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Abstract

Two-Sided Matching Markets: Models, Structures, and Algorithms

Xuan Zhang

Two-sided matching markets are a cornerstone of modern economics. They model a wide range

of applications such as ride-sharing (Wang, Agatz, and Erera, 2018), online dating (Hitsch, Hor-

taçsu, and Ariely, 2010), job positioning (Kelso Jr and Crawford, 1982), school admissions (Ab-

dulkadiroğlu and Sönmez, 2003), and many more. In many of those markets, monetary exchange

does not play a role. For instance, the New York City public high school system is free of charge.

Thus, the decision on how eighth-graders are assigned to public high schools must be made using

concepts of fairness rather than price. There has been therefore a huge amount of literature, mostly

in the economics community, defining various concepts of fairness in different settings and show-

ing the existence of matchings that satisfy these fairness conditions. Those concepts have enjoyed

wide-spread success, inside and outside academia (see, e.g., Manlove, 2013). However, finding

such matchings is as important as showing their existence. Moreover, it is crucial to have fast (i.e.,

polynomial-time) algorithms as the size of the markets grows. In many cases, modern algorithmic

tools must be employed to tackle the intractability issues arising from the big data era.

The aim of my research is to provide mathematically rigorous and provably fast algorithms to

find solutions that extend and improve over a well-studied concept of fairness in two-sided mar-

kets known as stability. This concept was initially employed by the National Resident Matching

Program in assigning medical doctors to hospitals, and is now widely used, for instance, by cities

in the US for assigning students to public high schools (Abdulkadiroğlu and Sönmez, 2003) and



by certain refugee agencies to relocate asylum seekers (Nguyen, Nguyen, and Teytelboym, 2019).

In the classical model, a stable matching can be found efficiently using the renowned deferred ac-

ceptance algorithm by Gale and Shapley (1962). However, stability by itself does not take care of

important concerns that arose recently, some of which were featured in national newspapers (Har-

ris and Fessenden, 2017; Shapiro, 2019a; Shapiro, 2021). Some examples are: how can we make

sure students get admitted to the best school they deserve, and how can we enforce diversity in a

cohort of students?

By building on known and new tools from Mathematical Programming, Combinatorial Opti-

mization, and Order Theory, my goal is to provide fast algorithms to answer questions like those

above, and test them on real-world data.

In Chapter 1, I introduce the stable matching problem and related concepts, as well as its

applications in different markets.

In Chapter 2, we investigate two extensions introduced in the framework of school choice that

aim at finding an assignment that is more favorable to students – legal assignments (Morrill, 2016)

and the Efficiency Adjusted Deferred Acceptance Mechanism (EADAM) (Kesten, 2010) – through

the lens of classical theory of stable matchings. We prove that the set of legal assignments is

exactly the set of stable assignments in another instance. Our result implies that essentially all

optimization problems over the set of legal assignments can be solved within the same time bound

needed for solving it over the set of stable assignments. We also give an algorithm that obtains the

assignment output of EADAM. Our algorithm has the same running time as that of the deferred

acceptance algorithm, hence largely improving in both theory and practice over known algorithms.

In Chapter 3, we introduce a property of distributive lattices, which we term as affine repre-

sentability, and show its role in efficiently solving linear optimization problems over the elements

of a distributive lattice, as well as describing the convex hull of the characteristic vectors of the

lattice elements. We apply this concept to the stable matching model with path-independent quota-

filling choice functions, thus giving efficient algorithms and a compact polyhedral description for

this model. Such choice functions can be used to model many complex real-world decision rules



that are not captured by the classical model, such as those with diversity concerns. To the best of

our knowledge, this model generalizes all those for which similar results were known, and our pa-

per is the first that proposes efficient algorithms for stable matchings with choice functions, beyond

classical extensions of the Deferred Acceptance algorithm.

In Chapter 4, we study the discovery program (DISC), which is an affirmative action policy

used by the New York City Department of Education (NYC DOE) for specialized high schools;

and explore two other affirmative action policies that can be used to minimally modify and im-

prove the discovery program: the minority reserve (MR) and the joint-seat allocation (JSA) mech-

anism. Although the discovery program is beneficial in increasing the number of admissions for

disadvantaged students, our empirical analysis of the student-school matches from the 12 recent

academic years (2005-06 to 2016-17) shows that about 950 in-group blocking pairs were created

each year amongst disadvantaged group of students, impacting about 650 disadvantaged students

every year. Moreover, we find that this program usually benefits lower-performing disadvantaged

students more than top-performing disadvantaged students (in terms of the ranking of their as-

signed schools), thus unintentionally creating an incentive to under-perform. On the contrary, we

show, theoretically by employing choice functions, that (i) both MR and JSA result in no in-group

blocking pairs, and (ii) JSA is weakly group strategy-proof, ensures that at least one disadvan-

taged is not worse off, and when reservation quotas are carefully chosen then no disadvantaged

student is worse-off. We show that each of these properties is not satisfied by DISC. In the general

setting, we show that there is no clear winner in terms of the matchings provided by DISC, JSA

and MR, from the perspective of disadvantaged students. We however characterize a condition for

markets, that we term high competitiveness, where JSA dominates MR for disadvantaged students.

This condition is verified, in particular, in certain markets when there is a higher demand for seats

than supply, and the performances of disadvantaged students are significantly lower than that of

advantaged students. Data from NYC DOE satisfy the high competitiveness condition, and for

this dataset our empirical results corroborate our theoretical predictions, showing the superiority

of JSA. We believe that the discovery program, and more generally affirmative action mechanisms,



can be changed for the better by implementing the JSA mechanism, leading to incentives for the

top-performing disadvantaged students while providing many benefits of the affirmative action

program.
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Introduction

Since the seminal publication by Gale and Shapley (1962), the concept of stability in matching

markets has been widely studied by the optimization community. With minor modifications, the

one-to-many version of Gale and Shapley’s original stable assignment model, together with their

renowned deferred acceptance algorithm, is currently employed by the National Resident Match-

ing Program (Roth, 1984b) for assigning medical residents to hospitals in the US, and by many

school districts in the US for assigning eighth-graders to public high schools (Abdulkadiroğlu and

Sönmez, 2003).

However, the traditional model does not capture features that have become of crucial impor-

tance both inside and outside academia. For instance, in the school choice problem, public schools

are often perceived as commodities and only students’ welfare matters. Hence, enforcing stability

implies a loss of efficiency for the students. Abdulkadiroğlu, Pathak, and Roth (2009) demon-

strated the magnitude of such efficiency loss with empirical data from the New York City school

system, showing that over 4,000 eighth-graders could have improved their assignments if stabil-

ity constraints were relaxed. Striving to regain this loss in welfare for the students, many models

and mechanisms have been proposed in the literature (Abdulkadiroğlu, Che, and Yasuda, 2015;

Erdil and Ergin, 2008; Kesten, 2010; Troyan, Delacrétaz, and Kloosterman, 2020; Morrill, 2016).

However, results are oftentimes not algorithmic, which significantly hinders their applicability.

Moreover, there is a growing attention to models that can increase diversity in school co-

horts (Nguyen and Vohra, 2019; Tomoeda, 2018). Such constraints cannot be represented in the

original model, since admission decisions with diversity concerns cannot be captured by a strict

1



preference list. To model these selection rules, instead of ranking individual potential partners,

each agent is endowed with a choice function that selects a cohort they prefer the best from a

given set of potential candidates. Besides school choice problem with diversity concerns, the sta-

ble matching model with choice functions has been widely used in many other markets, such as

the staffing problem and the course allocation problem (see, e.g., Echenique and Yenmez, 2015;

Aygün and Turhan, 2016; Kamada and Kojima, 2015 for more applications).

One particular class of application of the stable matching model with choice functions are

mechanisms with affirmative actions in the context of school choice. Due to disparity in opportu-

nities, some groups are underrepresented in education at different levels, and these include ethnic

minorities who suffer discrimination historically, immigrants who are English learners, and stu-

dents from households with lower socioeconomic status (see, e.g., Ashkenas, Park, and Pearce,

2017; Boschma and Brownstein, 2016; Quinn Capers et al., 2017). Affirmative action policies help

remedy the situation by favoring these underrepresented disadvantaged groups in some way, often

by giving them priority for or exclusive access to certain seats. However, it is well-known in the

literature, through both theoretical and empirical results, that some affirmative action mechanisms

do not automatically guarantee to improve the welfare of disadvantaged students, the purported

beneficiary (Kojima, 2012; Hafalir, Yenmez, and Yildirim, 2013). Thus, it is important to have

a deep understanding of the many affirmative action mechanisms implemented in practice, both

theoretically and empirically.

The goal of my thesis is to have a better structural, algorithmic, and empirical understanding

of these aforementioned extensions of the stable assignment problem. My research approaches the

problem from three broadly categorized directions. The first direction focuses on deriving struc-

tural properties of the models, and the second one focuses on developing efficient algorithms for

optimizing over the set of stable matchings using the structural results. While these two directions

concern the set of stable matchings, the last direction studies the theoretical and empirical proper-

ties of one particular stable matching (the student-optimal one) under different mechanisms. In the

remainder of the introduction, let me informally summarize my results.
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Chapter 2: Legal assignments and fast EADAM with consent (Faenza and Zhang, 2022).

Two concepts proposed in the literature which aim to regain the welfare loss for the students due

to enforcing the stability constraints are: legal matchings (Ehlers and Morrill, 2020) and Efficiency

Adjusted Deferred Acceptance Mechanism (EADAM) with consent (Kesten, 2010). Both define

fairness via relaxation of the stability requirement while protecting school districts from potential

lawsuits.

Structurally, we show that for any instance, there is another instance whose set of stable match-

ings is the same as the set of legal matchings in the original instance (see Theorem 2.3). Moreover,

we provide an efficient algorithm that returns this (legalized) instance, using the distributive lattice

structure of legal matchings and the concept of rotations (i.e., special alternating cycles). Thus,

to solve an optimization problem over legal matchings, one can resort to the broad literature on

algorithms developed for the same problem on the set of stable matchings.

A key component of our procedure to build the legalized instance is an algorithm that finds

the student-optimal legal matching (see Algorithm 2.1). By using the structural results of legal

matchings, our algorithm is faster than the previously known algorithms (Kesten, 2010; Tang and

Yu, 2014) both theoretically and in practice (see Figure 2.1).

A modification of our algorithm can be used to find the outcome of EADAM with consent (see

Algorithm 2.3). Computational experiments show that our algorithm performs roughly 80 times

faster than current versions of EADAM (Tang and Yu, 2014) on instances whose size is similar

to that of the NYC school system, hence making these algorithms for the first time of practical

relevance (see Figure 2.2).

Results from this chapter are contained in Faenza and Zhang (2022), which is published in

Operations Research.

Chapter 3: Stable matchings and choice functions (Faenza and Zhang, 2021). Stable assign-

ment models with choice functions were first studied in Roth (1984a) and Kelso Jr and Crawford

(1982). Roth (1984a) generalized the deferred acceptance algorithm by Gale and Shapley (1962)
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to find the student- and school-optimal stable matchings when choice functions are assumed to be

substitutable and consistent (or equivalently, path-independent). When choice functions are fur-

ther assumed to be quota-filling, stable matchings are known to form a distributive lattice (Alkan,

2001).

Using concepts from abstract algebra, rings of sets in particular, we present an algorithm (see

Algorithm 3.7) that obtains a poset of rotations (i.e., special trading cycles) whose set of upper

sets are in bijection with stable matchings (the existence of such poset is due to Birkhoff’s repre-

sentation theorem Birkhoff (1937)) for the choice function model. In particular, although the size

of the set of stable matchings can be exponential in the number of agents in the market, the size of

the rotation poset is always polynomial (see Theorem 3.4).

The structure results then provide us the tools to efficiently solve optimization problems over

the set of stable matchings under any linear objectives (see Corollary 3.5). Linear objectives can

be used to model a matching that is, e.g., aforementioned firm- or worker-optimal, egalitarian, or

profit-maximal. More specifically, we show that the problem of optimizing a linear function over

stable matchings under the choice function model can be solved by optimizing a linear function

over upper sets of the rotation poset. It is known that the latter problem can be solved as a minimum

cut problem (Picard, 1976).

Moreover, the structure results allow us to draw connection between the stable matching poly-

tope (i.e., convex hull of stable matchings) and the order polytope (Stanley, 1986) (i.e., the convex

hull of upper sets of a poset). We show that a compact polyhedral description of the stable match-

ing polytope under the choice function model exists (see Theorem 3.6). This enables the possibility

of solving optimization problems over the set of stable matching via linear programming.

To the best of our knowledge, the model we studied here generalizes all models from the

literature for which similar results were known, and our work is the first that proposes efficient

algorithms for stable matchings with choice functions, beyond the deferred acceptance algorithm.

More generally, we extend our results to a broad class of problems in combinatorial optimiza-

tion whose feasible regions can be seen as distributive lattices (see, e.g., Garg, 2020) that satisfy a
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property which we term as affine representability.

An extended abstract of the work (Faenza and Zhang, 2021) was published in the proceedings

of Integer Programming and Combinatorial Optimization (IPCO) 2021 and the journal version of

the manuscript is currently under minor revision at Mathematical Programming.

Chapter 4: Discovering Opportunities in New York City’s Discovery Program: an Analysis

of Affirmative Action Mechanisms (Faenza, Gupta, and Zhang, 2022a). Discovery program

(DISC) is an affirmative action policy used by the New York City Department of Education (NYC

DOE) for specialized high schools. It has been instrumental in increasing the number of admissions

for disadvantaged students. However, rigorous mathematical analyses of the program are lacking,

even though they are critical in ensuring the welfare of disadvantaged students, given that certain

forms of affirmative action may hurt disadvantaged students, the purported beneficiary, as shown

by Kojima (2012) and Hafalir, Yenmez, and Yildirim (2013).

Our empirical analysis shows that the discovery program creates a large number of in-group

blocking pairs (see Figure 4.1). In addition, we find that this program unintentionally creates an

incentive for disadvantaged students to under-perform. These drawbacks of the discovery program

are also verified theoretically. Hence, we explore other affirmative action mechanisms, with the

goal of proposing practical modifications to how the discovery program is implemented, while

alleviating the above-mentioned drawbacks.

The two alternative quota-based mechanisms we consider are minority reserve (MR), which was

first studied by Hatfield and Milgrom (2005) and joint seat allocation (JSA), which is an abstract

version of the mechanism used by the Joint Seat Allocation Authority for administering admissions

to Indian Institutes of Technology (JoSAA, 2020). We show that, property-wise, JSA is similar to

MR, given that they both (1) are strategy-proof, (2) are fair to disadvantaged students (i.e., no in-

group blocking pairs), (3) guarantee that not all disadvantaged student is worse off, and (4) ensure

that no disadvantaged students is worse off when the reservation quotas are “carefully” chosen (i.e.,

a smart reserve). See Table 4.1 for a summary. These results suggest that the discovery program
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could benefit by replacing the current implementation with either minority reserve or joint seat

allocation, but at the same time call for a direct comparison of those mechanisms.

We show that all three mechanisms are incomparable, even under some pretty restrictive yet

common hypothesis: (1) schools rank students in the same order; and/or (2) reservation quotas

being a smart reserve. However, we also provide a novel ex-post condition which guarantees that

JSA weakly dominates MR for disadvantaged students and show that this condition is verified by our

data from NYC DOE. Roughly speaking, the high competitiveness condition is satisfied when the

demand for seats (i.e., number of students) is much larger than the supply, and when disadvantaged

students are performing systematically worse than advantaged students. See Theorem 4.20 for the

formal statement.

Our results suggest that the many drawbacks of the current implementation of the discovery

program can be corrected by following the joint seat allocation mechanism. This modification

is powerful, yet it requires minimal modification: there is essentially no change in terms of what

students and schools should report to the DOE, and there is no change in terms of the algorithm.

In fact, to implement the JSA mechanism, one only needs to compute an equivalent instance where

students’ preference lists are expanded to be over reserved and general seats at schools, so that

the matching we desire to obtain can be easily recovered from the matching obtained under the

classical stable matching model on this equivalent instance. See Section 4.4.3 for details.

On the technical aspect, to compare these three mechanisms, we devise alternative formulations

so that their assignment outputs can be obtained from the same algorithm applied to different

input instances. There are two approaches by which we can obtain such a reformulation. This

first approach is to employ choice functions, which allows us to directly use properties of choice

functions and the generalized deferred acceptance algorithm (Roth, 1984a). The second approach

is to expand students’ original preferences over schools to preferences over reserved and general

seats at schools. This allows us to deduce interesting properties of the mechanisms (e.g., strategy-

proofness), by leveraging on classical results on stable matchings.
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Chapter 1: The Stable Assignment Problem

In this chapter, we introduce the stable assignment problem and its related concepts. We defer

the specific mathematical notations to individual chapters as they are slightly different and are

adapted for each chapter.

An instance of the stable assignment (or stable matching) problem has the following compo-

nents. The first is a bipartite graph, where the two sides of the vertices represent two sides of the

markets, and the edges represent the set of acceptable partners. Some examples for the two sides

of the market are men and women, students and schools, and firms and workers. Secondly, every

agent in the market has a strict ordering of his or her acceptable partners (i.e., its neighbors in

the graph), and this strict ordering is usually referred to as preference list. However, sometimes,

when the agent is a school, preference list is also called priority order, since it indicates students’

priorities at the school. Lastly, every agent has a quota, which signifies the maximum number of

partners they can have.

Depending on the market, the quotas of the agents can be either singular or plural. For instance,

in the case of the marriage market where two sides of the market are men and women, every agent

has a quota of one; in the case of school choice, students have a quota of one, and schools have

quotas that reflect their admission capacity; in the case of labor market, firms and workers can

both have quotas that are more than one. These illustrate three types of market: one-to-one, one-

to-many, and many-to-many. For the following, we introduce the concepts for the most general

many-to-many market, and we refer to the two sides of the markets as firms and workers.

Stability. An assignment (or a matching) of an instance is a collection of acceptable firm-worker

pairs (or edges) so that the number of pairs every agent is incident to is at most his or her quota. An

assignment is stable if there is no unmatched acceptable firm and worker pair where both prefer
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each other to their assignment. Here, a firm f is said to prefer a worker w to its assignment if

one of the following two cases is true: (1) the firm still has empty positions (i.e., its number of

assigned workers is less than its quota); or (2) there exists a worker that is assigned to the firm,

but the firm prefers w to this worker. The concept where a worker is said to prefer a firm can be

similarly defined. The goal of the stable assignment problem is to find an assignment that is stable.

Every instance has at least one stable assignment, and the proof is based on an algorithm,

called the deferred acceptance algorithm, which is guaranteed to terminate and output a stable

assignment (Gale and Shapley, 1962; Roth, 1984a). The algorithm has one side of the market

proposing to the other side. In the following, we describe the worker-proposing version. Due to

symmetry, the firm-proposing version can be easily deduced.

Deferred acceptance algorithm. The worker-proposing algorithm starts with every worker un-

matched and then runs in rounds. At every round, every worker proposes to his or her most pre-

ferred firms that have not rejected him or her, up to his or her quota. Then every firm temporarily

accepts, among all the workers that proposed to it in the current round, its most preferred workers,

also up to its quota, and rejects the rest. The algorithm terminates when there is no rejection, and all

temporary acceptances becomes permanent. The assignment output consists of all the permanent

acceptances.

In the stable assignment output by the worker-proposing algorithm, every worker is matched

to the best team of firms (s)he can have in any stable assignments (Gale and Shapley, 1962; Roth,

1984a). That is, if a worker is asked to choose firms, up to his or her quota, among those assigned

to him or her either under the output stable assignment or under any other stable assignment, (s)he

will choose exactly the same set of firms as (s)he is assigned to under the output stable assignment.

Hence, this stable assignment is called the worker-optimal stable assignment. Similarly, the firm-

proposing deferred acceptance algorithm outputs a stable assignment that is firm-optimal. These

two extreme stable assignments might coincide, when the instance has only one stable assignment.

The fact that one stable matching is optimal for one side of the market has crucial implications
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for real-world applications. For instance, for the National Resident Matching Program where

medical interns are matched to hospitals, the hospital-proposing algorithm was replaced by the

worker-proposing algorithm in the 1990s to increase the welfare of medical students; in school

choice, since schools are usually considered as public commodities, deferred acceptance is always

executed with students proposing.

Structure of stable assignments. As our previous discussion implies, in general, an instance

may have many other stable assignments other than the firm- and worker-optimal ones. Interest-

ingly, as observed by Knuth (1976) for the one-to-one case and later proved for the many-to-many

case by Roth (1984a), the set of stable assignments form a distributive lattice under a natural order-

ing relation. The two extreme stable assignments, worker-optimal and firm-optimal, correspond to

the minimum and maximum elements of the lattice.

Birkhoff’s representation theorem (Birkhoff, 1937) associates to each distributive lattice an

associate poset so that there is a bijection between elements of the distributive lattice and the

family of upper sets of the poset. In the special case of stable assignments, this associated poset is

called the rotation poset, where rotations are certain trading cycles (i.e., symmetric difference of

certain pairs of stable matchings). This, together with the fact that optimization problem over upper

sets of posets can be solved efficiently (Picard, 1976), is the backbone of many fast algorithms for

optimizing over the set of stable matchings (see, e.g., Gusfield, 1987; Irving, Leather, and Gusfield,

1987), including our results in Chapter 2 and Chapter 3.

Choice functions. Note that in the description of the worker-proposing deferred acceptance al-

gorithm, the firms to which workers propose to, and the workers who firms temporarily accept,

both depend on their preference lists and quotas. Equivalently, one can encode these decision rules

via choice functions, which is a function which picks a team that each agent prefers the best from

a given set of potential partners. This leads to a generalization of the stable assignment problem,

which is referred to as the stable assignment problem under choice functions, where agents in the

market are endowed with choice functions instead of quotas and preference lists. We study such
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models in Chapter 3 and Chapter 4.

Such a generalization allows the stable assignment model to be used for applications with

more complex decision rules, which preference lists and quotas alone do not capture. Many such

markets have been studied in the literature (see, e.g., Echenique and Yenmez, 2015; Aygün and

Turhan, 2016; Kamada and Kojima, 2015) and here we highlight some examples: in the case of

labor market, firms might want to hire a group of employees that is as diverse as possible; in the

case of school choice, schools might be required by their districts to admit a cohort of students

whose demographic composition resembles that of the district; in the case of course allocation

where two sides of the market are students and courses, students might desire to select a group of

courses that covers as many topics as possible.

In the stable matching literature, choice functions are often assumed to be substitutable and

consistent, as they are necessary and sufficient conditions to guarantee the existence of stable

matchings (see, e.g., Aygün and Sönmez, 2013; Hatfield and Milgrom, 2005; Roth, 1984a). Infor-

mally speaking, substitutability states that whenever an agent is selected from a pool of candidates,

(s)he will also be selected from a subset of the candidates; and consistency is also called “irrel-

evance of rejected contracts”, which means removing rejected candidates from the input will not

change the output. The formal definitions can be found in Section 3.2.2. The existence result is

similarly proved by an algorithm, which can be viewed as a generalization of the deferred accep-

tance (Roth, 1984a). Although substitutability and consistency imply existence, when only these

two conditions are assumed, the set of stable matchings might not form a distributive lattice (Blair,

1988).
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Chapter 2: Legal Assignments and fast EADAM with consent via classical

theory of stable matchings

2.1 Introduction

One of the most important applications of matching theory, the school choice problem, consid-

ers the assignment of high school students to public schools. After the pioneering work of Abdulka-

diroğlu and Sönmez (2003), many school districts, such as New York City and Boston, adopted the

student-optimal stable mechanism for its fairness (no priority violation or stability) and strategy-

proofness (for students). The mechanism asks students to report their (strict) preferences of the

schools and schools to report their priorities1 (preferences with ties) over the students. It then ran-

domly breaks ties in the latter to obtain an instance of the stable assignment problem and performs

Gale-Shapley’s deferred acceptance algorithm to obtain the student-optimal stable assignment.

Gale-Shapley’s algorithm embodies many desirable qualities an algorithm can have: it is simple,

elegant, runs in time linear in the size of the instance, and outputs an assignment that satisfies the

aforementioned strong properties. In our simulations, on random instances of the size of the New

York City school system, it terminates on average in less than 3 minutes (see Figure 2.2).

In this setting, schools are often perceived as commodities, and only students’ welfare mat-

ters. Hence, enforcing stability implies a loss of efficiency. Abdulkadiroğlu, Pathak, and Roth

(2009) demonstrate the magnitude of such efficiency loss with empirical data from the New York

City school system, where over 4,000 eighth graders in their sample could improve their assign-

ments if stability constraints were relaxed. Striving to regain this loss in welfare for the students,

many alternative concepts and mechanisms have therefore been introduced and extensively studied

1Priorities are preferences with ties, as schools usually rank students based on categorical information such as
demographics, test scores, etc.

11



(see e.g. Abdulkadiroğlu, Che, and Yasuda, 2015; Erdil and Ergin, 2008; Kesten, 2010; Troyan,

Delacrétaz, and Kloosterman, 2020; Morrill, 2016).

Those mechanisms lead to solutions outside the well-structured set of stable assignments. As

a consequence, ad-hoc structural studies and algorithms must be presented. Unfortunately, prop-

erties of the former and performance of the latter rarely match theory of and algorithms for stable

assignments (Kesten, 2010; Tang and Yu, 2014). For instance, Kesten’s Efficiency Adjusted De-

ferred Acceptance Mechanism (EADAM) (Kesten, 2010) (one of the main focuses of this chapter),

in our experiments, cannot terminate after 24 hours of computation, on average, on random in-

stances of similar size as the New York City high school system. This algorithmic inefficiency

harms the applicability of such mechanisms to real-world instances, especially if policy designers

want to run them multiple times either as a subroutine in a more complex mechanism (Ashlagi and

Nikzad, 2016; Erdil and Ergin, 2008).

The goal of this chapter is to show how certain concepts, introduced in the literature to regain

the loss of welfare caused by stability constraints, can be fully understood through the lens of

classical theory of stable assignments. Moreover, we show that this better understanding leads to

theoretically and practically faster algorithms, as well as extensions and new connections within

this classical theory. We believe that our results can stimulate further applications of those con-

cepts, as well as future theoretical research. The two topics that we study in depth are legal assign-

ments (Morrill, 2016) and EADAM with consent (Kesten, 2010). Let us therefore introduce them

next.

Legal Assignments. Legality gives an alternative interpretation of fairness, in an attempt to elim-

inate the tension between stability and efficiency. The stability condition prohibits, in the assign-

ment chosen, the existence of a student-school pair that prefer each other to their assigned partners.

Such pairs are called blocking pairs. Therefore, stability makes sure that no student is harmed, and

thus no student has the justification to take legal action against the public school system. However,

Morrill observed that legal standing, as interpreted by the United States Supreme Court, is not ex-
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actly the same as prohibiting blocking pairs (Morrill, 2016). Specifically, in order for a student to

have legal standing, not only must he be harmed (i.e., forming a blocking pair with a school), this

harm also must be redressable. That is, there must be an assignment that is accepted as feasible

under which the student is assigned to the school.

With this interpretation, an institution is safe from legal actions if the set L of assignments that

are considered feasible has the property that if a student-school pair blocks an assignment from L,

then this pair is not matched in any assignment from L (internal stability). On the other hand, in

order to justify the exclusion of an assignment M from the set L, there must be a pair that blocks

M and is matched in some assignment from L (external stability). Following Morrill, we call a set

L with those properties legal. Note that every legal set contains the set of stable assignments. We

illustrate this concept with an example.

Example 2.1. Here and throughout the chapter, one side of the partition is called students and the

other is called schools. In this example, we also assume that each school can admit at most one

student. Consider the instance with preference lists given below.

student 1: A B C school A: 2 3 1

student 2: B A school B: 1 2

student 3: A C school C: 3 1

Below, we list all five maximal matchings. Note that it is sufficient to consider only maximal

matchings because if a matching is not maximal, it cannot be in a legal set. We also list the blocking
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pairs each matching admits. In this instance, M1 is the only stable matching.

# maximal matching blocking pairs

M1 1B, 2A, 3C ∅

M2 1A, 2B, 3C 3A

M3 1B, 3A 2A

M4 1C, 2B, 3A 1B

M5 1C, 2A 1B, 2B, 3C

We now construct a digraph below with each maximal matching as a vertex. We add an arc

(M,M ′) if and only if matching M blocks matching M ′ where we say a matching M blocks M ′ if

M contains an edge that is a blocking pair for M ′.

M2

M1
M4

M5

M3L

By the definition of legality, we claim that, in this instance, the set L = {M1,M2} (circled

above) is a legal set since it satisfies both internal and external stability. This is because M1 and

M2 do not block each other, while all other matchings are blocked by at least one of M1 and M2.

AlthoughM2 is not stable, the harm due to blocking pair (3, A) is not redressable given that student

3 is not matched to school A in any matching from the set L. Moreover, every student is weakly

better off in M2 compared to in M1. △

From the example, one can see that relaxing stability to legality allows us to extend the set

of feasible assignments, while maintaining a certain level of fairness. As we will show in Sec-

tion 2.10, the increase in the size of the feasible set can be very significant. Morrill (2016) observed

that, in the present setting, legality coincides with the concept of von Neumann-Morgenstern sta-
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bility (Von Neumann and Morgenstern, 1953) in game theory under an appropriate definition of

dominance. This has been investigated in the one-to-one case by Wako (2010). Morrill (2016)

also showed that every one-to-many instance has a unique legal set L. Moreover, assignments in

L form a lattice under the classical dominance relation. By standard arguments, this implies the

existence of a student-optimal legal assignment, which Morrill (2016) showed is Pareto-efficient

for students and can be found using Kesten’s EADAM (Kesten, 2010).

EADAM with consent. Recall that EADAM stands for Efficiency Adjusted Deferred Acceptance

Mechanism. As the name implies, it aims at regaining the efficiency lost due to stability constraints.

EADAM again achieves efficiency improvement without creating legal concerns, and it does so by

obtaining students’ consent to allow for certain blocking pairs. More specifically, starting from

the student-optimal stable assignment, EADAM iteratively asks for certain students’ consent to

allow the removal of certain schools from their preference lists, and then re-runs Gale-Shapley’s

algorithm. This removes the possibility that certain student-school pairs act as blocking pairs. We

defer a detailed description to later sections, and illustrate here a number of properties (showed by

Kesten (2010) and Tang and Yu (2014)) that make EADAM attractive for school choice.

If a student is asked to give consent, whether he consents or not, his assignment will not change

and thus, no student has the incentive to not consent, and no student is harmed under EADAM.

Moreover, EADAM outputs an assignment that is constrained efficient. That is, this assignment

does not violate any nonconsenting students’ priorities (i.e., no nonconsenting student is part of a

blocking pair), but any other assignment that is weakly preferred by all students does. When all

students consent, the output is therefore Pareto-efficient.

Although EADAM is not strategy-proof (i.e., a student can misstate his preference list in order

to be assigned to a better school), Kesten (2010) remarked that violation of strategy-proofness

does not necessarily imply easy manipulability in practice (see, e.g., Roth and Peranson, 1999), as

agents usually do not have complete information about the preferences of other agents in the market

and are thus unlikely to engage in potentially profitable strategic behaviors (Roth and Rothblum,
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1999). Kesten (2010) also proved that any mechanism that improves over the student-optimal

stable mechanism either violates some nonconsenting students’ priority or is not strategy-proof.

Although both EADAM and legal assignments have been further analyzed and extended by

several authors (see, e.g., Dur, Gitmez, and Yılmaz, 2015; Ehlers and Morrill, 2020; Troyan,

Delacrétaz, and Kloosterman, 2020; Afacan, Aliog̈ulları, and Barlo, 2017; Tang and Zhang, 2017),

our knowledge of those two concepts is far from complete. In particular, the knowledge that legal

assignments form a lattice gives little information on how to exploit it for algorithmic purposes,

e.g., how to find the legal assignment that maximizes some linear profit function2. Moreover, little

is known on how to exploit the structure of legal assignments to obtain the output of EADAM

when not all students consent, since the assignment output by the algorithm may not be legal.

2.1.1 Main Results

Our first contribution addresses the structure of legal assignments. We prove in Section 2.3

that the set of legal assignments coincides with the set of stable assignments in a subinstance

of the original one. That is, we can describe the set of legal assignments exactly as a set of

stable assignments in a subinstance. We also show, by building on our approach and on results

by Ehlers and Morrill (2020), that legal assignments coincide with the set of stable assignments in

a subinstance for the more general case where school preferences are represented by substitutable

and consistent choice functions. We defer details to Section 2.3 and to the appendix.

As our second contribution, in Section 2.7 we show how to obtain the aforementioned subin-

stance in time linear in the number of edges of the input. Hence, in order to solve an optimization

problem over the set of legal assignments (e.g., to find the already mentioned school-optimal, or

other assignments of interest such as the egalitarian, profit-optimal, minimum regret), one can

resort to the broad literature on algorithms developed for the same problem on the set of stable

2Indeed, even though Birkhoff’s representation theorem (Birkhoff, 1937) implies that there is a bijection between
the elements of a distributive lattice and the closed sets of an associated poset, it is not clear how to use this information
algorithmically. A typical example are strongly stable matchings, which have been known for a long time to form a
distributive lattice (Manlove, 2002), but only recently was this structure exploited for algorithmic purposes (Kunysz,
Paluch, and Ghosal, 2016). See Chapter 3 for sufficient conditions on algorithmic exploitation of Birkhoff’s theorem.
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assignments (see e.g., Manlove (2013) for a collection of those results). Since the worst-case

running time of those algorithms is at least linear in the number of the edges, the complexity of

the related problems over the set of legal assignments does not exceed their complexity over the

set of stable assignments. To achieve this second contribution, we rely on the concept of meta-

rotations (Bansal, Agrawal, and Malhotra, 2007a) and develop a symmetric pair of algorithms

in Section 2.6, which we name student-rotate-remove and school-rotate-remove, that re-

spectively find the school-optimal and student-optimal legal assignments.

Our third contribution is a fast algorithm for EADAM with consent. Algorithmic results above

imply that, when all students consent, EADAM can be implemented as to run with the same time

complexity as that of Gale-Shapley’s, which is linear in the number of edges of the input. How-

ever, when only some students consent, the output of EADAM may no longer be legal (see Exam-

ple 2.30). We show in Section 2.8 how to modify school-rotate-remove to produce the output

of EADAM, again within the same time bound as Gale-Shapley’s. Hence, for two-sided matching

markets, if one were to switch from the currently widely used deferred acceptance mechanism to

EADAM, the computational time required to obtain a solution would not significantly increase.

Computational tests on random instances performed in Section 2.8.4 confirm that our algorithms

run significantly faster in practice.

As our last contribution, we show that when relaxing stability to legality, we can greatly in-

crease the number of feasible matchings. We show one-to-one instances that have only one stable

matching, but exponentially many (in the number of agents) legal matchings. This is achieved by

an exploration of the connection between Latin marriages introduced by Benjamin, Converse, and

Krieger (1995) and legal matchings. We defer details to Section 2.10.

Our algorithm implementations for (1) finding student-optimal and school-optimal legal assign-

ments and obtaining the legal subinstance; and (2) EADAM with consent can be found online3.

3(1). https://github.com/xz2569/LegalAssignments. (2). https://github.com/xz2569/FastEADAM.
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2.1.2 Literature Review

There is a vast amount of literature on mechanism design for the school choice problem,

balancing the focus among strategy-proofness, efficiency, and stability. From a theoretical per-

spective, Ergin (2002) shows that under certain acyclicity conditions on the priority structure, the

student-optimal stable assignment is also Pareto-efficient for the students. Kesten (2010) interprets

these cycles as sets of interrupting pairs (see Section 2.8.1 for a formal definition) and proposes

EADAM, which improves efficiency by obtaining students’ consent to waive their priorities.

Extending upon Kesten’s framework, many researchers offer new perspectives. Tang and Yu

(2014) propose a simplified version of EADAM, which repeatedly runs Gale-Shapley’s algorithm

after fixing the assignments of underdemanded schools. Bando (2014) shows an algorithm which

iteratively runs Gale-Shapley’s algorithm after fixing the assignments of the set of last proposers.

Bando (2014) also shows that when restricting to the one-to-one setting, his algorithm finds the

student-optimal matching in the von Neumann-Morgenstern (vNM) stable set. vNM stable set is a

concept proposed by Von Neumann and Morgenstern (1953) for cooperative games. The definition

of vNM stable set requires an irreflexive dominance relation among outcomes in the set.

For the stable assignment problem, the definition of legal assignments in Morrill (2016) cor-

responds to vNM stable set under the dominance relation dom, where assignment M1 dom M2 if

M1 blocks M2. Under this dominance relation, results from Ehlers (2007) and Wako (2010) show

existence and uniqueness of the vNM stable set in the one-to-one setting. Morrill (2016) further

proves the existence and uniqueness results in the one-to-many setting, as well as the fact that the

vNM stable set has a lattice structure. Morrill (2016) is superseded by Ehlers and Morrill (2020),

where the concept of legality and the above-mentioned results are generalized to the setting where

schools’ preferences are specified by substitutable choice functions that satisfy the law of aggre-

gate demand. To the best of our understanding, results from Ehlers and Morrill (2020) do not have

any implication in the stable assignment setting, other than those that already follow from Mor-

rill (2016), mentioned above. Interestingly, Ehlers and Morrill (2020) also investigate a different

dominance relation dom′ (which they call “vNM-blocks”) and observe that dom and dom′ lead to
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different vNM stable sets.

Wako (2010) presents an algorithm that finds the man- and woman-optimal matchings in the

vNM stable set (under the dominance relation dom defined above) in the one-to-one case, and

shows that the vNM stable set coincides with the set of stable matchings in another instance.

When restricted to the one-to-one case, our algorithms from Section 2.6 essentially projects to that

of Wako (2010), as Wako (2010) also obtains, e.g., the woman-optimal legal matching by starting

from the woman-optimal stable matching and iteratively finding rotations and eliminating edges.

However, our approach is different because, unlike Wako (2010), we show that legal assignments

are stable assignments in a subinstance before and independently of the algorithm for finding them.

Even when restricted to the one-to-one case, this allows for a more direct derivation and, we be-

lieve, a more intuitive understanding of the algorithm, and a simpler and shorter proof overall.

Moreover, as Wako (2010) points out, his results do not have either structural or algorithmic im-

plications for the vNM stable set in the one-to-many setting, and he actually poses as an open

question to construct an algorithm to produce such assignments.

Our results answer this open question and allow us to also characterize legal assignments in the

more general setting of Ehlers and Morrill (2020). We remark that, although there is a standard

reduction from one-to-many instances to one-to-one instances (Gusfield and Irving, 1989; Roth

and Sotomayor, 1990) such that the set of stable assignments of the former and the set of stable

matchings of the latter correspond, this one-to-one mapping fails for the set of legal assignments

(see Example 2.4). So we need to directly tackle the one-to-many setting.

2.2 Model and Notations

For n ∈ N, we denote by [n] the set {1, . . . , n}. All (di)graphs in this chapter are simple. All

paths and cycles in (di)graphs are therefore uniquely determined by the sequence of nodes they

traverse, and are denoted using this sequence, e.g., a0, b0, a1, b1, · · · . The edge connecting two

nodes a, b in an undirected graph is denoted by ab. For a graph G, we denote by V (G) and E(G)

its set of vertices and set of edges respectively. For v ∈ V (G), we let degG(v) denote the degree
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of v (i.e., the number of adjacent vertices of v) in G. For a graph G(V,E) and F ⊆ E, we denote

by G[F ] := G(V, F ). A singleton of a graph is a node of degree 0. For sets S, S ′, S△S ′ denotes

their symmetric difference. A sink of a digraph is a node of outdegree 0.

An instance of the stable assignment problem is a triple (G,<,q) with G = (A∪B,E), where

G is a bipartite graph with bipartition (A,B), < denotes the set {<v}v∈A∪B, with <v being a strict

ordering of the neighbors of v in G, and q = {qb}b∈B ∈ NB denotes the maximum number of

vertices in A that can be assigned to each b ∈ B. qb is called the quota of b. Elements of A are

referred to as students and elements of B are referred to as schools. For x, y, y′ ∈ A ∪ B with

xy, xy′ ∈ E we say x strictly prefers y to y′ if y >x y
′, and we say that x (weakly) prefers y to

y′ and write y ≥x y′ if y >x y
′ or y = y′. For all xy ∈ E, we assume y >x ∅. That is, the fact

that ab is an edge in E means that a prefers to be assigned to b than to be unassigned and b prefers

to accept a than to accept fewer than qb students. When q is the vector all of 1’s, we speak of an

instance of the stable marriage problem, and denote it by (G,<). In this case, elements of A are

referred to as men and elements of B are referred to as women.

An assignment M for an instance (G,<,q) is a collection of edges of G such that: at most one

edge of M is incident to a for each a ∈ A; at most qb edges of M are incident to b for each b ∈ B.

For x ∈ A ∪ B, we write M(x) = {y : xy ∈M}. When M(x) = {y}, we often think of M(x) as

an element instead of a set and write M(x) = y. For ab ∈ E and an assignment M , we call ab a

blocking pair for M if student a prefers school b to his currently assigned school (i.e., b >a M(a))

and school b either has empty seats (i.e., |M(b)| < qb) or it prefers student a to someone who is

currently occupying a seat at school b (i.e., a >b a
′ for some a′ ∈ M(b)). In this case, we say that

ab blocks M , and similarly, we say that M ′ blocks M for every assignment M ′ containing edge

ab4. An assignment is stable if it is not blocked by any edge of G.

We let M(G,q) be the set of all assignments of (G,<,q), and let S(G,<,q) be the set of

all stable assignments of (G,<,q). For a subgraph G′ of G, we denote by (G′, <,q) the stable

assignment instance whose preference lists are those induced by < on G′ and quotas are those

4This notion of an assignment blocking another assignment is not standard, and is adopted from (Morrill, 2016).

20



obtained by restricting q to nodes in G′. We say that a student-school pair (a, b) is a stable pair if

there exists a stable matching M ∈ S(G,<,q) in which student a is assigned to school b. In such

cases, we also say that a is a stable partner of b.

Every instance has at least one stable assignment. Algorithms proposed by Gale and Shapley

(1962) output special stable assignments. The following theorem collects results from Gale and

Shapley (1962) and Gusfield and Irving (1989).

Theorem 2.2. The student-proposing Gale-Shapley’s algorithm outputs a stable assignment M0

that is optimal for the students: for any stable assignment M ∈ S(G,<,q), every student a

prefersM0 toM (i.e.,M0(a) ≥a M(a)). Similarly, the school-proposing Gale-Shapley’s algorithm

outputs a stable assignment Mz that is optimal for the schools. Moreover, Mz is student-pessimal:

for any stable assignment M ∈ S(G,<,q), every student a prefers M to Mz (i.e., M(a) ≥a

Mz(a)).

2.3 Legal Assignments are Stable Assignments in Disguise

For an instance (G,<,q) of the stable assignment problem and a set of assignments M′ ⊆

M(G,q), define I(M′) as the set of assignments that are blocked by some assignment fromM′.

We say a set of assignmentsM′ has the legal property if no assignment fromM′ is blocked by

any assignment fromM′ (internal stability), and every assignment not inM′ is blocked by some

assignment fromM′ (external stability). These two requirements can be summarized as a fixed-

point condition: I(M′) = M(G,q) \ M′. In this case, we say that (M′, I(M′)) is a legal

partition ofM(G,q). We show the following theorem.

Theorem 2.3. Let (G,<,q) be an instance of the stable assignment problem. There exists a

unique set of assignments L ⊆M(G,q) that has the legal property. This set coincides with the set

of stable assignments in (GL, <,q), where GL is a subgraph of G induced by all and only edges

that are in some assignment from L. That is,

E(GL) =
⋃
{M :M ∈ S(GL, <,q)} =

⋃
{M :M ∈ L}
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As observed by Gusfield and Irving (1989) and Roth and Sotomayor (1992), a stable assign-

ment instance (G,<,q) can be transformed into a stable marriage instance (HG, <G) via the fol-

lowing well-known reduction so that there is a one-to-one correspondence between stable assign-

ments in (G,<,q) and stable matchings in (HG, <G). For each school b ∈ B, create qb copies

b1, . . . , bqb of b, and replace b in the preference list of each adjacent a ∈ A by the qb copies in ex-

actly this order. The preference list of each bi is identical to the preference list of b. We call these

copies seats of the schools and denote their collection byBH . With this reduction, we can construct

a map π :M(G,q)→M(HG,1) that induces a bijection between S(G,<,q) and S(HG, <G,1).

Given M ∈ M(G,q), assume for some b ∈ B, M(b) = {a1, . . . , aj} and a1 >b a2 >b · · · >b aj .

Define π(M)(bi) = ai for i ∈ [j] and π(M)(bi) = ∅ for i = j+1, . . . , qb. For the sake of shortness,

we often abbreviate MH = π(M).

One could think of proving Theorem 2.3 by showing the (simpler) results for the instance

(HG, <G), and then deducing the set of legal assignments of (G,<,q) from the set of legal match-

ings of (HG, <G). Unfortunately, the bijection between stable assignments and stable matchings

does not extend to the legal setting, as we demonstrate in Example 2.4 below.

Example 2.4. Consider an instance with 4 students and 2 schools, each with 2 seats. Let ai, bi, b
j
i

represent students, schools, and seats respectively. The preference lists are given as follows. Since

it is clear whose preference list we are referring to, the subscript in > is dropped.

a1 : b1 > b2 b1 : a3 > a4 > a2 > a1

a2 : b2 > b1 b2 : a2 > a4 > a3 > a1

a3 : b2 > b1

a4 : b1 > b2

Since all preference lists are complete, we can restrict our attention to the 6 assignments where

all students are matched. One can easily verify that M = {a1b1, a2b2, a3b2, a4b1} is the only stable

assignment, and all other assignments are blocked by some edge in M . Thus, L = {M}. Now,
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consider the reduced stable marriage instance. The preference lists can be expanded:

a1 : b11 > b21 > b12 > b22 b11 : a3 > a4 > a2 > a1

a2 : b12 > b22 > b11 > b21 b21 : a3 > a4 > a2 > a1

a3 : b12 > b22 > b11 > b21 b12 : a2 > a4 > a3 > a1

a4 : b11 > b21 > b12 > b22 b22 : a2 > a4 > a3 > a1

The corresponding matchings and their blocking pairs are:

matchings blocking pairs classification

M1H {a1b21, a2b11, a3b22, a4b12} a2b
1
2, a2b

2
2, a4b

1
1, a4b

2
1 illegal

M2H {a1b21, a2b12, a3b11, a4b22} a4b
2
1 legal

M3H {a1b21, a2b12, a3b22, a4b11} none stable

M4H {a1b22, a2b21, a3b11, a4b12} a2b
1
2, a2b

2
2, a3b

2
2, a4b

2
1 illegal

M5H {a1b22, a2b21, a3b12, a4b11} a2b
1
2, a2b

2
2 illegal

M6H {a1b22, a2b12, a3b11, a4b21} a3b
2
2 illegal

M3H is the only stable matching. All other matchings except for M2H are blocked by some

edge in M3H (underlined). Hence, one easily verifies that {M2H ,M3H} has the legal property and

π−1(M3H) =M but π−1(M2H) ̸=M . △

The proof of Theorem 2.3 presented in this section relies on the following result (Theorem 2.5)

by Morrill (2016). In Section 2.4, we present an alternative proof of Theorem 2.3, which is self-

contained and does not rely on Theorem 2.5.

Theorem 2.5. Let (G,<,q) be an instance of the stable assignment problem. There exists a unique

set of assignments L ⊆M(G,q) that satisfies the legal property.

For a stable assignment instance (G,<,q), we denote byL(G,<,q) ⊆M(G,<,q) the unique

set of assignments that satisfies the legal property. Moreover, we call L(G,<,q) the set of legal

assignments of instance (G,<,q). We say that an edge e ∈ E(G) is legal if it is contained in some
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assignment from L(G,<,q), and is illegal otherwise.

For the rest of the section, we fix a stable assignment instance (G,<,q) with G = (A ∪B,E)

and letM :=M(G,q) be the set of assignments, L := L(G,<,q) be the set of legal assignments,

I :=M\L be the set of illegal assignments, Ē :=
⋃
{M :M ∈ L} be the set of legal edges, and

GL := G[Ē] be the subgraph with the illegal edges removed. Next lemmas show that illegal edges

can be removed from G without modifying the set of legal assignments.

Lemma 2.6. Let e be an illegal edge. Removing the edge e from the instance does not change the

set of legal assignments. That is, L = L(G̃, <,q), where G̃ := G[E \ {e}].

Proof. Let Me := {M ∈ M : e ∈ M} be the set of assignments that contain the illegal edge

e and let M̃ := M(G̃,q) be the set of all assignments of the instance (G̃, <,q). Note that

M̃ =M\Me. Moreover, all legal assignments are assignments of the instance (G̃, <,q) since

e is an illegal edge: L ⊆ M̃. Hence, (L,M̃ \ L) is a partition of M̃. We show next that it is

also a legal partition. To see this, first note that any two assignments M1,M2 ∈ L do not block

each other, since L is the set of legal assignments of the original instance. Next, consider any

assignment M ′ ∈ M̃ \ L. Then, M ′ is an illegal assignment in the original instance and must be

blocked by some assignment in L. Thus, together with the uniqueness of the legal partition given

by Theorem 2.5, we conclude that L(G̃, <,q) = L. ■

Lemma 2.7. The set of legal assignment does not change after removing all illegal edges. That is,

L = L(GL, <,q).

Proof. Let e1, e2, · · · , ek be an ordering of the illegal edges and for i = 1, 2, · · · , k, letGi := G[E\

{e1, e2, · · · , ei}] be a sequence of subgraphs obtained after successively removing illegal edges.

Observe thatGk = GL. By Lemma 2.6, we have L(G1, <,q) = L and thus, by definition of illegal

edges, edges e2, · · · , ek remain illegal in instance (G1, <,q). Therefore, applying Lemma 2.6

again to (G1, <,q), we have L(G2, <,q) = L(G1, <,q) = L. Iterating the process, we can

conclude that L(GL, <,q) = L(Gk, <,q) = L(Gk−1, <,q) = · · · = L. ■
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Lemma 2.8. Once all illegal edges have been removed, the set of stable assignments coincides

with the set of legal assignments: S(GL, <,q) = L(GL, <,q).

Proof. The direction S(GL, <,q) ⊆ L(GL, <,q) is clear, since a stable assignment is not blocked

by any other assignment. For the other direction, let M ∈ L(GL, <,q) be a legal assignment of

the instance (GL, <,q). Then M is not blocked by any assignment in L(GL, <,q) due to internal

stability. Since every edge in E(GL) appears in at least one assignment in L(GL, <,q), M admits

no blocking pair in GL and thus is stable in the instance (GL, <,q). This concludes the proof. ■

Proof of Theorem 2.3. Immediately from Theorem 2.5, Lemma 2.7, and Lemma 2.8. ■

The approach developed in this section can be extended to the more general setting studied

in Ehlers and Morrill (2020), where schools’ preferences are represented by certain choice func-

tions. In particular, Theorem 2.3 also holds in this setting. We defer details to Appendix A.1.

We have shown that legal assignments are stable assignments in GL. Since there might be

an exponential number of legal assignments, one cannot expect to construct GL efficiently by

explicitly listing all the legal assignments. Instead, the main tool we use is an efficient mechanism

in identifying legal and illegal edges, which is developed in Section 2.6. Before we introduce this

algorithm, we need some more properties of stable assignments, which we introduce in Section 2.5.

2.4 Self-Contained Proof of Theorem 2.3

In this section, we present a proof of Theorem 2.3 that builds only on “classical” concepts

of stable matchings introduced in Chapter 1. Recall that M := M(G,q) denotes the set of all

assignments of the instance (G,<,q) and for a set of assignmentsM′ ⊆M, I(M′) is defined as

the set of assignment that are blocked by some assignment fromM′. The proof of Theorem 2.3

relies on the study of the fixed points of a function L applied to S := S(G,<,q), where L(M′) is

defined as the set of assignments that are not blocked by any assignment inM\ I(M′). That is,

L(M′) :=M\ I
(
M\ I(M′)

)
5.

5We adapt the function L from a similar operator introduced in Morrill (2016).
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In order to get some intuition about the L operator, let L0 := S and iteratively define Li :=

L(Li−1) for i ∈ N. In addition, let I i := I(Li). Clearly, any set of assignments that satisfies

the legal property must contain S, and as a result, must not contain any assignment from I0.

Therefore, if an assignment is only blocked by assignments in I0, it is contained in every set of

assignments that satisfies the legal property. All such assignments, together with those in L0, give

exactly L1. Similarly, we can enlarge L1 to L2, etc. As Morrill (2016) also observed, the sequence

L0,L1,L2, · · · converges.

Lemma 2.9. There exists k ∈ N such that Lk = Lk+1.

Proof. We show by induction on i that Li ⊆ Li+1, which concludes the proof since the set of

assignments is finite. For the base case, clearly L0 = S ⊆ L1. For the inductive step, fix i ∈ N.

Since Li−1 ⊆ Li, we deduce I i−1 ⊆ I i and therefore, I(M\ I i) ⊆ I(M\ I i−1). Hence,

Li+1 = L(Li) =M\ I(M\ I i) ⊇M\ I(M\ I i−1) = Li.

■

Example 2.10. Consider the instance given in Example 2.1. We have L0 = S = {M1}. Since M1

blocks M3, M4, and M5, we have I0 = I(L0) = {M3,M4,M5}. Note that M2 is only blocked

by M3 and M4, both of which are in I0. Thus, M2 ∈ L(L0) and L1 = {M1,M2}. Repeating the

process again, we can see that I1 := I(L1) = {M3,M4,M5} and L2 = {M1,M2}. The sequence

thereafter stabilizes. △

Fixed points of L are stable assignments. We want therefore to study the set to which the se-

quence L0,L1,L2, · · · stabilizes. One key observation is that every fixed point of L coincides with

the set of stable assignments in some subinstance of the original problem. Although simple, this

observation has dramatic consequences. In particular, we can now rely on all the structural knowl-

edge on stable assignments. This distinguishes our approach from that of Morrill (2016), where

properties of legal assignments are developed independently from those of stable assignments.
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Lemma 2.11. Assume M0 ⊆ M is a set of assignments that satisfies L(M0) = M0. Then,

M0 = S(G′, <,q), where G′ := G[E ′] and E ′ :=
⋃
{M :M ∈M \ I(M0)}.

Proof. Let M ∈ M \ M0 be an assignment not in M0. Then, M /∈ L(M0) and thus, there

is an assignment M ′ ∈ M \ I(M0) and an edge e ∈ M ′ that blocks M . Note that e ∈ E ′ by

definition of E ′. Therefore, M /∈ S(G′, <,q). This shows S(G′, <,q) ⊆ M0. Conversely, let

M ∈ M \ S(G′, <,q) be an assignment of the original instance that is not stable in (G′, <,q).

If M is also an assignment in the subinstance (i.e., M ∈ M(G′,q)), then M is blocked by some

edge e ∈ E ′. This means that an assignment inM\I(M0) blocks M , implying that M /∈ L(M0)

and thus, M /∈ M0. If M is not an assignment in the subinstance (i.e., M /∈ M(G′,q)), then M

contains an edge that is not in E ′. This implies M ∈ I(M0) and thus M /∈ L(M0) =M0. ■

Assignments that do not block each other. Besides properties of stable assignments, we will

also use properties of assignments that do not block each other. Those facts are established in the

next two lemmas. They can be seen as an extension of the “opposition of interest” property: if a

and b are partners in a stable assignment M , then they cannot both strictly prefer another stable

assignment M ′ to M Gusfield and Irving, 1989, Theorem 1.3.1.

Lemma 2.12. Consider an instance of stable marriage problem (G,<) with G = G(A ∪ B,E).

Let M,M ′ ∈M(G,1) be two matchings of the instance. We say an edge ab ∈M ∪M ′ is irregular

if both a and b strictly prefer M to M ′ or both strictly prefer M ′ to M . Suppose M does not block

M ′ and M ′ does not block M . Then:

1) there are no irregular edges;

2) G[M△M ′] is a disjoint union of singletons and cycles;

3) a node is matched in M if and only if it is matched in M ′.

Proof. 1) Assume a1b1 is an irregular edge and assume wlog both endpoints strictly prefer M to

M ′. Then a1b1 ∈ M ′, because otherwise M blocks M ′. Starting from i = 2, iteratively define

27



ai = M(bi−1) and bi = M ′(ai). Repeatedly using the assumption that M and M ′ do not block

each other, we deduce that, for all i ≥ 2, ai strictly prefers M ′ to M , and vice versa bi strictly

prefers M to M ′. Moreover, ai ̸= ∅ and bi ̸= ∅. Since M and M ′ are matchings, there exists ℓ ≥ 2

such that aℓ = a1. Hence, a1 = aℓ strictly prefers M ′ to M , which is a contradiction.

2) Note that the degree of each node in G[M△M ′] is at most 2. Suppose the thesis does not

hold, then G[M△M ′] contains a path, say wlog a1, b1, a2, b2, · · · , whose endpoints have degree 1

inG[M△M ′]. Assume wlog that a1b1 ∈M ′. Since a1 is unmatched inM , a1 strictly prefersM ′ to

M . In addition, since a1b1 ∈M ′ does not block M , b1 strictly prefers M to M ′. We can iterate and

conclude, similarly to part 1), that all nodes ai strictly prefer M ′ to M , and vice versa all nodes bi

strictly prefer M to M ′. Suppose first that akbk is the last edge of the path. Then bk strictly prefers

M ′ to M as akbk ∈M ′ and M(bk) = ∅, which is a contradiction. Similarly, if instead the last edge

is bkak+1, ak+1 strictly prefers M as ak+1 is unmatched in M ′. This is again a contradiction.

3) Immediately from 2). ■

Lemma 2.13. Let (G(A ∪ B,E), <,q) be an instance of the stable assignment problem. Let

M,M ′ ∈ M(G,q) be two assignments such that M does not block M ′ and M ′ does not block

M , Let a ∈ A be a student matched in M . Then a is matched in M ′. Let therefore b = M(a),

b =M ′(a). If b >a b, then there exists a ∈M(b) such that a >b a and b >a M
′(a).

Proof. Let MH = π(M) and M ′
H = π(M ′), where π is the mapping defined in Section 2.3. In

order to show that a is matched in M ′, we first prove that M ′
H and MH do not block each other.

It then follows from Lemma 2.12, part 3) and the definition of mapping π that a is matched in

M ′. Assume therefore by contradiction that there exists ābi ∈ M ′
H that blocks MH . That means

bi >ā MH(ā) and ā >bi MH(b
i). If MH(ā) = bj1 and b1 ̸= b, then b >ā M(ā) and ā >b a

′ for some

a′ ∈ M(b). Therefore, āb ∈ M ′ blocks M , which is a contradiction. So assume MH(ā) = bj for

some j ∈ [qb]. Since bi >ā b
j , we have j > i by construction of (HG, <G). Then, by the definition

of mapping π, MH(b
i) >b MH(b

j) = ā, which is again a contradiction.

To show the second statement, let bi := M ′
H(a) and bℓ := MH(a). Because of what is shown

above, we can apply Lemma 2.12, part 2) and conclude that there exists a cycle C = a, bℓ, ..., bi
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in HG[M
′
H△MH ], and this cycle has no irregular edges. Since bℓ >a b

i, (i) all nodes from A ∩ C

strictly prefer MH to M ′
H , and vice-versa (ii) all nodes from BH ∩ C strictly prefer M ′

H to MH .

Recall that BH is the collection of seats in the reduced instance (HG, <G). Let b
j ∈ C be a seat of

school b̄ such that the node of C ∩ BH that immediately precedes b
j

in C is not a seat of b, while

all nodes that follow bj in C ∩ BH are seats of b. Note that bj is well-defined, since b ̸= b and C

terminates with bi (hence possibly j = i) Let a :=MH(b
j), i.e., C = a, bℓ, · · · , a, bj, · · · , bi. Note

that by choice of b̄j , M ′(ā) ̸= b̄. By (i) above, bj = MH(a) >a M
′
H(a) and therefore, b >a M

′(a)

as required. Moreover, a = MH(b
j) <bj M

′
H(b

j) ≤bj M ′
H(b

i) = a, where the strict preference

follows from (ii) and the non-strict one follows from the definition of mapping π and (i). Hence,

a >b a, as required. ■

Edges of GL. For k ∈ N that satisfies Lemma 2.9, we let L := Lk. Let GL be the subgraph of G

induced by edges
⋃
{M : M ∈ M \ I(L)}6. Using Gale-Shapley’s algorithm and the structural

properties deduced so far, we next characterize edges of GL as all and only edges used by some

assignment in L.

Lemma 2.14. E(GL) =
⋃
{M :M ∈ L}.

Proof. The containment relationship E(GL) ⊇
⋃
{M : M ∈ L} is clear from definition. So it

suffices to show E(GL) ⊆
⋃
{M : M ∈ L}. Assume by contradiction that there exists an edge

ab ∈ E(GL) \
⋃
{M : M ∈ L}. Let M ∈ M \ I(L) be an assignment such that ab ∈ M . Let

M0 and Mz be the stable assignment output by the student- and school-proposing Gale-Shapley’s

algorithm in GL, respectively. Since L = L(L), we have M0,Mz ∈ L by Lemma 2.11. By

construction, ab /∈ M0 ∪Mz. In the following, when talking about a specific execution of Gale-

Shapley’s algorithm, we say that a rejects b if during the execution, a rejects the proposal by b,

possibly after having temporarily accepted it. We distinguish three cases.

Case a): b >a M0(a) =: b. By the choice of M , we know that M0 and M do not block

each other (in either (G,<,q) or (GL, <,q), as the preference lists are consistent), since both are
6Note that this definition of GL is different from the one given in the main body of the paper. However, results

from this section imply that the two definitions coincide.
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assignments inM\I(L). Note that this case contains all and only the edges of GL that have been

rejected by some (equivalently, any) execution of the student-proposing Gale-Shapley’s algorithm

on GL. Among all those edges, let ab be the one that is last rejected by some execution of the

algorithm. Apply Lemma 2.13 (with M = M and M ′ = M0) and conclude that there exists

a ∈ M(b) such that b >a M0(a). This implies that b rejected a during the execution of Gale-

Shapley’s in consideration. Hence, when a proposes to b, either a still has to be rejected by b,

or it has been rejected before. In the latter case, when a proposes to b̄, b has her quota filled and

rejects some other student. Hence the following events happen in this order during the execution of

Gale-Shapley’s algorithm: a is rejected by b; a proposes to b; b rejects a student. This contradicts

our assumption that ab is the last rejected edge.

Case b): M0(a) >a b >a Mz(a). First, we want to show that there exists a stable assignment

M ′ such that M ′(a) >a b and a′ >b a for all a′ ∈M ′(b). Note that Lemma 2.19 implies sM0(a) ̸=

∅. Apply a (possibly empty) sequence of exposed rotations from M0 to obtain a stable assignment

M ′ ∈ S(GL, <,q) such that M ′(a) >a b >a sM ′(a) ≥a Mz(a). By definition of sM ′(a), we must

have a′ >b a for all a′ ∈M ′(b). Now, by choice of M , M and M ′ do not block each other. We can

therefore apply Lemma 2.13 (with the roles of M and M ′ inverted) and conclude that there exists

a ∈M ′(b) with a >b a, which is a contradiction.

Case c): Mz(a) >a b. Using Lemma 2.13 (with M = Mz and M ′ = M ) we deduce that

there exists ā ∈ Mz(b) such that a >b ā and b >ā M(ā) =: b̄. Hence, in some (equivalently,

any) iteration of the school-proposing Gale-Shapley’s algorithm, a rejects b. Since this is the last

case that still needs to be considered, we may assume edges E(GL) \
⋃
{M :M ∈ L} are exactly

those rejected by some execution of the school-proposing Gale-Shapley’s algorithm. Among all

such edges, take ab that is the last rejected by some execution. Applying Lemma 2.13 again (with

a = a, M = Mz, M ′ = M ), we know a >b a
′ for some a′ ∈ Mz(b). Recall that Mz(ā) = b ̸= b̄.

This implies that a rejected b during the execution of Gale-Shapley’s in consideration. Hence,

when b proposes to a, either b still has to be rejected by a, or it has been rejected before. In the

latter case, when b proposes to ā, a rejects the school it temporarily accepted. Hence, the following
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events happen during the considered execution in this order: a rejects b; b proposes to a; a rejects

a school, contradicting the choice of ab. ■

Concluding the proof. Once the previous facts have been established, concluding the proof of

Theorem 2.3 is quite straightforward.

Lemma 2.15. L has the legal property. That is, I(L) =M\L.

Proof. Clearly I(L) ⊆M\L. Now takeM ∈M\I(L). ThenM ⊆
⋃
{M ′ :M ′ ∈M\I(L)} =

E(GL). Hence, M is an assignment of GL not blocked by any assignment from L = S(GL, <,q),

where the last equality holds by Lemma 2.11. By Lemma 2.14, M is not blocked by any edge in

E(GL), and we conclude that M ∈ S(GL, <,q) = L. ■

Because of Lemma 2.15, we say that (L, I :=M\L) is a legal partition ofM.

Lemma 2.16. L is the unique subset ofM with the legal property.

Proof. Assume by contradiction that there exists a set L′ ⊆ M, L′ ̸= L with the legal property.

Let I ′ := M \ L′. If L ⊊ L′, we must have I ′ ⊊ I. Take any M ∈ I \ I ′, it must be blocked

by some assignment in L ⊊ L′. However, M ∈ L′, contradicting the assumption that L′ has the

legal property. Similarly, we cannot have L′ ⊊ L. Thus, sets A := {M : M ∈ I ∩ L′} and

B := {M : M ∈ L ∩ I ′} are both non-empty. In addition, let C := L ∩ L′. It is also non-

empty because all stable assignments are contained in any set with the legal property. In particular,

L0 ⊆ C. Note that every assignment in B is blocked by some assignment from A. Moreover, (†)

no assignments from A ∪ B can be blocked by any assignment from C. Now take the first i ∈ N

such that Li ∩ B ̸= ∅, and note that i ≥ 1. Let M ∈ Li ∩ B. All assignments blocking M must

be contained in I(Li−1). Thus, we can pick M ′ ∈ I(Li−1) ∩ A. Hence, M ′ is blocked by some

assignment in Li−1 ⊆ C (containment relation due to the choice of i), contradicting (†). ■

Proof of Theorem 2.3. Immediately from Lemmas 2.11, 2.14, 2.15, and 2.16. ■
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2.5 The Structure of Stable Assignments

In this section, we recall known results on structural properties of stable assignments and their

algorithmic consequences. Throughout the section, we fix a stable assignment instance (G,<,q),

with G = (A ∪B,E). Given two assignments M,M ′ ∈M(G,q), we say M (weakly) dominates

M ′, and write M ⪰ M ′, if every student a prefers M to M ′: M(a) ≥a M ′(a), ∀a ∈ A. If

moreover M ̸= M ′, we say that M strictly dominates M ′ and write M ≻ M ′. An assignment

M ∈ M(G,q) is said to be Pareto-efficient (for students) if there is no other assignment M ′ ∈

M(G,q) such that M ′ dominates M . The following fact is well-known (see, e.g., Gusfield and

Irving, 1989).

Theorem 2.17. The set of stable assignments S(G,<,q) endowed with the dominance relation

⪰ forms a distributive lattice. In particular, there exists stable assignments M0 and Mz such that

M0 ⪰M ⪰Mz for all stable assignment M ∈ S(G,<,q) (it is possible that M0 =Mz). M0 and

Mz are called the student-optimal and school-optimal stable assignment, respectively.

Note that the student-optimal (resp. school-optimal) stable assignment coincides with the one

output by Gale-Shapley’s algorithm with students (resp. schools) proposing, as described in Theo-

rem 2.2. Hence, the notation describing those assignments coincide.

Next, we introduce the concept of rotations in the one-to-many setting. Informally speaking,

a rotation exposed in a stable assignment M is a certain M -alternating cycle C such that M△C

is again a stable assignment. C has the property that every agent from one side of the bipartition

prefers M to M△C, while every agent from the other side prefers M△C to M . We can interpret

a rotation as a cycle of un-matches and re-matches with one side getting better and the other side

getting worse. Hence, rotations provide a mechanism to generate one stable assignment from

another, moving along the distributive lattice formed by the set of stable assignments.

Because of the different role played by the two sides of the bipartition, we distinguish between

school- and student-rotations. In the following, we present them jointly by choosing X to be one
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side of the bipartition and Y the other7. We extend the quota vector q to students by letting qa = 1

for each student a ∈ A.

For a stable assignment M ∈ S(G,<,q) and agent x ∈ X , let sM(x) be the first agent

y /∈M(x) on x’s preference list such that y prefers x to one of y’s partners (i.e., x >y x
′ for some

x′ ∈M(y)). If y := sM(x) exists, we must have that x prefers all of x’s partners over agent y (i.e.,

y′ >x y for all y′ ∈M(x)) since M is stable. If moreover |M(y)| = qy, define nextM(x) to be the

least preferred partner of agent y among all current partners of y. That is, nextM(x) ∈ M(y) and

for all x′ ∈M(y), x′ ≥y nextM(x). If otherwise |M(y)| < qy, then define nextM(x) = ∅.

Given distinct x0, . . . , xr−1 ∈ X and y0, . . . , yr−1 ∈ Y , a cycle y0, x0, y1, x1, . . . , yr−1, xr−1, y0

ofG is anX-rotation exposed inM if sM(xi) = yi+1 and nextM(xi) = xi+1 for all i = 0, . . . , r−1

(here and later, indices are taken modulo r). Note that xiyi ∈ M for all i = 0, . . . , r − 1. Let DX

be the digraph with vertices X ∪ Y ∪ {∅}, and arcs (x, y) and (y, x′) if and only if sM(x) = y and

nextM(x) = x′. We call DX the X-rotation digraph (of M ) and denote by A(DX) the set of arcs

of DX . If sM(x) does not exist for some agent x ∈ X , then x is a sink in DX . Thus, note that

sinks in DX are either agents in X or ∅. One easily observes that X-rotations exposed in M are in

one-to-one correspondence with directed cycles in DX .

Let ρ := y0, x0, · · · , yr−1, xr−1 be an X-rotation exposed in M . The elimination of ρ maps

stable assignment M to the assignment M ′ := M/ρ where M ′(x) = M(x) for every agent x who

is not in the rotation (i.e., x ∈ X \ρ) andM ′(xi) = (M(xi)\{yi})∪{yi+1} for i = 0, 1, · · · , r−1.

Note that the mapping is well-defined since it is easy to check that M ′ is an assignment.

An X-rotation (digraph) is called a student- or school- rotation (digraph) respectively when X

is the set of students or schools. When it is clear whether we are referring to students or schools,

we drop the prefix. See Example 2.23 for an illustration of rotations and rotation digraphs in the

context of our algorithm.

The following lemmas (Bansal, Agrawal, and Malhotra, 2007a) extend classical results on

rotations in the one-to-one setting to our one-to-many setting. They show that the set of stable

7It is worth noticing that the definition of both student-rotations and school-rotations can be simplified, but in
different ways. However, in order to keep the treatment compact, we give a unique presentation encompassing both.
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assignments is complete and closed under the elimination of exposed rotations.

Lemma 2.18. Let M ∈ S(G,<,q) be a stable assignment, ρ be an X-rotation exposed in M ,

and M ′ = M/ρ be the assignment obtained after eliminating ρ from M . Then M ′ is stable in

(G,<,q) (i.e., M ′ ∈ S(G,<,q)). Moreover, M strictly dominates M ′ (i.e., M ≻ M ′) if X is the

set of students and M is strictly dominated by M ′ (i.e., M ′ ≻ M ) if X is the set of schools. If

there is no X-rotation exposed in M , M is the Y -optimal stable assignment. In addition, every

stable assignment can be generated by a sequence of X-rotation eliminations, starting from the

X-optimal stable assignment, and every such sequence contains the same set of X-rotations.

Lemma 2.19. xy ∈ E is a stable pair if and only if: (i) either x is assigned to y in the Y -optimal

stable assignment or, (ii) for some X-rotation y0, x0, y1, x1, · · · , yr−1, xr−1 exposed in some stable

assignment, we have x = xi and y = yi for some i ∈ {0, . . . , r − 1}.

We refer to Baïou and Balinski (2004) for further results on the stable assignment model.

For an instance (G,<,q), we denote by R(G,<,q) the set of student-rotations exposed in

some of its stable assignments, and by SR(G,<,q) the set of school-rotations exposed in some of

its stable assignments.

Lemma 2.20. |R(G,<,q)| = |SR(G,<,q)|. There is a bijection σ : R(G,<,q) → SR(G,<

,q) between the set of student-rotations and the set of school-rotations such that for each stable

assignment M ∈ S(G,<,q) and student-rotation ρ ∈ R(G,<,q) exposed in M , we have M =

(M/ρ)/σ(ρ).

2.6 Algorithms for Student- and School-Optimal Legal Assignments

Because of Theorem 2.3 and Theorem 2.17, the concepts of student- and school-optimal le-

gal assignments are well-defined. In this section, we show efficient routines for finding them.

Throughout the section, we again fix a stable assignment instance (G,<,q) with G = (A∪B,E).

We denote byML
0 andML

z the student-optimal and school-optimal legal assignments, respectively.
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Algorithm 2.1 X-rotate-remove to find the Y -optimal legal assignment

Input: (G(A ∪B,E), <,q)
1: Find the Y -optimal stable assignment MY of (G,<,q) via Gale-Shapley’s algorithm.
2: Let G0 := G and M0 :=MY .
3: Set i = 0 and let D0 to be the X-rotation digraph of M0 in (G0, <,q).
4: while Di still has an arc do
5: Find (i) arcs (x′, y), (y, x) ∈ A(Di) where x is a sink in Di or (ii) a cycle Ci of Di.
6: if (i) is found then
7: Define Gi+1 from Gi by removing x′y, and set M i+1 =M i.
8: else if (ii) is found then
9: Let ρi be the corresponding X-rotation. Set M i+1 =M i/ρi, and Gi+1 = Gi.

10: end if
11: Set i = i+ 1 and let Di to be the X-rotation digraph of M i in (Gi, <,q).
12: end while
Output: M i.

Suppose first we want to find the student-optimal legal assignment. The basic idea of the

algorithm is the following: at each iteration, a legal assignment M and a set of edges identified

as illegal are taken as input, and one of the following three cases will happen: either (i) the set of

edges identified as illegal is expanded; or (ii) a legal assignment M ′ that strictly dominates M (i.e.,

M ′ ≻ M ) is produced; or (iii) M is certified as the student-optimal legal assignment. If we are

in case (i), then we can safely remove the newly found illegal edge (because of Lemma 2.6) and

proceed to the next iteration. If we are in case (ii), we replace M with M ′, and proceed to the next

iteration. If we are in case (iii), we halt the algorithm and output the current assignment.

In order to distinguish between cases (i), (ii), and (iii) above, we rely on properties of the

rotation digraph. In the following, X can again be either the set of students or the set of schools.

Lemma 2.21. Let M ∈ S(G,<,q) be a stable assignment. If x ∈ X ∪ {∅} is a sink in the X-

rotation digraph DX of M and (x′, y), (y, x) ∈ A(DX) for some x′ ∈ X and y ∈ Y , then x′y is

an illegal edge.

The proof of Lemma 2.21 builds on Lemma 2.13 and on the following fact (see, e.g., Gusfield

and Irving, 1989).
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Lemma 2.22. Let M,M ′ ∈ S(G,<,q) be two stable assignments such that M ⪰ M ′. Then, for

every school b ∈ B, a′ >b a for all a ∈M(b) \M ′(b) and a′ ∈M ′(b) \M(b).

Proof of Lemma 2.21. We prove the result with X being the set of students, and thus let x′ = a′,

y = b, and x = a. The other case can be shown similarly. By Theorem 2.3, M ∈ S(G,<,q) ⊆

L(G,<,q) = S(GL, <,q), where GL is the subgraph of G with only the edges that appear in

some legal assignment. In (GL, <,q), consider any sequence of student-rotations, ρ1, ρ2, · · · , ρk,

whose elimination from M gives the school-optimal legal assignment ML
z . The existence of such

a sequence follows from Lemma 2.18. Let M i = M/ρ1/ · · · /ρi for i ∈ [k] and let M0 = M .

If a = ∅, by definition of student-rotations, we have b /∈ ρi for all i ∈ [k]. Now consider the

case where a ̸= ∅. Since M i ⪰ M j for all i ≤ j, by Lemma 2.22, we have sM i(a) = ∅ and

nextM i(a′) = a for i = 0, . . . , k. We again conclude b /∈ ρi for all i ∈ [k]. Thus, we deduce

M(b) = ML
z (b). Now assume by contradiction that a′b ∈ M ′ for some legal assignment M ′.

First note that M ′ ⪰ML
z because ML

z is the school-optimal legal assignment and thus the school-

optimal stable assignment in (GL, <,q) due to Theorem 2.3. Also note that M and M ′ do not

block each other given that both are legal assignments. Moreover, since M(a′) >a′ b = M ′(a′)

by stability of M , we can apply Lemma 2.13 (with a = a′, b = b) and conclude that there exist

a ∈ M(b) such that b >a M
′(a). However, M ′ ⪰ ML

z implies M ′(a) ≥a ML
z (a) and a ∈ M(b)

implies ML
z (a) =M(a) = b. Hence, M ′(a) ≥a b, which is a contradiction. ■

Hence, if the algorithm finds a sink fulfilling the properties of Lemma 2.21 in the school-

rotation digraph, we are in case (i) above. If the school-rotation digraph has a directed cycle,

eliminating the corresponding school-rotation from M brings us to case (ii)8. Lastly, if DB has

no arc, we conclude that we are in case (iii). The initial iteration starts with the set of identified

illegal edges being empty, and M being the student-optimal stable assignment. The algorithm that

finds the school-optimal legal assignment proceeds similarly, with a legal assignment M ′ that is

dominated by M (i.e., M ≻M ′) generated in case (ii).

8If DB has both a sink and a directed cycle, the algorithm is free to choose between the two cases.
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A formal description of our algorithm is given in Algorithm 2.1. Its correctness is shown in the

proof of Theorem 2.24. We illustrate the algorithm in Example 2.23.

Example 2.23. We apply student-rotate-remove and school-rotate-remove to the follow-

ing instance with 6 students and 3 schools, where each school has a quota of 2. In this and all

following examples, when it is clear whose preference list we are referring to, the subscript in > is

dropped.

a1 : b2 > b3 > b1 b1 : a1 > a4 > a3 > a5 > a2 > a6

a2 : b1 > b2 > b3 b2 : a3 > a2 > a6 > a1 > a5 > a4

a3 : b3 > b1 > b2 b3 : a6 > a1 > a5 > a2 > a4 > a3

a4 : b1 > b2 > b3

a5 : b3 > b2 > b1

a6 : b1 > b3 > b2

The student- and school-optimal stable assignments coincide, and are given by {a1b2, a2b2,

a3b1, a4b1, a5b3, a6b3} (squared entries above). This is the M0 for both algorithms.

Student-Rotate-Remove. On a1’s preference list, b3 is the first school after M0(a1). In addition,

b3 prefers a1 to a5, who is b3’s least preferred student among M0(b3). Thus, sM0(a1) = b3 and

nextM0(a1) = a5. After working out sM0(·) and nextM0(·) of all the students, we have the rotation

digraph D0 for the first iteration of student-rotate-remove:

a6

a3 b1

b2 a1 b3 a5

a2 a4 ∅

Here, we find a case (i) with x′ = a1, y = b3, and x = a5. So we set M1 = M0, remove

x′y = a1b3 from the instance, and update the rotation digraph D1 for the next iteration:

a6

a3 b1

b2 a1 b3 a5

a2 a4 ∅
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Now, we have a case (ii), with the corresponding student-rotation ρ1 = b2, a1, b1, a3. Eliminat-

ing ρ1 fromM1, we haveM2 =M1/ρ1 = {a1b1, a2b2, a3b2, a4b1, a5b3, a6b3}. In the next iteration,

the rotation digraph D2 only contains sinks. Thus, the algorithm terminates and output M2 as the

school-optimal legal assignment.

School-Rotate-Remove. The first student on b1’s preference list that prefers b1 to his assigned

school under M0 is a2. Thus, sM0(b1) = a2 and nextM0(b1) = b2. After working out sM0(·) and

nextM0(·) of all the schools, we have the rotation digraph D0 for the first iteration:

b3 a3 b1 a2 b2

a6 a5 a4 a1 ∅

Here, we find a case (i) with x′ = b1, y = a2 and x = b2. So we set M1 = M0, remove

x′y = a2b1 from the instance, and update the rotation digraph D1 for the next iteration:

b3 a3 b1 a2 b2

a6 a5 a4 a1 ∅

Now, we have a case (ii), with the corresponding school-rotation ρ1 = a6, b3, a3, b1. Eliminat-

ing ρ1 fromM1, we haveM2 =M1/ρ1 = {a1b2, a2b2, a3b3, a4b1, a5b3, a6b1}. In the next iteration,

the rotation digraph D2 only contains sinks. Thus, the algorithm terminates and output M2 as the

student-optimal legal assignment. △

2.6.1 Correctness of Algorithm 2.1

We deduce the correctness of Algorithm 2.1 using the lattice structure of the legal assignments

Theorem 2.24. Algorithm 2.1 finds the Y -optimal legal assignment.

Proof. We focus on the statement with Y being the set of students, the other follows analogously.

We first show, by induction on the iteration i of the algorithm, that M i ∈ S(Gi, <,q) and L(Gi, <
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,q) = L. This is obvious for i = 0. Assume the claim is true for i− 1 ≥ 0 and consider iteration

i. If the condition at Step 6 is satisfied, M i = M i−1 is unchanged and the edge removed from

Gi−1 is illegal by Lemma 2.21. Hence, M i = M i−1 ∈ S(Gi−1, <,q) ⊆ S(Gi, <,q) and L(Gi, <

,q) = L(Gi−1, <,q) = L by induction and Lemma 2.6. If conversely the condition at Step 8 is

satisfied, then ρi−1 is a school-rotation exposed in M i−1, and M i = M i−1/ρi−1 ∈ S(Gi−1, <,q)

by induction and Lemma 2.18. Moreover, since Gi = Gi−1, we have S(Gi, <,q) = S(Gi−1, <,q)

and L(Gi, <,q) = L(Gi−1, <,q) = L.

In order to conclude the proof, observe that at the end of the algorithm, the school-rotation

digraph – call itD∗ – only has sinks. We first claim that the assignment output – call itM∗ – strictly

dominates every assignment in M(G∗,q), where G∗ is the graph at the end of the algorithm.

Assume by contradiction that there is M ∈ M(G∗,q) and a student a such that b := M(a) >a

M∗(a). Then sM∗(b) exists by definition, contradicting the fact that b is a sink in D∗ (it is possible

that sM∗(b) ̸= a, as there may be other nodes that precede a in b’s list and have the required

property, but it is a contradiction regardless). By what we proved above, we know that L =

L(G∗, <,q) ⊆ M(G∗,q). By Theorem 2.3 and Theorem 2.17, legal assignments form a lattice

with respect to the partial order ⪰. Hence, M∗ is the student-optimal legal assignment. ■

Note that the previous theorem in particular implies that the output of Algorithm 2.1 is unique,

regardless of how we choose between Step 6 and Step 8 at each iteration, when multiple possibili-

ties are present.

2.6.2 Time Complexity

A straightforward implementation of Algorithm 2.1 requires the construction of a rotation di-

graph at each iteration. However, this is computationally expensive. Instead of obtaining the

complete rotation digraph at each iteration, we only locally build and update a directed path of the

rotation digraph until a cycle or a sink is found. Together with suitable data structures, we can

achieve the time complexity of O(|E|).

Theorem 2.25. Algorithm 2.1 can be implemented as to run in time O(|E|).
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The full details of our implementation and the proof of Theorem 2.25 are included in Ap-

pendix A.2.1 and Appendix A.2.2.

2.7 An O(|E|) Algorithm for Computing GL

Throughout the section, we fix an instance (G,<,q) with G = (A ∪ B,E) and abbreviate the

set of stable assignments as S := S(G,<,q). We start with a preliminary fact. Recall that we

denote by R(G,<,q) and SR(G,<,q) the set of student-rotations and school-rotations exposed

in some stable assignment of (G,<,q), respectively. Let GL be the subgraph of G that includes

all and only edges in some legal assignments in L(G,<,q), as defined in Theorem 2.3.

Lemma 2.26. Let e be an illegal edge of (G,<,q) and let G̃ = G[E \ {e}]. Deleting edge e

does not remove any element from either the set of student-rotations or the set of school-rotations:

R(G,<,q) ⊆ R(G̃, <,q) and SR(G,<,q) ⊆ SR(G̃, <,q).

Proof. Fix a stable assignment M ∈ S. Since S ⊆ S(G̃, <,q), M is also a stable assignment of

(G̃, <,q). First consider any student-rotation ρ ∈ R(G,<,q) exposed inM . We want to show that

ρ is also exposed in M in (G̃, <,q). Assume ρ = b0, a0, b1, a1, · · · , br−1, ar−1. By Lemma 2.19,

edges aibi+1 and ai+1bi+1 for all i = 0, 1, · · · , r − 1, are stable and therefore legal. Hence, all

such edges are in E(G̃), implying that bi+1 = sM(ai) and nextM(ai) = ai+1 hold in (G̃, <,q)

as well. Thus, ρ is exposed in M in (G̃, <,q) and as desired. Therefore, ρ ∈ R(G̃, <,q) and

R(G,<,q) ⊆ R(G̃, <,q). A similar argument shows SR(G,<,q) ⊆ SR(G̃, <,q). ■

Theorem 2.27. The subgraph GL can be found in time O(|E|).

Proof. By Theorem 2.3 and Lemma 2.19, E(GL) is given by all and only edges in the student-

optimal legal assignment ML
0 , plus all pairs aibi+1 for some student-rotation ρ = b0, a0, . . . , ak ∈

R(GL, <,q). By Lemma 2.18, there exists exactly one setR1 of student-rotations whose elimina-

tion leads from ML
0 to the student-optimal stable assignment M0; one set R2 leading from M0 to

the school-optimal stable assignment Mz; and one set R3 leading from Mz to the school-optimal

legal assignment ML
z . By Lemma 2.18, R1 ∪ R2 ∪ R3 is the set of all rotations R(GL, <,q) of
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(GL, <,q). We argue that R3 is computed during the execution of student-rotate-remove.

Indeed, throughout the algorithm, a sequence of rotations is found and eliminated, leading from

Mz to ML
z . Each of these is exposed in some stable assignment in an instance that contains all

legal edges. Hence, by repeated application of Lemma 2.26, those rotations form set R3. They

can be computed in time O(|E|) by Theorem 2.25. By Lemma 2.18 and repeated applications of

Lemma 2.26, R2 coincides with the set R(G,<,q), which can be computed in time O(|E|) by

classical algorithms, see, e.g., Gusfield and Irving (1989). school-rotate-remove computes in

time O(|E|), again by Theorem 2.25, the set of school-rotations SR1 whose sequential elimina-

tion starting from M0 leads to ML
0 . By Lemma 2.20, the setR1 can be obtained from SR1 via the

bijection σ. Consider a student-rotation ρ = b0, a0, b1, a1, · · · , ar−1 ∈ R1. Since its corresponding

school-rotation σ(ρ) ∈ SR1 can be obtained simply as a0, b1, a1, · · · , ar−1, b0, computingR1 from

SR1 takes time O(|E|). This concludes the proof. ■

2.8 An O(|E|) Algorithm for EADAM with Consent

In this section, we first formally introduce EADAM with consent (Kesten, 2010). Then in

Section 2.8.2 we show that a fast implementation of EADAM can be achieved by a suitable modi-

fication of our school-rotate-remove algorithm. The proof relies on a simplified and outcome-

equivalent version of EADAM introduced by Tang and Yu (2014). Thus, we defer the proof as

well as a formal introduction of simplified EADAM to Section 2.9. Together with Theorem 2.25,

this implies the following.

Theorem 2.28. EADAM with consent on a stable assignment instance (G(A ∪ B,E), <,q) can

be implemented as to run in time O(|E|).

We also compare our algorithm with previous versions of EADAM through computational

experiments. In Section 2.8.4, the theoretical advantage of student-rotate-remove is verified

computationally on random instances.
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Algorithm 2.2 Kesten’s EADAM

Input: (G(A ∪B,E), <,q), consenting students A ⊆ A

1: Let G0 = G, i = 0.
2: Run student-proposing Gale-Shapley’s algorithm on (Gi, <,q) to obtain assignment M i.
3: while there is a consenting interrupter do
4: Identify the maximum k′ such that there exists a consenting interrupter at step k′.
5: Let E ′ be the set of all interrupting pairs ab at step k′ such that a is consenting.
6: Define Gi+1 from Gi by removing edges in E ′. Set i = i+ 1.
7: Run student-proposing Gale-Shapley’s algorithm on (Gi, <,q) to obtain assignment M i.
8: end while

Output: M i

2.8.1 Kesten’s EADAM

Recall that Gale-Shapley’s algorithm (with students proposing) is executed in successive steps.

During each step, every student that is currently unmatched applies to the first school in his prefer-

ence list that he has not yet applied to, and gets either temporarily accepted or rejected. A student

a is called an interrupter (for school b, at step k′) if: a is temporarily accepted by school b at some

step k < k′; a is rejected by school b at step k′; and there exists a student that is rejected by school

b during steps k, k + 1, · · · , k′ − 1. In such case, we will also call ab an interrupting pair (at

step k′). Informally speaking, an interrupter is a student who, by applying to school b, interrupts a

desirable assignment between school b and another student at no gain to himself. Removing such

interruptions is crucial in neutralizing their adverse effects on the outcome. Demonstration of these

concepts can be found in Example 2.30.

Kesten’s EADAM takes as input an instance (G,<,q) with G = (A ∪ B,E) and a set A ⊆ A

of students which we call consenting. Each iteration of EADAM starts by running Gale-Shapley’s

algorithm from scratch. It then removes from the graph certain interrupting pairs involving con-

senting interrupters. The algorithm terminates when there are no interrupting pairs whose corre-

sponding interrupters are consenting students.

Details of Kesten’s algorithm can be found in Algorithm 2.2 and an illustration of the algorithm
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can be found later in Example 2.30.

The following theorem collects some results from Kesten (2010) and Tang and Yu (2014),

demonstrating the transparency of the consenting incentives and some attractive properties of

EADAM’s output. Recall that an assignment M is constrained efficient if it does not violate any

nonconsenting students’ priorities9, but any other assignment M ′ that dominated M does.

Theorem 2.29. Under Kesten’s EADAM:

1. The assignment of a student does not change whether he consents or not. That is, for any

student a ∈ A and any set of consenting students Ā ⊆ A, if M and M ′ are the outputs

of EADAM on inputs
{
(G,<,q), A \ {a}

}
and

{
(G,<,q), A

}
respectively, then M(a) =

M ′(a).

2. The output is Pareto-efficient when all students consent and is constrained efficient other-

wise.

Example 2.30. Each school in this example has a quota of 1. Their preference lists are given

below. All students are consenting except for a3.

a1 : b1 > b2 > b3 > b4 b1 : a4 > a2 > a1 > a3

a2 : b1 > b2 > b3 > b4 b2 : a2 > a3 > a1 > a4

a3 : b3 > b2 > b4 > b1 b3 : a1 > a4 > a3 > a2

a4 : b3 > b1 > b2 > b4 b4 : a3 > a1 > a2 > a4

Gale-Shapley’s algorithm: The student-proposing Gale-Shapley’s algorithm outputs the assign-

9A student a’s priority is violated at assignment M if there is a school b such that ab is a blocking pair of M .
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ment M0 = {a1b3, a2b2, a3b4, a4b1}. Steps of the algorithm are given below:

step b1 b2 b3 b4

1 ��ZZa1, a2 ��ZZa3, a4

2 ��ZZa1, a3

3 a1,��HHa4

4 ��HHa2, a4

5 a2,��HHa3

6 a3

Iteration #1: From the steps of Gale-Shapley’s algorithm, one can identify all interrupting pairs.

For instance, a2 proposes to b1 at step 1. This causes a1 to be rejected by b1. However, a2 is later

rejected by b1 at step 4. Thus, by definition, a2b1 is an interrupting pair at step 4.

In total, there are three interrupting pairs, a3b2, a2b1, a4b3, from the last step to the first. The

last interrupting pair of a consenting interrupter is a2b1, given that a3 is not a consenting student.

Thus, k′ = 4. Since there is only one interrupting pair at step k′ = 4, EADAM simply removes

a2b1 from the instance. On the new instance, EADAM re-runs Gale-Shapley’s algorithm, and the

resulting assignment is M1 = {a1b1, a2b2, a3b4, a4b3}.

Iteration #2: One can check that there are no interrupting pairs, thus no consenting interrupters.

Hence, EADAM terminates and outputs assignment M1.

Note that using tools developed in previous sections, one can show that a2b1, the first edge that

is removed by EADAM, is actually a legal edge and the assignment output of EADAM, M1, is not

a legal assignment. △

2.8.2 School-Rotate-Remove with Consent

Morrill (2016) showed that when all students consent, the output of EADAM is the student-

optimal legal assignment. Hence, school-rotate-remove can be employed to find this assign-

ment in time O(|E|) (see, Theorem 2.25). However, as Example 2.30 shows, when only some stu-
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Algorithm 2.3 school-rotate-remove with consent

Input: (G(A ∪B,E), <,q), consenting students A ⊆ A

1: Find the student-optimal stable assignment M0 of (G,<,q) via Gale-Shapley’s algorithm.
2: Let G0 := G and M0 :=M0.
3: Set i = 0 and let D0 to be the school-rotation digraph of M0 in (G0, <,q).
4: while Di still has an arc do
5: Find (i) arcs (b′, a) and (a, b) ∈ A(Di) where b is a sink in Di, or (ii) a cycle Ci of Di.
6: if (i) is found then
7: Define Gi+1 from Gi by removing ab′, and set M i+1 =M i.
8: if a /∈ A then
9: Remove from Gi+1 edges a′b′ for all a′ such that a >b′ a

′.
10: end if
11: else if (ii) is found then
12: Let ρi be the corresponding school-rotation. Set M i+1 =M i/ρi, and Gi+1 = Gi.
13: end if
14: Set i = i+ 1 and let Di to be the school-rotation digraph of M i in (Gi, <,q).
15: end while
Output: M i

dents consent, EADAM may output an assignment that is not legal. We show in this section how

to suitably modify school-rotate-remove in order to obtain the assignment output of EADAM

for any given set of consenting students, without sacrificing the running time.

In school-rotate-remove, the key idea is to reroute arcs that point to students who are as-

signed to sinks in the rotation digraph. This allows us to identify school-rotations in the underlying

legalized instance (GL, <,q). Assume for example that (b′, a), (a, b) ∈ A(DB), and b is a sink.

Upon such rerouting, a’s priority might be violated. In particular, if b′ successfully participates in a

school-rotation after the rerouting, then ab′ will be a blocking pair for the new assignment. Hence,

under the EADAM framework, if a is not consenting, we can no longer freely reroute arcs pointing

to a. In fact, in order to respect a’s priority (i.e., to avoid ab′ becoming a blocking pair), b′ cannot

be assigned to any student a′ such that a >b′ a
′. This means that the arc coming out of b′ cannot be

rerouted to any other student, essentially marking b′ a sink.

A detailed description of our algorithm is presented in Algorithm 2.3. Throughout the rest
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of the section, we call school-rotations simply rotations. As in Algorithm 2.1, when both cases

(i) and (ii) are present at Step 5 of some iteration, we are free to choose between Step 6 and

Step 11. These choices do not affect the final assignment output. We formalize this statement in

Theorem 2.40. A step-by-step application of our algorithm on the instance from Example 2.30 is

outlined in Example 2.31.

Example 2.31. Consider the instance given in Example 2.30. From the student-optimal stable

assignment M0 := {a1b3, a2b2, a3b4, a4b1}, we can construct the rotation digraph as below. Note

that in this graph and in the following, some isolated nodes are not included.

b3 a4 b1 a2 b2 a3 b4

Iteration #1: Since b4 is a sink, we remove edge a3b2 as in Step 7, in the hope of rerouting the arc

coming out of b2. However, because a3 is not consenting, we have to additionally remove edges

a1b2 and a4b2 as in Step 9. This completely removes the possibilities of rerouting, essentially

making b2 a sink, as seen in the rotation digraph of the updated instance:

b3 a4 b1 a2 b2 b4

Iteration #2: Now, b2 is a sink. Since its assigned student a2 is consenting, the algorithm simply

removes edge a2b1 in Step 7, resulting in the following updated rotation digraph:

b3 a4 b1

a1

b2 b4

Iteration #3: We can now eliminate the rotation (i.e., trading schools between a1 and a4), and

update the assignment to be {a1b1, a2b2, a3b4, a4b3}. After the assignment update, the new rotation

digraph only contains sinks, and thus the algorithm terminates.

This final assignment coincides with the assignment output of EADAM. △
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In our rotation-based algorithm, the students from whom we seek consent are those who are

assigned to schools corresponding to sinks, and thus they are not in any directed cycles in the cur-

rent and subsequent rotation digraphs. Therefore, there is a clear separation between the students

from whom we ask for consent and those participating in Pareto-improvement cycles (i.e., school-

rotations). This is consistent with the result in Theorem 2.29, part 1 that students have no incentive

to not consent.

Theorem 2.32. For any given input, the outputs of Algorithm 2.3 and Algorithm 2.2 coincide.

We defer the proof of Theorem 2.32 to Section 2.9, and we remark here that the proof of

Theorem 2.32 is different (and quite harder) than the proof of Theorem 2.24. Indeed, for the latter,

we can build on the fact that legal assignments form a lattice, while in the former we do not have

such a well-behaved structural result at our disposal. Hence, a careful analysis of the algorithms is

needed.

2.8.3 Fast Implementation of School-Rotate-Remove with Consent

The fast implementation is a modification of that of Algorithm 2.1. Therefore, we defer the

proof of Lemma 2.33 to Appendix A.2.4. An example demonstrating the implementation can also

be found in Appendix A.2.3.

Lemma 2.33. Algorithm 2.3 can be implemented as to run in time O(|E|).

Proof of Theorem 2.28. It follows immediately from Theorem 2.32 and Lemma 2.33. ■

2.8.4 Computational Experiments

Since Gale-Shapley’s algorithm on stable assignment instances can be implemented to run in

time O(|E|) (see Manlove, 2013; Gusfield and Irving, 1989), the original EADAM (Kesten, 2010)

runs in timeO(|E|2) because it runs Gale-Shapley’s routine at most |E| times. A simplified version

of EADAM (Tang and Yu, 2014), for which the details are presented in the appendix, runs in time

O(|E||V |) because it runs Gale-Shapley’s routine at most |V | times. We remark that although
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mechanism design, rather than computational complexity, is the primary interest of Kesten’s paper,

computational efficiency is nevertheless crucial in putting the mechanism into practice, especially

for large markets such as the New York school system. In fact, Tang and Yu (2014) mentioned

computational tractability as one of their contributions.

One major advantage of our school-rotate-remove with consent is that instead of re-

peatedly running Gale-Shapley’s algorithm, we update the assignment locally using the structural

results (lattice structure and rotations) of stable assignments. Our algorithm runs in time O(|E|)

as shown in Lemma 2.33.

To further demonstrate the computational advantage of our algorithm, we randomly generated

instances of varying sizes, and recorded the running time of all three algorithms. The running

time of Gale-Shapley’s algorithm is also recorded as a benchmark. The number of students in

our instances ranges from 500 to 30, 000, and the corresponding number of schools ranges from

5 to 300. For each instance size, 100 instances (G,<,q) are obtained by randomly generating <

and q. For each student a, the preference list <a is defined by a random permutation of B. The

preference lists of schools are similarly defined. The quota of each school is randomly selected

between 50 and 150 uniformly. Note that in this set of simulations, students and schools have

complete preference ranking of the opposite side. That is, in all instances, G is a complete bipartite

graph. We also conduct another set of simulations (details later) with incomplete preference lists.

We tested scenarios where each student is randomly determined to be consenting with probability

10%, 30%, 50%, 80%, and 100%. The experiments were carried out on a computing node with 1

core and 4GB RAM.

A visual representation of the running times of different algorithms can be found in Figure 2.1.

The shaded areas are 95% confidence intervals of each algorithm for given instance sizes. Our

algorithm performs significantly faster than the simplified EADAM and dramatically faster than

the original EADAM, with the differences being especially pronounced when all students consent.

The New York City school district has approximately 90, 000 students applying to 700 pub-

lic high school programs every year, where students can list up to 12 schools in their applica-
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tion (Narita, 2016). We further conducted computational experiments whose instance sizes are

similar to those of New York City. We compared our algorithm with simplified EADAM on ran-

dom instances generated similarly as previously described. However, in this set of simulations, we

fix instance size with |A| = 90, 000 and |B| = 700. Moreover, the quota of each school is selected

uniformly at random from integers between ⌈0.5× µ⌉ and ⌈1.5× µ⌉ where µ = ⌈ |A||B|⌉. In generat-

ing <, for every student a, <a is obtained by truncating the random permutation such that only the

top 12 schools are listed; for every school b, <b is obtained by restricting the random permutation

to students who have b in their preference lists. Graph G can be deduced from the preference lists.

Results of our experiments are summarized in Figure 2.2. The difference in computational time

is noticeably different from all levels of consenting percentages. In particular, when all students

consent, school-rotate-remove takes approximately 3 minutes, whereas simplified EADAM

takes on average 4 hours and its run time has a much higher variance.

2.9 Proof of Outcome-Equivalence

The goal of this section is to prove Theorem 2.32. The proof consists of three steps: first,

in Section 2.9.1, we show that all executions of Algorithm 2.3 give the same output; then, in

Section 2.9.2, we introduce an outcome-equivalent version of EADAM, called Simplified EADAM,

from Tang and Yu (2014); and lastly, in section 2.9.3, we show that the output of Algorithm 2.3

and that of the Simplified EADAM coincide.

2.9.1 Uniqueness of the Output of Algorithm 2.3

From now on, fix the input (G(A ∪ B,E), <,q), A) to Algorithm 2.3. An execution of Al-

gorithm 2.3 on the input is an ordered collection of iterations, where iteration i denotes the i-th

repetition of the while loop from Step 4. Hence, in iteration i, Algorithm 2.3 takes from the pre-

vious iteration graph Gi−1, assignment M i−1, and rotation digraph Di−1 and creates Gi, M i, and

Di. For each iteration i, we let I i be the cycle found in Di−1 or the pair of arcs (b′, a), (a, b) with

b being a sink found in Di−1 (depending on whether the if condition at Step 6 is satisfied). We
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identify an execution E of Algorithm 2.3 by the sequence E = (I1, I2, . . . ). Note that in particular,

for each iteration i, I i is a subgraph of Di−1. Let Gi
E , M i

E , and Di
E denote Gi, M i, and Di under

execution E . The collection of all possible executions is denoted by E. We start with several useful

observations.

Lemma 2.34. Let E ∈ E. E contains a finite number k of iterations. Moreover, for every i ∈ [k],

we have M i
E ⪰M i−1

E .

Proof. At each iteration i, either case (i) or case (ii) is found. For case (i), we haveM i
E =M i−1

E and

some edges are removed from Gi−1
E . For case (ii), a school-rotation exposed in M i−1

E is eliminated

and thus, we have M i
E ≻ M i−1

E . This proves immediately the second thesis. The first thesis

follows from the fact that the number of edges and the number of assignments of the instance are

both finite. ■

The definition of I i and Lemma 2.34 implies that for every E = (I1, I2, . . . , Ik) ∈ E and

i, j ∈ [k], if i ̸= j, then I i ̸= Ij .

Lemma 2.35. Let E1 = (I11 , I
2
1 , · · · , I

k1
1 ) and E2 = (I12 , I

2
2 , · · · , I

k2
2 ) be two executions such that

{I11 , I21 , · · · , Ik1 } = {I12 , I22 , · · · , Ik2 } for some k ≤ min(k1, k2). Then,Mk
E1 =Mk

E2 andGk
E1 = Gk

E2 .

Proof. Note that both executions start from the same assignment M0. Let ρ1, ρ2, · · · , ρℓ be all

the rotations eliminated in the first k iterations of execution E1 and let ρ′1, ρ
′
2, · · · , ρ′ℓ′ be those

of execution E2. Then, since the first k iterations of these two executions coincide, we have

{ρ1, ρ2, · · · , ρℓ} = {ρ′1, ρ′2, · · · , ρ′ℓ′} and thus, matching Mk
E1 = M0/ρ1/ρ2/ · · · /ρℓ and match-

ing Mk
E2 = M0/ρ

′
1/ρ

′
2/ · · · /ρ′ℓ′ coincide. Similarly, let Ẽ1 and Ẽ2 be the set of edges removed in

the first k iterations of E1 and E2 respectively. Again, because {I11 , I21 , · · · , Ik1 } = {I12 , I22 , · · · , Ik2 },

we have Ẽ1 = Ẽ2 and thus, Gk
E1 = Gk

E2 . ■

Lemma 2.36. Let E ∈ E and assume E = (I1, I2, · · · , Ik). Assume at some iteration j < k,

rotation digraph Dj−1
E contains a cycle I ′ and I ′ ̸= Ij . Then, I ′ must also be a subgraph of Dj

E .

Moreover, there exists a unique i ∈ {j + 1, · · · , k} such that I ′ = I i.
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Proof. Since every vertex in the rotation digraph Dj−1
E has outdegree at most 1, I ′ and Ij must be

vertex-disjoint. Thus, for every vertex x ∈ I ′, we have M j−1
E (x) = M j

E(x) and for all b ∈ I ′ ∩ B,

we have {a : ab ∈ E(Gj−1
E )} = {a : ab ∈ E(Gj

E)}. Since M j
E ⪰ M j−1

E by Lemma 2.34, we

can conclude that sMj−1
E

(b) = sMj
E
(b) for all b ∈ I ′ ∩ B. Hence, I ′ is a subgraph of Dj

E . The

second thesis follows from repeated application of the first thesis and the termination criterion of

Algorithm 2.3, and uniqueness holds because for ℓ1, ℓ2 ∈ [k], if ℓ1 ̸= ℓ2, then Iℓ1 ̸= Iℓ2 as implied

by Lemma 2.34. ■

Lemma 2.37. Let E ∈ E and assume E = (I1, I2, · · · , Ik). Assume at some iteration j < k,

rotation digraph Dj−1
E contains a pair of arcs I ′ = (b′, a), (a, b) with b being a sink of Dj−1

E and

I ′ ̸= Ij . Then, I ′ must also be a subgraph of Dj
E with b being a sink in Dj

E . Moreover, there must

exists a unique i ∈ {j + 1, · · · , k} such that I ′ = I i.

Proof. Since every vertex in the rotation digraph Dj−1
E has outdegree at most 1, we must have

b′ /∈ Ij . Note that if Ij is a directed cycle, then Ij and I ′ are vertex-disjoint, otherwise, it is

possible to have (a, b) ∈ Ij . Nevertheless, we have that for x ∈ {b′, b}, M j−1
E (x) = M j

E(x) and

{a : ax ∈ E(Gj−1
E )} = {a : ax ∈ E(Gj

E)}. Since M j
E ⪰ M j−1

E by Lemma 2.34, we can conclude

that sMj−1
E

(b′) = sMj
E
(b′) and thus, I ′ is a subgraph of Dj

E and b is a sink in Dj
E . The second thesis

follows as in the proof of Lemma 2.36. ■

Lemma 2.38. Let E = (I1, I2, · · · , Ik) ∈ E and assume for some iteration j ∈ {2, 3, · · · , k},

Ij is a subgraph of Dj−2
E and if Ij = (b′, a), (a, b), we also have b being a sink of Dj−2

E . Then,

E ′ := (I1, I2, · · · , Ij−2, Ij, Ij−1, Ij+1 · · · , Ik) ∈ E.

Proof. Let M̄ i, Ḡi, and D̄i be the assignment, graph, and rotation digraph after the first i iterations

of E ′. For i ≤ j− 2, they are well defined and M̄ i =M i
E , since the first j− 2 iterations of E and E ′

are exactly the same. Thus, Ij is either a case (i) at Step 6 or a case (ii) at Step 11 of D̄j−2 = Dj−2
E .

Therefore, M̄ i, Ḡi, and D̄i are also well-defined for i = j − 1. Now, because of Lemma 2.36 and

Lemma 2.37 with I ′ = Ij−1, they are also well-defined for i = j. Lastly, since the first j iterations

of E and E ′ coincide, we know M̄ j = M j
E and Ḡj = Gj

E due to Lemma 2.35. Since all iterations
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after the j th iteration are exactly the same and in the same order in E and E ′, we also know that for

all i > j, M̄ i =M i
E and Ḡi = Gi

E . This concludes the proof. ■

Corollary 2.39. Let E = (I1, I2, · · · , Ik) ∈ E and assume that for some iterations j1, j2 ∈ [k]

with j1 < j2, Ij2 is a subgraph of Dj1−1
E , and if Ij2 = (b′, a), (a, b), we also have b being a sink of

Dj1−1
E . Then, E ′ := (I1, I2, · · · , Ij1−1, Ij2 , Ij1 , · · · , Ij2−1, Ij2+1 · · · , Ik) ∈ E.

Proof. Note that Ij2 ̸= I i for all i ̸= j2. Because of Lemma 2.36 and Lemma 2.37, Ij2 is a

subgraph of Dj2−2
E and if Ij2 = (b′, a), (a, b), we also have b being a sink of Dj2−2

E . Thus, due

to Lemma 2.38, E1 = (I1, · · · , Ij2−2, Ij2 , Ij2−1, Ij2+1, · · · , Ik) ∈ E. Repeatedly applying the

argument and moving the iteration Ij2 to earlier steps, we can conclude that E ′ ∈ E. ■

For two executions E1 = (I11 , I
2
1 , · · · , I

k1
1 ) and E2 = (I12 , I

2
2 , · · · , I

k2
2 ), let C(E1, E2) denote

the largest i ≤ min(k1, k2) such that (I11 , I
2
1 , · · · , I i1) = (I12 , I

2
2 , · · · , I i2). We can now prove the

following theorem.

Theorem 2.40. The output of Algorithm 2.3 is unique.

Proof. Assume by contradiction that there are two executions E1 = (I11 , I
2
1 , · · · , I

k1
1 ) ∈ E and

E2 = (I12 , I
2
2 , · · · , I

k2
2 ) ∈ E such that Mk1

E1 ̸= Mk2
E2 . Also assume that among all executions

that output distinct assignments, E1 and E2 are the ones with the largest value C(E1, E2). Let

j := C(E1, E2) + 1. That is, we assume I i1 = I i2 for all i ∈ [j − 1], but Ij1 ̸= Ij2 .

By construction, we know Gj−1
E1 = Gj−1

E2 and M j−1
E1 = M j−1

E2 . Thus, Ij2 is also a subgraph of

Dj−1
E1 and if Ij2 = (b′, a), (a, b), we also have b being a sink of Dj−1

E1 . Thus, due to Lemma 2.36

and Lemma 2.37, there must exist a unique ℓ > j such that Ij2 = Iℓ1. Therefore, we can apply

Corollary 2.39 on E1 with j2 = ℓ and j1 = j and conclude that

E ′1 := (I11 , I
2
1 , · · · , I

j−1
1 , Iℓ1, I

j
1 , · · · , Iℓ−1

1 , Iℓ+1
1 · · · , Ik11 ) ∈ E.

Because of Lemma 2.35, we know Mk1
E1 =Mk1

E ′
1

and thus, Mk1
E ′
1
̸=Mk2

E2 . However, C(E ′1, E2) = j >

C(E1, E2), which is a contradiction to the choice of E1 and E2. ■
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Algorithm 2.4 simplified EADAM

Input: (G(A ∪B,E), <,q), consenting students A ⊆ A

1: Let G0 = G and i = 0.
2: repeat
3: Run student-proposing Gale-Shapley’s algorithm on (Gi, <,q) to obtain assignment M i.
4: Identify underdemanded schools Bi in M i and their assigned students Ai := ∪b∈BiM i(b).
5: Set Gi+1 = Gi.
6: for a ∈ Ai do
7: for b ∈ B such that ab ∈ E(Gi+1) and b >a M

i(a) do
8: remove edge ab from Gi+1.
9: if a /∈ A then

10: remove edges a′b from Gi+1 for all a′ ∈ A such that a >b a
′.

11: end if
12: end for
13: end for
14: Set i = i+ 1.
15: until Bi−1 = B

Output: M i−1

2.9.2 Simplified EADAM

In this section, we introduce a simplified and outcome-equivalent version of EADAM by Tang

and Yu (2014). The key concept exploited by Tang and Yu (2014) is that of underdemanded schools

at an assignment M . A school b ∈ B is underdemanded in M if there is no student a that strictly

prefers b to M(a). Tang and Yu (2014) observe that if a student a is assigned to an underdemanded

school at the student-optimal stable assignment M0, then a is not Pareto-improvable. That is, if

an assignment M ′ dominates M0, it must be that M0(a) = M ′(a). With this key observation,

they develop the simplified algorithm and show that it is output-equivalent to Kesten’s original

algorithm. A formal description of their algorithm is presented in Algorithm 2.4 and an example

is given in Example 2.42 for the same instance from Example 2.30.

Simplified EADAM takes as input an instance and a list of consenting students, and similarly

to Kesten’s original algorithm, it iteratively re-runs Gale-Shapley’s procedure. In each iteration, it
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identifies underdemanded schools and fixes their assignments via deletion of edges (see Line 8 of

Algorithm 2.4). If a non-consenting student is matched to an underdemanded school, more edges

are removed from the instance in order to respect his priorities (see Line 10 of Algorithm 2.4). The

following theorem is proved in Tang and Yu (2014).

Theorem 2.41. For any given input, the outputs of Algorithm 2.2 and Algorithm 2.4 coincide.

Note that the running time of Algorithm 2.4 is O(|V ||E|) because it runs Gale-Shapley’s rou-

tine at most |V | times.

Example 2.42. Consider the instance given in Example 2.30.

Iteration #1: The iteration starts with the student-proposing Gale-Shapley’s algorithm, whose

steps can be found in Example 2.30. Since b4 never rejects any students in the execution, no

student strictly prefers b4 to his current assignment, and thus, b4 is an underdemanded school in

M0. In fact, b4 is the only underdemanded school. Hence, B0 = {b4} and A0 = {a3}. Simplified

EADAM then settles assignment a3b4 by removing edges a3b3 and a3b2 from the instance, as in

Step 8 of Algorithm 2.4. In addition, since a3 is not consenting, edges b2a1, b2a4, and b3a2 are

removed to respect his priority at school b3 and b2, as in Step 10 of the algorithm.

Iteration #2: Re-running Gale-Shapley’s algorithm on the updated instance:

step b1 b2 b3 b4

1 ��ZZa1, a2 a4 a3

2 a1,��ZZa4

3 ��ZZa2, a4

4 a2

The resulting assignment is M1 = {a1b3, a2b2, a3b4, a4b1}. b2 is an additional underdemanded

school in M1 and its assigned student a2 is consenting. So simplified EADAM simply fixes as-

signment a2b2 by removing edge a2b1 from the instance.

54



Iteration #3: The algorithm then runs Gale-Shapley’s algorithm again on the updated instance:

step b1 b2 b3 b4

1 a1 a2 a4 a3

The resulting assignment is M2 = {a1b1, a2b2, a3b4, a4b3}. Now, all schools are underde-

manded. Hence, the algorithm terminates and outputs assignment M2, which is equivalently to the

assignment output of Kesten’s EADAM that we obtained in Example 2.30. ♢ △

2.9.3 Equivalence between School-Rotate-Remove with Consent and Simplified EADAM

The goal of this section is to show that our Algorithm 2.3 is outcome-equivalent to Algo-

rithm 2.4, which together with Theorem 2.41 implies Theorem 2.32.

The following lemmas show an interesting connection between underdemanded schools and

sinks in rotation digraphs (of any stable assignment).

Lemma 2.43. Consider the school-rotation digraph DB associated with an instance (G,<,q) at

a stable assignment M ∈ S(G,<,q). A school b ∈ B is a sink in DB if and only if it is an

underdemanded school in M .

Proof. Let a be b’s least preferred student among M(b). The fact that b is a sink implies that

SM(b) does not exist. That is, M(a′) >a′ b, ∀a′ /∈ M(b). This concludes the proof for the “only

if” direction. The other direction is clear from the construction of the rotation digraph. ■

Fix an instance (G(A ∪ B,E), <,q) of the stable assignment problem. For a subgraph H

of G, we denote by output(Algorithm 2.3, H) the output of Algorithm 2.3 on instance (H,<

,q). Note that this output is uniquely defined due to Theorem 2.40. Similarly, we denote by

output(Algorithm 2.4, H) the output of Algorithm 2.4 on instance (H,<,q).

Recall that the i-th iteration of Algorithm 2.3 takes in subgraph Gi−1 and a stable assignment

M i−1 of (Gi−1, <,q) to construct a subgraph Gi and a stable assignment M i of (Gi, <,q).
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Lemma 2.44. Consider an execution of Algorithm 2.3. If b ∈ B is a sink in Di for some iteration

i, then it remains a sink in Dj for all later iterations j ≥ i. Moreover, if a ∈ M i(b), then

M i(a) =M j(a) for all j ≥ i.

Proof. The first part follows from the observation that M j ⪰ M i for all iterations j ≥ i. For any

a ∈ M i(b), since b is a sink in Dj for all j ≥ i, (a, b) is not part of a directed cycle of Dj for any

j ≥ i. Thus, the assignment of a remains unchanged for all iterations j ≥ i. ■

Lemma 2.45. Consider an execution of Algorithm 2.3. If H is constructed at some iteration i (i.e.,

H = Gi), then output(Algorithm 2.3, H) = output(Algorithm 2.3, G).

Proof. Consider the execution of Algorithm 2.3 where after graph H is constructed, the algorithm

always enters case (ii) defined in Step 5, which is to eliminate rotations, until the rotation digraph

contains no cycles. Let j ≥ i be the smallest index such that the rotation digraph Dj has no

cycles. Note that Gj = H by our choices of the execution and of j. By Lemma 2.18, M j is the

student-optimal stable assignment of (H,<,q). Hence,

output(Algorithm 2.3, G) = output(Algorithm 2.3, Gj) = output(Algorithm 2.3, H),

concluding the proof. ■

Next lemma shows that certain edges can be removed from the input graph without changing

the output of Algorithm 2.3. For a subset of edges F ⊆ E, we let G \F be the subgraph of G with

vertices V and edges E \ F . For any student-school pair ab ∈ E, define

R(ab) =


{ab} if a ∈ Ā,

{a′b ∈ E : a ≥b a′} if a /∈ Ā.

Lemma 2.46. Let b be a sink in the initial rotation graph D0 of Algorithm 2.3, a be a student

such that M0(a) = b, and b′ >a b. Then, output(Algorithm 2.3, G) = output(Algorithm 2.3,

G \R(ab′)).
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Proof. For the following, fix an execution of Algorithm 2.3. Since b is a sink in D0, it follows

from Lemma 2.44 that for all iterations j, b remains a sink in Dj and M j(a) = M0(a) = b. Since

b′ >a b, by stability, we have a′ >b′ a for all a′ ∈ M0(b′). Thus, the student-school pair ab′ is

removed during the execution. Assume that ab′ is removed during the (j + 1)-th iteration, that is,

ab′ ∈ E(Gj) \ E(Gj+1). Note that ab′ is removed due to one of the following two cases.

Case 1. ab′ is removed in Step 9. There is therefore a non-consenting student ā /∈ Ā such that: in

iteration j + 1, (b′, ā), (ā,M j(ā)) ∈ A(Dj) are selected as case (i) of Step 5, M j(ā) is a sink in

Dj , and ā >b′ a. Hence, in iteration j + 1, the set of removed edges includes R(ab′). Notice that

for any a′b′ ∈ R(ab′), (b′, a′) does not appear in any of the digraphs D0, . . . , Dj and moreover, the

construction of D0, . . . , Dj does not depend on whether a′b′ is present in subgraphs G0, . . . , Gj .

Hence, there is an execution of Algorithm 2.3 on the input graph G \ R(ab′) which constructs

subgraphs G0 \ R(ab′), . . . , Gj \ R(ab′), Gj+1 in exactly this order. Using Theorem 2.40 and

Lemma 2.45, we conclude:

output(Algorithm 2.3, G \R(ab′)) = output(Algorithm 2.3, Gj+1) = output(Algorithm 2.3, G),

as required.

Case 2. ab′ is removed in Step 7. That is, (b′, a), (a, b) ∈ A(Dj) are selected as case (i) of Step 5

in iteration j + 1. Then, R(ab′) = E(Gj) \ E(Gj+1). Because of Theorem 2.40 and the fact

(discussed above) that (a, b) is an edge and b is a sink throughout the execution, we can assume

that j is the smallest integer so that (b′, a) ∈ A(Dj). Then, similarly to the previous case, we have

that the construction of rotation digraphs D0, . . . , Dj−1 is independent from whether an edge from

R(ab′) is in graphsG0, . . . , Gj−1. Hence, there is an execution of Algorithm 2.3 on the input graph

G \ R(ab′) which generates subgraphs G0 \ R(ab′), . . . , Gj−1 \ R(ab′), Gj \ R(ab′) = Gj+1 in

exactly this order. Therefore, again by Theorem 2.40 and Lemma 2.45, we can conclude:

output(Algorithm 2.3, G \R(ab′)) = output(Algorithm 2.3, Gj) = output(Algorithm 2.3, G).

■
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We are now ready to show that school-rotate-remove with consent is outcome-equivalent

to simplified EADAM.

Theorem 2.47. For any given input, the outputs of Algorithm 2.3 and Algorithm 2.4 coincide.

Proof. We show output(Algorithm 2.3, G) = output(Algorithm 2.4, G) by induction on the

number of edges removed, denoted as k, by Algorithm 2.4 on input graph G.

The base case is when k = 0. All schools are therefore underdemanded in the student-

optimal stable assignment M0 of (G,<,q) and thus, output(Algorithm 2.4, G) = M0. By

Lemma 2.43, all nodes of B are sinks in the rotation digraph associated to M0. We conclude

that output(Algorithm 2.3, G) =M0 = output(Algorithm 2.4, G), as required.

Now, let k ≥ 1 and suppose the statement is true for all instances on which Algorithm 2.4

removes at most k − 1 edges. Define

Q := {ab ∈ E : a ∈ A,M0(a) underdemanded in M0, b >a M
0(a)} = {a1b1, a2b2, a3b3, . . . , akbk}.

During the first iteration of Algorithm 2.4 on input graph G, all and only the edges from the

set R := ∪ab∈QR(ab) are removed. Notice that |R| ≥ 1, because otherwise k = 0. Let G1

be the graph constructed by Algorithm 2.4 at the end of the first iteration, i.e., G1 = G \ R.

Observe that output(Algorithm 2.4, G) = output(Algorithm 2.4, G1) and moreover, the number

of edges removed by Algorithm 2.4 on input graph G1 are |R| > 0 fewer than those removed by

Algorithm 2.4 on input graph G. We have:

output(Algorithm 2.4, G) = output(Algorithm 2.4, G1) (by what just argued)

= output(Algorithm 2.3, G1) (by induction hypothesis)

= output(Algorithm 2.3, G \R) (by construction)

= output(Algorithm 2.3, G \ ∪k−1
i=1R(aibi)) (by Lemma 2.43, 2.46)

= ...

= output(Algorithm 2.3, G),
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as required. ■

Proof of Theorem 2.32. Immediately from Theorem 2.41 and Theorem 2.47. ■

2.10 Legal Matchings and Latin Marriages

In this section, we restrict to one-to-one instances. For an instance (G,<) of the stable marriage

problem, let S(G,<) and L(G,<) denote the set of stable matchings and legal matchings respec-

tively. In addition, we call (GL, <) the legalized instance of (G,<), where GL is the subgraph of

G defined as in Theorem 2.3. We say an instance (G,<) is legal if GL = G.

An n × n matrix is a Latin square if each row and each column is a permutation of numbers

1, 2, · · · , n. Given an instance (G,<) of the stable marriage problem with complete lists, we call

the position of a in the preference list of b the rank of a in b’s list. Following the work of Benjamin,

Converse, and Krieger (1995), we say an instance (G,<) with |A| = |B| = n is Latin if there exists

a Latin square Q with n rows indexed by elements of A and n columns indexed by elements of B

such that, for each row a and column b, Q(a, b) is the rank of b in a’s list, and n+1−Q(a, b) is the

rank of a in b’s list. We call such Q the Latin ranking matrix. See Example 2.51 for an example

of a Latin ranking matrix and its associated stable marriage instance. In this section, we prove the

following.

Theorem 2.48. Let (G,<) be a Latin instance. Then, GL = G and there exists an instance

(G′, <′) with an additional man ã and an additional woman b̃ such that |S(G′, <′)| = 1 and

L(G′, <′) = {M ∪ {ãb̃} :M ∈ S(G,<)}.

Benjamin, Converse, and Krieger (1995) construct, for each even n, a Latin instance (G,<)

with n men and n women such that |S(G,<)| = ω(2n) and in the man-optimal stable matching,

each man is given his favorite partner. Hence, Theorem 2.48 implies that for each odd n, there is

an instance (G′, <′) with nmen and nwomen such that |S(G′, <′)| = 1 and |L(G′, <′)| = ω(2n) –

that is, it has one stable matching but exponentially many legal matchings. Moreover, proofs of our

construction for (G′, <′) shows that the man-optimal legal matching in L(G′, <′) assigns to each
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man from G his favorite partner, while the stable matching in S(G′, <′) assigns to each man from

G his second least favorite partner (see Lemma 2.52). Note that, up to a different constant in the

basis, the asymptotic ratio between the quantities |L(G,<)| and |S(G,<)| cannot be increased, as

it has been recently shown that there exists an absolute constant c > 1 such that every instance of

the stable marriage problem with nmen and nwomen hasO(cn) stable matchings (Karlin, Gharan,

and Weber, 2018).

We believe that future investigations of the relationship between Latin instances and legal

matchings may provide further advancement on a question by Knuth (1976). In his seminal, Knuth

asks for a characterization of instances that maximize |S(G,<)| for each value of |A| = |B| =

n ∈ N. While an asymptotic upper bound follows from the work cited above by Karlin, Gharan,

and Weber (2018), the characterization of these instances is unsolved even for reasonable small

sizes. Note that, for each n ∈ N, there is always a legal instance achieving the maximum, as for

any instance (G,<), we have |S(GL, <)| = |L(GL, <)| ≥ |S(G,<)|.

The theorem below (Benjamin, Converse, and Krieger, 1995) gives a necessary and sufficient

condition for a matching to be stable in a Latin instance.

Theorem 2.49. Let M be a matching of the instance defined by a Latin ranking matrix Q. M

is stable if and only if there do not exist row a and column b such that Q(M(b), b) > Q(a, b) >

Q(a,M(a)) or Q(M(b), b) < Q(a, b) < Q(a,M(a)).

The following lemma shows that every Latin instance is legal.

Lemma 2.50. Let (G,<) be a Latin instance. Then GL = G.

Proof. Assume Q is the Latin ranking matrix of instance (G,<) and Q ∈ Zn×n. For i ∈ [n], let

M i = {ab : Q(a, b) = i}. By definition of Latin squares, M i is a matching. By construction, for

any row a and column b, Q(M i(b), b) = i = Q(a,M i(a)). Therefore, M i must be stable and thus

legal due to Theorem 2.49. Since
⋃
i∈[n]M

i = E(G), by Theorem 2.3, GL = G. ■

As we will show next, the set of stable matchings of a Latin instance can be “masked” into

the set of legal matchings of an auxiliary instance with only one more man and one more woman,
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such that the auxiliary instance has only one stable matching. The construction is as follows: given

a Latin instance (G(A ∪ B,E), <), construct an auxiliary instance (G′(A′ ∪ B′, E ′), <′), where

A′ = A ∪ {ã}, B′ = B ∪ {b̃}, E ′ = A′ ×B′, and <′ is defined as follows:

(i) every a ∈ A ranks b̃ in the last position, and <′
a restricted to B is exactly <a.

(ii) ã has an arbitrary ranking of B′ as long as b̃ is the least preferred.

(iii) every b ∈ B ranks ã in the second place, and <′
b restricted to A is exactly <b.

(iv) b̃ has an arbitrary ranking of A′ as long as ã is ranked first.

An example of our construction can be found in Example 2.51.

Example 2.51. Consider the following Latin ranking matrix Q and the associated instance (G,<).

b1 b2 b3 b4


a1 1 2 3 4

a2 2 1 4 3

a3 3 4 1 2

a4 4 3 2 1

a1 : b1 > b2 > b3 > b4 b1 : a4 > a3 > a2 > a1

a2 : b2 > b1 > b4 > b3 b2 : a3 > a4 > a1 > a2

a3 : b3 > b4 > b1 > b2 b3 : a2 > a1 > a4 > a3

a4 : b4 > b3 > b2 > b1 b4 : a1 > a2 > a3 > a4

Consider the matching M = {a1b1, a2b3, a3b2, a4b4}, which corresponds to the boxed cells in the

Latin ranking matrix. M is not stable because as one can check, a3b1 is a blocking pair. Equiva-

lently, we can apply Theorem 2.49 on the Latin ranking matrix with a = a3, b = b1 and conclude

that M is not stable. In particular, we have Q(M(b), b) = 1 < Q(a, b) = 3 < Q(a,M(a)) = 4.

One can check that (G,<) has 10 stable matchings. Now consider the auxiliary instance (G′, <′

). Note that its preference lists are exactly those given in Example A.1 with a5 = ã and b5 = b̃.

(G′, <′). The auxiliary instance has only one stable matching, which is {a1b4, a2b3, a3b2, a4b1,

ãb̃}, but its legalized instance (G′
L, <

′
L) has 10 stable matchings. △

Before concluding the proof of Theorem 2.48, we first show the following facts.
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Lemma 2.52. Given a Latin instance (G,<) with G = (A∪B,E), define (G′, <′) as above. Then

|S(G′, <′)| = 1 and each man from A is given his second least favorite partner (with respect to

<′) in the unique stable matching of (G′, <′).

Proof. LetM ∈ S(G′, <′) be a stable matching in the auxiliary instance. We first showM (̃b) = ã.

Assume by contradiction that M (̃b) = a for some a ∈ A. Let b be a’s least preferred partner in

B. Then b >′
a b̃ = M(a) by construction. By the symmetric nature of Latin instances, a must be

b’s most preferred partner in A, which means a >′
b M(b). But then ab is a blocking pair of M ,

contradicting stability. Next, we want to show every woman in B is matched to her most preferred

man. Assume by contradiction that the claim is not true for some b ∈ B. Then ã >′
b M(b). Since

b >′
ã b̃ by construction, ãb blocks M , which again contradicts stability. Hence, S(G′, <′) contains

exactly one stable matching, namely the one where every woman is matched to her most preferred

man according to <′. That is, every man a ∈ A is given his second least favorite partner with

respect to <′. ■

Lemma 2.53. Let (G,<) and (G′, <′) be as before with G = (A∪B,E) and G′ = (A′ ∪B′, E ′).

Then, L(G′, <′) = {M ∪ {ãb̃} :M ∈ S(G,<)}.

Proof. Let M0 be the only stable matching of (G′, <′). Since every woman in B′ is matched

to her most preferred man in A′ as shown in the proof of Lemma 2.52, M0 is also the woman-

optimal legal matching of L(G′, <′). In addition, since b̃ is the least preferred woman of every

man by construction of G′, b̃ is a sink in the woman-rotation digraph of M0 and remains a sink

throughout the execution of woman-rotate-remove. Thus, ã is matched to b̃ in the man-optimal

legal matching of L(G′, <′). Hence, ãb̃ ∈M for allM ∈ L(G′, <′) and according to Theorem 2.3,

all edges in Ẽ := {ab̃ : a ∈ A}∪{ãb : b ∈ B} (i.e., edges that are adjacent to exactly one of ã and b̃)

are illegal. By Lemma 2.6, we haveL(G′, <′) = L(G′[E ′\Ẽ], <′) = {M∪{ãb̃} :M ∈ L(G,<)},

where the last equality is because E \ Ẽ = E(G) ∪ {ãb̃}. Finally, by Lemma 2.50, we have

L(G,<) = S(G,<) and thus, L(G′, <′) = {M ∪ {ãb̃} :M ∈ S(G,<)}. ■

Proof of Theorem 2.48. Immediately implied by Lemmas 2.50, 2.52 and 2.53. ■
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2.11 Figures
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(a) all students consent
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Figure 2.1: Comparing EADAM, simplified EADAM, and school-rotate-remove with
consent in the one-to-many setting on random instances of varying sizes. Average run time of sim-
plified EADAM and school-rotate-remove with consent included for the largest instance in
our experiment.

63



GS SchRR sEADAM0

50

100

150

200

250

300

350

400

ru
n 

tim
e 

(m
in

)

2.86 3.15

231.61

(a) all students consent

GS SchRR sEADAM0

25

50

75

100

125

150

175

200

ru
n 

tim
e 

(m
in

)

2.86 2.87

100.20

(b) 80% students consent

GS SchRR sEADAM0

20

40

60

80

100

120

ru
n 

tim
e 

(m
in

)

2.85 2.86

57.70

(c) 50% students consent

GS SchRR sEADAM0

20

40

60

80

100

ru
n 

tim
e 

(m
in

)

2.60 2.61

33.68

(d) 30% students consent

GS SchRR sEADAM0

10

20

30

40

50

60

70

80

ru
n 

tim
e 

(m
in

)

2.69 2.70

19.25

(e) 10% students consent

Figure 2.2: Comparing simplified EADAM (sEADAM) and school-rotate-remove with
consent (SchRR) on random instances whose sizes are similar to those of the New York City
school system. Run times of Gale-Shapley’s algorithm (GS) are included as a benchmark. Run
time of Kesten’s original algorithm is not included because most instances fail to finish within 24
hours. Each line represents one instance. Box plots and averages of run times are included for each
algorithm.
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Chapter 3: Affinely representable lattices, stable matchings, and choice

functions

3.1 Introduction

In this chapter, matching markets have two sides, which we call firms F and workers W .

Although successful, the stable assignment model does not capture features that have become of

crucial importance both inside and outside academia. For instance, there is growing attention to

models that can increase diversity in school cohorts (Nguyen and Vohra, 2019; Tomoeda, 2018).

Such constraints cannot be represented in the original model, or its one-to-many or many-to-many

generalizations, since admission decisions with diversity concerns cannot be captured by a strict

preference list.

To model these and other markets, instead of ranking individual potential partners, each agent

a ∈ F ∪W is endowed with a choice function Ca that picks a team she prefers the best from a

given set of potential partners. See, e.g., Echenique and Yenmez (2015), Aygün and Turhan (2016),

and Kamada and Kojima (2015) for more applications of models with choice functions. Models

with choice functions were first studied in Roth (1984a) and Kelso Jr and Crawford (1982) (see

Section 3.1.2). Mutatis mutandis, one can define a concept of stability in this model as well (for

this and the other technical definition mentioned below, see Section 3.2). Two classical assump-

tions on choices functions are substitutability and consistency, under which the existence of stable

matchings is guaranteed (Hatfield and Milgrom, 2005; Aygün and Sönmez, 2013). Clearly, ex-

istence results are not enough for applications (and for optimizers). Interestingly, little is known

about efficient algorithms in models with choice functions. Only extensions of the classical De-

ferred Acceptance algorithm for finding the one-side optimal matching have been studied for this

model (Roth, 1984a; Chambers and Yenmez, 2017).
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The goal of this chapter is to study algorithms for optimizing a linear function w over the set of

stable matchings in models with choice functions, where w is defined over firm-worker pairs. Such

questions are classical in combinatorial optimization, see, e.g., Schrijver (2003) (and Manlove

(2013) for problems on matching markets). We focus on two models. The first model (CM-

MODEL) assumes that all choice functions are substitutable, consistent, and cardinal monotone.

The second model (CM-QF-MODEL) additional assumes that for one side of the market, choice

functions are also quota-filling. Both models generalize all classical models where agents have

strict preference lists, on which results for the question above were known. For these models,

Alkan (2002) has shown that stable matchings form a distributive lattice. As we argue next, this is

a fundamental property that allows us to solve our optimization problem efficiently.

3.1.1 Our contributions and techniques

We give here a high-level description of our approach and results. For the standard notions of

posets, distributive lattices, and related definitions see Section 3.2.1. All sets considered in this

chapter are finite.

Let L = (X ,⪰) be a distributive lattice, where the elements of X are distinct subsets of a base

set E and ⪰ is a partial order on X . We refer to S ∈ X as an element (of the lattice). Birkhoff’s

theorem (Birkhoff, 1937) implies that we can associate1 to L a poset B = (Y,⪰⋆) such that there

is a bijection ψ : X → U(B), where U(B) is the family of upper sets of B. U ⊆ Y is an upper

set of B if y ∈ U and y′ ⪰⋆ y for some y′ ∈ Y implies y′ ∈ U . We say therefore that B is a

representation poset for L with the representation function ψ. See Example 3.2 below. B may

contain much fewer elements than the lattice L it represents, thus giving a possibly “compact”

description of L.

The representation posetB and the representation functionψ are univocally defined per Birkhoff’s

theorem. Moreover, the representation function ψ satisfies that for S, S ′ ∈ X , S ⪰ S ′ if and only

if ψ(S) ⊆ ψ(S ′). Although B explains how elements of X are related to each other with respect

1The result proved by Birkhoff is actually a bijection between the families of lattices and posets, but in this chapter
we shall not need it in full generality.
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to ⪰, it does not contain any information on which items from E are contained in each lattice

element. We introduce therefore Definition 3.1. For S ∈ X and U ∈ U(B), we write χS ∈ {0, 1}E

and χU ∈ {0, 1}Y to denote their characteristic vectors, respectively.

Definition 3.1. Let L = (X ,⪰) be a distributive lattice on a base set E and B = (Y,⪰⋆) be a

representation poset for L with representation function ψ. B is an affine representation of L if

there exists an affine function g : RY → RE such that g(χU) = χψ
−1(U), for all U ∈ U(B). In this

case, we also say that B affinely represents L via function g and that L is affinely representable.

We observe that, in Definition 3.1, we can always assume g(u) = Au + x0, where A ∈

{0,±1}E×Y and x0 is the characteristic vector of the maximal element of L. Indeed, g(χ∅) = x0.

Moreover, for every y ∈ B, there is U,U ′ ∈ U(B) such that U ′ = U \ {y}. Hence, letting ay be the

column of A corresponding to y, we have

ay = g(χU)− g(χU ′
) = χψ

−1(U) − χψ−1(U ′) ∈ {0,±1}E.

Example 3.2. Consider first the distributive lattice L = (X ,⪰) whose Hasse diagram is given in

the Figure 3.1a, with base set E = {1, 2, 3, 4}.

S1 = {1, 2}

S2 = {1, 3} S3 = {1, 2, 4}

S4 = {1, 3, 4}

(a) Lattice affinely representable

S1 = {1, 2}

S2 = {1, 3} S3 = {1, 3, 4}

S4 = {1, 2, 4}

(b) Lattice not affinely representable

Figure 3.1: Lattices for Example 3.2.

The representation poset B = (Y,⪰⋆) of L contains two non-comparable elements, y1 and y2.

The representation function ψ maps Si to Ui for i ∈ [4] with U1 = ∅, U2 = {y1}, U3 = {y2},

and U4 = {y1, y2}. That is, U(B) = {U1, U2, U3, U4}. One can think of y1 as the operation of

adding {3} and removing {2}, and y2 as the operation of adding {4}. B affinely represents L via

the function g(χU) = AχU + χS1 where
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A =



0 0

−1 0

1 0

0 1


, as

g(χU1)⊺ = (0, 0, 0, 0) + (1, 1, 0, 0) = (1, 1, 0, 0) = (χS1)⊺;

g(χU2)⊺ = (0,−1, 1, 0) + (1, 1, 0, 0) = (1, 0, 1, 0) = (χS2)⊺;

g(χU3)⊺ = (0, 0, 0, 1) + (1, 1, 0, 0) = (1, 1, 0, 1) = (χS3)⊺;

g(χU4)⊺ = (0,−1, 1, 1) + (1, 1, 0, 0) = (1, 0, 1, 1) = (χS4)⊺.

Next consider the distributive lattice L′ whose Hasse diagram is presented in Figure 3.1b. Note

that the same poset B represents L′ with the same representation function ψ. Nevertheless, L′

is not affinely representable. If it is and such a function g(χU) = AχU + χS1 exists, then since

(χU1 + χU4)⊺ = (1, 1) = (χU2 + χU3)⊺, we must have

χS1 + χS4 = (χS1 + AχU1) + (χS1 + AχU4) = (χS1 + AχU2) + (χS1 + AχU3) = χS2 + χS3 .

However, this is clearly not the case as (χS1 + χS4)⊺ = (2, 2, 0, 1) but (χS2 + χS3)⊺ = (2, 0, 2, 1).

△

As we show next, affine representability allows one to efficiently solve linear optimization

problems over elements of a distributive lattice. In particular, it generalizes properties that are at

the backbone of algorithms for optimizing a linear function over the set of stable matchings in the

marriage model and its one-to-many and many-to-many generalizations (see, e.g., Irving, Leather,

and Gusfield, 1987; Bansal, Agrawal, and Malhotra, 2007b). For instance, in the marriage model,

the base set E is the set of potential pairs of agents from two sides of the market, X is the set of

stable matchings, and for S, S ′ ∈ X , we have S ⪰ S ′ if every firm prefers its partner in S to its

partner in S ′. Elements of its representation poset are certain (trading) cycles, called rotations.

Lemma 3.3. Suppose we are given a poset B = (Y,⪰⋆) that affinely represents a lattice L =

(X ,⪰) with representation function ψ. Let w : E → R be a linear function over the base set E

of L. Then the problem max{w⊺χS : S ∈ X} can be solved in time min-cut(|Y | + 2), where

min-cut(k) is the time complexity required to solve a minimum s−t cut problem with nonnegative

weights in a digraph with k nodes.
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Proof. Let g(u) = Au+x0 be the affine function from the definition of affine representability. We

have:

max
S∈X

w⊺χS = max
U∈U(B)

w⊺g(χU) = max
U∈U(B)

w⊺(AχU + x0) = w⊺x0 + max
U∈U(B)

(w⊺A)χU .

Our problem boils down therefore to the optimization of a linear function over the upper sets of

B. It is well-known that the latter problem is equivalent to computing a minimum s − t cut in a

digraph with |Y |+ 2 nodes (Picard, 1976). ■

We want to apply Lemma 3.3 to the CM-QF-MODEL model. Observe that a choice function

may be defined on all the (exponentially many) subsets of agents from the opposite side. We avoid

this computational concern by modeling choice functions via an oracle model. That is, choice

functions can be thought of as agents’ private information. The complexity of our algorithms will

therefore be expressed in terms of |F |, |W |, and the time required to compute the choice function

Ca(X) of an agent a ∈ F ∪W , where the set X is in the domain of Ca. The latter running time is

denoted by oracle-call and we assume it to be independent of a and X . Our first result is the

following.

Theorem 3.4. The distributive lattice (S,⪰) of stable matchings in the CM-MODEL is affinely

representable. Its representation poset (Π,⪰⋆) has O(|F ||W |) elements. This representation

poset, as well as its representation function ψ and affine function g(u) = Au+x0, can be computed

in time O(|F |3|W |3oracle-call) for the CM-QF-MODEL. Moreover, matrix A has full column

rank.

In Theorem 3.4, we assumed that operations, such as comparing two sets and obtaining an

entry from the set difference of two sets, take constant time. If this is not the case, a factor mildly

polynomial in |F | · |W | needs to be added to the running time. Observe that Theorem 3.4 is the

union of two statements. First, the distributive lattice of stable matchings in the CM-MODEL is

affinely representable. Second, this representation and the corresponding functions ψ and g can

be found efficiently for the CM-QF-MODEL. Those two results are proved in Section 3.3 and
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Section 3.4, respectively. Combining Theorem 3.4, Lemma 3.3 and algorithms for min-cut(·), we

obtain the following.

Corollary 3.5. The problem of optimizing a linear function over the set of stable matchings in the

CM-QF-MODEL can be solved in time O(|F |3|W |3oracle-call).

Since algorithms for solving min-cut(k) in time sub-cubic in k are known (see, e.g., Cheriyan,

Hagerup, and Mehlhorn, 1996), the bottleneck in the running time of Corollary 3.5 is given by the

operations that construct the poset. As an interesting consequence of studying a distributive lattice

via the poset that affinely represents it, one immediately obtains a linear description of the convex

hull of the characteristic vectors of elements of the lattice (see Section 3.5). In contrast, most stable

matching literature (see Section 3.1.2) has focused on deducing linear descriptions for special cases

of our model via ad-hoc proofs, independently of the lattice structure.

Theorem 3.6. Let L = (X ,⪰) be a distributive lattice and B = (Y,⪰⋆) be a poset that affinely

represents it via function g(u) = Au+x0. Then the extension complexity of conv(X ) := conv{χS :

S ∈ X} is O(|Y |2). If moreover A has full column rank, then conv(X ) has O(|Y |2) facets.

Theorem 3.4 and Theorem 3.6 imply the following description of the stable matching polytope

conv(S), i.e., the convex hull of the characteristic vectors of stable matchings.

Corollary 3.7. conv(S) has O(|F |2|W |2) facets in the CM-MODEL.

We next give an example of a lattice represented via a non-full-column rank matrix A.

Example 3.8. Consider the distributive lattice given in Figure 3.2a. It can be represented via the

poset B = (Y,⪰⋆) that contains three elements y1, y2, and y3 where y1 ⪰⋆ y2 ⪰⋆ y3. The upper

sets of B are U(B) = {∅, {y1}, {y1, y2}, {y1, y2, y3}}. In addition, B affinely represents L via the

function g(χU) = AχU + χS1 , where A is given in Figure 3.2b. Matrix A clearly does not have

full column rank. △
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S1 = {1, 2}

S2 = {1, 3}

S3 = {1, 2, 4}

S4 = {1, 3, 4}

(a)

A =



0 0 0

−1 1 −1

1 −1 1

0 1 0


(b)

Figure 3.2: Affine representation with non-full-column-rank matrix A

When the matrix A from Theorem 3.6 has full column rank, one can build on the (simple)

irredundant linear description known for the order polytope (Stanley, 1986) to obtain an irredun-

dant description in the original space for conv(X ). We illustrate this idea in Section 3.5.1, by

deriving a minimal description of the stable matching polytope in the one-to-one stable marriage

model with strict preference lists (Rothblum, 1992; Vate, 1989), which coincides with the one

given in Eirinakis et al. (2014).

Lastly, in Section 3.6, we discuss alternative ways to represent choice functions, dropping

the oracle-model assumption. Interestingly, we show that choice functions in the CM-MODEL

(i.e., substitutable, consistent, and cardinal monotone) do not have polynomial-size representation

because the number of possible choice functions in such a model is doubly-exponential in the size

of acceptable partners.

3.1.2 Relationship with the literature

Gale and Shapley (1962) introduced the one-to-one stable marriage (SM-MODEL) and the

one-to-many stable admission model (SA-MODEL), and presented an algorithm which finds a

stable matching. McVitie and Wilson (1971) proposed the break-marriage procedure that allows

us to find the full set of stable matchings. Irving, Leather, and Gusfield (1987) presented an

efficient algorithm for the maximum-weighted stable matching problem with weights over pairs

of agents, utilizing the fact stable matchings form a distributive lattice (Knuth, 1976) and that its

representation poset – an affine representation following our terminology – can be constructed
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efficiently via the concept of rotations (Irving and Leather, 1986). The above-mentioned structural

and algorithm results were shown for its many-to-many generalization (MM-MODEL) by Baïou

and Balinski (2000), and Bansal, Agrawal, and Malhotra (2007b). A complete survey of results on

these models can be found, e.g., in Gusfield and Irving (1989) and Manlove (2013).

For models with substitutable and consistent choice functions, Roth (1984a) proved that stable

matchings always exist by generalizing the algorithm presented in Gale and Shapley (1962). Blair

(1988) proved that stable matchings form a lattice, although not necessarily distributive. Alkan

(2001) showed that if choice functions are further assumed to be quota-filling, the lattice is dis-

tributive. Results on (non-efficient) enumeration algorithms for certain choice functions appeared

in Martínez et al. (2004).

It is then natural to investigate whether algorithms from Bansal, Agrawal, and Malhotra (2007b)

and Irving and Leather (1986) can be directly extended to construct the representation poset in the

CM-QF-MODEL or the more general CM-MODEL. However, their definition of rotation and tech-

niques rely on the fact that there is a strict ordering of partners, which is not available with choice

functions. This, for instance, leads to the fact that the symmetric difference of two stable match-

ings that are adjacent in the Hasse Diagram of the lattice is a simple cycle, which is not always true

in the CM-MODEL (see Example 3.27). We take then a more fundamental approach by showing

a carefully defined ring of sets is isomorphic to the set of stable matchings, and thus we can con-

struct the rotation poset following a maximal chain of the stable matching lattice. This approach

conceptually follows the one by Gusfield and Irving (1989) for the SM-MODEL and leads to a

generalization of the break-marriage procedure from McVitie and Wilson (1971). Again, proofs in

Gusfield and Irving (1989) and McVitie and Wilson (1971) heavily rely on the strict ordering of

partners, while we need to tackle the challenge of not having one.

Besides the combinatorial perspective, another line of research focuses on the polyhedral as-

pects. Linear descriptions of the convex hull of the characteristic vectors of stable matchings are

provided for the SM-MODEL (Vate, 1989; Rothblum, 1992; Roth, Rothblum, and Vande Vate,

1993), the SA-MODEL (Baïou and Balinski, 2000), and the MM-MODEL (Fleiner, 2003). In this
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chapter, we provide a polyhedral description for the CM-QF-MODEL, by drawing connections

between the order polytope (i.e., the convex hull of the characteristic vectors of upper sets of a

poset) and Birkhoff’s representation theorem of distributive lattices. A similar approach has been

proposed in Aprile, Cevallos, and Faenza (2018): their result can be seen as a specialization of

Theorem 3.4 to the SM-MODEL.

3.2 Basics

3.2.1 Posets, lattices, and distributivity

A setX endowed with a partial order relation≥, denoted as (X,≥), is called a partially ordered

set (poset). When the partial order ≥ is clear from context, we often times simply use X to denote

the poset (X,≥). Let a, a′ ∈ X , if a′ > a, we say a′ is a predecessor of a in poset (X,≥), and a

is a descendant of a′ in poset (X,≥). If moreover, there is no b ∈ X such that a′ > b > a, we say

that a′ an immediate predecessor of a in poset (X,≥) and that a is an immediate descendant of a′

in poset (X,≥). If a ̸≥ a′ and a′ ̸≥ a, we say a and a′ are incomparable.

For a subset S ⊆ X , an element a ∈ X is said to be an upper bound (resp. lower bound) of S

if for all b ∈ S, a ≥ b (resp. b ≥ a). An upper bound (resp. lower bound) a′ of S is said to be its

least upper bound or join (resp. greatest lower bound or meet), if a ≥ a′ (resp. a′ ≥ a) for each

upper bound (resp. lower bound) a of S.

A lattice is a poset for which every pair of elements has a join and a meet, and for every pair

those are unique by definition. Thus, two binary operations are defined over a lattice: join and

meet. A lattice is distributive where the operations of join and meet distribute over each other.

For n ∈ N, we denote by [n] the set {1, · · · , n}. Two lattices are said to be isomorphic if there

is a structure-preserving mapping between them that can be reversed by an inverse mapping. Such

a structure-preserving mapping is called an isomorphism between the two lattices.
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3.2.2 The firm-worker models

Let F and W denote two disjoint finite sets of agents, say firms and workers respectively.

Associated with each firm f ∈ F is a choice function Cf : 2W (f) → 2W (f) where W (f) ⊆ W is the

set of acceptable partners of f and Cf satisfies the property that for every S ⊆ W (f), Cf (S) ⊆ S.

Similarly, a choice function Cw : 2F (w) → 2F (w) is associated to each worker w. We assume

that for every firm-worker pair (f, w), f ∈ F (w) if and only if w ∈ W (f). We let CW and CF

denote the collection of firms’ and workers’ choice functions respectively. A matching market (or

an instance) is a tuple (F,W, CF , CW ). Following Alkan (2002), we define below the properties

of substitutability, consistency, and cardinal monotonicity (law of aggregate demand) for choice

function Ca of an agent a.

Definition 3.9 (Substitutability). An agent a’s choice function Ca is substitutable if for any set of

partners S, b ∈ Ca(S) implies that for all T ⊆ S, b ∈ Ca(T ∪ {b}).

Definition 3.10 (Consistency). An agent a’s choice function Ca is consistent if for any sets of

partners S and T , Ca(S) ⊆ T ⊆ S implies Ca(S) = Ca(T ).

Definition 3.11 (Cardinal monotonicity). An agent a’s choice function Ca is cardinal monotone if

for all sets of partners S ⊆ T , we have |Ca(S)| ≤ |Ca(T )|.

Intuitively, substitutability implies that if an agent is selected from a set of candidates, she will

also be selected from a smaller subset; consistency is also called “irrelevance of rejected contracts”;

and cardinal monotonicity implies that the size of the image of the choice function is monotone

with respect to set inclusion.

Aizerman and Malishevski (1981) showed that a choice function is substitutable and consistent

if and only if it is path-independent.

Definition 3.12 (Path-independence). An agent a’s choice function Ca is path-independent if for

any sets of partners S and T , Ca(S ∪ T ) = Ca
(
Ca(S) ∪ T

)
.

We next prove a few properties of path-independent choice functions.
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Lemma 3.13. Let C : 2A → 2A be a path-independent choice function and let A1, A2 ⊆ A. If

C(A1 ∪ {a}) = C(A1) for every a ∈ A2 \ A1, then C(A1 ∪ A2) = C(A1).

Proof. Assume A2 \ A1 = {a1, a2, · · · , at}. Then, by repeated application of the path indepen-

dence property,

C(A1 ∪ A2) = C(A1 ∪ {a1, a2, · · · , at}) = C(C(A1 ∪ {a1}) ∪ {a2, · · · , at})

= C(C(A1) ∪ {a2, · · · , at}) = C(A1 ∪ {a2, a3, · · · , at}) = · · · = C(A1).

■

Corollary 3.14. Let C : 2A → 2A be a path-independent choice function and let A1, A2 ⊆ A. If

a /∈ C(A1 ∪ {a}) for every a ∈ A2 \ A1, then C(A1 ∪ A2) = C(A1).

Proof. By the consistency property of C, a /∈ C(A1 ∪ {a}) implies C(A1 ∪ {a}) = C(A1).

Lemma 3.13 then applies directly. ■

Lemma 3.15. Let C : 2A → 2A be a path-independent choice function and let A1, A2 ⊆ A, a ∈ A.

Assume C(A1 ∪ A2) = A1 and a ∈ C(A1 ∪ {a}). Then, a ∈ C(A2 ∪ {a}).

Proof. By path-independence, we have that C(A1∪A2∪{a}) = C(C(A1∪A2)∪{a}) = C(A1∪{a})

and thus a ∈ C(A1 ∪ A2 ∪ {a}). Also, by path-independence, we have C(A1 ∪ A2 ∪ {a}) =

C
(
C(A1 \ {a}) ∪ C(A2 ∪ {a})

)
. Since a /∈ C(A1 \ {a}), it must be that a ∈ C(A2 ∪ {a}). ■

Recall that a matching µ is a mapping from F ∪W to 2F∪W such that for all w ∈ W and f ∈ F ,

(1) µ(w) ⊆ F (w); (2) µ(f) ⊆ W (f); and (3) w ∈ µ(f) if and only if f ∈ µ(w). A matching can

also be viewed as a collection of firm-worker pairs. That is, µ ≡ {(f, w) : f ∈ F,w ∈ µ(f)}.

Thus, we use (f, w) ∈ µ, w ∈ µ(f), and f ∈ µ(w) interchangeably. We say a matching µ

is individually rational if for every agent a, Ca(µ(a)) = µ(a). An acceptable firm-worker pair

(f, w) /∈ µ is called a blocking pair if w ∈ Cf (µ(f) ∪ {w}) and f ∈ Cw(µ(w) ∪ {f}), and when

such pair exists, we say µ is blocked by the pair or the pair blocks µ. A matching µ is stable if it is
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individually rational and it admits no blocking pairs. If f is matched to w in some stable matching,

we say that (f, w) is a stable pair and that f (resp. w) is a stable partner of w (resp. f ). We denote

by S(CF , CW ) the set of stable matchings in the market (F,W, CF , CW ), and when the market is

clear from the context we abbreviate S := S(CF , CW ).

Alkan (2002) showed the following.

Theorem 3.16 (Alkan, 2002). Consider a matching market (F,W, CF , CW ) and assume CF and

CW are substitutable, consistent, and cardinal monotone. Then S(CF , CW ) is a distributive lattice

under the partial order relation⪰ where µ1 ⪰ µ2 if for all f ∈ F , Cf (µ1(f)∪µ2(f)) = µ1(f). The

join (denoted by ∨) and meet (denoted by ∧) operations of the lattice are defined component-wise.

That is, for all f ∈ F :

(µ1 ∨ µ2)(f) := µ1(f) ∨ µ2(f) := Cf (µ1(f) ∪ µ2(f)),

(µ1 ∧ µ2)(f) := µ1(f) ∧ µ2(f)

:=
((
µ1(f) ∪ µ2(f)

)
\ (µ1 ∨ µ2)(f)

)
∪
(
µ1(f) ∩ µ2(f)

)
.

Moreover, S(CF , CW ) satisfies the polarity property: µ1 ⪰ µ2 if and only if Cw(µ1(w))∪µ2(w)) =

µ2(w) for every worker w ∈ W .

Because of the lattice structure, the firm- and worker-optimal stable matchings are well-defined,

and we denote them respectively by µF and µW . In addition, Alkan (2002) showed two properties,

which we call concordance (Alkan, 2002, Proposition 7) and equal-quota (Alkan, 2002, Proposi-

tion 6), satisfied by the family of sets of partners under all stable matchings for every agent a. Let

Φa := {µ(a) : µ ∈ S(CF , CW )}. Then for all S, T ∈ Φa,

S ∩ T ⊆ S ∨ T (concordance)

and

|S| = |T | =: q̄a. (equal-quota)
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Instead of cardinal monotonicity, in an earlier paper, Alkan (2001) considers a more restrictive

property of choice functions, called quota-filling.

Definition 3.17 (Quota-filling). An agent a’s choice function Ca is quota-filling if there exists

qa ∈ N such that for any set of partners S, |Ca(S)| = min(qa, |S|). We call qa the quota of agent a.

Intuitively, quota-filling means that an agent has a number of positions and she tries to fill as

many of these positions as possible. Note that quota-filling implies cardinal monotonicity. Let qa

denote the quota of each agent a ∈ F ∪W .

Our results from Section 3.3 assume path-independence (i.e., substitutability and consistency)

and cardinal monotonicity. In Section 3.4, we will restrict our model by replacing cardinal mono-

tonicity with quota-filling for one side of the market. These two models are what we call the

CM-MODEL and the CM-QF-MODEL, respectively.

3.2.3 MC-representation for path-independent choice functions

We now introduce an alternative, equivalent description of choice functions for the model stud-

ied in this chapter that we will use in examples throughout the chapter, and investigate more in

detail in Section 3.6.

Aizerman and Malishevski (1981) showed that a choice function Ca is path-independent if

and only if there exists a finite sequence of p(Ca) ∈ N preference relations over acceptable part-

ners, denoted as {≥a,i}i∈[p(Ca)] indexed by i, such that for every subset of acceptable partners S,

Ca(S) = ∪i∈[p(Ca)]{x∗a,i}, where x∗a,i = max(S,≥a,i) is the maximum element2 of S according to

≥a,i. We call this sequence of preference relations the Maximizer-Collecting representation (MC-

representation) of choice function Ca. Note that for distinct i1, i2 ∈ [p(Ca)], it is possible to have

x∗a,i1 = x∗a,i2 .

Conceptually, one can view the MC-representation as follows: a firm is a collection of posi-

tions, each of which has its own preference relation; a worker is a collection of personas, each

of whom also has his or her own preference relation. Each firm hires the best candidate for each
2If S = ∅, then max(S,≥a,i) is defined to be ∅.
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position, and the same candidate can be hired for two positions if (s)he is the best for both. A

symmetric statement holds for workers and personas.

Remark 3.18. We would like to again highlight the differences between MC-representation of

choice functions and the representation, in the MM-MODEL, by a single preference list≥a together

with a quota qa. In particular, in the MM-MODEL, Ca(S) = ∪i∈[qa]{x̃a,i}, where x̃a,i = max(S \

{x̃a,j : j ∈ [i− 1]},≥a). Note that here for distinct i1, i2 ∈ [qa], x̃a,i1 ̸= x̃a,i2 unless both are ∅.

3.3 Affine representability of the stable matching lattice

In this section, we show that the distributive lattice of stable matchings in the model by Alkan

(2002) is affinely representable. An algorithm to construct an affine representation is given in Sec-

tion 3.4 where we additionally impose the quota-filling property upon choice functions of agents

in one side of the markets. The proof of this section proceeds as follows. First, we show in Sec-

tion 3.3.1 that the lattice of stable matchings (S,⪰) is isomorphic to a lattice (P ,⊆) belonging to

a special class, that is called ring of sets. In Section 3.3.2, we then show that ring of sets are always

affinely representable. In Section 3.3.3, we show a poset (Π,⪰⋆) representing (S,⪰). Lastly, in

Section 3.3.4, we show how to combine all those results and “translate” the affine representability

of (P ,⊆) to the affine representability of (S,⪰), concluding the proof.

3.3.1 Isomorphism between the stable matching lattice and a ring of sets

A family H = {H1, H2, · · · , Hk} of subsets of a base set B is a ring of sets over B if H is

closed under set union and set intersection (Birkhoff, 1937). Note that a ring of sets is a distribu-

tive lattice with the partial order relation ⊆, and the join and meet operations corresponds to set

intersection and set union, respectively. An example of a ring of sets is given in Example 3.32.

In this and the following section, we fix a matching market (F,W, CF , CW ) and assume that CF

and CW are path-independent and cardinal monotone (i.e., the framework of Alkan (2002)). Let

ϕ(a) denote the set of stable partners of agent a. That is, ϕ(a) := {b : b ∈ µ(a) for some µ ∈ S}.
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For a stable matching µ, define

Pf (µ) := {w ∈ ϕ(f) : w ∈ Cf (µ(f) ∪ {w})},

and define the P-set of µ as

P (µ) := {(f, w) : f ∈ F,w ∈ Pf (µ)}.

The goal of this section is to show the following theorem, which gives a representation of the

stable matching lattice as a ring of sets. Let P(CF , CW ) denote the set {P (µ) : µ ∈ S(CF , CW )},

and we often abbreviate P := P(CF , CW ).

Theorem 3.19. Assume CF and CW are path-independent and cardinal monotone. Then,

(1) the mapping P : S → P is a bijection;

(2) (P ,⊆) is isomorphic to (S,⪰). That is, for two stable matchings µ1, µ2 ∈ S , we have

µ2 ⪰ µ1 if and only if P (µ2) ⊆ P (µ1). Moreover, P (µ1 ∨ µ2) = P (µ1) ∩ P (µ2) and

P (µ1 ∧ µ2) = P (µ1) ∪ P (µ2). In particular, (P ,⊆) is a ring of sets over the base set

{(f, w) : f ∈ F,w ∈ ϕ(f)}.

Remark 3.20. An isomorphism between the lattice of stable matchings and a ring of sets (also

called P-set) is proved in the SM-MODEL by Gusfield and Irving (1989) as well. However, they

define P (µ) := {(f, w) : f ∈ F,w ≥f µ(f)}, hence including firm-worker pairs that are not

stable. We show in Example 3.27 that in our more general setting, the P-set by Gusfield and Irving

(1989) is not a ring of sets. As a consequence, while in their model the construction of the P-set

for a given stable matching is immediate, in ours it is not, since we need to know first which pairs

are stable.

Lemma 3.21. Let µ1 and µ2 be two stable matchings such that µ2 ⪰ µ1. Then, Pf (µ2) ⊆ Pf (µ1)

for every firm f .
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Proof. Since µ2 ⪰ µ1, we have that Cf (µ2(f) ∪ µ1(f)) = µ2(f). The claim then follows from

Lemma 3.15. ■

Lemma 3.22. Let µ1 be a stable matching such that w ∈ Pf (µ1) for some firm f and worker w.

Then, there exists a stable matching µ2 such that µ2 ⪰ µ1 and w ∈ µ2(f).

Proof. By definition of Pf (µ1), we know there exists a stable matching µ′
1 such that w ∈ µ′

1(f).

Let µ2 := µ1 ∨ µ′
1. We want to show that w ∈ µ2(f). If w ∈ µ1(f), then the claim follows due to

the concordance property. So assume w /∈ µ1(f) and also assume by contradiction that w /∈ µ2(f).

Then, we must have w ∈ (µ1 ∧ µ′
1)(f) by definition of the meet. Since µ1 ⪰ µ1 ∧ µ′

1, we have

Cf (µ1(f) ∪ (µ1 ∧ µ′
1)(f)) = µ1(f). However, applying path-independence and consistency, we

have

Cf (µ1(f) ∪ (µ1 ∧ µ′
1)(f)) = Cf

(
Cf (µ1(f) ∪ (µ1 ∧ µ′

1)(f) \ {w}) ∪ {w}
)

= Cf (µ1(f) ∪ {w}) ̸= µ1(f),

which is a contradiction. ■

Lemma 3.23. Let µ1 and µ2 be two stable matchings such that µ2 ⪰ µ1. Assume w ∈ Pf (µ1) \

Pf (µ2) for some firm f . Then, there exists a stable matching µ̄1 with µ2 ⪰ µ̄1 ⪰ µ1 such that

w ∈ µ̄1(f).

Proof. By Lemma 3.22, there exists a stable matching µ̄2 ⪰ µ1 such that w ∈ µ̄2(f). Let µ̄1 :=

µ̄2 ∧ µ2 and we claim that µ̄1 is the desired matching. First, by definition of meet, we have

µ2 ⪰ µ̄1 ⪰ µ1. Since w /∈ Pf (µ2), by the contrapositive of the substitutability property, we have

w /∈ Cf (µ2(f)∪ µ̄2(f)), which implies that w /∈ (µ2 ∨ µ̄2)(f). Therefore, w ∈ µ̄1(f), again by the

definition of meet. ■

Lemma 3.24. Let µ1 and µ2 be two stable matchings. Then,

P (µ1 ∨ µ2) = P (µ1) ∩ P (µ2) and P (µ1 ∧ µ2) = P (µ1) ∪ P (µ2).
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Proof. Fix a firm f , and we want to show Pf (µ1 ∨ µ2) = Pf (µ1) ∩ Pf (µ2) and Pf (µ1 ∧ µ2) =

Pf (µ1) ∪ Pf (µ2). If µ1(f) = µ2(f), then the claim is obviously true. Thus, for the following, we

assume µ1(f) ̸= µ2(f). We first show that Pf (µ1∨µ2) ⊆ Pf (µ1)∩Pf (µ2). Since µ1∨µ2 ⪰ µ1, µ2,

the claim follows from Lemma 3.21. Next, we show that Pf (µ1 ∨ µ2) ⊇ Pf (µ1) ∩ Pf (µ2). If

Pf (µ1) ∩ Pf (µ2) = ∅, then the claim follows trivially. So we assume Pf (µ1) ∩ Pf (µ2) ̸= ∅ and

let w ∈ Pf (µ1) ∩ Pf (µ2). By Lemma 3.22, there exists a stable matching µ̄1 such that µ̄1 ⪰ µ1

and w ∈ µ̄1(f). Similarly, there exists a stable matching µ̄2 such that µ̄2 ⪰ µ2 and w ∈ µ̄2(f).

Consider the stable matching µ̄1 ∨ µ̄2. Because of the concordance property, w ∈ (µ̄1 ∨ µ̄2)(f).

In addition, by transitivity of ⪰, we have that µ̄1 ∨ µ̄2 ⪰ µ1, µ2 and thus µ̄1 ∨ µ̄2 ⪰ µ1 ∨ µ2 by

minimality of µ1 ∨ µ2. Hence, by Lemma 3.21, w ∈ Pf (µ1 ∨ µ2). This concludes the first part of

the thesis.

For the second half, we first show Pf (µ1∧µ2) ⊆ Pf (µ1)∪Pf (µ2). Letw /∈ Pf (µ1)∪Pf (µ2), we

want to show that w /∈ Pf (µ1∧µ2). Assume by contradiction that w ∈ Pf (µ1∧µ2). w /∈ Pf (µ1)∪

Pf (µ2) implies w /∈ µ1(f) and w /∈ µ2(f) and thus, w /∈ (µ1 ∧ µ2)(f). By Lemma 3.23, for both

i ∈ {1, 2}, there exists a stable matching µ̄i such that µi ⪰ µ̄i ⪰ µ1 ∧ µ2 and w ∈ µ̄i(f). Note that

µ1 ∧ µ2 ⪰ µ̄1 ∧ µ̄2 ⪰ µ1 ∧ µ2, where the first relation holds because µi ⪰ µ̄i for both i ∈ {1, 2},

and the second relation holds because µ̄1, µ̄2 ⪰ µ1 ∧ µ2. Hence, µ̄1 ∧ µ̄2 = µ1 ∧ µ2. However, by

applying the meet operator ∧ over µ̄1 and µ̄2, we have w ∈ (µ̄1 ∧ µ̄2)(f) = (µ1 ∧ µ2)(f), which is

a contradiction.

Lastly, we show Pf (µ1 ∧ µ2) ⊇ Pf (µ1) ∪ Pf (µ2). Let w ∈ Pf (µ1) ∪ Pf (µ2) and wlog assume

w ∈ Pf (µ1). Since µ1 ⪰ µ1 ∧ µ2, by Lemma 3.21, we have w ∈ Pf (µ1 ∧ µ2). ■

Lemma 3.25. Let µ1 and µ2 be two stable matchings such that µ2 ≻ µ1 and assume that µ1(f) ̸=

µ2(f) for some f ∈ F . Then, Pf (µ1) ̸= Pf (µ2).

Proof. Assume by contradiction that Pf (µ1) = Pf (µ2). Let w ∈ µ1(f) \ µ2(f). w exists be-

cause µ1(f) ̸= µ2(f) and |µ1(f)| = |µ2(f)| due to the equal-quota property. Since the sta-

ble matching lattice (S,⪰) has the polarity property as shown in Theorem 3.16, we have that

Cw(µ1(w) ∪ µ2(w)) = µ1(w) and thus, by substitutability, we have f ∈ Cw(µ2(w) ∪ {f}). On
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the other hand, w ∈ µ1(f) implies that w ∈ Pf (µ1) = Pf (µ2). Since w /∈ µ2(f), this means that

(f, w) is a blocking pair of µ2, which contradicts the stability assumption. ■

Lemma 3.26. Let µ1 and µ2 be two distinct stable matchings and assume that µ1(f) ̸= µ2(f) for

some f ∈ F . Then, Pf (µ1) ̸= Pf (µ2).

Proof. Assume by contradiction that Pf (µ1) = Pf (µ2). Then, we have Pf (µ1∨µ2) = Pf (µ1∧µ2)

by Lemma 3.24. However, µ1(f) ̸= µ2(f) implies that (µ1 ∨ µ2)(f) ̸= (µ1 ∧ µ2)(f), which

contradicts Lemma 3.25 since µ1 ∨ µ2 ≻ µ1 ∧ µ2. ■

Proof of Theorem 3.19. For (1), note that the mapping P is onto by definition. It is therefore a

bijection since it is also injective as shown in Lemma 3.26. Next, we show (2). One direction of

the first statement is shown in Lemma 3.21. Conversely, if P (µ2) ⊆ P (µ1), then by Lemma 3.24,

P (µ1 ∨ µ2) = P (µ1) ∩ P (µ2) = P (µ2). Hence, by Lemma 3.26, we have µ1 ∨ µ2 = µ2 and

thus, µ2 ⪰ µ1. The second statement of (2) follows from Lemma 3.24. The third follows from the

second and the fact that stable matchings form a distributive lattice (Theorem 3.16). ■

Example 3.27. Consider the following instance with 4 firms and 5 workers. Agents’ choice func-

tions are given below in their MC-representations. For instance, the first position of firm f1 prefers

w1 the most and prefers w2 the least.

f1 : ≥f1,1: w1 w5 w3 w4 w2

≥f1,2: w2 w5 w4 w3 w1

≥f1,3: w1 w2 w3 w4 w5

f2 : ≥f2,1: w4 w2 w1 w3 w5

f3 : ≥f3,1: w3 w1 w2 w4 w5

f4 : ≥f4,1: w5 w1 w2 w3 w4

w1 : ≥w1,1: f3 f1 f2 f4

w2 : ≥w2,1: f2 f1 f3 f4

w3 : ≥w3,1: f1 f3 f2 f4

w4 : ≥w4,1: f1 f2 f3 f4

w5 : ≥w5,1: f4 f1 f2 f3
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There are four stable matchings in this instance:

µF = (f1, w1), (f1, w2), (f2, w4), (f3, w3), (f4, w5);

µ1 = (f1, w1), (f1, w4), (f2, w2), (f3, w3), (f4, w5);

µ2 = (f1, w2), (f1, w3), (f2, w4), (f3, w1), (f4, w5);

µW = (f1, w3), (f1, w4), (f2, w2), (f3, w1), (f4, w5).

Note that µ1 and µ2 are not comparable. Their corresponding P-sets are

P (µF ) = (f1, w1), (f1, w2), (f2, w4), (f3, w3), (f4, w5);

P (µ1) = (f1, w1), (f1, w2), (f1, w4), (f2, w2), (f2, w4), (f3, w3), (f4, w5);

P (µ2) = (f1, w1), (f1, w2), (f1, w3), (f2, w4), (f3, w1), (f3, w3), (f4, w5);

P (µW ) = (f1, w1), (f1, w2), (f1, w3), (f1, w4), (f2, w2), (f2, w4), (f3, w1), (f3, w3), (f4, w5).

One can easily check that the claims given in Lemma 3.24 are true. Note that if we follow the

definition given in Gusfield and Irving (1989) and include the pair (f1, w5) in P (µ1) and P (µ2).

Then Lemma 3.24 no longer holds since w5 /∈ Pf1(µF ) = Pf1(µ1 ∨ µ2). △

3.3.2 Affine representability of rings of sets via the posets of minimal differences

We now recall (mostly known) facts about posets representing rings of sets, and observe that

the affine representability of rings of sets easily follows from those.

Fix a ring of sets (H,⊆) over a base set B, and let H0 and Hz denote respectively the unique

minimal and maximal elements ofH. That is, for allH ∈ H, we haveH0 ⊆ H ⊆ Hz. For a ∈ Hz,

let H(a) denote the unique inclusion-wise minimal set among all sets in H that contain a, where

uniqueness follows from the fact thatH is closed under set intersection. That is,

H(a) :=
⋂
{H ∈ H : a ∈ H}.
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In addition, define the set I(H) of the irreducible elements ofH as follows

I(H) := {H ∈ H : ∃ a ∈ Hz s.t. H = H(a)}.

Since I(H) is a subset ofH, we can view I(H) as a poset under the set containment relation.

For H ∈ I(H), let K(H) := {a ∈ Hz : H(a) = H} denote the centers of H . Note that

K(H0) = H0. Define D(H) as the set of centers of irreducible elements of H without the set H0.

Formally,

D(H) := {K(H) : H ∈ I(H), H ̸= H0}.

Immediately from the definition of centers, we obtain the following.

Lemma 3.28. Let a ∈ B. There is at most one K1 ∈ D(H) such that a ∈ K1. In particular,

|D(H)| = O(|B|).

For K1 ∈ D(H), let I(K1) denote the irreducible element from I(H) such that K(I(K1)) =

K1. Let ⊒ be a partial order over the set D(H) that is inherited from the set containment relation

of the poset I(H). That is, for K1, K2 ∈ D(H), we have K1 ⊒ K2 if and only if I(K1) ⊆ I(K2).

Theorem 3.29 (Birkhoff, 1937). Let (H,⊆) be a ring of sets. Then, (D(H),⊒) is a representation

poset for (H,⊆) with representation function ψH, where ψ−1
H (D̄) =

⋃
{K1 : K1 ∈ D̄} ∪ H0 for

any upper set D̄ of (D(H),⊒), and H0 is the minimal element ofH.

Lemma 3.28 and Theorem 3.29 directly imply the following.

Theorem 3.30. Let (H,⊆) be a ring of sets over base set B. Then, (D(H),⊒) affinely represents

(H,⊆) via affine function g(u) = Au + x0, where x0 is the characteristic vector of the minimal

element ofH, and A ∈ {0, 1}B×D(H) has columns χK1 for each K1 ∈ D(H). Moreover, A has full

column rank.

Proof. Because of the representation function ψH given in Theorem 3.29, it is clear that g(χU) =

χψ
−1
H (U) for every upper set U ∈ U((D(H),⊒)). Note that every row ofA has at most one non-zero
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entry due to Lemma 3.28, and every column ofA contains at least one non-zero entry by definition.

Therefore, A has full column rank. ■

Lemma 3.31. Let (H,⊆) be a ring of sets with minimal element H0, and let H ∈ H. If H =⋃
{K1 : K1 ∈ D̄} ∪H0 for some subset D̄ of D(H), then D̄ is an upper set of (D(H),⊒).

Proof. By Lemma 3.28, there is at most one subset ofD(H) whose union of the elements together

with H0 gives H . On the other hand, Theorem 3.29 implies that there exists one such subset which

is also an upper set of (D(H),⊒). The claim follows thereafter. ■

We elucidate in Example 3.32 the definitions and facts above.

Example 3.32. Consider the Hasse diagram of the ring of sets given in Figure 3.3a with base set

B = {a, b, c, d, e, f} andH = {H1, · · · , H7}. The irreducible elements are I(H) = {H1, H2, H3, H5, H7}.

The center(s) of each irreducible element is underlined, and D(H) = {{b}, {c}, {d, e}, {f}}. The

poset of D(H) is represented in Figure 3.3b. The upper sets of poset D(H) corresponding to

H1, · · · , H7 in the exact order are: ∅; {{b}}; {{c}}; {{b}, {c}}; {{c}, {d, e}}; {{b}, {c}, {d, e}};

and {{b}, {c}, {d, e}, {f}}. Affine function is g(u) = Au + x0 with (x0)⊺ = (1, 0, 0, 0, 0, 0) and

matrix A given below in Figure 3.3c. Note that columns of A correspond to {b}, {c}, {d, e}, {f}

in this order. △

a H1

a bH2
a c H3

a b cH4 a c d e H5

a b c d eH6

a b c d e fH7

(a) (H,⊆)

b c

d e

f

(b) (D(H),⊒)

A =


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1


(c) Matrix A

Figure 3.3: Hasse diagrams of a ring of sets and its representation poset, as well as the matrix A
for affine representability for Example 3.32.

Alternatively, one can view D(H) as the set of minimal differences between elements of H.
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The following lemma is established directly from Lemma 2.4.3 and Corollary 2.4.1 of Gusfield

and Irving (1989).

Lemma 3.33. D(H) = {H \H ′ : H ′ is an immediate predecessor of H in (H,⊆)}.

A direct consequence of Lemma 3.28 and Lemma 3.33 is the following.

Lemma 3.34. Let H ′, H ∈ H. If H ′ ⊆ H and H \ H ′ ∈ D(H), then H ′ is an immediate

predecessor of H in (H,⊆).

Proof. Let K1 := H \H ′. Assume by contradiction that there exists H̄ ∈ H with H ′ ⊊ H̄ ⊊ H .

Then, because of Lemma 3.33, there exists a centerK2 ∈ D(H) such that ∅ ≠ K2 ⊊ K1. However,

this contradicts Lemma 3.28. ■

3.3.3 Representation of (S,⪰) via the poset of rotations

As discussed in Section 3.3.2, the poset (D(P),⊒) associated with (P ,⊆) provides a compact

representation of (P ,⊆) and can be used to reconstruct P via Theorem 3.30. In this section, we

show how to associate with (S,⪰) a poset that is isomorphic to (D(P),⊒), which can be used to

reconstruct S. The precise statement is given in Theorem 3.37 below.

For µ, µ′ ∈ S, with µ′ being an immediate predecessor of µ in the stable matching lattice, let

ρ+(µ′, µ) = {(f, w) : f ∈ F,w ∈ µ(f) \ µ′(f)}

and

ρ−(µ′, µ) = {(f, w) : f ∈ F,w ∈ µ′(f) \ µ(f)}.

Note that by definition,

µ = µ′△ρ−(µ′, µ)△ρ+(µ′, µ) = µ′ \ ρ−(µ′, µ) ∪ ρ+(µ′, µ).

We call ρ(µ′, µ) := (ρ+(µ′, µ), ρ−(µ′, µ)) a rotation of (S,⪰). Let Π(S) denote the set of rotations
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of (S,⪰). That is,

Π(S) := {ρ(µ′, µ) : µ′ is an immediate predecessor of µ in (S,⪰)}.

Remark 3.35. It is interesting to compare rotations in the current model (Alkan, 2002) with the

analogous concept in the MM-MODEL. While in the latter case, rotations are simple cycles in the

associated bipartite graph of agents (Baïou and Balinski, 2000), this may not be the case for our

model, as Example 3.36 shows.

Example 3.36. Consider the two stable matchings µ′ and µ̄ shown in Example 3.63, where µ′ is

an immediate predecessor of µ̄. As shown in Figure 3.4, their symmetric difference is not a simple

cycle. In Figure 3.4c, solid lines are edges from µ′ and dashed lines are those from µ̄. △

f1

f2

f3

f4

w1

w2

w3

w4

(a) stable matching µ′

f1

f2

f3

f4

w1

w2

w3

w4

(b) stable matching µ̄

f1 f2

f3f4

w2

w3 w4

(c) symmetric difference µ̄△µ′

Figure 3.4: Two stable matchings neighboring in (S,⪰) and their symmetric difference.

In the following, we focus on proving a bijection between D(P) and Π(S), and we often

abbreviate Π := Π(S) and D := D(P). In particular, we show the following.

Theorem 3.37. Assume CF and CW are path-independent and cardinal monotone. Then,

(1) the mapping Q : Π→ D, with Q(ρ) = ρ+, is a bijection;

(2) (D,⊒) is isomorphic to the rotation poset (Π,⪰⋆) where for two rotations ρ1, ρ2 ∈ Π, ρ1 ⪰⋆

ρ2 if Q(ρ1) ⊒ Q(ρ2);

(3) (Π,⪰⋆) is a representation poset for (S,⪰) with representation function ψS such that for any

upper set Π̄ of (Π,⪰⋆), P (ψ−1
S (Π̄)) = ψ−1

P ({Q(ρ) : ρ ∈ Π̄}) where ψP is the representation
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function of (P ,⊆) per Theorem 3.29; and ψ−1
S (Π̄) =

(
△ρ∈Π̄(ρ

−△ρ+)
)
△µF , where△ is the

symmetric difference operator. Moreover, equivalently, we have ψ−1
S (Π̄) = µF ∪(

⋃
ρ∈Π̄ ρ

+)\

(
⋃
ρ∈Π̄ ρ

−).

Lemma 3.38. Let µ, µ′ ∈ S such that µ′ ≻ µ. If w ∈ µ(f) \ µ′(f) for some f , then w /∈ Pf (µ′).

Proof. Since µ′ ≻ µ, we have Cf (µ′(f) ∪ µ(f)) = µ′(f). By path-independence and consistency,

we have

w /∈ µ′(f) = Cf (µ′(f) ∪ µ(f)) = Cf (Cf (µ′(f) ∪ µ(f) \ {w}) ∪ {w}) = Cf (µ′(f) ∪ {w}).

Therefore, w /∈ Pf (µ′), concluding the proof. ■

Lemma 3.39. Let µ, µ′ ∈ S such that µ′ is an immediate predecessor of µ in the stable matching

lattice. Then, µ(f)\µ′(f) = Pf (µ)\Pf (µ′) for all f ∈ F . In particular, P (µ)\P (µ′) = ρ+(µ′, µ).

Proof. Fix a firm f . µ(f) \ µ′(f) ⊆ Pf (µ) \ Pf (µ′) follows by definition and from Lemma 3.38.

For the reverse direction, assume by contradiction that there exists w ∈ Pf (µ) \ Pf (µ′) but w /∈

µ(f) \ µ′(f). Since w /∈ Pf (µ
′) implies that w /∈ µ′(f) by definition of Pf (·), we also have

w /∈ µ(f). By Lemma 3.23, there exists a stable matching µ̄ such that µ′ ⪰ µ̄ ⪰ µ and w ∈ µ̄(f).

However, since µ′ is an immediate predecessor of µ in the stable matching lattice, we either have

µ̄ = µ or µ̄ = µ′. However, both are impossible since we deduced w /∈ µ(f) ∪ µ′(f). ■

Lemma 3.40. Let µ1, µ2, µ3 ∈ S such that µ1 ≻ µ2 ≻ µ3. If w ∈ µ1(f) \ µ2(f) for some firm f ,

then w /∈ µ3(f).

Proof. First, note that µ1 ≻ µ2 implies w ∈ µ1(f) = Cf (µ1(f)∪µ2(f)). Thus, by substitutability,

we have w ∈ Cf (µ2(f) ∪ {w}). Assume by contradiction that w ∈ µ3(f). Then, applying

Lemma 3.38 on µ2 and µ3, we have that w /∈ Pf (µ2), which is a contradiction. ■

Lemma 3.41. Let µ1, µ
′
1, µ2, µ

′
2 ∈ S and assume that µ′

1, µ
′
2 are immediate predecessors of µ1, µ2

in the stable matching lattice, respectively. In addition, assume that µ1 ≻ µ2. If P (µ1) \ P (µ′
1) =

P (µ2) \ P (µ′
2), then µ′

1(f) \ µ1(f) = µ′
2(f) \ µ2(f) for all firms f ∈ F .
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Proof. Fix a firm f . Due to Lemma 3.39, we know µ1(f) \ µ′
1(f) = µ2(f) \ µ′

2(f). By the equal-

quota property, we have |µ1(f)| = |µ′
1(f)| and |µ2(f)| = |µ′

2(f)|. Thus, |µ′
1(f) \ µ1(f)| =

|µ′
2(f)\µ2(f)| (♮). If µ′

1(f)\µ1(f) = ∅, the claim follows immediately, and thus, in the following,

we assume µ′
1(f) \ µ1(f) ̸= ∅. Assume by contradiction that there exists w ∈ µ′

1(f) \ µ1(f) but

w /∈ µ′
2(f) \ µ2(f). Since µ1 ≻ µ2 and µ′

i ≻ µi for i ∈ {1, 2}, by Theorem 3.19, we have

P (µ1) ⊊ P (µ2) and P (µ′
i) ⊊ P (µi) for i ∈ {1, 2}. Therefore, P (µ′

1) ⊊ P (µ′
2) due to the

assumption that P (µ1) \ P (µ′
1) = P (µ2) \ P (µ′

2). Again by Theorem 3.19, we have µ′
1 ≻ µ′

2.

Hence, µ1 ∨ µ′
2 = µ′

1 and we must have w ∈ µ′
2(f) and thus, w ∈ µ2(f). However, since

µ′
1 ≻ µ1 ≻ µ2 and w ∈ µ′

1(f) \ µ1(f), we can apply Lemma 3.40 and conclude that w /∈ µ2(f),

which is a contradiction. This shows µ′
1(f) \ µ1(f) ⊆ µ′

2(f) \ µ2(f). Together with (♮), we have

µ′
1(f) \ µ1(f) = µ′

2(f) \ µ2(f). ■

Lemma 3.42. Let A,B,A′, B′ be sets such that A ⊆ A′ and B ⊆ B′. In addition, assume that

A′ \ A = B′ \B. Then, (A′ ∩B′) \ (A ∩B) = A′ \ A.

Proof. Let X := A′ \ A = B′ \ B. Notice that A′ = A ⊔ X and B′ = B ⊔ X , where ⊔ is the

disjoint union operator. Therefore, we have A ∩ B = (A′ \X) ∩ (B′ \X) = (A′ ∩ B′) \X and

the claim follows. ■

Lemma 3.43. Let µ1, µ
′
1, µ2, µ

′
2 ∈ S and assume that µ′

1, µ
′
2 are immediate predecessors of µ1, µ2

in the stable matching lattice, respectively. If P (µ1)\P (µ′
1) = P (µ2)\P (µ′

2), then µ′
1(f)\µ1(f) =

µ′
2(f) \ µ2(f) for every firm f . In particular, ρ−(µ′

1, µ1) = ρ−(µ′
2, µ2).

Proof. We first consider the case where µ1 = µ2. By Lemma 3.21, we have P (µ′
i) ⊆ P (µi) for

i ∈ {1, 2}. Therefore,

P (µ′
1) = P (µ1) \ (P (µ1) \ P (µ′

1)) = P (µ2) \ (P (µ2) \ P (µ′
2)) = P (µ′

2),

where the second equality is due to our assumptions that µ1 = µ2 and P (µ1) \ P (µ′
1) = P (µ2) \

P (µ′
2). Thus, µ′

1 = µ′
2 because of Theorem 3.19, and the thesis then follows. Since the cases when
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µ1 ≻ µ2 or µ2 ≻ µ1 have already been considered in Lemma 3.41, for the following, we assume

that µ1 and µ2 are not comparable. Let µ3 := µ1 ∨µ2 and µ′
3 := µ′

1 ∨µ′
2. Note that µ′

3 ⪰ µ3. Then,

applying Lemma 3.24 and Lemma 3.42, we have

P (µ3) \ P (µ′
3) = (P (µ1) ∩ P (µ2)) \ (P (µ′

1) ∩ P (µ′
2)) = P (µ1) \ P (µ′

1).

By Theorem 3.19, Lemma 3.33 and Lemma 3.34, we also have that µ′
3 is an immediate predecessor

of µ3 in the stable matching lattice. Note that by construction, we have µ3 ≻ µ1 and µ3 ≻ µ2 since

µ1 and µ2 are incomparable. Applying Lemma 3.41 on µ1 and µ3 as well as on µ2 and µ3, we have

µ′
1(f) \ µ1(f) = µ′

3(f) \ µ3(f) = µ′
2(f) \ µ2(f) for all firms f ∈ F , as desired. ■

Theorem 3.44. Let µ1, µ
′
1, µ2, µ

′
2 ∈ S and assume that µ′

1, µ
′
2 are immediate predecessors of µ1, µ2

in the stable matching lattice, respectively. Then, P (µ1) \ P (µ′
1) = P (µ2) \ P (µ′

2) if and only if

ρ(µ′
1, µ1) = ρ(µ′

2, µ2).

Proof. For the “only if” direction, assume P (µ1) \ P (µ′
1) = P (µ2) \ P (µ′

2). Then, ρ+(µ′
1, µ1) =

ρ+(µ′
2, µ2) by Lemma 3.39 and ρ−(µ′

1, µ1) = ρ−(µ′
2, µ2) by Lemma 3.43. Thus, ρ(µ′

1, µ1) =

ρ(µ′
2, µ2). For the “if” direction, assume ρ(µ′

1, µ1) = ρ(µ′
2, µ2). Then, immediately from Lemma 3.39,

we have that P (µ1) \ P (µ′
1) = ρ+(µ′

1, µ1) = ρ+(µ′
2, µ2) = P (µ2) \ P (µ′

2). ■

Remark 3.45. In the SM-MODEL with P-sets defined as by Gusfield and Irving (1989) stated

in Remark 3.20, Theorem 3.44 immediately follows from the definition of P-set. In fact, one

can explicitly and uniquely construct ρ(µ′, µ) from P (µ) \ P (µ′). In particular, ρ+(µ′, µ) is the

set of edges (f, w) such that Pf (µ) ̸= Pf (µ
′) and w is the least preferred partner of f among

Pf (µ) \ Pf (µ′), and ρ−(µ′, µ) is the set of edges (f, w) such that Pf (µ) ̸= Pf (µ
′) and w is the

partner that, in the preference list≥f , is immediately before the most preferred partner of f among

Pf (µ) \ Pf (µ′).

Proof of Theorem 3.37. Because of Theorem 3.19 and Lemma 3.39, for every K1 ∈ D, there

exist stable matchings µ′ and µ with µ′ being an immediate predecessor of µ such that K1 =
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P (µ) \ P (µ′) = ρ+(µ′, µ). Thus, the mapping Q is onto. Theorem 3.44 further implies that Q is

injective. Hence, the mapping Q is a bijection. This bijection and the definition of⪰⋆ immediately

imply that (D,⊒) is isomorphic to (Π,⪰⋆). Together with the isomorphism between (S,⪰) and

(P ,⊆), and the fact that (D,⊒) is a representation poset of (P ,⊆), we deduce a bijection between

elements of (S,⪰) and upper sets of (Π,⪰⋆). That is, (Π,⪰⋆) is a representation poset of (S,⪰)

and its representation function ψS satisfies that for every µ ∈ S, {Q(ρ) : ρ ∈ ψS(µ)} = ψP(P (µ)).

It remains to show that the formula for the inverse of ψS given in the statement of the theorem is

correct. Let µ ∈ S and let µ0, µ1, · · · , µk be a sequence of stable matchings such that µi−1 is

an immediate predecessor of µi in (S,⪰) for all i ∈ [k], µ0 = µF and µk = µ. In addition, let

ρi = ρ(µi−1, µi) for all i ∈ [k]. Note that µ = µF△(ρ−1△ρ+1 )△(ρ−2△ρ+2 )△· · ·△(ρ−k△ρ
+
k ) (♮). By

Theorem 3.19, P (µ0) ⊆ P (µ1) ⊆ · · · ⊆ P (µk), and thus,

P (µ) = P (µ0) ∪
(
P (µ1) \ P (µ0)

)
∪
(
P (µ2) \ P (µ1)

)
∪ · · · ∪

(
P (µk) \ P (µk−1)

)
.

Therefore, by Lemma 3.39, P (µ) = P (µF ) ∪ Q(ρ1) ∪ · · · ∪ Q(ρk). By Lemma 3.31, we know

that {Q(ρi) : i ∈ [k]} is an upper set of D and thus, ψP(P (µ)) = {Q(ρi) : i ∈ [k]} due to

Theorem 3.29. Hence, ψS(µ) = {ρi : i ∈ [k]}. The inverse of ψS must be as in the first definition

in the thesis so that (♮) holds.

Let (f, w) be a firm-worker pair. If (f, w) ∈ ρ−i for some i ∈ [k], then (f, w) /∈ µ due to

Lemma 3.40. In addition, because of Lemma 3.28 and the bijection Q, µF , ρ+1 , ρ+2 , · · · , ρ+i are

disjoint. Hence, if (f, w) ∈ µF ∪ (
⋃
{ρ+i : i ∈ [k]}) but (f, w) /∈

⋃
{ρ−i : i ∈ [k]}, then (f, w) ∈ µ.

The second definition of ψS from the thesis follows immediately from these facts and the previous

definition. ■
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Example 3.46. Consider the following instance where each agent has a quota of 2.

f1 : ≥f1,1: w4 w2 w1 w3

≥f1,2: w3 w1 w2 w4

f2 : ≥f2,1: w2 w3 w4 w1

≥f2,2: w1 w4 w3 w2

f3 : ≥f3,1: w1 w2 w4 w3

≥f3,2: w3 w4 w2 w1

f4 : ≥f4,1: w4 w3 w1 w2

≥f4,2: w2 w1 w3 w4

w1 : ≥w1,1: f2 f1 f3 f4

≥w1,2: f4 f1 f3 f2

≥w1,3: f2 f4 f3 f1

w2 : ≥w2,1: f1 f2 f4 f3

≥w2,2: f3 f2 f4 f1

≥w2,3: f1 f3 f4 f2

w3 : ≥w3,1: f4 f3 f1 f2

≥w3,2: f2 f1 f3 f4

w4 : ≥w4,1: f2 f3 f4 f1

≥w4,2: f1 f4 f3 f2

The stable matchings of this instance and their corresponding P-sets are listed below. To be con-

cise, for matching µ, we list the assigned partners of firms f1, f2, f3, f4 in the exact order. Similarly,

for P-set P (µ), we list in the order of Pf1(µ), Pf2(µ), Pf3(µ), Pf4(µ) and replace {w1, w2, w3, w4}

with W .

µF = ({w3, w4}, {w1, w2}, {w1, w3}, {w2, w4})

µ1 = ({w3, w4}, {w1, w2}, {w1, w4}, {w2, w3})

µ2 = ({w3, w4}, {w1, w2}, {w2, w3}, {w1, w4})

µ3 = ({w2, w4}, {w1, w3}, {w2, w3}, {w1, w4})

µ4 = ({w3, w4}, {w1, w2}, {w2, w4}, {w1, w3})

µW = ({w2, w4}, {w1, w3}, {w2, w4}, {w1, w3})

P (µF ) = ({w3, w4}, {w1, w2}, {w1, w3}, {w2, w4})

P (µ1) = ({w3, w4}, {w1, w2}, {w1, w3, w4}, {w2, w3, w4})

P (µ2) = ({w3, w4}, {w1, w2}, {w1, w2, w3}, {w1, w2, w4})

P (µ3) = ({w2, w3, w4}, {w1, w2, w3}, {w1, w2, w3}, {w1, w2, w4})

P (µ4) = ({w3, w4}, {w1, w2},W,W )

P (µW ) = ({w2, w3, w4}, {w1, w2, w3},W,W )

The stable matching lattice (S,⪰) and the rotation poset (Π,⪰⋆) are shown in Figure 3.5.

Due to Theorem 3.19 and Theorem 3.37, one can also view Figure 3.5a and Figure 3.5b re-

spectively as the ring of sets (P ,⊆) and the poset of minimal differences (D,⊒).

Below, we list the rotations in Π and their corresponding minimal differences inD. In addition,
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µF

µ1 µ2

µ4 µ3

µW

ρ3 ρ1

ρ1 ρ3 ρ2

ρ2 ρ3

(a) Stable matching lattice (S,⪰)

ρ3 ρ1

ρ2

(b) Rotation poset (Π,⪰⋆)

Figure 3.5: The stable matching lattice and its rotation poset of Example 3.46

we label in Figure 3.5a the edges of the Hasse Diagram by these rotations.

ρ1 : Q(ρ1) = ρ+1 = {{f3, w2}, {f4, w1}}; ρ−1 = {{f3, w1}, {f4, w2}}

ρ2 : Q(ρ2) = ρ+2 = {{f1, w2}, {f2, w3}}; ρ−2 = {{f1, w3}, {f2, w2}}

ρ3 : Q(ρ3) = ρ+3 = {{f3, w4}, {f4, w3}}; ρ−3 = {{f3, w3}, {f4, w4}}

△

3.3.4 Concluding the proof for the first part of Theorem 3.4

Because of Theorem 3.37, part (3), we know that poset (Π,⪰⋆) represents lattice (S,⪰). Let

ψS be the representation function as defined in Theorem 3.37. We denote by E ⊆ F ×W the set of

acceptable firm-worker pairs. Hence, E is the base set of lattice (S,⪰). We deduce the following,

proving the structural statement from Theorem 3.4.

Lemma 3.47. Let Π̄1, Π̄2 be two upper sets of (Π,⪰⋆) and let µi = ψ−1
S (Π̄i) for i ∈ {1, 2}. If

Π̄1 ⊆ Π̄2, then µ1 ⪰ µ2.

Proof. Let D̄i := {Q(ρ) : ρ ∈ Π̄i} and let Pi := ψ−1
P (D̄i) for i ∈ {1, 2}. Since Π̄1 ⊆ Π̄2, we

have D̄1 ⊆ D̄2 and thus subsequently P1 ⊆ P2. Since ψ−1
P (D̄i) = P (ψ−1

S (Π̄i)) by Theorem 3.37,

Pi = P (µi) for both i = 1, 2. Therefore, by Theorem 3.19, µ1 ⪰ µ2. ■

Lemma 3.48. Let ρ1, ρ2 ∈ Π. If ρ+1 ∩ ρ−2 ̸= ∅, then ρ1 ≻⋆ ρ2.
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Proof. Assume by contradiction that ρ1 ̸≻⋆ ρ2, that is, either ρ2 ≻⋆ ρ1 or that they are not com-

parable. Let Π̄1 := {ρ ∈ Π : ρ ⪰ ρ2} be the inclusion-wise smallest upper set of Π that contains

ρ2, let Π̄0 := Π̄1 \ {ρ2}, and let Π̄2 := {ρ ∈ Π : ρ ⪰ ρ1 or ρ ⪰ ρ2} be the inclusion-wise smallest

upper set of Π that contains both ρ1 and ρ2. Note that Π̄0 ⊊ Π̄1 ⊊ Π̄2, where the second strict

containment is due to our assumption that ρ1 ̸≻⋆ ρ2 and thus ρ1 /∈ Π̄1. For i ∈ {0, 1, 2}, let

µi := (△ρ∈Π̄i
(ρ−△ρ+))△µF . Since Π̄i is an upper set of (Π,⪰⋆), µi is a stable matching by The-

orem 3.37. Moreover, µ0 ≻ µ1 ≻ µ2 by Lemma 3.47. Let (f, w) ∈ ρ+1 ∩ρ−2 . Since ρ(µ0, µ1) = ρ2,

we have (f, w) ∈ µ0 \ µ1. Since ρ1 is a ⪰-minimal element in Π̄2, Π̄2 \ {ρ1} is also an upper

set of Π. Then, µ′
2 := (△ρ∈Π̄2\{ρ1}(ρ

−△ρ+))△µF is a stable matching by Theorem 3.37, and

µ2 = µ′
2 \ ρ−1 ∪ ρ+1 . Thus, we have (f, w) ∈ µ2. Together, we have w ∈ (µ0(f) ∩ µ2(f)) \ µ1(f).

However, this contradicts Lemma 3.40. ■

Theorem 3.49. The rotation poset (Π,⪰⋆) affinely represents the stable matching lattice (S,⪰)

with affine function g(u) = Au+ χµF , where A ∈ {0,±1}E×Π is matrix with columns χρ
+ − χρ−

for each ρ ∈ Π. Moreover, |Π| = O(|F ||W |) and matrix A has full column rank.

Proof. The first claim follows immediately because by Theorem 3.37, part (3), χµ = AχψS(µ) +

χµF , for any stable matching µ. Because of Theorem 3.37, |Π| = |D|. In addition, by Lemma 3.28,

we have |D| = |E| = O(|F ||W |). Thus, |Π| = O(|F ||W |). Finally, we show that matrix A has

full column rank. Assume by contradiction that there is a non-zero vector λ ∈ RΠ such that∑
ρ∈Π λρ(χ

ρ+ − χρ−) = 0. Let Π̃ := {ρ ∈ Π : λρ ̸= 0} denote the set of rotations whose

corresponding coefficients in λ are non-zero. Let ρ1 be a minimal rotation (w.r.t. ⪰⋆) in Π̃ and let

(f, w) be a firm-worker pair in ρ+1 . Because of Lemma 3.28 and the bijectionQ, there is no rotation

ρ ̸= ρ1 such that (f, w) ∈ ρ+. Therefore, there must exist a rotation ρ2 ∈ Π̃ with (f, w) ∈ ρ−2 .

Note that we must have ρ1 ≻⋆ ρ2 due to Lemma 3.48. However, this contradicts the choice of

ρ1. ■
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3.4 Algorithms

Because of Theorem 3.49, in order to conclude the proof of Theorem 3.4, we are left to explic-

itly construct (Π,⪰⋆). That is, we need to find elements of Π, and how they relate to each other

via ⪰⋆. We fix an instance (F,W, CF , CW ) and abbreviate S := S(CF , CW ).

In this section, we further assume workers’ choice functions to be quota-filling. Under this

additional assumption, for each worker w ∈ W , the family of sets of partners w is assigned to

under all stable matchings (denoted as Φw) satisfies an additional property, which we call the full-

quota3 property (see Lemma 3.50). Recall that qw denote the quota of worker w and q̄w is the

number of firms matched to w under every stable matching, which is constant due to the equal-

quota property (i.e., |S| = q̄w for all S ∈ Φw).

Lemma 3.50. For every worker w ∈ W , if q̄w < qw, then w is matched to the same set of firms in

all stable matchings. That is,

q̄w < qw =⇒ |Φw| = 1. (full-quota)

Proof. Assume by contradiction that q̄w < qw but |Φw| > 1. Let S1, S2 be two distinct elements

from Φw and let µi be the matching such that µi(w) = Si for i = 1, 2. Note that due to the equal-

quota property, we have |S1| = |S2| = q̄w. Consider the stable matching µ := µ1 ∧ µ2. Then,

|µ(w)| = |Cw(µ1(w) ∪ µ2(w))| = |Cw(S1 ∪ S2)| = min(|S1 ∪ S2|, qw|) > q̄w,

where the first equality is by Theorem 3.16 and the last two relations are by quota-filling. However,

this contradicts the equal-quota property since µ is a stable matching. ■

Our approach to construct (Π,⪰⋆) is as follows. First, we recall Roth’s adaptation of the

Deferred Acceptance algorithm to find a firm- or worker-optimal stable matching (Section 3.4.1).

Second, we feed the output of Roth’s algorithm to an algorithm that produces a maximal chain

3Note that the full-quota property is analogous to the Rural Hospital Theorem (Roth, 1986) in the SA-MODEL
where agents have preferences over individual partners instead of over sets of partners.
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C1, C2, . . . , Ck of (S,⪰) and the set Π (Section 3.4.2). In Section 3.4.3, we give an algorithm

that, given a maximal chain of a ring of sets, constructs the partial order of the poset of minimal

differences. This and previous facts are then exploited in Section 3.4.4 to construct the partial order

⪰⋆ on elements of Π. We sum up our algorithm in Section 3.4.5, where we show that the overall

running time is O(|F |3|W |3oracle-call).

We start with a definition and properties which will be used in later algorithms. For a matching

µ, let

X̄f (µ) := {w ∈ W (f) : Cf (µ(f) ∪ {w}) = µ(f)},

and define the closure of µ, denoted by X̄(µ), as the collection of sets {X̄f (µ) : f ∈ F}. Note that

µ(f) ⊆ X̄f (µ) for every firm f and individually rational matching µ.

Lemma 3.51. Let µ be an individually rational matching. Then, for every firm f , we have

Cf (X̄f (µ)) = µ(f).

Proof. Fix a firm f . Since µ is individually rational, Cf (µ(f)) = µ(f). The claim then follows

from a direct application of Lemma 3.13 with A1 = µ(f) and A2 = X̄f (µ). ■

Lemma 3.52. Let µ1, µ2 ∈ S(CF , CW ) such that µ1 ⪰ µ2. Then, for every firm f , µ2(f) ⊆ X̄f (µ1).

Proof. Since µ1 ⪰ µ2, we have Cf (µ1(f) ∪ µ2(f)) = µ1(f) for every firm f . Thus, by the

consistency property of Cf , for every w ∈ µ2(f), we have Cf (µ1(f) ∪ {w}) = µ1(f). The claim

follows. ■

Lemma 3.53. The following three operations can be performed in polynomial times:

(1). given a matching µ, computing its closure X̄(µ) can be performed in timeO(|F ||W |oracle-call);

(2). given a matching µ, deciding whether it is stable can be performed in timeO(|F ||W |oracle-call);

(3). given stable matchings µ, µ′ ∈ S , deciding whether µ′ ⪰ µ can be performed in time

O(|F |oracle-call).
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Proof. (1). For any firm f , computing X̄f (µ) requires O(|W |) oracle-calls by definition and

thus, computing the closure of µ takesO(|F ||W |) oracle-calls. (2). To check if a matching µ is

stable, we need to check first if it is individually rational, which takesO(|F |+|W |) oracle-calls,

and then to check if it admits any blocking pair, which takes O(|F ||W |) oracle-calls. (3). To

decide if µ′ ⪰ µ, one need to check if for every firm f ∈ F , Cf (µ′(f) ∪ µ(f)) = µ′(f), and this

takes O(|F |) oracle-calls. ■

3.4.1 Deferred acceptance algorithm

The deferred acceptance algorithm introduced in Roth (1984a)4 can be seen as a generalization

of the algorithm proposed in Gale and Shapley (1962). For the following, we assume that firms are

the proposing side. Initially, for each firm f , let Xf := W (f), i.e., the set of acceptable workers

of f . At every step, every firm f proposes to workers in Cf (Xf ). Then, every worker w considers

the set of firms Xw who made a proposal to w, temporarily accepts Yw := Cw(Xw), and rejects the

rest. Afterwards, each firm f removes from Xf all workers that rejected f . The firm-proposing

algorithm iterates until there is no rejection. Hence, throughout the algorithm, Xf denotes the set

of acceptable workers of f that have not rejected f . A formal description is given in Algorithm 3.1.

Note that for every step s other than the final step, there exists a firm f ∈ F such that X(s)
f ⊊

X
(s−1)
f . Therefore, the algorithm terminates, since there is a finite number of firms and workers.

Moreover, the output has interesting properties.

Theorem 3.54 (Theorem 2, Roth, 1984a). Let µ̄ be the output of Algorithm 3.1 over a matching

market (F,W, CF , CW ) assuming CF , CW are path-independent. Then, µ̄ = µF .

Due to the symmetry between firms and workers in a market where the only assumption on

choice functions is path-independence, swapping the role of firms and workers in Algorithm 3.1,

we have the worker-proposing deferred acceptance algorithm, which outputs µW .

4The model considered in Roth (1984a) is more general than our setting here, where choice functions are only
assumed to be substitutable and consistent, not necessarily quota-filling.
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Algorithm 3.1 Firm-proposing DA algorithm for an instance (F,W, CF , CW ).
1: initialize the step count s← 0

2: for each firm f do initialize X(s)
f ← W (f) end for

3: repeat
4: for each worker w do
5: X

(s)
w ← {f ∈ F : w ∈ Cf (X(s)

f )}
6: Y

(s)
w ← Cw(X(s)

w )

7: end for
8: for each firm f do
9: update X(s+1)

f ← X
(s)
f \ {w ∈ W : f ∈ X(s)

w \ Y (s)
w }

10: end for
11: update the step count s← s+ 1

12: until X(s)
f = X

(s−1)
f for every firm f

Output: matching µ̄ with µ̄(w) = Y
(s−1)
w for every worker w

3.4.2 Constructing Π via a maximal chain of (S,⪰)

Let (H,⊆) be a ring of sets. A chain C0, · · · , Ck in (H,⊆) is an ordered subset ofH such that

Ci−1 is a predecessor of Ci in (H,⊆) for all i ∈ [k]. The chain is complete if moreover Ci−1 is an

immediate predecessor of Ci for all i ∈ [k]; it is maximal if it is complete, C0 = H0 and Ck = Hz.

Consider K ∈ D(H). If K = Ci \ Ci−1 for some i ∈ [k], then we say that the chain contains the

minimal difference K. We start with the theorem below, where it is shown that the set D(H) can

be obtained by following any maximal chain of (H,⊆).

Theorem 3.55 (Theorem 2.4.2, Gusfield and Irving, 1989). Let H ′, H ∈ H such that H ′ ⊆ H .

Then, there exists a complete chain from H ′ to H in (H,⊆), and every such chain contains exactly

the same set of minimal differences. In particular, for any maximal chain (C0, · · · , Ck) in (H,⊆),

we have {Ci \ Ci−1 : i ∈ [k]} = D(H) and k = |D(H)|.

In this section, we present Algorithm 3.3 that, on inputs µ′, outputs a stable matching µ that is

an immediate descendant of µ′ in (S,⪰). Then, using Algorithm 3.3 as a subroutine, Algorithm 3.4

gives a maximal chain of (S,⪰).

We start by extending to our setting the break-marriage idea proposed by McVitie and Wilson
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(1971) for finding the full set of stable matchings in the one-to-one stable marriage model. Given

a stable matching µ′ and a firm-worker pair (f ′, w′) ∈ µ′ \ µW , the break-marriage procedure,

denoted as break-marriage(µ′, f ′, w′), works as follows. We first initialize Xf to be X̄f (µ
′) for

every firm f ̸= f ′, while we set Xf ′ = X̄f ′(µ
′) \ {w′}. We then restart the deferred acceptance

process. The algorithm continues in iterations as in the repeat loop of Algorithm 3.1, with the

exception that worker w′ temporarily accepts Yw′ := Cw′(Xw′ ∪ {f ′}) \ {f ′}. As an intuitive

explanation, this acceptance rule of w′ ensures that for the output matching µ̄, we have Cw′(µ̄(w′)∪

µ′(w′)) = µ̄(w′), as we show in Lemma 3.58. The formal break-marriage procedure is summarized

in Algorithm 3.2. See Example 3.63 for a demonstration. Note that by choice of the pair (f ′, w′),

we have |µ′(w′)| = qw′ .

Algorithm 3.2 break-marriage(µ′, f ′, w′), with (f ′, w′) ∈ µ′ \ µW and µ′ ∈ S

1: for each firm f ̸= f ′ do initialize X(0)
f ← X̄f (µ

′) end for
2: initialize X(0)

f ′ ← X̄f ′(µ
′) \ {w′}

3: initialize the step count s← 0

4: repeat
5: for each worker w do
6: X

(s)
w ← {f ∈ F : w ∈ Cf (X(s)

f )}
7: if w ̸= w′ then Y (s)

w ← Cw(X(s)
w ) else Y (s)

w ← Cw(X(s)
w ∪ {f ′}) \ {f ′}

8: end for
9: for each firm f do

10: update X(s+1)
f ← X

(s)
f \ {w ∈ W : f ∈ X(s)

w \ Y (s)
w }

11: end for
12: update the step count s← s+ 1

13: until X(s−1)
f = X

(s)
f for every firm f

Output: matching µ̄ with µ̄(w) = Y
(s−1)
w for every worker w

With the same reasoning as for the DA algorithm, the break-marriage(µ′, f ′, w′) procedure

is guaranteed to terminate. Let s⋆ be the value of step count s at the end of the algorithm. Note

that, for every firm f ∈ F , we have

X̄f (µ
′) ⊇ X

(0)
f ⊇ X

(1)
f ⊇ · · · ⊇ X

(s⋆)
f , (3.1)
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where the first containment is an equality unless f = f ′. In particular, (3.1) implies that f ′ /∈ X(s)
w′

for all s ∈ {0, 1, · · · , s⋆}. Also note that the termination condition implies

µ̄(f) = Cf (X(s⋆)
f ) = Cf (X(s⋆−1)

f ) (3.2)

for every firm f , while for every worker w ̸= w′ it implies that

µ̄(w) = Y (s⋆−1)
w = Cw(X(s⋆−1)

w ) = X(s⋆−1)
w . (3.3)

Let (f, w) ∈ F ×W , we say f is rejected by w at step s if f ∈ X(s)
w \ Y (s)

w , and we say f is

rejected by w if f is rejected by w at some step during the break-marriage procedure. Note that a

firm f is rejected by all and only the workers in X(0)
f \X

(s⋆)
f .

In the following, we prove Theorem 3.56.

Theorem 3.56. Let µ′, µ ∈ S(CF , CW ) be two stable matchings and assume µ′ is an immediate

predecessor of µ in the stable matching lattice. Pick (f ′, w′) ∈ µ′ \ µ and let µ̄ be the output

matching of break-marriage(µ′, f ′, w′). Then, µ̄ = µ.

We start by outlining the proof steps of Theorem 3.56. We first show in Lemma 3.57 that

the output matching µ̄ of break-marriage(µ′, f ′, w′) is individually rational. We then show in

Lemma 3.62 that under a certain condition (i.e., the break-marriage operation being successful), µ̄

is a stable matching and µ′ ≻ µ̄. Lastly, we show that under the assumptions in the statement of

Theorem 3.56, the above-mentioned condition is satisfied and µ̄ ⪰ µ.

Lemma 3.57. Let µ′ ∈ S be a stable matching that is not the worker-optimal stable matching µW

and let (f ′, w′) ∈ µ′ \ µW . Consider the break-marriage(µ′, f ′, w′) procedure with output µ̄.

Then, µ̄ is individually rational.

Proof. By (3.2) and (3.3) above, for every agent a ∈ F ∪W \ {w′}, µ̄(a) = Ca(X(s⋆−1)
a ) and thus,

Ca(µ̄(a)) = Ca(Ca(X(s⋆−1)
a )) = Ca(X(s⋆−1)

a ) = µ̄(a), where the second equality is due to path-

independence. For worker w′, note that X(s⋆−1)
w′ = Y

(s⋆−1)
w′ = µ̄(w′) = Cw′(X

(s⋆−1)
w′ ∪ {f ′}) \ {f ′},
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where the first equality is due to the termination criterion. Then, by the substitutability property,

with T = X
(s⋆−1)
w′ and S = X

(s⋆−1)
w′ ∪{f ′}, we have that for every firm f ∈ µ̄(w′), f ∈ Cw′(X

(s⋆−1)
w′ )

holds. Thus, µ̄(w′) ⊆ Cw′(µ̄(w′)). Since Cw′(X) ⊆ X for any X in the domain of Cw′ , we have

µ̄(w′) = Cw′(µ̄(w′)). Therefore, µ̄ is individually rational. ■

Lemma 3.58. Consider the break-marriage(µ′, f ′, w′) procedure with output matching µ̄. Then,

for every firm f , Cf (µ̄(f) ∪ µ′(f)) = µ′(f).

Proof. For a firm f , we have

Cf (µ̄(f) ∪ µ′(f)) = Cf (Cf (X(s⋆)
f ) ∪ Cf (X̄f (µ

′))

= Cf (X(s⋆)
f ∪ X̄f (µ

′)) = Cf (X̄f (µ
′)) = µ′(f),

where the first and last equality holds since µ′(f) = Cf (X̄f (µ
′)) by Lemma 3.51 and µ̄(f) =

Cf (X
(s⋆)
f ) by (3.2), the second equality is by path-independence, and the third equality is due to

X
(s⋆)
f ⊆ X

(0)
f ⊆ X̄f (µ

′) by (3.1). ■

The following two properties of the break-marriage procedure are direct consequences of the

path-independence assumption imposed on choice functions. These properties are also true for the

deferred acceptance algorithm, as shown in Roth (1984a). Let f ∈ F and w ∈ W be an arbitrary

firm and worker. Lemma 3.59 states that once f proposes to w in some step of the algorithm, it

will keep proposing to w in future steps until w rejects f . Lemma 3.60 states that once w rejects

f , w would never accept f in later steps even if the proposal is offered again.

Lemma 3.59. For all s ∈ [s⋆ − 1] and w ∈ W , we have Y (s−1)
w ⊆ X

(s)
w .

Proof. Let f ∈ Y (s−1)
w . By construction, we have w ∈ Cf (X(s−1)

f ) ∩ X(s)
f . Since X(s)

f ⊆ X
(s−1)
f

by (3.1), we deduce that w ∈ Cf (X(s)
f ) by the substitutability property. Hence, f ∈ X

(s)
w by

definition. ■
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Lemma 3.60. Let s ∈ [s⋆−1], f ∈ F , and w ∈ W . Assume f ∈ X(s−1)
w \Y (s−1)

w , i.e., f is rejected

by w at step s− 1. If w ̸= w′, then for every step s′ ≥ s, f /∈ Cw(X(s′)
w ∪{f}); and if w = w′, then

for every step s′ ≥ s, f /∈ Cw(X(s′)
w ∪ {f ′} ∪ {f}).

Proof. By construction, w /∈ X
(s)
f . Hence, f /∈ X

(s′)
w for all s′ ≥ s because of (3.1) and the

definition of X(s′)
w . Fix a value of s′ ≥ s. First consider the case when w ̸= w′. By repeated

application of the path-independence property of Cw and Lemma 3.59, we have

Cw(X(s′)
w ∪ {f}) = Cw(X(s′)

w ∪ Y (s′−1)
w ∪ {f}) = Cw(X(s′)

w ∪ Cw(Y (s′−1)
w ∪ {f}))

= Cw(X(s′)
w ∪ Cw(Cw(X(s′−1)

w ) ∪ {f}))

= Cw(X(s′)
w ∪ Cw(X(s′−1)

w ∪ {f}))

= · · ·

= Cw(X(s′)
w︸︷︷︸
̸∋f

∪X(s′−1)
w︸ ︷︷ ︸
̸∋f

∪ · · · ∪ Cw(X(s−1)
w ∪ {f})︸ ︷︷ ︸

=Cw(X
(s−1)
w )=Y

(s−1)
w ̸∋f

).

Therefore, f /∈ Cw(X(s′)
w ∪ {f}) as desired. We next consider the case where w = w′. Since

w /∈ X
(0)
f ′ by construction, we have w /∈ X

(s−1)
f ′ by (3.1), which then implies f ′ /∈ X

(s−1)
w by

definition. Thus, we have f ̸= f ′. Again, by repeated application of the path-independence

property of Cw and Lemma 3.59, we have

Cw(X(s′)
w ∪ {f ′} ∪ {f}) = Cw(X(s′)

w ∪ Y (s′−1)
w ∪ {f ′} ∪ {f})

= Cw(X(s′)
w ∪ {f ′} ∪ Cw(Y (s′−1)

w ∪ {f ′} ∪ {f}))

= Cw(X(s′)
w ∪ {f ′} ∪ Cw((Cw(X(s′−1)

w ∪ {f ′}) \ {f ′}) ∪ {f ′} ∪ {f}))

= Cw(X(s′)
w ∪ {f ′} ∪ Cw(X(s′−1)

w ∪ {f ′} ∪ {f}))

= · · ·

= Cw(X(s′)
w︸︷︷︸
̸∋f

∪X(s′−1)
w︸ ︷︷ ︸
̸∋f

∪ · · · ∪ {f ′} ∪ Cw(X(s−1)
w ∪ {f ′} ∪ {f})︸ ︷︷ ︸

=Cw(X
(s−1)
w ∪{f ′}) ̸∋f

).
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Therefore, f /∈ Cw(X(s′)
w ∪ {f ′} ∪ {f}) as desired in this case as well. ■

We say the procedure break-marriage(µ′, f ′, w′) is successful if f ′ /∈ Cw′(X
(s⋆−1)
w′ ∪ {f ′}).

We next show that when the procedure is successful, the output matching is stable.

Remark 3.61. For the SM-MODEL, McVitie and Wilson (1971) defines the break-marriage pro-

cedure break-marriage(µ′, f ′, w′) to be successful if w′ receives a proposal from a firm that w′

prefers to f ′. To translate this condition the CM-QF-MODEL, we interpret it as the follows: if w′

were to choose between this proposal and f ′, w′ would not choose f ′.

Lemma 3.62. If break-marriage(µ′, f ′, w′) is successful, then the output matching µ̄ is stable.

Moreover, µ′ ≻ µ̄.

Proof. Since break-marriage(µ′, f ′, w′) is successful, applying the consistency property with

T = X
(s⋆−1)
w′ and S = T ∪ {f ′}, we have Cw′(X

(s⋆−1)
w′ ∪ {f ′}) = Cw′(X

(s⋆−1)
w′ ) and thus, Y (s⋆−1)

w′ =

Cw′(X
(s⋆−1)
w′ ). In addition, by the termination condition, Y (s⋆−1)

w′ = X
(s⋆−1)
w′ . Therefore, we have

the following identity

µ̄(w′) = Y
(s⋆−1)
w′ = X

(s⋆−1)
w′ = Cw′(X

(s⋆−1)
w′ ) = Cw′(X

(s⋆−1)
w′ ∪ {f ′}), (3.4)

which is similar to (3.3) for other workers.

Claim 3.62.1. Let (f, w) ∈ F ×W . If f is rejected by w during the break-marriage procedure,

then f /∈ Cw(µ̄(w) ∪ {f}).

Proof. If w ̸= w′, then by Lemma 3.60, f /∈ Cw(X(s⋆−1)
w ∪ {f}) = Cw(µ̄(w) ∪ {f}) where the

equality is due to (3.3). This is also true if w = w′ because again by Lemma 3.60,

f /∈ Cw′(X
(s⋆−1)
w′ ∪ {f ′} ∪ {f}) = Cw′(Cw′(X

(s⋆−1)
w′ ∪ {f ′}) ∪ {f}) = Cw′(µ̄(w′) ∪ {f}),

where the first equality is by path-independence, and the second equality by (3.4). ■

Claim 3.62.2. Cw(µ′(w) ∪ µ̄(w)) = µ̄(w) for all w ∈ W .
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Proof. Let f ∈ µ′(w) \ µ̄(w), and suppose first (f, w) ̸= (f ′, w′). Because of Lemma 3.51

and Lemma 3.59, f must be rejected by w during the break-marriage procedure since otherwise

f ∈ X
(s)
w for all s ∈ [s⋆] ∪ {0}, which in particular implies w ∈ µ̄(f) due to (3.3). Then, by

Claim 3.62.1, f /∈ Cw(µ̄(w) ∪ {f}). Next assume (f, w) = (f ′, w′). By (3.4), we know that

X
(s⋆−1)
w = µ̄(w). Since break-marriage(µ′, f ′, w′) is successful, we have f ′ /∈ Cw(X(s⋆−1)

w ∪

{f ′}) = Cw(µ̄(w) ∪ {f ′}). We conclude that in both cases, Cw(µ̄(w) ∪ {f}) = Cw(µ̄(w)) by

consistency. Thus, we can apply Lemma 3.13 with A1 = µ̄(w) and A2 = µ′(w) and conclude that

Cw(µ′(w) ∪ µ̄(w)) = Cw(µ̄(w)). The claim then follows from Lemma 3.57. ■

Fix an acceptable firm-worker pair (f, w) /∈ µ̄. We show that (f, w) does not block µ̄. Assume by

contradiction that f ∈ Cw(µ̄(w)∪{f}) (†) and w ∈ Cf (µ̄(f)∪{w}) (‡). We claim that (f, w) /∈ µ′.

If this is not the case, the consistency property of Cw, with S = µ′(w)∪ µ̄(w) and T = µ̄(w)∪{f},

implies Cw(µ̄(w) ∪ {f}) = Cw(µ′(w) ∪ µ̄(w)) = µ̄(w), where the last equality is by Claim 3.62.2.

Thus, f /∈ Cw(µ̄(w) ∪ {f}), which contradicts our assumption (†). Thus, (f, w) /∈ µ′. Note that in

particular, (f, w) ̸= (f ′, w′). By Lemma 3.15 and Claim 3.62.2, (†) implies f ∈ Cw(µ′(w) ∪ {f}).

Hence, we must have w /∈ Cf (µ′(f) ∪ {w}) since µ′ is stable, i.e., not blocked by (f, w). This

implies Cf (µ′(f) ∪ {w}) = Cf (µ′(f)) = µ′(f) due to the consistency property or Cf and the fact

that µ′ is individually rational. Thus, w ∈ X̄f (µ
′) = X

(0)
f since f ̸= f ′.

Suppose first w /∈ X(s⋆)
f . Then, worker w rejected firm f during the break-marriage procedure.

This implies f /∈ Cw(µ̄(w) ∪ {f}) by Claim 3.62.1, contradicting assumption (†). Suppose next

w ∈ X
(s⋆)
f . Since (f, w) /∈ µ̄, we have w /∈ µ̄(f) = Cf (X(s⋆)

f ), where the equality is due

to (3.2). Then by the consistency property, with S = X
(s⋆)
f and T = µ̄(f) ∪ {w}, we have that

w /∈ Cf (µ̄(f) ∪ {w}). However, this contradicts (‡). Therefore, µ̄ must be stable.

By Lemma 3.58, µ′ ⪰ µ̄. Moreover, we have µ′ ̸= µ̄ since f ′ ∈ µ′(w′) \ µ̄(w′). Hence, µ′ ≻ µ

as desired. ■

We now give the proof of Theorem 3.56.

Proof of Theorem 3.56. Note that by Lemma 3.52, µ(f) ⊆ X̄f (µ
′) for every f ∈ F . We start by
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showing that during the break-marriage procedure, for every firm f , no worker in µ(f) rejects f .

Assume by contradiction that this is not true. Let s′ be the first step where such a rejection happens,

with firm f1 being rejected by worker w1 ∈ µ(f1). Hence, f1 ∈ X(s′)
w1 \ Y

(s′)
w1 .

Claim 3.62.3. There exists a firm f2 ∈ Y (s′)
w1 \ µ(w1) such that f2 ∈ Cw1(µ(w1) ∪ {f2}).

Proof. Assume by contradiction that such a firm f2 does not exist. We first consider the case when

w1 ̸= w′. By Corollary 3.14 with A1 = µ(w1) and A2 = Y
(s′)
w1 , we have Cw1(µ(w1) ∪ Y (s′)

w1 ) =

Cw1(µ(w1)) = µ(w1), where the last equality is because µ is individually rational. Hence, f1 ∈

Cw1(µ(w1) ∪ Y (s′)
w1 ), and using substitutability, we deduce f1 ∈ Cw1(Y

(s′)
w1 ∪ {f1}). However, using

consistency, with T = Y
(s′)
w1 ∪{f1} and S = X

(s′)
w1 , we conclude Cw1(Y

(s′)
w1 ∪{f1}) = Cw1(X

(s′)
w1 ) =

Y
(s′)
w1 ̸∋ f1, a contradiction.

We next consider the case when w1 = w′. Note that f1 ̸= f ′, because (f ′, w′) /∈ µ by choice of

(f ′, w′). Since µ′ ⪰ µ, by Theorem 3.16, Cw′(µ′(w′) ∪ µ(w′)) = µ(w′). Thus, by the consistency

property, with S = µ′(w′)∪µ(w′) and T = µ(w′)∪{f ′}, we have Cw′(µ(w′)∪{f ′}) = µ(w′) ̸∋ f ′.

As in the case w1 ̸= w′, by Corollary 3.14 with A1 = µ(w′) and A2 = Y
(s′)
w1 ∪ {f ′} and the fact

that µ is individually rational, µ(w′) = Cw′(µ(w′)) = Cw′(µ(w′) ∪ {f ′} ∪ Y (s′)
w′ ). Then, since

f1 ∈ µ(w′) ∩X(s′)
w′ , by substitutability and path independence, we have:

f1 ∈ Cw′(Y
(s′)
w′ ∪ {f ′} ∪ {f1}) = Cw′(Cw′(X

(s′)
w′ ∪ {f ′}) \ {f ′} ∪ {f ′} ∪ {f1})

= Cw′(X
(s′)
w′ ∪ {f ′}).

However, since f1 /∈ Y
(s′)
w′ by our choice and f1 ̸= f ′, we should have f1 /∈ Cw′(X

(s′)
w′ ∪ {f ′}),

which is again a contradiction. ■

Now let f2 be the firm whose existence is guaranteed by Claim 3.62.3. In particular, f2 ∈ Y
(s′)
w1

implies w1 ∈ Cf2(X
(s′)
f2

) ⊆ X
(s′)
f2

. Note that by our choice of f1, µ(f2) ⊆ X
(s′)
f2

. Therefore, by

substitutability and w1 ∈ Cf2(X
(s′)
f2

), we have w1 ∈ Cf2(µ(f2) ∪ {w1}). However, this means that

(f2, w1) is a blocking pair of µ, which contradicts stability of µ. Thus, for every firm f ∈ F , no
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worker in µ(f) rejects f during the break-marriage procedure as we claimed, which, together with

the fact that µ(f) ⊆ X̄f (µ
′), implies µ(f) ⊆ X

(s⋆)
f . By path-independence and (3.2), we have that

for every firm f :

Cf (µ̄(f) ∪ µ(f)) = Cf (Cf (X(s⋆)
f ) ∪ µ(f)) = Cf (X(s⋆)

f ∪ µ(f))

= Cf (X(s⋆)
f ) = µ̄(f).

(3.5)

Moreover,

|µ(f)| = |µ′(f)| = |µ̄(f)|, ∀f ∈ F (3.6)

because

|µ(f)| = |µ′(f)| = |Cf (µ̄(f) ∪ µ′(f))| ≥ |Cf (µ̄(f))| = |µ̄(f)|

= |Cf (µ̄(f) ∪ µ(f))| ≥ |Cf (µ(f))| = |µ(f)|,

where the first equality is due to the equal-quota property, the second and the fourth equalities are

by Lemma 3.58 and (3.5) respectively, the remaining two equalities are due to the fact that µ̄ and

µ are individually rational, and the two inequalities hold because of cardinal monotonicity.

We next show that the break-marriage procedure is successful. Consider the following two

cases for a worker w ̸= w′. The first is when |µ′(w)| < qw. By the full-quota property, w has

the same set of partners in all stable matchings. In particular, µ′(w) = µ(w). We claim that only

firms from µ(w) propose to w during the break-marriage procedure. Assume by contradiction that

a firm f /∈ µ(w) proposes to w at step s (i.e., w ∈ Cf (X(s)
f )). Then, since µ̄(f) = Cf (X(s⋆)

f ) ⊆

X
(s⋆)
f ⊆ X

(s)
f due to (3.1) and (3.2), by substitutability, we have w ∈ Cf (µ̄(f) ∪ {w}) and thus,

w ∈ Cf (µ(f) ∪ {w}) because of (3.5) and Lemma 3.15. Since |µ(w)| < qw, we also have that

f ∈ Cw(µ(w) ∪ {f}) by the quota-filling property of Cw. However, this contradicts stability of

µ. Therefore, Y (s)
w = X

(s)
w = µ′(w) for all s ∈ {0, 1, · · · , s⋆} by Lemma 3.51 and Lemma 3.59.

Hence, µ̄(w) = µ′(w) by (3.3).

We next consider the second case for worker w ̸= w′, which is when |µ′(w)| = qw, and we
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claim that |Y (s)
w | = qw for all s ∈ {0}∪ [s⋆]. We will show this by induction. For the base case with

s = 0, we want to show that X(0)
w ⊇ µ′(w) because then we have |X(0)

w | ≥ qw and thus |Y (0)
w | = qw

by quota-filling. Let f ∈ µ′(w). If f ̸= f ′, then by Lemma 3.51, we have w ∈ Cf (X(0)
f ); and if

f = f ′, by substitutability of Cf ′ , we also have w ∈ Cf (X(0)
f ) since w ̸= w′. Hence, f ∈ X

(0)
w

by definition of X(0)
w . For the inductive step, assume that |Y (s−1)

w | = qw and we want to show that

|Y (s)
w | = qw. Because of Lemma 3.59, X(s)

w ⊇ Y
(s−1)
w . Hence, similar to the base case, we have

|X(s)
w | ≥ qw and subsequently |Y (s)

w | = qw by quota-filling. Therefore, |µ̄(w)| = |µ′(w)| by (3.3).

Combining both cases, we have |µ̄(w)| = |µ′(w)| for every worker w ̸= w′. Together

with (3.6), we have:

∑
w∈W\{w′}

|µ̄(w)|+ |µ̄(w′)| =
∑
w∈W

|µ̄(w)| =
∑
f∈F

|µ(f)| =
∑
f∈F

|µ(f)|

=
∑
w∈W

|µ(w)| =
∑

w∈W\{w′}

|µ(w)|+ |µ(w′)|.

Hence, we must also have |µ̄(w′)| = |µ′(w′)| = qw′ . Therefore, f ′ ̸∈ Cw′(X
(s⋆−1)
w′ ∪ {f ′}) because

otherwise |µ̄(w′)| = |Cw′(X
(s⋆−1)
w′ ∪{f ′})\{f ′}| ≤ qw′−1, where the inequality is by quota-filling.

Hence, the break-marriage procedure is successful.

Finally, by Lemma 3.62, we have µ̄ ∈ S and µ′ ≻ µ̄. We also have µ̄ ⪰ µ by (3.5). Therefore,

it must be that µ̄ = µ since µ is an immediate descendant of µ′ in S. ■

Example 3.63. Consider the following instance adapted from the one given in Martínez et al.
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(2004). One can check that every choice function is quota-filling with quota 2.

f1 : ≥f1,1: w1 w4 w3 w2

≥f1,2: w2 w3 w4 w1

f2 : ≥f2,1: w1 w3 w4 w2

≥f2,2: w2 w4 w3 w1

f3 : ≥f3,1: w3 w1 w2 w4

≥f3,2: w4 w2 w1 w3

f4 : ≥f4,1: w3 w2 w1 w4

≥f4,2: w4 w1 w2 w3

w1 : ≥w1,1: f3 f2 f1 f4

≥w1,2: f4 f2 f1 f3

≥w1,3: f3 f4 f1 f2

w2 : ≥w2,1: f3 f1 f2 f4

≥w2,2: f4 f2 f1 f3

w3 : ≥w3,1: f1 f3 f4 f2

≥w3,2: f2 f3 f4 f1

≥w3,3: f1 f2 f4 f3

w4 : ≥w4,1: f1 f3 f4 f2

≥w4,2: f2 f3 f4 f1

≥w4,3: f1 f2 f4 f3

Consider the stable matching µ′ = ({w2, w4}, {w1, w2}, {w3, w4}, {w1, w3}), where, to be

concise, we list the assigned partners of firms f1, f2, f3, f4 in the exact order. Matched pairs are

underlined above. The closure of µ′ is

X̄(µ′) = {{w2, w3, w4}, {w1, w2, w3, w4}, {w1, w2, w3, w4}, {w1, w2, w3}}.

In the following, we describe the iterations of the break-marriage(µ′, f1, w2) procedure. The

108



rejected firms are bolded.

s = 0 s = 1 s = 2 s = 3

X
(s)
f1

{w3, w4} {w3, w4} {w3, w4} {w3, w4}

X
(s)
f2

{w1, w2, w3, w4} {w1, w2, w3, w4} {w1, w3, w4} {w1, w3, w4}

X
(s)
f3

{w1, w2, w3, w4} {w1, w2, w3, w4} {w1, w2, w3, w4} {w1, w2, w3}

X
(s)
f4

{w1, w2, w3} {w1, w2} {w1, w2} {w1, w2}

X
(s)
w1 {f2, f4} {f2, f4} {f2, f4} {f2, f4}

X
(s)
w2 {f2} {f2, f4} {f4} {f3, f4}

X
(s)
w3 {f1, f3,f4} {f1, f3} {f1, f3} {f1, f3}

X
(s)
w4 {f1, f3} {f1, f3} {f1, f2,f3} {f1, f2}

Y
(s)
w1 {f2, f4} {f2, f4} {f2, f4} {f2, f4}

Y
(s)
w2 {f2} {f4} {f4} {f3, f4}

Y
(s)
w3 {f1, f3} {f1, f3} {f1, f3} {f1, f3}

Y
(s)
w4 {f1, f3} {f1, f3} {f1, f2} {f1, f2}

The output matching is µ̄ = ({w3, w4}, {w1, w4}, {w2, w3}, {w1, w2}), which, one can check,

is stable. Note the step highlighted in box above where Y (1)
w2 = Cw2({f2, f4} ∪ {f1}) \ {f1} =

{f1, f4} \ {f1} = {f4}. If instead, w2 used the original (i.e., same as in the DA algorithm)

acceptance rule and accepted both f2 and f4, the algorithm would prematurely stopped after s = 1,

without leading to a stable matching. △

We are now ready to present the algorithm that finds an immediate descendant for any given

stable matching, using the break-marriage procedure. The details of the algorithm are presented in

Algorithm 3.3.

Theorem 3.64. The output µ∗ of Algorithm 3.3 is an immediate descendant of µ′ in the stable

matching lattice (S,⪰).
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Algorithm 3.3 Immediate descendant of stable matching µ′ ̸= µW

Input: µ′, µW

1: initialize T ← ∅
2: for each (f ′, w′) ∈ µ′ \ µW do
3: run the break-marriage(µ′, f ′, w′) procedure
4: if the procedure is successful then add the output matching µ̄ to T
5: end for
6: let µ∗ be a matching in T
7: for each µ ∈ T \ {µ∗} do
8: if µ ⪰ µ∗ then update µ∗ ← µ

9: end for ▷ µ∗ is a maximal matching from T
Output: µ∗

Proof. First note that due to Lemma 3.62, all matchings in the set T constructed by Algorithm 3.3

are stable matchings and µ′ ⪰ µ for all µ ∈ T . Moreover, we claim that T ̸= ∅. Let µ1 ∈ S such

that µ′ is an immediate predecessor of µ1 in (S,⪰⋆). Such a stable matching µ1 exists because

µ′ ̸= µW . Because of Lemma 3.40, we have µ′ \ µ1 ⊆ µ′ \ µW and thus by Theorem 3.56, we

have µ1 ∈ T . Hence, T ̸= ∅ as desired. Now, to prove the theorem, assume by contradiction that

the output matching µ∗ is not an immediate descendant of µ′ in (S,⪰). Then, there exists a stable

matching µ such that µ′ ≻ µ ≻ µ∗. By Lemma 3.40, for every firm-worker pair (f ′, w′) ∈ µ′ \ µ,

we also have (f ′, w′) /∈ µW . Thus, µ ∈ T due to Theorem 3.56. However, this means that µ∗ is

not a maximal matching from T , which is a contradiction. ■

Finally, putting everything together, Algorithm 3.4 finds a maximal chain of the stable matching

lattice, as well as the set of rotations. Its correctness follows from Theorem 3.64, Theorem 3.55,

and Theorem 3.37.

3.4.3 Finding irreducible elements via maximal chains

The goal of this section is to prove the following. Note that the result below holds for any ring

of sets.
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Algorithm 3.4 A maximal chain of (S,⪰) and the set of rotations Π
Input: µF and µW

1: initialize counter k ← 0 and Ck ← µF

2: while Ck ̸= µW do
3: run Algorithm 3.3 with input Ck and µW , and let µ∗ be its output
4: update counter k ← k + 1 and Ck ← µ∗

5: end while
Output: maximal chain C0, C1, · · · , Ck; and Π = {ρi := ρ(Ci−1, Ci) : i ∈ [k]}.

Theorem 3.65. Consider a ring of sets (H,⊆) with base set B. Let C0, C1, · · · , Ck be a maximal

chain of (H,⊆) and let Ki := Ci \ Ci−1 for all i ∈ [k]. For H ⊆ B, let ros-membership denote

the running time of an algorithm that decides if H ∈ H. There exists an algorithm with running

time O(k2ros-membership) that takes C0, C1, · · · , Ck as input and outputs, for each minimal

difference Ki, a set of indices Λ(Ki) such that I(Ki) =
⋃
{Kj : j ∈ Λ(Ki)} ∪ C0. In particular,

this algorithm can be used to obtain the partial order ⊒ over D(H).

We start with the theorem below, which gives an alternative definition of the partial order ⊒.

Theorem 3.66 (Theorem 2.4.4, Gusfield and Irving, 1989). Let K1, K2 ∈ D(H). Then, K1 ⊒ K2

if and only if K1 appears before K2 on every maximal chain in (H,⊆).

We now present the algorithm stated in Theorem 3.65 in Algorithm 3.5. The idea is as follows.

In order to find I(Ki) (i.e., the minimal element in H that contains Ki), the algorithm tries to

remove from the set Ci as many items as possible, while keeping Ci ∈ H. That is, the algorithm

removes from Ci all minimal differences K ∈ {K1, K2, · · · , Ki} such that K ̸⊒ Ki. As we show

in the proof of Theorem 3.65, the resulting set is I(Ki). A demonstration of this algorithm is given

in Example 3.67 on the ring of sets from Example 3.32.

Example 3.67. Consider the ring of sets given in Example 3.32, and assume Algorithm 3.5 takes

in the maximal chain C0 = H1, C1 = H2, C2 = H4, C3 = H6, C4 = H7. Then, K1 = {b},

K2 = {c}, K3 = {d, e} and K4 = {f}. Now, image we would like to obtain Λ(K3). From

Figure 3.3a, it is clear that I(K3) = H5 and thus, Λ(K3) = {2, 3}. During Algorithm 3.5, at the
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Algorithm 3.5
Input: A maximal chain C0, C1, · · · , Ck of (H,⊆).

1: for i = 1, 2, · · · , k do
2: define Ki ← Ci \ Ci−1

3: initialize H ← Ci and Λ(Ki)← {1, 2, · · · , i}
4: for j = i− 1, i− 2, · · · , 1 do
5: if H \Kj ∈ H then
6: update H ← H \Kj and Λ(Ki)← Λ(Ki) \ {j}
7: end if
8: end for
9: end for

Output: Λ(Ki) for all i ∈ [k]

outer for loop with i = 3, H is initialized to be C3 = H6. In the first iteration of the inner for loop,

sinceH6\K2 = {a, b, d, e} /∈ H, Λ(K3) remains {1, 2, 3}. Next,H is updated to beH6\K1 = H5

and Λ(K3) is updated to be {2, 3}. The output is as expected. △

We now give the proof of Theorem 3.65.

Proof of Theorem 3.65. It is clear that the running time of Algorithm 3.5 isO(k2ros-membership).

Suppose first the output of Algorithm 3.5 is correct, that is, I(Ki) =
⋃
{Kj : j ∈ Λ(Ki)} ∪ C0.

Then, for two minimal differences Ki1 , Ki2 ∈ D(H), Ki1 ⊒ Ki2 if and only if Λ(Ki1) ⊆ Λ(Ki2)

by definition of ⊒. Hence, the partial order ⊒ can be obtained in time O(k2) from the output of

Algorithm 3.5. It remains to show the correctness of Algorithm 3.5. Fix a value of i ∈ [k] and for

the following, consider the ith iteration of the outer for loop of the algorithm. Let {j1, j2, · · · , jM}

be an enumeration of Λ(Ki) at the end of the iteration such that j1 < j2 < · · · < jM . Note that

jM = i. We start by showing the following claim.

Claim 3.67.1. For all m ∈ [M − 1], Kjm ⊒ Ki.

Proof. We prove this by induction on m, where the base case is m = M − 1. We start with

the base case. Note that jm is the first index for which the if statement at Line 5 is evalu-

ated to be false. That is, (
⋃jm
ℓ=1Kℓ) ∪ Ki ∪ C0 ∈ H but (

⋃jm−1
ℓ=1 Kℓ) ∪ Ki ∪ C0 /∈ H. By
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Lemma 3.31, we have {K1, K2, · · · , Kjm , Ki} is an upper set of (D(H),⊒), and by Theorem 3.29,

we have {K1, K2, · · · , Kjm−1, Ki} is not an upper set of (D(H),⊒). Since for all j′ < jm,

Kjm ̸⊒ Kj′ because of Theorem 3.66, the reason why {K1, K2, · · · , Kjm−1, Ki} is not an up-

per set of (D(H),⊒) must be that Kjm ⊒ Ki. For the inductive step, assume the claim is true for

all m′ > m and we want to show that Kjm ⊒ Ki. Note that again by Theorem 3.29, we have

that the set {K1, K2, · · · , Kjm , Kjm+1 , Kjm+2 , · · · , Ki} is an upper set of (D(H),⊒), but the set

{K1, K2, · · · , Kjm−1, Kjm+1 , Kjm+2 , · · · , Ki} is not an upper set of (D(H),⊒). With the same

argument as in the base case, since for all j′ < jm, Kjm ̸⊒ Kj′ by Theorem 3.66, it must be that

Kjm ⊒ Kjm′ for some m′ > m. Therefore, applying the inductive hypothesis, we have Kjm ⊒ Ki

as desired. ■

Let H∗ be set H at the end of ith iteration of the outer for loop. Note that H∗ =
⋃
{Kj : j ∈

Λ(Ki)} ∪ C0 by construction. Since Ki ⊆ H∗, we have I(Ki) ⊆ Ci ⊆ H∗ by definition. Also

note that by definition, I(Ki) ∈ H. Assume by contradiction that H∗ ̸= I(Ki) (i.e., H∗ ̸⊆ I(Ki)).

Consider a complete chain from the minimal element H0 of (H,⊆) to I(Ki) in (H,⊆), whose

existence is guaranteed by Theorem 3.55. Then, at least one minimal difference from {Kj : j ∈

Λ(Ki) \ {i}}, call it K ′, is not contained in this complete chain. However, this means K ′ ̸⊒ Ki

due to Theorem 3.55, which contradicts Claim 3.67.1. Therefore, we must have I(Ki) = H∗. ■

3.4.4 Partial order ⪰⋆ over Π

In this section, we show how to obtain the partial order⪰⋆ over the rotation poset Π. Recall that

as stated in Theorem 3.65 of the previous section, there exists an algorithm that finds the partial

order ⊒ over D := D(P) when given as input a maximal chain of P . Employing the isomorphism

between S and P shown in Theorem 3.19 and that between D and Π shown in Theorem 3.37, we

adapt the algorithm so that from a maximal chain of S, we obtain the partial order ⪰⋆ over Π.

Theorem 3.68. Let Λ(ρ) and Λ(ρ′) be the outputs of Algorithm 3.6 for rotations ρ, ρ′ ∈ Π, respec-

tively. Then, ρ ⪰⋆ ρ′ if and only if Λ(ρ) ⊆ Λ(ρ′).
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Algorithm 3.6
Input: outputs of Algorithm 3.4 – maximal chain C0, · · · , Ck of (S,⪰) and the set of rotations

Π = {ρi := ρ(Ci−1, Ci) : i ∈ [k]}
1: for i = 1, 2, · · · , k do
2: initialize µ← Ci and Λ(ρi)← {1, 2, · · · , i}
3: for j = i− 1, i− 2, · · · , 1 do
4: if µ△ρ−j △ρ+j ∈ S then
5: update µ← µ△ρ−j △ρ+j and Λ(ρi)← Λ(ρi) \ {j}
6: end if
7: end for
8: end for

Output: Λ(ρi) for all i ∈ [k]

Proof. To distinguish between the inputs of Algorithm 3.6 and Algorithm 3.5, we let µ0, µ1, · · · , µk

denote the maximal chain in the input of Algorithm 3.6. Consider the outputs of Algorithm 3.5

with inputsCi = P (µi) for all i ∈ [k]∪{0}. Then, because of the isomorphism between (S,⪰) and

(P ,⊆) and the isomorphism between (Π,⪰⋆) and (D,⊒) as respectively stated in Theorem 3.19

and Theorem 3.37, Ki = Q(ρi) and Λ(ρi) = Λ(Ki) for all i ∈ [k], where Ki = Ci \ Ci−1 as

defined in Algorithm 3.5. Thus, together with Theorem 3.65,

ρ ⪰⋆ ρ′ ⇔ Q(ρ) ⊒ Q(ρ′)⇔ Λ(Q(ρ)) ⊆ Λ(Q(ρ′))⇔ Λ(ρ) ⊆ Λ(ρ′),

concluding the proof. ■

Example 3.69. Consider the instance given in Example 3.46 and assume the maximal chain we

obtained is C0 = µF , C1 = µ2, C2 = µ3, C3 = µW so that we exactly have ρi = ρ(Ci−1, Ci)

for all i ∈ [3] as denoted in Example 3.46. Imagine we want to compare ρ1 and ρ2. As shown

in Figure 3.5b, ρ1 ⪰⋆ ρ2. First, consider the outer for loop of Algorithm 3.6 with i = 1. Then

the body of the inner for loop is not executed and immediately we have Λ(ρ1) = {1}. Next,

consider the outer for loop of Algorithm 3.6 with i = 2. Then, µ is initialized to be µ3 and Λ(ρ2) is

initialized to be {1, 2}. During the first and only iteration of the inner for loop, since µ3△ρ−1△ρ+1
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is not a stable matching, Λ(ρ2) is not updated and remains {1, 2}. Finally, Λ(ρ1) ⊆ Λ(ρ2) and

thus, ρ1 ⪰⋆ ρ2 as expected. △

3.4.5 Summary and time complexity analysis

The complete procedure to build the rotation poset is summarized in Algorithm 3.7.

Algorithm 3.7 Construction of the rotation poset (Π,⪰⋆)

1: Run Algorithm 3.1’s, firm-proposing and worker-proposing, to obtain µF and µW .
2: Run Algorithm 3.4 to obtain a maximal chain C0, C1, · · · , Ck of the stable matching lattice

(S,⪰), and the set of rotations Π ≡ {ρ1, ρ2, · · · , ρk}.
3: Run Algorithm 3.6 to obtain the sets Λ(ρi) for each rotation ρi ∈ Π.
4: Define the partial order relation ⪰⋆: for ρi, ρj ∈ Π, ρi ⪰⋆ ρj ⇔ Λ(ρi) ⊆ Λ(ρj).

The rest of the section focuses on time complexity analysis.

Theorem 3.70. Algorithm 3.7 runs in time |W |3|F |3oracle-call.

DA algorithm (Algorithm 3.1). Because of Lemma 3.59 and Lemma 3.60, Algorithm 3.1 can

be implemented as in Algorithm 3.8 to reduce the number of oracle-calls. In particular, during

each repeat loop, only firms that are rejected in the previous step (i.e., in F̄ ) and only workers who

receive new proposals (i.e., in W̄ ) need to invoke their choice functions. Therefore, the for loop

at Line 5 is entered at most |F ||W | times, and similarly, the for loop at Line 13 is entered at most

|F ||W | times. That is, the total number of oracle-calls is O(|F ||W |). Moreover, and for each

firm-worker pair (f, w), w is removed from Xf at most once and f is added to Xw at most once.

That is, Line 8 (resp. Line 16) is repeated at most |F ||W | times. Therefore, the running time of the

DA algorithm is O(|F ||W |oracle-call).

Break-marriage procedure (Algorithm 3.2). Since the core steps (i.e., the loops) of the break-

marriage procedure is the same as that of the DA algorithm, the running time of the break-marriage

procedure is O(|F ||W |oracle-call), with the same arguments as above.
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Algorithm 3.8 Efficient implementation of Algorithm 3.1

1: set F̄ ← F and W̄ ← ∅
2: for each firm f do initialize Xf ← W (f) and Y prev

f ← ∅ end for
3: for each worker w do initialize Xw ← ∅ and Y prev

w ← ∅ end for
4: repeat
5: for each firm f ∈ F̄ do
6: Af ← Cf (Xf )

7: for each worker w ∈ Af \ Y prev
f do

8: update Xw ← Xw ∪ {f} and W̄ ← W̄ ∪ {w}
9: end for

10: update Y prev
f ← Af

11: end for
12: re-set F̄ ← ∅
13: for each worker w ∈ W̄ do
14: Xw ← C(Xw)

15: for each firm f ∈ Y prev
w \Xw do

16: update Xf ← Xf \ {w} and F̄ ← F̄ ∪ {f}
17: end for
18: update Y prev

w ← Xw

19: end for
20: re-set W̄ ← ∅
21: until F̄ = ∅
Output: matching µ̄ with µ̄(w) = Y prev

w for every worker w; closure X̃(µ̄) with X̃f (µ̄) = Xf for
every firm f

Immediate descendant (Algorithm 3.3). Recall that q̄f denotes the number of workers matched

to firm f under any stable matching (see the equal-quota property). Let Υ :=
∑

f∈F q̄f denote

the number of worker-firm pairs in any stable matching. Then, Algorithm 3.2 is run for at most

Υ times. In addition, finding one maximal element µ∗ from T requires at most Υ comparisons of

pairs of stable matchings, each of which requires |F | oracle-calls by Part (3) of Lemma 3.53.

All together, since Υ ≤ |F ||W |, the running time of Algorithm 3.3 is O(|F |2|W |2oracle-call).

Maximal chain (Algorithm 3.4). Since the length of a maximal chain of P , and equivalently of

S due to Theorem 3.19, is at most the size of its base set due to Lemma 3.28 and Theorem 3.55,
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Algorithm 3.3 is repeated for at most |F ||W | times. Thus, the running time of Algorithm 3.4 is

O(|F |3|W |3oracle-call).

Partial order⪰⋆ (Algorithm 3.6). Recall that checking if a matching is stable requiresO(|F ||W |)

oracle-calls by Part (2) of Lemma 3.53. Thus, ros-membership is O(|F ||W |oracle-call).

Since k is at most |F ||W |, the running time of Algorithm 3.6 is O(|F |3|W |3oracle-call).

Rotation poset (Π,⪰⋆) (Algorithm 3.7). Summing up the time of running Algorithm 3.1 twice,

then the time of running Algorithm 3.4 and Algorithm 3.6, the time complexity for building (Π,⪰⋆)

is O(|F |3|W |3oracle-call).

3.5 The convex hull of lattice elements

Consider a poset (Y,⪰⋆). Its associated order polytope is defined as

O(Y,⪰⋆) := {y ∈ [0, 1]Y : yi ≥ yj, ∀i, j ∈ Y s.t. i ⪰⋆ j}.

A characterization of vertices and facets of O(X,⪰⋆) is given in Stanley (1986).

Theorem 3.71 (Stanley, 1986). The vertices of O(Y,⪰⋆) are the characteristic vectors of upper

sets of Y . The facets of O(Y,⪰⋆) are all and only the following: yi ≥ 0 if i is a minimal element

of the poset; yi ≤ 1 if i is a maximal element of the poset; yi ≥ yj if i is an immediate predecessor

of j.

Proof of Theorem 3.6. Let (Y,⪰⋆) affinely represent (X,⪰) via functions ψ and g(u) = Au+ x0.

We claim that
conv(X ) := conv({χµ : µ ∈ X}) = {x0} ⊕ A · O(Y,⪰⋆)

= {x ∈ RX : x = x0 + Ay, y ∈ O(Y,⪰⋆)},
(3.7)

where ⊕ denotes the Minkowski sum operator. Indeed, by definition of affine representation and

the fact that both polytopes, conv(X ) and O(Y,⪰⋆), have 0/1 vertices, g defines a bijection be-
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tween vertices of these two polytopes. Convexity then implies (3.7). As O(Y,⪰⋆) has O(|Y |2)

facets shown in Theorem 3.71, we conclude the first statement from Theorem 3.6.

Now suppose that A has full column rank. This implies that conv(X ) is affinely isomorphic to

O(Y,⪰⋆). Hence, there is a one-to-one correspondence between facets of O(Y,⪰⋆) and facets of

conv(X ), concluding the proof. ■

Following the proof of Theorem 3.6, when a poset B = (Y,⪰⋆) affinely represent a lattice

L = (X ,⪰∗) via a function g(u) = Au+ x0, with A having full column rank, many properties of

conv(X ) can be derived from the analogous properties of O(Y,⪰∗). For instance, the following

immediately follows from the fact that O(Y,⪰∗) is full-dimensional.

Corollary 3.72. Let B = (Y,⪰⋆) affinely represent the lattice L = (X ,⪰) via functions ψ and

g(u) = Au + x0, with A having full column rank. Then the dimension of conv(X ) is equal to the

number of elements in B.

Example 3.73 shows that statements above need not hold when A does not have full column-

rank.

Example 3.73. Consider the lattice (X ,⪰) and its representation poset (Y,⪰⋆) from Example 3.8.

Note that

conv(X ) = {x ∈ [0, 1]4 : x1 = 1, x2 + x3 = 1}.

Thus, conv(X ) has dimension 2. On the other hand, O(Y,⪰⋆) has dimension 3. So the two

polytopes are not affinely isomorphic. Polytopes conv(X ) and O(Y,⪰⋆) are shown in Figure 3.6.

More generally, one can easily construct a “trivial” distributive lattice (X ,⪰) such that the

number of facets of O(Y,⪰⋆) gives no useful information on the number of facets of conv(X ),

where (Y,⪰⋆) is a poset that affinely represents (X ,⪰). In fact, the vertices of any 0/1 polytope

can be arbitrarily arranged in a chain to form a distributive lattice (X ,⪰). A poset O(Y,⪰⋆) that

affinely represents (X ,⪰) is given by a chain with |Y | = |X | − 1. It is easy to see that O(Y,⪰⋆)

is a simplex and has therefore |Y |+1 = |X | facets. However, conv(X ) could have much more (or

much less) facets than the number of its vertices. △
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x2

x4

x3

(a) conv(X ) in the space of x1 = 1

y1

y3

y2

(b) O(Y,⪰⋆)

Figure 3.6: Polytopes for Example 3.73.

When A has full column rank, we can also deduce a minimal (i.e., complete and irredundant)

description of conv(X ) from a minimal description of the order polytope, using basic linear algebra

facts.

Theorem 3.74. Let P = {y ∈ Rn : c⊺i y ≥ δi, ∀i = 1, 2, · · · , I} ⊆ Rn be a full-dimensional

polytope. Let A ∈ Rm×n be a matrix with full column rank and let a1, a2, · · · , am−n ∈ Rm be

m−n linearly independent vectors that span the left null space of matrixA. Moreover, let di ∈ Rm

be a vector such that d⊺iA = c⊺i for all i = 1, 2, · · · , I . Then, for any x0 ∈ Rm, Q := {x0} ⊕A · P

can be described as

{x ∈ Rm : d⊺i (x− x0) ≥ δi ∀i = 1, 2, · · · , I

a⊺i (x− x0) = 0 ∀i = 1, 2, · · · ,m− n}.
(3.8)

Moreover, if the description of P is irredundant, then the description of Q in (3.8) is also irredun-

dant.

Proof. We first show that (in)equalities in the description (3.8) are valid for Q. Let x̄ ∈ Q and

assume that x̄ = Aȳ + x0 for some ȳ ∈ P . Then, for all i = 1, 2, · · · , I ,

d⊺i (x̄− x0) = d⊺i (Aȳ + x0 − x0) = d⊺iAȳ = c⊺i ȳ ≥ δ;
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and for all i = 1, 2, · · · , n−m,

a⊺i (x̄− x0) = a⊺i (Aȳ + x0 − x0) = a⊺iAȳ = 0⊺ȳ = 0.

We next show the reverse. Assume x̄ ∈ Rm is valid for (3.8) and we want to show that x̄ ∈ Q. The

fact that x̄ satisfies all the equalities in (3.8) implies that there exists ȳ ∈ Rn such that x̄ = Aȳ+x0.

It then suffices to show that ȳ ∈ P . Assume not, then for some i ∈ [I], we have c⊺i ȳ < δi. This

then implies that d⊺i (x̄− x0) = c⊺i ȳ < δ, contradicting the assumption that x̄ is valid for (3.8).

The last statement of the theorem for irredudance follows from the assumption that matrix A

has full column rank. ■

Note that the vectors ai’s and di’s in the statement of Theorem 3.74 can be computed using

known algorithms such as Gaussian elimination. We show next how to we deduce a (known)

minimal description of the stable matching polytope in the SM-MODEL.

3.5.1 Minimal description of the stable matching polytope in the SM-MODEL

In the following, we assume that the choice function Ca of every agent a ∈ F ∪W comes from

an underlying strict preference list, denoted as ≥a. That is, for every subset of acceptable partners

S, we have Ca(S) = max(S,≥a).

Let Es denote the set of stable pairs, and let Ēs ⊂ Es be any subset of stable pairs such that

exactly one firm-worker pair from ρ− for each ρ ∈ Π is included. Note that Ēs is not unique and

|Ēs| = |Π|, since for any two rotations ρ1, ρ2 ∈ Π, ρ−1 ∩ ρ−2 = ∅.

Let Π0 ⊆ Π (resp. Πz ⊆ Π) be all the rotations that have no predecessor (resp. successor)

in (Π,⪰⋆). Let E0 (resp. Ez) be a family of firm-worker pairs such that it contains exactly one

firm-worker pair from ρ− (resp. ρ+) for each ρ ∈ Π0 (resp. ρ ∈ Πz), and no other firm-worker

pairs.

Let Γ be a collection of pairs of rotations (ρi, ρj) such that ρi is an immediate predecessor of ρj

in (Π,⪰⋆). The following claim (Lemma 3.75) regarding the precedence relations in Γ was shown
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in e.g., Gusfield and Irving (1989) and Eirinakis et al. (2014).

Lemma 3.75. Consider (ρi, ρj) ∈ Γ. Then, one of the following two situations must be true.

(i) There is a firm-worker pair (f, w) ∈ Es such that (f, w) ∈ ρ+i ∩ ρ−j

(ii) There is a firm-worker pair (f, w) /∈ Es such that the following two conditions hold: (i) for

some firm f ′ and f ′′ with f ′ >w f >w f ′′, (f ′, w) ∈ ρ+i and (f ′′, w) ∈ ρ−i ; (ii) for some

worker w′ and w′′ with w′ >f w >f w
′′, (f, w′) ∈ ρ−j and (f, w′′) ∈ ρ+j .

Thus, we can partition Γ into two groups, Γ1 and Γ2, so that for each pair (ρi, ρj) ∈ Γ1, there

is a stable pair e ∈ Es such that e ∈ ρ+i ∩ ρ−j , but for each (ρi, ρj) ∈ Γ2, such a stable pair does

not exist. That is, Γ1 is a collection of immediate precedence relations that can be defined by

stable pairs, and Γ2 is a collection of immediate precedence relations that can only be defined by

non-stable pairs.

For every (ρi, ρj) ∈ Γ1, let eρi,ρj be one of the stable firm-worker pairs in ρ+i ∩ ρ−j . For

every (ρi, ρj) ∈ Γ2, let eρi,ρj be the non-stable firm-worker pair which satisfies the condition in

Lemma 3.75 (ii). In particular, eρi,ρj represents the firm-worker pair that results in the precedence

relation ρi ⪰⋆ ρj .

Eirinakis et al. (2014) gives a minimal description of the stable matching polytope in the SM-

MODEL.

Theorem 3.76 (Eirinakis et al., 2014). The stable matching polytope, {x0} ⊕A · O(Π,⪰⋆), in the
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SM-MODEL can be minimally described as follows:

xf,w +
∑

(f ′,w)∈Es:f ′>wf

xf ′,w +
∑

(f,w′)∈Es:w′>fw

xf,w′ = 1 ∀(f, w) ∈ Es \ Ēs (3.9)

xf,w = 0 ∀(f, w) ∈ E \ Es (3.10)

xf,w ≥ 0 ∀(f, w) ∈ E0 (3.11)

xf,w ≥ 0 ∀(f, w) ∈ Ez (3.12)

xf,w ≥ 0 ∀(ρi, ρj) ∈ Γ1, eρi,ρj = (f, w) (3.13)∑
(f ′,w)∈Es:f ′>wf

xf ′,w +
∑

(f,w′)∈Es:w′>fw

xf,w′ ≥ 1 ∀(ρi, ρj) ∈ Γ2, eρi,ρj = (f, w) (3.14)

In the following, we give an alternative proof that (3.9) – (3.14) minimally describe the stable

matching polytope by connecting the stable matching polytope with the order polytope associated

with its representation poset. In particular, we show that the minimal description given by Eirinakis

et al. (2014) can precisely be viewed as an application of Theorem 3.74 where each inequality is

provided with a combinatorial interpretation special for the stable matching model.

We start with some known results. Theorem 3.77 can be viewed as a consequence of Theo-

rem 3.76. However, since the goal of this section to give an alternative proof of Theorem 3.76,

we present Theorem 3.77 as a known result on its own. Theorem 3.78 is immediate from Theo-

rem 3.71.

Theorem 3.77 (Eirinakis et al., 2014). The system of equations (3.9) and (3.10) is linearly inde-

pendent.

Theorem 3.78 (Stanley, 1986). The order polytope O(Π,⪰⋆) is full-dimensional and can be min-

imal described by the following facet-defining inequalities.

yρi ≤ 1 ∀i s.t. ρi ∈ Π0 (3.15)

yρi ≥ 0 ∀i s.t. ρi ∈ Πz (3.16)

yρi ≥ yρj ∀(ρi, ρj) ∈ I (3.17)
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We next summarize some facts known for matrix A which can be deduced from our results in

Section 3.3. These properties are also known for the SM-MODEL (see, e.g., Gusfield and Irving,

1989).

Lemma 3.79. Matrix A has the following properties:

(i) Matrix A has full column rank.

(ii) Every row of A has at most one +1 and at most one −1.

(iii) Consider a row of A corresponding to a firm-worker pair (f, w) in the firm-optimal stable

matching. There is at most one column, say ρ, with A(f,w),ρ = −1 and all other columns

have entry zero.

(iv) Consider a row ofA corresponding to a firm-worker pair (f, w) in the worker-optimal stable

matching. There is at most one column, say ρ, withA(f,w),ρ = +1 and all other columns have

entry zero.

In Propositions 3.80, 3.81 and 3.82, we show that (3.11) – (3.14) correspond to (3.15) – (3.17)

in a sense as how ci’s relate to di’s in the statement of Theorem 3.74. Then, in Proposition 3.83,

we show that (3.9) and (3.10) correspond to the ai vectors in the statement of Theorem 3.74.

Proposition 3.80. Inequalities (3.11) are facet-defining for {x0} ⊕ A · O(Π,⪰⋆), and they are in

bijection with (3.15).

Proof. Consider a firm-worker pair (f, w) ∈ E0 and assume (f, w) ∈ ρ− for some ρ ∈ Π0. Note

that (f, w) is in the firm-optimal stable matching by definition of Π0 and thus x0f,w = 1. Therefore,

by Lemma 3.79 (iii), A(f,w),ρ = −1 and A(f,w),ρ′ = 0 for all other ρ′ ∈ Π such that ρ′ ̸= ρ (♮). In

the framework of Theorem 3.74, yρ ≤ 1 corresponds to c⊺i y ≥ δi where ci is a vector indexed by Π

with all entries being 0, except for the one corresponding to ρ which has value −1, and δi = −1.

Consider the vector di indexed by E with all entries being 0 except for the one corresponding to

(f, w) which has value 1. Due to (♮), it is not hard to see that d⊺iA = c⊺i . Moreover, d⊺i (x−x0) ≥ δi
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reduces to 1 · (xf,w − 1) ≥ −1 ⇔ xf,w ≥ 0. We conclude the proof by Lemma 3.79 (i) and

Theorem 3.78. ■

Proposition 3.81. Inequalities (3.12) are facet-defining for {x0} ⊕ A · O(Π,⪰⋆) and they are in

bijection with (3.16).

Proof. Consider a firm-worker pair (f, w) ∈ Ez and assume (f, w) ∈ ρ+ for some ρ ∈ Πz. Note

that (f, w) is not in the firm-optimal stable matching and thus x0f,w = 0. Therefore, by Lemma 3.79

(iv), A(f,w),ρ = 1 and A(f,w),ρ′ = 0 for all other ρ′ ∈ Π such that ρ′ ̸= ρ (♮). In the framework

of Theorem 3.74, yρ ≥ 0 corresponds to c⊺i y ≥ δi where ci is a vector indexed by Π with all

entries being 0, except for the one corresponding to ρ which has value 1, and δi = 0. Consider

the vector di indexed by E with all entries being 0 except for the one corresponding to (f, w)

which has value 1. Due to (♮), it is not hard to see that d⊺iA = c⊺i . Moreover, d⊺i (x − x0) ≥ δi

reduces to 1 · (xf,w − 0) ≥ 0 ⇔ xf,w ≥ 0. We conclude the proof again by Lemma 3.79 (i) and

Theorem 3.78. ■

Proposition 3.82. Inequalities (3.13) and (3.14) are facet-defining for {x0} ⊕ A · O(Π,⪰⋆) and

they are in a bijection with (3.17).

Proof. Consider a firm-worker pair (f, w) such that (f, w) = eρi,ρj for some (ρi, ρj) ∈ I . Note

that x0f,w = 0. We consider first the case when (ρi, ρj) ∈ Γ1. In this case, we have A(f,w),ρi = 1,

A(f,w),ρj = −1 andA(f,w),ρ = 0 for all other ρ ∈ Π\{ρi, ρj} (♮). In the framework of Theorem 3.74,

yρi ≥ yρj corresponds to c⊺i y ≥ δi where ci is a vector indexed by Π with all entries being 0, except

for the one corresponding to ρi and ρj which have value 1 and −1 respectively, and δi = 0.

Consider the vector di indexed by E with all entries being 0 except for the one corresponding to

(f, w) which has value 1. Due to (♮), it is not hard to see that d⊺iA = c⊺i . Moreover, d⊺i (x−x0) ≥ δi

reduces to 1 · (xf,w − 0) ≥ 0⇔ xf,w ≥ 0.

We next consider the case when (i, j) ∈ Γ2. Let ρ̄1 ≻ ρ̄2 ≻ · · · ≻ ρ̄p ≡ ρj with ρ̄1 ∈ Π0 be

a series of rotations which sequentially match firm f to different workers. In particular, there is a

collection of workers w̄1, w̄2, · · · , w̄p with w̄1 >f w̄2 >f · · · >f w̄p >f w such that (f, w̄1) ∈ ρ̄−1
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ρ̄1 ρ̄2 ρ̄3 · · · ρ̄p−1 ρ̄p ρ̄p+1 ρ̄p+2 ρ̄p+3 · · · ρ̄p+q−1 ρ̄p+q

(f, w̄1) −1
(f, w̄2) +1 −1
(f, w̄3) +1 −1

...
...

...
(f, w̄p) +1 −1
(f̄1, w) +1 −1
(f̄2, w) +1 −1

...
...

...
(f̄q−1, w) +1 −1
(f̄q, w) +1

Table 3.1: Matrix entries for certain firm-worker pairs (Proof of Proposition 3.82)

and (f, w̄i) ∈ ρ̄+k−1 ∩ ρ̄
−
k for all k = 2, 3, · · · , p. Moreover, define

Ēf := {(f, w̄k) : k ∈ [p]} = {(f, w′) ∈ Es : w′ >f w}.

Similarly, let ρi ≡ ρ̄p+1 ≻ ρ̄p+2 ≻ · · · ≻ ρ̄p+q ∈ Πz be a series of rotations which sequentially

match worker w to different firms. That is, there is a collection of firms f̄1, f̄2, · · · , f̄q with f̄q >w

f̄q−1 >w · · · >w f̄1 >w f such that (f̄k, w) ∈ ρ̄+p+k ∩ ρ
−
p+k+1 for all k = 1, 2, · · · , q − 1 and

(f̄q, w) ∈ ρ̄+p+q. Moreover, define

Ēw := {(f̄k, w) : k ∈ [q]} = {(f ′, w) ∈ Es : f ′ >w f}.

Rows of matrix A corresponding to these firm-worker pairs in Ēf ∪ Ēw are given in Ta-

ble 3.1 with zero entries omitted. Note that columns corresponding to any other rotation in

Π \ {ρ̄1, · · · , ρ̄p+q} are also omitted because the entries are all zero. In addition, (f, w̄1) is the

only firm-work pair in Ēf ∪ Ēw that is in the firm-optimal stable matching.

In the framework of Theorem 3.74, yρi ≥ yρj corresponds to c⊺i y ≥ δi where ci and δi are

defined as above (in the first paragraph of the proof). Consider the vector di indexed by E with all
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entries being 0 except for the ones corresponding to edges in Ēf ∪ Ēw which have value 1. It is not

hard to see that d⊺iA = c⊺i . Moreover, d⊺i (x− x0) ≥ δi reduces to

∑
(f ′,w′)∈Ēf∪Ēw

(
x(f ′,w′) − x0(f ′,w′)

)
=

∑
(f ′,w′)∈Ēf∪Ēw

x(f ′,w′) − x0(f,w̄1)
≥ 0,

which is then equivalent to

∑
(f ′,w)∈Es:f ′>wf

xf ′,w +
∑

(f,w′)∈Es:w′>fw

xf,w′ ≥ 1.

Again, we conclude the proof by Lemma 3.79 (i) and Theorem 3.78. ■

Proposition 3.83. Equalities (3.9) and (3.10) are valid for {x0} ⊕ A · O(Π,⪰⋆), and they corre-

spond to the equalities in the description given in (3.8).

Proof. We start with equalities in (3.9). Consider the equality corresponding to (f, w) ∈ Es \ Ēs.

Let w̄1, w̄2, · · · , w̄p be an enumeration of the workers in {w′ ∈ W : (f, w′) ∈ Es, w′ >f w} and

let f̄1, f̄2, · · · , f̄q be an enumeration of the firms {f ′ ∈ F : (f ′, w) ∈ Es, f ′ >w f}. We assume

without loss of generality that w̄1 >f w̄2 >f · · · >f w̄p, and f̄q >w f̄q−1 >w · · · >w f̄1. Let

ρ̄1, ρ̄2, · · · , ρ̄p+q be a sequence of rotations such that (i) (f, w̄1) ∈ ρ̄−1 ; (ii) (f, w̄i) ∈ ρ̄+i−1 ∩ ρ̄−i for

all i = 2, 3, · · · , p; (iii) (f, w) ∈ ρ̄+p ∩ ρ̄−p+1; (iv) (f̄i, w) ∈ ρ+p+i ∩ ρ−p+i+1 for all i = 1, 2, · · · , q− 1;

and (v) (f̄q, w) ∈ ρ+p+q. Let Ē(f,w) denote the firm-worker pairs analyzed in (i)-(v). Rows of matrix

A corresponding to Ē(f,w) are given in Table 3.2 with zero entries omitted. Note that columns

corresponding to any other rotation in Π \ {ρ̄1, · · · , ρ̄p+q} are also omitted from Table 3.2 because

the entries are all zero. In addition, (f, w̄1) is the only firm-worker pair in Ē(f,w) that is in the

firm-optimal stable matching.

In the framework of Theorem 3.74, consider vector ai indexed by E with all entries being 0

except for the ones corresponding to edges in Ē(f,w) which have value 1. It is not hard to see that
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ρ̄1 ρ̄2 ρ̄3 · · · ρ̄p−1 ρ̄p ρ̄p+1 ρ̄p+2 · · · ρ̄p+q−1 ρ̄p+q

(f, w̄1) −1
(f, w̄2) +1 −1
(f, w̄3) +1 −1

...
...

...
(f, w̄p) +1 −1
(f, w) +1 −1
(f̄1, w) +1 −1

...
...

...
(f̄q−1, w) +1 −1
(f̄q, w) +1

Table 3.2: Matrix entries for certain firm-worker pairs (Proof of Proposition 3.83)

a⊺iA = 0⊺ and a⊺i (x− x0) = 0 reduces to

∑
(f ′,w′)∈Ē(f,w)

(
x(f ′,w′) − x0(f ′,w′)

)
=

∑
(f ′,w′)∈Ē(f,w)

x(f ′,w′) − x0(f,w̄1)
= 0,

which is then equivalent to

xf,w +
∑

(f ′,w)∈Es:f ′>wf

xf ′,w +
∑

(f,w′)∈Es:w′>fw

xf,w′ = 1.

Therefore, inequality (3.9) corresponding to (f, w) is valid for {x0} ⊕ A · O(Π,⪰⋆).

Next, for equalities in (3.10), consider the one corresponding to (f, w) ∈ E \ Es. Since (f, w)

is not a stable pair, the row of matrix A corresponding to (f, w) are all zeros. In the framework

of Theorem 3.74, consider vector ai indexed by E with all entries being 0 except for the one

corresponding to edge (f, w) which has value 1. Then, clearly, a⊺iA = 0⊺. Moreover, a⊺i (x−x0) =

0 simply reduces to x(f,w) = 0.

Lastly, since these equalities are linearly independent due to Theorem 3.77, they correspond to

the equalities in the description given in (3.8). ■

We now give the proof for Theorem 3.76.
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Proof of Theorem 3.76. It follows from Theorem 3.74 and 3.78; and Propositions 3.80, 3.81, 3.82,

and 3.83. ■

3.6 Representations of choice functions and algorithms

Recall our previous observation that a choice function may be defined on all the (exponentially

many) subsets of agents from the opposite side. The oracle model bypasses the computational

concerns of representing choice functions explicitly. However, one drawback of this model is

that it requires multiple rounds of communication between the “central planner” and each agent

in the market. This, from an application point of view, is time-consuming: one of the major

improvements brought about by the implementations of the Deferred Acceptance algorithm when

applied, e.g., to the New York City school system, lies in the fact that it does not require multiple

rounds of communication between the agents and the central planner (Abdulkadiroğlu, Pathak, and

Roth, 2005a).

This observation leads to the following practically relevant and theoretically intriguing ques-

tions: is there a way to represent choice functions “compactly”, and do our algorithms perform

efficiently in such a model? A natural starting point is the MC-representation defined in Sec-

tion 3.2.3. We show in Section 3.6.1 that the time complexity of our algorithms in the model

where choice functions are given through their MC-representation is polynomial in the input size

(where now the input includes the MC-representations). However, the MC-representation of a

choice function may need a number of preference relations that are exponential in the number of

agents (see Remark 3.84).

It is therefore interesting to investigate whether there are other ways to represent choice func-

tions that is of size polynomial in the number of agents. Via a counting argument, we give a

negative answer to this question in Section 3.6.2 for choice functions that are substitutable, consis-

tent, and cardinal monotone (see Theorem 3.87 and Remark 3.88). We remark that our argument

leaves it open whether a similar result holds if we replace cardinal monotonicity with quota-filling.
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3.6.1 Algorithms with MC-representation

In this section, we show how to modify the algorithms and analyze their time complexities

when agents’ choice functions are explicitly given via the MC-representations.

In Algorithm 3.1 and Algorithm 3.2, instead of relying on an oracle model, we need to com-

pute the outcomes of choice functions Ca(S) for agent a ∈ F ∪ W and subset of acceptable

partners S. Using results in Section 3.2.3, Ca(S) can be obtained as a set of maximizers as the

following: {max(S,≥a,i) : i ∈ [p(Ca)]}. Since each max(S,≥a,i) requires O(max(|F |, |W |)

time to compute, the time-complexity for obtaining Ca(S) is O(max(|F |, |W |)p(Ca)). Thus, for

all previous results in terms of time complexity, one can simply replace O(oracle-calls) with

O(max(|F |, |W |)maxa∈F∪W p(Ca)). Note that this time complexity bound is polynomial in the

input size, but could be exponential in the number of agents, since maxa∈F∪W p(Ca) maybe expo-

nential in the number of the agents as discussed in Remark 3.84.

Remark 3.84. Doğan, Doğan, and Yıldız (2021) constructed strict preference lists with quotas

(i.e., choice functions for the MM-MODEL) whose MC-representation needs exponentially many

preference relations. Since such choice functions are a special case of the quota-filling choice

functions, in general the MC-representation of quota-filling choice functions is not polynomial in

the number of agents.

3.6.2 On the number of substitutable, consistent, and cardinal monotone choice functions

In this section, the domain of all choice functions is the family of subsets of X , with |X| = n.

The simplest choice functions C appears in the SM-MODEL, where there is a single underlying

strict preference list. The number of such choice functions is

n∑
i=0

(
n

i

)
i! =

n∑
i=0

n!

(n− i)!
=

n∑
i=0

n!

(n− i)!
= n!

n∑
i=0

1

i!
≤ en!,

hence, singly exponential in n. On the other extreme, the number of all choice functions is doubly-

exponential in n (see, e.g., Echenique, 2007). We give the proof of this fact for completeness.
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Theorem 3.85. The number of choice functions on subsets of X with |X| = n is 2n2
n−1

.

Proof. Since for each set of partners S ⊆ X with |S| = i, C(S) can take 2i possible values and

there are
(
n
i

)
subsets of X with size i, the number of possible choice function is

∏n
i=1(2

i)(
n
i).

Taking the logarithm with base 2, we have

log2

(
n∏
i=1

(2i)(
n
i)

)
=

n∑
i=1

(
n

i

)
i =

n∑
i=1

n!

(n− i)!(i− 1)!
= n

n−1∑
i′=0

(n− 1)!

(n− 1− i′)!(i′)!
= n2n−1.

■

It has also been shown by Echenique (2007) that when choice functions are assumed to be sub-

stitutable and consistent (i.e., path-independent), the number of choice functions remains doubly

exponential in n.

Theorem 3.86 (Echenique, 2007)). The number of substitutable and consistent choice functions

on subsets of X with |X| = n is 2Ω
(

2n−1
√
n−1

)
.

In the rest of the section, we show that the number of choice functions that additionally satisfies

cardinal monotonicity remains doubly exponentially in n. The proof idea follows from that given

in Echenique (2007).

Theorem 3.87. The number of substitutable, consistent, and cardinal monotone choice functions

on subsets of X with |X| = n is 2Ω
(

2n−1
√
n−1

)
.

Remark 3.88. Because of Theorem 3.87, in order to encode all substitutable, consistent, and

cardinal monotone choice function in binary strings, we need a number of strings that is super-

polynomial in n, i.e., the number of agents in the market.

A family of subsets A ⊆ 2X is an antichain of (2X ,⊆) if for any subsets A,B ∈ A, they are

not comparable, i.e., A \B ̸= ∅ and B \A ̸= ∅. A family of subsets F ⊆ 2X is a filter (i.e., lower

set) if for all F ∈ F , F ′ ⊇ F implies F ′ ∈ F . Moreover, we say filter F is a filter at x if for all

F ∈ F , we have x ∈ F . Note that ∅ is a filter at x.
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Theorem 3.89 (Echenique, 2007). There is an injective function mapping collections of antichains

A = {Ax : x ∈ X} where eachAx is an antichain of the poset (2X\{x},⊆) to substitutable choice

functions. The image of A is defined as follows: for all S ⊆ X ,

C(S) := {x ∈ S : S /∈ Tx},

where

Tx := {B ⊆ X : A ∪ {x} ⊆ B for some A ∈ Ax}.

Moreover, Tx is a filter at x for all x ∈ X .

Because of Theorem 3.89, let C[A] denote the substitutable choice function corresponding to

the collection of antichains A constructed by the statement of the theorem.

Lemma 3.90. Let (Y,W ) be a partition of X with W = {w}. Let A = {Ax : x ∈ X} be a

collection of antichains such that (i) for all x ∈ Y , Ax = ∅ and (ii) Aw is an antichain of (2Y ,⊆).

Then C[A] is consistent and cardinal monotone.

Proof. We abbreviate C := C[A]. Let Tx be as defined in the statement of Theorem 3.89. That is,

Tx = ∅ for all x ∈ Y and Tw is a filter at w. Hence, note that S ∩ Y ⊆ C(S) for all S ⊆ X (♯).

Let T ⊆ X . We consider first the case when w /∈ T . Then, C(T ) = T because of (♯). Let

S ⊆ X be such that C(T ) ⊆ S ⊆ T . Then it must be that S = T and it follows immediately

that C(T ) = C(S). In addition, for all S ⊆ T , we also have S ⊆ Y and thus, using (♯) again,

|C(S)| = |S| ≤ |T | = |C(T )|.

We next consider the case when w ∈ T . Then, either C(T ) = T or C(T ) = T \ {w}, again

because of (♯). We start with the consistency property. Assume we are in the former case, and let

S ⊆ X be such that C(T ) ⊆ S ⊆ T . Since T = C(T ), we have S = T and thus C(T ) = C(S).

Now assume we are in the latter case: C(T ) = T \ {w}. If S ⊆ X satisfies C(T ) ⊆ S ⊆ T , we

either have S = T or S = T \ {w}. Regardless, we have C(S) = C(T ). Lastly, we show the

cardinality monotonicity property, and we consider both cases at once. For all S ⊊ T , we either
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have C(S) = S or C(S) = S \ {w} due to (♯). Either way, |C(S)| ≤ |S| ≤ |T | − 1 ≤ |C(T )|.

Hence, C is both consistent and cardinal monotone, concluding the proof. ■

Thus, a lower bound to the number of substitutable, consistent, and cardinal monotone choice

functions can be obtained by counting the number of antichains. The problem of counting the

number of antichains of a poset is called the Dedekind’s problem. Let N (k) denote the collection

of antichains of poset (2[k],⊆). The following result is well-known and we include the proof for

completeness.

Lemma 3.91. |N (k)| ≥ 2(
k

⌊k/2⌋) = 2Θ(2k/
√
k).

Proof. Consider any two distinct subsets A,B ⊆ X with |A| = |B|, then it must be that A\B ̸= ∅

and B \ A ̸= ∅. Thus, a collection of subsets, each with the same size, is an antichain of (2[k],⊆).

Therefore, the number of antichains of (2[k],⊆) is at least the number of subsets of {A ⊆ X :

|A| = ⌊k/2⌋}, which is exactly 2(
k

⌊k/2⌋) since there are
(

k
⌊k/2⌋

)
subsets of X with size ⌊k/2⌋. The

last equality follows from Stirling’s approximation. ■

We now present the proof for Theorem 3.87.

Proof of Theorem 3.87. Let (Y,W ) be a partition of X with |Y | = n − 1 and |W | = 1, as in the

statement of Lemma 3.90. By Lemma 3.91, the possible choices of antichains Ax for x ∈ W

is at least N (n − 1). Hence, the number of A (i.e., collection of antichains) in the statement

of Lemma 3.90 is also at least N (n − 1). Finally, together with Theorem 3.89, we have that

the number of substitutable, consistent, and cardinal monotone choice functions is again at least

N (n− 1). ■
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Chapter 4: Discovering Opportunities in New York City’s Discovery

Program: an Analysis of Affirmative Action Mechanisms

4.1 Introduction

There is a pervasive problem in the way students are evaluated and given access to higher

education (Ashkenas, Park, and Pearce, 2017; Boschma and Brownstein, 2016; Capers IV et al.,

2017). Promising students are often unable to get admission at the top schools because the path to

getting admitted to these schools requires extensive training at various levels, starting as early as

when students are 3 years old (Shapiro, 2019b). It is no surprise then that underrepresented minori-

ties, especially those with lower household income and lower family education, are systematically

screened-out of the education pipeline. In fact, in many cities, schools remain highly segregated

(Shapiro, 2021; Shapiro, 2019a). Disparate opportunities in accessing high-quality education is

one of the main causes of income imbalance and social immobility in the United States (Orfield

and Lee, 2005). It is expected that this disparity will only become more acute due to COVID-

induced loss of jobs and strain on low-income families. Now more than ever, affirmative action

policies, such as quota-based mechanisms and training programs, are critical and offer practical

remedies for increasing representation of under-represented minorities and disadvantaged groups

in public schools in the U.S. (Hafalir, Yenmez, and Yildirim, 2013).

In this work, we study theoretically and empirically the characteristics of the Discovery Pro-

gram1, which is an affirmative action program used by the New York City Department of Edu-

cation (NYC DOE) in an effort to increase the number of disadvantaged students at specialized

high schools (SHS) (NYCDOE, 2019). SHSs span the five boroughs of NYC (Table 4.3), and

1https://www.schools.nyc.gov/enrollment/enrollment-help/meeting-student-needs/
diversity-in-admissions
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are among the most competitive ones in NYC. For admission, these high schools consider only

students’ score on the Specialized High School Admissions Test (SHSAT). Around 5000 students

are admitted every year to SHSs. The discovery program reserves some seats for disadvantaged

students that are assigned at the end of the regular admission process, after student’s participation

in a 3-week enrichment program during the summer.

The discovery program has been instrumental in creating opportunities for disadvantaged stu-

dents (classified with respect to socio-economic factors), increasing the number of admitted stu-

dents to these extremely competitive public high schools in NYC. In 2020, for example, Mayor

Bill de Blasio called for an expansion of discovery program, with 20% seats at SHSs reserved

for the program. This expansion resulted in 1, 350 more disadvantaged students being admitted to

these specialized schools (NYCDOE, 2019; Veiga, 2020).

Figure 4.1: Number of blocking pairs amongst disadvantaged students under the discovery
program mechanism across the last 12 years, which impacted around 650 students each year.

In this work, we dive deep into the student-school matching produced by the discovery pro-

gram. Our empirical analysis shows that under a reasonable assumption on students’ preferences

over schools which we term school-over-seat2, the matchings from 12 recent academic years

(2005-06 to 2016-17) created about 950 in-group blocking pairs each year amongst disadvantaged

students, impacting about 650 disadvantaged students every year (see Figure 4.1). A blocking

pair is a pair of student s1 and school c1 that prefer each other to their matches, thus violating

the priority of student s1 at school c1 and creating dissatisfaction among students and schools.
2This hypothesis assumes that students’ preference lists over schools are not affected by whether they are required

to participate in the three-week summer enrichment program. See Section 4.1.1 for details.
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Moreover, we find that this program benefits lower-performing disadvantaged students more than

top-performing disadvantaged students (in terms of their rankings of their assigned schools), thus

unintentionally creating an incentive to under-perform. See Figure 4.2 for a depiction of our em-

pirical analysis, where top-performing students (with ranks 0 ∼ 500) attend less preferred schools

under the discovery program, unlike low-performing students (rank 500-1000) who get matched to

better ranked schools (lower numeric rank is better). These drawbacks of the discovery program

are not simply an artifact of the data from NYC DOE, but are, as we show theoretically, properties

about the current implementation of the discovery program. Therefore, our goal in this chapter is

to explore other affirmative action mechanisms, so that we can propose practical modifications to

how the discovery program is implemented, while alleviating the above-mentioned drawbacks.

In particular, we compare the discovery program (DISC) together with two other affirmative

action mechanism: minority reserve (MR) and joint seat allocation (JSA). These latter mechanisms

are also quota-based, where schools reserve a certain proportion of their seats for disadvantaged

students. Minority reserve, in contrast to the discovery program, allocates the reserved seats to

disadvantaged students before the general admission. This mechanism has been well studied in the

literature (see, e.g., Hafalir, Yenmez, and Yildirim, 2013). The joint seat allocation, on the other

hand, allocates reserved and general (i.e., non-reserved) seats at the same time, while allowing

disadvantaged students to take general seats (if they are able to compete) and otherwise revert to

reserved seats. This mechanism is inspired by the joint seat allocation process for admission to

Indian Institutes of Technology3 (JoSAA, 2020) and this is the first work to study this to the best

of our knowledge. We compare these three affirmative action policies with respect to the baseline

stable matching mechanism, noAA, which does not incorporate affirmative action policies (Gale

and Shapley, 1962). We discuss our key contributions next.

3The actual mechanism used by the Joint Seat Allocation Authority is more complicated than the version we study
here in the chapter. In particular, in our setting, we assume that there are two disjoint types of students: disadvan-
taged and non-disadvantaged. However, in the actual implementation (see, e.g., Baswana et al., 2019), students are
categorized through multiple dimensions (e.g., caste, gender).
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Figure 4.2: Change in rank (where a negative change means getting to a more preferred school) of
assigned schools for all disadvantaged students from noAA to DISC (we plot DISC - noAA), ranked
by the quality of students. Top students (ranked 0-500) are matched to worse schools under DISC,
whereas the lower performing disadvantaged students are matched to better schools.

4.1.1 Main results

We first show properties of affirmative action mechanisms under the school-over-seat hypoth-

esis, i.e., students’ preferences over schools are not influenced by whether they are admitted via

general seats or reserved seats (in the case of NYC SHSs, reserved seats additionally require a

3-week summer program). We next discuss weak dominance amongst the three affirmative action

mechanisms, showing that JSA outperforms MR under a condition that we term high competitive-

ness of markets. Finally, we empirically validate our theoretical results using data from NYC DOE,

and make a policy recommendation for the discovery program.

Properties of Affirmative Action Mechanisms.

Question 1. Which affirmative action mechanisms considered in the chapter satisfy reasonable

notions of fairness such as absence of in-group blocking pairs and strategy-proofness? What is the

impact of these affirmative action policies on the disadvantaged group of students?

We explore four useful properties for affirmative action mechanisms for each of noAA (the

mechanism that does not reserve seats for disadvantaged students), DISC, JSA and MR mecha-

nisms and briefly explain these properties here (see Sections 4.2 and 4.3 for formal definitions): (i)

strategy-proofness: this property means that the best strategy of students is to honestly report their
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preferences; (ii) absence of in-group blocking pairs: this is a fairness condition which ensures there

is no priority violation for students; (iii) the third property asks for the mechanism not to worsen

(with respect to the mechanism with no affirmative action) the assignment of at least one disad-

vantaged student4; and (iv) the fourth property asks all disadvantaged students not to be worse-off

in a restricted scenario called smart-reserve. Reservation quotas are a smart reserve5 if the number

of seats reserved for disadvantaged students is no less than the number of disadvantaged students

admitted without affirmation actions.

We summarize our results in Table 4.1. As one can immediately see from the table, the current

implementation of the discovery program does not satisfy any of the attractive features we investi-

gate, yet the other two affirmative action mechanisms, MR and JSA, satisfy all these properties. This

is even true when all the schools rank students in the same order, as in the NYC SHS admission

market where students are ranked based on their SHSAT scores. We additionally demonstrate these

findings empirically by computational experiments using the admission data on NYC SHSs (the

details can be found in Section 4.5). These results suggest that the discovery program could benefit

by replacing the current implementation with either minority reserve or joint seat allocation. This

result calls for a direct comparison of those mechanisms.

noAA DISC MR JSA
weakly group strategy-proof ✓ [DF] ✗ (Ex 4.10) ✓ [HYY] ✓ (Prop 4.12)
no in-group blocking pairs ✓ [GS] ✗ (Ex 4.10) ✓ (Prop 4.8) ✓ (Prop 4.16)
at least one disadvantaged student not worse off NA ✗ (Ex 4.9) ✓ [HYY] ✓ (Thm 4.13)
no disadvantaged student worse off if smart reserve NA ✗ (Ex 4.10) ✓ [HYY] ✓ (Thm 4.14)

Table 4.1: Summary of properties of affirmative action mechanisms under the school-over-seat
assumption. NA means not applicable. Previously known results and their corresponding citations
are given in square brackets, with: [DF] Dubins and Freedman (1981); [HYY] Hafalir, Yenmez,
and Yildirim (2013); and [GS] Gale and Shapley (1962); other results are accompanied by the
labels of examples, propositions, or theorems used to answer the questions.

4Intuitively, one might expect property (iii) to be so weak that it is trivially satisfied. However, the discovery
program does not satisfy it in general.

5This requirement was first proposed and studied by Hafalir, Yenmez, and Yildirim (2013), and they showed that
such a condition is achievable either in an ad-hoc fashion or by using historical data on school admissions.
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Dominance across Affirmative Action Mechanisms.

Question 2. Considering a fixed reservation quota, does one of the affirmative action mecha-

nisms (DISC, JSA or MR) (weakly) dominate another one for disadvantaged students, i.e., do all

disadvantaged students weakly prefer the schools they are matched to under one mechanism com-

pared to the other?

We say that a mechanism A (weakly) dominates another mechanism B for disadvantaged stu-

dents if A places all disadvantaged students in schools they like at least as much as the schools

they are placed in by B. Our results from Table 4.1 seem to suggest that the discovery program

mechanism could be dominated by either minority reserve or joint seat allocation. However, this is

not the case, as shown by the results we summarize in Table 4.2. All three mechanisms are incom-

parable, even under some pretty restrictive hypothesis: (1) schools rank students in the same order;

and/or (2) reservation quotas being a smart reserve. The first hypothesis is common in markets

where students’ ranking is based on an entrance exam, such as the one for NYC SHSs. The only

exception to the incomparability results is that the mechanism noAA without affirmative action,

under the second hypothesis, is dominated by minority reserve and joint seat allocation6.

noAA MR DISC JSA
noAA (✗) (✗) (✗ Ex 4.17) (✗) (✗) (✗ Ex 4.17) (✗) (✗) (✗ Ex 4.17)
MR (✗ [HYY]) (✓ [HYY]) (✓) (✗) (✗) (✗ Ex 4.18) (✗) (✗) (✗ Ex 4.19)
DISC (✗) (✗) (✗ Ex 4.10) (✗) (✗) (✗ Ex 4.18) (✗) (✗) (✗ Ex 4.18)
JSA (✗ 4.15) (✓ Thm 4.14) (✓) (✗) (✗) (✗ Ex 4.19) (✗) (✗) (✗ Ex 4.18)

Table 4.2: The table answer the following question under the school-over-seat assumption: does
the “row” mechanism dominates the “column” mechanism for disadvantaged students? We
answer the question for three restricted domains: (1) schools share a common ranking of the
students, (2) the reservation quotas is a smart reserve, and (3) both. The answers are given in the
exact order. All answers are accompanied by the citations with [HYY] Hafalir, Yenmez, and
Yildirim (2013) or the labels of the examples or theorems used to answer the questions, except for
cases when the answer for one domain can be inferred from that of another domain.

To be able to identify crucial interventions for the discovery program, we study the behavior of

the JSA and MR mechanisms in markets that satisfy a condition which we call high competitiveness.
6We would like to point out that this exception is simply another way of expressing the same results related to the

third property in Table 4.1.
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This is a novel ex-post condition which guarantees that JSA weakly dominates MR for disadvantaged

students. This condition is verified by our data from NYC DOE, where in fact JSA outperforms MR

for disadvantaged students. We also show reasonable conditions on the primitives of the market

that imply high competitiveness. Roughly speaking, the high competitiveness condition is satisfied

when the demand for seats (i.e., number of students) is much larger than the supply, and when dis-

advantaged students are performing systematically worse than advantaged students7. See Theorem

4.20 for the formal statement. We discuss next how our experiments validate our theoretical result

and provide a practical policy recommendation for changes to the discovery program.

Case Study based on Data from New York City’s Department of Education.

We validate our theoretical results with extensive computational experiments using data we

obtained from NYC DOE for the 2005-2006 to 2016-2017 academic years, where we label students

as advantaged or disadvantaged based on the criteria given by the discovery program. First, we

show that, in practice as well, the discovery program suffers from all the theoretical drawbacks

we presented in Table 4.1 (see Section 4.5.1 for details), except the third property (as it requires

the construction of an extreme case). We find that for reservation quotas set to 20%, on average

there are 950 blocking pairs for disadvantaged students which impact around 650 students each

year. Considering the changes in rank to matched schools, DISC mechanisms is the only one under

which disadvantaged students can be worse-off (i.e., which hurts some disadvantaged students).

In particular, this hurts the top-performing disadvantaged students much more, and helps the low-

performing disadvantaged students (see Figure 4.2). The discovery program is also not strategy

proof: some of the aforementioned top-performing students may truncate their preference lists

(i.e., remove some less preferred schools from their honestly submitted preference lists), so that

they skip the competition for general seats at these less preferred schools and aim directly for

reserved seats at more preferred schools.

In addition, by observing the distribution of SHSAT scores for both the advantaged and disad-

7We hereafter refer to non-disadvantaged students as advantaged students for the sake of nomenclature, and it only
implies that advantaged students do not suffer from the disadvantages that affect disadvantaged students.
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vantaged groups of students, we notice that disadvantaged students are performing systematically

worse than advantaged students (see Figure 4.3b), which would undoubtedly lead to underrepre-

sentation of disadvantaged students at these SHSs without affirmative actions. Because of this

observation and of the very limited number of seats when compared to the students applying to

SHSs, we expect the market to the highly competitive and thus all disadvantaged students would

weakly prefer their assignment under JSA than under MR. We indeed observe these characteristics

for the NYC SHS admission market across all academic years we have data for (see Figure 4.3a

and Figure 4.4b). This leads to the policy recommendation we present in this work.

Policy Recommendation.

Overall, our work paves the way to make the discovery program fairer for disadvantaged stu-

dents. In particular, we provide an answer to how the existing practice of the discovery program

can be changed minimally to improve the outcome for the disadvantaged group of students, so that

the program aligns with the incentives to perform better.

Our Proposal: We propose that the program takes into account the preferences of students in

terms of the schools v/s seats. Is attending a particular school more important than the type of seat

they are assigned to or vice versa? We believe that most students should be willing to take a one-

time 3-week summer program to attend a school they prefer, rather than not taking the program

and attending, for 4 years, a school they prefer less (e.g., we find that this hypothesis is supported

by the fact that preferences appear often to be strongly polarized for certain schools due to, e.g.,

geographical considerations, details are reported in the Appendix, Section B.2). Although this

seems reasonable, unfortunately such preferences are currently not collected in the data provided

by the NYC DOE.

Under the school-over-seat assumption, we find that the many drawbacks of the current im-

plementation of the discovery program can be corrected by following the joint seat allocation

mechanism. For the NYC Specialized High School market – and, more generally, for highly com-
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petitive markets – joint seat allocation gives a matching that is weakly better for disadvantaged

students, when compared to matching output by the other replacement mechanism studied in this

chapter, both in theory and in practice.

Although powerful, the modification we propose requires minimal modification: there is essen-

tially no change in terms of what students and schools should report to the DOE (preference lists

for both and admission capacity for schools), and there is no change in terms of the algorithm (the

deferred acceptance algorithm (Gale and Shapley, 1962), which is currently in implementation).

Given this information, to implement the JSA mechanism, one only needs to compute an equiva-

lent instance where students’ preference lists are expanded to be over reserved and general seats

at schools, so that the matching we desire to obtain can be easily recovered from the matching

obtained under the classical stable matching model on this equivalent instance. See Section 4.4.3

for details.

Before we delve deeper into our model and results, we would like to highlight a trade-off that

any constrained resource allocation problem faces. Diverting some resources to the disadvantaged

groups implies taking some resources that are currently assigned to the advantaged groups. In this

work as well, we find from our empirical analysis, that advantaged students always weakly prefer

their assignment under MR compared to JSA. For all the academic years we analyze, we find that

about 3% of the advantaged students are worse off under JSA than under MR (i.e., about 97% of

them are matched to the same school under the two mechanisms); and among the 3%, most of them

experience a drop in the rank of assigned schools that is at most two. See Figure 4.4b for details of

one academic year. We consider this impact to be minimal compared to the ill-treatment faced by

the disadvantaged students.

4.1.2 The techniques

The affirmative action mechanisms introduced in this chapter seem to entail different algo-

rithms applied to the same preferences lists of students and schools. However, it turns out that

an equivalent, yet mathematically more convenient way is to view their assignment outputs as
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obtained from the same algorithm applied, however, to different input instances. There are two

approaches by which we can obtain such a reformulation.

This first approach is to employ choice functions, which are a general and powerful way to

model the preference lists of agents in matching markets. In particular, all choice functions needed

to model the mechanisms in this chapter satisfy the substitutability, consistency, and qc-acceptance

properties (see Section 4.2.2). Under such properties, stable matchings are known to exist and sat-

isfy strong structural and algorithmic properties (see, e.g., Alkan (2002), Faenza and Zhang (2021),

and Roth (1984a)). This reformulation8 allows us to analyze the assignments under different mech-

anisms as the outputs of one or more rounds of Roth’s generalization (Roth, 1984a) of the classical

deferred acceptance algorithm by Gale and Shapley (1962). As a result, to show properties of the

assignment obtained from an affirmative action mechanism, we can directly use properties of its

choice functions, of stable matchings, as well as the properties of the generalized deferred accep-

tance algorithm.

The second approach is to expand students’ original preferences over schools to preferences

over reserved and general seats at schools. Under this reformulation, assignments under different

affirmative action mechanisms can be obtained simply by applying the classical deferred accep-

tance algorithm over the equivalent instances. This allows us to deduce interesting properties of

the mechanisms (e.g., strategy-proofness), by leveraging on classical results on stable matchings.

4.1.3 Related literature

The problem of assigning students to schools (without affirmative action) was first studied by

Gale and Shapley in their seminal work (Gale and Shapley, 1962). Abdulkadiroğlu and Sönmez

(2003) then analyzed the algorithm in the context of school choice and recommended school dis-

tricts to replace their current mechanisms with either this algorithm or another algorithm, called

the top trading cycle algorithm. Since then, these mechanisms have been widely adopted by many

8We note in passing, that, this reformulation allows a central planner to access many stable matchings, using recent
results by Faenza and Zhang (2021), which provide alternatives to the matchings output by the mechanisms considered
in this chapter.
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cities in the United States, such as New York City and Boston.

The first attempt of incorporating affirmative action with the stable mechanism occurred in

this pioneering work (Abdulkadiroğlu and Sönmez, 2003), where they extended their analysis to

a simple affirmative action policy, using majority quotas. However, Kojima (2012) then analyze

the effects of these proposed affirmative action policies, as well as priority-based policies, and

showed that in some cases, the mechanisms might hurt disadvantaged students, the very group

these policies are trying to help. Hafalir, Yenmez, and Yildirim (2013) further analyze the effect

empirically through simulated data and suggested that this phenomenon might be quite common,

and does not just happen in theory due to special edge cases. In addition, to overcome the efficiency

loss, they propose the minority reserve mechanism.

Since then, there has been an abundance of literature, studying and proposing solutions for

the efficiency loss due to affirmative action, such as Afacan and Salman (2016), Doğan (2016),

Echenique and Yenmez (2015), Ehlers et al. (2014), Fragiadakis and Troyan (2017), Jiao and Shen

(2021), Kominers and Sönmez (2016), and Nguyen and Vohra (2019).

Another popular form of affirmative action is what is called priority-based (see, e.g., Hafalir,

Yenmez, and Yildirim, 2013; Jiao and Shen, 2021; Kojima, 2012), which creates a higher priority

for disadvantaged students by, e.g., boosting their scores. Though this mechanism satisfies impor-

tant properties such as strategy-proofness and absence of in-group blocking pairs, its practical use

is being largely debated. For example, in 2019, the college board proposed adding an adversity

score to SAT scores to account for socio-economic differences, however, this was met with severe

pushback (Jaschik, 2019). In another lawsuit at the University of Michigan challenging a priority-

based mechanism that assigned 20 points extra to disadvantaged students, the system was declared

unconstitutional by the Supreme Court (Gratz_vs_Bollinger, 2003). Faenza, Gupta, and Zhang,

2022b investigates the effects of policies where scores for minority students are boosted before

the admission process by extra training, additional resources, etc. Since the goal of this work is

to focus on operational suggestions to the discovery program, we do not explore priority-based

mechanisms.
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4.1.4 Outline

The rest of the chapter is organized as follows. In Section 4.2, we introduce the basic model

and related concepts for stable matchings and stable matching mechanisms. In Section 4.3, we

formally introduce the affirmative action mechanisms considered in this chapter and investigate

their properties (i.e., answering Question 1). We then compare these mechanisms in Section 4.4

and provide the answer to Question 2. In Section 4.4.3, we show that the three affirmative action

mechanisms considered in the chapter differ in terms of how students’ preference over reserved

seats and general seats are interpreted. Lastly, in Section 4.5, we dive into the data on NYC SHS

admission, demonstrate our theoretical findings empirically.

4.2 Model and Notations

For this chapter, the two sides of the markets are students and schools, denoted by S and C,

respectively. In the following, we recall and re-introduce some concepts already introduced in

Chapter 2 and Chapter 3 to align with notations of this chapter, as well as introducing some new

concepts.

4.2.1 Matchings and mechanisms

Let G = (S ∪ C,E) be a bipartite graph, where the edge set E represents the schools which

students find acceptable (i.e., would like to attend). Every student s ∈ S has a strict preference

relation over the schools they find acceptable and the option of being unassigned (denoted by ∅),

which we call the preference list of student s, and we denote it by >s. On the other hand, every

school c has a quota qc ∈ N ∪ {0} and a strict priority order >c over the students. In addition,

we assume that there are two types of students, advantaged (or majority) and disadvantaged (or

minority), denote by SM and Sm respectively. That is, S = SM ∪̇Sm where ∪̇ is the disjoint union

operator.

Let >S≡ {>s: s ∈ S}, >C≡ {>c: c ∈ C}, and q ≡ {qc : c ∈ C} denote the collection of
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students’ preference lists, schools’ priority orders, and schools’ quotas, respectively. Moreover,

we write >≡ {>S, >C}. An instance (or market) is thus denoted by (G,>S, >C ,q) or (G,>,q).

A matching µ (of an instance) is a collection of student-school pairs such that every student

is incident to at most one edge in µ and every school c is incident to at most qc edges in µ. For

student s ∈ S and school c ∈ C, we denote by µ(s) the school student s is matched (or assigned)

to, and by µ(c) the set of students school c is matched (or assigned) to, under matching µ.

For every school c ∈ C, let qRc ∈ {0, 1, · · · , qc} denote the number of seats reserved to disad-

vantaged students at school c, and let qGc := qc − qRc denote the number of general seats at school

c. We call qR := {qRc : c ∈ C} the reservation quotas.

A (quota-based matching) mechanism is a function that maps every instance, together with

reservation quotas, to a matching. Given an instance I = (G,>,q), a mechanism ϕ, and reserva-

tion quotas qR, let ϕ(I,qR) denote the matching obtained under the mechanism ϕ with reservation

quotas qR. Sometimes, when the reservation quotas are clear from context, we simply denote the

matching as ϕ(I).

Let µ1, µ2 be two matchings. We say µ1 (weakly) dominates µ2 for disadvantaged students if

µ1(s) ≥s µ2(s) for all disadvantaged students s ∈ Sm. If moreover µ1 ̸= µ2 (i.e., there is at least

one disadvantaged student s ∈ Sm such that µ1(s) >s µ2(s)), then we say µ1 Pareto dominates

µ2 for disadvantaged students. Consider a student-school pair (s, c) ∈ E, it is a blocking pair of

matching µ for disadvantaged students if s ∈ Sm, c >s µ(s), and there exists a disadvantaged

student s′ ∈ µ(c) ∩ Sm such that s >c s
′; and it is a blocking pair of matching µ for advantaged

students if s ∈ SM , c >s µ(s), and there exists an advantaged student s′ ∈ µ(c) ∩ SM such that

s >c s
′. Collectively, a blocking pair is called an in-group blocking pair if it is a blocking pair for

either disadvantaged or advantaged students.

Fix reservation quotas qR. A mechanism ϕ is strategy-proof if for any instance I and for any

student s ∈ S, there is no preference list >̃s such that ϕ(Ĩ ,qR)(s) >s ϕ(I,q
R)(s), where Ĩ is

obtained from I by replacing >s with >̃s. In other words, a mechanism is strategy-proof if no

student has the incentive to misreport their preference list. As a stronger concept, a mechanism is
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weakly group strategy-proof if for any instance I and for any group of students S1 ⊆ S, there are

no preference lists {>̃s : s ∈ S1} such that for every student s ∈ S1, ϕ(Ĩ ,qR)(s) >s ϕ(I,q
R)(s),

where Ĩ is obtained from I by replacing >s with >̃s for every s ∈ S1. That is, a mechanism

is weakly group strategy-proof if no group of students can jointly misreport their preference lists

so that everyone in the group is strictly better off. Note that if a mechanism is weakly group

strategy-proof, it is strategy-proof.

Consider two mechanisms ϕ1 and ϕ2. If ϕ1(I,q
R) (weakly) dominates ϕ2(I,q

R) for disadvan-

taged students for all instances I , we say that mechanism ϕ1 (weakly) dominates mechanism ϕ2 for

disadvantaged students. If neither ϕ1 nor ϕ2 dominates the other mechanism, we say they are not

comparable or incomparable.

4.2.2 Choice functions

To unify the treatment of different affirmative action mechanisms, we use the concept of choice

functions. Under each mechanism, every school c ∈ C is endowed with a choice function Cc :

2S → 2S . Recall that for every subset of students S1 ⊆ S, Cc(S1) represents the students whom

school c would like to admit among those in S1. In particular, for every S1 ⊆ S, we have Cc(S1) ⊆

S1 and |Cc(S1)| ≤ qc. Choice function Cc is a function of the priority order >c and quotas qRc

and qGc , and its exact definition depends on the specific mechanism (see Section 4.4). Students’

preferences are still described by a strict order over a subset of schools.

For all the affirmative action mechanisms studied in this chapter, every school c’s choice

function Cc satisfies the following properties: substitutability, consistency, and qc-acceptance9.

Thus, for the rest of the chapter, unless otherwise specified, these properties are always assumed.

See Chapter 3, Section 3.2.2 for their definitions. For some mechanisms, Cc is additionally qc-

responsive, which we define in the following. For any nonnegative integer q, a priority order over

the students >, and a subset of students S1 ⊆ S, let max(S1, >, q) denote the min(q, |S1|) highest

ranked students (i.e., students with the highest priorities) of S1 according to the priority order >.

9qc-acceptance is also referred to as quota-filling. However, we use qc-acceptance in this chapter to highlight the
quota.
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Definition 4.1 (qc-responsive). Choice function Cc is qc-responsive if there exists a priority order

> over the students such that for any set of students S1, Cc(S1) = max(S1, >, qc). In such case,

we say Cc is induced by priority order > (and quota qc).

We further note that q-responsiveness implies substitutability, consistency, and q-acceptance.

Indeed, q-responsive choice functions are the “simplest” choice functions and are mostly studied

in the matching literature, including the seminal work by Gale and Shapley (1962) and in practical

school choice (Abdulkadiroğlu, Pathak, and Roth, 2005b; Abdulkadiroğlu et al., 2005).

4.2.3 Stable matchings

Consider an arbitrary collection of schools’ choice functions C := {Cc : c ∈ C}. Note that

the qc-acceptant property implies that for every school c, we must have Cc(µ(c)) = µ(c) by any

matching µ by the definition of matchings. A matching µ is stable (in instance I under choice

functions C) if there is no student-school pair (s, c) ∈ E such that c >s µ(s) and s ∈ Cc(µ(c)∪{s}).

When such a student-school pair exists, we call it a blocking pair of µ, or we say that the edge (or

pair) blocks µ. Note that the definition of matchings only depends on the instance, not on the

choice functions; whereas the definition of stability depends on both.

When the choice function is qc-responsive (i.e., induced by a priority order and a quota), the

definition of stability with respect to choice functions is equivalent to the standard definition in

the classical model without choice functions. In particular, the condition s ∈ Cc(µ(c) ∪ {s}) can

then be stated as: either school c’s seats are not fully assigned (i.e., |µ(c)| < qc) or s has a higher

priority over some students that are assigned to c (i.e., ∃s′ ∈ µ(c) such that s >c s
′).

Among all stable matchings of a given instance and choice functions, there is one that domi-

nates every stable matching, where matching µ1 is said to dominate matching µ2 if µ1(s) ≥s µ2(s)

for all students s ∈ S. This stable matching is called the student-optimal stable matching, and it

can be obtained by the student-proposing deferred acceptance algorithm (Gale and Shapley, 1962;

Roth, 1984a), which we describe next. The algorithm runs in rounds. At each round k, every stu-

dent applies to their most preferred school that has not rejected them; and every school c, with S(k)
c

147



denoting the set of students who applied to it in the current round, temporarily accepts students in

Cc(S(k)
c ) and rejects the rest. The algorithm terminates when there is no rejection. For any instance

I and choice functions C, we denote by SDA(I, C) the matching output by the student-proposing

deferred acceptance algorithm.

4.3 Affirmative Action Mechanisms

For the rest of the section, we fix an instance I = (G,>,q) and reservation quotas qR. The

choice functions of schools depend on the mechanisms, and we introduce them in details in each

subsection. We also discuss the features of the mechanisms in their corresponding subsections.

4.3.1 No affirmative action

The simplest mechanism is the one without affirmative action. That is, schools do not distin-

guish students of different types. The choice function of school c under the no affirmative action

mechanism is qc-responsive, simply induced from its priority order: for all subset of students

S1 ⊆ S,

CnoAAc (S1) := max(S1, >c, qc).

We denote by µnoAA := SDA(I, CnoAA) the matching under the no affirmative action mechanism. Al-

though this matching can be obtained from the original and simpler deferred acceptance algorithm

proposed by Gale and Shapley (1962), we present the mechanism from a choice function point of

view so that it is consistent with later sections. The no affirmative action mechanism has the fol-

lowing two properties. Theorem 4.2 was shown by Dubins and Freedman (1981), and Proposition

4.3 is immediate from the fact that µnoAA admits no blocking pairs under CnoAA and the definition of

choice functions CnoAA.

Theorem 4.2 (Dubins and Freedman, 1981). The no affirmative action mechanism is weakly group

strategy-proof.

Proposition 4.3. µnoAA does not admit in-group blocking pairs.
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4.3.2 Minority reserve

Under minority reserve, the choice function of every school c ∈ C, denoted by CMRc , is defined

as follows (Hafalir, Yenmez, and Yildirim, 2013): for every subset of students S1 ⊆ S,

CMRc (S1) = max(S1 ∩ Sm, >c, q
R
c )︸ ︷︷ ︸

=:SR
1 ; reserved seats

∪̇ max
(
S1 \ SR1 , >c, qc − |SR1 |)

)︸ ︷︷ ︸
remaining seats

.

That is, every school first accepts disadvantaged students from its pool of candidates up to its

reservation quota, and then fills up the remaining seats from the remaining candidates. Note that

if there is a shortage of disadvantage students (i.e., |S1 ∩ Cm| < qRc ), then the remaining reserved

seats become open to advantaged students.

Proposition 4.4. Choice function CMRc is substitutable, consistent, and qc-acceptant.

Proof of Proposition 4.4. The substitutability property was shown in Hafalir, Yenmez, and Yildirim,

2013, but we include the proof here for completeness. Let S1 ⊆ S be a subset of students,

s ∈ CMRc (S1) be a student selected by the choice function, and S2 be a subset of students such

that s ∈ S2 ⊆ S1. We want to show that s ∈ CMRc (S2). Consider the following two cases. The

first case is when s ∈ SR1 . Here, it is immediate that s ∈ SR2 := max(S2 ∩ Sm, >c, q
R
c ) since

S2 ∩ Sm ⊆ S1 ∩ Sm and thus, s ∈ CMRc (S2). The other case is when s ∈ CMRc (S1) \ SR1 . Our argu-

ment for the first case implies that SR1 ∩S2 ⊆ SR2 and thus, we have S2 \SR2 ⊆ S2 \SR1 ⊆ S1 \SR1 .

Hence, we also have s ∈ CMRc (S2).

Next, for consistency, let S2 be a subset of students with CMRc (S1) ⊆ S2 ⊆ S1, and we want to

show that CMRc (S1) = CMRc (S2). By the definition of the choice function, it is clear that SR1 = SR2

since SR1 ⊆ S2. With the same reasoning, we additionally have max(S1 \ SR1 , >c, qc − |SR1 |)) =

max(S2 \ SR1 , >c, qc − |SR1 |)) = max(S2 \ SR2 , >c, qc − |SR2 |)). Therefore, the claim follows.

Lastly, for qc-acceptance, we first have that |CMRc (S1)| ≤ |SR1 | + qc − |SR1 | = qc, where the

inequality follows directly from the definition. It remains to show that when |S1| < qc, we have

CMRc (S1) = S1. This is immediate from the definition of the choice function. ■
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Since substitutability and consistency guarantee the existence of stable matchings (Aygün and

Sönmez, 2013; Hatfield and Milgrom, 2005; Roth, 1984a), stable matchings exist under choice

functions CMR and we denote by µMR := SDA(I, CMR) the matching under minority reserve with

reservation quotas qR. Minority reserve has several desirable properties, which we formally state

below. Theorem 4.6 states that at least one disadvantaged student is not worse off when compared

to the no affirmative action mechanism, which is not necessarily true for other affirmative action

mechanisms (see, e.g., Kojima, 2012); and Theorem 4.7 states that when the reservation quotas are

“carefully” chosen, no disadvantaged student is worse off. Reservation quotas qR are said to be a

smart reserve if qRc ≥ |µnoAA(c)| for all c ∈ C.

Proposition 4.5 (Hafalir, Yenmez, and Yildirim, 2013). Minority reserve is weakly group strategy-

proof.

Theorem 4.6 (Hafalir, Yenmez, and Yildirim, 2013). For any reservation quota qR, there exists a

disadvantaged student s ∈ Sm such that µMR(s) ≥s µnoAA(s).

Theorem 4.7 (Hafalir, Yenmez, and Yildirim, 2013). If the reservation quotas qR is a smart re-

serve, then µMR dominates µnoAA for disadvantaged students.

The following claim follows directly from the fact that µMR is stable under choice functions CMR

and the definition of CMR.

Proposition 4.8. µMR does not admit in-group blocking pairs.

Proof of Propsoition 4.8. Assume by contradiction that (s, c) is an in-group blocking pair for µMR.

Let s′ be the student in the same group as s such that s′ ∈ µMR(c) and s >c s
′. Then, by definition

of CMRc , we have s ∈ CMRc (µMR(c)∪{s}), which means (s, c) is a blocking pair for µMR. However, this

contradicts stability of µMR. ■

4.3.3 Discovery program

This mechanism is adapted from the mechanism used by NYC DOE for increasing the number

of disadvantaged students at the city’s eight specialized schools, which are considered to be the
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best public schools. Instead of distributing reserved seats to disadvantaged students at the begin-

ning as the minority reserve (i.e., to top ranked disadvantaged students), the discovery program

mechanism10 distributes reserved seats to disadvantaged student at the end of seat-assignment pro-

cedure. One of the reasons for allocating reserved seats to lower ranked disadvantages students

is that disadvantaged students who are admitted via reserved seats are required to participate in a

3-weeks summer enrichment program as a preparation for the specialized high schools.

However, for the sake of comparison (with other mechanisms), we assume that students’ prefer-

ence for schools are not affected by whether they are required to participate in the summer program

– that is, students are indifferent between general and reserved seats at each school. We assume this

school-over-seat hypothesis for the rest of the chapter, and we discuss its validity in the Appendix,

Section B.2.

When there is a shortage of disadvantaged students, reserved seats could go unassigned under

the discovery program mechanism. Although this is usually not of concern in real-world appli-

cations, since there are usually more students than available seats, we nevertheless present the

discovery program mechanism in a more general case where vacant reserved seats are de-reserved.

The algorithm for the discovery program mechanism has three stages. Schools’ choice func-

tions at all stages are the simple q-responsive choice function CnoAA. The mechanism starts by

running the deferred acceptance algorithm on instance (G,>,qG) to obtain matching µDISC1 for

the general seats; it then runs the deferred acceptance algorithm on the instance restricted to the

disadvantaged students that are not yet assigned (G[C ∪ {s ∈ Sm : µDISC1 (s) = ∅}], >,qR) to

obtain matching µDISC2 for reserved seats; and it lastly runs the deferred acceptance algorithm on

the instance restricted to the advantaged students that are not yet assigned (G[C ∪ {s ∈ SM :

µDISC1 (s) = ∅}, >,qE) with qEc = qRc − |µDISC2 (c)| ∀c ∈ C to obtain matching µDISC3 for va-

cant reserved seats. The final matching combines the matchings obtained at these three stages:

µDISC := µDISC1 ∪̇µDISC2 ∪̇µDISC3 .

Although the mechanism intends to help disadvantaged students, it could actually hurt them.

10https://www.schools.nyc.gov/enrollment/enrollment-help/meeting-student-needs/
diversity-in-admissions
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As we show through Example 4.9, under the discovery program mechanism, it is possible that all

disadvantaged students are worse off.

Example 4.9. Consider the instance with students SM = {sM1 , sM2 }, Sm = {sm1 } and schools

C = {c1, c2}. The quotas of schools are qc1 = 2 and qc2 = 1, and both schools have priority order

sM1 > sM2 > sm1 . Both advantaged students prefer c1 to c2, whereas the disadvantaged student

prefers c2 to c1. It is easy to see that under the no affirmative action mechanism,

µnoAA = {(sM1 , c1), (sM2 , c1), (sm1 , c2)}.

Now consider the discovery program mechanism with reservation quotas qRc1 = 1 and qRc2 = 0.

Then,

µDISC = {(sM1 , c1), (sM2 , c2), (sm1 , c1)}.

Under the discovery program mechanism, the disadvantaged student sm1 is not only assigned to a

school less preferred less, but is also now required to participate in the summer program. △

Moreover, the discovery program mechanism could create blocking pairs for disadvantaged

students, incentivize disadvantaged students to misrepresent their preference lists, and might hurt

disadvantaged students even when the reservation quotas are a smart reserve. See the example

below.

Example 4.10. Consider the instance with students SM = {sM1 , sM2 , sM3 }, Sm = {sm1 , sm2 , sm3 }

and schools C = {c1, c2}. The quotas of schools are qc1 = 3 and qc2 = 2, and both schools have

priority order sM1 > sM2 > sm1 > sM3 > sm2 > sm3 . All students prefer c1 to c2. Without affirmative

action, we have

µnoAA(c1) = {sM1 , sM2 , sm1 }, µnoAA(c2) = {sM3 , sm2 }.

Now assume that the reservation quotas are qRc1 = qRc2 = 1, which in particular is a smart reserve.
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Under the discovery program mechanism with these reservation quotas, we have

µDISC(c1) = {sM1 , sM2 , sm2 }, µDISC(c2) = {sm1 , sm3 }.

Disadvantaged student sm1 is worse off under µDISC than under µnoAA. In addition, µDISC admits a

blocking pair (sm1 , c1) for disadvantages students as sm1 prefers c1 to c2 and sm1 has a higher priority

than sm2 at c1. Moreover, sm1 has the incentive to misreport the preference list: if sm1 were to report

the preference list as c1 > ∅, the matching under the discovery program mechanism would have

been the same as µnoAA. △

4.3.4 Joint seat allocation

The mechanism of joint seat allocation we introduce here is inspired by the mechanism used for

admission to Indian Institutes of Technology (JoSAA, 2020). It allocates the general and reserved

seats at the same time, while only allowing disadvantaged students to take the reserved seats when

they cannot get admitted via the general seats. Under this mechanism, the choice function of every

school c ∈ C, denoted by CJSAc , is defined as follows. For every subset of students S1 ⊆ S,

CJSAc (S1) = max(S1, >c, q
G
c )︸ ︷︷ ︸

=:SG
1 ; general seats

∪̇ max
(
S1 ∩ Sm \ SG1 , >c, q

R
c

)︸ ︷︷ ︸
=:SR

1 ; reserved seats

∪̇ max(S1 \ (SG1 ∪ SR1 ), >c, qc − |SG1 ∪ SR1 |)︸ ︷︷ ︸
remainning seats

.

A prominent distinction between joint seat allocation and minority reserve is that in the former,

“highly ranked” disadvantaged students are admitted via general seats and do not take up the quotas

for reserved seats. Intuitively, this opens up more opportunities for disadvantaged students and one

would expect all disadvantaged students to be weakly better off under joint seat allocation than

under minority reserve. This is true for instances where the competition for seats is high, but is

not true for general instances. See Section 4.4 and Theorem 4.20 for more discussions on the

comparison between these two mechanisms.

Proposition 4.11. Choice function CJSAc is substitutable, consistent, and qc-acceptant.
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Proof of Proposition 4.11. The proof steps are similar to that of Proposition 4.4 for minority re-

serve. Let S1 ⊆ S be a subset of students. First, for substitutability, let s ∈ CJSAc (S1) and

let S2 be a subset of students such that s ∈ S2 ⊆ S1. We want to show that s ∈ CJSAc (S2)

and we consider the following three cases. The first case is when s ∈ SG1 . In this case, it

is immediate that s ∈ SG2 := max(S2, >c, q
G
c ) since S2 ⊆ S1. This first case in particular

implies that SG1 ∩ S2 ⊆ SG2 and thus, S2 \ SG2 ⊆ S2 \ SG1 ⊆ S1 \ SG1 . Hence, in the sec-

ond case where s ∈ SR1 , we similarly have s ∈ SR2 := max(S2 ∩ Sm \ SG2 , >c, q
R
c ). Note

that this argument for the second case also implies that S2 \ (SG2 ∪ SR2 ) ⊆ S1 \ (SG1 ∪ SR1 ).

Hence, for the last case where s ∈ max(S1 \ (SG1 ∪ SR1 ), >c, qc − |SG1 ∪ SR1 |), we also have

s ∈ max(S2 \ (SG2 ∪ SR2 ), >c, qc − |SG2 ∪ SR2 |). Therefore, in all these three cases, we have

s ∈ CJSAc (S2) and thus CJSAc is substitutable.

Next, for consistency, let S2 be a subset of students with CJSAc (S1) ⊆ S2 ⊆ S1, and we want to

show that CJSAc (S1) = CJSAc (S2). By the definition of the choice function, it is clear that SG1 = SG2

since SG1 ⊆ S2. Moreover, we have SR1 = SR2 since SR1 ⊆ S2∩Sm \SG2 . With the same reasoning,

we additionally have that max(S1 \ (SG1 ∪ SR1 ), >c, qc − |SG1 ∪ SR1 |) = max(S2 \ (SG2 ∪ SR2 ), >c

, qc − |SG2 ∪ SR2 |). Therefore, the choice function is consistent.

Lastly, for qc-acceptant, we first have that |CJSAc (S1)| ≤ |SG1 | + |SR1 | + qc − |SG1 | − |SR1 | = qc,

where the inequality follows directly from the definition. It remains to show that when |S1| < qc,

we have CJSAc (S1) = S1. This is immediate from the definition of the choice function. ■

Proposition 4.11 implies that stable matchings exist under joint seat allocation, and we denote

the student-optimal stable matching by µJSA := SDA(I, CJSA).

All positive results of minority reserve extend to joint seat allocation. We formalize the state-

ments below. The proof of Proposition 4.12 and Theorem 4.13 follow by constructing an equivalent

instance where, in particular, students have preference lists over general and reserved seats at dif-

ferent schools. This idea is similar to that given in Hafalir, Yenmez, and Yildirim (2013), but the

equivalent instances are different under minority reserve and joint seat allocation (see Section 4.4.3

for details, where we additionally construct similar equivalent instances for the discovery program
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mechanism). The main reason for establishing such equivalent instances is that it allows us to di-

rectly use the strategy-proofness result for the classical stable matching model (i.e., no affirmative

action).

Proposition 4.12. Joint seat allocation is weakly group strategy-proof.

Proof of Proposition 4.12. Assume by contradiction that there exists a group of students S1 ⊆ S

who can jointly misreport their preference lists so that every one in S1 is strictly better off. Now

consider the auxiliary instance introduced in Section 4.4.3, where the relative ranking of schools

by each student remains the same as that of the original instance. As a result, this strategic behavior

by S1 can be translated to a strategic behavior in the auxiliary instance due to Proposition 4.24.

That is, S1 ⊆ S can accordingly misreport their preferences lists in the auxiliary instance so that

every one in S1 is better off. However, this contradicts Theorem 4.2, which states that strategic

behaviors are not possible in the auxiliary instance. This concludes the proof. ■

Theorem 4.13. For any reservation quota qR, there exists a disadvantaged student s ∈ Sm such

that µJSA(s) ≥s µnoAA(s).

Proof of Theorem 4.13. Assume by contradiction that there is reservation quotas qR such that

µnoAA(s) >s µ
JSA(s) for every disadvantaged student s ∈ Sm. Then, consider an alternative in-

stance where every disadvantaged student s misreports his or her preference list where µnoAA(s) is

the only acceptable school. Let G̃ and >̃S be the resulting graph and preference lists of the stu-

dents. In the following, we consider the alternative instance Ĩ = (G̃, >̃S, >C ,q) and we claim that

µnoAA is stable in instance Ĩ under choice functions CJSA. Assume by contradiction that µnoAA admits

a blocking pair (s, c). Since all disadvantaged students are matched to their first choice, it must

be that s ∈ SM . Then, s ∈ CJSAc (µnoAA(c) ∪ {s}) implies that there is a student s′ ∈ µnoAA(c) such

that s >c s
′. However, this means s ∈ CnoAA(µnoAA(c) ∪ {s}), which contradicts stability of µnoAA

in the original instance I under choice functions CnoAA. Hence, µnoAA is stable in instance Ĩ with

choice functions CJSA. Since SDA(Ĩ , CJSA) is the student-optimal stable matching, it dominates µnoAA

and thus, every disadvantaged student is strictly better off under SDA(Ĩ , CJSA) as compared to µJSA.
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However, this contradicts Proposition 4.12 which states that the joint seat allocation mechanism is

weakly group strategy-proof. ■

For the following theorem, we give a novel proof that directly follow the procedure of the

deferred acceptance algorithm and use the properties of choice functions CJSA. Our approach is

different from the one given in Hafalir, Yenmez, and Yildirim, 2013 for the similar property of

minority reserve.

Theorem 4.14. If the reservation quotas are a smart reserve, then µJSA dominates µnoAA for disad-

vantaged students.

Proof of Theorem 4.14. Assume by contradiction that there exists disadvantaged students s with

µnoAA(s) >s µ
JSA(s). Let s1 be the first disadvantaged student that is rejected by c1 := µnoAA(s1)

during the deferred acceptance algorithm on instance I with choice functions CJSA. Assume this

rejection happens at round k. Let SJSA
k denote the set of students who apply to school c1 during

round k. In addition, let SnoAA denote the set of students who have ever applied to c1 throughout

the deferred acceptance on instance I with choice functions CnoAA. It has been shown in Roth,

1984a that CnoAAc1
(SnoAA) = µnoAA(c1). Thus, s1 ∈ max(SnoAA ∩ Sm, >c1 , q

R
c1
) by definition of

choice function CnoAAc1
and the assumption that the reservation quotas are a smart reserve (i.e., qRc1 ≥

|µnoAA(c1)|). Moreover, by our choice of s1, we have SJSA
k ∩ Sm ⊆ SnoAA ∩ Sm. Therefore, s1 ∈

max(SJSA
k ∩ Sm, >c1 , q

R
c1
), which then implies s1 ∈ CJSAc1

(SJSA
k ) by definition of choice function

CJSAc1
. However, this contradicts our assumption that s1 is rejected by c1 at round k, concluding the

proof. ■

When the reservation quota is not a smart reserve, it is possible that µnoAA Pareto dominates

µJSA for disadvantaged students, which can be readily seen from the same example for minority

reserve presented in Hafalir, Yenmez, and Yildirim (2013). See Example 4.15 below.

Example 4.15. Consider the instance with students SM = {sM1 }, Sm = {sm1 , sm2 } and schools

C = {c1, c2, c3}, each with a quota of 1. All schools have priority order sM1 > sm1 > sm2 . Students’

156



preference lists are given below:

sM1 sm1 sm2

c1 c3 c1

c3 c1 c2

Without affirmative action, the resulting matching is

µnoAA = {(sM1 , c1), (sm2 , c2), (sm1 , c3)}.

Consider the reservation quotas qRc1 = 1 and qRc2 = qRc3 = 0. Then,

µMR = µJSA = {(sm1 , c1), (sm2 , c2), (sM1 , c3)}.

Disadvantaged student sm2 is indifferent between the two matchings, but disadvantaged student sm1

strictly prefers µnoAA to µJSA. That is, µnoAA Pareto dominates µJSA for disadvantaged students. △

As Proposition 4.8, the following claim follows directly from the fact that µJSA is stable under

choice functions CJSA and the definition of CJSA.

Proposition 4.16. µJSA does not admit in-group blocking pairs.

Proof of Proposition 4.16. Assume by contradiction that (s, c) is an in-group blocking pair. Let s′

be the student in the same group as s such that s′ ∈ µJSA(c) and s >c s
′. Then, by definition of

CJSAc , we have s ∈ CJSAc (µJSA(c)∪{s}), which means (s, c) is a blocking pair of µJSA. However, this

contradicts stability of µJSA. ■

4.4 Comparison of Affirmative Action Mechanisms

In this section, we investigate how different mechanisms introduced in the previous section

compare with each other.
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4.4.1 Is there a winning mechanism for disadvantaged students?

To begin with, we would like to answer the following question regarding any two mechanisms:

does one mechanism dominate the other mechanism for disadvantaged students? We consider

three domains which impose restrictions on the instance or the reservation quotas. They are: (1)

the reservation quotas are a smart reserve, (2) schools share a common priority order over the

students (i.e., universal priority order), and (3) both smart reserve and universal priority order. We

summarized the results in Table 4.2. Note that for a pair of mechanisms, a positive answer for (1)

or (2) implies a positive answer for (3) and a negative answer for (3) implies negative answers for

both (1) and (2). These allow us to simplify the presentations given in Table 4.2.

From Table 4.2, we can see that no two mechanisms are comparable in the general domain

(i.e., all instances included). In addition, even in the restricted domains, most of the mechanisms

are not comparable, with the exception that minority reserve and joint seat allocation dominate the

no affirmative action mechanism when the reservation quotas are a smart reserve.

These results are show as follows. We first observe that noAA does not dominate the other

mechanisms, through a rather trivial example below.

Example 4.17. Consider the instance with students SM = {sM1 }, Sm = {sm1 , sm2 } and schools

C = {c1, c2}. Both schools have a quota of 1, and a reservation quota of 1. All students prefer

school c1 to c2. Both schools have priority order sM1 > sm1 > sm2 . Then,

µnoAA = {sM1 , c1}, {sm1 , c2}, and µMR = µDISC = µJSA = {sm1 , c1}, {sm2 c2}.

That is, the matching under any of the mechanisms with affirmative action Pareto dominates the

matching obtained without affirmative action for disadvantaged students. △

We then show, through Example 4.18 and Example 4.19, that the three affirmative action mech-

anisms are not comparable.

Example 4.18. Consider the instance with students SM = {sM1 , sM2 }, Sm = {sm1 , sm2 } and schools
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C = {c1, c2}. Both schools have a quota of 2 and a reservation quota of 1. All students prefer

school c1 to c2, and all schools have priority order sM1 > sm1 > sM2 > sm2 . Then,

µnoAA = µMR = µJSA = {sM1 , c1}, {sm1 , c1}, {sM2 , c2}, {sm2 , c2},

and

µDISC = {sM1 , c1}, {sm2 , c1}, {sm1 , c2}, {sM2 , c2}.

Note that the reservation quotas is a smart reserve. Disadvantaged student sm2 strictly prefers µDISC

to the other matching, while sm1 strictly prefers the other matching to µDISC. △

Example 4.19. Consider the instance with students SM = {sM1 , sM2 , sM3 }, Sm = {sm1 , sm2 , sm3 , sm4 }

and schools C = {c1, c2, c3, c4}. The quotas and reservation quotas of schools, and the preference

lists of students are given below.

c c1 c2 c3 c4

qc 1 1 1 2

qRc 1 1 0 1

sM1 sM2 sM3 sm1 sm2 sm3 sm4

c2 c1 c4 c2 c4 c3 c4

c3 c3 c1

All schools have priority order sM1 > sm1 > sM2 > sm2 > sM3 > sm3 > sm4 . To see that the

reservation quotas is a smart reserve, the matching under the no affirmative action mechanism is

µnoAA = {sm1 , c1}, {sM1 , c2}, {sM2 , c3}, {sm2 , c4}, {sM3 , c4}.

The matchings under minority reserve and joint seat allocation are:

µMR = {sM2 , c1}, {sm1 , c2}, {sm3 , c3}, {sm2 , c4}, {sM3 , c4};

µJSA = {sM2 , c1}, {sm1 , c2}, {sM3 , c3}, {sm2 , c4}, {sm4 , c4}.

Disadvantaged student sm1 and sm2 are indifferent between µMR and µJSA, sm3 strictly prefers µMR to
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µJSA, but sm4 strictly prefers µJSA to µMR. △

4.4.2 Joint seat allocation vs minority reserve: the high competitiveness hypothesis

To further compare minority reserve and joint seat allocation, we consider a special condition

on the market, that we term high competitiveness of the market:

|µMR(c) ∩ Sm| ≤ qRc for every school c ∈ C.

Note that this is an ex-post condition that is based on the outcome µMR of a specific mechanism

– namely, minority reserve. In particular, this condition asks that minority students not occupy

general seats in the matching µMR.

Under the high competitiveness hypothesis, joint seat allocation dominates minority reserve

for disadvantaged students. We formalize the statement in Theorem 4.20.

Theorem 4.20. If µMR satisfies that for every school c ∈ C, |µMR(c)∩ Sm| ≤ qRc (high competitive-

ness hypothesis), then µJSA dominates µMR for disadvantaged students.

Proof of Theorem 4.20. Assume by contradiction there exists disadvantaged students s such that

µMR(s) >s µ
JSA(s). Consider the execution of the deferred acceptance algorithm with choice func-

tions CJSA, and let s1 be the first disadvantaged student who is rejected by µMR(s1) := c1. Assume

this rejection happens at round k of the deferred acceptance algorithm. Let SJSA
k denote the set

of students who apply to school c1 during round k. In addition, let SMR denote the set of students

who have ever applied to school c1 during the execution of the deferred acceptance algorithm with

choice functions CMR. It has been shown in Roth, 1984a that CMRc1 (S
MR) = µMR(c1), which then im-

plies that s1 ∈ max(SMR ∩ Sm, >c1 , q
R
c1
) by definition of choice function CMRc1 and our assumption

that |µMR(c1)| ≤ qRc1 . Moreover, our choice of student s1 implies that SJSA
k ∩ Sm ⊆ SMR ∩ Sm and

thus, we also have s1 ∈ max(SJSA
k ∩ Sm, >c1 , q

R
c1
). Therefore, s1 ∈ CJSAc1

(SJSA
k ) by definition of

choice function CJSAc1
. However, this contradicts our assumption that s1 is rejected by c1 at round k,

concluding the proof. ■
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High competitiveness can be connected to primitives of the market. Intuitively, it is satisfied

when disadvantaged students are systematically performing worse than advantaged students and

when there is a shortage of seats at all schools. In other words, this condition is satisfied if after

the initial allocation of reserve seats to top ranked disadvantaged students, the remaining disad-

vantaged students are not able to compete with the advantaged students for general seats11. This

condition is not uncommon in markets with limited resources.

In Section 4.5 we show empirically that, in particular, the market of NYC SHS is highly com-

petitive using their admission data. Below we state a rigorous statement connecting primitives of

the market and high competitiveness. We provide ex-ante conditions on random matching markets

that guarantee the high competitive condition with high probability. The main proof idea is to

connect the assignment problem of students to schools as the classic balls into bins problem, with

schools as bins and students as balls.

Theorem 4.21. Consider a family of markets with an increasing number of students and schools,

where the preference lists of students are i.i.d. such that the probabilities of any two schools rank-

ing first in a student’s preference list coincide. Assume that schools have the same (reservation)

quota and they share the same ranking of students, and that q − 1 > qR > n log n, where n is the

number of schools. If, for some ϵ ∈ (0, 1) the (n log n + (q − qR)n log log n)-ranked advantaged

student exists and is ranked above the (1−ϵ)qRn-ranked disadvantaged student (where rankings of

students are within their respective groups), then the market is highly competitive with probability

1− o(1).

Proof of Theorem 4.21. Recall that, under MR, a student applies to her favorite school’s reserved

seats, and, if rejected, to the same school’s non-reserved seat (see Section 4). We want to estimate

the ranking, among disadvantaged students, of the bottleneck student – that is, the first disadvan-

taged student that is not admitted through a reserved seat at her most preferred school (hence, the

student may either be admitted to her most preferred school via a general seat, or be admitted to
11High competitiveness is also satisfied in the trivial case when there are so many reserved seats, that all disad-

vantaged students get one, but this is rarely seen in the real world – and does not happen in our data from NYC
SHSs.
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another school, or not be admitted to any school).

We reformulate this problem in the classical balls in bins setting: given n bins and a series of

balls, each inserted in exactly one bin chosen uniformly at random, which is the first ball k that is

inserted in a bin with already qR balls? Classical bounds (see, e.g., Raab and Steger, 1998) imply

that, in the qR > n log n regimen, k ≥ (1− ϵ)qRn with probability 1− o(1) for any ϵ ∈ (0, 1) – in

particular, for the ϵ from the hypothesis of the theorem. Interpreting schools as bins, disadvantaged

students as balls, and assigning students to their most preferred schools as inserting balls to bins,

we obtain that, with probability 1−o(1), the bottleneck student is ranked at least (1−ϵ)qRn among

disadvantaged students.

The market is highly competitive if and only if any disadvantaged student ranked at par or

worse than the bottleneck student does not get a general seat in any school. For this to happen,

the bottleneck student must be ranked worse than an advantaged student that we call lucky appli-

cant. This is the worst-ranked advantaged student that would get a non-reserved seat in the market

obtained from the original market with the number of seats being q − qR, no reservation quota,

and no disadvantaged student (call such a market restricted). So we want to compute the ranking,

among advantaged students, of the lucky applicant. We can use again the balls and bins analogy

from above. Denote by b(q − qR, n) the random variable denoting the smallest p such that, when

ball p is extracted, all bins already have at least (q − qR) balls inserted. From Erdös and Rényi

(1961), we know that for any real x, we have

lim
n→∞

P(b(q − qR, n)− 1 < n log n+ n(q − qR − 1) log log n+ nx) = e
− e−x

(q−qR−1)! .

Taking x = log log log n, we have

lim
n→∞

P(b(q − qR, n)− 1 < n log n+ n(q − qR − 1) log log n+ n log log log n)

= lim
n→∞

e
− e− log log logn

(q−qR−1)! ≥ lim
n→∞

e−e
− log log logn

= 1.

Hence, with probability 1 − o(1), each school is ranked first at least (q − qR − 1) times when we
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look at the preference lists of the best n log n+(q−qR)n log log n advantaged students. Thus, with

high probability, all the advantaged students that are admitted to a seat in the restricted market –

in particular, the lucky applicant – are contained in the (n log n+ (q− qR)n log log n)-best ranked

advantaged students. It suffices therefore that the worst of them is ranked above the bottleneck

student – as it is required by the hypothesis – to conclude that the market is highly competitive. ■

Let us discuss the hypothesis from Theorem 4.21. We restricted to markets where schools share

a unique preference list of students. This condition applies, for instance, to the way universities

rank incoming student across China and in Indian IITs, as well as in NYC SHSs. The condition

on the the equal probability of each school appearing first in preference lists apply, for instance,

in classical random markets, such as Knuth, Motwani, and Pittel (1990), Pittel (1989), and Pittel

(1992). qR > n log n applies when there are few schools compared to the number of seats, while

the condition on the relative rankings of students applies when disadvantaged students perform

systematically worse than advantaged students. For a comparison, in the data from NYC DOE, we

have that the average reservation quota is qr = 208 > n = 8, the average number of seats at each

school is q = 635, n + n(q − qR) = 3424, and qRn = 1664. Omitting from the comparison the

terms logarithmic and sublogarithmic in n (n = 8, hence they would only help the hypothesis of

Theorem 4.21 to be satisfied), we see that the 1664-th ranked disadvantaged student performs at

par with the 6848-th advantaged student, hence well within the hypothesis of the theorem.

4.4.3 Equivalent Interpretation

In this subsection, we take a different approach and instead of comparing the outputs. We

compare how mechanisms interpret the inputs, and particularly how students’ original preferences

over schools are translated to their preferences over reserved and general seats at all schools.

We present alternative representations of the inputs under three mechanisms. That is, for each

of the three matchings – µMR, µDISC, and µJSA – we show how to construct an auxiliary instance

such that the matching corresponds to the student-optimal stable matching of the auxiliary instance

without affirmative action.
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The reason for developing these auxiliary instances is three-fold. First, it allows us to prove

many of the properties (e.g., weakly group strategy-proofness) of the joint seat allocation mecha-

nism, since we can now apply results developed for the classical stable matching model. Second,

it completely removes the cost of implementing a new mechanism for the DOE. That is, the DOE

does not need to develop a new algorithm incorporating choice functions, and can use the same

algorithm as in their current system. Lastly, these auxiliary instances elucidate a simple difference

of the three mechanisms: they differ in how students’ preferences over general and reserved seats

at all schools are extracted from their original preferences over schools.

We start by describing the common components of these auxiliary instances, which are the

set of schools, their quotas, and their priority orders over the students. Every school c ∈ C is

divided into two schools c′ and c′′, where c′ represents the part with general seats and has quota

qauxc′ := qc − qRc , and c′′ is the part with reserved seats and has quota qauxc′′ := qRc . Let Caux = {c′ :

c ∈ C}∪{c′′ : c ∈ C} be the new set of schools after the division, and for every c ∈ Caux, let ω(c)

denote its corresponding school in the original instance. Then, graph Gaux has vertices and edges:

V (Gaux) = Caux ∪ S, and E(Gaux) = {(s, c) : s ∈ S, c ∈ Caux, (s, ω(c)) ∈ E}.

The priority order over the students by school c′ is the same as that of school c (i.e., >aux
c′ =>c);

and that by school c′′ is defined as follows: for two students s1, s2 ∈ S,

s1 >
aux
c′′ s2 ⇔


s1 ∈ Sm and s2 ∈ SM ; or

s1, s2 ∈ Sm and s1 >c s2; or

s1, s2 ∈ SM and s1 >c s2.

The choice function Cauxc of every school c ∈ Caux is qauxc -responsive and is simply induced from

priority order >aux
c . We state the choice functions here to be consistent with our approach in

previous sections. However, they are not necessary to obtain the student-optimal stable matching

as the classical deferred acceptance algorithm suffice.
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The only component remaining is the preference lists of students, which depends on the specific

affirmative action mechanism, and we describe those next.

Minority reserve. The original preference list c1 >s c2 >s · · · >s ck of student s is modified as:

c′′1 >
MR-a
s c′1 >

MR-a
s c′′2 >

MR-a
s c′2 >

MR-a
s · · · >MR-a

s c′′k >
MR-a
s c′k.

Although the relative ranking of the schools remains the same, students prefer reserved seats to

general seats. Let IMR-a := (Gaux, >MR-a
S , >aux

C ,qaux) denote the auxiliary instance, and let µMR-a :=

SDA(IMR-a, Caux) denote the student-optimal stable matching of the auxiliary instance.

Proposition 4.22 (Hafalir, Yenmez, and Yildirim, 2013). For every student s ∈ S, µMR(s) =

ω(µMR-a(s)).

Discovery program. The original preference list c1 >s c2 >s · · · >s ck of student s becomes:

c′1 >
DISC-a
s c′2 >

DISC-a
s · · · >DISC-a

s c′k >
DISC-a
s c′′1 >

DISC-a
s · · · >DISC-a

s c′′k.

Students prefer general seats over reserved seats; and within each type of seats, the ranking of the

schools is the same as that of the original instance. Similarly, we denote the auxiliary instance

by IDISC-a := (Gaux, >DISC-a
S , >aux

C ,qaux), and let µDISC-a := SDA(IDISC-a, Caux) denote the student-

optimal stable matching of the auxiliary instance.

Proposition 4.23. For every student s ∈ S, µDISC(s) = ω(µDISC-a(s)).

Proof of Proposition 4.23. To prove the proposition, instead of carrying out the deferred accep-

tance algorithm as we introduced in Section 4.2 based on Roth, 1984a for choice function models,

we consider an equivalent execution of the algorithm when choice functions C are responsive. This

algorithm was introduced by McVitie and Wilson (1971) and it similarly runs in rounds. The al-

gorithm starts with all students unmatched. In every round, one student s who is not (temporarily)

matched applies to his or her most preferred school c that has not yet rejected him or her. Let Sc

denote the set of students c has temporarily accepted at the end of the previous round. School c
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temporarily accepts Cc(Sc∪{s}) and rejects the rest. Note that during the algorithm, at every round,

the student s can be arbitrarily selected. Hence, we now consider a particular execution of the al-

gorithm on the auxiliary instance (i.e., the order in which students are selected). The execution has

three stages, and they match exactly to the three stages of the discovery program mechanism. In

the first stage, the algorithm can only select students who would apply to schools of type c′. Since

after this stage, students will only apply to schools of type c′′, the students who are temporarily

matched in the first stage would not be rejected in later stages. That is, the temporary assignment

at the end of the first stage becomes permanent, and it is matching µDISC1 . For the second stage, the

algorithm can only select disadvantaged students. Since schools of type c′′ prefers disadvantaged

students to advantaged students, the temporary assignment at the end of the second stage is also

permanent and it corresponds to µDISC2 . In the last stage, the algorithm continues without restriction

until it terminates. Since there are only advantaged students applying to schools of type c′′ at this

final stage, the matching finalized at this stage is µDISC3 . ■

Joint seat allocation. The original preference list c1 >s c2 >s · · · >s ck of student s becomes:

c′1 >
JSA-a
s c′′1 >

JSA-a
s c′2 >

JSA-a
s c′′2 >

JSA-a
s · · · >JSA-a

s c′k >
JSA-a
s c′′k.

Similar to minority reserve, the relative ranking of the schools remains the same as that of the

original instance; but different from minority reserve, students prefer general seats to reserved

seats. Again, we let IJSA-a := (Gaux, >JSA-a
S , >aux

C ,qaux) denote the auxiliary instance, and let

µJSA-a := SDA(IJSA-a, Caux) denote the student-optimal stable matching of the auxiliary instance.

Proposition 4.24. For every student s ∈ S, µJSA(s) = ω(µJSA-a(s)).

Proof of Proposition 4.24. We first show that matchings in the original instance I1 := (G,>,q)

and matchings in the auxiliary instance I2 := (Gaux, >JSA-a
S , >aux

C ,q) can be transformed from each

other. One direction is straightforward. Given a matching µ2 in instance I2, its corresponding

matching µ1 in instance I1 has µ1(s) = ω(µ2(s)) for all students s ∈ S. For the other direction,

let µ1 be a matching in instance I1, we can construct its corresponding matching µ2 in instance I2
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as follows. For every school c, µ2(c
′) = max(µ1(c), >c, q

G
c ) and µ2(c

′′) = µ1(c) \ µ2(c
′). Let ψ

denote the above mapping from matchings in I2 to matchings in I1, and let ψ−1 denote the above

mapping for the reverse direction. By construction, a matching µ of I1 is stable in I1 if and only if

ψ−1(µ) is stable in I2. Therefore, the student-optimal stable matching in I1 can be obtained from

the student-optimal stable matching in I2 via mapping ψ−1, and the claim follows. ■

4.5 Data on NYC Specialized High Schools

In this section, we analyze and compare the mechanisms on real-world datasets12. There is a

total of 12 anonymized datasets, each for one of the 12 consecutive academic years from 2005-06 to

2016-17. Entries of each dataset include (1) students’ IDs, (2) their scores for the Specialized High

School Admissions Test (see Table 4.3 for a list of specialized high schools), (3) their (possibly,

non-complete) preference lists of these eight schools, (4) their middle schools, (5) which school

they are admitted to (which could be empty), and other information that are not relevant for our

analysis.

B Bronx High School of Science
T Brooklyn Technical High School
R Staten Island Technical High School
L Brooklyn Latin
Q Queens High School for the Sciences at York
M High School of Mathematics, Science and Engineering at City College
S Stuyvesant High School
A High School of American Studies at Lehman College

Table 4.3: School code and school name of NYC specialized high schools.

Immediately from the dataset, we can extract the number of students applying for these spe-

cialized high schools and the capacities of each schools (i.e., the number of students admitted). On

average, about 27, 000 students take the SHSAT exam every year, and among them, about 8, 000

(which is about 30%) are disadvantaged students. In terms of admission, about 5, 100 students

receive an offer, out of whom about 820 (which is about 16%) are disadvantaged students.

12The dataset is under a non-disclosure agreement with NYC DOE, Data request #1046.
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To label each student as advantaged or disadvantaged, we follow the definition currently used

by NYC DOE for the discovery program:

To be eligible for the Discovery program, a Specialized High Schools applicant must

1. Be one or more of the following: a student from a low-income household, a

student in temporary housing, or an English Language Learner who moved to

NYC within the past four years; and

2. Have scored within a certain range below the cutoff score on the SHSAT; and

3. Attend a high-poverty school. A school is defined as high-poverty if it has an

Economic Need Index (ENI) of at least 60%.

The second condition is related to eligibility, and not specifically to whether a student is disad-

vantaged, so we do not incorporate that when labeling the students. For the first set of conditions,

we use an accompanying dataset which contains students’ demographic information. However,

since the information given in the dataset are not exactly the same as those specified in the def-

inition, we slightly modify the first condition: “be one or more of the following: (1) eligible for

free or reduced price lunch or has been identified by the Human Resources Administration (HRA)

as receiving certain types of public assistance; or (2) an English Language Learner”. For the last

condition, we obtain the ENIs of NYC middle schools from a school quality report of academic

year 2017-2018, which can be downloaded from the NYC Open Data website13.

To obtain schools’ universal priority order >C over the students, we assign to every student a

unique lottery number, denoted as ℓs, for tie-breaking. For any two students s1, s2 ∈ S, s1 has a

higher priority than s2 (i.e., s1 >C s2) only when s1 has a higher score than s2 or when they have

the same score but ℓs1 < ℓs2 . This idea of using lottery numbers for tie breaking has been used in

practice (see, e.g., Abdulkadiroğlu, Pathak, and Roth (2009)).

13https://data.cityofnewyork.us/Education/2017-2018-School-Quality-Reports-Elem-Middle-K-8/
g6v2-wcvk
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Combining all components, the final dataset for analysis contains the following information for

each student: unique identification number, test score, preference list, indicator for whether they

are disadvantaged students, and lottery number.

First in Section 4.5.1, we analyze the outcome of the discovery program mechanism under

the current guideline, and we provide some additional observations besides the theoretical results

in Section 4.3.3. We then compare, in Section 4.5.2, the outcomes from all three mechanisms.

For most of the experiments, we only include results of the latest academic year, since they are

qualitatively similar for all academic years. Full results of all academic years can be found in

Appendix B.1.

We also investigate and discuss the school-over-seat hypothesis by analyzing the patterns of

students’ preference lists, which can be found in Appendix B.2.

4.5.1 Results: the discovery program

We start by analyzing the performance of the discovery program mechanism, where the reser-

vation quota of every school c is set to be qRc := ⌈qc×20%⌉, since 20% is the number recommended

in a proposal by NYCDOE (2019). We show two negative results of the discovery program mech-

anism, one of which has been discussed theoretically in Section 4.3.

Recall that the discovery program is the only mechanism that admits in-group blocking pairs

(see the summary in Table 4.1). In Figure 4.1, we show the number of blocking pairs for disad-

vantaged students across all academic years. On average, there are about 950 blocking pairs for

disadvantaged students every academic year involving about 650 disadvantaged students.

We also conducted a simple experiment to show that the discovery program is not strategy-

proof. In this experiment, we first identify the top ranked disadvantaged student s who is not

admitted to his most preferred school, and we then modify the preference list of s so that this

most preferred school is the only school on the preference list (i.e., removing all other schools and

considering them as unacceptable). We notice that with the modified preference list, disadvantaged

student s is then able to go to the most preferred school. Hence, under the discovery program,
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(a) Proportions of disadvantaged students admitted,
with bars from left to right corresponding to schools: B,
T, R, L, Q, M, S, A. The dotted line represents the
proportion of disadvantaged students among all
applicants.

(b) The distribution of the SHSAT scores of advantaged
students (labeled “adv”) and disadvantaged students
(labeled “dis”).

Figure 4.3: Affirmative action increases the number of disadvantaged students admitted.

students could lie about their preferences in order to go to more preferred schools.

4.5.2 Results: comparison of three mechanisms

For experiments in this section, we choose the reservation quotas so that they are consistent

with the proportion of disadvantaged students in the market: qRc = ⌈qc× |Sm|
|SM |⌉, ∀c ∈ C. We choose

these reservation quotas simply because they are a reasonable choice and are a smart reserve, and

we would like to point out that one could slightly increase or decrease these numbers without

affecting the findings in this section qualitatively.

Proportion of disadvantaged students admitted. In Figure 4.3a, we show that all mechanisms

with affirmative action can increase the proportion of disadvantaged students admitted to these

schools. More specifically, under joint seat allocation and the discovery program mechanism,

the numbers of disadvantaged students admitted exceeds the reservation quotas. This is because

disadvantaged students with high scores can take up general seats under these two mechanisms.

On the other hand, for minority reserve, the numbers of disadvantaged students admitted match

exactly the reservation quota. This is because after disadvantaged students take up the reserved

seats, the remaining disadvantaged students cannot compete against advantaged students for the
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general seats and are thus not admitted. The phenomenon is exactly the high competitiveness

condition we discussed in Section 4.4.2 and is particularly true for our dataset since the number

of students are much higher than the number of available seats, and disadvantaged students are

performing systematically worse than advantaged students, as one can see in Figure 4.3b.

The figure seems to suggest that, for a fixed quota, the discovery program mechanism is better

for disadvantaged students, as the number of disadvantaged students admitted to any school is the

largest. However, this is not true when we examine the matching more closely.

Effects of affirmative actions to individual students. As opposed to Figure 4.3a which shows

the effects of affirmative action mechanisms on disadvantaged students as a whole group, we show

in Figure 4.4a these effects on individual levels. In particular, we examine the change in rank of

the schools assigned to students under these mechanisms as compared to under the no affirmative

action mechanism. For instance, if a student is matched to their third choice (i.e., rank of assigned

school is 3) under the no affirmative action mechanism, but is matched to their first choice (i.e.,

rank of assigned school is 1) under minority reserve, then their change in rank of assigned school

is −2 under minority reserve.

The main takeaway of Figure 4.4a is that when the reservation quotas are a smart reserve, the

discovery program mechanism is the only one under which disadvantaged students can be worse

off, as it is the only mechanism with markers on the positive axis. This is consistent with our

discussion in Section 4.3 (see Table 4.1). We further investigate who are the disadvantaged students

that are worse off under the discovery program, and we show the results in Figure 4.2. Interestingly,

the disadvantaged students who are performing relatively well are the ones who are being admitted

to schools they prefer less (dots on the upper left side of Figure 4.2). These are essentially the

disadvantaged students who are assigned to general seats during the first stage of the discovery

program mechanism. Because there are fewer seats during the first stage of the discovery program

mechanism (as compared to the no affirmative action mechanism), the competition is fiercer and

thus, these disadvantaged students got assigned to worse schools. Not only does this phenomenon

imply that the discovery program mechanism is unfair to these well-performing disadvantaged
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(a) Change from noAA to an affirmative action
mechanism, for disadvantaged students

(b) Change from MR to JSA, for both advantaged and
disadvantaged students.

Figure 4.4: Percentage of (dis)advantaged students (w.r.t. the total number of (dis)advantaged
students) whose change in rank of assigned schools is a certain value. The number in each legend
label is for when x = 0.

students, but it also hints at a situation where students have the incentive to under-perform in the

admission exams. This certainly is in sharp contrast to the purpose of education and should not be

a consequence of any applicable mechanism.

Joint seat allocation dominates minority reserve. In Figure 4.4a, we see that for each negative

change in rank of assigned schools, the markers of joint seat allocation are in general higher than

those of minority reserve. It seems to suggest that matching µJSA dominates matching µMR for

disadvantaged students. To understand if this is true, we directly compare these two matchings

and confirm the hypothesis (see Figure 4.4b). In fact, we observe the same dominance relation

for all academic years. This prompts us to investigate the reason behind it, especially given that

this dominance relation is not true in general as we discussed in Section 4.4. This dominance is

a consequence of the data satisfying the high competitiveness hypothesis defined in Section 4.4.2

(see Figure 4.3a): the number of disadvantaged students admitted under minority reserve should

not exceed the reservation quotas.
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4.6 Conclusion and Discussion

In this chapter, we study three quota-based affirmative action mechanisms, and compare their

outcomes for disadvantaged students under the school-over-seat hypothesis. We show that although

the discovery program is instrumental in providing opportunities for disadvantaged students, the

current implementation suffers from some drawbacks both theoretically and empirically. In addi-

tion, we show that to improve the discovery program, although there is no clear winner between

joint seat allocation and minority reserve in general settings, the former is better for the NYC

specialized high school market.

One caveat of our results is that they are based on the school-over-seat hypothesis, for which

current data do not offer a definitive validation. Our experiments on the polarization of the pref-

erence data (see Appendix B.2) and the fact that the length of the summer program (3 weeks) is

minimal when compared to the length of a high-school cycle (4 years) seem to suggest that this

hypothesis is reasonable. However, other factors may come into play, such as the social stigma

attached to being admitted via reserved seats14.

This leads to two interesting directions for future work. As a first step, we believe it would be

beneficial to explicitly collect students’ expanded preference. Not only will these data confirm or

invalidate the school-over-seat hypothesis, but they will also provide insights on the similarity or

heterogeneity of the structure of students’ expanded preference lists. In the case where the school-

over-seat hypothesis fails, then a valuable next step would be to design a matching mechanism

that account for individual students’ expanded preference lists, while maintaining a number of

desirable features such as strategy-proof and absence of in-group blocking pairs.

14We are not aware of this stigma being present in NYC SHSs, but it is definitely present in other markets employing
some form of affirmative action mechanisms (Aygun and Turhan, 2020).
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Conclusion

In my thesis, I developed theories and algorithms, as well as empirical results, for models that

extend beyond the traditional stable matching problem by Gale and Shapley (1962). Some exten-

sions focus on the output of the model, such as legal assignments and EADAM in Chapter 2; some

extensions focus on the input of the model such as the model with choice functions in Chapter 3;

and some focus on both, such as affirmative action mechanisms in Chapter 4. I believe that results

in my thesis serve as an important contribution to the rich literature on stable matchings.

My theoretical results further add a touch of elegance to the theories surrounding stable match-

ings, and provide the foundation for provably better and practically implementable suggestions to

policymakers; my algorithmic results drastically increase the applicability of these extensions for

real-world markets; and my empirical results not only validate these theoretical and algorithmic

results, but also allow me to identify key characteristics of real-world markets, which then lead to

further theoretical findings.

The works in this thesis have deepened my understanding of the stable matching problem as

well as its extensions, which in turn brings about many interesting research directions, which I will

describe next.

1. For models with substitutable and consistent choice functions, Ehlers and Morrill (2020) showed

that the concept of legal assignments is well-defined and the set of legal assignments has a lattice

structure. Although Ehlers and Morrill (2020) gave an algorithm that finds the student-optimal

legal assignment, it is not known if one can optimize efficiently over the set of stable match-

ings. To begin with, due to our result that legal assignments are stable assignments in disguise
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(see Appendix A.1), the lattice structure formed by legal assignments might not be distribu-

tive (Blair, 1988). Hence, in order to develop fast algorithms using the properties of distributive

lattice due to Birkhoff (1937), additional assumptions need to be imposed upon choice func-

tions, such as quota-filling and cardinal monotonicity. Even then, the techniques we developed

in Chapter 2 and Chapter 3 do not apply directly since the certificate for illegal edges relies on

the rotation digraph, which is not known for the choice function model. Therefore, it is inter-

esting to study efficient algorithms for optimization problems over the set of stable matching

under the choice function model, which I believe could potentially lead to many new theories

for the choice function model.

2. A natural extension of the previous direction is to develop faster algorithms of EADAM for the

choice functions model. Ideally, we would like to design an algorithm whose time complexity

again matches that of the deferred acceptance algorithm.

3. Eirinakis et al. (2014) presented a minimal description of the stable matching polytope for the

traditional model. In Section 3.5.1 of Chapter 3, we gave an alternative proof for this description

by connecting the stable matching polytope with the order polytope associated with the rotation

poset. It would be interesting to investigate whether one can devise a minimal description of

the stable matching polytope for the choice function model, using the same idea.

4. In Chapter 3, our structural results in Section 3.3 assumed choice functions to be substitutable

and cardinal monotone. However, our algorithmic results in Section 3.4 further assumed that the

choice functions of one side of the market are quota-filling. That is because a critical counting

argument in the proof of Theorem 3.56 relies on the quota-filling assumption. However, this

could be an artifact of our proof technique, and we would like to investigate further whether the

same algorithmic results hold without the quota-filling assumption.

5. In Section 3.6.2 of Chapter 3, we show that the number of substitutable and cardinal mono-

tonicity choice functions is doubly exponentially in the number of potential partners. It remains

open whether a similar result holds for substitutable and quota-filling choice functions. It seems
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the counting techniques developed by Echenique (2007) does not apply for quota-filling choice

functions.

6. There has been some recent work showing how feasible regions of certain problems in com-

binatorial optimization can be seen as a distributive lattice (Garg, 2020). This fact, combined

with our approach in Chapter 3, may lead to (known or new) efficient algorithms for optimizing

linear functions over the associated polytopes.

7. For the traditional stable matching problem, it is well-known, and it is not hard to see that when

one side of the market has the same preference list, there is a unique stable matching (Gusfield

and Irving, 1989). In addition, Clark (2006) gave a more general condition, which he called

the No Crossing Condition (NCC), which is sufficient for the uniqueness of stable matchings.

Thus, it is interesting to investigate the same question for models with choice functions. In

particular, if one side of the market has the same choice function, does it guarantee that there

is a unique stable matching? Moreover, can we find a condition that is similar to NCC for the

choice function model?

8. The idea of EADAM extends to the choice function model (see, e.g. Ehlers and Morrill, 2020;

Doğan, 2016), although the time complexity of the naive execution does not match that of

the deferred acceptance algorithm. As we discussed previously, developing efficient execution

of EADAM for general choice functions might be challenging. However, for the affirmative

action mechanisms we discussed in Chapter 4, efficient execution might be possible due to the

alternative interpretations given in Section 4.4.3. A faster algorithm for EADAM here has a cru-

cial application impact because Doğan (2016) showed that the mechanism based on EADAM,

together with choice functions as those in the minority reserve mechanism, is minimally re-

sponsive. We also believe that a similar result holds for choice functions as those in the joint

seat allocation mechanism.
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Appendix A: Additional Details for Chapter 2

A.1 Extension of Theorem 2.3 to the Setting of Ehlers and Morrill (2020)

In Ehlers and Morrill (2020), each school b, instead of having a strict preference ordering of

the students and having a quota, has a choice function Cb : 2Ab → 2Ab , where Ab = {a : ab ∈ E}

and for each X ⊆ Ab, Cb(X) ⊆ X , where E is a subset of A × B. Cb(X) can be interpreted as

the students school b chooses from X . Ehlers and Morrill (2020) assume that, for every b ∈ B, the

choice function Cb is substitutable and consistent.

As usual, each student a ∈ A has a strict ordering over schools {b ∈ B : ab ∈ E}. We denote

by (G(A ∪ B,E), <, C) an instance of the stable assignment problem in the setting of Ehlers and

Morrill (2020), where <= {<v}v∈A and C = {Cb}b∈B. An assignment1 M of this instance is a

collection of edges of G such that for each a ∈ A, at most one edge of M is incident to a, and for

each b ∈ B, Cb({a : ab ∈ M}) = {a : ab ∈ M}. For an assignment M and x ∈ A ∪ B, we again

write M(x) := {y : xy ∈M}.

An edge ab ∈ E is said to block assignment M if b >a M(a) and a ∈ Cb(M(b) ∪ {a}).

Similarly to the one-to-many setting, an assignment is stable if and only if there is no edge blocking

it, and an assignment M ′ is said to block an assignment M if there is an edge ab ∈M ′ such that ab

blocks M . The set of legal assignments is defined the same way as before. Moreover, it is shown

in Ehlers and Morrill (2020) that Theorem 2.5 holds in this setting.

For a subgraph G′ ⊆ G, we denote by (G′, <, C) the instance where students’ preferences are

those induced by < on schools in G′, and schools’ choice functions are defined as the restriction

of C to students in G′. In particular, for every school b ∈ B, the restriction of function Cb also

satisfies the substitutability and LAD properties, and thus (G′, <, C) is also an instance of the stable

1This is called an “individually rational” assignment in Ehlers and Morrill (2020).
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assignment problem in the setting of Ehlers and Morrill (2020).

Because of the above-mentioned properties, the three lemmas in Section 2.3 – Lemma 2.6,

Lemma 2.7, and Lemma 2.8 – extend to the setting of Ehlers and Morrill (2020) with exactly the

same arguments, and thus so does Theorem 2.3.

A.2 Details of Implementations and Examples

As all implementation of our algorithms run in time O(|E|), we can preprocess the input in

time O(|E|) and assume that: for each agent, we have its preference list given as an ordered list;

given a student a ∈ A and a school b ∈ B and an assignment M , in constant time we can access

M(a) and the least preferred student in M(b); given x ∈ A ∪B and two neighbors y1 and y2 of x,

we can decide in constant time if y1 >x y2.

Before going through the details and proof of each implementation, we give an example for an

execution of the algorithm.

A.2.1 Example of Algorithm 2.1 Execution

Example A.1. Consider the following instance with 5 students and 5 schools, where each school

has quota 1. The student-optimal stable assignment is {a1b4, a2b3, a3b2, a4b1, a5b5}, denoted suc-

cinctly by (4, 3, 2, 1, 5) (ordered list of school to which each student is matched).

a1 : b1 > b2 > b3 > b4 > b5 b1 : a4 > a5 > a3 > a2 > a1

a2 : b2 > b1 > b4 > b3 > b5 b2 : a3 > a5 > a4 > a1 > a2

a3 : b3 > b4 > b1 > b2 > b5 b3 : a2 > a5 > a1 > a4 > a3

a4 : b4 > b3 > b2 > b1 > b5 b4 : a1 > a5 > a2 > a3 > a4

a5 : b4 > b3 > b2 > b1 > b5 b5 : a5 > a1 > a2 > a3 > a4

For the fast implementation of school-rotate-remove, at each iteration i, together with M i,

we will additionally keep the following items:
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(i) a directed path P i of the school-rotation digraph Di stored as a doubly-linked list which we

will constructed step-by-step until a sink is reached or a cycle is closed;

(ii) for each b ∈ B, a position pb for which the algorithm maintains the following invariant: with

b(pb) denoting the student at position pb on b’s preference list, if b is not in the path P i, then

for all a ≥b b(pb), we have M i(a) ≥a b, and if b is on the path P i, then for all a >b b(pb),

we have M i(a) ≥a b;

(iii) a Boolean array W i of dimension |B|, recording whether each school is in P i;

(iv) a subset T i of sinks2 of Di, stored as a Boolean array of dimension |B|;

(v) an index f such that b1, · · · , bf−1 are all in T i but bf is not in T i.

In Table A.1, we outline the updates that occurred at all steps (denoted by j) of all iterations

(denoted by i) using the fast implementation of school-rotate-remove. The steps of iteration i

illustrate the steps in building the directed path P i. A cell is left blank if no update happens. W i

can be easily deduced from P i and is therefore not included in the table.

The main idea of the construction is that, in order to find a directed cycle or a sink in a digraph,

it suffices to follow a path. (i) allows us to carry over information on such paths from one iteration

of the algorithm to the next. (ii) and (v) allow us to extend such a path quickly, without going

through the full preference lists of agents again. (iii) and (iv) allow a quick detection when a sink

or a cycle has been found while following a path.

When extending the directed path P i, if P i = [], as in (0.0) and (10.0), we add the first school

not in T i to the directed path, which is achieved by repeatedly checking if bf ∈ T i and while

so, updating f := f + 1. Assume P i is non-empty and has b at the tail. If b is not the node

corresponding to ∅ nor does pb exceed the length of b’s preference list (i.e., pb > 5), then we rely

on pb to find sM i(b). That is, we repeatedly update pb := pb + 1 until either pb > 5 or a := b(pb)

satisfies b >a M
i(a). Note that here, pb is incremented before the conditions are checked and thus,

pb strictly increases every time an extension happens with b at the tail. The only time that pb will

2Note that T i can be easily deduced from pb, given that a school b is in T i if and only if pb(b) = degG(b) + 1.
However, we keep T i in our illustration to elucidate the steps.
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(i.j) P i {pb}b∈B M i T i f
(0.0) []→ b1 [1, 1, 1, 1, 1] (4, 3, 2, 1, 5) ∅ 1
(0.1) b1, a5, b5 [2, 1, 1, 1, 1]
(1.0) b1 [2, 1, 1, 1, 6] b5
(1.1) b1, a3, b2 [3, 1, 1, 1, 6]
(1.2) b1, a3, b2, a5, b5 [3, 2, 1, 1, 6]
(2.0) b1, a3, b2
(2.1) b1, a3, b2, a4, (b1) [3, 3, 1, 1, 6]
(3.0) []→ b1 (4, 3, 1, 2, 5)
(3.1-2) b1, a2, b3, a5, b5 [4, 3, 2, 1, 6]
(4.0) b1, a2, b3
(4.1-2) b1, a2, b3, a1, b4, a5, b5 [4, 3, 3, 2, 6]
(5.0) b1, a2, b3, a1, b4
(5.1) b1, a2, b3, a1, b4, (a2) [4, 3, 3, 3, 6]
(6.0) b1 [3, 3, 3, 3, 6] (3, 4, 1, 2, 5)
(6.1-2) b1, a2, b4, a3, (b1) [4, 3, 3, 4, 6]
(7.0) []→ b1 (3, 1, 4, 2, 5)
(7.1-3) b1, a1, b3, a4, b2, (a1) [5, 4, 4, 4, 6]
(8.0) b1 [4, 4, 4, 4, 6] (2, 1, 4, 3, 5)
(8.1-2) b1, a1, b2, a2, (b1) [5, 5, 4, 4, 6]
(9.0) []→ b1 (1, 2, 4, 3, 5)
(10.0) []→ b2 [6, 5, 4, 4, 6] b1, b5 2
(11.0) []→ b3 [6, 6, 4, 4, 6] b1, b2, b5 3
(11.1-2) b3, a3, b4, a4, (b3) [6, 6, 5, 5, 6]
(12.0) []→ b3 (1, 2, 3, 4, 5)
(13.0) []→ b4 [6, 6, 6, 5, 6] b1, b2, b3, b5 4
(14.0) [] [6, 6, 6, 6, 6] b1, b2, b3, b4, b5 ∞

Table A.1: Iterations of school-rotate-remove of Example A.1.

decrease is when b points to a directed cycle, as the school b1 in (5.1) and (7.3). In such case, pb

is decremented by 1 after the rotation elimination, as seen in (6.0) and (8.0). This is because it is

possible to have sM i+1(b) = sM i(b) unchanged, and if that is the case, pb should remain the same

in the next iteration when extending the directed path. There are two scenarios, corresponding to

Step 6 and Step 8 in Algorithm 2.1, where we stop extending the directed path P i: one is when the

tail b is a sink, implied by having pb > 5 or having b = ∅; the other is when the additional node is

already in the directed path, which can be checked against Wi. In the latter case, such nodes are

written as (node) in Table A.1. ♢ △
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A.2.2 Proof of Theorem 2.25

Before going into the proof, we first state the following results. Lemma A.2 states the time

complexity of Gale-Shapley’s algorithm for the stable assignment problems and its proof can be

found in, e.g., Manlove (2013) and Gusfield and Irving (1989). Lemma A.3 is shown by Bansal,

Agrawal, and Malhotra (2007a) and it implies that the number of student-rotations an instance can

have is at most linear in the number of edges.

Lemma A.2. Gale-Shapley’s algorithm with students or schools proposing can be implemented to

run in time O(|E|).

Lemma A.3. For any xy ∈ E, there is at most one X-rotation y0, x0, y1, . . . , yr−1, xr−1 exposed

in some stable assignment of (G,<,q) such that x = xi and y = yi for some i ∈ {0, 1, · · · , r−1}.

Proof of Theorem 2.25. We show details for Algorithm 2.1 with X taken as the set of schools (i.e.,

school-rotate-remove), as those with X taken as the set of students follow in a similar fashion.

For simplicity, we call “school-rotations” simply “rotations” throughout the proof.

Algorithm 2.1 first finds the student-optimal stable assignment. This takes time O(|E|) by

Lemma A.2. Then the algorithm enters the while loop. A key fact we will resort to multiple times

in our arguments is the following: (‡) for any pair of iterations i1, i2 of the while loop such that

i1 > i2, we have M ii ⪰ M i2 . Given an assignment M , we say that we scan an edge ab when we

check b >a M(a). From what is assumed above, scanning ab requires constant time. We denote

by b(i) the student at the ith position on the preference list of b. Assume schools are sorted as

B = {b1, b2, · · · , b|B|}. Recall that, for all i, all sinks of Di are either school nodes or the node

corresponding to ∅.

At each iteration i, we keep the following:

• the assignmentM i as an |A|-dimensional array with the kth position recording the school the

kth student is assigned to;

• a subset T i of sinks of Di stored as a Boolean array of dimension |B|;
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• an index f such that b1, · · · , bf−1 are all in T i but bf is not in T i;

• a directed path P i of Di, stored as a doubly-linked list;

• a collection W i of schools that are in P i, stored as a |B|-dimensional Boolean array; and

• for each b ∈ B, a position pb such that, in determining sM i(b), we do not need to scan ab for

all a such that a ≥b b(pb).

We initialize M0 = M0, T 0 := ∅, f := 1, P 0 := [], W 0 := ∅, and pb to be the position of the

least preferred student in M0(b) on b’s preference list for every b ∈ B. Note that the choices of pb

are correct due to stability of M0. Clearly, the initialization takes O(|E|) time.

We start by showing, for each iteration i, how to update the aforementioned pieces of informa-

tion through two series of operations: those underlined in the text, which require constant time, and

those
:::::
wave

:::::::::::
underlined. Second, we show the correctness of these updates. Lastly, we bound the

running time of the algorithm by investigating the number of times we repeat each of the underlined

operations and the total time needed to perform wave underlined operations.

For each iteration of the while loop, we perform the following updates.

• If P i is empty, we select the first school that is not in T i and add it to P i. This school can

be obtained by checking if bf ∈ T i and, while bf ∈ T i, updating f := f + 1. So we may

assume P i is non-empty, and represented as P i = b0, a1, b1, · · · , ak, bk.

• Within the iteration, we extend P i and simultaneously maintain W i, by finding ak+1 =

sM i(bk), bk+1 = nextM i(bk), · · · until we reach a node bj such that either (1) bj is a sink

(step 6); or (2) nextM i(bj) = bℓ for some ℓ < j (step 8). In particular,

a) Check if bk = ∅. If so, we are in case (1). Otherwise, to obtain sM i(bk), we will repeat-

edly update pbk := pbk + 1 until pbk > degG(bk) (i.e., bk is a sink and we are in case (1)

above) or by scanning of bk(pbk)bk we deduce sM i(bk) = bk(pbk).

b) If sM i(bk) is found, we check if bk+1 := nextM i(bk) ∈ W i. If this happens, we are in

case (2) above, otherwise we set k := k + 1, and go to a).
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• In case (1), the removal of ajbj−1 is achieved by setting P i+1 := P i \ {aj, bj}. If bj ̸= ∅, we

also set W i+1 := W i \ {bj} and update T i+1 := T i ∪ {bj}.

• In case (2), a school-rotation exposed in M i – corresponding to the directed cycle Ci =

bℓ, · · · , bj, aj+1 – is found and eliminated, as to
:::::::::
construct

::::::
M i+1

::::::
from

:::
M i. In addition, we

update pbℓ−1
:= pbℓ−1

− 1 if ℓ > 0, and set
::::::::::::::::
P i+1 := P i \ Ci,

:::::::::::::::::
W i+1 := W i \ Ci.

We now argue about the correctness of these updates. In both cases (1) and (2), P i+1 is a

directed path of Di+1 and W i+1, M i+1 is correctly computed. Moreover, because of (‡), sinks of

Di are also sinks inDi+1, justifying the update on T i and f . Lastly, consider any node b ∈ B whose

associated position pb is updated in this iteration. There are two scenarios. The first scenario is

when looking for sM i(b), where pb is repeatedly updated until pb > degG(b) or until b(pb) is added

to the directed path P i. In either case, because of (‡) and the fact that every time pb is updated, it

is incremented only by 1, the update of pb is correct. The second scenario is when we are in case

(2) and b = bℓ−1, where pb is updated to be pb − 1. In this case, we found a rotation ρ with b /∈ ρ

and nextM i(b) ∈ ρ. We carry out the decrement because it is possible to have sM i+1(b) = sM i(b)

and thus re-scanning of sM i(b)b is required. No further decrements on pb is needed again because

of (‡).

Finally, we will argue about the time complexity. First, note that the number of iterations

is clearly bounded by the number of edges plus the number of rotations eliminated. Because of

Lemma 2.26, all rotations eliminated throughout the algorithm are also rotations in SR(GL, <,q).

Note that if M i is obtained from M i−1 by eliminating a rotation, M i ≻ M i−1. Hence, no rotation

is eliminated twice and thus the number of rotations eliminated isO(|E|) due to Lemma A.3. Thus,

the number of iterations is O(|E|).

The total number of updates on P i, W i and T i in case (1) is then also O(|E|). Since f only

increases, we update f := f + 1 at most O(|V |) times. The number of times we check if bf ∈ T i

is given by the number of positive answers (proportional to the number of updates of f ) plus the

number of negative answers (proportional to the number of iterations), hence O(|E|). The number

of times {pb}b∈B, is updated is given by the number of times we update pb := pb + 1 (proportional
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to the number of edges) plus twice the number of times we update pb := pb − 1 (proportional to

the number of rotations), hence O(|E|). From the update on pb, we see that the only time an edge

ab is scanned more than once is when a rotation is eliminated and b = bℓ−1, a = aℓ. We call

this an exception. We claim that we scan each edge at most once, with O(|E|) exceptions. Since

every rotation corresponds to at most one exception, the number of exceptions does not exceed the

number of rotations, which is O(|E|). Note that each time we check if pb > degG(b), we either

find a sink (which happens at most once per iteration), or we scan an edge (which has been shown

to happen O(|E|) times). Hence, the number of times we compare pb and degG(b) is O(|E|).

In addition, the number of times we check if nextM i(bj) ∈ W i is upper bounded by the number

of edge scans, hence O(|E|). The number of times we check if bk ̸= ∅ is upper bounded by the

number of times we check if nextM i(bj) ∈ W i, so again O(|E|).

The number of individual entry updates when
::::::::::::
constructing

::::::
M i+1

:::::
from

::::
M i,

:::::
P i+1

:::::
from

::::
P i, or

:::::
W i+1

::::::
from

::::
W i in case (2) is at most the number of edges in all rotations from SR(GL, <,q),

which is O(|E|) from Lemma A.3, concluding the proof. ■

A.2.3 Example of Algorithm 2.3 Execution

Example A.4. Consider the instance in Example A.1. Assume a5 is not consenting. In Table A.2,

we outline the updates, similar to those in Example A.1. When school b points to the nonconsenting

student a5 (whose partner b5 is a sink) in the rotation digraph, in addition to remove a5 and b5 from

the directed path P i, we also remove b from P i, set T i := T i ∪ {b}, and update pb to a number

that is larger than the length of the preference list of b (e.g., pb := 6) in lieu of the edge removals

in Step 9. Such updates can be seen in (1.0), (2.0), (3.0), and (4.0). △

A.2.4 Proof of Lemma 2.33

Proof. The implementation follows as in the proof of Theorem 2.25. The only modification regards

the update of T i+1 in case (1) considered in the proof, which is when extending the directed path P i,

we encounter a node bj that is a sink. If aj consents, then the update on T i+1 remains unchanged,
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(i.j) P i {pb}b∈B M i T i f
(0.0) []→ b1 [1, 1, 1, 1, 1] (4, 3, 2, 1, 5) ∅ 1
(0.1) b1, a5, b5 [2, 1, 1, 1, 1]
(1.0) []→ b2 [6, 1, 1, 1, 6] b1, b5 2
(1.1) b2, a5, b5 [6, 2, 1, 1, 6]
(2.0) []→ b3 [6, 6, 1, 1, 6] b1, b2, b5 3
(2.1) b3, a5, b5 [6, 6, 2, 1, 6]
(3.0) []→ b4 [6, 6, 6, 1, 6] b1, b2, b3, b5 4
(3.1) b4, a5, b5 [6, 6, 6, 2, 6]
(4.0) [] [6, 6, 6, 6, 6] b1, b2, b3, b4, b5 ∞

Table A.2: Iterations of school-rotate-remove with consent of Example A.4

which is to set T i+1 := T i ∪ {bj}; however, if aj is nonconsenting, we set T i+1 := T i ∪ {bj, bj−1}

and update pbj−1
:= deg(bj−1) + 1. Correctness analysis and the counting arguments used for time

complexity analysis in the proof of Theorem 2.25 remain valid. ■

193



Appendix B: Additional Details for Chapter 4

B.1 Additional Figures for all Academic Years

Figure B.1: All academic years of Figure 4.3a.
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Figure B.2: All academic years of Figure 4.3b.
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Figure B.3: All academic years of Figure 4.4a.
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Figure B.4: All academic years of Figure 4.2.
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Figure B.5: All academic years of Figure 4.4b.

198



Figure B.6: Each cell in this table represents the extent to which students prefer the row school to
the column school. Specifically, the number is calculated as the percentage of students in each
district who prefer the row school to the column school minus the percentage of students who
prefer the column school to the row school. The cells are color-formatted with numbers in [−1, 1]
mapped to a spectrum from red to green.

B.2 Discussion on the school-over-seat hypothesis

In this section, we delve into some empirical observations of students’ preference lists and

we do so for two reasons. The first one is to investigate the school-over-seat hypothesis. Since

students are not asked to report their preferences over different types of seats, we can only make

some inferences based on the pattern of the preferences submitted by students. For the second

reason, recall that in Section 4.4.3, we show how different mechanisms expand differently students’

original preferences over schools to their preferences over reserved and general seats. Hence,

our observations aim to shed some light on the validity of these expansions. For the following

discussion, we forgo the assumption that participation in the summer enrichment program does

not affect students’ preference for schools.

The second table in Figure B.6 indicates that geographic proximity could lead to a strong

preference for some schools. We observe that students in district 31 strongly prefer Staten Island

Tech (S) to any other schools. This is because district 31 is the only school district on Staten

Island, and Staten Island Tech is the only specialized high school on Staten Island. Hence, for

students residing in Staten Island, since transportation to other boroughs are extremely limited and

lengthy, it is reasonable to assume the school-over-seat hypothesis when comparing Staten Island

Tech to any other specialized high school. From the same type of tables for other school districts
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which we include in Appendix B.3, we observe similar patterns: students in district 10 strongly

prefers Bronx Science (B) and students in district 29 strongly prefers Queens High School for the

Sciences at York (Q). The difference in preferences towards Stuyvesant and Brooklyn Tech seems

to be more nuanced. The complete map of school districts in New York City can and the map of

specialized high schools can be found in Appendix B.4 and B.5.

Lastly, we would like to point out some concerns that are not directly observable from our

data. Aygun and Turhan (2020) noted that for admissions to Indian Institutes of Technology (IIT),

there is often social stigma associated with reserved seats and thus, many students prefer to not be

admitted via reserved seats. We also note that NYC DOE defines disadvantaged students based on

their social economic status instead of a caste system as in the case of IIT admission. Hence, the

severity of the social stigma associated with reserved seats might differ between these two markets.

In sum, we believe more study is needed to understand students’ preference structure over

reserved and general seats for the NYC SHS market. Moreover, as a future direction, it would be

interesting to design and study mechanisms which incorporate students’ preferences over general

and reserved seats at all schools, possibly in orders that are not consistent with those interpreted

by the mechanisms.
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B.3 Additional Figures for Section B.2

Figure B.7: These tables are the same as those in Figure B.6, but for districts 1 – 16.
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Figure B.8: These tables are the same as those in Figure B.6, but for districts 17 – 32.
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B.4 Map of NYC School Districts

Figure B.9: Map of school districts in New York City, compiled by NYC DOE and available
online at https://video.eschoolsolutions.com/udocs/DistrictMap.pdf
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B.5 Map of NYC Specialized High Schools

Figure B.10: Map of specialized high schools in New York City. In Bronx, the two schools
numbered by 3 and 8 are overlapping on the map. The map is generated by Google My Maps.
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