
R E S E A R CH AR T I C L E

Improved spring temperature reconstruction using
earlywood blue intensity in southeastern China

Xinguang Cao1,2 | Hongbing Hu1 | Pei-ken Kao1 | Brendan M. Buckley3 |

Zhipeng Dong2 | Xiuling Chen2 | Feifei Zhou2 | Keyan Fang2

1College of Geography and Tourism,
Huanggang Normal University,
Huanggang, China
2Key Laboratory of Humid Subtropical
Eco-Geographical Process (Ministry of
Education), Fujian Normal University,
Fuzhou, China
3Tree-Ring Laboratory, Lamont-Doherty
Earth Observatory, Columbia University,
Palisades, New York, USA

Correspondence
Keyan Fang, Key Laboratory of Humid
Subtropical Eco-Geographical Process
(Ministry of Education), Fujian Normal
University, Cangshan Campus, Fuzhou
350007, China.
Email: kfang@fjnu.edu.cn

Funding information
Lamont Center for Climate and Life; Open
Project of Dabie Mountain Tourism
Economy and Culture Research Center,
Key Research Base of Humanities and
Social Sciences in Hubei Province (2021);
Science and Technology Research Project
of Hubei Provincial Department of
Education, Grant/Award Number:
B2020164; Youth Talent Support Program
of Fujian Province, Grant/Award Number:
IRTL1705; Natural Science Foundation
Project of Fujian Province, Grant/Award
Number: 2017J0101; State Administration
of Foreign Experts Affairs of China,
Grant/Award Number: GS20190157002;
National Youth Talent Support Program of
China (Ten Thousand People Plan);
Strategic Priority Research Program of the
Chinese Academy of Sciences, Grant/
Award Number: XDB26020000; National
Science Foundation of China, Grant/
Award Numbers: 1602629, 41772180,
41888101, 41822101, 41971022

Abstract

Because instrumental observations are too short to fully represent long-term

natural variability, high-resolution temperature proxy records are essential to

understanding past climate and assessing current climate variability in the

context of long-term patterns. In the subtropics, progress in this field has been

hampered by a relative lack of long and truly temperature-sensitive proxy

records. In this study, we provide an assessment of the dendroclimatic poten-

tial of blue intensity (BI) and ring-width (RW) measurements from two

hot/humid Pinus massoniana sites in China. Our results show that RW

exhibits a significant (p < .05) response to precipitation over a hydrological

year (previous November to October) and to temperature over the winter–
spring season (January to March). We find the earlywood blue intensity

parameter to be the most robust parameter for reconstruction purposes; over

the 1916–2015 period, it explains 36% of regional-scale spring season (March–
May) temperature variance. Strong agreements between the current recon-

struction and observed temperature over a large area of southeastern China

implied that our reconstruction exhibited high reliability and large spatial rep-

resentation. As expected, our reconstructed temperature data are directly cor-

related with El Niño–Southern Oscillation. These results suggest that there is

great potential to use BI to advance our understanding of temperature variabil-

ity in regions hot and humid climate regimes. However, more studies are

needed to understand (1) which subtropical tree species will be appropriate for

use and (2) how to overcome biases from differential staining between sap-

wood and heartwood.
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1 | INTRODUCTION

Current warming trends are particularly pronounced over
high latitudes (e.g., the Arctic; Serreze and Barry, 2011),
high altitudes (e.g., the Tibetan Plateau; Pepin et al., 2015),
and semi-arid regions (e.g., the semi-arid regions of Central
Asia; Huang et al., 2012 and North America; Heeter
et al., 2021). Warming is less pronounced over the hot and
humid tropics and subtropics (IPCC, 2014). Proxy-based
reconstructions reveal more divergent temperature varia-
tions across regions relative to the current warming
(Neukom et al., 2019), highlighting the need for tempera-
ture reconstructions over different regions. Most tree-ring
records sensitive to temperature are found in high lati-
tudes/elevations (Jacoby et al., 1996; Büntgen et al., 2006;
Yadav et al., 2011; Tingley and Huybers, 2013; Popa and
Bouriaud, 2014), whereas proxy reconstructions in the tro-
pics and subtropics are scarce. Similarly, most of the terres-
trial proxy archives from these regions yield information
about hydroclimate rather than temperature (Rossi
et al., 2006; Schongart et al., 2006; Sano et al., 2009; Buckley
et al., 2010; Buckley et al., 2017), thereby limiting our abil-
ity to study the temperature linkages between cold/arid
regions and hot/humid regions.

In China, most temperature reconstructions have
been published for western China, where the climate is
cold and arid (e.g., Liang et al., 2008; Zhu et al., 2008;
Fan et al., 2009; Duan et al., 2010; Wang et al., 2015;
Liang et al., 2016). Studies in the subtropical areas of
China (e.g., Duan et al., 2012; Chen et al., 2012a, 2012b;
Duan et al., 2013) are relatively underdeveloped so far. In
subtropical China, forest in that area with better hydro-
thermal conditions and more serious human disturbance,
which makes the research difficult. However, the area
with dense population and rapid economic development,
frost damage has a strong impact on socioeconomic activi-
ties (Shi et al., 2010) and the occurrence of consecutive
coldness events has received great attention from climate
researchers (Duan et al., 2012). Temperature in southeast-
ern China is strongly influenced by atmosphere–ocean
variability in the Asian-Pacific region (e.g., the El Niño–
Southern Oscillation [ENSO]; East Asian Summer Mon-
soon [EASM]; and the Pacific Decadal Oscillation [PDO])
(Macdonald and Case, 2005; D'Arrigo and Wilson, 2006;
Zhou et al., 2009; Chen et al., 2012a; Wang et al., 2018).
Temperature reconstructions in southeastern China pro-
vide key information about historical variations and their
co-variability with large-scale temperature variations and
linkages with oceanic and atmospheric modes (Shi
et al., 2010, 2015; Duan et al., 2012; Chen et al., 2012a,
2012b; Cai and Liu, 2013; Duan et al., 2013). However,
much effort is needed to develop temperature reconstruc-
tions over key regions that currently lack such information.

Tree rings are the most widely used proxy for high-
resolution temperature reconstructions (Esper et al., 2002;
Cook et al., 2004; Moberg et al., 2005; D'Arrigo et al., 2006).
Among the tree-ring proxies used for climate reconstruction,
the density parameter has been widely shown to be more
temperature-sensitive than other proxies, namely ring width
(RW) (e.g., Anchukaitis et al., 2013, 2017; Esper et al., 2015; Li
et al., 2015, 2017; Liang et al., 2016). McCarroll et al. (2002)
found that measuring the intensity of the reflected blue por-
tion of the light spectrum from scanned images of wood sam-
ples (known as blue intensity [BI]) provides a less costly and
less time-consuming alternative to X-ray densitometry.
Björklund et al. (2013) suggested that BI, typically from the
latewood (LW) portion of the annual growth ring, provides a
reliable density proxy that can be used for temperature recon-
struction. In the last two decades, BI has been widely used for
temperature reconstruction in Europe (e.g., Björklund
et al., 2014; Björklund et al., 2015; Rydval et al., 2016; Fuentes
et al., 2017; Rydval et al., 2017; Wilson et al., 2017), North
America (e.g., Wilson et al., 2014; Wilson et al., 2017; Heeter
et al., 2020), and Southeast Asia. In 2018, Buckley et al. publi-
shed the first use of BI from a tropical region, measuring BI
from the earlywood (EWBI) and latewood (LWBI) of Fokienia
hodginsii. In 2020, Cao et al. presented the first tree-ring BI
chronology from a low elevation site (100–260 m.a.s.l.,
152 years) in humid subtropical China. Both studies indicate
the strong potential for BI-based reconstruction in tropical
and subtropical regions. However, no specific BI-based tem-
perature reconstruction has been published in hot and humid
southeast China to date.

EWBI is a less-explored tree ring parameter; more
studies are needed to evaluate its utility for different tree
species and regions (Buckley et al., 2018; Cao et al., 2020;
Seftigen et al., 2020). As with LWBI, the greatest limita-
tion of EWBI is that any colour variation that is not rep-
resentative of climatic processes affecting cell wall
thickness will bias the resultant raw reflectance measure-
ments. For example, some conifer species (e.g., Pinus
massoniana) show a clear, sharp colour change from the
lighter sapwood (SW) to darker heartwood (HW), which
induces low-frequency-related colour intensity biases. To
reduce the effect of differences in colour within a tree,
samples to be used for BI analysis are refluxed with etha-
nol or acetone before being scanned (Campbell
et al., 2011). Nevertheless, these differences impose a sys-
tematic change in reflectance around the HW/SW transi-
tion (Björklund et al., 2014, 2015; Rydval et al., 2014).

In this paper, we build upon previous climate
response research (Guo et al., 2018; Wang et al., 2018)
and measure BI variables (including EWBI, LWBI and
delta BI) from two sites in southeast China. The objec-
tives of this study are to: (1) assess the dendroclimatic
potential of these parameters by evaluating the strength
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and temporal stability of their seasonal climate signal;
(2) estimate the historical temperature reconstruction
possibilities of tree ring BI parameters; and (3) explore
tempo-spatial models of temperature reconstruction. We
also explore and the mechanisms related to the
atmospheric-ocean teleconnections and interactions with
remote oceans.

2 | MATERIALS AND METHODS

2.1 | Study sites

Our study area comprises two P. massoniana sites in
Fujian Province in southeastern China: Makeng (site
code MK, 25.57�N, 117.35�E) and Fangguangyan (site
code FGY, 25.88�N, 119.18�E) (Figure 1). The study area
is characterized by a subtropical monsoon climate.
Monthly mean temperature (Temp) and monthly total
precipitation (Precip) values were obtained from three
nearby meteorological stations: FuZhou (119.28�E,
26.08�N, 84 m a.s.l., 1953–2015 AD), Yong'an (117.35�E,
25.97�N, 206 m a.s.l., 1953–2015 AD), and Xianyou
(118.70�E, 25.37�N, 77 m a.s.l., 1957–2015 AD). These cli-
mate data were provided by the National Meteorological
Information Center (http://data.cma.cn; Table S1,
Figure 1). Instrumental data indicate that the local cli-
mate is characterized by monthly average temperatures
ranging from 10.4�C in January to 28.1�C in July. Precipi-
tation ranges from 38.2 mm in December to 235.3 mm in
June (averaged over the period 1953–2015) and the
annual mean air temperature and sum of precipitation
are 19.5�C and 1,471.9 mm, respectively. Although the

total annual precipitation is high, relatively little of it falls
during the summer growing season due to the strength of
the Western Pacific High. Therefore, trees often experi-
ence drought stress during the summer months (Chen
et al., 2016; Li et al., 2016).

2.2 | Tree-ring data and chronology
development

BI measurements were made on core samples collected
over the past few years from living P. massoniana trees.
At each site, two to three tree-ring cores were taken at
breast height. From an overall collection of 56 (142) cores
taken from 34 (78) trees at the MK (FGY) site, we
selected 39 (92) core samples from 28 (66) trees from
which to obtain BI measurements. The selection criterion
was the absence of a continuous blue fungal stain. We
also excluded cores if they possessed excessive amounts
of traumatic resin ducts across the entire radial width of
an annual ring because failure to avoid such cellular
abnormalities results in inaccurate blue reflectance
values. The reduction of the selected sample size has little
impact on the quality of the chronology, as the RW time
series developed from the subset correlate significantly
with the original growth index (r = .95 for MK and
r = .98 for FGY, respectively; Figure S2, Figure S3).
Before scanning, all samples were first cross-dated visu-
ally using a 40x microscope. Because the P. massoniana
wood collected at these sites is characterized by a dark
colour and generally exhibits discoloration due to differ-
ences in the HW/SW or resins, chemical pigment extrac-
tion was required for our samples. Such extraction is

FIGURE 1 Locations of the tree-ring sites used in this study (yellow dots; Table S1). Also indicated (red line box) is the domain (25.5–
26�N, 117–119.5�E) of the gridded data (CRU TS 4.04, Harris et al., 2020) used for calibration and the three weather stations used in this

paper (green rhombi) [Colour figure can be viewed at wileyonlinelibrary.com]
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often necessary when using the BI methodology
(Björklund et al., 2014; Rydval et al., 2014). A mixture of
benzene and ethanol (analysis reagent, 2:1) is used for
Soxhlet extraction for 48 hours in order to reduce the col-
our transition between HW and SW, but still some
staining can remain (Figure S4). The samples were dried
and re-sanded/polished again with 1,200 grit sandpaper
after chemical treatment (i.e., they were originally sur-
faced for RW measurement). We first calibrated our scan-
ner (Epson Perfection V800 Photo) using an IT8.7/2
calibration card to ensure the accuracy of the generated
BI values. We then scanned the prepared cores using the
flatbed scanner equipped with SilverFast Ai Studio
(Version 8.8) software with a resolution of 3,200 dpi reso-
lution (pixel size �8 μm). A box with a black-lined inner
surface was used during scanning to avoid ambient light
biases (Rydval et al., 2014).

The image analysis software CooRecorder 9.3
(Larsson, 2018) was used to measure the RW data. After
obtaining RW measurements, we checked our dating accu-
racy using the software COFECHA (Holmes, 1983). Once
confident that all samples were accurately dated, we used the
software CooRecorder 9.3/CDendro 9.3 (Larsson, 2018) to
measure BI from the earlywood (EWBI) and latewood
(LWBI). The raw LWBI was defined as the average of the
darkest 10% of the pixels in latewood, whereas the EWBI
was defined as the average of the lightest 80% of the pixels in
earlywood. The trend of the BI reflection value is negatively
correlated with the tree-ring density. For consistency with
other studies, we inverted our data for EWBI and LWBI by
multiplying each value by −1, then added a constant of 2.56
to ensure all inverted values were positive (see Rydval
et al., 2014). P. massoniana is known to have a high resin
content that often imparts a marked change in colour at the
HW/SW boundary. To account for colour changes in each
core that were not adequately removed by the Soxhlet extrac-
tion, delta blue intensity (ΔBI) was automatically calculated
as the residual of the raw LWBI and EWBI in CooRecorder
(Björklund et al., 2014).

Standardization is a crucial data processing step in
dendroclimatology that aims to remove non-climatic
age-related trends while retaining the desired climatic
signal (Cook et al., 1990). The RW and BI data were
detrended using the ratio between the raw measure-
ments and smoothing splines with a 50% frequency-
response cutoff of two-thirds of the series length using
the program ARSTAN (Cook and Peters, 1981). These
dimensionless tree-ring indices were then compiled into
a chronology using the bi-weight robust mean method
(Cook, 1985). This standardization option retains the
interannual to multi-decadal signals in the time series,
while minimizing longer-term frequency biases due to
HW–SW colour changes (Seftigen et al., 2020). Site- and

parameter-level chronologies were produced by averag-
ing the dimensionless indices. A total of 8 chronologies
of 4 different tree-ring parameters (RW, EWBI, LWBI,
and ΔBI) from 2 sites were included in the new dataset
(Figure S5).

We used the running Expressed Population Signal
(i.e., EPS) with a 50-year window and 49-year overlap to
evaluate the quality of the chronologies over time (Briffa
and Jones, 1990), that way we'll get a higher-resolution
time series of EPS and see exactly the year at which EPS
drops below 0.70. The reliable portion of the chronologies
is determined when the EPS ≥0.70 (Wigley et al., 1984)
and replication ≥10 series for BI and RW (Table 1).
Although an EPS threshold of 0.85 is commonly used, a
lower limit of 0.7 was adopted to maximize the useable
chronology span. Also, the common regional signal is
effectively increased as a result of the utilization of prin-
cipal component regression rather than utilizing chronol-
ogies individually.

2.3 | Climate response and statistical
analyses

Principal component analysis (PCA, using a varimax rota-
tion) was performed over the period 1863–2015 for all of
the parameter chronologies to assess the coherence
between the parameters. Additionally, PCA was performed
separately on a parameter-level to summarize the regional
common variability of each individual wood component.
Time series of PC scores of the first principal components
(PC1) were retained for climate response analysis.

The relationship between the time series of the PC
scores and the monthly climate variables were investi-
gated via Pearson correlation analyses from the end of
the previous growing season in October to the end of the
current growing season in December. By including prior
season climate we are able to understand the carryover
effects of climate from the year prior to growth—a phe-
nomenon common to conifers (Fritts, 1976). On the basis
of the correlation analysis of the raw data, we added a
first-difference data analysis between proxy and instru-
mental data. This process removes all variation on the
medium- and low-frequency bands to prevent biased cor-
relations due to spurious similarities in trends (Björklund
et al., 2014). We performed these tests using monthly
mean temperature and total precipitation data from the
Climatic Research Unit (CRU) TS 4.04 dataset. The data
cover the period 1901–2015 and have a 0.5� by 0.5� reso-
lution (Harris et al., 2020) in the grid box from 25.5–
26.0�N to 117–119.5�E, which includes our sampling sites
(Figures 1 and 2). The KNMI Climate Explorer (Trouet
and Van Oldenborgh, 2013) was used to assess spatial

4 CAO ET AL.



correlations between temperature data and RW, EWBI,
and ΔBI data.

A simple linear ordinary least squares regression
model was employed to reconstruct the optimal season
identified by the climate response analysis using the PC
composites indices. We split the instrumental period
(1916–2015) into two equal periods (the “early” period
[1916–1965] and “late” period [1966–2015]) to validate
and cross-validate the reconstruction model (Table 2).
The verification statistics include the Pearson's correla-
tion coefficient (r), R-squared (R2), coefficient of effi-
ciency statistic (CE), reduction of error (RE), and the sign
test. Positive values of RE and CE indicate the positive
predictive skill of the model (Fritts, 1976). We used a
longer calibation period of 50 years for the split
calibration-verification to ensure that the robustness of
the calibration model matched that of previous studies
(Fuentes et al., 2017; Wilson et al., 2017).

We used wavelet analysis to examine the periodic
cycles in the reconstructed series (Mann and Lees, 1996;
Torrence and Compo, 1998). To understand the back-
ground circulation conditions associated with March–
May temperature, sea surface temperature (SST) data
were obtained from the National Oceanic and Atmo-
spheric Administration Extended Reconstructed Sea Sur-
face Temperature dataset version 5 (ERSSTv5; Huang
et al., 2017). Atmospheric fields obtained from the

TABLE 1 Basic statistics for each

site and parameter
RBar n for EPS (0.70) Year EPS 0.70 CV AC1 SNR

RW

FGY 0.200 10 1859 0.306 0.472 14.994

MK 0.174 11 1799 0.224 0.508 5.877

Mean 0.187 10.5 1829 0.265 0.490 10.436

EWBI

FGY 0.103 20 1862 0.050 0.266 6.774

MK 0.131 16 1802 0.044 0.353 3.463

Mean 0.117 18 1832 0.047 0.310 5.119

LWBI

FGY 0.102 21 1862 0.035 0.450 6.689

MK 0.114 18 1807 0.024 0.615 2.966

Mean 0.108 19.5 1834.5 0.030 0.533 4.828

ΔBI

FGY 0.088 24 1863 0.055 0.447 5.788

MK 0.093 23 1823 0.050 0.666 2.358

Mean 0.091 23.5 1843 0.053 0.557 4.073

Note: n for EPS (0.70) = the number of series needed to acquire an EPS value of 0.70. RW is given in mm; BI

is given as the absorbed intensity. Note that BI values were inverted for these calculations.
Abbreviations: AC1, first-order autocorrelation; CV, coefficient of variation (STDEV/MEAN; STDEV:
standard deviation, MEAN: mean tree-ring width/blue intensity); EPS, Expressed Population Signal; RBAR,
the average correlation coefficient between the detrended series; SNR, signal-to-noise ratio.

FIGURE 2 Scatter plot of principal component analysis

loadings of each chronology on the first two eigenvectors. Identified

parameter cohorts are highlighted in different colours. The colour

of the vectors corresponds to the different parameters (green lines–
EWBI; blue–LWBI; pink–RW; black–ΔBI). The first two
components together represent nearly 57% of the total variation.

EWBI, earlywood blue intensity; LWBI, latewood blue intensity;

RW, ring width; ΔBI, delta blue intensity [Colour figure can be

viewed at wileyonlinelibrary.com]
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National Center for Environmental Prediction–National
Center for Atmospheric Research (NCAR/NCEP)
Reanalysis (Kalnay et al., 1996) were also used in the
present analyses. In addition, the monthly Niño 3.4
index (retrieved from https://climatedataguide.ucar.edu/
climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni)
was used to explore the possible impact of remote oceans
on March–May temperature in southeastern China.

3 | RESULTS AND DISCUSSION

3.1 | Chronology signals

FGY contains 92 series spanning the period 1854–2015,
whereas MK is comprised of 39 series and spans the period
1785–2015 (Table S1). For each individual site, the RW chro-
nology shows higher inter-sequence coefficients of variation
(mean CV = 0.265; Table 1) than the BI chronologies (mean
CV = 0.043, ranging from 0.030–0.053). A low degree of vari-
ation for BI series relative to RW series is also found in other
studies in high latitudes (e.g., Wilson et al., 2014). This may
be because the BI series are often more sensitive to tempera-
ture but tend to show a lower degree of sensitivity to precipi-
tation (e.g., McCarroll et al., 2013; Björklund et al., 2014;
Fuentes et al., 2017; Rydval et al., 2017; Wilson et al., 2017).
The signal-to-noise ratio (SNR) is higher for RW series
(mean SNR = 10.436) than for BI series (mean SNR = 4.673,
ranging 4.073–5.119) (Table 1). In addition, mean inter-
series correlation (RBAR) values indicate that RW maintains
the strongest common signal. Relatively low SNR and RBAR
mean that more samples are needed to obtain a reliable
chronology. Time series of BI have commonly exhibited
lower common signals relative to RW (e.g., Wilson
et al., 2017; Buckley et al., 2018; Blake et al., 2020). This
reflects the lower variability of BI, as indicated by a lower
CV relative to that of RW. The first-order autocorrelation
(AC1) of the RW series is higher than that of EWBI. A high
AC1 indicates a strong impact of previous growth on current

growth and a high portion of low-frequency signals. Rela-
tively high autocorrelation/persistence is, however, also true
for tree-ring widths more generally and is not restricted to
conifers. However, it may be worth noting that BI series
often exhibit considerably lower autocorrelation compared
to TRW series (Rydval et al., 2014; Fuentes et al., 2016;
Fuentes et al., 2017). As shown in Table 1, this also appears
to be the case for EWBI. It is quite interesting that the
LWBI/ΔBI have higher AC1 than RW, although the differ-
ence is not large. One likely contributor to this effect is the
previously noted HW–SW bias that could still exist in EWBI
series even after Soxhlet extraction has been performed.
However, the HW-SW bias has little effect on the latewood
series of P. massoniana due to its darker color. In addition,
this may be related to the negative correlation between
LWBI/ΔBI and temperature at low latitudes (Cao
et al., 2020；Buckley et al., 2018), which different from the
positive response at high latitudes (Rydval et al., 2014; Fuen-
tes et al., 2016; Fuentes et al., 2017). We emphasize that this
work is an isolated case; this issue requires further attention
before it can be assumed that this applies more generally.

For each individual site, tree-ring metrics of RW and
EWBI across each site correlate strongly with each other,
while ΔBI has the weakest coupling with RW and all BI
metrics, followed by LWBI (Table S2). Strong, positive
correlations (p < .001) between metrics across different
sites suggest a strong spatial correspondence between
overall growth and physiological response of same-
species individuals at closely situated sites.

To further examine the relationships between the various
tree-ring parameters, a rotated varimax PCA was performed
on all eight parameter chronologies over their common
period (1863–2010). Figure 2 presents the bivariate scatter
plot of each parameter chronology on the first two eigenvec-
tors. The first two eigenvectors of PCA explain 32.1 and
24.4% of the total variability, respectively. PC1 is dominated
by both the EWBI and RW chronologies, which cluster
together in the bivariate plot. However, the loadings of the
RW chronologies are obviously weaker on PC1 than those of

TABLE 2 Calibration and

verification results of the model
Validation/cross-validation C (r/R2) V (r/R2) CE RE Sign test

Early period calibration/late period verification

Calibration (1916–1965) 0.47***/0.22 - - - 36+/14−**

Verification (1966–2015) - 0.60***/0.36 0.27 0.52 -

Late period calibration/early period verification

Calibration (1966–2015) 0.60***/0.36 - - - 34+/16−*

Verification (1916–1965) - 0.47***/0.22 0.18 0.43 -

Full period (1916–2015) 0.59***/0.35 - - - 66+/34−**

Note: ***p < .001; **p < .01; *p < .05.
Abbreviations: CE, coefficient of efficiency statistic; R, correlation coefficient; R2, explained variance; RE,

reduction of error statistic.
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EWBI. The LWBI and ΔBI components are partially sepa-
rated from the RW and EWBI clusters, and the ΔBI appears
in a separate quadrant in the PCA bivariate plot. Moreover,
ordination of the two components shows a complete separa-
tion of ΔBI from the rest of the chronologies, with the for-
mer having lesser influences on PC1 but strong and positive
loadings on PC2. ΔBI shares a negative loading on this axis
and is thus negatively correlated with EWBI, as indicated by
the�120� angle between the respective vector cohorts. These
results show an obvious common signal in the dataset, but
there are also suggest the presence of distinct signal patterns.
We analysed this signal structure through climate sensitivity
analysis, and further explored the inter-parameter consis-
tency of variability.

3.2 | Climate-growth relationship

PCA (1863–2015) was rerun on the chronologies of
EWBI, RW, and each tree-ring parameter in the full
network. Pearson correlations between monthly climate
variables and first principal component scores (PC1) of

tree-ring parameters are summarized in Figure 3. The
leading PC for EWBI, RW, LWBI, and ΔBI parameters
account for 75.767.253.5and 56.4% of the total variability,
respectively, and for approximately 42.0% when all sites
and parameters are combined.

The correlations with both temperature and precipita-
tion reveal inconsistent parameter response patterns.
Temperature dominates the climate signal, as evinced by
the strong correlations with temperature in one or several
months between previous December and May (Figure 3).
All parameters except ΔBI display positive correlations
with growing season temperature. EWBI exhibits a stron-
ger significant correlation with temperature than do RW
and LWBI, particularly for the mean temperature from
March to May for both the non-transformed series
(r = .59, p < .01) and the time-series have been trans-
formed to first differences (r = .56, p < .01) (Figure 3a,b;
Table S3). Potential alternative seasonal windows were
also examined (e.g., C1-C5 or C3-C6) and that these alter-
native seasonal window responses are included in
Table S3. The correlation pattern for RW/LWBI is similar
to that for EWBI, but the time window is earlier/later

FIGURE 3 Summary for the significant correlations of the PC1 scores for each tree-ring parameter with their corresponding nearest

regional (25.5–26�N/117–119.5�E) CRU TS 4.04 gridded variables. Correlations are computed over the 1916–2015 period: (a) and (c) are

correlations using non-transformed series, (b) and (d) are correlations after the time-series have been transformed to first differences. The

numbers in the parentheses denote the amount of variation explained by the first PC component. Coefficients on the right axis of the plot

are peak correlations with seasonally averaged climate variables. Correlations significant at the 95% confidence level are marked in the

figure. C, current year; P, previous year [Colour figure can be viewed at wileyonlinelibrary.com]
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and the correlation is weaker (C1–C3 r = .31 for RW PC1
and C3-C6 r = .22 for LWBI PC1, respectively; Figure 3a,
Table S3). The spatial correlation fields also indicate that
EWBI (Figure 4a) has a considerably stronger correlation
with temperature than does RW (Figure 4b). The ΔBI is
negatively correlated with temperature (P12-C9 r = −.31
for ΔBI PC1, p < .01). This pattern is also relatively stable
for correlations with first-differenced data (P12-C9
r = −.28 for ΔBI PC1), suggesting a moisture limitation
caused by increased temperatures. Notably, the correla-
tions between different parameters and October tempera-
ture are more like statistical correlations, considering
that the continuous formation of different ring compo-
nents should correspond to the growing season time win-
dow. Potential alternative seasonal windows were also
examined (e.g., C1-C5 and C3-C6); these seasonal win-
dow responses are included in Table S3.

Correlations with precipitation (Figure 3c,d) are weaker
and less stable within the regional PC1 variants. Significant
(p < .05) correlations with precipitation were only found in
some scattered months (e.g., January, March, July, and
September). Notably, RW was significantly and positively
correlated with the precipitation of a hydrological year from
previous November to current October (r = 40, p < .001).
This finding indicates that the moisture limitation of a
hydrological year for tree growth can also been observed in
a humid region if the site is well-drained. EWBI and RW
show positive lagged responses with prior year precipita-
tion. Except for ΔBI, no parameters show a significant
lagged correlation with temperature in the prior year.

Previous studies of xylogenesis in P. massoniana from
nearby sites show that cell formation and transformation
starts around the middle of March and ends in November
(Yang, 2021). The results of this study and those of

FIGURE 4 Field correlations between selected PC1 composite chronologies and gridded meteorological data from the CRU TS 4.04

product over the 1916–2015 period. (a) Earlywood blue intensity (EWBI) versus March–May temperature (temp); (b) ring width (RW) versus

January–March temperature; (c) delta blue intensity (ΔBI) versus previous December to current September temperature; (d) RW versus

previous November to current October precipitation (Precip). Black solid circles indicate the locations of the two tree-ring sampling sites.

Correlations are shown in colour if significant (p < .05) [Colour figure can be viewed at wileyonlinelibrary.com]
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studies from ecologically and climatologically similar
locations in Fuzhou (e.g., Zhang et al., 2016) show that
the formation of latewood occurs between the end of
June and early July and mid-November. It can be
inferred that earlywood tracheids develop from March to
May, which is why EWBI correlates well with climatic
conditions during this period. ΔBI captures a longer time
window because it includes information from the whole
ring (Björklund et al., 2014).

The weak temperature signal of LWBI and ΔBI found
here differs from LWBI/ΔBI signals found in higher lati-
tude, conifer-dominated boreal forests in North America
and Europe (e.g., Björklund et al., 2013, 2014; Wilson
et al., 2014, 2017; Fuentes et al., 2017; Rydval et al., 2017),
where LWBI/ΔBI is more significantly positively corre-
lated with temperature than EWBI. The strong positive
correlations between our EWBI data and temperature are
in agreement with those of other studies in central south-
eastern Vietnam (Buckley et al., 2018), southeastern
China (Cao et al., 2020), and southern and central
Sweden (Seftigen et al., 2020). This suggests that a win-
ter/spring temperature limitation on EWBI formation is
common to these humid areas. Previous studies have
demonstrated that earlywood density is determined by
tracheid size (Björklund et al., 2017), which is optimized
for efficient water transport (Wodzicki, 1971; Tyree and
Zimmermann, 2002). According to the cohesion-tension
theory (Angeles et al., 2004; Cochard, 2006), as water
evaporates from the leaves, hydraulic tension
(i.e., negative pressure) pulls up the entire water column
due to the huge cohesive strength of water (Cochard
et al., 2013). It is imperative for survival that this water
column remains intact. The water column can be cut off
during severe droughts, causing complete tree mortality
from cavitation. Fortunately, plants have evolved extreme
embolism resistance through a variety of physiological
responses (Larter et al., 2017). Although spring precipita-
tion in our study area is relatively high (Figure S1),
higher temperatures and reduced moisture availability
could have a negative effect on earlywood cell enlarge-
ment through increased lignification of cell walls in sea-
sonally dry environments at lower latitudes (e.g., this
study; Buckley et al., 2018). In these instances, smaller
lumen may help prevent cavitation by reducing tension
(Larter et al., 2017) and may also yield a higher observed
density (i.e., a higher EWBI value).

3.3 | Time stability of the climate
response

We assessed the temporal stability of relationships
between EWBI, RW, and ΔBI and gridded meteorological

temperature data from the CRU TS 4.04 product over the
period 1916–2015 using a 31-year moving correlation
window. Results are shown in Figure 5 and Figure S6.

Moving correlation analyses indicate that the relation-
ships between EWBI and spring (C3–C5) temperatures are
strong over the test instrumental period, although there are
slight differences in the seasonal timing of the climate
response window. Additionally, the EWBI metric shows
significant positive correlations with January and February
temperature in the more recent decades (1970–present)
(Figure 5). This trend warrants further examination, as it
may have important implications regarding the increas-
ingly earlier onset of winter warming in the region.
Changes in the seasonal timing due to rapidly warming
winter temperatures in the latter half of the twentieth cen-
tury are well documented in instrumental data across the
subtropical China (estimated slopes = 0.03; not shown).
Future studies examining the temperature sensitivity of the
EWBI parameter therefore warrant additional consider-
ation (Heeter et al., 2019).

RW generally shows a weaker and more temporally
unstable relationship with temperature than does EWBI
over the test period (Figure S6a). However, RW does
show a significant (p < .05) positive correlation with
January and March temperature in more recent decades.
RW also shows a significant positive relationship with
October temperature in the late instrumental period
(1970–2010). We suspect that the weak and unstable RW-
temperature signal is partially due to the presence of the
strong precipitation signal in the RW PC1 composites
(Figure 3). These data suggest that warmer-than-average
winter–spring temperatures could have an increasingly
positive effect on the overall radial growth of
P. massoniana in this region (Duan et al., 2012). They
also suggest that RW is not an adequate parameter for
capturing and preserving a temperature signal in this
region. Further, the data indicate that precipitation is
becoming more of a limiting factor on radial tree growth
in this region than has been the case in previous decades.
The negative temperature signals in ΔBI are compara-
tively more unstable. The ΔBI parameter largely loses its
sensitivity to temperature during the 1920–1970 interval,
yet remains sensitive to previous December to September
temperatures after 1970 (Figure S6b). Originally, ΔBI was
proposed with the goal of mitigating the influence of col-
our transitions between HW and SW and which, attrac-
tive to preserve lower-frequency signals in the BI time-
series, for example, at centennial to multi-centennial
time-scales (Björklund et al., 2014, 2015; Wilson
et al., 2017; Buckley et al., 2018). However, ΔBI in our
study have limited climate signals because the correlation
between EWBI and LWBI is high (Table S2), which may
remove climate-related signals.
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3.4 | Regional temperature
reconstruction

Compared to other tree-ring metrics explored in this
study, EWBI shows the strongest, steadiest, and most
spatially-resolved temperature signal over the entire
instrumental period (Figures 4 and 5), therefore we used
the EWBI metric for a regionally-averaged spring temper-
ature reconstruction. For comparative purposes, we also
include RW, as it can be used as an indicator for hydro-
climate variability (Figure S6c,7). A linear regression
model was employed to derive a regional temperature
reconstruction over the period 1863–2015. The recon-
struction model explains 36.0% (Radj

2 = 34.9%) of the
instrumental variance for the full calibration period
(1916–2015; Table 2). Based on the split-period calibra-
tion/verification model, all correlations in different sub-
periods are significant (p < .001) and both early- and
late-period (and vice versa) statistics pass the validation
tests (Table 2).

Close matches between the actual and estimated data
were observed and the reconstructed spring temperature
shows a strong correlation with temperature over a large
area of southeastern China (Figure 6). This indicates that
our results are representative of the temperature and cli-
matic changes in the study area. However, we note that
some temperature extremes are underestimated in the
estimated series. This may be due to the BI's own limita-
tions. A more detailed assessment by examining metrics
assessing the linear trend of the residuals (estimated

minus observed data), indicating that the EWBI data can-
not well capture the long-term warming trend to some
extent. Wilson et al. (2014) emphasized the possibility of
long-term signal distortion related to detrending options,
finding reduced fidelity of LWBI to temperature at fre-
quencies lower than 20 years. Meanwhile, Fuentes
et al. (2017) argued that the approaches presented in
Björklund et al. (2014, 2015) allow for the retention of
useful low-frequency information when using the ΔBIadj
parameter and careful standardization procedures. As of
this writing, the use of EWBI is a relatively new method
and has only been used to gauge dendroclimatic response
in a few sites (e.g., Wilson et al., 2017, 2019; Buckley
et al., 2018; Blake et al., 2020; Seftigen et al., 2020). This
study is the first to use EWBI metrics to reconstruct tem-
perature in understudied and challenging subtropical
conifers, so further experimentation is needed.

The final PC1 EWBI reconstruction of our spring
(March–May) mean temperature variability went back
from 1863 CE to 2015 CE (Figure 7a). The reconstructed
temperature varied between 16.59 and 19.30�C, with a
mean value of 17.84�C. The ten coldest years over the
past 153 years occurred in 1940 CE, 1927, 1918, 1939,
1938, 1870, 1932, 1869, 1928 and 1968 (starting from the
coldest year), whereas the ten warmest years appeared in
1987 CE, 1898, 2002, 2015, 1977, 1972, 2009, 1904, 1882,
1966 and 1902 (beginning with the warmest year). The
PC1 EWBI temperature reconstruction and PC1 RW
series are further compared with early data from the
CRU TS 4.04 product (Figure 7). The correlations

FIGURE 5 Moving 31-year window correlations (white rectangles represent α = 0.05) over the 1916–2015 period between selected PC1

EWBI composite chronologies and gridded meteorological temperature data from the CRU TS 4.04 product. Temperature data averaged over

the region are bounded by the latitude/longitude coordinates 25.5–26�N/117–119.5�E. EWBI, earlywood blue intensity [Colour figure can be

viewed at wileyonlinelibrary.com]
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FIGURE 6 (a) Scatter plot of the observed and estimated March–May mean temperatures (Temp3-5) during the calibration period 1916–
2015; (b) Comparison between observed (red line) and estimated (black line) TMean3-5 and the linear trend of the residuals (blue line).

Spatial correlation patterns across southeastern China between the (c) non-transformed and (d) first year difference estimated March–May

mean temperature and regional CRU TS 4.04 over the period 1916–2015. Correlations are reported in colour if significant (p < .05) [Colour

figure can be viewed at wileyonlinelibrary.com]

FIGURE 7 Scaled PC1

composite reconstructions and

their target CRU TS 4.04

instrumental data. (a and b)

EWBI-based March-May

temperature (Temp3-5)

reconstructions; (c and d) ring

width (RW)-based previous

November-current October

precipitation (Precip11-10)

reconstructions. Note that (b and

d) data have been high-pass

filtered and (a–d) data have been
normalized to z-scores over the

entire record length.

Correlations between time series

are provided at the bottom of

each plot [Colour figure can be

viewed at

wileyonlinelibrary.com]
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between the March–May temperature reconstruction and
the CRU TS 4.04 instrumental data over the entire obser-
vation period (1901–2015) is .38, and .21 lower than the
calibration period (1916–2015) (Figure 7a). After high-
pass filtering, the correlation coefficients for data from
the 1901–2015 period and the 1916–2015 period are
almost unanimous (Figure 7b). Correlation coefficients
over a moving 31-year window also show that a signifi-
cant correlation did not exist before 1916 (Figure 7a),
suggesting that the early part of the reconstruction is
temporally unreliable. The correlation between the unfil-
tered RW index and historical precipitation observations
in the calibration interval (1916–2015) is .40; over the
entire common interval (1901–2015), the correlation is
.36 (Figure 7c). After high-pass filtering, the correlation
coefficients are .48 and .46, respectively (Figure 7d).
Despite the limited climate signal of the RW index, it is
temporally more stable than EWBI. The temperature
response of EWBI exhibits temporal instability outside
the calibration interval (1916–2015), which is known as
divergence (e.g., D'Arrigo et al., 2008). It has been
suggested that such decoupling between temperature and
EWBI may be the result of abrupt HW/SW colour transi-
tions (Björklund et al., 2019). Rydval et al. (2014)
highlighted problems with the low-frequency signal of
LWBI measured in Scots pine because of the colour dif-
ferences between HW and SW. The HW/SW offset is

visually obvious in the raw P. massoniana BI time series
(Cao et al., 2020). Thus, this abrupt change is entirely the
result of the colour change and not a real change in den-
sity. Frustratingly, the existing grease removal and
detrending methods have not yet been able to eliminate
this bias (e.g., Björklund et al., 2014).

3.5 | Linkage of the Temp3-5 variations
with ENSO

To determine which variables have significant signals in
the Temp3-5, we analysed the spectrum of the Temp3-5
dataset using wavelet analysis to understand the time-
varying frequency. The wavelet analysis revealed that the
Temp3-5 reconstruction is dominated by interannual
(�3–7 year) and interdecadal (8–16 year) variations in
which the interannual fluctuation was enhanced and
became significant during 1960–2000 (Figure 8a).
Because the dominate interannual variation in Temp3-5 is
during this period, a correlation map between Temp3-5
and SST in March–April–May is shown in Figure 8b. The
Temp3-5 reconstruction is accompanied by an El Niño-
like condition—that is, a positive SST anomaly from
equatorial eastern to equatorial central Pacific.

To confirm the relationship between Temp3-5 and El
Niño, we calculated the 21-year sliding correlation

FIGURE 8 (a) Wavelet spectrum of March–May temperature (Temp3–5) reconstruction. (b) Correlation map between the reconstructed

temperature and ERSSTv5 during 1965–2000. (c) 21-year sliding correlation coefficients between the Temp3-5 reconstruction and Niño 3.4

indices. (d) The regression of SLP and 1,000-hPa winds onto the Niño 3.4 index during 1963–1993 [Colour figure can be viewed at

wileyonlinelibrary.com]
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coefficient between Temp3-5 reconstruction and the Niño
3.4 index (Figure 8c). This enhancement is accompanied
by an interdecadal change in the interannual relationship
between Temp3-5 reconstruction and the Niño 3.4 index.
Since the 1950s, the relationship between Temp3-5 recon-
struction and the Niño 3.4 index has become positive. On
the basis of the termination of the interannual relation-
ship between Temp3-5 and the Niño 3.4 index during
1963–1993, Figure 8d shows the regression of the Sea
Level Pressure (SLP) and 1,000-hPa winds onto the Niño
3.4 index during March–April–May over the period 1963–
1993. Temp3-5 is positively correlated with SLP anomalies
in the following regions: the North Pacific north of 20�N,
the East China Sea from southern Japan to northern
Taiwan, and the tropical Southeastern Pacific south of
the equator. Conversely, it is positively correlated with
SLP anomalies in the Philippine Sea. The particular cir-
culations affecting Fujian are the negative and positive
SLP anomalies along the East Asian coast and in the
Philippine Sea, respectively. It has been found that the
same anti-cyclonic anomalous flow has a great spring-
time impact over East Asia during El Niño years (Wang
et al., 2000; Wang and Zhang, 2002; Hung et al., 2004).
Fujian is west of the anti-cyclonic anomalous flow, the
southerly wind anomalies bring warm air from the south
(warm advection). When El Niño induces anti-cyclonic
circulation in the Philippine Sea, temperatures in
Fujian rise.

4 | CONCLUSIONS

In this work, we have described a set of climate responses
based on RW, EWBI, LWBI, and ΔBI data measured
from two tree-ring sites in Fujian Province, which is
located in southeastern China. The results demonstrate
that the simple and convenient BI methodology can be
used to produce robust temperature-sensitive BI parame-
ters from living P. massoniana trees. These findings pro-
vide a significant empirical foundation in subtropical
low-elevation regions, where few truly temperature-
sensitive high-resolution proxy data exist. We explicitly
draw attention to the dendroclimatic potential of EWBI
because of its sensitivity to temperature. EWBI is a rarely
reconstructed climate variable and therefore particularly
interesting from a paleoclimate perspective. Although
LWBI is commonly used in studies of high-latitude trees,
EWBI appears to be most strongly responsive to climate
in the current study. We infer that this is the result of
hydraulic-functional responses of earlywood in season-
ally arid areas to prevent cavitation. The EWBI-derived
reconstruction explains 36.0% of the spring temperature
and shows that the ENSO is key regulator of March–May

temperature in southeastern China. Our work provides
the first BI-based temperature reconstruction for the sub-
tropics, which we hope will help to push the boundaries
of the BI technique even further.

This research focuses on a single species and a limited
region of southeastern China. More research is needed to
determine if our findings can be generalized to other sub-
tropical humid regions and for other conifer species.
Moreover, the range of measurement biases must be
reduced and further studies are needed to overcome off-
sets related to discolouration and the HW/SW colour
transition.
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