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Abstract

Several theoretical studies suggest that coordination problems can cause arbitrageur

crowding to push asset prices beyond fundamental value as investors feedback trade on each

others’ demands. Using this logic we develop a crowding model for momentum returns that

predicts tail risk when arbitrageurs ignore feedback effects. However, crowding does not

generate tail risk when arbitrageurs rationally condition on feedback. Consistent with rational

demands, our empirical analysis generally finds a negative relation between crowding proxies

constructed from institutional holdings and expected crash risk. Thus our analysis casts both

theoretical and empirical doubt on crowding as a stand-alone source of tail risk.
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I. Introduction

What is the role of crowding in generating tail risk in investment strategies? A growing

theoretical literature argues that financially constrained arbitrageurs can generate tail risk in asset

prices by way of fire sales—forced exit from an otherwise profitable trade. The constraints

underlying these theories derive from a variety of sources, including delegated portfolio

management (Shleifer and Vishny, 1997), segmented margin accounts (Gromb and Vayanos, 2002),

self-imposed loss limits (Morris and Shin, 2004), and illiquidity in funding markets (Brunnermeier

and Pedersen, 2009). Crowding potentially plays an interactive role in these theories by setting the

conditions under which a forced reversal of investment positions generates extreme price impact

and transient undervaluation. Indeed, Brown, Howard, and Lundblad (2019) provide empirical

support for the hypothesis that concentrated positions amplify tail risk in times of market distress.

The aim of this study is rather different. We explore whether crowding per se generates tail

risk, without conditioning on market distress. As developed below, such an analysis requires a

setting in which arbitrageurs follow a strategy based on prices and incomplete information about

peer actions; and a setting where crowding induced tail risk is plausible. The momentum strategy

fits that setting well. It uses no exogenous signal of value that could be used to coordinate

arbitrage, and it is a statistically robust, widely-documented, and popular investment strategy that

has well-known crash tendencies (Barroso and Santa-Clara, 2015; Daniel and Moskowitz, 2016).

Related studies have shown that incomplete information about the actions of peers (i.e., the crowd)

can induce arbitrageurs to amplify bubbles (Abreu and Brunnermeier, 2003) and push prices away

from fundamental value (Stein, 2009). We contribute to this literature by formally developing a

theory of crowding and momentum tail risk, and conducting an empirical analysis of that theory

using direct measures of institutional crowding applied to 13f data.

Our theoretical setting uses standard assumptions for preferences and the structure of
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information to highlight the central role of investors’ beliefs. We first demonstrate how unobserved

crowding can explain momentum tail risk using the logic of Stein (2009). If the demands of peer

momentum investors are indistinguishable from the informed trade that the strategy seeks to

exploit, then unanticipated entry by those peers can create a feedback component to each

momentum investor’s demand. Depending on how beliefs are structured, this feedback component

can spiral into grossly inflated aggregate momentum demands, driving the market price of

momentum stocks far beyond their fundamental value. The extreme valuation reverses with the

arrival of fundamental information, yielding large negative momentum returns. This motivates a

crowding hypothesis for momentum crashes.

We then demonstrate that this crowding hypothesis requires myopic momentum investors.

If momentum investors ignore feedback effects then, under standard assumptions, their demands

relate linearly to market prices. However, linear demands generate precisely the feedback effects

that momentum investors ignore in forming linear demands. Because those feedback effects are

nonlinear, rationality requires a nonlinear mapping from market prices to the inferred fundamental

values. This in turn implies nonlinear demands. In our rational solution to market equilibrium, we

solve for these demands using conditional expectations derived from a fixed-point equilibrium

condition. We find that the resulting demands eliminate crowding-induced momentum tail risk.

This sets up the primary test in our empirical analysis. If we can relate crowd size to tail

risk in momentum returns, then we ought to also be able to find feedback effects in momentum

investors’ demands. Conversely, if we are unable to link crowding to negative skewness in

momentum returns, then we should find that momentum investors exit from the momentum

strategy when feedback risks are high. This unwinding of feedback effects via risk-managed

demands is the main insight from the rational expectations equilibrium, which predicts that

momentum investors negate crowding effects by reducing demands when feedback risks are high.
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Our empirical analysis uses 13f data to construct proxies for momentum crowding by

directly linking changes in institutional holdings to past returns, following the analysis of mutual

fund momentum trading in Grinblatt, Titman, and Wermers (1995). However, our proxies

incorporate persistence in trading to better distinguish investment strategy from spurious

trade-return correlations. Also, we consider a variety of perspectives on identifying crowd size,

including the number of momentum investing institutions, their size, and the aggregate intensity of

their trade. We consider a perspective that focuses on the momentum factor mimicking portfolio

and a perspective that focuses on individual momentum stocks. To our knowledge, this represents

the most direct and comprehensive construction of proxies for institutional momentum investing in

the literature. Several other studies (most notably Lou and Polk, 2013) use returns-based

approaches to infer crowding. We provide evidence on the efficacy of returns-based procedures

relative to our direct proxies based on institutions’ trading strategy.

We find strong evidence that crowding predicts negatively mean momentum returns, which

is consistent with theoretical prediction under all belief specifications considered. However, we find

little evidence that (unanticipated) crowding predicts momentum tail risk. To be meaningful, tail

risk implies negative skewness, elevated volatility, and excess kurtosis. Our proxies for momentum

crowding generally relate negatively to all three,1 often with statistical reliability. This result is not

consistent with crowding providing a stand-alone explanation for momentum crashes, but it is

consistent with our rational expectations model of momentum investing. In particular, our finding

of reduced participation by institutional momentum investors when feedback risks are high

supports the rational model’s premise. Thus, we reject crowding as a stand-alone explanation for

momentum tail risk.

A link between crowded trades and higher return moments for quantitative investment

1To be precise, crowding is associated with lower volatility, less excess kurtosis, and less negative skewness.
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strategies such as momentum has been examined in the context of the ‘quant meltdown’ of 2007

(e.g., Khandani and Lo, 2007; Pedersen, 2009). It is important to note that these studies analyze

the interactive effect of crowded strategies on funding liquidity risks; they do not argue that

crowding per se led to the meltdown. This is a different model of tail risk (deriving from funding

liquidity) than that considered here (deriving from feedback effects). Our analysis concludes that

crowding does not provide a stand-alone explanation for momentum tail risk. We do not consider

the role of funding liquidity, or how funding interacts with the extent of institutional participation

in the momentum strategy.

Our analysis makes an important contribution to the literature on risk management in

investment strategies (e.g., Barroso and Santa-Clara, 2015; Daniel and Moskowitz, 2016). Our

theory provides intuition in the context of a rational expectations model, and our empirical

evidence demonstrates how momentum institutional investors pull back from the strategy in toxic

environments. Our assumptions are conventional. We use log normally distributed cash flows and

constant relative risk aversion (CRRA) preferences with a second-order approximation in the

demand optimization (as in Campbell and Viceira, 2002, and Peress, 2004)—effectively

mean-variance preferences scaled to wealth. Our information structure is similar to Hong and Stein

(1999) and Stein (2009), from which the crowding hypothesis arguably originates. Finally, our

fixed-point methodology does not put restrictive conditions on the distribution of cash flows or the

mapping of cash flow expectations into demands. Thus, it is robust to alternative specifications.

On the empirical side, several arguments speak in favor of our crowding measures. First,

the measures draw on a large body of literature that shows that institutional investors are

momentum traders (Lewellen, 2011; Edelen, Ince, and Kadlec, 2016). Second, we verify with

transition matrices that our institution level measures capture meaningful momentum trading.

Finally, our first main empirical results shows that our crowding proxies indeed strongly negatively
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relate to momentum returns—even after controlling for momentum’s volatility (Barroso and

Santa-Clara, 2015) and dynamic risk factors (Grundy and Martin, 2001).

We try to reconcile our results with studies that use returns-based measures of crowding.

For the momentum gap measure proposed by Huang (2015), we show that orthogonalizing this

variable to our crowding measures leaves the ability to predict momentum tail risk unaffected. This

supports our second main empirical conclusion that momentum’s crash risk cannot be attributed to

crowding by institutional investors, and it opens the door to alternative explanations for

momentum crashes.2

There is much related literature on the subject. We provide a detailed survey in Internet

Appendix IA.A. Section II develops the model and Section III develops and analyzes its result

using a simulation approach. Section IV presents the empirical analyses and Section V concludes

the study.

II. Model

A. Setting

In practice momentum is a dynamic strategy that conditions on past (realized) returns. To

focus on the effect of crowding, we collapse the analysis into a single call auction as in Stein

(2009).3 Thus, we model a two-period setting where the first period generates a formation-period

return and the second period generates an evaluation-period return. In the first period informed

investors observe a signal of differential value for good versus bad stocks, and in the second period

2See, for example, Daniel, Jagannathan, and Kim (2019) who argue that momentum crashes arise because of the

higher effective leverage of past loser stocks (in the sense of Merton, 1974) following market downturns.

3Since investors can submit a demand schedule that conditions on the market clearing price at the time of the

auction, they can effectively condition on past returns as of that time—even though demand schedules are submitted

prior to the auction. Our simplified setting therefore retains the key feature of the momentum strategy.
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the fundamental value of all stocks is revealed. As developed below, this setting gives rise to

momentum returns similar to Stein (2009).

The setting at time 0 is symmetric in that all stocks have equal market value and all

investors hold the same portfolio—an equal-weighted investment in all stocks. There are three

types of stocks; good, bad, and neutral, but at time 0 no investor knows their identity. There are

three types of investors: informed, momentum, and counterparty. During the formation period

(time 0 to 1) informed investors observe the type of each stock, and a valuation signal δ described

below. This signal indicates the differential payoff on good versus bad stocks. All good stocks have

the same positive signal and all bad stocks have the same negative signal.

The fundamental value Pj,2 of each stock j is revealed to all investors at time 2 to be

(1) lnPj,2 = lnPj,0 + χ+ ιj
δ + ε

2 ,

where Pj,0 is the time-0 price that is normalized to 1 without loss of generality; χ is a normally

distributed mean-zero innovation common to all stocks with variance σ2
χ; ιj identifies stock j’s type

(1 for good, -1 for bad, and 0 for neutral); and δ + ε is the realized valuation spread on good minus

bad stocks that consists of the signal δ and a normally distributed mean-zero disturbance ε with

variance σ2
ε . The random variables χ, δ, and ε are independent. χ generates market risk for

investors, whereas δ + ε generates a momentum return as developed below.

Informed investors see the vector of stock identifiers {ιj} in the formation period, and their

signal δ that is drawn from a lognormal distribution. Thus, δ (which can be thought of as the ex

ante valuation spread on good stocks minus bad) is positive, whereas δ + ε (the ex post spread) can

be negative.

Informed investors seek to trade in the time 1 call auction. However, because of their signal
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homogeneity, their demands can be condensed to an equal-weighted portfolio that is long all good

stocks and short all bad stocks. This defines the momentum portfolio. Momentum investors infer

the portfolio from the differential price pressure of informed demands.

Both counterparty and momentum investors remain uninformed in the formation period.

Thus, neither would be willing to counter demands in the time 1 auction if they were rational and

knew that informed investors were active. To support market clearing we therefore define a

counterparty investor type that irrationally fixates on historical data and ignores the existence of δ

(effectively assuming δ = 0).4 As a result, these investors wrongly interpret informed investors’

price pressure as noise, so they trade counter to that price pressure in the time 1 call auction.

Our third investor type, momentum investors, recognizes that the above two investor types

generate equilibria with momentum opportunities if informed investors are risk averse. Thus,

momentum investors formulate a model of market equilibrium in the time 1 call auction and use

that model to try to capture momentum opportunities. In doing so they incorporate varying

degrees of rationality into their model. They know the distribution of random variables.

Note that every investor trades a single basket—the momentum portfolio. Informed

investors do so because of their homogeneous signal. Counterparty and momentum investors do so

because they react to the pricing signal caused by (homogeneous) informed investor demands. We

therefore frame our analysis in terms of the momentum portfolio as a single, composite asset.

Let f denote the formation-period log return on the momentum portfolio (to be solved for).

The evaluation period log return is then δ + ε− f . Let m ≡ E (δ + ε− f |δ, f) = δ − f denote the

expected momentum return that informed investors leave on the table in the time 1 call auction.

Only informed investors see m.

4Counterparty investors can also be thought of as contrarian traders anchoring on past prices. See, for example,

Hvidkjaer (2006) for empirical evidence on contrarian trading and George and Hwang (2004) for evidence showing

that traders likely anchor on past prices.
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B. Demand Schedules

All investors have power utility preferences with relative risk aversion γ, choosing a time 1

demand schedule for the momentum portfolio to maximize5

(2) E [u (K2)] = E

[
K1−γ

2
1− γ

]
,

where K2 denotes their time 2 capital. We use the second-order approximation approach of

Campbell and Viceira (2002, Internet Appendix) to restrict investors’ attention to the first two

moments, yielding6

(3) Demand = Etype [m+ ε]
γV artype [m+ ε]Ktype,0,

where Ktype,0 denotes the time 0 initial capital of the indicated investor type ∈ {I, C, M}, and the

details of the derivation are in Internet Appendix IA.B. The expectations can be simplified to

EI [m+ ε |δ, f ] = δ − f , EC [m+ ε |f ] = −f , and EM [m+ ε |f ] = δE − f . The variances are

V arI [m+ ε |δ, f ] = σ2
ε , V arC [m+ ε |f ] = σ2

ε , and V arM [m+ ε |f ] = δV + σ2
ε . The placeholders

δE = EM [δ |f ] and δV = V arM [δ |f ] will thereby be solved for below.

Momentum investors infer expected momentum returns, m, by way of the market clearing

price. This inference is imperfect and potentially quite complicated since market equilibrium

depends on unobservable capital allocations and momentum investors’ own demands.7

5We assume that γ > 1 without loss of generality throughout the paper.

6The advantage of this scheme over CARA utility is to provide a natural role for investors’ capital to frame the

analysis of crowding. We acknowledge that the analysis would probably not differ substantially if we were to begin

with CARA preferences.

7To this point our analysis largely parallels Stein (2009). Our analysis of varying degrees of rationality, including

a fully rational fixed-point equilibrium, marks the point of departure.
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C. Equilibrium

Summing demands across the three investor types and equating to supply (zero) gives the

market clearing condition:

(4) f = 1
D

δkI + δE

1 + δV

σ2
ε

kM

 ,

where D =
(
1− δV

σ2
ε+δV kM

)
and ktype = Ktype/ (KC +KI +KM) indicates the fraction of capital

from each investor type. The random variable kM is the momentum-investor relative crowd size.8

The initial capital allocations kI, kC, and kM are randomly drawn from a symmetric Dirichlet

distribution (discussed in more detail in Section III).

We consider four solutions to equation (4), beginning with a perfect-information base case

and continuing through various assumptions on momentum investor rationality.

Known crowding. With known crowding (i.e., the realization of random variables kM and

kI are observed prior to trading) momentum investors conjecture a linear equilibrium

(5) f = λδ,

with λ ≡ kI + kM. Beliefs δE = λ−1f and δV = 0 lead to a self-fulfilling linear solution to equation

(4). Hence, momentum investors’ conjecture fully reveals the private signal of informed investors.

Myopic beliefs. This case assumes that momentum investors know the mean of the

distribution of capital allocations, but they do not observe realizations; nor do they attempt to infer

realizations from market prices. They trade as if capital allocations were at their unconditional

8Note that crowding is not the same as aggregate demand by momentum investors for the momentum portfolio,

which follows from equation (3). This is an important distinction for the empirical section: Crowding uncertainty

derives from not knowing how many peers are following the same strategy. To quote Stein (2009) (pg. 1530) “...each

arbitrageur is uncertain about how many [emphasis not added] others will act.”
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mean values, conjecturing a linear equilibrium pricing relation

f = λδ, where λ ≡ EkM + EkI,(6)

as in the known-crowding case. The market clears at

f = λ

(
kI

λ− kM

)
δ = λ

(
kI

EkI − (kM − EkM)

)
δ.(7)

The bracketed multiplier in equation (7) equals one when realized capital allocations

happen to equal their expected values, but it generally adds a noise component to f with

unanticipated crowding (as in Stein, 2009). As momentum investors react to this false momentum

signal, their demands generate an asymmetric crowding-induced feedback effect. This distortion is

rather immaterial when the crowd size is abnormally low, but an abnormally high crowd size can

drive the price of the momentum portfolio far beyond fundamental value. The result is a

momentum crash when fundamental value is revealed.9

Optimal linear beliefs. This is an intermediate stop on the road to rationality,

considered in Stein (2009). As in the myopic case, momentum investors make no attempt to infer

realized capital allocations from the market clearing price, despite the asymmetric (and occasionally

extreme) impact that crowding can have on that price. That is, as the market clearing price f

becomes more extreme, it becomes more likely that its source is crowding-induced feedback effects

rather than information. When momentum investors restrict their strategy space to linear beliefs,

δE = λ−1f , they ignore this characteristic of market equilibrium. This is the case considered here.

9There is an equilibrium at a finite negative value for f when kM > λ. This corresponds to a reversal of

identification on winners and losers, putting momentum investors on the wrong side of the trade (heavily buying losers

and selling winners, with informed traders taking the other side and making enormous profits). We consider this case

in Internet Appendix IA.C but note here that it too predicts large negative momentum returns.
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Thus, momentum investors maintain a linear strategy, as in the myopic case, but they apply

an ad hoc attenuation to λ−1 to maximize ex ante profits (conditional on linear beliefs). This yields

an equilibrium that is structurally similar to equation (7), but with enough attenuation the

denominator in the bracketed multiplier can be bounded away from zero. This prevents

catastrophic losses from crowding-induced feedback effects.

Rational beliefs. To be rational, when beliefs δE and δV condition on f they must

generate demands that clear the market at f . That is, they provide a fixed point solution. Optimal

linear demands do not satisfy this condition.

Rationality is easily attained in the case of known crowding. Here we show that it is also

attainable with unknown crowding. The only requirement is that momentum investors account for

the asymmetric signal that f provides regarding the presence of crowding-induced feedback effects.

The random variables in the system are δ, kI, and kM. We write their joint density as

g (δ) · h (kM, kI), since δ is independent of kM and kI but the k’s themselves are dependent (with kC

they sum to one and are nonnegative). Momentum investors compute δE and δV given this joint

density, observation of f , and the definition of conditional expectations:

δE =
∫ ∞

0
δ p (δ|f) dδ, and δV =

∫ ∞
0

(
δ − δE

)2
p (δ|f) dδ,(8)

where, as shown in Internet Appendix IA.D,

(9) p (δ|f) =
g(δ)
δ

∫ 1
0 h

(
kM,

1
δ

(
fD − δE

1+(δV /σ2
ε )kM

))
DdkM∫∞

0
g(δ)
δ

∫ 1
0 h

(
kM,

1
δ

(
fD − δE

1+(δV /σ2
ε )kM

))
DdkMdδ

.

We use Matlab’s FSolve function to jointly solve Eqs. (8) and density function (9) at a given value

for f . We then repeat over a fine grid of plausible values for f to discretely approximate the

mappings f → δE and f → δV . We then interpolate to approximate beliefs at arbitrary values of
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f .10

III. Simulations

In this section we analyze the equilibrium under each specification of beliefs by solving

equation (4) 100,000 times with 100,000 random draws of the market conditions, i.e., δ, kM, and kI,

in each of the four belief cases. We then use those 100,000 equilibria per case to evaluate

momentum return moments and belief consistency. We use a concentration parameter α = 3 in the

symmetric Dirichlet distribution for capital proportions, Dir(α). This provides a relatively diffuse

prior belief for crowding, while maintaining a natural dependence among fractions of a whole with

equal expected value 1/3 and vanishing probability that ktype = 0 or 1.11 We use a mean (standard

deviation) of -2.405 (0.125) in the log-normal distribution for δ,12 and 0 (0.125) in the normal

distribution for ε. These calibrations are designed to fit summary characteristics of momentum

returns.13

Table 1 provides descriptive statistics of simulated momentum returns and Figure 1

provides plots of momentum investors’ inference of the informed signal, δE , and the expected

10We do not presume that investors literally solve Eqs. (8) in practice. Rather, the assertion is that the market

equilibrium that results from their trades aligns with this formula. Likewise, the Black-Scholes formula priced options

before the equation was derived and published (Black and Scholes, 1972).

11In Internet Appendix IA.E we find qualitatively similar predictions under various permutations on α and other

characteristics of the presumed setting, such as a uniform distribution for δ.

12These values imply an average δ of 9.1% with standard deviation of 1.14%. The log-normal distribution has the

advantage that the differential dividend is limited to positive values, and this distributional assumption is consistent

with the evidence in Andersen, Bollerslev, Diebold, and Ebens (2001).

13The model’s aim is to analyze whether market equilibrium in the presence of unanticipated crowding generates

tail risk in momentum returns. The most salient way to do this is to presume a setting where there is no tail risk in the

primitive distribution for cash flows, and analyze whether or not market equilibrium creates it. However, if we were to

simulate a setting with tail risk in the residual, our simulated equilibria would be unaffected, as the model essentially

employs mean-variance demands scaled to wealth (given our use of the Campbell and Viceira, 2002, approximation).
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momentum returns m given that signal. The first four columns in Table 1 and plots in Figure 1

correspond to the base case (known crowding), the rational, the myopic, and the optimal linear

setting; left to right respectively. To construct the plots, simulation trials are ranked into 100 bins

according to the conditioning variable on the horizontal axis and the 1000 trials within each bin are

averaged to approximate a conditional expectation. Table 1 also includes a fifth column tabulating

summary characteristics of actual momentum returns for comparison.

The first row of plots in Figure 1 examines the rationality of beliefs—whether or not

momentum investors’ presumed belief of δ (δE = horizontal axis) is consistent with the average

realized δ (vertical axis) in the corresponding simulations. Rationality implies an identity; i.e.,

momentum investors are correct on average. A wider (narrower) spread on the vertical axis implies

that momentum investors successfully infer more (less) information.

The plots in the second row present the expected momentum return m as a function of

beliefs, δE . A negative m means that momentum investors have systematically pushed the price of

momentum stocks beyond their fundamental value. Hence these plots identify settings in which

momentum investing generates destabilizing crowding effects.

[Insert Figure 1 and Table 1 near here]

Base case (known crowding). The base case presumes that momentum investors know

the degree of crowding from competing momentum investors at the time of trade. This allows

perfect coordination of demands so there are no crowding effects. We use the resulting distribution

of momentum returns as our benchmark for evaluating the more interesting cases in which investors

must form beliefs for unknown crowding.

From Panel A of Table 1, column 1, note that expected momentum returns m in this base

case are close to normally distributed with some positive skewness, and are never

negative—momentum investors never overshoot informed investors’ signal because they can
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perfectly infer it from the market clearing price. Nevertheless, from Panel B of Table 1, realized

momentum returns (m+ ε) are frequently negative. From the fifth column, note that modeled

realized returns in the base case roughly match the empirical mean and variance of quarterly

momentum returns, indicating that our assumed distribution of model inputs is well calibrated.

However, in contrast to the empirical distribution of momentum returns, modeled returns are

essentially normally distributed with no excess tail risk.

Table 1 also presents the simulated profitability of momentum, both as a mean abnormal

portfolio return (“mean profit”) and a certainty-equivalent return. Profitability takes into account

both the momentum return and the magnitude of the position taken in the momentum portfolio.

Mean profits in the base case are slightly less and the certainty equivalents slightly more than the

corresponding empirical mean and certainty equivalents.

Plot A.1 of Figure 1 presents an identity relation between the mean of informed investors’

valuation spread δ and momentum investors’ expectation of it δE . This confirms that prices fully

reveal private information in the base case. Plot A.2 shows that the model does not embed any tail

risk in momentum returns absent crowding. In particular, there is no random draw of market

conditions that yields negative expected momentum returns.

Rational beliefs. The second columns in Figure 1 and Table 1 present the rational case.

From Plot B.1 of Figure 1, mean beliefs δE map identically into the mean δ underlying those

beliefs, consistent with rational expectations. However, the dispersion of inferences (vertical axis) is

narrower than in Plot A.1, indicating that momentum investors cannot infer δ as precisely as when

crowd size is known. Plot B.2 indicates that even in the highest bin for δE momentum investors do

not systematically overshoot fundamental value and generate a negative expected momentum

return. From Panel A of Table 1, expected momentum returns exhibit no negative skewness, excess

kurtosis, or incremental volatility, just as in the base case. From Panel B, realized momentum
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returns and profitability are only slightly lower than in the base case. Overall, these results provide

our main theoretical result, summarized as

Result 1. When momentum investors rationally condition on the momentum portfolio price to

infer crowd size, unanticipated crowding does not generate momentum tail risks.

Myopic beliefs. Plot C.1 of Figure 1 indicates a strongly concave relation between beliefs

δE and fundamental value δ when momentum investors hold myopic beliefs. In particular, when the

randomly drawn market conditions generate beliefs of a high momentum return, those beliefs

systematically and grossly overstate the corresponding signal of informed investors. From Plot C.2,

this generates an expected momentum return m on the order of -400% in the highest beliefs bin.

From the third column of Table 1, momentum returns exhibit substantial excess volatility and

kurtosis with extreme negative skewness. We summarize this as

Result 2. When momentum investors myopically employ a linear strategy, making no effort to

infer crowd size from the momentum portfolio’s price, unanticipated crowding can lead to extreme

tail risk in momentum returns.

Contrasting Results 1 and 2 makes it clear that unanticipated crowding can generate

momentum tail risk to an essentially unbounded degree, if momentum investors employ myopic

strategies. Yet, when momentum strategies are based on rational expectations, crowding-induced

tail risk is completely avoided. Thus, predictions of crowding-induced tail risk depend crucially on

how the momentum crowd acts when tail risk is high. If unanticipated crowding does (does not)

account for momentum tail risk, then we ought to observe an elevated (reduced) crowd size when

tail risk is high. Before turning to our empirical analysis of this matter, we consider one more

simulation (as in Stein, 2009) for completeness.

Optimal linear beliefs. In this setting momentum investors base their demands on linear
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beliefs δE = λ−1f as in the myopic case. However, rather than completely ignoring crowding effects,

investors choose a value for λ−1 between one (which implies momentum demands are zero for all f)

and the completely myopic case of 1.5 (= (EkM + EkI)−1 where EkM = EkI = 1/3) to yield the

highest average realized utility from equation (2). We use a grid search to find that value to be

λ−1 = 1.12.

From Plot D.1 of Figure 1, fundamental value δ rises monotonically with beliefs δE , but the

relation is nowhere near an identity as required under rationality. Investors still succumb to

feedback effects and overstate beliefs when they are high (i.e., δE > δ), and they understate beliefs

at just about all other levels. As a result, they sacrifice substantial profit relative to the rational

case. For example, from column 4 of Table 1 certainty equivalent returns are around 70 percent

lower. However, feedback effects of unanticipated crowding are greatly attenuated. While there are

instances of negative m in Plot D.2, they are not extreme. The higher moments of momentum

returns in Table 1 are well behaved. In short, by proportionately restricting trade, a linear

momentum strategy can be made to attenuate crowding-induced tail risk, albeit in a grossly

inefficient way.

IV. Empirical Section

We base our empirical analysis on quarterly holdings from the Thomson Reuters

Institutional 13f database starting in the first quarter of 1980 and ending in the third quarter of

2015. Stock data are from the Center for Research in Security Prices (CRSP) database using price

and share adjustment factors, restricted to CRSP share codes 10 and 11 and a listing on AMEX,

NYSE, or Nasdaq. The momentum return at time t is defined as the return of winners (stocks in

the top 10% using NYSE cutoffs, sorting on returns from months t− 12 to t− 2) minus the return

of losers (stocks in the bottom 10% similarly constructed). Returns are value-weighted within each
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decile and taken from Kenneth French’s online data library.

A. Crowding Proxies

We construct crowding proxies by first applying an algorithm to designate institution i a

momentum investor in quarter q, then aggregating this designation using various weighting schemes.

A.1. Momentum Designation

Following Grinblatt et al. (1995) we base our designation of a momentum investor on the

following score:14

(10) SCOREi,q =
J∑
j=1

(ωi,j,q − ωi,j,q−1) rj,q−1,

where rj,q is the quarter q return on stock j and ω is a portfolio weight with

(11) ωi,j,q − ωi,j,q−1 = wi,j,qPj,q−1∑J
j=1wi,j,qPj,q−1

− wi,j,q−1Pj,q−1∑J
j=1wi,j,q−1Pj,q−1

,

and wi,j,q indicates shares held in stock j by institution i at the end of quarter q and Pj,q−1 is the

price of stock j at the end of quarter q − 1. We fix the prices in equation (11) to avoid passive

changes in portfolio weights induced by returns.

A positive SCORE implies trading aligned with a momentum strategy. However, a single

quarter of alignment in trading is surely a noisy indication of strategy. Thus, we use:

14In previous versions of the paper we also include an alternative scoring procedure based on the now standard

12− 1 momentum strategy outlined in Jegadeesh and Titman (1993). The procedure is largely redundant and yields

similar results so we restrict our attention to this procedure as it has precedence in the literature. The corresponding

results are available upon request.
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Momentum designation. Institution i is designated a momentum investor in quarter q if it has

a positive SCORE from equation (10) in each quarter q − 3 through q. We denote this

1MOMi,q = 1∑3
l=0 1SCOREi,q−l>0=4, where 1 is the indicator function.

Since 13f filings do not contain short positions, this definition could fail to identify a

momentum institution whose long positions underweight winners and overweight losers while its

short positions overweight losers. We believe this to be implausible as it requires extreme

inconsistency between the momentum tilt of long and short positions and it implies large short

positions. Mutual funds dominate our sample and the short side of their portfolios is typically small

(Ang, 2014). Moreover, if a momentum investor buys winners and shorts losers they will still be

scored a momentum investor under our procedure.

A.2. Measures of Momentum Investing

We conduct our analyses using two sets of three measures for crowd size (i.e., proxies for

kM )—six in total. The three measures focus on: the count of institutions following a momentum

strategy (denoted CNT); their assets under management (denoted AUM); and their trading (more

precisely, quarterly change in holdings) (denoted TRD). The two sets differ with respect to the scope

of crowding. Measures constructed at a factor level examine institutions’ crowding into a

momentum factor-mimicking portfolio (no consideration of individual securities). Measures

constructed at a security level first examine the crowd size in each component security of the

momentum factor-mimicking portfolio, then aggregate across the portfolio.

As in Stein (2009), our theoretical analysis points to coordination among momentum

investors as the key driving force behind crowding-induced tail risk in momentum returns. With

perfect coordination, feedback effects from crowding are eliminated. On the one hand, it seems

reasonable to conjecture that the ability to coordinate should depend on the number of momentum
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investors involved in the coordination. This suggests that a count-based measure of crowd size

might best predict crowding effects. On the other hand, our rational-expectations theory shows how

momentum investors can coordinate implicitly, via price. Thus, rational momentum investors can

avoid feedback effects irrespective of the number of competing peers. Thus, we consider a count

based measure to help distinguish these predictions.

We construct a count-based measure at the factor level using the fraction of momentum

institutions in quarter q:

(12) CNT_Fq = 1
Nq

Nq∑
i=1

1MOMi,q .

Scaling by Nq, the total count of institutions in quarter q, makes the measure comparable across

quarters. CNT_F only considers overall momentum investing, but crowding effects might be more

salient when momentum investors buy (or sell) the same individual stocks. This motivates an

alternative stock-level measure of crowding. Thus, we define the crowd size at the individual

security level and then aggregate across momentum securities using:

(13) CNT_Sq =
J∑
j=1

(
ω̄j,q − ωj,q

) ∑Nq
i=1 1wi,j,q>01MOMi,q∑Nq

i=1 1wi,j,q>0
,

where ω̄j,q is the weight of security j in the winner leg of the factor mimicking portfolio (relative

market capitalization otherwise zero), ωj,q is the corresponding weight in the loser leg, and the

second term in the sum indicates the fraction of institutional holders of the security that follow a

momentum strategy. A high (low) ratio indicates a crowded market for a winner (loser) security.15

15Because these fractions can take on extreme values at the individual security level, we Winsorize at the 1 and 99

percent level.
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The difference, summed across securities, yields CNT_S as an aggregate measure of crowding.

While lack of coordination is key to crowding effects, the dollar magnitude of momentum

investment should also play an important role as it directly ties to supply and demand conditions.

Thus we also construct proxies for kM weighting by assets under management, and by the dollar

volume of momentum trade. To do so we first construct the following five variables by

institution-quarter:16

HOLDi,q =
J∑
j=1

wi,j,qPj,q, WHOLDi,q =
J∑
j=1

wi,j,qPj,q1ιj,q=1, LHOLDi,q =
J∑
j=1

wi,j,qPj,q1ιj,q=−1,

WTRDi,q =
J∑
j=1

(wi,j,q − wi,j,q−1)Pj,q−11ιj,q=1, LTRDi,q =
J∑
j=1

(wi,j,q − wi,j,q−1)Pj,q−11ιj,q=−1,

where ιj,q = ±1 indicates a winner or loser security as in the model (ιj,q = 0 if not an extreme

decile of past returns). We define

AUM_Fq =
∑Nq
i=1 HOLDi,q1MOMi,q∑Nq

i=1 HOLDi,q
,(14)

TRD_Fq =
∑Nq
i=1 WTRDi,q1MOMi,q∑Nq

i=1 WHOLDi,q
−
∑Nq
i=1 LTRDi,q1MOMi,q∑Nq

i=1 LHOLDi,q
.(15)

Since these measures reference aggregate momentum capital we denote them factor-level measures.

AUM_F is essentially CNT_F weighted by institution size, whereas TRD_F weights by the dollar

volume of momentum trading (quarterly change in holdings) separately in the winner and loser

portfolios.

16Again, these variables Winsorize at the 1 and 99 percent level.
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We also construct the security-level measures

AUM_Sq =
J∑
j=1

(
ω̄j,q − ωj,q

) ∑Nq
i=1wi,j,qPj,q1MOMi,q∑Nq

i=1wi,j,qPj,q
,(16)

TRD_Sq =
J∑
j=1

(
ω̄j,q − ωj,q

) ∑Nq
i=1 (wi,j,q − wi,j,q−1)Pj,q−11MOMi,q∑Nq

i=1wi,j,qPj,q
.(17)

These are again analogs to CNT_S using weights equal to either the dollars allocated to the

momentum security, AUM_S, or the dollar trading in that security, TRD_S.17 In all six cases we

consider both levels (generically referenced as CROWDq) and changes (generically referenced as

∆CROWDq) to capture anticipated and unanticipated components.18 We use a GARCH(1,1)

specification of expected volatility in the time series of crowding to capture uncertainty, referenced

as CROWD_EVOL.

One final comment on count versus capital based measures. There is a close analogy in

microstructure considerations of the impact of trading on prices (Jones, Kaul, and Lipson, 1994),

and more general considerations of institutional trading’s impact on prices as in Sias, Starks, and

Titman (2006) and Edelen et al. (2016). In both settings it turns out that count-based measures

provide a more effective proxy than capital-based measures. Hence, even though capital-based

measures are closer to supply and demand conditions, count-based measures have a priori

precedence and are perhaps more closely tied to coordination.

B. Descriptive Statistics

Table 2 provides summary statistics for the 13f data in Panel A and the six momentum

proxies in Panel B. For the purpose of Panel A only, we define a consistent momentum investor as

17Again, fractions Winsorize at the 1 and 99 percent level.

18Thus CROWD either collectively refers to all variants (e.g., AUM, TRD, CNT crossed with _F and _S), or to a specific

variant if so noted (as in the tables).
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any institution that scores a momentum quarter as in equation (10) in at least two-thirds of

available quarters. (We do not use this momentum trader definition in our later empirical analysis

because it is forward looking.) From Panel A, 16% (986/6,360) of institutions are classified as

consistent momentum investors. On average these institutions have higher turnover (26% compared

to 20%); manage more assets (1.7 billion versus 1.5 billion); and hold more stocks (181 versus 136)

than their counterparts.

[Insert Table 2 near here]

From Table 2 Panel B, 10.8% of institutions are designated momentum investors

(1MOMi,q = 1) in the typical quarter (CNT-factor measure) and 14.5% of institutional capital is held by

momentum investors (AUM-factor measure). Both measures are highly persistent (83% and 77%,

respectively). For the typical momentum stock only 4.3% of institutional holders are classified as

momentum investors (CNT-security measure), but 7.3% of the aggregate institutional investment in

the stock is held by momentum investors (AUM-security measure). These security-level measures are

slightly less persistent than their factor-level counterparts (62% and 69%, respectively). The TRD

measures indicate that momentum investors trade about 3.4% of the institutional capital traded in

the typical momentum stock (using TRD-security) or the momentum portfolio (3.5% using

TRD-factor). Because most crowding variables show strong persistence, we estimate volatility with a

GARCH(1,1) specification (Bollerslev, 1986) using residuals from an AR(1) regression of quarterly

crowding observations.

Table 3 summarizes regressions of momentum returns using the Fama and French (1993)

three factor model (abbreviated FF3), and a dynamic version of the same model (dynamic FF3 or

DFF3). The dynamic model is motivated by the evidence in Grundy and Martin (2001) of

time-varying risk exposure in the momentum portfolio. It includes regressors with an interactive

indicator variable for a positive prior-year factor return. Note that the dynamic model provides a

22

Electronic copy available at: https://ssrn.com/abstract=3045019



substantial improvement in adjusted R-squared over the traditional Fama and French model. Also

note that the Grundy and Martin (2001) argument applies similarly to all three Fama and French

factors and two out of three interactive terms are significant. Also notice from the moments of

momentum returns reported previously in Table 1 of Section III that momentum has substantial

crash risk (high excess kurtosis with pronounced left-skewness) in our sample (which includes the

momentum crash of March-May 2009).

[Insert Table 3 near here]

Table 4, Panel A shows the persistence of a momemtum SCOREi,q and a momentum

designation, 1MOMi,q . First note that SCOREi,q has a transition probability of 0.54 at both one and

four quarter horizons, implying a 19% greater likelihood of a positive momentum score four

quarters ahead than the unconditional probability of 0.45. An institution’s momentum designation

1MOMi,q persists four quarters ahead with probability 0.34, which is 3.32 times the 0.10 unconditional

probability reported in the table.19

In any given quarter, some institutions trade with and some against momentum (from Table

4, Panel A the unconditional mean SCOREi,q = 0.45).20 A possible concern is that institutions can

be classified as momentum investors even if none of them trades on relative strength signals. An

investor acting on signals uncorrelated with past returns has a 50% chance of a momentum score in

any given quarter. Yet, only deliberate momentum investors acting on a relative strength signal can

create feedback effects and the resulting tail risk. Accidental momentum investors who trade

independently of (but coincident with) past returns do not generate feedback. This highlights the

19The 10% figure presented here differs from the 10.8% figure in Table 2 because the latter is a pooled mean, rather

than a steady-state probability (estimated from the quarterly transition matrix).

20This is less than the 59% estimate that Grinblatt et al. (1995) provide for mutual funds. The difference probably

reflects that our dataset includes hedge funds which are contrarians on average (Grinblatt, Jostova, Petrasek, and

Philipov, 2016).
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importance of using a measure such as 1MOMi,q that identifies institutions that consistently follow a

momentum strategy. From Table 4, 10% of all institution-quarters indicate a momentum

strategy—i.e., the institution has traded in line with past returns for each of four consecutive

quarters. An investor who trades uncorrelated with past returns has an expected 1MOMi,q of

0.54 = 6.25%. Hence, the group of observed momentum investors is indeed higher than what chance

alone would predict, suggesting a subset of institutional investors deliberately follows the

momentum strategy. Interestingly, as institutions as a whole approximately hold the market

portfolio (Lewellen, 2011), this also suggests some institutions have a contrarian bias, as in the

setup of our model.

Table 4, Panel B evaluates predictability of trading in the stocks comprising the 12− 1

momentum factor mimicking portfolio used for momentum returns. Specifically, let MOM_BUYi,q

denote an indicator for

(18)
J∑
j=1

(ωi,j,q − ωi,j,q−1) ιj,q > 0,

where, as before, ιj,q = +1 (−1) when the 12− 1 past-return of stock j is in the top (bottom) decile

(ιj,q = 0 otherwise). MOM_BUYi,q identifies investor i as a net buyer of momentum stocks in quarter q.

From Panel B, a momentum designation in quarter q predicts MOM_BUYi,q+4 with probability 0.69.

This is substantially higher than the unconditional probability (an untabulated 0.4862), as seen

with the q + 4 likelihood ratio of 1.42. It is also substantially higher than the predictability using

SCOREi,q (a likelihood ratio of 1.15). This shows that a consistent pattern of trading on relative

strength over four consecutive quarters (i.e., 1MOMi,q) improves the identification of future

momentum trading.

[Insert Table 4 near here]

Table 4 also documents the rapidly changing composition of the momentum portfolio.
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Winners have a 56% chance of remaining winners the following quarter, but at four quarters the

probability is only 16%, which is actually less than the 23% chance of becoming a loser. Persistence

is higher with losers, with 31% retaining that classification after four quarters.

C. Crowding and Momentum Conditional Expected Returns

Table 5 shows the results of predictive regressions of momentum returns on the various

crowding measures. In all regressions the return on the momentum portfolio is dated q + 1. In

Panel A we include as control regressors the dynamic Fama-French benchmark factors (see Table 3).

Because the results in Panel A (with return benchmarking) are broadly consistent with the results

in Panel B (without such controls), we focus our discussion on Panel A. In all regressions we

include realized volatility of momentum returns as a control, computed from squared daily

momentum returns in quarter q, which Barroso and Santa-Clara (2015) show strongly predicts

(negatively) momentum returns.21 The regression sample for momentum returns begins in the third

quarter of 1981 and ends in the fourth quarter of 2015 to account for the six quarters of data

required to compute all regressors.

[Insert Table 5 near here]

We find that both CROWDq-1 and ∆CROWDq measures consistently and significantly negatively

predict momentum returns. This supports the idea that the information not yet incorporated into

prices from trading is decreasing in crowd size.22 It also demonstrates that our measures have

power to detect crowding effects on the first moment of momentum returns.

The table confirms the Barroso and Santa-Clara (2015) result on lag volatility of

momentum returns even with the anticipated volatility of crowding CROWD_EVOL included as a

21In unreported results we also controlled for the bear market states proposed by Cooper, Gutierrez, and Hameed

(2004). Using this control in our sample period did not change our results.

22We discuss in the context of Figure IA.3 in the internet appendix that this pattern is consistent with our model.

25

Electronic copy available at: https://ssrn.com/abstract=3045019



regressor. Thus, the Barroso and Santa-Clara (2015) result does not appear to be related to

crowding uncertainty. Indeed, if anything crowding uncertainty appears to positively predict

momentum returns, but this result is not robust across proxies.

D. Crowding and Tail Risk in Momentum Returns

This section considers tail risk in momentum returns. We first conduct a probit analysis of

tail probabilities. We then use a sorting procedure based on lagged crowding measures.

Table 6 presents the probit analysis of tail probabilities to assess the link between crowding

and negative skewness in momentum returns. In particular, we examine the conditional probability

of a momentum return in the pth percentile of the unconditional distribution, where p is either 5%

or 10%. Note that the mean dependency documented in Table 5 implies that crowding predicts a

leftward shift in the conditional distribution of momentum returns. Thus, even with no effect on

higher moments, crowding is expected to increase these tail probabilities. To address this we use a

Wald test applied to a bivariate probit analysis that considers the increase in left-tail probability

relative to the decrease in right-tail probability. Our null hypothesis is that crowding fattens the

left tail of momentum returns only because it shifts the entire distribution (including the mean)

leftward, with no elevation in negative skew.

[Insert Table 6 near here]

Panel A (B) of Table 6 considers 5% (10%) tails of the unconditional distribution of

momentum returns. The more extreme 5% tail is arguably more relevant in identifying a

momentum “crash,” but the 10% tail provides more data. Across Panels A and B the crowd

measure (levels or changes) is associated with an increase in tail probability in 22 of 24 cases. The

increase is never statistically reliable using the 5% tail (Panel A), but it is statistically reliable in 4

out of 12 specifications using the 10% tail (Panel B). Nevertheless, the p-values (in square brackets)
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for the difference in left versus right tail effect are far from significant in every case. Thus, we find

no evidence that crowding increases tail risk.

[Insert Figure 2 near here]

Figure 2 plots the time series of our crowding measures. Because the academic discovery of

momentum can be attributed to either Jegadeesh and Titman (1993) or Levy (1967), it may not be

surprising that we observe no increase in crowding after 1993. This result is also consistent with

Grinblatt et al. (1995) who find evidence of pervasive momentum investing in a sample of 155

mutual funds over the 1975-1984 sample period, a time interval set entirely before the publication

of the seminal study of Jegadeesh and Titman (1993). We also notice that some of our crowding

variables have a statistically significant time trend, but on average more than 85% of their variation

is not explained by the trend.23

The measures indicate that the momentum strategy was indeed crowded during the internet

bubble. Piazzesi and Schneider (2009) find similar evidence of increased trend following behavior

during the “housing bubble” of 2007-2009. On the other hand, no striking pattern is discernible

before or during the major momentum crash of 2009. If anything, momentum investing by 13f

institutions seems to have retracted prior to that crash.

Baltzer, Jank, and Smajlbegovic (2019) find that institutional selling of loser stocks peaked

in Germany during the Great Recession just before the 2009 momentum crash. This is consistent

with the momentum strategy being crowded at the time, suggesting a causality that our results

appear to contradict. But an important difference to keep in mind is that our study only considers

institutions that appear to consistently trade on the momentum signal as part of a deliberate

strategy. Their study considers the trading of all institutions, including those that sell losers for

23In unreported results, we also found that controlling for a time trend does not materially change any of our

inferences.
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reasons other than reaction to past returns (e.g., a correlation between financial-crisis losers and

contractual constraints on institutional holdings). The latter does not generate feedback effects as

in the crowding models of Stein (2009) or this paper.

While the notion of tail risk surely involves pronounced left skewness, to be meaningful tail

risk must also be accompanied by high volatility and excess kurtosis.24 In Table 7 we examine all

three higher moments of momentum returns by sorting calendar quarters based on lagged crowding.

We include a sort based on lagged realized volatility of momentum returns for comparison.

The evidence in Table 7 does not support crowding as a source of tail risk in momentum

returns. Across the three moments and twelve specifications of CROWD and ∆CROWD we find only one

instance of a significant relation consistent with crowding-induced tail risk.25 By contrast, we find

nine instances of a significant relation consistent with momentum investors avoiding momentum tail

risk (i.e., crowding measure correlated with lower volatility, more positive skewness, and lower

kurtosis).

[Insert Table 7 near here]

Contrast these results with the last column, where we condition on lagged volatility in

momentum returns. Here, we see statistically reliable prediction of negative tail risk in all moments.

This evidence is consistent with Barroso and Santa-Clara (2015) who find that a volatility-managed

momentum strategy has much smaller crash risk than original momentum. This contrast between

predictability of crash risk using return volatility and predictability using direct measures of

crowding (particularly the contrast in direction of predictability) suggests that many momentum

24A large kurtosis combined with left skewness is much more meaningful if volatility is also high. A low volatility

directly reduces the denominator in these quantities inflating their values.

25We find significantly more negative skewness using the change in AUM measure at the security level; t-statistic

-2.28.
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investors incorporate tail-risk predictability into their strategy (e.g., via lag return volatility). This

would be consistent with the rational beliefs case of our model, which in turn suggests (as in Result

1) that feedback effects from crowding do not explain the tendency for high lag volatility to predict

crashes.

Note that tail-risk avoidance is seen most prominently in count based (CNT) measures of

crowding. Indeed, estimates using our capital based measures (AUM and TRD) are almost always

statistically indistinguishable from zero whereas CNT based measures point to tail-risk avoidance in

8 of 12 instances. This suggests that tail-risk avoidance takes the form of marginal momentum

investors pulling away from the strategy in volatile environments.

We agree with much of the literature that it is tempting to interpret the predictive power of

volatility for momentum returns as indirect evidence of crowding effects. Indeed, our study was

originally motivated from just this perspective. However, a careful examination of this crowding

hypothesis—from both a theoretical perspective based on rational beliefs and from an empirical

perspective using direct proxies for institutional momentum investing—yields the opposite

conclusion. 13f momentum investors seem to identify potential destabilizing effects of crowding, and

adjust their strategy participation accordingly.

E. Crowding and the Volatility of Momentum Returns

If volatility clustering in momentum returns derives from crowding rather than factors

exogenous to momentum investors’ actions, then we should find that momentum volatility is

positively predicted by measures of crowding. To examine this, Table 8 presents predictive

regressions for realized volatility of momentum returns computed from raw and risk-adjusted

(dynamic FF3) daily returns over the quarter.

[Insert Table 8 near here]

29

Electronic copy available at: https://ssrn.com/abstract=3045019



Consistent with the preceding results in the literature, Table 8 finds that lagged realized

volatility has strong predictive power for subsequent volatility, with t-statistics ranging between

eight and twelve across regressions. However, we find no evidence that crowding positively predicts

elevated return volatility. Indeed, the relation is significantly negative in many cases. This result

suggests that expectation of momentum-strategy risk affects institutions’ willingness to participate

in the strategy. Note that this interpretation implies that forward-looking institutions observe a

wider information set than just lagged volatility in momentum returns, which we have controlled for.

The explanatory power of crowding measures in Table 8 pales in comparison to that of

lagged realized volatility. This is perhaps not surprising, as lag dependent variables capture all

persistent characteristics of the setting. Moreover, lag volatility is estimated using daily data

whereas crowding measures are based on holdings data observed at a quarterly frequency so the

precision of estimates differs greatly. What the crowding measures have going for them is that they

are explicit economic measures brought to bear on the data from theory. Lag dependent variables

offer little economic insight beyond persistence. We believe that this fact makes up for the

shortcoming in predictive power.

F. Determinants of Crowding

Table 9 presents regressions of crowding measures CROWDq on lagged one-year momentum

returns (denoted 1YR_RET) and one-year momentum-return volatility (denoted 1YR_VOL) computed

from daily observations. Crowding is significantly negatively related to volatility lagged one quarter,

using five out of the six proxies considered. Combining inferences from Tables 8 and 9, we conclude

that reductions in crowding seem to anticipate high future volatility in momentum returns

including but not limited to a quick response to past volatility.

[Insert Table 9 near here]
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Chabot, Ghysels, and Jagannathan (2014) use a comprehensive sample period of 140 years

to show that momentum crash risk increases after periods of good recent momentum returns.

Piazzesi and Schneider (2009) use survey data to study momentum investing in the US housing

market and find a substantial increase in the number of momentum investors towards the end of

the housing boom. Taken together, these studies suggest that good past returns in momentum

draw investors to the strategy and increase its crash risk. Table 9 shows that one-year returns

indeed predict positively crowding in momentum, consistent with such a mechanism. However,

higher past one-year momentum returns do not predict higher crash risk in our sample.26 Hence,

we are unable to relate our evidence of a dependence of crowding on past returns to the results in

these papers’ linking past returns to future crash risk.

Cooper et al. (2004) show that momentum returns are stronger in bull markets. However,

in unreported results, we find that momentum crowding is not related to lagged market states after

controlling for lagged momentum returns and volatility. Thus, the well-documented predictive

ability of market states for momentum returns does not seem to stem from crowding in the strategy.

G. Comparison with Return-based Measures of Crowding

Lou and Polk (2013) propose a proxy for crowding defined as comomentum, a measure of

abnormal co-movement of stocks in the momentum portfolio. In support of this proposition, they

document a positive relation between comomentum and aggregate institutional ownership of the

winners portfolio. Huang (2015) argues that the momentum gap, defined as the cross-sectional

dispersion of formation period returns, also proxies for crowding. He supports this by showing that

it is related to the difference in institutional ownership for winner versus loser portfolios. Both

studies find that the indirect, returns-based proxies for crowding negatively relate to momentum

26In unreported results we found no significant relation between past one-year momentum returns and crashes in

probit regressions controlling for momentum’s volatility.
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returns. Finally, volatility in momentum could also be hypothesized to arise from investor crowding,

potentially representing a third returns-based proxy.

We have already seen that the relation between volatility and institutional crowding is more

consistent with investors using using past and anticipated future volatility as a signal to exit the

strategy than investors causing volatility by way of their crowding. The question we address here is

how other returns-based proxies relate to our direct measures of institutional crowding. We focus

on the momentum gap due to its simplicity; because it is a strong predictor of risk and return for

momentum; and because of its proximity to the theory.

[Insert Table 10 near here]

Table 10 mirrors Table 7, except that the focus is momentum gap (denoted GAP) and

momentum gap orthogonalized to our crowding measures (generically denoted GAP⊥). If momentum

gap’s predictability stems from institutional crowding then orthogonalizing it should attenuate its

predictability. In each column, we rank all months in our sample into terciles according to the

sorting variable listed in the column heading, as of the preceding quarter. In the first column the

ranking variable is the momentum gap. Consistent with Huang (2015), we find that a high

momentum gap forecasts significantly higher volatility, negative skewness, and excess kurtosis.

That is, momentum gap forecasts tail risk.

In the remainder of Table 10 we sort into terciles based on the momentum gap

orthogonalized to each of our six proxies for institutional crowding, and to two additional variables:

∆MOM_INST from Huang (2015), defined as the percentage difference in aggregate institutional

ownership between past winners and losers; and WIN_INST from Lou and Polk (2013), defined as

the aggregate institutional ownership of the winner decile.27 GAP⊥ retains substantially all of the

27The WIN_INST measure is subject to two concerns. First, it shows a strong time trend as the asset management

industry grows over the sample implying that momentum is mechanically more crowded over time. Yet institutions
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predictive power for tail risk of momentum gap itself (column 1). We conclude that the momentum

gap is a strong predictor of momentum tail risk for reasons unrelated to institutions’ crowding in

the strategy.

We also orthogonalize GAP to the volatility control used in many of our preceding empirical

exercises. Since GAP is a measure of (cross-sectional) dispersion in returns, it should closely relate to

our time-series measure of volatility (indeed, the correlation is 0.73). However, GAP⊥ remains a

reliable predictor of future volatility: predicted volatility averages 35.6% following periods of high

GAP⊥ compared to 21.0% following periods of low GAP⊥. The t-statistic for the difference is 3.2.

However, predicted skewness and predicted kurtosis is no longer reliably different for high versus

low periods of GAP⊥.

V. Conclusion

We provide a model of crowding with momentum investors who attempt to infer informed

investors’ private signal from prices. The model is similar to Stein (2009) in setting, but our

analysis differs in its exploration of and emphasis on rational arbitrageur beliefs. Our primary

result is that predictions of destabilizing effects from unanticipated crowding require a myopic,

linear specification of beliefs in which momentum investors do not adequately account for the

potential destabilizing effect of crowding on prices. With rational (generally nonlinear) beliefs, the

potential destabilizing effects of crowding are internalized into demands. This mitigates feedback

effects that would otherwise lead to destabilized prices and results in stable momentum returns. In

short, our theory shows that crowding is not a viable explanation for momentum crashes in general,

but that crowding with myopic momentum investors can provide that prediction.

as a whole approximately hold the market (Lewellen, 2011) so institutional holdings of losers must show a similar

increase over time. Second, it is a measure based on holdings and therefore has high inertia.
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Our empirical contribution is twofold. First, we directly examine proxies for momentum

investing by institutional investors, in contrast to much of the literature that focuses on indirect

inferences of crowding from return covariances or volatility. Second, we directly examine the

implications of optimal versus myopic beliefs, documenting a generally inverse relation between

momentum investing and future tail risk in momentum returns.

Across the empirical analyses, we consistently find evidence of crash-avoidance behavior

rather than destabilizing feedback trading. Consistent with our theory under rational beliefs, we

find no evidence that crowding by momentum investors deteriorates the higher moments of

momentum returns (that is, causes crashes), despite a clear impact on the first moment of returns.

We do find that past volatility in momentum returns identifies crashes, as in prior studies. But we

also find that momentum investors both control for this result as well as condition on other sources

to anticipate and back away from periods of instability.
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Figure 2: Measures of Crowding

Panel (a) and (b) report the crowding measures at the factor and security level, respectively, constructed with 13f
holdings data in the period from 01/1981 to 09/2015. The shaded areas denote NBER recessions.

(a) factor level (b) security level
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Table 1: Momentum Returns in Simulations

The table reports unconditional return statistics for the simulations described in Figure 1. Descriptive statistics of
expected momentum returns in Panel A and realized momentum returns in Panel B are across all simulation. Mean,
stdev, skew, kurt, min, and max refer to average, standard deviation, skewness, kurtosis, minimum, and maximum,
respectively. The simulations are computed under the indicated belief specification, and the concentration parameters
of the Dirichlet distribution are 3. Optimal linear beliefs maximize the utility of a constant relative risk aversion
(CRRA) investor with γ = 2, and this optimal λ is reported in the row λ−1. Profits are likewise the expected portfolio
returns of a γ = 2 investor, and certainty equivalents are calculated for γ = 2, 4, 10, where portfolio weights are
calculated as in equation (3). Momentum returns are given by m+ ε where ε is randomly drawn from a zero-mean
normal distribution with standard deviation 0.125. The last column of the table reports the corresponding statistics
for the quarterly momentum returns in our sample period.

Belief specification Empirical

known rational myopic optimal
linear

λ−1 1.50 1.12
Panel A. Expected momentum returns m

mean 3.0% 3.0% -2.4% 4.2%
stdev 1.4% 1.6% 174.2% 2.0%
skew 0.6 0.4 -151.3 -0.3
kurt 3.1 3.0 29218.7 10.8
min 0.05% -2.55% -38957.17% -53.10%
max 10.26% 11.53% 13.16% 13.28%

Panel B. Realized momentum returns m+ ε

mean 3.1% 3.1% -2.4% 4.2% 3.5%
stdev 12.6% 12.6% 174.7% 12.7% 12.5%
skew 0.0 0.0 -150.1 0.0 -0.9
kurt 3.0 3.0 28910.6 3.0 7.0
mean profit 3.65% 3.44% -4863.08% 0.65% 4.04%
cer(2) 2.62% 2.53% -100.00% 0.74% 1.43%
cer(4) 1.30% 1.25% -100.00% 0.37% 0.84%
cer(10) 0.52% 0.50% -100.00% 0.15% 0.35%
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Table 3: Factor Model

The table contains the factor exposures of quarterly momentum returns on the Fama-French three factor model (FF3)
and a dynamic extension in which the three factors are interacted with dummies for positive past annual factor returns
(DFF3). Alphas are monthly and t-statistics (in parentheses) use White (1980) standard errors. *, **, and *** denote
significance at the 10%, 5%, and 1% levels, respectively.

alpha mkt SMB HML Dmkt DSMB DHML Adj R2
FF3 0.016*** -0.35** -0.48** -0.59** 12%

(4.39) (-1.98) (-2.06) (-2.06)

DFF3 0.014*** -0.85*** -0.68*** -0.95*** 0.81*** 0.48 1.02** 25%
(4.26) (-2.93) (-2.71) (-2.68) (2.77) (1.22) (2.14)

Table 4: Transition Frequencies

Panel A tabulates the probability of remaining in the classification indicated in the row heading, in the quarter
indicated in the column header. We require that the later quarter does not contain a missing observation. Likelihood
refers to the conditional relative to unconditional probability of the indicated classification. Panel B tabulates the
probability of being a net buyer of momentum stocks in the quarter indicated in the column heading (MOM_BUY = net
buying of winner decile stocks plus net selling of loser decile stocks > 0), conditional on the classification in the row
heading. Likelihood is here taken relative to the unconditional probability of being a net buyer of momentum stocks,
which is 0.4862. Panel C tabulates the transition probabilities for stocks in the winner (Win), loser (Los), or middle
(mid) deciles of the momentum ranking. ‘All q’ refers to the unconditional probability of classification.

Panel A. Institutions’ type

probabilities likelihood
q + 1 q + 4 All q q + 1 q + 4

SCOREi,q = 1 0.54 0.54 0.45 1.20 1.19

1MOMi,q = 1 0.71 0.34 0.10 7.05 3.32

Panel B. Institutions’ trading

probabilities likelihood
q q + 1 q + 4 q q + 1 q + 4

SCOREi,q = 1 0.68 0.57 0.56 1.39 1.16 1.15

1MOMi,q = 1 0.78 0.70 0.69 1.60 1.44 1.42

Panel C. Stock returns

q + 1 q + 4 All q
Win mid Los Win mid Los

Winner 0.56 0.42 0.02 0.16 0.60 0.23 0.13
mid 0.08 0.82 0.09 0.12 0.74 0.14 0.67

Loser 0.02 0.33 0.65 0.17 0.52 0.31 0.19
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Table 5: Momentum Factor Returns on Crowding Measures

Each column represents a predictive regression of quarterly momentum factor returns (1981–2015) on crowding. Panel
A presents a dynamic factor specification that controls for the Fama and French (1993) three factor model with the
factors interacted with dummies for positive past annual factor returns and the specification in Panel B uses no
risk-factor controls. Each panel considers the three indicated crowding measures computed both at the factor level
and the security level. The regressor CROWDq-1 refers to the level of the crowding measure at the end of quarter q − 1;
∆CROWDq refers to the change over quarter q; and CROWD_EVOLq is the estimate of volatility from a GARCH(1,1) model.
‘Realized vol. of Mom rets.’ is a control variable equal to the realized volatility of daily momentum returns over the
previous quarter. Intercepts are not tabulated. The t-statistics (in parentheses) are computed with White (1980)
standard errors. *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.

Level of analysis: factor security

Measure of crowding: AUM TRD CNT AUM TRD CNT

Panel A. Dynamic FF3 model

∆CROWDq -0.21*** -0.34* -0.33* -0.07 -0.41** -0.04
(-2.64) (-1.94) (-1.84) (-0.95) (-2.05) (-0.31)

CROWDq-1 -0.24*** -0.34* -0.58*** -0.18*** -0.36** -0.26**
(-4.32) (-1.87) (-4.35) (-3.00) (-2.39) (-2.52)

CROWD_EVOLq 3.06** 2.30 6.60*** 0.19 1.58 0.20
(2.47) (1.31) (3.75) (0.75) (1.08) (0.56)

Realized vol. -0.27*** -0.28** -0.25** -0.29** -0.28*** -0.28**
of Mom rets. (-2.62) (-2.54) (-2.21) (-2.45) (-2.63) (-2.30)

Adj-rsquare 40.7% 31.8% 37.7% 32.6% 34.0% 31.7%
Panel B. No risk controls

∆CROWDq -0.19* -0.33 -0.29 -0.08 -0.44* -0.07
(-1.94) (-1.51) (-1.36) (-1.18) (-1.69) (-0.62)

CROWDq-1 -0.23*** -0.44** -0.50*** -0.18*** -0.41** -0.26**
(-3.83) (-2.10) (-3.39) (-2.79) (-1.96) (-2.48)

CROWD_EVOLq 2.79* 2.21 4.55** 0.01 0.25 -0.06
(1.83) (1.06) (2.27) (0.03) (0.14) (-0.16)

Realized vol. -0.29 -0.31* -0.30 -0.33* -0.27 -0.32*
of Mom rets. (-1.61) (-1.75) (-1.56) (-1.77) (-1.51) (-1.69)

Adj-rsquare 16.6% 9.0% 12.0% 9.7% 10.2% 8.7%
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Table 6: Crowding and the Left-tail of Momentum Returns

Each column represents a Probit regression using an indicator for next-quarter momentum returns in the
bottom 5% (Panel A) or 10% (Panel B) of the full-sample (1981–2015) distribution, where returns are dynamic
Fama and French residuals. Each panel considers the six crowding proxies. The regressor CROWDq-1 refers to
the level of the crowding measure at the end of quarter q − 1; ∆CROWDq refers to the change over quarter
q; and CROWD_EVOLq is the estimate of volatility from a GARCH(1,1) model. ‘Realized vol. of Mom rets.’
is a control variable equal to the realized volatility of daily momentum returns over the previous quarter.
Intercepts are not tabulated. T-statistics for the coefficient estimates are reported in parenthesis. Wald test
p-values are reported in square brackets, testing the null hypothesis that a regressor’s effect on the left tail
probability is equal in magnitude and opposite in sign to the (untabulated) effect on the right tail probability.
*, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.

Level of analysis: factor security

Measure of crowding: AUM TRD CNT AUM TRD CNT
Panel A. Predicting the 5% left tail

∆CROWDq 8.4 12.3 19.2 -1.4 11.8 3.8
(1.49) (1.15) (1.17) (-0.21) (1.03) (0.28)
[0.35] [0.92] [0.60] [0.22] [0.20] [0.90]

CROWDq-1 7.2 14.4 24.5* 4.9 26.4 22.1
(1.55) (1.00) (1.79) (0.77) (1.39) (1.33)
[0.86] [0.81] [0.98] [0.98] [0.53] [0.46]

CROWD_EVOLq -1.4 43.2 -213.3 -11.8 -221.3 -91.4
(-0.02) (0.41) (-1.09) (-0.42) (-1.30) (-1.15)
[0.29] [0.43] [0.48] [0.17] [0.05]* [0.11]

Realized vol. 10.1*** 9.9*** 10.8*** 9.9*** 12.3*** 9.9***
of Mom rets. (3.22) (3.18) (3.10) (2.92) (2.87) (2.94)

[0.00]*** [0.00]*** [0.00]*** [0.00]*** [0.00]*** [0.00]***
Panel B. Predicting the 10% left tail

∆CROWDq 11.7** 6.7 16.5 0.4 12.5 -4.9
(2.40) (0.71) (1.32) (0.07) (1.36) (-0.61)
[0.25] [0.57] [0.91] [0.58] [0.66] [0.68]

CROWDq-1 10.4*** 15.4 21.6** 6.9 26.9** 9.5
(2.68) (1.25) (2.22) (1.47) (2.04) (1.18)
[0.35] [0.66] [0.93] [0.98] [0.46] [0.96]

CROWD_EVOLq -11.3 20.7 -187.7 -14.1 -65.7 -25.1
(-0.17) (0.23) (-1.35) (-0.65) (-0.84) (-0.72)
[0.14] [0.30] [0.92] [0.74] [0.73] [0.57]

Realized vol. 11.5*** 11.6*** 11.6*** 11.4*** 11.8*** 10.8***
of Mom rets. (3.96) (3.60) (3.78) (3.65) (3.28) (3.60)

[0.00]*** [0.00]*** [0.00]*** [0.00]*** [0.00]*** [0.00]***
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Table 7: Conditional Volatility, Skewness, and Kurtosis of Momentum Returns

We split the sample of monthly momentum returns (1981–2015) into terciles according to crowding (CROWD),
change in crowding (∆CROWD) or volatility in the last available quarter for each month. The T1 stands for the
bottom tercile, T2 for the second tercile, and T3 for the top tercile. The values in parenthesis are t-statistics
(in parentheses) for the difference between T3 and T1 obtained with the delta method, and *, **, and ***
denote significance at the 10%, 5%, and 1% levels, respectively.

factor security Realized vol.
AUM TRD CNT AUM TRD CNT of Mom rets.

Panel A. CROWD
Volatility
T1 23.8 25.7 32.3 23.1 23.3 31.3 15.3
T2 28.0 22.3 26.8 33.2 30.3 27.7 17.4
T3 25.8 29.5 16.5 20.1 23.8 17.2 38.3

(0.40) (0.74) (-3.63)*** (-1.28) (0.13) (-3.23)*** (5.62)***

Skewness
T1 -1.8 -1.5 -1.7 -0.3 -1.9 -1.7 -0.3
T2 -1.6 -0.7 -1.1 -2.0 -1.9 -1.4 -0.3
T3 -1.1 -1.8 -0.6 -0.1 0.0 0.0 -1.2

(0.57) (-0.26) (1.83)* (0.51) (1.59) (2.66)*** (-2.06)**
Kurtosis
T1 14.6 10.8 10.6 4.3 15.5 10.9 4.0
T2 11.5 4.9 8.1 11.1 10.7 8.7 4.0
T3 8.9 12.6 4.7 4.3 5.9 3.4 6.7

(-1.11) (0.37) (-2.77)*** (0.06) (-2.08)** (-3.40)*** (2.29)**
Panel B. ∆CROWD

Volatility
T1 26.0 27.0 25.7 21.6 26.4 25.1
T2 20.7 26.4 26.3 30.5 25.6 29.2
T3 30.2 24.6 25.9 25.0 26.1 23.6

(0.77) (-0.51) (0.04) (0.93) (-0.05) (-0.34)

Skewness
T1 -1.8 -1.5 -1.8 0.6 -1.3 -2.4
T2 -0.5 -1.6 -1.2 -2.1 -1.9 -1.6
T3 -1.5 -1.4 -1.5 -1.6 -1.3 -0.2

(0.25) (0.03) (0.24) (-2.28)** (-0.03) (2.27)**

Kurtosis
T1 15.1 9.5 15.4 5.2 10.3 15.8
T2 5.8 13.6 9.0 11.1 14.8 11.4
T3 9.2 11.2 10.5 11.2 9.4 4.5

(-1.32) (0.40) (-0.97) (1.60) (-0.25) (-2.43)**
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Table 8: Volatility in Momentum Factor Returns on Crowding Measures

Each column represents a predictive regression of realized volatility in daily momentum factor returns over the next
quarter (1981–2015) on crowding. Each panel presents a different dependent variable using daily: (1) residual returns
obtained with the Fama and French three factor model with dynamic weights, and (2) raw returns on the momentum
portfolio. Each panel considers the six indicated crowding measures. The regressor CROWDq-1 refers to the level of
the crowding measure at the end of quarter q − 1; ∆CROWDq refers to the change over quarter q; and CROWD_EVOLq is
the estimate of volatility from a GARCH(1,1) model. ‘Realized vol. of Mom rets.’ is a control variable equal to the
realized volatility of daily momentum returns/residuals over the previous quarter. Intercepts are not tabulated. The
t-statistics (in parentheses) are computed with Newey and West (1987) standard errors with 3 lags. *, **, and ***
denote significance at the 10%, 5%, and 1% levels, respectively.

Level of analysis: factor security

Measure of crowding: AUM TRD CNT AUM TRD CNT

Panel A. Dynamic FF3 model

∆CROWDq 0.03 -0.10 -0.05 0.04 -0.03 0.01
(0.65) (-0.72) (-0.51) (0.67) (-0.24) (0.11)

CROWDq-1 -0.06** -0.18* -0.10 -0.03 -0.16** -0.08*
(-2.24) (-1.82) (-1.21) (-1.15) (-2.03) (-1.80)

CROWD_EVOLq 0.12 -0.13 -0.75 -0.31** -0.83 -0.42**
(0.14) (-0.12) (-0.56) (-2.53) (-0.86) (-2.27)

Realized vol. 0.77*** 0.77*** 0.74*** 0.72*** 0.81*** 0.73***
of Mom rets. (8.83) (8.42) (9.10) (8.70) (10.02) (8.59)

Adj-rsquare 59.4% 59.2% 59.5% 60.2% 60.1% 59.6%
Panel B. No risk controls

∆CROWDq 0.06 -0.04 -0.06 0.01 0.06 -0.06
(0.84) (-0.21) (-0.40) (0.25) (0.38) (-1.00)

CROWDq-1 -0.04 -0.15 -0.05 -0.02 -0.14 -0.12**
(-1.37) (-1.32) (-0.46) (-0.94) (-1.28) (-2.51)

CROWD_EVOLq -0.14 -0.46 -1.71 -0.38** -1.26 -0.50**
(-0.12) (-0.34) (-0.95) (-2.52) (-0.83) (-2.17)

Realized vol. 0.80*** 0.80*** 0.77*** 0.76*** 0.84*** 0.76***
of Mom rets. (8.84) (8.64) (9.15) (8.84) (11.99) (8.72)

Adj-rsquare 63.3% 63.1% 63.5% 63.7% 64.5% 63.8%
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Table 9: Momentum Factor Returns as a Determinant of Crowding

Each column represents a predictive regression of a different crowding measure on lag momentum returns (1YR_RET)
and lag momentum realized volatility (1YR_VOL) computed using daily momentum returns. Intercepts are not tabulated.
The t-statistics (in parentheses) are computed with Newey and West (1987) standard errors with 3 lags. *, **, and
*** denote significance at the 10%, 5%, and 1% levels, respectively.

Level of analysis: factor security

Measure of crowding: AUM TRD CNT AUM TRD CNT

1YR_RETq-1 0.72** 0.25*** 0.41*** 0.29 0.24*** 0.17
(2.57) (3.40) (2.69) (1.32) (2.62) (1.34)

1YR_RETq-5 0.92*** 0.40*** 0.52*** 0.35 0.27*** 0.21
(3.22) (3.93) (2.94) (1.29) (3.08) (1.34)

1YR_VOLq-1 -0.28* -0.20*** -0.36*** -0.39** -0.08 -0.18**
(-1.94) (-3.31) (-4.50) (-2.46) (-1.34) (-2.09)

1YR_VOLq-5 0.41* 0.07 0.18** -0.10 0.02 0.08
(1.90) (1.34) (2.33) (-0.68) (0.41) (1.22)

Adj-rsquare 10.9% 20.1% 19.1% 12.9% 10.6% 2.2%
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Internet Appendix to accompany the paper

“Crowding and Tail Risk in Momentum Returns”
(Not for publication)

Abstract

This internet appendix accompanies the paper “Crowding and Tail Risk in Momentum

Returns.” It contains the literature review in Section IA.A, details on the model’s derivation and

solution in Sections IA.B to IA.D, and further simulation results in Section IA.E.

IA.A. Existing Literature

Our paper is related to the empirical and theoretical literature on momentum. Momentum

was initially documented for US stock returns (Levy, 1967; Jegadeesh and Titman, 1993) and has

since been documented for stock returns in most countries (Rouwenhorst, 1998) and across asset

classes (Asness, Moskowitz, and Pedersen, 2013). Besides its very high average returns, momentum

carries significant downside risk or negative skewness in the form of occasional large crashes (Daniel

and Moskowitz, 2016). Existing research also shows that institutional investors are momentum

traders, i.e., tilt their portfolios towards momentum stocks (Grinblatt et al., 1995; Lewellen, 2011;

Edelen et al., 2016; Baltzer et al., 2019). Our paper contributes to this literature by directly

examining whether uncertain institutional participation in the momentum strategy is the source of

higher-moment return characteristics.

A recent empirical literature examining the time series properties of momentum finds

results broadly consistent with an over-reaction explanation of the effect. The premium is stronger
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in periods of bull markets (Cooper et al., 2004), high liquidity (Avramov, Cheng, and Hameed,

2016), and high sentiment (Antoniou, Doukas, and Subrahmanyam, 2013). Hillert, Jacobs, and

Müller (2014)’s finding that momentum is more pronounced in firms with more media coverage also

supports an over-reaction interpretation, as does the evidence in Edelen et al. (2016) regarding

institutional purchases in the portfolio-formation period.

On the other hand, the momentum premium is stronger in stocks experiencing frequent but

small price changes that are less likely to attract attention (Da et al., 2014) or those characterized

by small trades of investors under-reacting to past returns (Hvidkjaer, 2006). Also there is recent

evidence that momentum is somehow explained by improvements in firm fundamentals (Novy-Marx,

2015; Sotes-Paladino, Wang, and Yao, 2016; DeMiguel, Martín-Utrera, Nogales, and Uppal, 2020).

This evidence suggests momentum investors exploit under-reaction and as such (exogenous

increases in) crowding should reduce its premium.

The related theoretical literature on momentum offers theories based on institutional

investors and fund flows (Vayanos and Woolley, 2013) or behavioral biases such as over-reaction /

self-attribution (see, e.g., Barberis, Shleifer, and Vishny, 1998; Daniel, Hirshleifer, and

Subrahmanyam, 1998) or information externalities and gradual diffusion of information (see, e.g.,

Stein, 1987; Hong and Stein, 1999; Andrei and Cujean, 2017). Our work is most closely related to

the latter branch of the literature.

Our model builds on the information externality that the actions of unanticipated

momentum investors impose on their peers. Thus, it is closest in development to Stein (2009), but

follows in a long line of research relating to arbitrageur information coordination and externalities.

This literature dates to Stein (1987) who characterizes the externality, and Scharfstein and Stein

(1990) and Froot, Scharfstein, and Stein (1992) who relate it to herding behavior. Hong and Stein

(1999) relate the externality to persistence and reversal patterns in returns. A related branch of the
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literature identifies the positive feedback trading of momentum investors as a source of destabilizing

noise in prices, e.g., De Long, Shleifer, Summers, and Waldmann (1990a,b).

More recently, Kondor and Zawadowski (2019) study whether the presence of more

arbitrageurs improves welfare in a model of capital reallocation. Trades in the model can become

crowded due to imperfect information, but arbitrageurs can also devote resources to learn about the

number of earlier entrants. They find that if the number of arbitrageurs is high enough, more

arbitrageurs do not change capital allocations, but decrease welfare due to costly learning.

Related empirical research includes Hanson and Sunderam (2014) who construct a measure

of the capital allocated to momentum and the valuation anomaly (book-to-market or B/M) using

short-interest. They find some evidence that an increase in arbitrage capital has reduced the

returns on B/M and momentum strategies. In addition, Lou and Polk (2013) proxy for momentum

capital with the residual return correlations in the short and long leg of the momentum strategy

and find that momentum profits are lower and crashes more likely in times of higher momentum

capital. Baltzer et al. (2019) classify institutions as a whole as momentum traders and find that, in

Germany, momentum trading peaked before the crash. While our analysis uses a different approach

and insights in proxying for momentum capital, our results on unanticipated momentum capital

and momentum returns are generally consistent with these findings, but we do not attribute

momentum’s crashes to crowding. Finally, Huang (2015) proposes a momentum gap variable, which

is defined as the cross sectional dispersion of formation period returns. He shows that this measure

predicts momentum returns and crashes, and argues that this is consistent with Stein (2009)’s

crowded trade theory. Throughout our analysis, we control for momentum’s past volatility, which

has a correlation of 0.73 with the momentum gap measure. We also verify in Section IV.G that

momentum gap’s predictive power for crash risk is unrelated to various institutional measures of

momentum crowding. This corroborates our finding that momentum’s crashes are not explained by

3
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crowding.

We go beyond the usual focus on first moments to study the determinants of the risk of

momentum. This relates our work to a recent strand of literature focusing on the predictability of

the moments of momentum. Barroso and Santa-Clara (2015) show that the volatility of momentum

is highly predictable and it is a useful variable to manage the risk of the strategy. Daniel and

Moskowitz (2016) argues the crash risk of momentum is due to the optionality effect of the losers

portfolio that resembles an out-of-the-money call option after extreme bear markets. Jacobs,

Regele, and Weber (2015) examine the expected skewness of momentum as a potential explanation

of its premium. They propose an enhanced momentum strategy but find that managing its risk

results in a performance hard to reconcile with a premium for skewness. Grobys, Ruotsalainen, and

Äijö (2018) find industry momentum has different risk properties from standard momentum but

shows similar gains from risk management. Our results address the question of whether investors

condition their exposure to momentum using this new-found predictability. Consistent with the

economic case for managing the risk of momentum, we find less crowding in momentum after

periods of high volatility.

IA.B. Derivation of Equation (3)

First notice that solving equation (2) is equivalent to solving each of the following

(presuming γ > 1)

max
ς

K1−γ
type,2

1− γ · E
[
e(1−γ)(rf+log(1+ς(erp−rf−1)))] ⇔ min

ς
logE

[
e(1−γ) log(1+ς(erp−rf−1))] ,

where ς is the weight on the risky asset portfolio and rp its log return, and rf is the log risk-free

rate. Second, to solve for the fraction of wealth invested in the risky portfolio, we follow Section
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2.1.1 in Campbell and Viceira (2002, Internet Appendix) and approximate the function

g (rp − rf ) = log (1 + ς (erp−rf − 1)) with a second-order Taylor expansion around 0:28

g (rp − rf ) � log (1) + ςe0

1 + ς (e0 − 1) (rp − f) + 1
2
ς
[
e0 (1 + ς

(
e0 − 1

))
− ςe2·0]

(1 + ς (e0 − 1))2 (rp − f)2

� ς (rp − f) + 1
2
(
ς − ς2

)
σ2,(IA.B.1)

where (rp − f)2 is replaced with its conditionally expectation σ2 as in Campbell and Viceira (2002,

Internet Appendix). Using equation (IA.B.1), we can rewrite the maximization problem to

min
ς

logE
[
exp

[1
2
(
ς − ς2

)
(1− γ)σ2

p

]
· exp [ς (1− γ) (rp − rf )]

]
⇔min

ς

1
2
(
ς − ς2

)
(1− γ)σ2

p + ς (1− γ) (µp − rf ) + 1
2 ς

2 (1− γ)2 σ2
p

⇔max
ς

ς

(
µp − rf + 1

2σ
2
p

)
− 1

2 ς
2γσ2

p,

which has the solution

ς =
µp − rf + 1

2σ
2
p

γσ2
p

.

To proceed, we assume that log returns and arithmetic returns are similar such that

µp − rf + 1
2σ

2
p � e

µp−rf � µp − rf . We then determine µp and σ2
p for a portfolio that consists of the

market investment plus a long-short momentum investment. Because the momentum portfolio is

self-financing, feasible combinations of the market portfolio and the momentum portfolio are given

by the weight vector w′ =
[
1 wm

]
, i.e., hold the market portfolio plus a proportionate long-short

28See also, e.g., Peress (2004), for the use of this approximate solution to the CRRA portfolio choice problem in a

noisy rational expectations setting.
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momentum overlay wm. The optimal risky portfolio wm solves the constrained optimization

min
w

w′Σw
2 , s.t. µ′w = r∗ − rf ,

where

w =

 1

wm

 , µ =

 r − rf

Etype [m+ ε]

 , Σ =

 σ2
χ 0

0 V artype [m+ ε]

 ,
and r∗ − rf is a target return premium that traces out the efficient frontier, and r is the required

return on the market portfolio. The solution is

(IA.B.2) wm = Etype [m+ ε] /V artype [m+ ε]
(r − rf )

/
σ2
χ

.

Using equation (IA.B.2), the parameters of the optimal risky portfolio are

µp − rf =
[
r − rf Etype [m+ ε]

]  1

wm

 = r − rf + wmEtype [m+ ε] , and(IA.B.3)

σ2
p = w′Σw = σ2

χ + w2
mV artype [m+ ε] =

σ2
χ

r − rf
(r − rf + wmEtype [m+ ε]) .(IA.B.4)

Thus,

(IA.B.5) ς = r − rf
γσ2

χ

.

Combining Eqs. (IA.B.2) and (IA.B.5),

Demand = wmςKtype,2 = Etype [m+ ε]
γV artype [m+ ε]Ktype,2.
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IA.C. Negative Market-clearing Price for Momentum Portfolio

In the case of kM > λ, the demand of momentum investors increases with a positive f faster

than the supply can keep up with, implying an increasingly large buying imbalance as f rises

(depicted in Figure IA.3, Plot C.1). This again suggests that momentum investors buy up to their

capacity, leading to a subsequent momentum crash.

However, when kM > λ there is also a (finite) negative value for f that clears the market.

While we discount this equilibrium as implausible, we note that even here the contrary pricing of

winner and loser stocks implies a substantial negative momentum return because the

formation-period ‘winners’ are actually the fundamental losers, and vice versa.

It is not clear how this f < 0 equilibrium could be found, because informed investors

presumably seed formation-period returns with buying of the momentum portfolio (and an initially

positive f). Nevertheless, it is a call auction and if they were to bizarrely trade contrary to their

private information, seeding a negative value for f , then they might induce momentum investors

into selling (buying) so much winner (loser) stock that their bizarre trade is preferred.

IA.D. Probability Density Function Conditional on f

Below we derive the expression for p (δ|f). By the definition of conditional probability, we

have

p (δ|f) = p2(δ, f)
p1(f) ,

where numerical subscripts distinguish the functional form of each probability density function. To

solve for these densities, we exchange the primitive random variable kI with the observable random

7
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variable f . Formally, let

F : (δ, kI , kM )→ f = 1
D

δkI + δE

1 + δV

σ2
ε

kM

 ,
which characterizes market clearing as in equation (4). We map the primitive random variables into


δ

kM

kI


→


δ

kM

F (δ, kM , kI)


.

Next, we need

| J | = det



∂δ
∂δ

∂δ
∂kM

∂δ
∂kI

∂kM
∂δ

∂kM
∂kM

∂kM
∂kI

∂F−1

∂δ
∂F−1

∂kM
∂F−1

∂kI


= D

δ
.

Following a standard result (see, e.g., Theorem 2 in Section 4.4 of Rohatgi and Saleh, 2000), the

density is then given by

p3 (δ, kM , f) = g (δ)h
(
kM , F

−1
)
| J |

= g (δ)h

kM , 1
δ

fD − δE

1 + δV

σ2
ε

kM

 D

δ
,(IA.D.1)

where D is as in equation (4). Integrating kM and then δ out of equation (IA.D.1) gives

p2(δ, f) =g (δ)
δ

∫ 1

0
h

kM , 1
δ

fD − δE

1 + δV

σ2
ε

kM

DdkM ,
p1(f) =

∫ ∞
0

g (δ)
δ

∫ 1

0
h

kM , 1
δ

fD − δE

1 + δV

σ2
ε

kM

DdkMdδ.
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We then obtain

p (δ|f) =

g(δ)
δ

∫ 1
0 h

(
kM ,

1
δ

(
fD − δE

1+ δV

σ2
ε

kM

))
DdkM

∫∞
0

g(δ)
δ

∫ 1
0 h

(
kM ,

1
δ

(
fD − δE

1+ δV

σ2
ε

kM

))
DdkMdδ

.

IA.E. Additional simulation results

This section of the internet appendix investigates the impact of changing the distributional

assumptions for δ and higher concentration parameters in the simulation analysis of Section III. It

also analyses the relation between expected momentum returns and unexpected momentum capital

in the different simulations.

First, we ask whether our results are robust to using a higher concentration parameter for

the Dirichlet distribution and a uniform distribution for δ instead of a log-normal distribution. In

particular, we let δ follow a uniform distribution on [0.06, 0.12], and let αi = 12. The results are

reported in Figure IA.1 and Table IA.1. In summary, the results are very similar to those in Section

III. In the myopic beliefs case, momentum returns again have pronounced negative skewness, high

volatility and large excess kurtosis, and they are well behaved with low volatility, slightly positive

skewness, and no excess kurtosis in the rational beliefs case.

Second, we ask whether the beliefs specifications for unknown capital become more similar

to the known capital case when var(k) is very small. To achieve this, we set the concentration

parameters αi = 60 in the Dirichlet distribution, and leave the setting otherwise identical to the one

in the paper. The results in Figure IA.2 and Table IA.2 verify that crashes disappear in the myopic

beliefs case once capital uncertainty is negligible. Momentum returns in all four specifications are

now well behaved and have similar return characteristics.

Finally, we analyze the relation between unexpected momentum capital kM − EkM and

9
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expected momentum returns m. To do this, we rank the simulation trials for the different

specifications in Figure 1, Figure IA.1, and Figure IA.2 into 100 bins according to kM − EkM , and

report the averages within each bin to approximate a conditional expectation. All nine subplots of

Figure IA.3 corresponding to different distributional and beliefs assumptions show that the residual

information m not incorporated into prices decreases with crowd size. Thus, the model supports

the negative relation between momentum capital and expected momentum returns we document

empirically.
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Table IA.1: Momentum returns in simulations—uniform distribution

The table reports unconditional return statistics for the simulations described in the caption of Figure IA.1. Panel A
contains the descriptive statistics of expected momentum returns across all simulations. Mean, stdev, skew, kurt,
min and max refer to average, standard deviation, skewness, kurtosis, minimum, and maximum, respectively. The
simulations are computed under the indicated belief specification, and the Dirichlet distribution has the concentration
parameters αi = 12, and δ follows a uniform distribution on [0.06, 0.12]. Optimal linear beliefs are chosen to maximize
the utility of a CRRA investor with γ = 2, and they are reported in the row λ−1. Profits are likewise the expected
portfolio returns of a γ = 2 investor, and certainty equivalents ‘cer(γ)’ are calculated for γ = 2, 4, 10, with portfolio
weights calculated as in (3). Realized momentum returns in Panel B are given by m+ ε where ε is randomly drawn
from a zero-mean normal distribution with standard deviation 0.125. Cer(γ) is an arithmetic return, and all other
statistics are based on log returns.

Belief known rational myopic optimal
spec. linear
λ−1 1.50 1.34

Panel A. Expected momentum returns m
mean 3.0% 3.0% 2.8% 3.5%
stdev 0.9% 1.4% 2.7% 1.4%
skew 0.5 0.3 -92.9 -0.1
kurt 3.1 2.9 17386.3 9.6
min 0.61% -2.04% -534.41% -35.57%
max 7.51% 8.56% 9.22% 9.38%

Panel B. Realized momentum returns m+ ε

profit 3.11% 2.78% 1.75% 1.99%
cer(2) 2.30% 2.16% -100.00% 1.85%
cer(5) 1.14% 1.07% -100.00% 0.92%
cer(10) 0.45% 0.43% -100.00% 0.37%
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Table IA.2: Momentum returns in simulations—very low var(k)

The table reports unconditional return statistics for the simulations described in the caption of Figure IA.2 and is
constructed in the same fashion as Table IA.1.

Belief known rational myopic optimal
spec. linear
λ−1 1.50 1.44

Panel A. Expected momentum returns m
mean 3.0% 3.0% 3.0% 3.3%
stdev 0.5% 0.7% 0.8% 0.7%
skew 0.4 0.3 0.2 0.3
kurt 3.4 3.3 3.3 3.3
min 1.39% 0.18% -0.39% 0.41%
max 6.13% 7.35% 7.12% 7.35%
Panel B. Realized momentum returns m+ ε

profit 3.02% 2.91% 2.90% 2.64%
cer(2) 2.29% 2.24% 2.15% 2.24%
cer(5) 1.14% 1.11% 1.07% 1.11%
cer(10) 0.45% 0.44% 0.43% 0.44%
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