 

conditioning (Kuhlman et al., 2014): a rapid proliferation and stabilization of dendritic 

spines was detected on cells in superficial layers of S1 over the course of reinforcement 

learning. Interestingly, the rate of spine growth correlated with animals’ behavioral 

performance, further solidifying the hypothesis that cortical plasticity really does occur as 

an effect of learning. These results match the observation that learning leads to an increase 

in magnitude of the responses of some groups of S1 cells (Chen et al., 2015).  
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On the other hand, Bale et al. (2020) found that learning did not have much direct 

effect on the sensory responses of S1: cells in superficial layers responded to the sensory 

features of the stimuli even before training. Yet, this study also reported that a subset of 

neurons seemed to gain representations of the stimulus-reward association over the course 

of training, such that neural responses in well-trained mice appeared to correspond to 

behavioral choice. Specifically, cells in expert animals responded to non-sensory aspects of 

the task (including animal’s motor actions like licking) and predicted future decisions (Bale 

et al., 2020). 

These changes in primary sensory cortical activity likely occur as a result of the 

learned stimulus-outcome associations, rather than some other aspect of the experiment 

such as repeated exposure to the stimulus. (Though, for evidence to the contrary, see 

Gavornik and Bear, 2014). In both primary auditory and visual cortices, responses to task-

relevant or rewarded stimuli were shown to be modulated by learning, but passive stimulus 

exposure did not reproduce these changes (Henschke et al., 2020; Xin et al., 2019). Indeed, 

while passive repeated exposure to a stimulus leads to habituation of sensory responses 

(Henschke et al., 2020; Kato et al., 2015), that same stimulus can again begin to elicit strong 

responses if it becomes behaviorally-relevant (Kato et al., 2015). 

 

1.2 Expectation, predictability, and attention 

 

Stimulus and reward responses that emerge only in well-trained animals also 

suggest that expectations influence primary sensory cortical activity. In fact, several 
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authors have proposed predictive coding as the critical operation performed by the cortex 

(den Ouden et al., 2009; Keller and Mrsic-Flogel, 2018).  

Indeed, a study in human auditory cortex study that identified reward-related 

signals found this activity to depend not on the delivery of the reward itself, but rather on 

the correct prediction of the presence or absence of reward (Weis et al., 2013). Similarly, as 

described in the previous section, reward-related activity in rat V1 only presented in well-

trained animals that fully expected reward delivery (Shuler and Bear, 2006)—although, 

notably, whether the expected reward was actually presented or omitted did not impact 

the cells’ responses. Both of these studies considered the predictability of reward, but other 

experiments showed that the predictability of sensory stimuli also affects neuronal 

responses. Rendering stimuli predictable via attentional cueing enhanced sensory 

responses to those stimuli (Doherty et al., 2005). Conversely, unexpected sensory events 

have been found to decrease cortical activity: though a cessation of tactile flow led to both 

up- and down-modulation of activity in the primary somatosensory cortex of mice, the 

majority of cells displayed weaker activity in response to the perturbation (Ayaz et al., 

2019)—this effect was observed in both superficial and deep layers of S1, though the down-

modulation was stronger in superficial layers. Finally, familiarity with stimuli has been 

showed to augment cortical responses, which were diminished when expectations were 

disturbed (Gavornik and Bear, 2014). 

However, there exist even more cases in which primary sensory cortical cells 

responded more strongly when expectations were violated rather than confirmed. Reward-

related activity in the primate primary auditory cortex (A1) was sensitive to mismatch 
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between expected and presented rewards, and some cells specifically tracked animals’ 

behavioral errors by selectively responding to unexpectedly omitted rewards on error trials 

(Brosch et al., 2011). With respect to sensory (rather than reward) mismatch signals, 

neurons in mouse primary visual cortex that respond to optic flow showed stronger 

responses when the visual stimulus was unexpectedly stopped (Keller et al., 2012). In fact, 

violations of expectations can drive cortical activity even in the absence of any sensory 

stimulus: if an expected visual stimulus is omitted, cells in V1 have been found to exhibit 

strong responses (Fiser et al., 2016). Meanwhile, predictable stimuli yielded much lower 

responses in human V1, compared to unexpected stimuli (Alink et al., 2010), consistent 

with the well-documented phenomenon of repetition suppression (Henson, 2003; 

Summerfield et al., 2008). 

“Repetition suppression” refers to the dampened sensory responses to repeated 

stimuli compared to “oddball” stimuli that pop out and recruit relatively more neural 

resources. This phenomenon has been commonly explained as either a “low-level” process 

like adaptation (Grill-Spector et al., 2006), or as an effect of expectation and predictability 

(Summerfield et al., 2008). The latter hypothesis is supported by cases in which a stimulus 

may be expected but not repeated (e.g., if it is predicted by another stimulus or if it is 

presented repeatedly but alternated with another stimulus)—a related phenomenon which 

may be called “expectation suppression” (Richter et al., 2018).  

An alternative explanation to many of these findings has been proposed as well: 

rather than being a result of predictive coding processes, the responses to an expected 

stimuli may be suppressed due to decreased attention allocated to that stimulus (Alink and 
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Blank, 2021). Whether the responses of primary sensory cortical regions to unexpected 

events are enhanced due to the high degree of prediction error associated with those events 

or due to attentional modulation remains an open question. 

 

1.3 Role of primary sensory cortices 

   

If primary sensory cortices do not simply process and relay sensory information from 

the periphery to so-called “higher order” association areas, then what does primary sensory 

cortex do? One potential role of cortex could be in acquiring the ability to perform complex 

feature recognition. Such a theory could explain why primary sensory cortex appears to be 

dispensable for simple tasks (Hong et al., 2018). I will revisit this possibility in Chapter 3, 

in which I describe a feature discrimination task intended to probe the involvement of 

primary sensory cortex in these types of computations.  

An alternative, but not mutually exclusive, role of cortex could be to use predictive 

coding and temporal processing to build and update a model of an animal’s external 

environment and internal state. In the following section, I elaborate on this idea, reviewing 

evidence of time coding in various regions of the brain, and finishing with a discussion of 

primary sensory cortical temporal processing.  
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1.4 Temporal processing around the brain  

 

The ability to keep track of time and predict the timing of events is crucial for an 

animal’s survival. For instance, timing important for predictions, as well as the ability to 

understand causal relationships between events or actions (Woods et al., 2014): we 

perceive an earlier event as the “cause”, and a subsequent event as an “effect”. Indeed, this 

temporal perception is required for proper prediction and interpretation of the effects of 

one’s own actions. Delusions of control seen in schizophrenia may be an example of this 

system gone awry: control of one’s actions by an outside entity may be a logical explanation 

if one perceives one’s action to precede intent. Temporal processing disturbances have in 

fact been proposed to play a role in the symptoms of schizophrenia (Martin et al., 2014). 

The importance of time-keeping has led to a long-time search for a neural “clock”.  

Various candidate regions have been proposed to enable an animal to keep track of time—

from cerebellum (Ashe and Bushara, 2014) to hippocampus and the neighboring lateral 

entorhinal cortex (Tsao et al., 2018) to striatum (Bakhurin et al., 2017; Mello et al., 2015). 

Yet sensory cortex has not been considered. I do not propose that sensory cortex constitutes 

such a clock; on the contrary, I argue that time-keeping is not localized to any one region, 

but rather constitutes a critical computation that is widely distributed across the brain, 

including primary sensory cortices. 

Consider the diverse evidence for temporal processing around the brain: “time cells” 

in hippocampus respond sequentially over the course of a trial, and can link events across 

a delay (MacDonald et al., 2011; Pastalkova et al., 2008; Umbach et al., 2020). Meanwhile, 
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in the dorsolateral striatum, cells have also been found to track time (Jin et al., 2009; Toso 

et al., 2021b; Zhou et al., 2020), notably, even when timing is not informative for the task 

(Toso et al., 2021b). Time could also be decoded in certain cases in the amygdala and some 

association cortices (Cueva et al., 2020). However, this last study only found time to be 

encoded in these regions when temporal information was task-relevant, suggesting that 

some brain regions only use timing information to model the world when currently 

necessary, while others may encode temporal information more generally.  

It is important to note that time encoding is unlikely to be an epiphenomenon: it 

does not inevitably arise from the dynamics of brain activity. There are cases in which time 

cannot be decoded from activity even in brain regions like hippocampus, where one would 

expect cells to encode temporal information. For instance, Ahmed, Priestley et al. (2020) 

were unable to decode time from hippocampal area CA1 during a trace fear conditioning 

task, likely due to the high degree of variability in neuronal responses across trials (Ahmed 

et al., 2020). Thus, certain conditions must be met for time encoding to occur. 

 

Temporal processing in primary sensory cortex 

 

While no studies have directly investigated temporal encoding in primary sensory 

cortices, there exists some indirect evidence of time processing in sensory cortex. For 

instance, primary somatosensory cortex has been found to be sensitive to stimuli 

characterized by temporal sequences (whisker deflections separated by variable intervals), 

suggesting the presence of temporal integration in S1 (Pitas et al., 2017). In addition, 
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temporally patterned S1 activity has been shown to contain sensory information 

(Arabzadeh et al., 2006). A related finding in primate S1 uncovered “memory cells” (Bodner 

et al., 2005), which displayed precise patterns of activity during a delay, and were therefore 

hypothesized to contribute to working memory.  

Primary sensory cortices are also involved in temporal expectations: in well-trained 

animals, V1 responses predict the timing of an expected reward (Shuler and Bear, 2006) or 

aversive outcome (Makino and Komiyama, 2015). Meanwhile, in humans, temporal 

expectations yielded V1 activity in areas that matched the retinotopic location of a stimulus 

expected to appear at a certain time, even in the absence of the stimulus (Bueti et al., 2010). 

These observations imply the existence in primary visual cortex of a temporal model of 

sequences of events, experiences, and expectations. 

Indeed, V1 neurons have been shown to “learn” the temporal order of sequences of 

events, such that they respond more strongly to an expected sequence than to a novel 

sequence. Gavornik and Bear (2014) reported that, as mice become familiarized with a 

given sequence of visual stimuli (gratings of various orientations) over the course of 

multiple days, the visual responses to that sequence become progressively stronger with 

training. On the other hand, control animals that are presented with random sequences, 

rather than the same sequence each time, exhibit less enhancement in V1 responses. This 

discrepancy is notable because the constituent visual stimuli of the sequences are the 

identical; only the order of presentation is randomized. Eventually, mice in the 

experimental cohort come to fully expect the specific sequence on which they are trained. 

Subsequently, if the constituent elements of the sequence are either reordered or adjusted 
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in temporal duration, the visual responses decrease: even though the individual stimuli are 

the same, adjusting the order or timing of the events is sufficient to render the composite 

sequence “novel”. Meanwhile, control animals display no differences between V1 responses 

to the various sequences, as no one sequence is “novel” nor “familiar” (Gavornik and Bear, 

2014). 

Surprisingly, Gavornik and Bear (2014) did not use reward to enable expectations: 

repeated exposure was sufficient for the sequence to become expected and to augment 

cortical responses. Another study, however, did pair reward with a target stimulus to help 

animals form expectations about the timing of that stimulus presentation (Jaramillo and 

Zador, 2011). This study also found an effect of temporal expectations, wherein a context of 

anticipation enhanced stimulus-evoked primary sensory cortical responses: neurons in rat 

A1 became more sensitive to auditory stimuli that occurred around the time of an expected 

target (rewarded) stimulus than to stimuli that occurred at moments farther away from the 

target in time. In this experiment, a series of identical tones was punctuated by rewarded 

“target” tones of a different frequency, which signaled to the rats that a reward was to be 

delivered—the exact pitch of the target tone informed animals about the location of the 

reward. This target tone could arrive at different moments (“early” or “late”) in the sequence 

of non-rewarded “baseline” tones, with alternating blocks of trials, such that the target 

arrived “early” with a high probability in one block of trials, but “late” in the next. This 

experimental design enabled animals to learn to predict the timing of the target’s arrival. 

As the moment of presentation of an expected rewarded tone drew closer, cortical activity 

driven by the non-rewarded tones of other frequencies was enhanced: tones immediately 
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preceding the target elicited stronger A1 responses than did tones earlier in the trial. 

Interestingly, this modulation of cortical activity by expectation only affected the stimulus-

driven A1 responses, and not spontaneous activity. Furthermore, the expectation-

dependent enhancement of  cortical responses was stimulus-specific, and was more evident 

in neurons with frequency preferences that matched the stimuli (Jaramillo and Zador, 

2011). 

Finally, sensory aspects of a stimulus can influence time perception in both humans 

and other animals (Herbst et al., 2013; Reinartz et al., 2021; Toso et al., 2021b, 2021a; Tse 

et al., 2004; Xuan et al., 2007), a phenomenon that suggests that timing and sensation are 

likely linked. The relationship between temporal and sensory processing is further 

substantiated by experiments that reveal bidirectional perceptual changes in temporal 

duration (as well as in reported sensation of the stimulus intensity) following optogenetic 

manipulation of primary sensory cortex (Reinartz et al., 2021). In this study, two separate 

groups of rats were trained to discriminate the intensities or durations of tactile stimuli. 

The authors then optogenetically stimulated or inhibited S1, and found that upregulating 

the cortex led to judgements of longer duration, while inhibiting S1 caused animals to 

perceive the stimulus to be of shorter duration. A parallel study in humans (Salvioni et al., 

2013) found that interfering with V1 activity using transcranial magnetic stimulation (TMS) 

affected participants’ ability to discriminate interval durations. Finally, in the cutaneous 

rabbit illusion (Geldard and Sherrick, 1972; Figure 1.1), which may depend on temporal 

integration of the sequential sensory inputs, a signature of the illusory percept has been 

identified in human S1 (Blankenburg et al., 2006). In this illusion, the forearm is repeatedly 
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and rapidly tapped at discrete areas—a simple variation of the illusion involves three taps 

at the wrist followed by two taps at the inner elbow. These taps are perceived as progressing 

(“hopping”) up the arm, rather than being localized to just the wrist and elbow. The 

aforementioned human neuroimaging study (Blankenburg et al., 2006) found that the 

somatotopic activation in S1 during the illusion is identical to that of a sequence of taps 

actually progressing up the arm.  

 

 
 
Figure 1.1 The cutaneous rabbit illusion 
The cutaneous rabbit illusion (Geldard and Sherrick, 1972) involves a series of taps 
on discrete areas of the forearm, and is felt as a sequence of taps “hopping” up the 
arm.  

 

Together, these studies suggest that primary sensory cortices do contribute to 

temporal processing. Still, there are notable gaps in our understanding of their role in these 

processes. No direct investigation has been done to determine whether any primary 

sensory cortical region actually keeps track of time. Furthermore, while it seems likely that 
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expectations (including temporal expectations) modulate activity in primary sensory 

cortex, the nature of this effect is unclear. The studies described in this section seem to 

imply that cortical cells respond more strongly when the timing of sensory stimuli or 

rewards is expected (Gavornik and Bear, 2014; Jaramillo and Zador, 2011; Shuler and Bear, 

2006); yet, earlier, I mentioned other studies that reported increased cortical responses to 

unexpected sensory occurrences (Alink et al., 2010; Keller et al., 2012). However, these latter 

studies did not focus on the temporal properties of the surprising events. The research I 

conducted in this thesis aimed to resolve some of these discrepancies and gaps. 

 

1.5 Rodent barrel cortex as an experimental model system  

 

The studies summarized above span a wide range of modalities and animal models. 

This thesis utilizes the rodent barrel cortex—the portion of primary somatosensory cortex 

that receives tactile sensory input from an animal’s whiskers—as a model system to 

investigate primary sensory cortical involvement in temporal processing and how it 

develops over learning. The motivation behind choosing the mouse barrel cortex as a model 

system is two-fold, relating to (1) choice of animal model, and (2) choice of cortical area:  

1) A mouse model allows for invasive experimental procedures, including 

visualization of individual cell activity in vivo. 

2) Given the choice of the mouse model, the whisker system is an appropriate 

choice of modality as it is one which mice frequently rely on in nature: since mice 

spend their time in dark underground tunnels, their whiskers provide a large 
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proportion of their sensory information about the environment. However, my 

assumption is that my findings would apply equally to other modalities, and I 

hope that my results can be replicated in other primary sensory cortical regions.  

The barrel cortex is a particularly well-studied cortical region, with strict 

somatotopic mapping between an animal’s whiskers and columnar structures in the cortex. 

These columns, or “barrels”, lend this cortical region its name. Figure 1.2 shows a tangential 

slice of the barrel cortex, with barrels visible as darker areas.   

 

 

 

  

 

 

 

 

 

 

 

1.6 Overview 

 

In the following chapter, I will describe a series of experiments that probe activity 

in barrel cortex: specifically, I will illustrate how learning a behavioral task (even in a very 

Figure 1.2: The barrel field 

This 50um layer 4 tangential slice of barrel 

cortex shows the barrel field. The darker 

regions are the barrel columns. Each barrel 

receives sensory input from a single 

whisker.  
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simple object detection paradigm) alters cortical representations in a number of ways—

modulating sensory responses as well as the encoding of behavioral choice, time, and 

temporal expectations. Then, in Chapter 3, I will consider a more complex behavioral 

paradigm, provide preliminary behavioral data, and outline the challenges that a more 

complex experimental design brings. Finally, I will discuss how my findings relate to 

theories of temporal processing in cortex and beyond, and propose a direction for future 

research into the neural correlates of time perception.  

  



19 

 

Chapter 2 : Effects of learning on primary sensory cortical 

activity and temporal coding 

 

This Chapter is adapted from Rabinovich, Kato, & Bruno (under review; preprint on 

BioRxiv). I performed the imaging experiments and analyses; Dan Kato performed 

some of the surgeries, and contributed animals to the experiments; he also provided 

valuable feedback on the manuscript under review.  

 

2.1 Introduction 

 

The established view of cortical processing assumes that primary sensory cortex 

performs basic tasks at an early stage in a sensory processing workflow, with more complex 

computations occurring downstream (for review see Grill-Spector and Malach, 2004). 

However, there is mounting evidence that more “associative” processing occurs in primary 

sensory cortices and that activity in these regions is influenced by factors beyond simple 

sensation of a single modality (Brosch et al., 2011; Budinger et al., 2006; Lacefield et al., 

2019; Mima et al., 1998; Pantoja et al., 2007; Pleger et al., 2008; Rodgers et al., 2021; Shuler 

and Bear, 2006; Weis et al., 2013; Zhang et al., 2020). Additionally, the canonical view 

implies robust stimulus responses by primary sensory cortex (Avidan et al., 2002; Boynton 

et al., 1999); on the contrary, primary sensory cortical cells, specifically superficial layer 

https://www.biorxiv.org/content/10.1101/2021.12.23.474000v1
https://www.biorxiv.org/content/10.1101/2021.12.23.474000v1
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neurons, often exhibit low levels of activity even during strong sensory stimulation (Barth 

and Poulet, 2012; Estebanez et al., 2012; Ramirez et al., 2014).  

A large volume of research now suggests that sensory-driven responses in primary 

cortical areas are modulated by learning and stimulus-reward associations (Bakin and 

Weinberger, 1990; Brosch et al., 2011; Chen et al., 2015; David et al., 2012; Makino and 

Komiyama, 2015; Pantoja et al., 2007; Poort et al., 2015; Shuler and Bear, 2006; Weis et al., 

2013). In the superficial layers (layer 2/3) of primary visual cortex (V1), initially quiet cells 

begin responding to behaviorally relevant stimuli that are paired with reward (Henschke 

et al., 2020), with representations becoming more selective and stable over the course of 

learning (Poort et al., 2015). Meanwhile, structural changes have been found to occur in 

layer 2/3 of primary somatosensory cortex (Kuhlman et al., 2014), where certain groups of 

cells respond more strongly to touch after learning (Chen et al., 2015).  Yet, the degree to 

which learning-related plasticity occurs in primary somatosensory cortex (S1), and how it 

manifests, remains unclear: in some cases, stimulus representations have been found to 

remain stable (Kim et al., 2020), with little plasticity (Peron et al., 2015).  

Mismatch between expectation and sensation has also been proposed to influence 

activity in primary sensory cortex (Ayaz et al., 2019; Keller et al., 2012). In fact, prediction, 

mismatch, and predictive coding in general have been theorized to play a crucial role in 

cortical processing, and may drive learning-related plasticity (den Ouden et al., 2009; 

Keller and Mrsic-Flogel, 2018). For instance, Keller et al. (2012) showed that disturbances 

in optic flow, such as the sudden cessation of visual motion, led to increased V1 activity 

(Keller et al., 2012). However, an alternative mechanism has been proposed for this finding 
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(Muzzu and Saleem, 2021), whereby V1 responses increase whenever visual motion slows 

due to cells’ velocity preferences, regardless of direction of motion, or whether the change 

violated the animals’ expectations (but see Keller et al., 2012 and Zmarz and Keller, 2016, 

who did not observe altered V1 activity during passive viewing of the stimulus. Meanwhile, 

perturbations in expected tactile flow mainly result in decreased neuronal activity in barrel 

cortex (the whisker-related portion of S1) (Ayaz et al., 2019). Thus, despite the increasing 

consensus regarding the importance of predictive coding (Fletcher and Frith, 2009; Keller 

and Mrsic-Flogel, 2018), the nature of mismatch signals in primary sensory cortices is still 

poorly understood.  

The seemingly disparate observations across these studies of primary sensory cortex 

may be interconnected if primary sensory cortices construct a model over the course of 

learning, placing stimuli, rewards, and other events into a temporal context. Various brain 

regions have been already implicated in time processing. For instance, compelling evidence 

of “time cells” has been demonstrated in the hippocampus. These cells specifically respond 

at given moments in a trial and have been proposed to contribute to working and episodic 

memory by linking events across a delay (MacDonald et al., 2011; Pastalkova et al., 2008) 

and by representing their sequential order (Umbach et al., 2020). Similar sequence-driven 

coding schemes may be at play in striatum (Toso et al., 2021b; Zhou et al., 2020). Some 

degree of time encoding was also identified in the amygdala and several association cortical 

areas (Cueva et al., 2020). In sensory cortex, barrel cortical neurons have been shown to be 

sensitive to temporally patterned stimuli (Pitas et al., 2017); conversely, temporally-precise 

patterns of neuronal activity have been found to contain non-temporal somatosensory 
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information (Arabzadeh et al., 2006). Similarly, putative “memory cells” in primate 

somatosensory cortex exhibit temporal patterns of activity during a tactile working 

memory task (Bodner et al., 2005). In fact, multiple of the aforementioned studies that 

found learning-related influences on V1 activity noted a timing component to the changes 

they observed (Makino and Komiyama, 2015; Shuler and Bear, 2006). 

  The current study asks: to what degree does learning impact the activity of neurons 

in superficial layers of primary somatosensory cortex? What aspects of the behavioral 

paradigm do these cells encode?  What kind of mismatch signals are present in S1? We used 

2-photon calcium imaging to measure cortical activity during learning of a simple 

Pavlovian detection task. We found that learning a stimulus-reward association engages 

previously unresponsive cells in a longitudinally-tracked population, leading to an 

enhanced representation of tactile stimuli. In addition, learning rendered cells able to 

encode non-sensory aspects of the behavioral paradigm and animals’ experience, including 

animals’ choice, the temporal progression of events, and the expectation of event timing. 

 

2.2 Results 

 

To investigate learning-related effects on cortical activity, we used 2-photon calcium 

imaging to monitor the activity of GCaMP6f-expressing neurons in superficial layers (layer 

2/3) of S1, while mice learned a Pavlovian whisker-based object-detection task (Figure 2.1). 

In our behavioral paradigm, stimuli were presented to water-restricted mice via a rotating 

wheel (Figure 2.1a, top). On rewarded trials, a flat surface rotated into the whisker field, 
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stopped and remained stationary for two seconds, and then rotated away, after which a 

water reward was presented (Figure 2.1a, bottom; see 2.4 Methods). On unrewarded 

trials, the wheel rotated to an empty position in which no surface contacted the whiskers, 

and no water was given. Thirsty mice licked at the water port in anticipation of the reward, 

and we quantified the level of anticipatory licking as a measure of learning. Initially, mice 

licked indiscriminately on both stimulus-present and stimulus-absent trials (Figure 2.1b, 

left), but after learning the association between stimulus and reward, they licked 

preferentially during stimulus-present trials, in anticipation of reward (Figure 2.1b, right; n 

= 10 mice).  

The Pavlovian nature of the behavioral paradigm meant that an animal’s actions did 

not impact the outcome of the trial (whether or not a water droplet emerged from the lick-

port). Nonetheless, to quantify learning, we labelled mouse responses as follows: 

anticipatory licking on a stimulus-present trial was categorized as a “hit”, suppression of 

licking on a stimulus-absent trial was a “correct rejection”, licking on a stimulus-absent 

trial was a “false alarm”, and lack of licking on a stimulus-present trial was a “miss”. The 

former two response types were considered “correct”, and the latter two were “incorrect”. 

By these definitions, mice began to perform above chance in as few as three sessions, but 

we continued training them until their performance reached 70% (Figure 2.1c); in some 

cases, animals’ performance exceeded 90%. Performance on this task fell to chance when 

whiskers were trimmed off (in 5 out of 5 whisker-trimmed mice). 

Prior to training and 2-photon imaging (Figure 2.1d), we used intrinsic signal 

imaging to locate the barrel cortex, where we would later record neuronal activity. After 
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recording, we confirmed the imaging location by using the 2-photon laser to create a small 

lesion at the imaging site, and, with the help of vasculature patterns, identifying the 

corresponding location relative to the layer 4 barrels in post hoc histology (Figure 2.1e).  

 
 

 
Figure 2.1: L2/3 calcium imaging in barrel cortex while mice learn whisker-
based object detection task 
a) Behavior schematic (top) and timecourse (bottom): rotating wheel brings either 
object or empty space into mouse whisker field. Stimulus “enters” the whisker field 
and then “stops”. The now stationary stimulus is present for two seconds before 
rotating away (45 degrees over the course of ~400ms, such that the gap between 
wheel arms is in front of the animal’s face). On object-present trials, water drop is 
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given following the stimulus. Anticipatory licks are counted during the “stimulus 
present” interval. 
b) Anticipatory licking histograms (n = 10 mice) for early (left) and expert (right) 
days, quantifying the rate of licking for stimulus-present rewarded (blue) trials and 
stimulus-absent unrewarded (black) trials. Mice initially lick equally for object-
present (rewarded) and object-absent (unrewarded) conditions, but learn to lick 
preferentially for the object-present condition with training. 
c) Learning curve (n=10 mice). Shading corresponds to 95% confidence interval.  
d) Example field of view for calcium imaging during learning. Calcium activity was 
measured in GCaMP6f-expressing neurons in layer 2/3 of barrel cortex. 
e) Histology shows location of imaging site. Left: L2/3 tangential slice, showing 
lesion location (marked with arrow). Right: L4 tangential slice, showing 
corresponding area of barrel map. Dashed circles indicate blood vessels used to 
match location in barrel map. 

 

 

Conditioning, but not repeated stimulus exposure, enhances object 

representation 

 

Across the neuronal population, cellular activity was variable: neurons responded at 

different times within the trial, both in naïve and expert sessions (see example mouse in 

Figure 2.3a, top). For most mice, average responses to the stimulus increased in amplitude 

as mice became proficient at the detection task: on early days, the average population 

activity was relatively flat; after conditioning, the activity peaked in response to the onset 

and offset of the stimulus (Figure 2.3a, bottom; same example mouse). In addition to 

analyzing the overall change in fluorescence, we extracted the times of calcium transients 

(see 2.4 Methods; Figure 2.2). All subsequent analyses are based on the time or rate 

of these calcium transients, unless otherwise noted. We quantified the neuronal population 

response for each mouse on early and expert sessions as the mean number of calcium 
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transients across cells. Population responses to object arrival increased from early to expert 

days (p = 0.001, paired t-test, n = 10 mice; Figure 2.3b).   

  

 

 
Figure 2.2: Detecting 
calcium transients 
from fluorescence.  
Threshold for each cell 
is set as 2 standard 
deviations above the 
median ∆F/F for that 
cell. The time when the 
trace first crosses the 
threshold is considered 
to be the transient onset 
time. Suprathreshold 
periods are colored red; 
transient onsets are 
marked with red circles. 
 

 

 

Averaging signals across all cells obscures the variability in cell responses within the 

population, so we next examined individual cell activity. The responses of individual cells 

(nearly = 1163 cells, nexpert = 1112 cells) could be categorized into several groups based on the 

timing of their calcium transients (Figure 2.3c; see 2.4 Methods for classification criteria). 

Some cells responded specifically at the onset of the stimulus (“on” cells), while others 

responded at the stimulus offset (“off” cells); another group responded at both onset and 

offset (“on-off” cells); finally, a small subset only responded late in the trial, following 
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reward presentation (“reward” cells). The “on,” “off,” and “on-off” cells dominated layer 2/3 

S1 activity, as can be seen in the average rate of calcium transients across all imaged cells: 

transients occur most frequently at stimulus onset and offset, as well as, to a lesser extent, 

the period in between (Figure 2.3d). This effect was more pronounced in expert mice, 

consistent with the increased population of these cells.  

In addition to these four response profiles, many cells displayed no obvious response 

patterns (“none” cells): in fact, in naïve mice, the majority of cells were in this category 

(Figure 2.3e, left). We refer to these neurons as unresponsive to contrast them with cells 

that exhibited immediate responses at the time of object arrival, departure, or reward 

delivery; in reality, this category may include cells that were active but did not meet our 

classification criteria for the other cell groups. As mice learned, the proportion of these 

unclassified “none” cells decreased (p < 0.001, Z approximation to a binomial) and the 

proportion of stimulus-responsive cells increased (p < 0.001 for “on” cells and p < 0.001 for 

“off” cells): in expert mice, most cells were stimulus-responsive (Figure 2.3e, right).  

Was this substantial increase in the population of cells responsive to object arrival 

a genuine effect of conditioning, or could mere repeated exposure to stimuli be driving the 

increases in cells’ responses? We explored this issue using a new cohort of animals—mice 

that were exposed to the same behavioral paradigm with respect to stimulus presentation, 

but were not water-restricted and never received rewards (n = 7 mice). Comparing the 

change in proportion of cells of each type as mice progressed through the protocols 

revealed that the presence of reward was in fact crucial for the increase in stimulus-

responsive cells. Repeated exposure produced no increase in the percentage of responsive 
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cells; rather, we saw a decrease in the proportion of these cells (p < 0.001 for “on” cells; p = 

0.03 for “off” cells, with unresponsive “none” cells growing to an even larger population (p 

< 0.001) after repeated exposure to the stimuli, an effect that was the reverse of that seen 

in conditioned mice (Figure 2.3f). These findings suggest that two opposing adaptation 

mechanisms exist in layer 2/3: irrelevant stimuli shrink the population of responsive cells 

while behaviorally important stimuli enlarge it. 
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a) Cells respond at different times in trial. Top: heat maps from 100 cells in a naïve 
session (left) and 104 cells in an expert session (right) in an example mouse; Bottom: 
average across cells for this mouse, for the same early (left) and expert (right) 
session. 
b) Average number of transients per cell for early and expert sessions (p = 0.001, 
paired t-test). Each point corresponds to 1 mouse. 
c) Raster plots of calcium transients for 4 example cells show diverse patterns of 
activity. 
d) Transient event rate in naïve (blue) and expert (orange) animals. Rate of 
transients was calculated across all cells, normalized by number of trials and number 
of cells. 
e) Proportions of different cell types in the population, on early vs expert days for 
conditioned mice: on: p < 0.001; off: p < 0.001; on-off: p = 0.1; rew: p = 0.4; none: p 
< 0.001 (based on Z-test approximation to the binomial; sample sizes: nearly = 1163 
cells; nexpert = 1112 cells). 
f)  Change in the proportion of cells of each type (expert - naïve), for conditioned 
mice that experience reward-pairing (n=10) and for mice that only experience 
repeated exposure to the stimulus without reward (n=7). For repeated exposure 
mice: on: p < 0.001; off: p = 0.03; on-off: p = 0.22; none: p < 0.001. Data for 
conditioned mice same as in (e).  

 

 

 

Learning switches response category of longitudinally tracked neurons 

 

As mice learned the behavioral task above, a neuronal population initially 

dominated by unresponsive cells transformed into a population mainly comprising 

stimulus-responsive cells. However, this analysis was unable to reveal the dynamics of 

individual cells: what degree of fluctuation or stability did individual cells exhibit across 

consecutive days and over the course of learning? To address this question, we next set out 

to determine how individual cell responses shift over the course of conditioning.  

Figure 2.3: Behavioral training, but not stimulus exposure, increases proportion of 

stimulus-responsive cells (n = 10 mice) 

 



30 

 

To this end, we longitudinally tracked individual neurons across training sessions. 

To identify the same cells across two sessions, we warped the imaging field of view of one 

day to align with that of another day by applying an affine transformation to the time 

average of one imaging session; we then applied the same transformation to each region-

of-interest (ROI) and located matching ROIs across sessions (Figure 2.4a; see 2.4

 Methods). 

 

 

Figure 2.4: Longitudinally tracked cells’ responses exhibit opposing processes of 
enhancement and habituating in response to conditioning and repeated exposure, 
respectively.  
a) Field of view of example mouse on naïve (top) and expert (bottom) days. A single tracked 
cell is highlighted.  
b) Three example cells’ activity on early (blue) vs expert (orange) days. For each cell: PSTH 
(top) shows probability of calcium transients throughout the timecourse of a “hit” trial; 
raster plot (bottom) shows all calcium transients for all “hit” trials in the session. 
c) Responsive and unresponsive cells longitudinally tracked across conditioning (left) or 
repeated exposure without reward (right). Percent cells for responsive and unresponsive 
cells was calculated for each mouse and then averaged across mice, to ensure that each 
mouse’s contribution was weighted equally. 
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As mice progressed from naïve to expert levels of behavioral performance, 

longitudinally tracked cells’ activity dramatically increased (see examples in Figure 2.4b). 

Averaged across mice, the majority (69%) of previously unresponsive cells began 

responding to the stimuli. Meanwhile, cells that were already responsive to the stimulus 

mostly remained responsive (83%), and only a small fraction (17%) became unresponsive 

(Figure 2.4c, left). For the repeated-exposure mice, on the other hand, tracked cells became 

less responsive to stimuli, with more than half (55%) of original responsive cells losing 

responsiveness, and most unresponsive cells (62%) remaining unresponsive (Figure 2.4c, 

right). The magnitudes of these changes were similar if we considered cells pooled across 

mice (Figure 2.5) rather than averaged. 

However, in mice that had experienced reward-pairing, longitudinal cell tracking 

revealed that cells maintained a “memory” of the task and were relatively stable across 

consecutive days: 81% of cells were consistently within the same responsive/unresponsive 

category across consecutive expert sessions. Thus, over the course of learning, individual 

tracked cells’ representations become biased toward reinforced stimuli, but only in 

conditioned mice. Later, the activity of these same cells stabilized, reflecting the animals’ 

gained understanding of task rules. 
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Training enhances decodability of stimulus and choice  

 

Learning rendered cells not only more responsive, but also more predictive of trial 

type and the animal’s behavior. We trained a support vector machine with a linear kernel 

to decode the stimulus (the presence or absence of the object) or choice (whether or not 

the mouse displayed anticipatory licking) from calcium transients in the neuronal 

population (Figure 2.6). On average, decoding accuracy for both stimulus (Figure 2.6a; 

paired t-test, p = 0.007) and choice (Figure 2.6b; paired t-test, p < 0.001) improved along 

with animals’ performance.  

The above analysis used all imaged neurons, including the unresponsive “none” 

cells. Non-classically responsive cells have previously been shown to be informative in 

auditory cortex (Insanally et al., 2019). Interestingly, our unresponsive cells also 

Figure 2.5: Longitudinally tracked 
cells become more responsive after 
conditioning, but not repeated 
exposure. 
Same as Figure 2.4c, except cells from 
all mice are pooled together (rather 
than averaged across mice). 
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contributed significantly to the decoders. Unresponsive cells had smaller contributions 

(decoder weights) in the stimulus classifier than did cells of other response profiles (Mann-

Whitney U-test, p = 0.002) but had similar weights for choice decoding (Mann-Whitney 

U-test, p = 0.32). Yet even for the stimulus classification, decoding just from “none” cells 

yielded above chance performance on expert days (76.8% decoder performance; t-test, p < 

0.001).  
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Figure 2.6: Training enhances decodability of stimulus and choice, from 
population activity. 
a) Decoding stimulus from cell population on early (blue) and expert (orange) days 
(p=0.007). Black lines represent individual mice. 
b) Decoding choice from cell population on early (blue) and expert (orange) days 
(p<0.001). 
c) Separability of trial types when decoding from the cell population. 
Left: stimulus-present vs stimulus-absent trials for early (top) and expert (bottom) 
days. (filled bars: stimulus present; empty bars: stimulus absent). 
Right:  trials with vs without anticipatory licks for early (top) and expert (bottom) 
days. (filled bars: lick; empty bars: no lick). 
d) Decoding performance on expert days for stimulus (turquoise) and choice (red) 
using increasing number of cells. Curves correspond to individual mice. 

 

 

Furthermore, even though the decoder could discriminate the trial type classes 

above chance even in naïve mice, the trial types became more separable on expert days 

compared to early-training days (Figure 2.6c): projecting neuronal activity across the 

coding axis (determined by the classifier weights) revealed that the trial type classes 

diverged on expert days, and therefore that the decoder was more “confident” in classifying 

the trial types (Figure 2.7a,b; average earth mover’s distance between stimulus classes 

increased from 0.91 to 1.75; Wilcoxon signed rank test, p = 0.005; average earth mover’s 

distance between choice classes increased from 0.18 to 1.02, p = 0.005). Note that for mice 

in the repeated exposure cohort, the ability to decode the stimulus from neuronal activity 

did not improve with continued stimulus presentation (Figure 2.7c), nor did the stimulus 

classes diverge (Figure 2.7d).  
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Figure 2.7: neural representations of trial types diverge with learning, but not 
following repeated exposure. 
a) Earth mover’s distance between stimulus classes (present & absent) on early and 
expert days. Black lines indicate individual mice; bars are the average (p = 0.005). 
b) Same as (a) but for choice classes (lick & no lick) (p = 0.005). 
c) Decoding stimulus from cell population of repeated exposure mice on early (blue) 
and late (orange) days (p = 0.925). 
d) Same as (a) but for repeated exposure mice. 

 

Since the total number of cells was not identical across different imaging sessions 

(ranging between 50-260 cells; mean = 116 cells), a potential confound could arise if 

decoding performance scales with population size. Comparing decoding accuracy using 

differently sized subsets of the same neuronal population relieved this concern by showing 
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that, while the decoding performance did initially increase with the number of cells used, 

it rapidly plateaued at sizes smaller than that of our typical imaging datasets (Figure 2.6d). 

In fact, decoding from just 50 cells was above chance (t-test, p < 0.001 for both stimulus 

and choice)—on average 93% for stimulus and 78% for choice. Thus, the different 

population sizes across sessions cannot explain the learning-dependent improvement in 

decodability of stimulus and choice. 

So far, we have demonstrated that, at least on expert sessions, we were able to 

decode both stimulus and choice. However, these two measures become increasingly 

correlated as mouse performance improves: while mice never reach perfect performance, 

we expect stimulus and choice to be substantially correlated on expert days, when mice 

mainly choose to lick on stimulus-present trials and inhibit their response on stimulus-

absent trials. Therefore, a problem arises: on expert days, cells’ activity may truly predict 

only stimulus or choice, and our ability to decode both measures might stem from the 

correlation between them. To disambiguate our claim from this alternative explanation, we 

took advantage of the fact that mice do make errors even while performing relatively well, 

and we re-ran the decoding analysis using trial-balancing (Rodgers et al., 2021), whereby 

each trial type was weighted inversely to the frequency with which it occurred; in other 

words, rare trial types (miss and false alarm trials) were weighted more strongly than 

frequent trial types (hit and correct rejection trials). On expert days, when stimulus and 

choice are correlated, trial-balanced decoding performance for both measures was lower 

compared to decoding performance using an unbalanced approach (Figure 2.8a,b; paired 

t-test, stimulus p = 0.03, choice p < 0.001), but both remained significantly above chance 
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(Figure 2.8c; t-test, stimulus p < 0.001, choice p < 0.001). Consequently, while some degree 

of decoder performance is attributable to stimulus-choice correlation, the ability to decode 

one variable is not simply due to its correlation with the other. 

 

 
 
Figure 2.8: Trial-balanced decoding performance is lower than unbalanced 
approach, but still above chance.  
a) trial-balanced stimulus decoding performance (right) compared to unbalanced 
(left) (p=0.03). 
b) same as (a) but for choice (p = 0.0002). 
c) 95% confidence interval for trial-balanced decoding (for stimulus and choice) 
above chance. 

 

Stimulus and choice could also be decoded from individual cells, albeit to a lesser 

extent than from the entire population. On expert days, the decoder could predict trial type 

and the animal’s response with greater accuracy from a larger percentage of single cells 

than on early days (Figure 2.9a). When compared to shuffled data, the stimulus and choice 

could be decoded above chance from more cells on expert days than on naïve days (Figure 

2.9b; paired t-test, stimulus p = 0.005; choice p < 0.001). Finally, for individual, 

longitudinally tracked cells, decoding performance improved as the mouse learned the task 

(Figure 2.9c; paired t-test, stimulus p < 0.001; choice p < 0.001). Thus, as mouse behavioral 
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performance improved, individual cells, as well as population activity, became more 

predictive of trial type and mouse response type. 
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Figure 2.9: Training enhances decodability of stimulus and choice, from 
activity of individual cells. 
a) Histograms of the percent of cells from which can decode stimulus (left) and 
choice (right) at a given accuracy, on naïve (blue) and expert (orange) days. 
b) Percent of cells from which can decode stimulus (left) and choice (right) above 
chance, on naïve (blue) and expert (orange) days (stimulus p = 0.005; choice p < 
0.001, paired t-test). 
c) Decoding performance for stimulus (left) and choice (right), from individual 
longitudinally tracked cells, on naive vs expert days (stimulus p < 0.001; choice p < 
0.001). Colors correspond to cells from different mice. 

 

 

Temporal properties of neural representations  

 

We next examined the temporal dimension of the neuronal representations by 

decoding stimulus and choice at various timepoints throughout the trial. We split the trials 

into time bins, with each bin containing 10 frames (1/3 of a second), and used the 

population activity at each time bin to decode stimulus and choice, yielding a decoding 

time course (Figure 2.10a). The number of time bins at which the decoder could predict 

stimulus and choice above chance increased as mice learned the task (Figure 2.10b; 

Wilcoxon signed rank test, stimulus p = 0.008, choice p = 0.005). Moreover, the first time 

bin from which trial type could be predicted shifted earlier over the course of learning 

(Figure 2.10c; Wilcoxon signed rank test, p = 0.03), suggesting that cells’ activity encodes 

information about the stimulus (or future response) earlier in the trial as mice begin to 

comprehend the task demands and the relevance of the stimulus.  
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Figure 2.10: Temporal 

dynamics of neuronal 

representations. 

a) Timecourse illustrating 

decoding performance, 

averaged across mice, for 

stimulus (left) and choice 

(right) from population of 

cells, for real neuronal data 

and for shuffled data. Blue: 

early day; orange: expert day. 

Dashed lines indicate mean 

of shuffled data; shaded area 

shows 99% confidence 

interval for shuffled data (n = 

10 mice). 

b) Number of time bins from 

which stimulus (left) and 

choice (right) can be 

decoded above chance 

(significantly different from 

shuffle), on naïve (blue) and 

expert (orange) days: above-

chance decoding 

performance at more time 

bins on the trained day 

(stimulus: p = 0.008; choice: 

p = 0.005, Wilcoxon signed 

rank test; n = 10 mice). 

c) First time in trial when 

stimulus can be decoded: can 

decode earlier in the trial 

after training (p = 0.03, 

Wilcoxon signed rank test). 

Each dot is one mouse. 
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Population activity encodes time 

 

The above finding implies a temporal aspect to the cells’ information coding, but 

the information encoded still only concerns trial parameters. Consequently, we asked: does 

neuronal activity also contain information about the progression of time? Specifically, 

could we predict the position of a given time bin within the temporal sequence from the 

population activity at that time? Indeed, in expert mice, we were able to decode time from 

calcium transients, not only at moments when a trial event was occurring (such as the 

stimulus arriving or leaving, or reward being delivered), but also during intervals when 

little was changing, such as the two-second period during which the stimulus was 

stationary in front of the mouse’s face (Figure 2.11a, right). In naïve mice (Figure 2.11a, left) 

and in the repeated exposure cohort (Figure 2.12), the neuronal activity was less predictive 

of time bin identity, indicating that the temporal information encoded by the cell 

population arises due to learning. Analyses using smaller and larger bin sizes yielded 

qualitatively similar results.  

We noticed that training on “hit” trials allowed the decoder to predict time on “hit” 

trials and “miss” trials, for which the stimulus was present, but not on “correct reject” trials, 

for which the stimulus was absent. We were unable to decode time on “correct reject” trials 

even when we trained the decoder on that trial type (Figure 2.11a). The inability to predict 

time on stimulus-absent trials could be due to the lack of tactile signals or lack of animal 

attention for that trial type.  
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Figure 2.11: Cell population encodes time with high precision.  

a) Decoding time from cell population, early (left) and after training (right). Columns 

indicate predicted time; rows indicate actual time. Colors show proportion of trials 

on which time y is predicted to be time x. Results were averaged across mice (n = 10 

mice). Bin size = 10 frames. Sum across row = 1. 

b) Cells are tuned to time intervals that span the duration of the trial. Shaded areas 

correspond to time-tuned regions. Some regions are highlighted (orange) to illustrate 

how these regions tile the trial timecourse.  

c) Histograms indicating the total number of time-tuned regions in naïve (blue, top) 

and expert (orange, bottom) mice. 
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Importantly, time keeping is not inevitable. Decoding time with high precision on a 

trial-by-trial basis from calcium transients in expert mice means that learning stabilizes 

previously unstructured trajectories in neuronal state space. Time decoding would be 

unsuccessful if these trajectories were inconsistent across trials (Ahmed, Priestley et al., 

2020) or if they exhibited fixed-point dynamics (Cueva et al., 2020). 

Having ascertained that the neuronal population encodes time with remarkable 

temporal resolution, we naturally asked how: What coding scheme does barrel cortex use to 

track time? Potential coding schemes include precise time-varying activity patterns of 

individual cells, stabilization of time constants of ramping activity, or response sequences 

across the neuronal population akin to those of hippocampal time cells. We found that 

neuronal activity can be described by the last option: cells are active during temporally-

constrained periods that tile the duration of the trial (Figure 2.11b; see 2.4 Methods). 

Across the population of cells (Figure 2.11c), these time-tuned regions cluster around the 

Figure 2.12: Poor time encoding in 
repeated exposure mice (n = 7). 
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stimulus onset and offset, but many occur during the intermediate period as well, especially 

in expert mice (Figure 2.11c, bottom). Temporal sequences of neuronal activity constitute 

an especially effective time coding scheme (Zhou et al., 2020); the fact that we see evidence 

of this type of temporal coding in primary sensory cortex supports the notion that 

timekeeping is a distributed process comprising multiple brain networks.  

 

Movement does not account for learning-dependent changes in activity 

 

Given that our behavioral paradigm is whisker-based, one might speculate that 

animals’ whisking in response to stimulus presentation could modulate barrel cortex 

responses and could be responsible for the findings described thus far. To examine this 

possibility, we analyzed whisker motion from videos of the mice recorded throughout 

learning (Figure 2.13a). We quantified whisking motion as the mean difference between 

consecutive video frames. We identified bouts of whisking (including whisking during both 

trials and intertrial intervals) and calculated a whisk-triggered average of neuronal 

fluorescence (see 2.4 Methods). Comparisons of whisking-driven responses (Figure 

2.13b, top) and stimulus-driven responses (bottom) of the same population of cells reveal 

that neurons respond strongly to stimuli, but not to whisking. In addition, the degree of 

whisking does not increase with learning: if anything, whisking decreases (Figure 2.13c). 

Therefore, whisking cannot explain the aforementioned temporal information 

encoded by barrel cortex neurons. While the progression of time could be decoded from 

the activity of the cell population, it could not be decoded from whisker motion (Figure 
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2.13d). The vertical bars in Figure 2.13d show that decoders based on whisking consistently 

misclassify the time within the trial. Similarly, licking cannot account for the temporal 

decoding results, as we were able to decode time progression from population activity on 

“miss” trials during the stimulus (pre-reward) window, when there was no anticipatory 

licking (Figure 2.11a, upper-right panel). Thus, neither of these predominant movements 

can explain our results. 

 

 
 
 
Figure 2.13: Whisking does not drive cells’ responses, and is not responsible 
for learning-related increases in signal. 
a) Frame from whisker video: whiskers are imaged from below. Green outline 
indicates ROI in which whisker motion was analyzed.  
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b) Top: whisk-triggered average for all cells (n = 3 mice); dashed vertical line 
indicates onset of whisk bout. Bottom: stimulus-driven responses for all cells (n = 
210 cells). Red lines show average across cells. c) Average whisking motion on early 
and expert days (n = 3 mice).  
d) Decoding time from whisking data. 

 

 

Temporal surprise is an effective driver of neuronal activity 

 

Finally, we investigated whether a mismatch of expectation and sensation can 

modify neuronal activity. Mismatch-related amplification of neuronal activity has been 

observed in primary visual cortex (Keller et al., 2012); in somatosensory cortex, on the other 

hand, cell responses were found to be dampened when sensory feedback did not match 

expectations (Ayaz et al., 2019). These previous studies investigated mismatch through 

perturbations of optic or tactile flow, by altering the velocity of the visual or tactile 

stimulus. Sudden shifts in velocity constitute a change of stimulus properties, which might 

alternatively explain the resulting variations in cortical activity (Muzzu and Saleem, 2021).  

Given the ability of barrel cortex to represent within-trial time progression (as 

described above), perturbing the timing of the stimulus would be a useful means of 

disrupting an animal’s expectations, without altering the intrinsic properties of the 

stimulus. Accordingly, we performed a delayed-offset experiment in expert mice, in which 

stimulus offset and corresponding reward were delayed by 1 second on 20% of the trials 

(Figure 2.14a, bottom). We compared trial-averaged fluorescence for delayed-offset vs 

normal trials and noticed that a large subset of cells (32%, 169/527) exhibited significantly 
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stronger offset responses on the delayed-offset trials compared to normal trials (see Figure 

2.14a, top and middle for representative example cells). Note that we used a false discovery 

rate (FDR) correction to account for the large number of cells in these analyses. We 

quantified this difference across the neuronal population and discovered that a majority of 

cells show a greater response (39% increase on average) to delayed offset compared to 

normal stimulus offset (Figure 2.14b; Wilcoxon signed rank test, p < 0.001), indicating that 

surprising events yield stronger signals than expected events. Furthermore, the cell 

population response to delayed stimulus offset was on average even stronger (36% increase 

on average) than the response to stimulus onset (Figure 2.14c, p < 0.001), whereas for 

normal trials, the amplitude of the response to stimulus onset exceeded the response to 

stimulus offset (Figure 2.15a, p < 0.001). Thus, even in a primary sensory area, basic 

stimulus features are not necessarily the strongest driver of cortical activity. 
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Figure 2.14: Delaying offset enhances size of late (“off”) signal. 
n = 3 mice (6 sessions) 
a) bottom: schematic of behavior; top: 2 example cells’ activity on normal trials 
(green; 80% of trials) and on delayed offset trials (purple; 20% of trials). 
b) amplitude of late peak for normal vs delayed offset trials for all cells. Red dots 
indicate cells with significant difference (false detection rate corrected) in amplitude 
between normal and delayed offset trials. (normal vs delayed: p < 0.001). 
c) amplitude of stimulus response vs offset response on delayed trials (p = 0.001). 

 

We investigated whether the subset of neurons that preferentially responded to the 

unexpected stimulus offset in expert mice might have always responded to novelty by 

checking the responses of these cells on early training days, when all stimuli were novel. 

Interestingly, we discovered that these “surprise” cells did not respond to the stimulus 
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onset or offset in naïve mice (Figure 2.15b).  On the surface, these observations may seem 

contradictory. However, the behavioral relevance of the stimulus offset on naïve and expert 

days differ markedly: on early-training days, stimuli may be novel, but are still meaningless 

to the mice, and are therefore not “surprising”. From these results, we conclude that 

unexpected events are even more effective in eliciting layer 2/3 activity than sensory 

stimuli.  

 

 
 
 
Figure 2.15: Characterization of cells that respond to delayed offset. 
a) response amplitude to stimulus onset vs the response to stimulus offset for 
normal trials (p = 0.001). 
b) longitudinally tracked “surprise” cells on an early training day (top) and on an 
expert day (bottom). Red trace is the mean across cells. 
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2.3 Discussion 

 

In recent years, a growing body of research has begun to reveal the nuances of 

processing in primary sensory cortices. Contrary to the canonical view of primary sensory 

cortex as an early stage in a sensory processing hierarchy, we now have reasons to believe 

that primary cortex may have a role in multisensory integration (Budinger et al., 2006; 

Ghazanfar and Schroeder, 2006; Maruyama and Komai, 2018; Zhang et al., 2020) and in 

the processing of non-sensory information such as choice, reward, and reward expectation 

(Lacefield et al., 2019; Pleger et al., 2009; Rodgers et al., 2021; Shuler and Bear, 2006). In 

addition to this evidence for complexity and higher-level processing in primary cortical 

areas, parallel evidence contradicts the straightforward notion that primary cortical cells 

are highly responsive to stimuli of the corresponding modality: for instance, while deep 

layer cells in barrel cortex respond vigorously to whisker stimulation, even spatially and 

temporally complex whisker stimuli elicit only low levels of activity in superficial layer cells 

(Estebanez et al., 2012; Ramirez et al., 2014), though these cells may respond more to 

behaviorally relevant whisker contacts (Rodgers et al., 2021). The current study contributes 

to this alternative view of primary sensory cortex as akin to association cortex, and unveils 

additional facets of cortical processing. 

Here, we demonstrate that learning recruits previously unresponsive cells in barrel 

cortex, creating a neuronal population that better represents tactile stimuli that have been 

paired with reward. Previous studies have identified structural and functional plasticity in 

barrel cortex after sensory deprivation (Chau et al., 2014; Margolis et al., 2012) as well spine 
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plasticity after learning (Kuhlman et al., 2014), so one might have anticipated learning to 

alter neural representations as well. However, there remains disagreement in the field on 

this issue: some studies have indeed found learning-related functional changes (Chen et 

al., 2015), while other studies observed more stability across learning. Kim et al. (2020) 

observed a high variability and turnover in the responsiveness and selectivity of barrel 

cortical cells while mice learned an object-angle discrimination task, but those authors and 

others (Kim et al., 2020; Peron et al., 2015) reported that the proportion of responsive cells 

remained unchanged across learning. Interestingly, Makino & Komiyama (2015) find that 

the number of layer 2/3 responsive cells decreases with learning (Makino and Komiyama, 

2015), though that study is in a different modality, and in an aversive conditioning task, 

which may explain the discrepancy. In contrast with these latter studies (but in agreement 

with Chen et al., 2015), we find that the ratio of responsive neurons markedly increases 

with learning: this recruitment of previously unresponsive cells into a newly responsive 

neuronal population explains our observation of increased overall touch responsiveness of 

barrel cortex. As for individual longitudinally tracked cells, we did observe some degree of 

bidirectional turnover, including both cells that lost responsiveness as well as those that 

became more responsive. However, training appeared to rebalance these dynamics such 

that, while only a minority of cells that were originally active lost their responsiveness, most 

unresponsive neurons gained stimulus responses.  

In stark contrast, repeated exposure to a stimulus without reward-pairing actually 

reduced barrel cortex responsiveness to the repeatedly presented stimulus. The latter 

phenomenon likely arises due to habituation: whereas mice learn the behavioral relevance 
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of a stimulus followed by reward, they can equally learn the relative unimportance of a 

stimulus that is presented without positive or negative consequences. Similar findings have 

been reported in the mouse primary visual cortex (Henschke et al., 2020; Keller et al., 

2017)—repeated presentation of visual gratings led to adaptation of neural responses over 

the course of behavioral training.  

One plausible mechanism for this retuning of sensory representation is contextual 

information conveyed to barrel cortex via long-range top-down inputs from higher-order 

cortical areas. Orbitofrontal cortex (OFC) has recently been shown to play an important 

feedback role, but is unlikely to be involved in the effects described here: input to S1 from 

OFC has been shown to be activated (and indeed required) in complex tasks such as 

reversal learning, but OFC only became active during the complex (rule switch) aspects of 

the task, not during initial learning (Banerjee et al., 2020). However, other top-down 

inputs, such as those from the prefrontal cortex (PFC), could contribute in our task and 

others (Fritz et al., 2010; Hamm et al., 2021; Rodgers and DeWeese, 2014). For instance, 

some high-level information about task context has been identified in both primary 

auditory cortex (A1) and PFC (Rodgers and DeWeese, 2014) during auditory behaviors—

presumably, this information was conveyed to the primary sensory region from PFC. In 

addition, prefrontal inputs to primary visual cortex have been shown to enhance mismatch 

signals (Hamm et al., 2021). Even more explicit is evidence for top-down modulation of 

primary sensory cortical activity by retrosplenial cortex during learning (Makino and 

Komiyama, 2015).  
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Alternatively or additionally, the effects we observed may have a mechanism of 

neuromodulatory origin, whereby in the presence of reward, neuromodulatory inputs to 

barrel cortex create an environment for local plasticity to occur and unveil neuronal 

responses to the stimuli. While multiple neuromodulatory systems may be implicated, 

several are particularly compelling. Norepinephrine, for instance, is intimately involved in 

task engagement and attention, and could play a role in the enhancement of sensory 

responses to behaviorally relevant stimuli. In fact, there exists evidence for the ability of 

noradrenergic neuromodulation to induce plasticity in primary auditory cortex and 

strengthen A1 responses to auditory stimuli (Martins and Froemke, 2015) and to increase 

neuronal excitability in S1 (Labarrera et al., 2018). Acetylcholine, too, has been shown to 

augment neuronal responses in studies of V1 (Goard and Dan, 2009; Pinto et al., 2013). The 

fact that reward uncoupled with stimulus presentation is sufficient to potentiate cell 

responses in V1 (Henschke et al., 2020) supports the neuromodulation model, as the slow 

time course of neuromodulation may allow for the potentiation of signals even when those 

signals are not temporally locked to reward. Future studies should investigate this 

possibility and identify which neuromodulators might be responsible for retuning cortical 

representations according to reinforcement.   

Our results also illustrate how barrel cortex activity becomes more patterned as 

mice learn the behavioral task, as confirmed by the improved ability of a classifier to decode 

the presence or absence of the stimulus as well as the nature of animals’ responses. 

Furthermore, learning enabled decoding of the trial type from more time bins and, 

crucially, earlier in the trial, allowing cells to more quickly access information about the 
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trial. This phenomenon may underlie enhanced reaction times as behaviors become more 

ingrained, and may be explained by a temporal difference model of reinforcement learning, 

whereby the reward value is attributed to progressively earlier stimuli (or perhaps to earlier 

moments of time within the trial) over the course of learning. 

 

Barrel cortex encodes time progression 

 

We found that time could be decoded with remarkably high precision from 

population activity in well-trained mice but not in naïve animals, meaning that cells in 

barrel cortex could track the progression of time. Previously, in barrel cortex, temporally 

precise response patterns have been shown to carry sensory information (Arabzadeh et al., 

2006), though this finding was obtained in anesthetized rats, making the relevance to 

behavior and learning somewhat difficult to interpret. However, a related finding in the 

somatosensory cortex of awake primates discovered so-called “memory cells”, which 

displayed specific patterns of activity during the delay period of a tactile working memory 

task (Bodner et al., 2005). However, our ability to decode time likely stems from time cell-

like responses across the neuronal population rather than from temporally precise activity 

patterns of individual cells like those observed by Arabzadeh et al. To our knowledge, our 

results present the first direct evidence of activity in barrel cortex encoding the progression 

of time on a behavioral timescale, or of temporal encoding in any rodent primary sensory 

cortical area.  
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  One could imagine that the temporal information in S1 cells arises due to patterns 

of whisking: stereotyped whisking patterns would lead to temporally precise series of 

whisker contacts; consequently, even though the stimulus is not moving, and seemingly no 

new events occur, a series of stimulus responses could emerge. The time course of such 

signals could explain the source of the timing information as well as our inability to decode 

time on stimulus-absent trials. However, we were not able to decode time from whisking 

(Figure 2.13c), ruling out whisker movement as the relevant source of temporal coding in 

S1. 

 

Cells respond to mismatch of temporal expectations  

 

Our experiments uncovered mismatch signals in barrel cortex: in expert mice, 

delivering the stimulus offset at an unexpected time yielded the highest levels of cellular 

activity. Unexpected events have previously been shown to evoke strong responses in 

primary sensory cortex (e.g., oddball stimuli eliciting responses in “deviance detector” cells 

of V1 (Hamm et al., 2021)). Those kinds of experiments, however, typically use stimuli that 

have different sensory characteristics from the “non-deviant” stimuli. As a result, the 

increased responses to oddball stimuli can be explained by synaptic or circuit adaptation 

to the common stimulus, and a lack of adaptation to the oddball.  

Other studies (Ayaz et al., 2019; Keller et al., 2012) have reported altered responses 

in V1 and S1 to perturbations to optic and tactile flow, respectively, in which sensory input 

did not match the expected outcome of self-generated motion. Yet, an alternative 



56 

 

explanation for these results has been offered (Muzzu and Saleem, 2021), invoking cortical 

cells’ preferences for different stimulus velocities, rather than mismatch between 

expectations and sensory feedback. An important advantage of our experimental design is 

that we do not change velocity or any other stimulus property to investigate mismatch, but 

rather the timing of the stimulus. Consequently, the surprising events in our experiment 

have the same sensory features as expected events, yet they violate the animal’s internally 

constructed model of the world—the temporal structure of the task. 

In fact, the “surprise” signals we observe constitute further evidence for the 

existence and importance of timing information in S1: the enhancement of cells’ responses 

to a disturbance of an event’s timing implies that they have “knowledge” of its time course, 

and access to timing information is necessary for sensory cortical cells to exhibit this 

response to temporal mismatch. The presence of a surprise response in primary sensory 

cortex may in turn provide the animal with a means for rapid behavioral outcomes to 

salient, unexpected events, perhaps bypassing slower processing in more traditional 

association cortical areas.  

In conclusion, we have demonstrated that primary somatosensory cortex behaves in 

a more nuanced way than traditionally thought: rather than directly responding to sensory 

stimuli, sensory cortical representations undergo large bidirectional changes over the 

course of learning, either expanding to better represent stimuli paired with reward, or 

habituating and contracting following repeated exposure without reward pairing. Indeed, 

these effects extend beyond mere stimulus responses, and encompass temporal encoding 



57 

 

as well as modelling expected events and their time course, implying that timekeeping may 

be widespread and distributed throughout the brain.  

 

2.4 Methods 

 

Subjects 

 

All experiments were approved by the Columbia University Institutional Animal 

Care and Use Committee. 18 C57BL/6J mice were used in the experiments described here. 

Mice were housed in groups of 2-5, unless fighting or barbering was observed (in which 

case they were singly housed). They were provided with a running wheel for enrichment as 

well as ad libitum food. During behavioral training, mice were water-restricted and 

maintained at 80% of their original weight. If daily weighing determined that mice were 

too light, they were given 5 minutes of free access to water in their home cage.  

 

Virus injection and cranial window implant surgeries 

 

CaMKII-GCaMP6f virus (AAV5.CamKII.GCaMP6f.WPRE.SV40, nominal titer 2.3 x 

1013 gc/mL) was injected into left barrel cortex of the mice. The injection site was targeted 

at 1.5mm posterior and 3.5 mm lateral relative to bregma. To accomplish this surgery, mice 

were anesthetized with isoflurane (3% for induction; 1-2% for maintenance), and 

subcutaneous analgesics buprenorphine, carprofen, and bupivacaine were administered. 
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Eye ointment was applied, and mice were fixed into the stereotax with earbars. Scalp was 

shaved and cleaned, and then cut to expose the skull. After locating the injection site, a 

small area of skull was thinned with a dental drill, until a glass injection pipette could be 

inserted through cracks in the thinned bone. Virus was injected at depths of 300 µm and 

150 µm, with three 50-nL injections at each depth (injections were spaced 1 minute apart, 

with three minutes between depths and before removing the pipette). The pipette was then 

withdrawn, the thinned area of skull was covered with superglue, and the scalp was sutured 

closed.  

Mice were given an additional carprofen dose 24 hours after surgery, and monitored 

for 5 days. We allowed a three-month interval for the virus to express, and then performed 

a cranial window implantation surgery.  

For this second surgery, intramuscular dexamethasone was administered 3 hours 

prior to surgery. Isoflurane anesthesia was carried out as before, and buprenorphine was 

administered subcutaneously. Remaining surgical preparation was done as before, but this 

time a circle of scalp was removed entirely. The skull was cleaned, and a 4-mm diameter 

craniotomy was made over the barrel cortex. A glass cover slip was placed over the 

craniotomy and sealed with superglue. Then a metal headplate was affixed to the skull 

using dental cement. Subcutaneous buprenorphine was given every 12 hours for two days 

after surgery. Mice were allowed two weeks to recover and for blood to clear from the 

cranial window. 
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Intrinsic signal imaging and 2-photon calcium imaging 

 

Barrel cortex was located using intrinsic signal imaging in anesthetized mice, during 

which individual whiskers were stimulated with a piezoelectric device at 5Hz (10 pulses, 

with a 10-second gap between pulse trains). Under red light illumination, and through a 5x 

objective, we recorded reflectance at the brain surface with a Rolera-MGi Plus digital 

camera: changes in blood flow to the barrel corresponding to the deflected whisker yielded 

a visible change in reflectance.  

Two-photon calcium imaging, through a 16x /0.8NA water immersion Nikon 

objective and with the laser set to 940 nm, was conducted on a Sutter Moveable Objective 

Microscope; images (512 x 512 pixels) were acquired using ScanImage software with a 30Hz 

acquisition frame rate.  

Cells in L2/3 of barrel cortex were imaged each day during behavioral training, and 

the field of view was kept constant between days. The center of the barrel field (C or D row) 

was targeted for imaging.  

 

Whisker-based object-detection behavioral paradigm 

 

Our behavioral paradigm was a Pavlovian object-detection task. First, mice were 

hand-habituated for several days. Second, a “lick-training” phase occurred: mice were 

water-restricted and head-fixed into the behavioral apparatus, and water was delivered 

through a lick-port. Initially, water was delivered manually; once mice began to 
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spontaneously lick at the lick-port, water was delivered contingent upon the animals’ 

licking. Licks were measured using an infrared lick-detector: whenever the tongue touched 

the lick-port, it covered a fiber-optic cable leading to the infrared detector, and the event 

was registered as a lick. 

Finally, the detection task training began. In this paradigm (Figure 2.1a), two objects 

were affixed to opposite arms of a plus-shaped wheel. The other two arms were left empty. 

A motor rotated the wheel, and brought one of the arms toward the animal’s face on each 

trial. The object “enters” the whisker field at time 0 (Figure 2.1a, bottom), and then stops 

500ms later. The wheel remained in this position for two seconds, and then rotated 45 

degrees, such that the space between two arms was in front of the face. On each trial, the 

wheel randomly rotated either clockwise or counter-clockwise; the arm that was ultimately 

presented was also selected at random. If the arm presented to the mouse had an object 

attached to it, that trial was a “stimulus-present” trial, and was followed by water reward. 

The onset of water delivery began 407ms after the wheel began to rotate away (10ms after 

the wheel completed the 45 degree rotation). On unrewarded, “stimulus-absent” trials, one 

of the empty arms was presented, and no water was given. The aforementioned infrared 

lick-detector was used to measure licks: anticipatory licks were counted during the two 

seconds leading up to the reward, or lack thereof.  

For the delayed-offset experiment, stimulus onset did not change, but for a random 

20% of trials, the offset was delayed by 1 second (i.e., for those trials, the stimulus (or empty 

arm) was present for 3 seconds rather than the usual 2 seconds). On rewarded trials, the 

reward timing did not change relative to the offset of the stimulus.  
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To ensure that any effects we observed were due to stimulus-reward conditioning 

rather than repeated exposure to stimuli, a control group of mice were trained without 

rewards. These mice had ad libitum access to water, and during behavioral training, no 

water was delivered through the lick-port. The rest of the task parameters remained the 

same, and these mice were trained, on average, for the same length of time as the mice in 

the conditioning cohort.  

 

Histological confirmation of imaging location  

 

After training and imaging experiments were complete, the two-photon laser was 

used to create a small lesion at the center of the imaging field of view (at a depth of 100-

150um). Mice were then perfused and their brains harvested. 50um tangential sections 

were made, and stained with streptavidin-Alexa 647 in order to visualize the barrels. 

 

Data processing and analysis  

 

Motion correction and cell identification:  

 

Suite2p was used for motion correction, to identify ROIs, and to extract their signals 

(Pachitariu et al., 2016). These automatically detected ROIs were them manually curated 

to remove likely false positives. 
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Longitudinal tracking:  

 

Motion-corrected time averages were aligned across any two days by warping one 

image (time average of Day 2) to match the other (time average of Day 1) with an affine 

transformation (using the Python OpenCV library). The same transformation was then 

applied to each ROI mask of Day 2, such that the ROI was warped and shifted to the 

appropriate location. All ROI locations from the two days were then compared and checked 

for degree of overlap. Overlapping ROIs were given the same label, which identified them 

as corresponding to the same cell across the two days. In cases where an ROI from one day 

overlapped with more than one ROI from the other day, ROI pairs with the greatest degree 

of overlap were given the same labels. Once a cell has been found in two imaging sessions 

and given a label, it maintains that identity when tracked across additional sessions: thus, 

a cell can be longitudinally tracked across numerous sessions.  

 

Quantifying cell responses: 

 

Signals were smoothed with a Savitzky–Golay filter. ∆F/F at each timepoint was 

calculated using a baseline determined by the 8th percentile of a 50 second rolling window 

centered at that timepoint.  
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Transient detection:  

 

For each cell, a threshold was set at 2 standard deviations above the median ∆F/F 

for that cell. A transient event onset was marked whenever the ∆F/F first crossed the 

threshold (and the transient event was considered to end when the ∆F/F fell below the 

threshold). (See Figure 2.2.) 

 

Classifying cell response types:  

 

Cells were classified as “on”, “off”, “on-off”, “reward”, or “none” cells based on the 

timing of their responses. Once transients were detected for each cell, a histogram was 

calculated indicating the probability of a transient event occurring at each time within a 

trial; this probability curve was then compared to that of shuffled data. Shuffled data was 

generated by doing 5000 iterations of a circular shuffle, whereby the data in each trial was 

shifted by a random number of frames; thus, any temporal dynamics were preserved, while 

the relationship of the data to the trial timecourse was disturbed. A Z-test compared the 

transient probabilities during relevant 1 second intervals (around the stimulus onset and 

offset, and following reward) to the shuffled data on the same intervals. This test revealed 

time intervals during which the probability of a transient occurring was greater than 

chance.  If a cell’s transient probability was significantly greater than chance only during 

the stimulus onset bin, that cell was classified as an “on” cell; cells with significant transient 

probability only at stimulus offset were “off” cells; “on-off” cells had significant transient 



64 

 

probability at both intervals, and “reward” cells had significant transient probability after 

reward. A false discovery rate (FDR) correction accounted for the large number of cells.  

 

Decoding analyses: 

 

We trained linear support vector machine (SVM) classifiers to decode stimulus (i.e., 

classify trial type as “stimulus-present” or “stimulus-absent”), and to decode choice (i.e., 

classify the animals’ response as “lick” or “no lick”), using 4-fold cross-validation (training 

on 3/4 of the data and testing on the remaining 1/4). In both cases, we matched the number 

of trials between the two classes. We computed the separability of the classes by projecting 

(via dot product) neuronal activity of trials of each class onto the coding direction (as 

determined by the classifier weights), and quantifying the earth mover’s distance between 

the distributions. Overlap between the distributions corresponds to decoding errors, and 

the classes are judged to be more separable the further apart the distributions are.  

To decode time, we split trials into 10-frame-long time bins (1/3 second duration), 

and trained SVM decoders to distinguish between time bins. A confusion matrix (see Figure 

2.11a) with true time bin identity on the y-axis and predicted time bins on the x-axis 

illustrated the ability to decode time, by showing the proportion of trials for which a given 

time bin y was predicted to be time bin x. The matrix was normalized by the true time bin 

classes, so the values of each row sum to 1.  
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Identifying temporal tuning: 

 

The degree of temporal information in each cell’s activity was quantified using the 

Skaggs spatial information metric (Skaggs et al., 1993). This metric is commonly used to 

quantify spatial tuning, but has been applied to the temporal dimension as well (Shimbo 

et al., 2021). We defined cells as time-tuned if their temporal information exceeded the 95th 

percentile of the temporal information in shuffled data. Among these time-tuned cells, we 

then identified the specific temporal “regions” to which they were tuned, where each cell’s 

“tuning curve” (probability of transients across time) was above 95% of shuffled curves.  

 

Whisking analysis 

 

Throughout conditioning, whisking videos were acquired at 125 Hz using a Sony 

PS3eye camera. Using the Python OpenCV library, we extracted pixel values within a hand-

drawn ROI near the animals’ face, on the side of the face contacted by the stimuli. The 

mean difference between consecutive video frames was used as a measure of whisking 

motion. Whisking bouts were identified in a similar manner to calcium transient events, 

by tracking where the whisking motion crossed a threshold. We defined a whisking bout 

as lasting >0.5 seconds, so a new bout could not begin until that time interval elapsed. 

Whisk-triggered averages were computed by aligning fluorescence data with the onset of 

whisking bouts.    
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Chapter 3 : Feature discrimination—a complex behavior 

 

3.1 Introduction 

 

In Chapter 2, I discussed the effects on cortical activity of learning a very simple 

object detection task. The simplicity of the behavioral paradigm certainly had benefits, 

such as rapidity of acquisition and minimization of potential confounds. However, the 

object detection task was very possibly not cortex dependent: other object detection 

paradigms have been found to not require cortex for learning or execution of the behavior 

(Hong et al., 2018). In that case, probing cortical activity in a more complex or ethological 

task may be informative.  

One option would be to use an ethological task known to depend on cortex: the “gap 

cross task” is a freely-moving behavioral paradigm which requires animals to use their 

whiskers to determine the width of a gap between two platforms, and decide whether they 

can safely jump from one side to the other (Hutson and Masterton, 1986).  Although similar 

to an object-detection task (since animals have to detect the presence of the platform on 

the other side of the gap in order to decide that it is safe to jump across), the gap-cross task 

is more complex than a simple whisker-based object-detection task, because mice have to 

integrate information such as location and head position in order to determine whether 

they can cross the gap. I did work on developing a mouse version of this task (Figure 3.1), 

which was originally performed in rats, but in this chapter, I will focus on a different 

paradigm—a complex object discrimination task, described below.  
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Most object discrimination tasks ask animals to use a single feature type to 

distinguish between objects. The more complex of these tasks may use gradations of the 

feature—e.g., the roughness of a texture (Park et al., 2022) or the orientation of a visual 

stimulus (Lyamzin et al., 2021), etc. However, fewer studies have examined object 

discrimination where each object is defined by multiple features. In a bi-conditional or 

“exclusive-or” (XOR) task, there is a non-linear mapping of stimulus to animals’ response, 

making the task much more complex: the presence or identity of a given feature is 

insufficient for the animal to make a choice. Figure 3.2 shows an example of a visual XOR 

task, one performed by monkeys (Anderson et al., 2006).  

 
 

Figure 3.1: Gap cross task.  
Mouse jumps between two elevated platforms, with variable gap width. 
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Figure 3.2 Example of a bi-conditional (XOR) task 
Adapted from Anderson et al. (2006). In these stimuli presented to monkeys, each 
object is defined by the overall butterfly shape/color/pattern (large white butterfly 
vs smaller orange butterfly), as well as the specific pattern on the lower part of the 
wings (two small horizontally oriented white dots per wing, or one diagonal dark 
patch). The animal’s response (in this case, a left or right button press by the 
monkey) is guided by the conjunction of both features. 

 

 
 

While generally thought to be difficult for animals to acquire these tasks, XOR tasks 

have been occasionally been successfully carried out (Anderson et al., 2006; Ramirez and 
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Colwill, 2012). For instance, mice were able to learn an XOR task when each condition was 

defined by an auditory cue and an environmental context; however, when each condition 

was defined by multiple discrete cues rather than a context (in this case, an auditory and a 

visual cue), mice were unable to acquire the task (Ramirez and Colwill, 2012).  

I chose to administer a tactile XOR task to mice: while I was concerned about the 

level of difficulty, the complexity of the task made it a likely candidate for a cortically-

dependent behavior. 

 

3.2 Results 

 

I developed a complex object discrimination task (Figure 3.3), in which head-fixed 

mice learned to use their whiskers to discriminate four objects, on the basis of conjunctions 

of features—shape (concave vs. convex) and texture (smooth vs. rough). Of these four 

objects, two were rewarded, and two were unrewarded; the two defining features of a 

rewarded object could both also be found on unrewarded objects (but not together on the 

same unrewarded object). Thus, no one feature alone could provide sufficient information 

about whether reward would follow a given object, and mice had to base their decisions on 

both features.  
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Figure 3.3 Schematic of behavioral paradigm.  
Curved objects are presented to the mouse. Convex rough (green) and concave 
smooth (blue) objects are rewarded. Concave rough (cyan) and convex smooth (red) 
objects are unrewarded. 

 

Preliminary results suggested that mice were able to learn this task quickly: within 

two weeks of training, 10 out of 19 mice began to consistently show anticipatory licking 

preferentially to the rewarded objects. Figure 3.4 shows the performance of an example 

mouse: the solid blue and green lines correspond to rewarded trials, and the dotted red and 

cyan lines correspond to unrewarded trials. Early in training, all four lines hover near each 
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other, indicating similar rates of anticipatory licking for all trial types. Then, at session 15, 

the lines rapidly diverge, implying that the animal perhaps had a sudden realization 

concerning the task rules.  

 

 

 

 
Figure 3.4: Example mouse performance, as measured by anticipatory licking 
Solid lines (blue and green) correspond to rewarded trials; dotted lines (red and 
cyan) correspond to unrewarded trials.   

 

 

However, it soon became apparent that this mouse and many others were solving 

the task without using their whiskers, presumably by relying on other senses: after having 

their whiskers trimmed, their performance was frequently unimpaired (see example mouse 

in Figure 3.5).  
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Figure 3.5: Example behavior of a mouse relying on modalities other than 
whisking. 
Solid lines (blue and green) correspond to rewarded trials; dotted lines (red and 
cyan) correspond to unrewarded trials. The two last sessions, encircled by the purple 
dotted ellipse, are the whisker-trimmed sessions. Note that the solid and dotted 
lines remain separated on the whisker-trimmed sessions.  

 

 

In an attempt to dissuade animals from using other modalities, I made the following 

changes to the experimental design. First, I introduced an initial phase of training in which 

the behavioral apparatus was illuminated. I speculated that the ability to see the objects 

while being familiarized with the task would help mice understand the actual task structure 

and prevent future “cheating”. In fact, there is a precedent for training whisker behaviors 

in the light first, to acclimate animals to the training environment (Morita et al., 2011; Zuo 

et al., 2011). Of course, I did not want mice to rely on vision, so once mice were consistently 
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able to discriminate the objects, the illuminating lamp was turned off during the 

presentation of the shapes, and turned on as a blinding light during the inter-trial interval 

to prevent any dark adaptation (in case there was any light leak that might enable mice to 

rely on their vision). To control for olfactory cues, I switched from using plastic objects 

(which were used in pilot experiments) to aluminum ones which I wiped daily with ethanol: 

metal should absorb fewer odors, and should be easier to clean.  

Despite all these efforts, animals’ seeming insistence on circumventing these 

measures was undeterred. Of 17 animals that learned the task, only 3 mice displayed a drop 

in performance following whisker trim, even after all these measures; only a single animal’s 

performance decreased to chance levels after trimming whiskers (Figure 3.6). 

Consequently, I conducted the following control experiments, testing possible methods by 

which the remaining animals might be “cheating”.  

 

Possible sources of animals’ cheating abilities 

 

Position of objects rather than sensory features (also, magnetosensation) 

 

From the outset of these experiments, the experimental paradigm was designed to 

maximize randomization. The direction of rotation of the wheel was randomly selected on 

each trial, as was the final position. Thus, from a given position, the wheel could rotate to 

any of the 4 positions that corresponded to the four trial types. And since the rotation 

direction was randomized, both a short and a long rotation could lead to the same object 
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being presented. These characteristics of the experimental design should have made it 

difficult for animals to identify a given object based on its spatial and temporal relationship 

to the previous one. Nevertheless, some aspects of the experimental design were not 

randomized: each session began with the wheel in the same starting position, and the 

objects always maintained the same spatial relationship to each other, as they were in fixed 

locations on the wheel.   

I also considered that mice might be able to determine the position of the wheel via 

magnetosensation: after all, some evidence does suggest that mice and other mammals are 

capable of magnetosensation (Mather and Baker, 1981; Nemec et al., 2001). In early 

iterations of the experiment, I had originally placed magnets on two of the wheel’s arms: in 

combination with a sensor, the magnets were supposed to help the wheel stop at the correct 

position. I wondered whether mice might be sensing the magnets, and using them to 

determine the position of the wheel.  

So, might animals be able to correctly identify trial type from the position of the 

wheel, rather than from the sensory features of the objects themselves?  

To test this question, we removed the objects entirely, or re-ordered the objects to 

destroy any learned spatial relationship between them. With no objects present, animals 

were completely unable to report whether a trial was going to be rewarded or unrewarded. 

And with objects repositioned, animals continued to correctly lick in response to the 

convex rough and concave smooth objects and suppress licking to the convex smooth and 

concave rough ones, even though the objects were no longer in their original positions. 
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Thus, mice did in fact learn something about the objects themselves, even if it was not their 

tactile features.  

 

Audition 

 

I suspected mice could be relying on the ambient sounds altered by the shape of the 

objects next to the ear—similar to how a seashell held against the ear yields an auditory 

stimulus. To test whether mice were using auditory cues to identify the objects, we first 

tried physically blocking the ears by plugging them with latex. However, I soon realized 

that this control experiment was likely flawed: blocking animals’ ears with latex certainly 

impaired performance of whiskerless mice, but probably only because the mice were too 

distracted by their new earplugs. We quickly abandoned this disruptive and distracting 

approach. Less invasive controls—such as playing white noise out of a speaker to mask any 

auditory cues—were unsuccessful, with whisker-trimmed mice still able to perform the 

task.  

 

Olfaction 

 

Despite daily cleaning of the metal shapes to remove lingering odors, it was possible 

that mice still used olfactory cues. Indeed, when I soaked the objects in ethanol overnight, 

the performance on the task dropped dramatically. Further, whiskerless mice were 
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completely unable to do the task after I added a fan to direct airflow (and potential odors) 

away from the mouse.  

Unfortunately, following the implementation of this new control (the fan), trained 

mice were unable to perform (or relearn) the task even with a full set of whiskers. Nor were 

new cohorts of mice ever able to learn the task.  

 

 

 
Figure 3.6: Example behavior of a mouse that likely uses whiskers to perform 
the task. 
As in Figure 3.1, solid lines correspond to rewarded trials and dotted lines 
correspond to unrewarded trials. The last two sessions, circled, are the whisker-
trimmed sessions. Note the convergence of the dotted and solid lines toward each 
other.  
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3.3 Discussion 

 

A total of 17 out of 27 mice seemed to learn the object discrimination task; yet, I 

could only be confident that a single mouse ever learned it as intended, entirely relying on 

whiskers (Figure 3.6). I was forced to conclude that this complex behavioral task was simply 

too difficult for most mice to learn using whiskers alone.  

The fact that a single mouse was able to correctly acquire the task demonstrates that 

mice may in principle be able to learn a tactile XOR task. In addition, two other mice did 

exhibit a more modest drop in performance after having their whiskers trimmed, 

suggesting that they did partially use tactile information, but supplemented with other 

modalities. However, the experimental design as currently implemented might be too 

complex for mice to reliably learn for experiments requiring large cohorts. We have not 

ruled out the possibility that the experimental design could be optimized further to 

improve learning. Several possible changes could be implemented to make it easier for mice 

to use their whiskers to solve this feature discrimination task. Most notably, the texture 

used was rather subtle, and could be replaced by a more noticeable texture. Other studies 

in our lab and elsewhere successfully trained mice to discriminate textures (Chéreau et al., 

2020; Park et al., 2022), but opted for different texture design. One option is to use 

sandpaper and to mitigate any odors the sandpaper absorbs by using a fan (as described 

above); another is to make the grooves more pronounced in depth and placed further apart. 

Future versions of the task can implement these changes, as well as being vigilant about 

olfactory cues. 
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3.4 Methods 

 

Subjects 

 

Same as in Chapter 2. All experiments were approved by the Columbia University 

Institutional Animal Care and Use Committee. 31 mice were used for these experiments. 

 

Headplate surgery 

 

Mice were anesthetized with isoflurane (3% for induction; 1-2% for maintenance), 

and subcutaneous analgesics buprenorphine, carprofen, and bupivacaine were 

administered. Eye ointment was applied, and mice were fixed into the stereotax with 

earbars. Scalp was shaved and cleaned, and a circle of scalp was removed to expose the 

skull. The skull was cleaned and scored with a scalpel, and metal headplate was affixed to 

the skull using dental cement. Mice were given an additional dose of carprofen 24 hours 

later.  

 

Object discrimination behavioral paradigm 

 

We trained mice on a Pavlovian object discrimination task. Pre-training was as 

described in Chapter 2, and consisted of habituation and lick-training. Licks were 

measured using a capacitance lick-detector. 
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For the object discrimination task, one of four objects was affixed to each of four 

arms of a plus-shaped wheel. The rotation and timecourse of the task were identical to 

those described in Chapter 2.  

The four objects were curved aluminum shapes, either concave or convex, and either 

rough or smooth. 100um deep grooves with 250um spacing that were milled into the 

surface of the objects provided the rough texture. The curves had a 36mm radius. The 

convex rough object and the concave smooth object were both rewarded and were followed 

by a water reward; the convex smooth and concave rough shapes were unrewarded.  

Anticipatory licks were counted during the two seconds that the object was 

stationary in front the animal’s face. 

 

Whisker trimming control 

 

In order to test whether mice were using their whiskers to solve the task, or relying 

on some other modality, a whisker-trim control was performed. Mice were briefly 

anesthetized under isofluroane, and all whiskers were trimmed on the object-presentation 

side of the face. Animals were returned to their home cage to fully recover from anesthesia. 

Then mice were placed into the behavioral apparatus and were exposed to the object 

discrimination task. 
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Chapter 4 : General Discussion 

 

In this thesis, I have confirmed that barrel cortical activity is modulated by learning, 

with cells being recruited to represent a rewarded stimulus; meanwhile, repeated exposure 

to an unrewarded stimulus leads to habituation and reduces population of cells responding 

to the repeatedly presented stimulus. Furthermore, I have demonstrated that, over the 

course of learning (but not repeated exposure), barrel cortex gains the ability to encode the 

progression of time. Finally, I found that unexpected perturbations in the timecourse of 

trial events strongly drive activity in barrel cortex, potentially even more strongly than the 

tactile stimuli themselves.  

 

4.1 Clocks and temporal coding schemes 

 

As referenced in the Introduction (Chapter 1), a variety of brain regions have been 

hypothesized to constitute a “clock”—to track the passage of time or the duration of events. 

In addition, multiple coding schemes have been proposed as potential neural time-keeping 

mechanisms. One proposed method by which neurons may encode time is through 

individual cells’ precise patterns of activity that fluctuate over the course of a trial or event. 

For instance, Bodner et al. (2005) identified putative “memory cells” in primate primary 

somatosensory cortex: these cells displayed activity patterns that spanned the duration of 

a delay in a working memory task (Bodner et al., 2005). While this delay-period activity 

does not necessarily explicitly track the duration of the delay or the time elapsed since 
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stimulus presentation, these types of temporal information might be contained in the 

neuronal activity patterns.  

Another way in which cells might encode the time elapsed since an event is through 

a “ramping” neuronal responses, either as decay in stimulus-evoked responses—i.e., “ramp-

down”—or as a “ramp-up” to the time of a reward. In the “ramp-down” case, a long enough 

time constant of decay may make it possible to decode the amount of time after the 

presentation of a salient stimulus, based only on the instantaneous firing rate or response 

intensity of a cell or population of cells. Similarly, responses that “ramp-up” to the moment 

of a predictable event (Makino and Komiyama, 2015; Shuler and Bear, 2006) would 

similarly contain temporal information. However, one might expect the temporal 

resolution of this coding scheme to be rather low, as the slope of the ramps would have to 

be relatively shallow in order to encode information about longer time intervals. A steeper 

slope would allow for more accurate time encoding, but for shorter intervals. 

Finally, a sequence-based coding scheme may be particularly effective (Zhou et al., 

2020), whereby time-points are represented by distinct cells, which are active only at short 

intervals, and which respond at the same point of time in each trial. Hippocampal time 

cells operate in this way, with each cell active at a given moment in the trial. Similar 

sequences have been identified in striatum (Jin et al., 2009; Zhou et al., 2020) and 

prefrontal cortex (Jin et al., 2009). While time could not be decoded from individual cells 

in this coding scheme, the neuronal population could contain high-resolution temporal 

information.  
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It is possible that all of these mechanisms play a role in time-keeping across various 

brain regions, or even across different conditions within the same brain region. Specifically 

in my experiments, I have uncovered evidence for a sequence-based time-keeping approach 

in barrel cortex. Average responses of the cell population do appear to display sustained 

responses following a stimulus, which might initially suggest a ramp-down mechanism; 

yet, an examination of individual neurons reveals that cells respond in a very time-

constrained manner, without any ramping. Instead, cells responses tile much of the trial 

duration: though many cells activate at particularly salient moments in the trial—e.g., 

stimulus onset and offset—many cells exhibit time-constrained responses at moments 

throughout the trial, even when the stimulus is stationary, and indeed after it exits the 

whiskers’ reach entirely.  

 

4.2 Time coding and behavioral relevance 

 

In our experiments, time was decodable only on rewarded, stimulus-present trials, 

not on stimulus-absent trials: if we trained the classifier on “hit” trials, we were able to 

decode time on both stimulus-present trial types (“hit” and “miss” trials). Time could not 

be extracted on “correct rejection” trials, regardless of the trial type used to train the 

decoder. One possible explanation is that, on stimulus-absent trials, somatosensory cues 

that denote the timecourse of the trial are not available to the barrel cortex. Indeed, while 

the sound of the motor that moves the wheel would likely provide the mouse with auditory 

information as to the progression of the trial, it is possible that cells of the barrel cortex do 
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not have access to this information. Perhaps one would be able to decode time on stimulus-

absent trials from the auditory cortex, where the auditory timing cues are processed, and 

in higher-order brain regions where multi-sensory integration and explicit task 

representation is thought to take place. Nonetheless, in light of evidence that multi-sensory 

integration occurs even in primary sensory cortex, one might expect barrel cortex to have 

access to the auditory cues as well: specifically, there is evidence of auditory projections to 

the somatosensory cortex (Budinger et al., 2006) as well as auditory responses in 

somatosensory cortical cells (Maruyama and Komai, 2018; Zhou and Fuster, 2004). On the 

other hand, there is precedent for the observation that timing of stimuli of different 

modalities may not be encoded together in the same brain region (Bueti et al., 2008). Yet 

another possible explanation lies in the behavioral relevance of the trial types: unrewarded, 

stimulus-absent trials are perhaps uninteresting to the mouse, and as the mouse can simply 

ignore these trials, neural activity ceases to correlate with the passage of time. 

Our behavioral paradigm is not well-suited to disambiguate these possibilities, nor 

can the experiments described above shed light on the relationship between time encoding 

and behavioral relevance. These questions may point to an interesting avenue for future 

research. Nevertheless, past work in non-sensory cortical regions and in subcortical 

structures provides a framework in which to investigate this issue. For instance, previous 

attempts to decode time in primate association cortical areas were only successful in 

instances where timing information was important for the task, and not when it was 

behaviorally irrelevant (Cueva et al., 2020). In dorsolateral striatum, on the other hand, 

Toso et al. (2021) were able to decode time even when the timing information was 
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uninformative to the animal (Toso et al., 2021b). Other studies agree that timing 

information need not be explicitly informative to allow for time coding, but do suggest that 

animals must be attentive to the task at hand (Jin et al., 2009). This latter finding supports 

my hypothesis that time cannot be decoded on unrewarded trials due to animals’ 

inattentiveness on these trial types.  

Our own behavioral paradigm can also be modified to determine whether 

behavioral relevance is important to time coding: for instance, rather than rewarding the 

object-present trials, we could deliver reward following the object-absent trials, making 

those trials more salient to the animal. If time coding emerges in this scenario, we would 

conclude events have to be behaviorally relevant for the progression of time to be encoded 

during those events; in addition, such a finding would suggest that time coding in a primary 

sensory region can depend on sensory information from a different modality.  

 

4.3 Subjective time perception and its neural correlates 

 

When does “subjective” time differ from veridical time? A classic example is the 

frequently-reported experience of “time dilation” during sudden, jarring, often life-

threatening events. Such circumstances are difficult to experimentally induce and even 

harder to quantify—though some authors have tried (Stetson et al., 2007). However, less 

dramatic disturbances of time perception can be induced and measured in a controlled 

laboratory environment. From these experiments, a number of factors have been found to 

influence time perception: perceived stimulus duration varies with stimulus features such 
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as intensity, size, novelty, and numerosity (Toso et al., 2021a; Tse et al., 2004; Xuan et al., 

2007). Those of us who have never been involved in life-threatening situations have almost 

certainly experienced temporal illusions and distortions in everyday life as well. Consider 

chronostasis, or the stopped-clock illusion, in which the first of a series of events or stimuli 

is perceived as lasting longer: during an initial glance at an analog clock, the second hand 

seems to stall for much longer than a second before it begins ticking at a normal pace. City-

dwellers may experience a similar illusion while walking through busy streets: upon 

reaching a crosswalk, the pedestrian sees the blinking “don’t walk” traffic-control beacon 

that indicates an imminent “don’t walk” signal. Yet due to chronostasis, the blinking beacon 

appears constantly illuminated rather than blinking, to the point where the pedestrian may 

stop at the crosswalk rather than hurrying across1.  

While many examples of disturbed time perception exist, both in human and animal 

models, few studies have directly investigated the neural correlates of subjective time 

perception. But several have begun to uncover certain clues: using the aforementioned 

psychophysics evidence that stimulus intensity modulates perceived time duration, Toso 

et al. (2021b) found that striatal cells encode stimulus duration identically for high-

intensity and low-intensity stimuli, which should have been perceived as relatively longer 

and shorter, respectively. In cortex, on the other hand, we might expect subjective time to 

be encoded, in light of a recent study that found that manipulations of cortical activity 

 
1 I am aware that the flashing phase of the signal is meant to convey to pedestrians to finish crossing but not 
to begin walking if they haven’t already ventured into the crosswalk. Yet even the most risk-averse person 
cannot argue that the majority of a city population interprets the “flashing hand” as anything other than 
instruction to rush across the street.  
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affected both judgements of stimulus intensity and duration (Reinartz et al., 2021). 

Meanwhile, in the cutaneous rabbit illusion (Geldard and Sherrick, 1972), which likely 

depends on temporal integration and postdiction, a signature of the illusory perception has 

been found in human S1 (Blankenburg et al., 2006). 

There are several competing theories for the mechanism of the disturbances of time 

perception.  From their experiments, Stetson et al., (2007) concluded that instances of 

“time dilation” do not involve any alternations in temporal resolution; rather, they suggest 

that the extra attentional allocation to frightening scenarios leads to richer memory of 

those events, in turn causing those events to be judged as lasting longer (Stetson et al., 

2007). If this hypothesis is true, then disturbances of time perception are retrospective, 

and real-time perception of time progression is unchanged. This theory would explain why 

striatal cells were found to encode objective time, even if animals “report” that they 

perceived certain stimuli to last longer (Toso et al., 2021b). In addition, the study from 

Reinartz et al. (2021) could be interpreted in this light: stimulation of cortex did in fact 

alter perception of stimulus intensity; yet the corresponding changes in duration 

perception were simply retrospective judgements that came about as a result of what was 

effectively a manipulation of stimulus intensity. On the other hand, Salvioni et al. (2013) 

found that TMS interference with V1 activity modulated interval duration judgements, but 

did not affect the perception of nontemporal stimulus attributes. 

In future experiments, computational methods of the kind I used to decode the 

progression of time from neural activity could test this hypothesis directly. If we find that 

objective time is encoded across the brain, then the retrospective, memory-based theory 



87 

 

likely explains time perception and its disturbances. However, if we find certain brain 

regions where cells encode subjective time—that is, if time dilation or compression is 

accompanied by a corresponding change in the slope of the diagonal line in a decoder 

confusion matrix (see Figure 2.11a)—that would suggest that the real-time experience of 

time progression, not just the memory of the event, is altered.  

 

4.4 Conclusion: a distributed network for time-keeping 

 

A significant novel finding of this thesis is that primary somatosensory cortex 

encodes time. Similar experiments in other modalities will likely yield similar findings in 

other primary sensory regions. Earlier in this thesis, I described temporal processing in a 

variety of brain regions—some of which have been posited to house the brain’s “central 

clock” (see Introduction chapter). While temporal representations in various brain regions 

could be inherited from a “central clock” elsewhere, time and temporal expectation are 

increasingly thought to be encoded by a distributed network of brain areas, rather than 

localized in any given region (Bueti et al., 2010; Karmarkar and Buonomano, 2007).  One 

piece of evidence for distributed time-keeping is that timing information about different 

modalities is represented in distinct regions (Bueti et al., 2008). Timing information may 

still have arrived at these distinct regions from elsewhere (e.g., through feedback inputs 

from an upstream area), but the fact that the temporal representations differ between 

regions implies that they each may have a unique role in temporal processing. Future 

experiments to distinguish the representation of subjective versus objective time in 
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different brain areas may further test this idea. In the meantime, whether time-keeping 

arises due to intrinsic network properties in primary sensory cortex (Karmarkar and 

Buonomano, 2007), or whether timing information is carried to there from upstream 

regions and then molded to serve a behaviorally-relevant purpose, remains an open 

question. 
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Chapter 5 : Epilogue—or, thoughts on scientific subjectivity, 

controversy, and progress   

 

To what degree is it acceptable for intuition to guide scientific exploration? It is 

likely unavoidable that we base our hypotheses at least partly on intuition—yet intuition is 

frequently wrong. On the other hand, I would argue that introspection, unlike intuition, 

should be embraced as a tool rather than frowned upon as a handicap. While intuition is 

an initial feeling, devoid of reasoning, introspection is contemplative and critical. In fact, 

introspection and contemplation may provide a way to overcome the shortcomings of our 

flawed intuition. And is not introspection a form of self-experimentation (if only in the 

form of a thought experiment)? Self-experimentation, though now frowned upon, has a 

long history in scientific exploration, and has led to important discoveries (though also 

occasionally ended with tragic consequences). With introspection, we can consider and 

mentally manipulate our own experiences without having to sacrifice ourselves for science.  

After all, do we, as scientists, not marvel at all the idiosyncrasies of our strange 

existence? My interest in neuroscience was certainly built on a foundation of curiosity and 

confusion about the nature of my own experience. As many children do, I asked my parents 

questions about the self (“why am I me and not someone else?”), time and the continuity of 

experience (“what changes as time passes? Am I still the same person I was a second ago? 

What if I sit really still and don’t move at all, then will I stay the same?”), and consciousness 

(“do you see colors the same way I see colors? What is it like for my granddad to be 
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colorblind?”). Years (decades?) later, I am completing my PhD in neuroscience, and I am 

still pondering these questions. I may have concluded (against all intuition) that the self is 

an illusion and that no distinction differentiates the brain and the mind. Yet the questions 

persist: how does the brain generate a continuous subjective experience? How do we perceive 

the passage of time, and why is our perception of it so weird—with some moments dragging 

on interminably, while hours at a party (especially if the cocktails are plentiful) rush by? 

These questions have propelled my PhD research about time coding, and drive my 

continuing interest in the neural correlates behind distortions of time perception.  

 

* * * 

 

In the last decade, I have learned, contemplated, often forgotten, and occasionally 

relearned a wide range of concepts, theories, and (maybe) facts. I have also accepted that 

science is at its core a human endeavor, inextricably tied to subjective intuition, and 

colored by emotion. Whatever objective reality exists must be inevitably interpreted 

through a framework of our own construction. 

As such, it is natural that scientists begin to feel passionately about their own 

research and theories; when our ideas are unavoidably challenged, the ensuing defensive 

reaction is normal. But I have heard of instances where researchers tried to thwart new 

studies and prevent new findings from being published in an attempt to preserve the 

authority of their own ideas. Indeed, it is not uncommon among scientists to try to steer 
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clear of controversy when writing papers rather than to highlight discrepancies between 

studies, so as to not offend the authors cited. But controversy should be exciting! 

If our goal is progress, we must be wary not to let expertise translate into dogma, 

nor to allow disagreement to slide toward animosity. We must be as open-minded as we 

are critical.   
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