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Abstract: Background: Forecasting the behavior of epidemic outbreaks is vital in public health. This
makes it possible to anticipate the planning and organization of the health system, as well as possible
restrictive or preventive measures. During the COVID-19 pandemic, this need for prediction has
been crucial. This paper attempts to characterize the alternative models that were applied in the
first wave of this pandemic context, trying to shed light that could help to understand them for
future practical applications. Methods: A systematic literature search was performed in standardized
bibliographic repertoires, using keywords and Boolean operators to refine the findings, and selecting
articles according to the main PRISMA 2020 statement recommendations. Results: After identifying
models used throughout the first wave of this pandemic (between March and June 2020), we begin
by examining standard data-driven epidemiological models, including studies applying models such
as SIR (Susceptible-Infected-Recovered), SQUIDER, SEIR, time-dependent SIR, and other alternatives.
For data-driven methods, we identify experiences using autoregressive integrated moving average
(ARIMA), evolutionary genetic programming machine learning, short-term memory (LSTM), and
global epidemic and mobility models. Conclusions: The COVID-19 pandemic has led to intensive
and evolving use of alternative infectious disease prediction models. At this point it is not easy to
decide which prediction method is the best in a generic way. Moreover, although models such as
the LSTM emerge as remarkably versatile and useful, the practical applicability of the alternatives
depends on the specific context of the underlying variable and on the information of the target to
be prioritized. In addition, the robustness of the assessment is conditioned by heterogeneity in the
quality of information sources and differences in the characteristics of disease control interventions.
Further comprehensive comparison of the performance of models in comparable situations, assessing
their predictive validity, is needed. This will help determine the most reliable and practical methods
for application in future outbreaks and eventual pandemics.
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1. Introduction

The onset and subsequent spread of an emerging or re-emerging infectious disease have
always been a cause for concern. For more than a century, modeling has been used to charac-
terize the evolution, assess the impact of public health interventions, and suggest the optimum
course of action to control emerging infectious diseases [1]. Theoretical approaches to investi-
gate and understand what happens around epidemics are generally based on mathematical
models [2]. Modeling has made it possible in many cases to predict the behavior of epidemics,
which has led to informing key improvements in critical areas such as the organization of
national health systems, planning medical supply needs, predicting critical points of overload
in health systems, and determining when and to what extent some necessary interventions
and countermeasures should be implemented, relaxed or terminated [3].

The study of the transmission, prevention and control of severe acute respiratory syn-
drome coronavirus-2 (SARS-CoV-2) has concentrated most of the current scientific activity
since the first cases of pneumonia were described in Wuhan (People’s Republic of China) at
the end of December 2019 [4]. SARS-CoV-2 spread rapidly across all continents, causing
an unprecedented global public health crisis that we are still facing [5]. The international
response, initially slow because it was assumed to be distant, became astonishingly forceful,
with massive restrictions on travel to China and strict controls on citizens returning to
China for two weeks, even in the absence of symptoms [6]. Reducing the transmission of
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) became a global priority
then and now [7]. Very soon, the data available from the first affected countries, such as
China, Italy or France, were modeled to estimate the timing and magnitude of the epidemic
peak of the first wave. COVID-19 behaved like a tsunami, so it has been essential both to
understand how it happened (explanatory models) and, based on what happened, to be
able to predict the evolution to try to be better prepared for events (predictive models). In a
nutshell, these two approaches differ in that while explanatory models seek to identify the
risk (or protective) factors that are etiologically related to an outcome, predictive models
try to find an optimal combination of factors that best predicts an imminent development
or future evolution of the problem [8]. The first models used in the early 2020s emphasized
the capacity for anticipation to inform policy decisions, in what is usually called “predictive
understanding,” based on the value that scientists place on scientific theorizing to infer
conclusions and from this to formulate patterns (developing models) to deduce what needs
to be done. However, this proved insufficient from a scientific point of view, as there was
still an unmet need to develop explanatory knowledge to change the model by adapting it
to emerging evidence [9].

Predictive models were used from the very beginning in COVID-19, trying to anticipate
scenarios and forecast epidemic peaks. The predictions even went so far as to estimate very
specific details, such as the number of ventilation units that would be necessary for future
epidemic peaks as in the study by Fanelli and Piazza in Italy [10]. In this regard, let us point
out that health systems should use optimal prediction models based on a sound review of the
literature to predict the number of cases and thus support preventive measures, including
interventions that may generate some controversy, such as social distancing or, even more so,
lockdown or confinement [11]. However, these predictive studies have some limitations, as in
the case of the use of an underlying ecological design, and some potentially associated errors,
such as non-differential classification and incorrect spatial or temporal assignments [12]. In
addition, given the changing viral and immunological dynamics, many predictive models
cannot truly estimate the rate of replication and how it affects the population in the coming
weeks [13]. Also, since their goal is to make predictions in anticipation of behavioral changes
in epidemics, external validation is normally not feasible at the time that it is needed. As
a consequence of this, there is a non-negligible risk of overfitting and pseudo-accuracy
which could result in high precision for observed data but lower predictive accuracy for new
observations [8], which are actually the target of these models.

The models described in the following sections should initially be considered deter-
ministic in nature, by default. However, extensions to stochastic models can be made to
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include a random component. Stochastic models allow for the estimation of uncertainty
(i.e., standard errors) when estimating parameters. The use of this “random framework”
is more in line with reality and, therefore, stochastic models are considered more realistic
than deterministic models, the latter being only valid for sufficiently large populations,
which may be the explanation for possible discrepancies between a deterministic model
(even if well-chosen at the outset) and real-life results [14,15].

Modeling made it possible to provide health managers with the available tools to
foresee the behavior of the spread of this infectious disease, and thus be able to establish
control strategies through simulation. The development of these tools is a multidisciplinary
task in which mathematical algorithms are the basis and play a fundamental role. The
models of the first wave of COVID-19 (March–June 2020) were of great interest due to the
epidemiologic characteristics. This work aimed to review and characterize the modeling
approaches used during the first wave of COVID-19 and tried to shed light that could help
to understand them for future practical applications.

2. Materials and Methods

A comprehensive bibliographic search strategy was performed using the keywords
[COVID-19] AND [predictive OR forecasting OR explanatory] AND [models OR modeling]
in search sources PubMed, Google Scholar, Cochrane Library and Web of Science; in
addition, a search was made in medRvix, BiorXiv and arXiv (Appendix A). Databases
were searched for articles published up to 1 April 2022, but whose applied modeling was
conducted during the first wave of the COVID-19 pandemic (referring to the period from
1 March to 30 June 2020). The search strategy is fully detailed described in the Appendix A.
Inclusion criteria considered studies that apply at least one model in public health, studies
that produce a solution to COVID-19, studies that explicitly address the issue of COVID-19,
and studies written in English. Exclusion criteria included studies published before 2020,
works exclusively published as poster papers and/or extended abstracts, and studies that
were not part of the COVID-19 outbreak, studies that mentioned COVID-19 techniques
but did not use model and theoretical works without application. The articles retrieved
from that search were selected first through a first reading of the title and abstract, and in a
second step through the screening of the full text as per the main PRISMA 2020 statement
recommendations [16], systematizing the steps in identification, screening, eligibility, and
inclusion, all to help structure our work and as a useful basis for the potential reader. We
did not complete the PRISMA 2020 model exhaustively, among other reasons because it
was not feasible to address some of the 27 questions contained in the checklist, but we did
follow the main systematic steps, which helped us to identify the maximum number of
published articles and to analyze the observation period considered.

3. Results

The flow chart reflecting the literature search and study selection is illustrated in Figure 1.
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Once the studies were identified based on the modeling methods used for each one,
we distinguished the mathematical models by classifying them into two groups: standard
epidemiological models and data-driven models.

3.1. Standard Epidemiological Models

Epidemiological models divide the population into several compartments, and dif-
ferential equations predict movements from one compartment to another. Their main
advantages are that they consider the dynamics of the contagion of an infectious dis-
ease in the population, they allow modeling numerous variables that may affect spread
(quarantines, vaccination, reinfection, isolation) and have high power to predict the worst
scenarios. However, they have some weaknesses such as their excessive dependence on
parameter estimation, and that these parameters must also be adapted and updated during
the epidemic [17]. Some alternative models according to modeled parameters are shown in
Figure 2, and detailed explanations of the characteristics and uses of the models are shown
in the Table 1.
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Table 1. Main objectives and conclusions of relevant epidemiological models applied during the
COVID-19 pandemic.

Reference Model Subjects Objective Time-Period Results and Conclusions

Fanelli &
Piazza. SIR COVID-19, China,

Italy, France

Analyze the temporal
dynamics of the coronavirus
disease 2019 outbreak in China,
Italy and France in the time

22 January
2020 to 12
March 2020

The kinetic the kinetic parameter that
describes the rate of recovery seems to be the
same, irrespective of the country, while the
infection and death rates appear to be
more variable.
A simulation of the effects of drastic
containment measures on the outbreak in Italy
indicates that a reduction of the infection rate
indeed causes a quench of the epidemic peak.

Ahmetolan
et al. SIR

Daily case reports and
daily fatalities for
China, South Korea,
France, Germany, Italy,
Spain, Iran, Turkey,
the United Kingdom
and the United States

The quantity that can be most
robustly estimated from
normalized data is shown to be
the times of peak and the times
of inflection points of the
proportion of people infected.
These values correspond to the
peak of the epidemic and to the
highest rates of increase and
highest rates of decline in the
number of people infected. The
stability of the estimates is
tested by comparing
predictions based on data over
long time periods.

January to
May 2020

It is observed that the basic reproduction
number and the mean duration of the
infectious period can be estimated only in
cases where the spread of the epidemic is over
(for China and South Korea in the present
case). Nevertheless, it is shown that the timing
of the maximum and timings of the inflection
points of the proportion of infected
individuals can be robustly estimated from the
normalized data. The validation of the
estimates by comparing the predictions with
actual data has shown that the predictions
were realized for all countries except the USA,
as long as lockdown measures were retained.
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Table 1. Cont.

Reference Model Subjects Objective Time-Period Results and Conclusions

Khan
et al. SQUIDER

Detected and
undetected infected
populations, social
sequestration, release
from sequestration,
plus reinfection; eight
US states that make up
43% of the US
population (Arizona,
California, Florida,
Illinois, Louisiana,
New Jersey, New York
State and Texas)

A compartmental model is
proposed to predict the
coronavirus 2019 (COVID-19)
spread

22 January to
29 June 2020

Projections based on the current situation
indicate that COVID-19 will become endemic.
f lockdowns had been kept in place, the
number of deaths would most likely have
been significantly lower in states that opened
up. Additionally, we predict that decreasing
the contact rate by 10%, or increasing testing
by approximately 15%, or doubling lockdown
compliance (from the current ~15% to ~30%)
will eradicate infections in Texas within a year.
Extending our fits for all of the US states, we
predict about 11 million total infections
(including undetected), and 8 million
cumulative confirmed cases by
1 November 2020.
This model predicts significantly more
COVID-19 cases and deaths, with an extended
duration past two years for the majority of
states examined.

Cooper
et al. SIR

Investigate the time
evolution of different
populations and
monitor diverse
significant parameters
for the spread of the
disease in various
communities,
represented by China,
South Korea, India,
Australia, USA, Italy
and the state of Texas
in the USA.

The effectiveness of the
modelling approach on the
pandemic due to the spreading
of the novel COVID-19 disease.
The authors propose
predictions on various
parameters related to the
spread of COVID-19 and on the
number of susceptible, infected
and removed populations until
September 2020

January to
June 2020

If comparing the recorded data with the data
from our modelling approaches, we deduce
that the spread of COVID-19 can be under
control in all communities considered, if
proper restrictions and strong policies are
implemented to control the infection rates
early from the spread of the disease.

Hauser
et al. SEIR

Fitted transmission
model to surveillance
data from Hubei
Province, China, and
applied the same
model to six regions in
Europe: Austria,
Bavaria (Germany),
Baden-Württemberg
(Germany), Lombardy
(Italy), Spain, and
Switzerland.

(1) Simulate the transmission
dynamics of SARS-CoV-2 using
publicly available surveillance
data and (2) infer estimates of
SARS-CoV-2 mortality
adjusted for biases and
examine the CFR, the
symptomatic case-fatality ratio
(sCFR), and the
infection-fatality ratio (IFR) in
different geographic locations.

January to
May 2020

A comprehensive solution is proposed for the
estimation of SARS-CoV-2 mortality from
surveillance data during outbreaks.
Asymptomatic case fatality rate (CFR) is not a
good predictor of overall SARS-CoV-2
mortality and should not be used for policy
evaluation or comparison between settings.
Geographic differences in the infection-case
fatality rate (IFR) suggest that a single IFR
should not be applied to all settings to
estimate the total size of the SARS-CoV-2
epidemic in different countries. The sCFR and
IFR, adjusted for right-censoring and
preferential determination of severe cases, are
measures that can be used to improve and
monitor clinical and public health strategies to
reduce deaths from SARS-CoV-2 infection.

Struben
J. SEIR

South Korea,
Germany, Italy, France,
Sweden, and the
United States

Develop a behavioral dynamic
epidemic model for
multifaceted policy analysis
comprising endogenous virus
transmission (from severe or
mild/asymptomatic cases),
social contacts, and case testing
and reporting.

December
2019–15 May
2020

It determines how the timing and efforts of
expanding testing capacity and reducing
social contact interact to affect outbreak
dynamics and can explain much of the
cross-country variation in outbreak pathways.
Second, in the absence of scaled availability of
pharmaceutical solutions, post-peak social
contacts should remain well below
pre-pandemic values. Third, proactive
(targeted) interventions, when supplemented
by general deconfinement preparedness, can
significantly increase eligible post-peak
social contacts.
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Table 1. Cont.

Reference Model Subjects Objective Time-Period Results and Conclusions

Chen
et al.

Time-
dependent
SIR

China and extended to
Japan, Singapore,
South Korea, Italy,
and Iran.

They propose a
susceptible-infected-recovered
(SIR) model that is
time-dependent according to
two time series: (i)
transmission rate at time t and
(ii) recovery rate at time t: (i)
the transmission rate at time t
and (ii) the recovery rate at
time t. This approach is not
only more adaptive than
traditional static SIR models,
but also more robust than
direct estimation methods.
Note: From data provided by
the Health Commission of the
People’s Republic of
China (NHC).

12 February
2020

This time-dependent SIR model is not only
more adaptive than traditional static SIR
models, but also more robust than direct
estimation methods. The numerical results
show that one-day prediction errors for the
number of infected persons X(t) and the
number of recovered persons R(t) are within
(almost) 3% for the dataset collected from the
National Health Commission of the People’s
Republic of China (NHC) [1]. Moreover, we
are capable of tracking the characteristics of
the transmission rate and the recovering rate
with respect to time t, and precisely predict the
future trend of the COVID-19 outbreak
in China.
To address the impact of asymptomatic
infections in COVID-19, we extended our SIR
model by considering two types of infected
persons: detectable infected persons and
undetectable infected persons. Whether there
is an outbreak in such a model is characterized
by the spectral radius of a 2 × 2 matrix that is
closely related to the basic reproduction
number R0.

Calafiore
et al. SIRD Italy

Analyze parameters such as
the initial number of
susceptible people and the
proportionality factor α
(number of positives detected
versus unknown number of
infected people) to predict the
spread of COVID-19

23 February
to 30 March
2020

It was not possible to accurately calculate the
variability of the results because of time
restrictions, but it was estimated at ±78%
based on previous sources

Venkatesen
M et al. SIR India

The objective of this study is to
provide a simple but effective
explanatory model for the
prediction of the future
development of infection and
for checking the effectiveness
of containment and lockdown.
A SIR model with a flattening
curve and herd immunity
based on a susceptible
population that grows over
time and difference in
mortality and birth rates.

29 January to
15 April 2020

It illustrates how a disease behaves over time,
taking variables such as the number of
sensitive individuals in the community and
the number of those who are immune. It
accurately models the disease, considering the
importance of immunization and herd
immunity. The outcomes obtained from the
simulation of the COVID-19 outbreak in India
make it possible to formulate projections and
forecasts for the future epidemic progress
circumstance in India.

Kuniya
T. SIRS Japan

Objective to give a prediction
of the epidemic peak of
COVID-19 in Japan using the
real-time data, and taking into
account the uncertainty due to
the incomplete identification of
the infected population.

1 January to
29 February
2020

R0 = 2.6 (95% CI, 2.4–2.8) is estimated, with an
epidemic peak in the summer of 2020.
Epidemiological conclusions: (1) the size of the
essential epidemic is less likely to be affected
by the rate of identification of the actual
infectious population; (2) the intervention has
a positive effect in delaying the peak of the
epidemic; (3) intervention is needed over a
relatively long period to effectively reduce the
final size of the epidemic.

Rocchi
et al. SIRS Italy

Objective: predict a potential
scenario in which a balance is
reached between susceptible,
infected and recovered groups
(something that usually occurs
in epidemics).

15 April 2020

This model offers an analytical solution to the
problem of finding possible steady states,
providing the following equilibrium values:
susceptible, about 17%, recovered (including
deceased and healed) ranging from 79 to 81%,
and infected ranging from 2 to 4%. However,
it is crucial to consider that the results
concerning the recovered, which at first glance
are particularly impressive, include the huge
proportion of asymptomatic subjects.

3.1.1. SIR (Susceptible-Infected-Recovered) Model

This model, originally developed by Ross and Hamer in 1915 [26] and further im-
proved by Kermack and McKendrick in 1927 [27], consists of three coupled non-linear
differential equations that allow for the prediction of the transmission of an infectious
disease, helping to make decisions and public health interventions. SIR models allow for a
quantitative analysis of a policy that is expected to be optimal when applied to different
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groups. For instance, the model may be helpful to predict differential benefits such as a
reduction in economic impact or excess of deaths when applied to different expected risk or
age groups. This may allow for the making of different tailored interventions such as a more
or less strict lockdown in the oldest rather than in the middle- or younger-aged groups,
which might be more optimal than uniform interventions applied to all population groups.
Acemoglu et al. praised the SIR model, calling it a “workhorse tool” in the COVID-19
pandemic thanks to its capacity to bring together economic effects and trade-offs depending
on the differential risks in the population [28].

The results from the SIR model, when applied without special adjustments to the
COVID-19 pandemic, have restrictions due to several reasons. Basically, the indefiniteness
of the parameter N (community’s population) was not only conditioned by the behavior of
the community that can produce additional waves, but also by the intrinsic limitation of
the model, that to have an adequate performance has to be preferably limited to small pop-
ulations where the results can be properly adjusted. Despite these drawbacks, this model
has some advantages, such as its direct and transparent approach, easily implemented and
understandable through compartmental relationships [29]. Fanelli and Piazza used this
model to successfully forecast the first wave peak in Italy during the first wave, predicting
that in future waves the reduction of mortality rate and the slow-down of the epidemic
peak will only be visible if restrictive measures are implemented in the first days to make
possible an 80–90% reduction in the infection rate [10].

Ahmetolan et al. estimated the basic reproduction number, mean duration of the
infectious period and the estimate of the time of the peak of the epidemic wave using an
SIR model and data from the early phase of daily detected cases and daily mortality of
China, South Korea, France, Germany, Italy, Spain, Turkey, Iran, the United Kingdom and
the United States. SIR models were analyzed for each country to fit the cumulative data of
infectious cases with an error of 5%. It was observed that the basic reproduction number
and the mean duration of the infectious period could only be estimated in cases where the
spread of the epidemic was over (for China and South Korea in the present case). Moreover,
it was also shown that all peaks and inflection time-points could be robustly estimated
from the normalized data. Validation conducted by comparing predictions to actual data
showed that as long as lockdown measures were maintained, the predictions held true for
all countries except the US [18].

Although this model is widely recognized and it is considered potentially validated,
there have been several attempts to improve it with additional epidemiological models
after the appearance of COVID-19. Models with additional parameters are shown in the
Table 1 and are summarized in a concise manner below.

Cooper et al. added two improvements to the SIR model. First, the total population
do not necessarily remain constant. And, second, susceptible individuals do not decline
monotonically because there was clear evidence that they could even increase, since the
observation of the data on the evolution of COVID-19 in the databases allows us to observe
that an increase in the number of infected people (I) results in a surge in the susceptible
population candidate for infection (S). They analyzed the spread of the disease in different
countries, and the predictions fitted nicely with the published case data in Italy and Texas,
but not in China or South Korea, where the number of cases fell very quickly due to stricter
preventive measures. Notably, if we compare the published data with the SIR forecast, we
can reasonably predict the success of government interventions [30].

3.1.2. SQUIDER Model

Khan et al. extended the SIR to assess several responses to COVID-19 in eight US states,
fitting the reported incidence data jointly with the suppression of prevention measures.
They made a distinction between the reported cases and the asymptomatic/mild cases
not detected. Also, they included the effect of quarantine, isolation measures and social
distancing, as well as the reintroduction of recovered individuals with loss of immunity to
the susceptible population. They called this model “SQUIDER”, using an acronym that
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arises from the seven parameters recognized in this type of modeling, including susceptible
individuals (S), social distancing (Q), undetected infected (U), detected infected (I), detected
recovered (R), plus undetected recovery/death (E), and detected death (D). This approach
has particularly been used to predict future COVID-19 deaths and future COVID-19 cases
in several U.S. states based on data from Johns Hopkins University. These authors state that
this model describes fairly well the epidemiological data in the US states under scrutiny,
pointing out the greater number of compartments with respect to the SIR model and the
non-linearity in the infectious power of the disease as the key to success [19].

3.1.3. SEIR Model

SEIR models are widely used to predict possible contagion scenarios by describing
infectious disease dynamics in the event of an outbreak, and they are useful in predicting
whether preventative measures (such as lockdowns) may be effective. For its evaluation,
the total number of patients, the number of patients recovered after the disease and the
number of deceased are used. Notably, Hauser et al. showed that the case fatality rate is
not a good predictor of the overall SARS-CoV-2 mortality and that it should not be used
for policy evaluation or comparison between settings [31]. In the unforced SEIR models
the evolution of the contagion does not take into account temporary or seasonal effects
that could alter the spread of the disease (such as the school year, vacation periods, mass
celebrations on certain dates or other contingencies). In those models, the conditions of
the initial infection are more critical in the transmission of the epidemic outbreak than
the reproduction number R0. This method allows a better understanding of the speed of
transmission of infectious diseases, especially those that are transmitted by water and by
vectors [32].

Struben applied a SEIR model that collected not only the dynamics of virus transmis-
sion but also political decisions, interventions in response to the epidemic and the social
contacts of the populations. This model was able to differentiate mild, asymptomatic and
severe cases, in addition to reliably representing the heterogeneity of the different social
and demographic segments of the population. The author concludes that it is a solid model
for COVID-19, with the advantage of being flexible for other contexts in other infectious
diseases [20].

Kuniya proposes the SEIR compartmental model to predict the epidemic peak of
COVID-19 in Japan using real-time data from 15 January (first reported case) to 29 February
2020, considering the uncertainty due to the incomplete identification of the infected. The
author estimated the basic reproduction number, R0 = 2.6 (95% CI, 2.4–2.8), using a Poisson-
noised least-squares method and predicted that the epidemic peak could arrive in early to
mid-summer 2020 [33]. The latter prediction was consistent with the WHO statement of 6
March 2020 that it was a false hope that COVID-19 would disappear in the summer like the
flu [34].

3.1.4. Time-Dependent SIR Model

Proposed by Chen et al., this model was apparently able to predict the evolution of
the pandemic in China with less than 3% of errors. This model tracked the transmission
and recovery rate at a given time covering two types of infected persons: detectable and
undetectable. This time-dependent model is not as static as traditional SIR models, as it
is more dynamic and more robust, able to track the characteristics of recovery rate and
transmission rate with respect to time. Finally, they concluded that some measures like
social distancing reduce the effective reproduction number [35].

3.1.5. Other Proposed Models

The SEIRS model is a less complex approach, but considers that recovered patients
may become susceptible again (susceptible-exposed-infectious-recovered-susceptible). This
model provides a potentially good fit to weekly incidence and reproduction figures, and
also forecasts that, similar to other coronaviruses, outbreaks will persist each winter for
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several years with peaks in the second week of January [21]. Bjørnstad et al. have recently
developed a web and R program to allow a fast and intuitive application of this model to
different pandemic diseases and situations [36].

Calafiore et al. included in the SIRD (Susceptible-Infectious-Recovered-Deceased)
analysis parameters such as the initial number of susceptible individuals and the propor-
tionality α factor (i.e., the number of detected positives versus the unknown number of
infected individuals) to predict the spread of COVID-19 in Italy. They concluded that it
was not was not possible to accurately calculate the variability of the results because of
time restrictions, but it was estimated at ±78% based on previous sources [23].

Venkatasen et al. proposed a SIR model for India with herd immunity and a flattening
curve based on a predisposed and increasing population and difference in birth and
mortality rates, and included key variables such as the number of immune individuals and
the number of sensitive individuals. This simulation showed the evolution of susceptible,
infected and recovered persons over time, with the transmission rate and fatality rate.
However, they stated that the model had some relevant limitations such as the lack of
precision of the results and the high dependence on constantly published data [37].

The Weibull distribution model was used to estimate the incidence in the Hokkaido
prefecture in Japan [38]. The results yielded figures higher than those officially reported,
pointing out the gap between estimated and detected cases to stop undetected transmissions.
Stochastic simulations led to the conclusion that the local risk of an outbreak depended
on several parameters: the evolution of the number of cases in the country of origin (in
this case China), the frequency of travels with other countries and the effectiveness of the
measures in the destination country. Travel restrictions were useful in countries with few
flights to China and high R0 numbers, while countries with many connections to China
and low R0 numbers benefited most from policies aimed at lowering R0 [39].

Rocchi et al. [24] proposed a SIRS (Susceptible, Infected, Recovered, Susceptible) model
to forecast the evolution of the epidemic in the province of Pesaro-Urbino, one of the main
areas of focus of the epidemic in Italy, under the hypothesis of non-permanent immunity.
This approach offers an analytical solution to the problem of finding possible stationary
states. However, it is crucial to take into account that the results on recoveries also include
the large proportion of asymptomatic subjects.

Other models such as the SUQC (susceptible-unquarantined-quarantined-confirmed)
or SIRV (susceptible, infectious, recovered vaccinated) are not considered in this review
of alternative models, as the quarantine and post-vaccination periods had not yet been
completed at the time of writing this article [40].

3.2. Data-Driven Models

Forecasting relies on the use of past data to project future outcomes, and this can
be complex in the context of a new or unfamiliar situation, such as the case of the
COVID-19 pandemic.

In these models, instead of establishing several compartments and predicting move-
ments by means of differential equations, a predictive curve is used to evaluate validation
or readiness concepts, obtaining a good fit to retrospective data, and allowing short-term
projections. The collection of several sources of information is carried out to analyze and
subsequently carry out a plan and public health policy decisions which imply an eval-
uation of future scenarios. Consequently, the consideration of the time-span horizon is
an unavoidable factor to be accounted for in decision making. Notably, these models are
not unique or permanent, so exquisite rigor and permanent review of the predictions are
essential. Despite these caveats, it is feasible to use those tools to evaluate, to validate or to
predict and plan in a short-term period. These data-driven models are useful, for example,
to highlight the potential need of lockdown and self-isolation, as we can see in this early
study in Italy in the beginning of the epidemic [41]. However, they do not take into account
the dynamics of the spread of the disease, and that is why these models present more
limitations when it comes to applying conclusions for long-term policies [17].
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3.2.1. Autoregressive-Integrated Moving Average (ARIMA) Models

ARIMA models consist of statistical techniques that allow for the building of a model
for a numerical series for which repetitive patterns are found and which does not have
excessive random data. They are mainly used in some fields such as in economics, and it is
necessary to collect the data at regular and constant intervals [11]. According to Shankar
et al., there was no particular model that was substantially superior to others [17].

The first explanatory models began to appear after the first months of the epidemic.
Thurner’s team was struck by the fact that infection curves in numerous countries (United
Kingdom, Sweden, Finland, Poland, Indonesia, and the United States) had linear growth
that could span very long periods, something inexplicable with traditional models that
usually start with an S shape. They tried to explain it by attributing this to the fact that
these models did not take into account the network-shaped contacts of the population. By
imputing about five contacts per person in situations without confinement, and 2.5 contacts
per person in confinement situations, they developed an explanatory model that fit with
great precision both in countries with early strict confinement (Austria) and in countries
without early strict confinement (the United States). Policies on confinement and contact
networks limited the spread of infections and must be taken into account, especially in
countries whose family structure networks are made up of many individuals [42].

Other studies such as those by Sorci et al. [43] tried to explain the enormous variation
that could be found in the case-fatality rate (CFR) from one country to another, with a
minimum of 0% and a maximum of 20%. These disparities can be explained by the different
state of epidemic control, given that some countries had an earlier onset than others, by the
comorbidity of other diseases or by the overload of the hospital system, especially due to
the number of intensive care beds. In addition, there is a known bias due to differential
procedures with regard to the counting of the number of cases, depending on the capacity
of the system to detect cases in the population through mass screening. For example, the
number of tests performed per 1000 inhabitants varied from 0.9 (Indonesia) to 179 (Iceland).
The CFR was statistically significantly higher in countries with higher levels of disability
adjusted life years (DALYs) due to a higher burden of diseases (chronic respiratory and
cardiovascular diseases, kidney diseases, cancer), exposure to air pollution and tobacco,
age over 70 years, gross domestic product (GDP) per capita or high level of democracy.
Conversely, there was an inverse negative association with comorbidity with other lower
respiratory tract infections and the number of beds per thousand inhabitants [43].

3.2.2. Machine learning (ML)

This approach consists of computer algorithms that use past experience and data
to learn and improve to classify, interpret and understand the data. ML is an emerging
technology that can be used for classification, diagnosis, prognosis, regression and even
chatbots [11].

Bottino’s team conducted a systematic review to verify the use of artificial intelligence
techniques, such as machine learning (ML) and deep learning (DL). Many factors were
present in almost all studies, such as age, PCR, and LDH levels. However, they found that
numerous values of variables that could be helpful in the prediction of the ML and DL
models (vital signs, comorbidities, laboratory results, radiographs) were omitted. Another
limitation is that most studies had a marked imbalance of survivors and non-survivors [44].
In this line, Yan et al. found a high prediction of mortality three days after admission [45],
which highlights the importance of a rigorous learning in the identification of those patients
who present a high risk of mortality. Regarding imaging techniques, they have been used
to predict mortality but not in a DL context. To be able to use optimal ML, an improvement
in data collection through a good systematic methodology would be necessary [44].

3.2.3. Genetic Evolutionary Programming (GEP) Model

Genetic programming is a variant of a genetic algorithm in which a computer creates
a hierarchical tree-like structure to find a relationship between input variables and output
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variables, based on Karva language. This approach has proven to be more efficient than
classical techniques and more stable than artificial neural networks, in addition to generat-
ing simple prediction equations that can be optimized over time. This model has been used
to predict cases in India by including two main parameters. The first was the confirmed
cases and the second the number of deaths. The models were shown to be reliable, satisfied
the external validation requirements, and can be further improved by new algorithms, for
instance krill herd and naked mole-rat algorithms [13].

3.2.4. Long Short-Term Memory (LSTM) Model

It is a recurring neural network whose structure is in the form of a chain and that
instead of having a single neural network layer has four layers, each one performing its
own special network function. It is very useful for predicting the number of new cases over
a given period and making a realistic forecast over time [11]. This model has also been
used in Canada, where it successfully predicted in March 2020 that the first wave would
end in June 2020. However, it was not accurate in predicting that the pandemic would end
in December 2020 and that it would not last as long as the Spanish flu of 1918 [46].

3.2.5. Global Epidemic and Mobility (GLEM) Model

The GLEM model tries to identify disease compartments and establishes a scenario for
simulation using data such as compartment characteristics, transition values, environmental
characteristics, etc. This model is being used in studies related to COVID-19 [11]. An
example of software based on this model is GLEaMviz, capable of simulating realistic
epidemic scenarios that are useful when establishing policies and analyzing the different
containment measures [47].

To provide a summary overview of the objectives and conclusions of the relevant
epidemiological models applied during the COVID-19 pandemic, Table 1 summarizes the
main articles identified and discussed.

4. Discussion

We have conducted a literature review which, although not fully comprehensive,
provides a sound basis from which we have described and discussed the evidence for
different predictive models in the current COVID-19 pandemic. And despite the fact that
the review procedures were rigorously performed dually and independently, in this type
of review it is usually understandable that a certain risk of bias cannot be completely ruled
out. Nevertheless, we believe that none of the possible methodological potential flaws and
limitations would have changed the conclusions of the review. The main limitations of
this study are largely conditioned by the limitations of the studies reviewed, one of the
main ones being the dependence on the good collection and classification of the cases and
the reliability of the definition of a positive case, which is not always homogeneous and
can lead to biases depending on how rigorous the national health agency is in classifying
patients. Another potential methodological limitation has to do with the fact that we used
preprint articles in a first phase, in which the peer review process had not initially been
completed, although this limitation has been addressed because in the final drafting of
this manuscript we were able to ascertain all articles that were subsequently reviewed and
published in peer-reviewed journals.

We focused on studies available in the most relevant bibliographic databases. There-
fore, government documents and other potentially relevant sources of gray literature are
not included in this review. Although we consider that it should not have a relevant impact
on our work, we need to make it clear that we may have not included all the informa-
tion. We have just reviewed the publicly available relevant information to address the
fundamental objective of this review.

Future studies, in addition to analyzing the behavior of the different epidemic waves,
will have to face other critical effects on health and the economy as a result, for example,
of quarantines. They will also have to look at impacts and predictions on quality of life,
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increased demand for medical care, percentage of chronic patients not cared for, number of
people unnecessarily quarantined, unemployment, increase in domestic or social violence,
and travel restrictions. These are just some of the variables to be considered in the near
future [48].

We have been able to verify how most models on COVID-19 are quantitative tech-
niques which rely on different assumptions about relevant model parameters. They consis-
tently showed that quarantine was important in reducing incidence and mortality during
the COVID-19 pandemic, although the magnitude of the effect was uncertain. That said,
early implementation of quarantine and the combination of quarantine with other public
health measures were seen to be key elements in ensuring the effectiveness of such deci-
sions. Policy makers and public health managers need to constantly monitor outbreaks
and the effects of different interventions to obtain an optimal balance in the application of
such measures.

It is not easy and at least it would be highly debatable to judge which model might be
better. Kırbaş et al. compared LSTM, ARIMA and NARNN and concluded that the LSTM
model was more successful than the other two [49]. However, it would be too premature
to make definitive conclusions, since there were differences in the available data, in the
population behaviors and in the implementation of restrictive measures, which clearly
varied among countries and time-periods, therefore further studies are still needed to make
conclusions in this sense. Furthermore, different policies can influence the spread of the
pandemic and may have a major impact on model results. The same model applied to
countries that have a different socioeconomic situation and that apply different policies
may generate results with predictions that may be worse or better tailored depending
on the context, an element that must be taken into consideration for the optimization of
the modernization options to be used. In this sense, it is advisable to continue gathering
information and contrasting the performance of the models in comparable situations to
assess their predictive validity.

The usefulness and applicability of mathematical models lies in their ability not only
to describe but also to forecast the evolution of the epidemic under alternative scenarios,
with obvious and positive consequences in the control of the pandemic. Furthermore, if
the predictions are consistent with data external to the model, then the hypotheses and
parameter assumptions on which the model is based can be considered to be validated. In
possible future scenarios like the current COVID-19 pandemic, predictive and explanatory
models may be extremely useful to recommend prompt and optimal strategies in the early
stages of outbreaks. The models can help provide a reduction in the spread and severity of
these diseases in the context of very early and optimal implementation of health, social,
and economic initiatives, particularly when initiatives are internationally coordinated to
cover epidemics a of global nature.

5. Conclusions

Numerous methods for predicting infectious diseases can be found in the scientific
literature, many of which, although known for decades, have been applied and improved
during the current COVID-19 pandemic. Many of the first wave forecasts often provided
a sound basis for action, although prediction of subsequent waves has remained some-
what elusive. There is no clear consensus on which prediction method is best, and it is
assumed that one must tailor the approach to the context in addition to the underlying
objectives being prioritized. The main difficulty of the comparison was that each method
was tested in different countries, each from different sources of information, and with dif-
ferent characteristics and strategies for combating the disease. It is desirable to continue to
compare the performance of the models in comparable situations, assessing their predictive
validity. Based on the above, it will probably be feasible to make reliable and practical
recommendations on their use in future outbreaks and pandemics.
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Appendix A Search Strategy

Main search: ((COVID-19) and (predictive models or explanatory models))

• Filters: Clinical Trial, Controlled Clinical Trial, Meta-Analysis, Pragmatic Clinical Trial,
Randomized Controlled Trial, Systematic Review.

• Sort by: Publication Date
• Search details: ((“COVID-19”[All Fields] OR “COVID-19”[MeSH Terms] OR “COVID-

19 vaccines”[All Fields] OR “COVID-19 vaccines”[MeSH Terms] OR “COVID-19
serotherapy”[All Fields] OR “COVID-19 serotherapy”[Supplementary Concept] OR
“COVID-19 nucleic acid testing”[All Fields] OR “COVID-19 nucleic acid testing”[MeSH
Terms] OR “COVID-19 serological testing”[All Fields] OR “COVID-19 serological test-
ing”[MeSH Terms] OR “COVID-19 testing”[All Fields] OR “COVID-19 testing”[MeSH
Terms] OR “SARS-CoV-2”[All Fields] OR “SARS-CoV-2”[MeSH Terms] OR “severe
acute respiratory syndrome coronavirus 2”[All Fields] OR “ncov”[All Fields] OR “2019
ncov”[All Fields] OR ((“coronavirus”[MeSH Terms] OR “coronavirus”[All Fields] OR
“cov”[All Fields]) AND 2019/11/01:3000/12/31[Date—Publication])) AND (((“pre-
dict”[All Fields] OR “predictabilities”[All Fields] OR “predictability”[All Fields] OR
“predictable”[All Fields] OR “predictably”[All Fields] OR “predicted”[All Fields]
OR “predicting”[All Fields] OR “prediction”[All Fields] OR “predictions”[All Fields]
OR “predictive”[All Fields] OR “predictively”[All Fields] OR “predictiveness”[All
Fields] OR “predictivities”[All Fields] OR “predictivity”[All Fields] OR “predicts”[All
Fields]) AND (“model”[All Fields] OR “model s”[All Fields] OR “modeled”[All Fields]
OR “modeler”[All Fields] OR “modeler s”[All Fields] OR “modelers”[All Fields] OR
“modeling”[All Fields] OR “modelings”[All Fields] OR “modelization”[All Fields] OR
“modelizations”[All Fields] OR “modelize”[All Fields] OR “modelized”[All Fields]
OR “modelled”[All Fields] OR “modeller”[All Fields] OR “modellers”[All Fields]
OR “modelling”[All Fields] OR “modellings”[All Fields] OR “models”[All Fields]))
OR (“explanatory”[All Fields] AND (“model”[All Fields] OR “model s”[All Fields]
OR “modeled”[All Fields] OR “modeler”[All Fields] OR “modeler s”[All Fields] OR
“modelers”[All Fields] OR “modeling”[All Fields] OR “modelings”[All Fields] OR
“modelization”[All Fields] OR “modelizations”[All Fields] OR “modelize”[All Fields]
OR “modelized”[All Fields] OR “modelled”[All Fields] OR “modeller”[All Fields]
OR “modellers”[All Fields] OR “modelling”[All Fields] OR “modellings”[All Fields]
OR “models”[All Fields])))) AND (clinicaltrial[Filter] OR controlledclinicaltrial[Filter]
OR meta-analysis[Filter] OR pragmaticclinicaltrial[Filter] OR randomizedcontrolled-
trial[Filter] OR systematicreview[Filter])

Translations

• COVID-19: (“COVID-19” OR “COVID-19”[MeSH Terms] OR “COVID-19 Vaccines”
OR “COVID-19 Vaccines”[MeSH Terms] OR “COVID-19 serotherapy” OR “COVID-
19 serotherapy”[Supplementary Concept] OR “COVID-19 Nucleic Acid Testing” OR
“COVID-19 nucleic acid testing”[MeSH Terms] OR “COVID-19 Serological Testing” OR
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“COVID-19 serological testing”[MeSH Terms] OR “COVID-19 Testing” OR “COVID-19
testing”[MeSH Terms] OR “SARS-CoV-2” OR “SARS-CoV-2”[MeSH Terms] OR “Se-
vere Acute Respiratory Syndrome Coronavirus 2” OR “NCOV” OR “2019 NCOV” OR
((“coronavirus”[MeSH Terms] OR “coronavirus” OR “COV”) AND 2019/11/01[PDAT]:
3000/12/31[PDAT]))

• Predictive: “predict”[All Fields] OR “predictabilities”[All Fields] OR “predictabil-
ity”[All Fields] OR “predictable”[All Fields] OR “predictably”[All Fields] OR “pre-
dicted”[All Fields] OR “predicting”[All Fields] OR “prediction”[All Fields] OR “predic-
tions”[All Fields] OR “predictive”[All Fields] OR “predictively”[All Fields] OR “pre-
dictiveness”[All Fields] OR “predictives”[All Fields] OR “predictivities”[All Fields]
OR “predictivity”[All Fields] OR “predicts”[All Fields]

• Models: “model”[All Fields] OR “model’s”[All Fields] OR “modeled”[All Fields]
OR “modeler”[All Fields] OR “modeler’s”[All Fields] OR “modelers”[All Fields] OR
“modeling”[All Fields] OR “modelings”[All Fields] OR “modelization”[All Fields] OR
“modelizations”[All Fields] OR “modelize”[All Fields] OR “modelized”[All Fields]
OR “modelled”[All Fields] OR “modeller”[All Fields] OR “modellers”[All Fields] OR
“modelling”[All Fields] OR “modellings”[All Fields] OR “models”[All Fields]
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