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Abstract. The complete graph Kn, for n even, has a one-factorization (proper
edge coloring) with n − 1 colors. In the recent contribution [Dotan M., Linial N.
(2017). ArXiv:1707.00477v2], the authors raised a conjecture on the convergence
of the mild random walk on the Markov chain whose nodes are the colorings of Kn.
The mild random walk consists in moving from a coloring C to a recoloring C ′ if
and only if φ(C ′) ≤ φ(C), where φ is the potential function that takes its minimum
at one-factorizations. We show the validity of such algorithm with several numeri-
cal experiments that demonstrate convergence in all cases (not just asymptotically)
with polynomial cost. We prove several results on the mild random walk, we study
deeply the properties of local minimum colorings, we give a detailed proof of the
convergence of the algorithm for K4 and K6, and we raise new conjectures. We
also present an alternative to the potential measure φ by consider the Shannon
entropy, which has a strong parallelism with φ from the numerical standpoint.
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1. Introduction

It is a standard result that the complete graph Kn with n vertices, for n even,
has a one-factorization (proper edge coloring) with n− 1 colors (in other words, its
chromatic index is X ′(Kn) = n− 1) [1, Th. 1]. Recall that a proper edge coloring is
an edge coloring such that no two adjacent edges have the same color. Proper edge
colorings may be identified with symmetric Latin squares. One-factorizations have
been topics of considerable research in Graph Theory, see [3, 5, 6, 8, 9].
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Given a coloring C of Kn with n−1 colors, we denote by aν,µ(C) the total number
of incident edges to the vertex ν of color µ. We define the potential of the vertex ν
as φ(ν) =

∑
µ aν,µ(C)2. The potential of the coloring C is thus defined as φ(C) =∑

ν φ(ν) =
∑

ν

∑
µ aν,µ(C)2. One-factorizations are characterized in terms of the

potential function: n(n− 1) ≤ φ(C) ≤ n(n− 1)2 for every C, where the lower bound
is reached if and only if C is proper, and the upper bound is attained if and only if
Kn is monochromatic [4, p. 4].

Another term that will be frequently used in this paper is recoloring: we say that
C ′ is a recoloring of the coloring C if C and C ′ differ exactly by the color of one edge.
The relation between the potential of C and a recoloring C ′ of it is the following: if
the edge uv of C is painted with color µ0, and after it is repainted with another color
µ1 6= µ0 to form C ′, then

φ(C ′) = φ(C) + 2(au,µ1(C) + av,µ1(C) + 2− au,µ0(C)− av,µ0(C)). (1.1)

This is readily seen by direct counting.
One may see colorings of Kn as states of a Markov chain Gn, where one moves

with uniform probability to recolorings having lower or equal potential. That is, the
acceptance probability of moving from C to C ′ is 1/|Nφ(C)|, where Nφ(C) is the set
of recolorings C ′ of C with φ(C ′) ≤ φ(C). This Markov chain may be referred to as
mild random walk. We will denote by {Xn}∞n=0 the sequence of states visited at each
time step n.

In the recent preprint article [3] by Maya Dotan and Nati Linial (updated version
of their preprint paper [4]), the following conjecture on the convergence of the mild
random walk algorithm was raised:

Conjecture 1.1. ([3, Conjecture 1], [4, Conjecture 1]) The mild random walk on
Gn started from a uniformly random starting point reaches a one-factorization with
probability 1− on(1) in O(n4) steps.

This Conjecture 1.1 was analyzed and reformulated based on numerical evidence
and analytical proofs in the recent Master’s Thesis [2] written by one of the authors
of this paper. In this paper, we have simplified and extended the main results from
[2, Ch. 4].

The organization of the present paper is as follows. In Section 2, we describe and
implement the mild random walk algorithm, and we perform numerical experiments
to reformulate Conjecture 1.1. In Section 3, we give an equivalent condition for the
convergence of the mild random walk algorithm based on local minimum colorings.
Properties of local minimum colorings are studied deeply in this section. Section 4
derives a detailed proof of our forthcoming conjecture for K4 and K6, and provides
some useful insights for Kn. Finally, Section 5 develops an alternative measure to
the potential function φ, the Shannon entropy H of a coloring system. Numerical
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experiments establish the parallelism between the potential and entropy functions,
and new conjectures and questions arise.

2. Generation of one-factorizations via the mild random walk
algorithm

We present the computational mild random walk algorithm. This probabilistic
algorithm is defined as, from a coloring C, one moves to a recoloring C ′ with prob-
ability 1/|Nφ(C)| if C ′ ∈ Nφ(C). That is, one needs to know Nφ(C) explicitly. In
practice, this implementation is computationally expensive (we have to compute the
potential of all recolorings). We suggest an alternative, which makes the Markov
chain to move in the same way, but more efficiently in terms of computations. The
alternative algorithm consists in:

i) Choose randomly a recoloring C ′ of C;
ii) If C ′ ∈ Nφ(C), move to it. Otherwise, do step i) again.

(if after doing step ii) we do step i) again, the probability of choosing a recoloring
C ′ in step i) is independent of the choices done before).

In order to analyze the validity of Conjecture 1.1, we implement the mild random
walk algorithm in the software R [7]. Colorings are seen as matrices where the color
of the edge ij is represented by a number in the matrix entry (i, j), i 6= j. The nu-
merical experiments will allow us to reformulate Conjecture 1.1, see the forthcoming
Conjecture 2.1.

a r b i t r a r y c o l o r i n g <− f unc t i on (n) {
# Goal : with n−1 c o l o r s ( 1 , 2 , . . . , n−1) , to c o l o r uni formly the edges o f Kn.

# Input : n = s i z e o f Kn, we understand n even .
# Output : matrix C such that C( i , j ) i s the c o l o r o f the edge i j , i d i s t i n c t j .
# The c o l o r i n g i s a r b i t r a r y and C( i , i ) i s taken as n ( j u s t notat ion ) .

C <− diag (n , n , n) # i n i t i a l i z e matrix and put n at the d iagona l
f o r ( column in 1 : ( n−1)) # f i l l the lower part o f C with c o l o r s

C[ ( column +1):n , column ] <− sample ( 1 : ( n−1) , s i z e=n−column , r e p l a c e=TRUE,
prob=rep (1/( n−1) ,n−1))

C[ upper . t r i (C) ] <− t (C) [ upper . t r i (C) ] # make C symmetric

re turn (C)
}

p o t e n t i a l f u n c t i o n <− f unc t i on (C) {
# Goal : to compute the p o t e n t i a l f unc t i on o f the c o l o r i n g g iven by the matrix C.

# Input : c o l o r i n g matrix C.
# Output : p o t e n t i a l f unc t i on .

n <− dim (C) [ 1 ]

phi <− 0
f o r ( ver tex in 1 : n)

f o r ( c o l o r in 1 : ( n−1))
phi <− phi + sum(C[ , ver tex ]== c o l o r )ˆ2
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r e turn ( phi )

}

f i n d p r o p e r c o l o r i n g <− f unc t i on (n) {
# Goal : to f i n d a proper c o l o r i n g o f Kn.

# Input : n = s i z e o f Kn. n must be EVEN.
# Output : a l i s t having a c o l o r i n g C, a boolean that i s TRUE i f C i s a proper

# c o l o r i n g and FALSE otherwise , and the number o f s t ep s to f i n d C.

C <− a r b i t r a r y c o l o r i n g (n) # s t a r t with an a r b i t r a r y c o l o r i n g

phiC <− p o t e n t i a l f u n c t i o n (C) # p o t e n t i a l o f C
s t ep s <− 0

proper <− FALSE

whi le ( proper == FALSE & st ep s < nˆ10) {
edge <− sample ( 1 : n , s i z e =2, r e p l a c e=FALSE, prob=rep (1/n , n ) ) # choose edge

c o l o r <− sample ( ( 1 : ( n−1))[−C[ edge [ 1 ] , edge [ 2 ] ] ] , s i z e =1, r e p l a c e=FALSE,

prob=rep (1/( n−2) ,n−2)) # choose a c o l o r
C1 <− C # r e c o l o r

C1 [ edge [ 1 ] , edge [ 2 ] ] <− C1 [ edge [ 2 ] , edge [ 1 ] ] <− c o l o r # C1 i s a r e c o l o r i n g

phiC1 <− p o t e n t i a l f u n c t i o n (C1)
i f ( phiC1 <= phiC ) { # step i i )

C <− C1 # i f the p o t e n t i a l o f C1 i s sma l l e r or equal , we move to C1
phiC <− phiC1
s t ep s <− s t ep s + 1 # count s tep whenever we move

}
i f ( phiC == n∗(n−1)) # case when we f i n i s h the procedure

proper <− TRUE

}
r e turn ( l i s t (C, proper , s t ep s ) )

}

In Figure 1, we analyze the convergence rate of the mild random walk algorithm.
For each one of the even numbers n between 10 and 22, we have executed the above
algorithm 30 times. In all of them, convergence is achieved in a finite number of steps
(look at the plotted circles). A regression line in logarithmic scale allows estimating
whether the algorithm has polynomial cost. Our results show that, indeed, the
number of steps needed by the algorithm grows polynomially in n with exponent
≈ 2.51.

We notice several differences with respect to [3]. According to our numerical ex-
periments, we conjecture that the algorithm always converges, and not just asymp-
totically. It would converge asymptotically if we moved only when the potential is
strictly smaller (strict random walk), but this is not our setting. On the other hand,
we conjecture that the polynomial time is smaller than O(n4), in fact O(np), where
2 < p < 3 and p ≈ 2.51, see the regression line in Figure 1.

Conjecture 2.1. Consider Kn, with n even, and all possible colorings of it with
n − 1 colors. Consider the algorithm in which we start from an arbitrary coloring,
and we move with uniform probability from a coloring C to a recoloring C ′ of it if
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Figure 1. Steps required in the Markov chain to arrive at a proper
coloring of Kn (circles). Regression line to study the cost in polynomial
time.

and only if φ(C ′) ≤ φ(C) (mild random walk). Then the algorithm almost surely
converges to a one-factorization of Kn for all n and, moreover, the number of steps
required is O(np), where 2 < p < 3.

3. Convergence of the mild random walk algorithm and local
minimum colorings

Since proper colorings are absorbing states in Gn by the forthcoming Theorem 3.13
(denote the set of absorbing states by Bn), the transition matrix P has the following
structure:

P =

(
I 0
R Q

)
, (3.1)
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where I is the identity matrix with size |Bn| × |Bn|, 0 is a matrix of zeros, R is the
matrix of transition probabilities from a non-proper to a proper coloring, and Q is
the matrix of transition probabilities between non-proper colorings.

As it is well-known, from Q we can compute the expected number of steps until
the chain gets absorbed by a proper coloring. Indeed, the number of visits to a
non-proper state j is

∑∞
n=0 1{Xn=j}. Therefore, the expected number of visits to a

non-proper state j having started at a non-proper state i is

E

[
∞∑
n=0

1{Xn=j}

∣∣∣∣X0 = i

]
=
∞∑
n=0

P(Xn = j|X0 = i) =
∞∑
n=0

Qn(i, j) =

(
∞∑
n=0

Qn

)
(i, j).

Let S =
∑

j /∈Bn
∑∞

n=0 1{Xn=j} be the random variable in [0,∞] that counts, at each
experiment ω of the mild random walk algorithm, the number of steps until getting
absorbed by a proper coloring. Then

E[S|X0 = i] =
∑
j /∈Bn

(
∞∑
n=0

Qn

)
(i, j) ∈ [0,∞].

If we prove that (
∑∞

n=0Q
n)(i, j) <∞, for all i, j /∈ Bn, then E[S] =

∑
i/∈Bn E[S|X0 =

i]P(X0 = i) <∞, which implies S <∞ P-almost surely. That is, from any starting
coloring we reach with probability 1 a one-factorization in a finite number of steps.

The following two propositions give a condition under which (
∑∞

n=0Q
n)(i, j) <∞.

They come from standard results from linear algebra and Markov chains, and we
reference [2, Prop. 4.4, Prop. 4.5] for a detailed proof.

Proposition 3.1. If limn→∞Q
n = 0, then I − Q is invertible and (I − Q)−1 =∑∞

n=0Q
n. In particular, (

∑∞
n=0Q

n)(i, j) <∞.

Proposition 3.2. Consider a finite Markov chain with transition probability matrix
of the form (3.1). If every non-absorbing state has a positive probability of being
absorbed at some step, then limn→∞Q

n = 0.

We say that C is a local minimum coloring if φ(C) ≤ φ(C ′) for every recoloring
C ′ of C. As a consequence of these two propositions, the convergence of the mild
random walk is equivalent to the following fact: for every local minimum C, there
exists a finite sequence of steps in our Markov chain until we reach a coloring C1

such that φ(C1) < φ(C). Hence, the study of local minimum colorings is seen to be
crucial.

Hereafter, we show properties of local minimum colorings. Given a fixed coloring
C and an edge uv, we will denote by µ(uv) the color of the edge uv. We will also
write cC(µ) for the number of times color µ appears in coloring C. Let cuv,µ(C) :=
au,µ(C) + av,µ(C) be the total number of edges of color µ incident to uv.
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Lemma 3.3. ([3, Lemma 1]) If C is a local minimum coloring of Kn, then the
monochromatic connected subgraphs of Kn are isolated edges or 2-paths. That is,
au,µ(uv)(C) + av,µ(uv)(C) ≤ 3 for all edge uv.

Theorem 3.4 (Characterization of local minimum colorings of Kn). Let C be a
coloring of Kn. The following conditions are equivalent:

• C is a local minimum.
• The monochromatic connected subgraphs of Kn are isolated edges or 2-paths,

and each edge of every monochromatic 2-path has every color incident at least
once. That is, au,µ(uv)(C) + av,µ(uv)(C) ≤ 3 for all edge uv, and if for some
edge uv the equality holds, then au,µ(C) + av,µ(C) ≥ 1 for each color µ.

Proof. Suppose that C is a local minimum. By Lemma 3.3, au,µ(uv)(C)+av,µ(uv)(C) ≤
3, for every edge uv. Suppose an edge uv such that au,µ(uv)(C) + av,µ(uv)(C) = 3.
Then, by expression (1.1), for all µ1 6= µ(uv) we have au,µ1(C) + av,µ1(C) + 2 ≥
au,µ(uv)(C) + av,µ(uv)(C) = 3, that is, au,µ1(C) + av,µ1(C) ≥ 3− 2 = 1.

On the other hand, let us assume the second point of the theorem. Suppose by
contradiction that there exists C ′ recoloring of C such that φ(C ′) < φ(C). Assume
that C ′ consists in repainting an edge u0v0 with color µ0(u0v0) 6= µ(u0v0) (recall that
µ(u0v0) is the color of uv in C). Since φ(C ′) < φ(C), by expression (1.1)

au0,µ(u0v0)(C) + av0,µ(u0v0)(C) > au0,µ0(u0v0)(C) + av0,µ0(u0v0)(C) + 2.

By Lemma 3.3, au0,µ(u0v0)(C)+av0,µ(u0v0)(C) ≤ 3. It cannot be striclty less than 3, oth-
erwise au0,µ0(u0v0)(C)+av0,µ0(u0v0)(C) < 0, which is not possible. Thus, au0,µ(u0v0)(C)+
av0,µ(u0v0)(C) = 3, and we obtain 3 > au0,µ0(u0v0)(C) + av0,µ0(u0v0)(C) + 2. But by hy-
pothesis, au0,µ0(u0v0)(C) + av0,µ0(u0v0)(C) ≥ 1, which is a contradiction. �

Lemma 3.5. ([3, p. 3]) If C is a local minimum coloring of Kn, then the number of

monochromatic 2-paths of C is ψ(C) = φ(C)−n(n−1)
2

.

Theorem 3.6. Let C be a local minimum coloring of Kn. Then each edge of every
monochromatic 2-path has at least one color incident only once.

Proof. Let uv be an edge of a monochromatic 2-path: au,µ(uv)(C) + av,µ(uv)(C) = 3.
Suppose by contradiction that au,µ(C) + av,µ(C) ≥ 2 for all µ 6= µ(uv). The number
of edges incident to uv with color distinct from µ(uv) is 2n−5. But according to the
inequality au,µ(C) + av,µ(C) ≥ 2, there should be 2(n − 2) = 2n − 4 edges incident
to uv with color distinct from µ(uv). This is a contradiction. �

Theorem 3.7. Let C be a local minimum coloring of Kn. If it has a unique α-colored
2-path, then there is a γ-colored 2-path such that α is not incident to its center.

Proof. Let us suppose by contradiction that every vertex has an incident edge of
color α. Thus, C has an α-colored 2-path, plus isolated edges of color α. This gives
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an odd number n of vertices, contradicting the assumption of n being even. Thus,
there must exist a vertex w with no incident edge of color α. Since the degree of w is
n− 1 and there are n− 2 remaining colors, an incident color must be repeated, say
γ. Then there is a γ-colored 2-path such that α is not incident to its center w. �

Theorem 3.8. Let C be a local minimum coloring of Kn. Then

cC(µ) ≤
⌊

2n

3

⌋
,

for each color µ.

Proof. Suppose by contradiction that cC(µ) > b2n/3c, for certain color µ. We dis-
tinguish cases according to the value nmod 3:

• Case n ≡ 0 mod 3. In this case, b2n/3c = 2n/3, therefore, our assumption
becomes cC(µ) > 2n/3. At least 2n/3 + 1 edges are painted µ. These edges
can go alone or forming 2-paths, by Theorem 3.4. The way these 2n/3 + 1
cover less vertices is when there are n/3 2-paths and an isolated edge, which
takes up 3 · n/3 + 2 = n + 2 vertices. This is a contradiction, as Kn has n
vertices.
• Case n ≡ 1 mod 3. In this case, b2n/3c = (2n−2)/3 (since 2n−2 ≡ 0 mod 3).

Our assumption on µ becomes cC(µ) > (2n−2)/3. At least (2n−2)/3+1 edges
are painted µ. These edges can go alone or forming 2-paths, by Theorem 3.4.
The manner these (2n − 2)/3 + 1 edges cover less vertices is with (n − 1)/3
2-paths and a single edge, which take up 3 · (n − 1)/3 + 2 = n + 1 vertices,
and this gives a contradiction.
• Case n ≡ 2 mod 3. In this case, b2n/3c = (2n − 1)/3 (notice that 2n −

1 ≡ 0 mod 3). Our surmise on µ becomes cC(µ) > (2n − 1)/3. At least
(2n − 1)/3 + 1 edges are painted µ. These edges can go alone or forming
2-paths, by Theorem 3.4. The way these (2n − 1)/3 + 1 = (2n + 2)/3 edges
occupy less vertices is with (n+1)/3 2-paths, which cover 3 ·(n+1)/3 = n+1
vertices, and this gives once again a contradiction.

This finishes the proof. Notice that this upper-bound is tight, because for n = 4 and
n = 6 it is reached. �

Conjecture 3.9. Let C be a local minimum coloring of Kn. Then

cC(µ) ≥
⌈n

3

⌉
,

for each color µ.

Theorem 3.10. Let C be a local minimum coloring of Kn. Then cC(µ) ≥ 2 if n = 4
and n = 6. Thus, Conjecture 3.9 holds for n = 4 and n = 6.
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Proof. For K4, the result is clear, since if there were a color repeated only once,
then there would be a monochromatic connected subgraph with 3 edges, which is
not possible by Theorem 3.4.

For K6, let us assume that there is a color µ repeated once at an edge u1u2. Then
there are four vertices, say v1, v2, v3, v4, with no incident edge of color µ. Since the
degree of each vi is 5 and there are four possible incident remaining colors, each vi
must be the center of a monochromatic 2-path. For each one of those monochromatic
2-paths, no edge can go from a vi to a vj, otherwise such an edge would not have
µ incident, which is not possible by Theorem 3.4. Thus, the four monochromatic
2-paths with centers v1, v2, v3, v4, respectively, must have their endpoints at u1 and
u2, so they must be made up with distinct colors, say α1, α2, α3, α4, respectively.
Moreover, for each vi, its three remaining incident edges (the ones that do not belong
to the monochromatic 2-path of center vi) must be painted with the three remaining
colors distinct from µ and αi. Fix a color α1. Then v1 has α1 in its monochromatic
2-path, and the other vj, j > 1, have α1 repeated once. Therefore α1 is repeated five
times, but this is not possible by Theorem 3.8. �

Theorem 3.11. Let C be a local minimum coloring. Then, for every edge uv and
every color µ′,

cuv,µ(uv)(C)− cuv,µ′(C) ≤ 2.

Equality holds if and only if φ(C ′) = φ(C), where C ′ is the recoloring of C constructed
by changing the color of the edge uv to µ′.

Proof. By expression (1.1), φ(C ′) = φ(C) + 2(cuv,µ′(C) + 2 − cuv,µ(C)). As C is a
local minimum, φ(C) ≤ φ(C ′) = φ(C)+2(cuv,µ′(C)+2−cuv,µ(C)). Hence, cuv,µ(C)−
cuv,µ′(C) ≤ 2, as wanted. Equality holds if and only if φ(C) = φ(C ′). �

Corollary 3.12. The moves permitted to maintain the potential of a local minimum
coloring are:

• if uv is part of a monochromatic 2-path, you can change the color of uv by
the color of an edge incident once in uv;
• if uv is an independent edge, you can change the color of uv by a non-incident

color to uv.

Proof. Let C be a local minimum coloring. Let uv be any edge of C. By Theorem 3.4,
either uv is part of a monochromatic 2-path or it is independent of the other edges
with its same color. If uv is part of an α-colored 2-path, then cuv,α(C) = 3. By
Theorem 3.11, for each color µ′, cuv,µ′ ≥ 3 − 2 = 1. Thus, if C ′ is a recoloring of
C consisting in changing the color α of uv by β, then φ(C ′) = φ(C) if and only
if cuv,β = 1, or in words, there is a single β-colored edge incident to uv. On the
other hand, if uv is an independent α-colored edge, then the unique way of having
φ(C ′) = φ(C) is by changing α by a color not incident to uv. �
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Theorem 3.13 (Characterization of one-factorizations of Kn). Let C be a coloring
of Kn. The following conditions are equivalent:

• C is a one-factorization.
• φ(C ′) > φ(C) for every recoloring C ′ of C.

Proof. Suppose that C is a one-factorization. If we recolor an edge of C to obtain C ′,
then we obtain a monochromatic 2-path, therefore C ′ cannot be a one-factorization.
Thus, φ(C ′) > n(n− 1) = φ(C).

On the other hand, assume that φ(C ′) > φ(C) for every recoloring C ′ of C. Then
C is a local minimum. Suppose by contradiction that C is not proper. Then there
exists a monochromatic 2-path. Let uv be an edge of this monochromatic 2-path of
color µ(uv). By Theorem 3.6, there exists a color µ̄ incident only once to uv. By
Corollary 3.12, we can change the color of uv by µ̄ so that the new recoloring C ′

possesses the same potential as C, which is a contradiction. �

4. Proof of the convergence of the mild random walk algorithm
for K4 and K6

In this section, we prove Conjecture 2.1 for K4 and K6 by using counting methods.

Theorem 4.1. The mild random walk algorithm converges for K4.

Proof. Let C be a non-proper local minimum coloring of K4 made up with three
colors. We need to prove that there exists a finite sequence of steps in G4 until
we reach a coloring C1 such that φ(C1) < φ(C). Since C is not proper, there is a
monochromatic 2-path, say of color α, by Theorem 3.4. Moreover, there cannot be
more edges of color α. By Theorem 3.7, there is another monochromatic 2-path, say
of color γ, such that its center does not have an α-colored incident edge. There is an
edge uv from the α-colored 2-path that has a γ-colored incident edge only once. By
Corollary 3.12, we can change the color of uv to γ maintaining the potential. The
new recoloring has a 3-path of color γ, so it is not a local minimum, and its potential
can be decreased at a next step. �

Theorem 4.2. The mild random walk algorithm converges for K6.

Proof. Let C be a non-proper local minimum coloring of K6 painted with five colors.
We have to prove that there exists a finite sequence of steps in G6 until we can decrease
its potential. By Theorem 3.8 and Theorem 3.10, each color in C is repeated between
two and four times, therefore the possible repetitions of colors are 22344, 23334 and
33333.

We claim that, from the local minimum colorings with structure 22344, we can
reach a new coloring in G6 with structure 23334, and from 23334 another coloring in
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G6 with repetitions 33333. Thus, it will suffice to deal with a local minimum coloring
C having repetitions 33333.

Indeed, let C be a local minimum coloring with structure 22344 or 23334. The
common feature of both cases is that there is a color repeated four times, say α, and
another color repeated twice, say β. If we can repaint an α-colored edge with color
β maintaining the potential, the structure 22344 will have reached 23334, and the
structure 23334 will have become 33333, as wanted. Thus, we need to prove that
an α-colored edge can be repainted with color β maintaining the potential. Since α
is repeated four times in K6, it appears in the form of two monochromatic 2-paths.
There is an edge uv among the four edges of the two α-colored 2-paths that has
a β-colored incident edge only once. By Corollary 3.12, we can repaint uv with β
maintaining the potential, and we are done.

Thereby, it is enough to deal with a local minimum coloring C having repetitions
33333. If C is not a one-factorization, then it must have a monochromatic 2-path,
say of color α. Since α is repeated three times, there is another independent edge of
color α. Label the vertices of K6 as 1, 2, 3, 4, 5, 6. We may assume without loss of
generality that 123 is the α-colored 2-path and that 56 is the α-colored independent
edge. By Theorem 3.7, there is another monochromatic 2-path, say of color β, such
that its center does not have an α-colored incident edge. Thus, its center must be
vertex 4. We derive that the possibilities for the β-colored 2-path are: 342, 341, 346,
345, 241, 246, 245, 146, 145 and 645. Having placed the β-colored 2-path, there are
some available positions for the independent edge of color β, by taking into account
Theorem 3.4. See Table 1.

β-colored
2-path

342 341 346 345 241 246 245 146 145 645

Independent
edge

of color β
16, 15 26, 25 15, 25 16, 26 36, 35 15, 13, 35 16, 13, 36 25, 35 36, 26 13

Table 1. Possible positions of the β-colored edges in K6.

For example, we plot in Figure 2 the two cases from the first column of Table 1.
Using Corollary 3.12, it is easy to see that from each coloring from Table 1 one can

arrive at a non-local minimum coloring in G6. For example, from C1 from Figure 2,
since 23 is the only α-colored edge incident to 34, we can repaint 34 with α to obtain
an α-colored 3-path, which yields a non-local minimum coloring. This completes the
proof. �

Some of the ideas utilized for K4 and K6 could be applied for Kn, although our
counting method cannot be carried out for a general n. An example of a solvable
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Figure 2. Colorings C1 and C2 corresponding to the first column of Table 1.

coloring in Kn is the following. Let C be a non-proper local minimum coloring of Kn.
As C is non-proper, it has a monochromatic 2-path, say of color α. By Theorem 3.7,
there is a color β such that cuv,β(C) = 1. If β is part of a monochromatic 2-path, then,
by changing the color of uv by β, we obtain a recoloring C ′ such that φ(C ′) = φ(C)
and with a 3-path of color β. By Theorem 3.4, C ′ is not a local minimum, so its
potential can be decreased in a next step, and we are done with this case. It would
remain the difficult case in which the unique β-colored incident edge to uv is not
part of a monochromatic 2-path.

5. Entropy

Consider Kn and n − 1 colors. Let Ω = {(ν, µ) : ν vertex, µ color} be a sample

space, with σ-algebra F = 2Ω and probability measure P(ν, µ) = aν,µ(C)

n(n−1)
= pν,µ.

For each coloring C of Kn, we have n(n − 1) events of the form {(ν, µ)}, each
one of probability pν,µ. The Shannon entropy H of the system C is the expected
value of the amount of information: H(C) = −

∑
ν,µ pν,µ log pν,µ (here, 0 log 0 =

0). This function measures the chaos-uncertainty-surprise in the system C. In our
case, when Kn is monochromatic, there is no uncertainty, so the entropy should be
minimum; otherwise, one-factorizations present the most uncertainty, so the entropy
is maximum. It is easy to prove that log n ≤ H(C) ≤ log(n(n− 1)), being the lower
bound attained if C is monochromatic and the upper bound reached if C is proper.

The entropy is an alternative measure to the potential. We can consider an al-
ternative mild random walk algorithm, in which we move from a coloring C to a
recoloring C ′ if H(C) ≤ H(C ′). We implement the mild random walk algorithm
based on the entropy in the software R.

entropy <− f unc t i on (C) {
# Goal : to compute the entropy o f the c o l o r i n g g iven by the matrix C.

# I t be longs to the i n t e r v a l [− l og (1/n) ,− l og (1/( n∗(n− 1 ) ) ) ] .

# Input : c o l o r i n g matrix C.
# Output : entropy o f C.

n <− dim(C) [ 1 ]
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H <− 0
f o r ( ver tex in 1 : n) {

f o r ( c o l o r in 1 : ( n−1)) {
p <− sum(C[ , ver tex ]== c o l o r )/ ( n∗(n−1))
H <− H + i f e l s e (p == 0 , 0 , −p∗ l og (p ) )

}
}
r e turn (H)

}

f i n d p r o p e r c o l o r i n g e n t r o p y <− f unc t i on (n) {
# Goal : to f i n d a proper c o l o r i n g o f Kn v ia the entropy measure .

# Input : n = s i z e o f Kn. n must be EVEN.
# Output : a l i s t having a c o l o r i n g C, a boolean that i s TRUE i f C i s a proper
# c o l o r i n g and FALSE otherwise , and the number o f s t ep s to f i n d C.

C <− a r b i t r a r y c o l o r i n g (n) # s t a r t with an a r b i t r a r y c o l o r i n g C
entropyC <− entropy (C) # entropy o f c o l o r i n g C
s t ep s <− 0
proper <− FALSE

whi le ( proper == FALSE & st ep s < nˆ10) {
edge <− sample ( 1 : n , s i z e =2, r e p l a c e=FALSE, prob=rep (1/n , n ) ) # choose a r b i t r a r y edge
c o l o r <− sample ( ( 1 : ( n−1))[−C[ edge [ 1 ] , edge [ 2 ] ] ] , s i z e =1, r e p l a c e=FALSE,

prob=rep (1/( n−2) ,n−2)) # choose c o l o r
C1 <− C # r e c o l o r

C1 [ edge [ 1 ] , edge [ 2 ] ] <− C1 [ edge [ 2 ] , edge [ 1 ] ] <− c o l o r # C1 i s a r e c o l o r i n g o f C

entropyC1 <− entropy (C1)
i f ( round ( entropyC , 4 ) <= round ( entropyC1 , 4 ) ) {

C <− C1 # i f the entropy o f C1 i s g r e a t e r or equal , we move to C1
entropyC <− entropyC1
s t ep s <− s t ep s + 1 # count s tep whenever we move

}
i f ( round ( entropyC , 4 ) == round ( log (n∗(n−1)) ,4)) # case when we f i n i s h

proper <− TRUE

}
r e turn ( l i s t (C, proper , s t ep s ) )

}

Figure 3 depicts the convergence rate of the mild random walk algorithm based
on the entropy measure. For each one of the even numbers n between 10 and 22,
we have executed the presented code 30 times. In all cases, convergence is achieved
in a finite number of steps (look at the plotted circles). The regression line shows
that the number of steps needed by the algorithm increases polynomially in n with
exponent ≈ 2.59.

The numerical results are similar to those obtained with the potential function.
This makes us raise the following conjecture, analogous to the potential function
setting.

Conjecture 5.1. Consider Kn, with n even, and all possible colorings of it with
n − 1 colors. Consider the algorithm in which we start from an arbitrary coloring,
and we move with uniform probability from a coloring C to a recoloring C ′ of it if
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Figure 3. Steps required in the Markov chain to arrive at a proper
coloring of Kn via the entropy algorithm. Regression line to study the
cost in polynomial time.

and only if H(C) ≤ H(C ′) (mild random walk). Then the algorithm almost surely
converges to a one-factorization of Kn for all n and, moreover, the number of steps
required is O(np), where 2 < p < 3.
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