
Balanced and Compressed Coordinate
Layout for the Sparse Matrix-Vector

Product on GPUs

José Ignacio Aliaga1, Hartwig Anzt2,3, Enrique S. Quintana-Ort́ı4(B),
Andrés E. Tomás1,5, and Yuhsiang M. Tsai2

1 Dpto. de Ingenieŕıa y Ciencia de Computadores, Universitat Jaume I,
Castellón de la Plana, Spain

2 Steinbuch Centre for Computing, Karlsruhe Institute of Technology,
Karlsruhe, Germany

3 Innovative Computing Lab, University of Tennessee, Knoxville, USA
4 DISCA, Universitat Politècnica de València, Valencia, Spain

quintana@disca.upv.es
5 Dpto. de Informática, Universitat de València, Valencia, Spain

Abstract. We contribute to the optimization of the sparse matrix-
vector product on graphics processing units by introducing a variant
of the coordinate sparse matrix layout that compresses the integer rep-
resentation of the matrix indices. In addition, we employ a look-ahead
table to avoid the storage of repeated numerical values in the sparse
matrix, yielding a more compact data representation that is easier to
maintain in the cache. Our evaluation on the two most recent genera-
tions of NVIDIA GPUs, the V100 and the A100 architectures, shows
considerable performance improvements over the kernels for the sparse
matrix-vector product in cuSPARSE (CUDA 11.0.167).

Keywords: Sparse matrix-vector product · Sparse matrix data
layouts · Sparse linear algebra · High performance computing · GPUs

1 Introduction

The sparse matrix-vector product (SpMV) is a fundamental operation for the
iterative solution of sparse linear systems since it is usually the computationally
most expensive building block in stationary schemes as well as Krylov subspace
methods [10].

The SpMV is, in general, a memory-bound operation which means that its
performance is strongly determined by the memory access volume and the access
pattern dictated by the algorithmic realization of the kernel and the memory
bandwidth of the target computer architecture. In this context, the irregularity of
the memory accesses turns the parallel optimization of SpMV into a challenging
task.

A particular factor which directly influences the implementation and (par-
allel) performance of SpMV is the data layout of the sparse matrix. The coor-
dinate format (COO) [10] is likely the most intuitive layout: for each non-zero
matrix entry, this scheme maintains a 3-tuple with the entry’s row and column
indices and its numerical value. The compressed sparse row format (CSR) [10] is
a flexible alternative that reduces the indexing overhead with respect to COO by
storing only starting/ending indices (pointers) for each matrix row, while keep-
ing the same information for the column indices and values as COO. A plethora
of application-specific sparse matrix layouts have been proposed over the past
decades; see [2–5,8,9] among many others. In general, these solutions deliver
high performance for some problem domains and/or computer architectures but
perform poorly and/or require expensive transformations of the matrix format
for others.

In [7] we introduced a balancing parallelization scheme for GPUs optimized
for matrices with an irregular row distribution of the non-zero entries. In brief,
this scheme: 1) is based on the standard CSR format; 2) requires an inexpensive
pre-processing step; and 3) consumes only a minor amount of additional memory
compared with significantly more expensive GPU-specific sparse matrix layouts.
The new balancing approach departs from the conventional parallelization across
matrix rows by instead distributing the workload evenly among the thread teams
while avoiding race conditions via atomic transactions with efficient support by
hardware in recent GPU architectures. In [6], we extended the idea to the COO
format, showing that the resulting kernel is superior to some of the most popular
SpMV implementations based on both COO and CSR.

In this paper, we continue our effort towards the optimization of SpMV on
GPUs by making the following contributions:

– We propose orthogonal (independent) enhancements of the balancing COO-
based scheme in [7] that result in a compressed storage format for the matrix
data (indices and values), thus reducing the memory traffic and improving
performance.

– We develop a high performance realization of this scheme for the most recent
generations of NVIDIA GPUs (Volta and Ampere).

– We provide a complete evaluation of the new kernel in comparison with
highly optimized implementations of SpMV, based on COO and CSR, from in
NVIDIA cuSPARSE (those in CUDA 11.0.167). Following standard practice,
this analysis is performed both from the perspective of memory consumption
and GFLOPS (billions of floating-point arithmetic operations, or flops, per
second).

The idea of compressing the indexing information to reduce the pressure on
memory bandwidth is not original. In this sense, our approach is slightly related
to the compressed sparse blocks (CSB) format [3], which partitions the sparse
matrix into a regular grid of sparse blocks, each of which is stored in CSR format
with the block indices compressed as offsets to a reference. In comparison, we
also maintain the indices as offsets, encoded using a shorter number of bits.
However, our scheme is based on COO instead of CSR; we divide the nonzero

matrix entries (instead of the matrix itself) into regular chunks; we couple this
partitioning with a balanced workload distribution for GPUs; and we also explore
the compression of the numerical data using a look-ahead table.

The rest of the paper is organized as follows. In Sect. 2, we review the COO
format and introduce our new balancing and compressed variant for GPUs based
on it. In Sect. 3, we evaluate a standalone implementation of the new scheme for
SpMV in comparison with the GPU kernels in NVIDIA cuSPARSE. In addition,
in that section, we also assess the impact of the scheme when the SpMV kernel
is integrated into the biconjugate gradient stabilized method (BICGSTAB) [10].
Finally, in Sect. 4, we offer some concluding remarks and a brief discussion of
open research lines.

2 Balanced and Compressed SpMV

2.1 COO Format

Consider the SpMV y := A · x, where A is an n × n sparse matrix with nz

non-zero entries and x, y are both vectors with n components. The COO format
employs three vectors: say a, i and j, each of dimension nz, to maintain the
values of the non-zero elements of the matrix and their row and column index
coordinates, respectively. In a direct parallelization of the COO-based SpMV on
a GPU, each thread operates with a single nonzero element of the matrix, per-
forming the multiplication with the corresponding entry of x, and using atomic
operations to accumulate the partial result on the appropriate component of y.
The performance of this initial approach can be improved if each thread com-
putes several elements of the result vector, as typically 2 or 4 elements suffice for
the compiler to aggregate enough memory access operations to overlap transfer
and arithmetic operations. The excerpt of CUDA-like code in Listing 1.1 illus-
trates this approach for a COO-based SpMV with A stored using vectors a, i,
and j. There each thread computes K accumulations of the form yi := yi+aij ·xj ,
involving K nonzero matrix elements. Note that, for simplicity, we assume that
nz is an exact multiple of B ·K, where B denotes the number of threads per block.
Otherwise, the matrix can be padded with explicit zero elements.

In practice, the number of iterations in the loop of the SpMV kernel in List-
ing 1.1 is small, and the whole loop should be unrolled to attain high perfor-
mance. For that purpose, it is convenient to pad each matrix row with zeros so
that its dimension becomes an exact multiple of K.

A second “loop” is implicit in the GPU code as the B threads of a block
perform the operations for a chunk of B · K matrix elements. In current NVIDIA
GPUs, the number of threads in a block is limited to 1,024 and must be over
192 for good performance. The compromise value B = 256 is rather optimal and
provides some advantages from the perspective of the compression technique
introduced in the next subsection.

Finally, a third (outermost) “loop” is also implicitly present, for the �nz/(B ·
K)� thread blocks. With this approach, the GPU hardware scheduler will dynam-
ically assign blocks to each chunk of the matrix. This is important because the

1 #define W 32 // Warp size
2 #define B 256 // Number of threads per block
3 #define K 4 // Number of elements per thread
4
5 void SpMV(int n, int nz, int *i, int *j, double *a, double *x, double *y)

{
6 cudaMemset(y, 0, sizeof(double) * n);
7 int nc = nz / (B * K);
8 dim3 tb(W, B / W);
9 SpMV_kernel <<<nc, tb >>>(i, j, a, x, y);

10 }
11
12 __global__ void SpMV_kernel(int *i, int *j, double *a, double *x, double

*y){
13 int p = blockIdx.x, q = threadIdx.y * W + threadIdx.x;
14 double v = 0.0;
15 for (int l = 0; l < K; l++) {
16 int t = (p * B + q) * K + l;
17 v += a[t] * x[j[t]];
18 }
19 int row = i[p * B + q];
20 atomicAdd(y + row , v);
21 }

Listing 1.1. CUDA code for the SpMV with a simple balancing parallelization
scheme and A stored in coordinate format.

execution time of the threads can be quite different given the variations in the
access cost to the vectors x and y. The reason is that, although each thread pro-
cess the same number of elements, the matrix pattern can result in very different
cache hits and misses during the accesses to the input vector x. Also, the order-
ing of the matrix elements can introduce an important number of cache misses
in the update of the result vector y. In addition, atomic operations must be
used to avoid race conditions in this update. Although atomic primitives have
efficient support in modern GPU hardware, they introduce contention among
the threads introducing further variations to the execution time.

In principle, the COO format does not enforce any specific ordering of the
matrix elements. However, a random ordering will result in poor locality during
the accesses to the result y. In contrast, a row-major ordering (such as that used
in CSR) renders excellent locality during the same accesses, but with higher con-
tention among threads. To avoid this, a segmented scan is implemented using
the intra-block communication primitives available on NVIDIA’s GPU. The frag-
ment of CUDA code in Listing 1.2 shows this reduction. There, the variable v
stores the values that have to be accumulated and the variable row their corre-
sponding row indices.

This solution mimics the highly parallel variant of the classic prefix sum: each
thread communicates the accumulated value as well as the row index for that
value to the thread in the next level of the hierarchy. The accumulation continues
if the received row index matches the index of the row assigned to the receiving
thread. Assuming a row-major ordering (i.e., consecutive row indices), the thread
with the lowest identifier participating in the accumulation of elements for each
row accumulates the partial products for all the products in that row. Only this
thread issues a global memory access operation to write the final value to the
main memory.

1 #define W 32 // Warp size
2 for (int l = 1; l < W; l *= 2) {
3 int s = __shfl_down_sync (0 xffffffff , row , l);
4 double t = __shfl_down_sync (0 xffffffff , v, l);
5 if (row == s && threadIdx.x + l < W) v += t;
6 }
7 int prev = __shfl_up_sync (0 xffffffff , row , 1);
8 if (threadIdx.x == 0 || row != prev) atomicAdd(Y + row , v);

Listing 1.2. CUDA code that performs the accumulation on y.

thread 0

thread 1

thread 2

thread 3

thread 4

thread 5

thread 6

thread 7

0
row

0

0

1

1

1

1

2

a

v

b

c

d

e

f

g

h

step 1 step 2

a + b

v

b + c

c

d + e

e + f

f + g

g

h

a + b + c

v

b + c

c

d + e + f + g

e + f + g

f + g

g

h

y0

y1

y2

Fig. 1. Diagram of a segmented scan of 8 elements using 8 threads

Figure 1 shows a reduced example using only 8 threads. The first column
represents the contents of the row variable in each thread and the last column
corresponds to the result vector y. The columns in between show the value of v
at each step of the loop. Each arrow represents the messages sent among threads,
using a dotted line when the received value is not added because it comes across
a row boundary. The solid arrows are atomic additions to y in main memory.

This reduction scheme requires 11 communication operations for adding the
values for all rows compared with 5 communications in a regular reduction which
only computes one sum. Therefore, it is only sub-optimal when the matrix ele-
ments processed by a warp pertain to the same row. However, this case is avoided
by the compression technique introduced in the next subsection.

2.2 Compression

Following the balanced thread distribution, each block of threads processes
exactly a chunk of B · K nonzero elements of the sparse matrix. If the matrix
elements are ordered row-wise and, by columns inside each row, (as is the case in
the CSR format,) each chunk will likely present a significant number of repeated
row indices in vector i as well as clustered column indices in vector j. In addi-
tion, for some applications, many of the matrix values are repeated. For these
reasons, it may be beneficial to use different encodings for each chunk, reducing
(compressing) the amount of memory required to store the sparse matrix. This
approach avoids thread divergence as the same format is used for all the elements

in a chunk. At the same time, the compression level may not be optimal as it
needs to account for the values accessed by several threads.

To implement this compression, a handful of auxiliary vectors are required,
all of the length �nz/(B · K)� (that is, vectors with one element per chunk). The
first vector contains a 1-byte entry per block to specify which particular format
is used for that block. Table 1 shows a summary of the possible encodings for
a matrix with double precision (DP) floating point data. The row index and
element value combinations can be represented by a single bit each, while the
column index requires two bits in each 1-byte entry of the vector.

Table 1. Possible encodings of the chunk data for DP data.

None 8 bits 16 bits 32 bits 64 bits

Row index × ×
Column index × × ×
Element value × ×

Two additional integer vectors then contain the baseline (reference) row and
column indices of the elements in the chunk, which correspond to those for the
top-leftmost nonzero entry of the sparse matrix in the chunk. Finally, as the
space occupied by distinct chunks will be often different, a vector of integers is
used to point to the start of each chunk.

Instead of the three original COO vectors (i, j and a), the data of the matrix
elements in a chunk are maintained in a blob (Binary Large OBject), with the
B row indexes first; followed by the B · K column indexes; and finally the B · K
values. Those blobs are stored contiguously in memory with no alignment issues
provided B and B · K are both integer multiples of 8 for DP data (or 4 for single
precision values). The values of i and j are stored as offsets relative to the
baseline element of the chunk.

For B ≤ 256, the row index is encoded using one byte only as most matrices
contain at least one element per row. If this is not the case, each empty row
is padded with an explicit zero element. If the whole chunk corresponds to a
unique row, it is not necessary to store any value for the individual elements,
and a regular sum reduction is used instead of the segmented scan. Depending
on the nonzero pattern of the matrix, the column index is encoded using 8,
16, or 32 bits. For sparse matrices arising in non-graph applications, the non-
zero entries in a row usually appear in clusters, allowing to use fewer bits to
encode the column indices. While converting the matrix, a lookup table (LUT)
is built containing the 256 most frequent values. If all value entries in the chunk
are covered by the LUT, only one byte per element is used to index the right
element in the LUT instead of storing the actual floating point values.

Figure 2 shows an example corresponding to a small chunk (B = 8 and K = 1)
in compressed COO format. The original COO data is represented left of the
arrow and the different elements in the compressed COO format on the right.

In this figure, each column from the blob corresponds to the respective original
vector. The first column contains the (row) i indices as an offset to the row
baseline. Similarly, the second column contains the (column) j indices as an
offset to the column baseline. Finally, the third column contains an index to the
LUT where the double precision values are stored. The values of the row and
columns offsets are different for each chunk/element but the LUT is common to
the whole matrix.

10
i

10

10

11

11

11

11

12

21

j

22

23

20

21

23

26

21

a

a

b

c

a

b

c

e

a

0

0

0

1

1

1

1

2

1
blob

2

3

0

1

3

6

1

0

1

2

0

1

2

3

0

10
row baseline

20
col. baseline

a

LUT

b

c

e

Fig. 2. Example of one chunk in Compressed COO format. In the last column, row/col.
baseline specify the offset to be added to the first/second index of each block to obtain
the corresponding i/j index; and LUT contains the different values encountered in
vector a, which are indirectly referenced via the third entry of the blob.

3 Experimental Results

3.1 Setup and Memory Savings

For the experimental evaluation of the new compressed realization of SpMV,
we selected 60 test matrices from the Suite Sparse Matrix Collection [1]. The
chosen benchmarks have row/column dimensions larger than 900,000 and arise
in a variety of scientific problems excluding graph applications. (Although the
adjacency matrices associated with graphs have excellent compression properties,
we do not consider them to be interesting use cases for the SpMV kernel as there
are more efficient algorithms for graph manipulation.) The test matrices along
with some key properties are listed in Table 2.

Figure 3 visualizes the memory overhead of COO and Compressed COO with
respect to CSR, assuming a DP floating point representation for the numerical
values with all three formats, and a 32-bit integer representation for the indices
in CSR and COO. There are some matrices with clustered indices/repeated
numerical entries where the compression schemes are especially efficient and,
as a result, Compressed COO uses less memory than CSR. For the rest of the
matrices, except in two cases, the overhead of Compressed COO over CSR is
always smaller than that of regular COO.

Table 2. Test matrices

Matrix n nz nz/n Matrix n nz nz/n

1. af shell10 1,508,065 52,259,885 34.7 31. Geo 1438 1,437,960 60,236,322 41.9

2. atmosmodd 1,270,432 8,814,880 6.9 32. Hamrle3 1,447,360 5,514,242 3.8

3. atmosmodj 1,270,432 8,814,880 6.9 33. Hardesty1 938,905 12,143,314 12.9

4. atmosmodl 1,489,752 10,319,760 6.9 34. Hook 1498 1,498,023 59,374,451 39.6

5. atmosmodm 1,489,752 10,319,760 6.9 35. HV15R 2,017,169 283,073,458 140.3

6. audikw 1 943,695 77,651,847 82.3 36. kkt power 2,063,494 12,771,361 6.2

7. bone010 M 986,703 23,888,775 24.2 37. ldoor 952,203 42,493,817 44.6

8. bone010 986,703 47,851,783 48.5 38. Long Coup dt0 1,470,152 84,422,970 57.4

9. boneS10 M 914,898 18,489,474 20.2 39. Long Coup dt6 1,470,152 84,422,970 57.4

10. boneS10 914,898 40,878,708 44.7 40. memchip 2,707,524 13,343,948 4.9

11. Bump 2911 2,911,419 127,729,899 43.9 41. ML Geer 1,504,002 110,686,677 73.6

12. cage14 1,505,785 27,130,349 18.0 42. nlpkkt120 3,542,400 95,117,792 26.9

13. cage15 5,154,859 99,199,551 19.2 43. nlpkkt160 8,345,600 225,422,112 27.0

14. circuit5M dc 3,523,317 14,865,409 4.2 44. nlpkkt200 16,240,000 440,225,632 27.1

15. circuit5M 5,558,326 59,524,291 10.7 45. nlpkkt240 27,993,600 760,648,352 27.2

16. Cube Coup dt0 2,164,760 124,406,070 57.5 46. nlpkkt80 1,062,400 28,192,672 26.5

17. Cube Coup dt6 2,164,760 124,406,070 57.5 47. nv2 1,453,908 37,475,646 25.8

18. CurlCurl 3 1,219,574 13,544,618 11.1 48. Queen 4147 4,147,110 316,548,962 76.3

19. dgreen 1,200,611 26,606,169 22.2 49. rajat31 4,690,002 20,316,253 4.3

20. dielFilterV2real 1,157,456 48,538,952 41.9 50. Serena 1,391,349 64,131,971 46.1

21. dielFilterV3real 1,102,824 89,306,020 81.0 51. ss 1,652,680 34,753,577 21.0

22. ecology1 1,000,000 4,996,000 5.0 52. StocF-1465 1,465,137 21,005,389 14.3

23. ecology2 999,999 4,995,991 5.0 53. stokes 11,449,533 349,321,980 30.5

24. Emilia 923 923,136 40,373,538 43.7 54. t2em 921,632 4,590,832 5.0

25. Flan 1565 1,564,794 114,165,372 73.0 55. thermal2 1,228,045 8,580,313 7.0

26. Freescale1 3,428,755 17,052,626 5.0 56. tmt unsym 917,825 4,584,801 5.0

27. Freescale2 2,999,349 14,313,235 4.8 57. Transport 1,602,111 23,487,281 14.7

28. FullChip 2,987,012 26,621,983 8.9 58. vas stokes 1M 1,090,664 34,767,207 31.9

29. CurlCurl 4 2,380,515 26,515,867 11.1 59. vas stokes 2M 2,146,677 65,129,037 30.3

30. G3 circuit 1,585,478 7,660,826 4.8 60. vas stokes 4M 4,382,246 131,577,616 30.0

We ran all the following experiments in this section using DP arithmetic on
two distinct generations of NVIDIA accelerators:

– A V100 GPU with compute capability 7.0, furnished with 16 GB of main
memory, 128 KB L1 cache per streaming processor, and 6 MB of L2 cache.
The bandwidth to memory bandwidth is 900 GB/s and the theoretical peak
performance is 7.8 DP TFLOPS.

– An A100 GPU with compute capability 8.0, equipped with 40 GB of memory,
1.5 GB/s main memory bandwidth, and a theoretical peak performance of
19.5/9.7 DP TFLOPS with/without DP tensor cores, respectively.

All the codes were compiled using CUDA version 11.0.167.

-80

-60

-40

-20

 0

 20

 40

 60

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Memory overhead over CSR (%)

COO
Compressed COO

Fig. 3. Memory overhead with respect of the CSR format using DP arithmetic.

3.2 Performance of SpMV

We first compare the computational efficiency of our realization of SpMV against
the codes in NVIDIA cuSPARSE. This native library from NVIDIA offers three
routines for this computational kernel, two based on CSR and one based on
COO. In the following comparisons, we include only the default CSR SpMV
algorithm from cuSPARSE as the second CSR-based variant delivers very similar
performance for the chosen test matrices. We do not include results for other
formats, such as ELL or Hybrid-ELL, which were available in earlier versions of
cuSPARSE but are no longer included in the last version of the library.

Figure 4 shows the performance evaluation of NVIDIA’s codes against our
Compressed COO implementation which applies the memory-reduction tech-
niques described in Sect. 2 to diminish the indexing overhead for the row/column
indices as well as data values. The results in the figure, in terms of GFLOPS,
show a large performance improvement using Compressed COO for matrices
with clustered indices/repeated values. Concretely, we are able to achieve up to
170/250 GFLOPS on the V100/A100 GPUs, respectively. While the compressed
COO almost always outperforms the cuSPARSE COO and the cuSPARSE CSR
kernels (except for a few outliers where the performance is on par or negligibly
lower), the median speed-up over its competitors is 1.4× and 1.25–1.3× on the
V100 and the A100 GPUs, respectively. Even though the median speed-up over
cuSPARSE CSR and cuSPARSE COO is almost identical, we note that the per-
formance ratios for the distinct problems are more consistent when comparing
the COO formats.

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60

 0 50 100 150 200 250

cuSPARSE CSR

cuSPARSE COO

SpMV perfomance on the V100

GFLOPS

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60

 0 50 100 150 200 250

Compressed COO

SpMV perfomance on the A100

GFLOPS

Fig. 4. Performance of the new compressed realization of SpMV against those in cuS-
PARSE on NVIDIA V100 and A100 GPUs (left and right, resp.)

3.3 Effect on BICGSTAB

We next evaluate the impact of the new compressed kernels for SpMV when
integrated into an iterative solver for sparse linear systems based on a Krylov
subspace method. For this purpose, we select a BICGSTAB implementation
based on CUDA. In the comparison, the BiCGSTAB solver employs the three
different SpMV realizations analyzed in the previous subsection: compressed
COO, cuSPARSE CSR, and cuSPARSE COO. For a performance comparison,
we execute a fixed number of iterations and measure the GFLOPS for the lin-
ear systems constructed from the same test cases selected for the standalone
evaluation of SpMV.

 0 8

 1

 1 2

 1.4

 1 6

 1 8

 2

 2 2

 2.4

Over CSR Over COO

C
om

pr
es

se
d

C
O

O
 S

pe
ed

up

BiCGstab performance on the V100

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

Over CSR Over COO

C
om

pr
es

se
d

C
O

O
 S

pe
ed

up

BiCGstab performance on the A100

Fig. 5. Performance of the BICGSTAB solver with the new compressed realization of
SpMV against those in cuSPARSE on NVIDIA V100 and A100 GPUs (left and right,
resp.)

Our experiments with the BiCGSTAB solver using the three SpMV ker-
nels show that the performance benefits of the faster SpMV kernel execution
carry over to the BiCGSTAB solver. The acceleration of the BiCGSTAB solver
depends on the specific problem and how much the SpMV kernel contributes to
the overall runtime cost. In that sense, the speed-ups of BiCGSTAB correlate to
a scaled version of the SpMV speed-up values reported in Fig. 4, damped with
the problem-specific ratio between SpMV kernel cost vs. BiCGSTAB solver cost.
In the end, equipping the BiCGSTAB solver with the compressed COO SpMV
kernel improves the overall iterative solver performance for virtually all problems
with a median speed-up of about 1.2× on both architectures, see Fig. 5.

4 Concluding Remarks and Future Work

We have adopted our previous balancing approach for SpMV to (virtually)
divide the matrix contents into chunks (blocks) of nonzero entries of the same
size; map these to the thread blocks; and prevent race conditions via efficient

atomic operations. On top of this technique, in this work, we have proposed
a new compression scheme that reduces the amount of indexing information
that is associated with a COO-based realization of SpMV while maintaining
the balanced distribution. For this purpose, the indices of each entry inside the
same chunk are maintained as offsets with respect to a baseline row/column
index pair, allowing the use of 8-bit encodings for the row indices, and 8/16/32-
bit encodings for the column indices depending on the chunk. In addition, the
observation that the numerical values in the sparse matrices arising in scientific
applications present a considerable number of repetitions, motivates the design
of a compression scheme that employs a look-up table.

The experimental results show the benefits of the new format, demonstrating
a consistent advantage over the native implementation of the SpMV kernel in
NVIDIA’s cuSPARSE (CUDA 11.0.167) on the V100 and A100 GPUs.

The matrix format in this paper can be extended to support more efficient
encodings. For example, matrix values could be stored in different precisions. Or
even not stored at all for graph adjacency matrices that contain a large number
of entries equal to one. Furthermore, the presented format is suitable for very
large-scale matrices that require 64-bit indices.

Acknowledgements. This work was partially sponsored by the EU H2020 project
732631 OPRECOMP and project TIN2017-82972-R of the Spanish MINECO. Hartwig
Anzt and Yuhsiang M. Tsai were supported by the “Impuls und Vernetzungsfond” of
the Helmholtz Association under grant VH-NG-1241 and by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office
of Science and the National Nuclear Security Administration. The authors would like
to thank the Steinbuch Centre for Computing (SCC) of the Karlsruhe Institute of
Technology for providing access to an NVIDIA A100 GPU.

References

1. Suitesparse matrix collection (2018). https://sparse.tamu.edu. Accessed Sept 2020
2. Bell, N., Garland, M.: Efficient sparse matrix-vector multiplication on CUDA.

NVIDIA Technical report NVR-2008-004, NVIDIA Corporation, December 2008
3. Buluç, A., Williams, S., Oliker, L., Demmel, J.: Reduced-bandwidth multithreaded

algorithms for sparse matrix-vector multiplication. In: Proceedings of the IEEE
International Parallel & Distributed Processing Symposium, pp. 721–733 (2011)

4. Choi, J.W., Singh, A., Vuduc, R.W.: Model-driven autotuning of sparse matrix-
vector multiply on GPUs. In: Proceedings of the 15th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP 2010, pp. 115–126
(2010)

5. Filippone, S., Cardellini, V., Barbieri, D., Fanfarillo, A.: Sparse matrix-vector mul-
tiplication on GPGPUs. ACM Trans. Math. Softw. 43(4), 1–49 (2017)

6. Flegar, G., Anzt, H.: Overcoming load imbalance for irregular sparse matrices. In:
Proceedings of the Seventh Workshop on Irregular Applications: Architectures and
Algorithms, IA3 2017 (2017)

7. Flegar, G., Quintana-Ort́ı, E.S.: Balanced CSR sparse matrix-vector product
on graphics processors. In: Rivera, F.F., Pena, T.F., Cabaleiro, J.C. (eds.) Euro-
Par 2017. LNCS, vol. 10417, pp. 697–709. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-64203-1 50

https://sparse.tamu.edu
https://doi.org/10.1007/978-3-319-64203-1_50
https://doi.org/10.1007/978-3-319-64203-1_50

8. Grossman, M., Thiele, C., Araya-Polo, M., Frank, F., Alpak, F.O., Sarkar, V.: A
survey of sparse matrix-vector multiplication performance on large matrices. CoRR
abs/1608.00636 (2016). http://arxiv.org/abs/1608.00636

9. Liu, W., Vinter, B.: CSR5: an efficient storage format for cross-platform sparse
matrix-vector multiplication. In: Proceedings of the 29th ACM on International
Conference on Supercomputing, ICS 2015, pp. 339–350. ACM, New York (2015)

10. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadel-
phia (2003)

http://arxiv.org/abs/1608.00636

Repository KITopen

Dies ist ein Postprint/begutachtetes Manuskript.

Empfohlene Zitierung:

Aliaga, J. I.; Anzt, H.; Quintana-Ortí, E. S.; Tomás, A. E.; Tsai, Y. M.

Balanced and Compressed Coordinate Layout for the Sparse Matrix-Vector Product on

GPUs.

2021. Euro-Par 2020: Parallel Processing Workshops: Euro-Par 2020 International

Workshops, Warsaw, Poland, August 24–25, 2020, Revised Selected Papers. Ed.: B. Balis,

Springer Verlag

doi: 10.554/IR/1000131540

Zitierung der Originalveröffentlichung:

Aliaga, J. I.; Anzt, H.; Quintana-Ortí, E. S.; Tomás, A. E.; Tsai, Y. M.

Balanced and Compressed Coordinate Layout for the Sparse Matrix-Vector Product on

GPUs.

2021. Euro-Par 2020: Parallel Processing Workshops: Euro-Par 2020 International

Workshops, Warsaw, Poland, August 24–25, 2020, Revised Selected Papers. Ed.: B. Balis,

83–95, Springer Verlag. doi:10.1007/978-3-030-71593-9_7

Lizenzinformationen: KITopen-Lizenz

https://publikationen.bibliothek.kit.edu/1000131540
https://publikationen.bibliothek.kit.edu/1000131540
https://publikationen.bibliothek.kit.edu/1000131540
https://publikationen.bibliothek.kit.edu/1000131540
https://publikationen.bibliothek.kit.edu/1000131540
https://doi.org/10.1007/978-3-030-71593-9_7
https://www.bibliothek.kit.edu/cms/kitopen-workflow.php

	Balanced and Compressed Coordinate Layout for the Sparse Matrix-Vector Product on GPUs
	1 Introduction
	2 Balanced and Compressed SpMV
	2.1 COO Format
	2.2 Compression

	3 Experimental Results
	3.1 Setup and Memory Savings
	3.2 Performance of SpMV
	3.3 Effect on BICGSTAB

	4 Concluding Remarks and Future Work
	References

