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Resumo 

Desde há muito tempo que, a previsibilidade da taxa de câmbio é um tema 

quente em mente para profissionais de finanças e pesquisadores. Nesta 

dissertação estudamos a previsibilidade da taxa de câmbio por um método que 

nunca foi aplicado neste ramo: o domínio de frequências. A taxa de juro, 

estudada por Fisher (1896), foi o preditor selecionado para esta investigação. Em 

vez da original série temporal aplicada em Rossi (2013), aplicamos a metodologia 

de Faria e Verona (2017) na estimativa de Rossi (2013). O método preditor de 

decomposição em frequência testado no diferencial da taxa de juro, não melhora 

a previsibilidade da taxa de câmbio em toda a amostra e horizonte temporal 

selecionado. Esta conclusão vem de uma análise de corrida de cavalos de 

diferentes taxas de câmbio, diferentes filtros e diferentes frequências. 

 

 

Palavras-chave: taxas de câmbio, URIP, previsibilidade, domínio de 
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Abstract 

Since a long a time that the exchange predictability is a hot topic for finance 

practitioners and researchers. In this dissertation we study the exchange rate 

predictability using a method that has never been applied in the literature:  the 

frequency domain. The uncovered interest rate parity, studied by Fisher (1896) 

was the model selected for this investigation. Instead of the original time series 

applied in Rossi (2013), we applied the Faria and Verona (2017) methodology in 

the Rossi (2013) framework. The frequency-decomposed predictor method tested 

in the interest rate differential model, does not improve the exchange rate 

predictability across the sample and time horizon selected. This conclusion come 

from a horse race analysis of different exchange rates, different filters and 

different frequencies. 
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Chapter 1 
Introduction 

The exchange rate predictability represents a vast literature in 

international finance. Since Meese and Rogoff (1983, 1988), it has been well 

known that exchange rates are very difficult to predict using economic models. 

Several surveys of this large literature have been provided from time to time by 

several authors, like Frankel and Rose (1995), Sarno et al. (2003), Evans (2002), 

Cheung et al. (2005), Engel et al. (2007), Corte et al. (2009), Williamson (2009) and 

Rossi (2013). The focus has generally been on finding models that can forecast the 

future spot exchange rate better than a random walk, “the Meese and Rogoff 

puzzle”. In this investigation we will not try to find or develop a new model, but 

rather a different way of estimate the uncovered interest rate parity model.  

In recent years, wavelet theory has developed very rapidly and has shown 

very wide strong applicability in several fields. This method is becoming a 

popular in econometric analysis and high-frequency and low-frequency asset 

pricing, as in Hong and Kao (2004), Galagedera and Maharaj (2008), Xue et al. 

(2013), Gencay and Signori, (2015), Bandi et al. (2016), Hasbrouck (2017) and Faria 

and Verona (2017). The latest is the methodology applied on this paper.  

In this dissertation, we analyze if the wavelet decomposition can provide 

a better insight into exchange rates predictability. We applied the Faria and 

Verona (2018) methodology, defined as the frequency decomposed predictors, in 

the context of Rossi (2013) URIP model. This method consists of decomposing the 
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interest rate differential time series into 𝑛𝑛 time series components, each capturing 

the oscillates of the original variable within a specific frequency interval.  We 

then tested if the use of the frequency domain improves the forecasting of 

exchange rates. 

The results reported come from a horse race analysis of different exchange 

rates, different filters and different frequencies. Those results show that the 

Wavelet decomposition methods do not improve significantly the one-month 

ahead forecast ability of exchange rates for a large set of countries using an 

interest rate parity model. This contrasts with recent empirical evidence 

regarding forecasting equity markets (Bandi et al. (2016) and Faria and Verona 

(2018)) with wavelet methods. 

The rest of the dissertation is structured as follows. Chapter 2 reviews the 

literature, which is divided in two different parts. First, the exchange rate 

predictability in general and then with more focus on the uncovered interest rate 

parity; second on the literature wavelet filtering method. Chapter 3 presents the 

data and methodology. Chapter 4 presents the empirical results and compares 

then with related literature. Chapter 5 concludes. 
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Chapter 2 
Literature Review   

2.1. Exchange rate predictability 

Exchange rates are very difficult to predict using economic models. Meese 

and Rogoff (1983) find that a random walk model would have predicted major-

country exchange rates during the recent floating-rate period. In fact, the random 

walk is often known to generate better forecasts, in terms of exchange rates, than 

other economic models. Nowadays, the recent literature has identified new 

macroeconomic and financial predictors that seem to forecast well exchange 

rates.   

According to Rossi (2013), the analysis of the predictability of exchange 

rates is based on a series of traditional predictors that have emerged in the 

literature. We used a few models to explain why they should forecast exchange 

rate according to the economic theory. The classic models that have been used in 

the literature so far are based on the traditional predictors: interest rate, prices 

money and output differentials.  

Interest rate differential, the predictor analyzed on this dissertation, 

utilizes the uncovered interest rate parity (UIRP), which was first studied in the 

end of the 19th century by Fisher (1896). On the latest paper, an analysis is 

provided about how interest rate can be related to expected changes in foreign 

currencies. The UIRP states that the expected movement in an exchange rate is 

related to the difference in interest rates between two countries.  According to 
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Rossi (2013), UIRP model states that, in a world of perfect foresight with a 

nominal bilateral exchange rate 𝑆𝑆𝑡𝑡, investors can buy 1 𝑆𝑆𝑡𝑡⁄  unit of foreign bonds 

using one unit of the home currency. Meese and Rogoff (1988) to forecast real 

exchange rates out-of-sample using real interest rate differentials and compare 

its performance with the random walk, finding that the latter forecasts better. 

Cheung et al (2005) and Alquist and Chinn (2008) find that, although for some 

countries UIRP forecasts better than the random walk at long horizons, its 

performance is never significantly better. In-sample empirical evidence is not 

favorable to UIRP either. Rossi (2013) concludes that the consensus is that 

estimates of the equation above typically display a negative and significant slope, 

and a constant significantly different from zero.  

The price and inflation differential (PPP) of comparable commodity 

baskets in two different countries has to be the same, so the price level in the 

home country, converted to the currency of the foreign country by the nominal 

exchange rate, should equal the price level of the foreign country. A unit of 

currency in the home country will have the same purchasing power in the foreign 

country. Cheung et al (2005) find that, although PPP forecasts better than the 

random walk at the longest horizons, its performance is never significantly better 

at shorter horizons as it is significantly worse than the random walk. Rogoff 

(1996) notes that deviations from PPP can be attributed to transitory disturbances 

in the presence of nominal price stickiness; thus, they should be short-lived, 

while in the data, half-life deviations from PPP range between three to five years. 

This empirical inconsistency was named by Rogoff (1996) as the PPP puzzle. A 

few authors like Cheung and Lai (2000), Kilian and Zha (2002), Murray and 

Papell (2002) concluded that possible concerns and explanations include 

underestimation of the uncertainty regarding point estimates and heterogeneity 

in disaggregate data.  

The monetary model of the exchange rate determination reflects 
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movements in countries relative money, output, interest rates and prices. The 

demand for real money is viewed as a function of income and the interest rate, 

in order to substitute relative interest rates and prices as function of exchange 

rates by using UIRP and PPP, obtains a relationship between exchange rates, 

money and output differentials. Meese and Rogoff (1983) demonstrate that the 

random walk forecasts exchange rates out-of-sample better than any of the 

monetary model. This was confirmed by Chinn and Meese (1995) for short 

horizon forecasts, while Cheung et al (2005) and Alquist and Chin (2008) , who 

find that the monetary model does not predict well even at longer horizons a 

finding that was also supported. Likewise, Molodtsova and Papell (2009) also 

discovered very limited empirical evidence in favor of the model. On the other 

hand, Mark (1995) finds strong and statistically significant evidence in favor of 

the monetary model at very long horizons. The empirical evidence on the 

monetary model is thus mixed, as the in-sample evidence is somewhat positive, 

while the out-of-sample evidence is less positive. 

Regarding the productivity differentials, the relative prices are expressed 

as a function of productivity differentials, following Balassa (1964) and 

Samuelson (1964). Instead of productivity differentials can be used the real price 

of the non-tradable. Cheung et al (2005) measure a productivity differential by 

labor productivity indices, like real GDP per employee. Overall, they concluded 

that the model with productivity differentials does not forecast better than the 

random walk. 

Traditional portfolio balance models include a measure of stock balances. 

Several measures of balances have been used in the literature as broad proxies: 

cumulated trade balance differentials, cumulated current account balance 

differentials, and government debt. Meese and Rogoff (1983) find that even after 

augmenting the monetary model by a measure of trade balance differentials, the 

model still does not forecast better than the random walk, a finding confirmed 
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by Cheug et al (2005). 

While the out-of- sample forecasting ability of some economic models 

occasionally outperforms that of a random walk in some studies for some 

countries/time periods, it definitely does not systematically do so. More 

importantly, with a few exceptions, their predictive ability is not significantly 

better than that of a random walk at short horizons. The main exception is the 

work by Clark and West (2006) regarding the out-of-sample predictive ability of 

UIRP. At the same time, some predictors show significant in-sample fit, although 

with coefficient signs that are inconsistent with economic theory. 

2.1.1. The uncovered interest rate parity 

As we mentioned above, the predictor model, UIRP, is one of the three 

most used economic models in the fields of international finance and 

macroeconomics. The UIRP states that the expected movement in an exchange 

rate is related to the difference in interest rates between two countries. If the 

uncovered interest rate parity holds true, it will be indifferent for investors to 

invest in an interest rate in two countries whether the position is covered or 

uncovered as the exchange rate adjusted return will be the same. The future 

exchange rate should depreciate by exactly the interest-rate differential. If 

covered and uncovered interest rate parity both hold, this implies the forward 

rate is an unbiased predictor of the future spot rate. In the case of covered interest 

rate parity, the domestic interest rate, 𝑟𝑟𝑡𝑡 is represented as:  

𝑟𝑟𝑡𝑡 = 𝑟𝑟𝑡𝑡∗ + 𝑓𝑓𝑡𝑡 − 𝑠𝑠𝑡𝑡 

where 𝑟𝑟𝑡𝑡∗ is the foreign interest rate, 𝑓𝑓𝑡𝑡 is the forward rate and 𝑠𝑠𝑡𝑡 is the current 

spot rate. As the expectation of future exchange rate it´s not observable, so it 

makes the URIP more difficult to test contrary of the covered interest parity with 

an available forward rate. Accordingly, UIRP assumes that the current forward 

rate will equal the expected exchange rate plus a forecast error defined as: 
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𝑓𝑓𝑡𝑡 = 𝐸𝐸(𝑠𝑠𝑡𝑡+1) + 𝜀𝜀𝑡𝑡+1 

Therefore, the equation of the domestic interest rate can be rewritten as: 

𝑟𝑟𝑡𝑡 = 𝑟𝑟𝑡𝑡∗ + 𝑠𝑠𝑡𝑡+1 − 𝑠𝑠𝑡𝑡 + 𝜀𝜀𝑡𝑡+1 

or adjusted as: 

𝑠𝑠𝑡𝑡+1 − 𝑠𝑠𝑡𝑡 = 𝑟𝑟𝑡𝑡 − 𝑟𝑟𝑡𝑡∗ + 𝜀𝜀𝑡𝑡+1 

 

Economists assess the validity of the UIRP condition by empirically estimating 

the parameter values of α and β in the form: 

𝑠𝑠𝑡𝑡+1 − 𝑠𝑠𝑡𝑡 = 𝛼𝛼0 + 𝛽𝛽1(𝑟𝑟𝑡𝑡 − 𝑟𝑟𝑡𝑡∗) + 𝜀𝜀𝑡𝑡+1 

where 𝛼𝛼0  should equal to zero, whereas rational expectations in exchange 

markets and risk neutrality among investors; the 𝛽𝛽1 should equal to one, under 

the assumption of a constant risk premium. In turn, this implies a perfect 

depreciating relationship according to UIRP.  

Interest rate parity imposes that as the interest-rate differential increases, the 

exchange rate should equally depreciate. For example, if the foreign interest rate 

is one percent higher than the domestic interest rate (for a one-year sovereign 

bond) than the foreign currency is expected to depreciate by one percent after 

one year.  

2.2. Wavelet filtering method 

Many people in fields such as physics, geophysics, engineering, medicine 

and biomedical engineering have long been using the wavelets method.  

According to Faria and Verona (2017), wavelets allow overcoming some 

weaknesses of traditional frequency domain tools, as they provide a better time-

frequency decomposition of the original time series. Wavelets are based on 

Fourier analyses as in Mallat (1999). However, in contrast to the Fourier analysis, 

wavelets are defined over a finite window in the time domain, which is 

automatically and optimally allocated according to the frequency of interest. 
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Varying the time of the window, it is possible to capture at the same time both 

time-varying and frequency-varying of the time series. This is especially useful 

with non-stationary time-series, as well as when time-series have structural 

breaks or jumps. Moreover, as wavelets allow frequency decomposition in the 

time domain, they are well suited to finance applications. 

The decomposition of a time series into different frequency bands can be 

done by the Wavelet filtering method. In order to obtain the decomposition, an 

appropriate cascade of wavelet filters is applied. This is essentially equivalent to 

filtering by a set of band-pass filters so as to capture the fluctuations of the time 

series in different frequency bands.  

The most popular filtering method, used by Baxter and King (1999) and 

Christiano and Fitzegerald (2003), known as the band-pass filter permits isolation 

of fluctuations in different frequency based. This methodology is a combination 

of a Fourier decomposition in the frequency domain with a moving average in 

the time domain, and it is optimized by minimizing the distance between the 

Fourier transform and an ideal filter. Guay and St-Amant (2005) however observe 

that the band-pass filter is not an ideal filter, as it is a finite representation of an 

infinite moving-average filter, and it performs well at business-cycle frequency 

but not at low and high frequencies. Furthermore, Murray (2003) points out that 

the band-filter may introduce spurious dynamic properties.   

On the other hand, the wavelet filtering provides better resolution in the 

time domain as the wavelet basis functions are both time-localized and 

frequency-localized.  

Since Ramsey (1999), the predictive power of wavelet based methods were 

applied to time series. Wong et al. (2003) provided an innovative application to 

exchange rates, as well as, Conejo et al. (2005) for forecasted electricity prices and 

more recently, Berger (2016) separated short-run noise from long-run trends and 

assessed the relevance of each frequency for volatility forecasting. Rua (2011) 
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proposed a wavelet based multiscale principal component analysis to forecast 

GDP growth and inflation and found that significant predictive short-run 

improvements can be obtained with wavelet decomposition in combination with 

factor-augmented models. 
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Chapter 3 
Data Description and Methodology 

In this section, we focus on the data used and the methodology applied in 

our investigation. The methodology adopted is the same as in Faria and Verona 

(2017) in the context of Rossi (2013) URIP estimation. We tested if the use of the 

frequency domain improved the forecasting of exchange rates. In the first 

subsection, we present the data and the source, and in the second subsection we 

present the methodology adopted. 

3.1. Data Description 

 Rogoff and Stavrakeva (2009) state that the predictive ability of 

fundamentals-based exchange rate models is often dependent of the sample. The 

data used in this thesis is taken from Rossi (2013). However, I have data on 

exchange rates, relative to the Unites States, for several countries: Australia, 

Austria, Belgium, Canada, Denmark, Finland, France, Germany, Ireland, Italy, 

Japan, New Zealand, Spain, Sweden, Switzerland and United Kingdom.  The 

monthly data was collected for all countries on overnight interest rates and 

exchange rates relative to the USD. The aforementioned data come from the IMF 

database via DataStream, as well as Philip Lane’s website 

(http://www.philiplane.org/EWN.html).  Since the countries’ geographical 

definitions have changed over time (for example, after the introduction of the 

euro currency), the sample size differs across countries. Initially Rossi (2013), 
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series did not account for seasonal adjustments, and so seasonal adjustment was 

achieved by using one-sided moving average with backward, equal weights.1 

 

3.2. Methodology 

3.2.1. Wavelet decomposition  

Percival and Walden (2000) showed that the decomposition of a time 

series could be achieved through the discrete wavelet transform (DWT) 

multiresolution analysis (MRA), so that the time series is turned into its 

constituent multiresolution components.  

 Two types of wavelets can be: father wavelets (φ), which capture the 

smooth and low-frequency part of the series, and mother wavelets (ψ), which 

capture the high frequency components of the series, where ∫𝜙𝜙 (𝑡𝑡)𝑑𝑑𝑡𝑡 = 1 and 

∫𝜓𝜓 (𝑡𝑡)𝑑𝑑𝑑𝑑 = 0 

 Given a time series y(𝑡𝑡) with 𝑁𝑁 representing the number of observations, 

the decomposition with wavelet can be obtained through:  

y(𝑡𝑡) = �𝑠𝑠𝑗𝑗,𝑘𝑘
𝑘𝑘

𝜙𝜙𝑗𝑗,𝑘𝑘(𝑡𝑡) + �𝑑𝑑𝑗𝑗,𝑘𝑘
𝑘𝑘

𝜓𝜓𝑗𝑗,𝑘𝑘(𝑡𝑡) + �𝑑𝑑𝑗𝑗−1,𝑘𝑘
𝑘𝑘

𝜓𝜓𝑗𝑗−1,𝑘𝑘(𝑡𝑡) + �𝑑𝑑1,𝑘𝑘
𝑘𝑘

𝜓𝜓1,𝑘𝑘(𝑡𝑡) 

where 𝐽𝐽 represents the number of multiresolution levels, or scales, 𝑘𝑘 ranges 

from one to the number of coefficients in the corresponding component, 𝜙𝜙𝑗𝑗,𝑘𝑘(𝑡𝑡) 

and 𝜓𝜓𝑗𝑗,𝑘𝑘(𝑡𝑡) are the wavelet functions generated from 𝜙𝜙 and 𝜓𝜓 through scaling 

and translation. The coefficients 𝑠𝑠𝑗𝑗,𝑘𝑘  , 𝑑𝑑𝑗𝑗,𝑘𝑘  , 𝑑𝑑𝑗𝑗−1,𝑘𝑘  , . . . , 𝑑𝑑1,𝑘𝑘  are the wavelet 

transform coefficients. 

 The wavelet functions are generated from the father and mother wavelets 

through scaling and are translated as follows 

                                                 
1 For monthly data the filter is (1/12)+(1/12)𝐿𝐿+ ... + (1/12)𝐿𝐿11. Empircal results based on seasonally unadjusted data 
are quantatively similar. 
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𝜙𝜙𝑗𝑗,𝑘𝑘(𝑡𝑡) = 2−
𝐽𝐽
2 𝜙𝜙 (2−𝐽𝐽𝑡𝑡 − 𝑘𝑘) 

𝜓𝜓𝑗𝑗,𝑘𝑘(𝑡𝑡) = 2−
𝐽𝐽
2 𝜓𝜓 (2−𝐽𝐽𝑡𝑡 − 𝑘𝑘) , 

while the wavelet transform coefficients are given by 

𝑠𝑠𝑗𝑗,𝑘𝑘 =  �𝑦𝑦𝑡𝑡 𝜙𝜙𝑗𝑗,𝑘𝑘 (𝑡𝑡) 𝑑𝑑𝑑𝑑 

𝑑𝑑𝑗𝑗,𝑘𝑘 =  �𝑦𝑦𝑡𝑡 𝜓𝜓𝑗𝑗,𝑘𝑘 (𝑡𝑡) 𝑑𝑑𝑑𝑑 

where 𝑗𝑗 =  1, 2, . . . , 𝐽𝐽. 

Using a wavelet filter, a time series  𝑦𝑦𝑡𝑡 can be decomposed as 

𝑦𝑦𝑡𝑡 = �𝑦𝑦𝑡𝑡
𝐷𝐷𝑗𝑗 + 𝑦𝑦𝑡𝑡

𝑆𝑆𝑗𝑗
𝐽𝐽

𝑗𝑗=1

 

where 𝑦𝑦𝑡𝑡
𝐷𝐷𝑗𝑗 , 𝑗𝑗 = 1, 2, … , 𝐽𝐽 , the 𝐽𝐽  wavelet detail components and 𝑦𝑦𝑡𝑡

𝑆𝑆𝑗𝑗  is the 

wavelet smooth component. The original series 𝑦𝑦𝑡𝑡  as showed by the equation 

above, exclusively defined in the time domain, can be decomposed in different 

time series components, each defined in the time domain and representing the 

fluctuation of the original time series in a specific frequency brand. Specifically, 

for small 𝑗𝑗 , the 𝑗𝑗  wavelet detail components represent the higher frequency 

characteristics of the time series, short-term behavior. As 𝑗𝑗  increases, the 𝑗𝑗 

wavelet detail components represent lower of the series. Finally, the wavelet's 

smooth component captures the lowest frequency dynamics, long-term behavior. 

 In this thesis, we perform wavelet decomposition analysis by applying the 

maximal overlap discrete wavelet transform (MODWT) wavelet multiresolution 

analysis (MRA). This methodology i) is not restricted to a particular sample size, 

ii) is translation-invariant, so that it is not sensitive to the choice of starting point 

for the examined time series, iii) does not introduce phase shifts in the wavelet 

coefficients and is especially relevant for the forecasting exercise. 

 The wavelet multiresolution decomposition of 𝑦𝑦𝑡𝑡  can be rewritten in a 

more synthetic way as: 

𝑦𝑦(𝑡𝑡) = 𝑆𝑆𝑗𝑗(𝑡𝑡)  +  𝐷𝐷𝑗𝑗(𝑡𝑡) + 𝐷𝐷𝑗𝑗−1(𝑡𝑡) + ⋯+ 𝐷𝐷1(𝑡𝑡) 
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where 𝑆𝑆𝑗𝑗(𝑡𝑡) = � 𝑠𝑠𝑗𝑗,𝑘𝑘
𝑘𝑘

𝜙𝜙𝑗𝑗,𝑘𝑘 (𝑡𝑡)  and 𝐷𝐷𝑗𝑗(𝑡𝑡) = � 𝑠𝑠𝑗𝑗,𝑘𝑘
𝑘𝑘

𝜓𝜓𝑗𝑗,𝑘𝑘 (𝑡𝑡)  for 𝑗𝑗 =  1, 2, . . . , 𝐽𝐽 , 

are the smooth and detail components, respectively. By analyzing this equation 

above, we can observe that the original series 𝑦𝑦(𝑡𝑡), exclusively defined in the time 

domain, can be decomposed in different components, each defined in the time 

domain and representing the fluctuation of the original time series in a specific 

frequency band. More specifically, for small 𝑗𝑗, the 𝑗𝑗 wavelet detail components 

represent the higher frequency characteristics of the time series, in other words 

its short-term dynamics. With the increase of, the 𝑗𝑗 wavelet detail components 

depict lower frequency movements of the series. Lastly, the lowest frequency 

dynamics can be seen through the wavelet smooth component (i.e. its long-term 

behavior or trend). 

 Regarding the wavelet families used in the discrete wavelet transform, 

there are several alternatives in the literature, namely, Haar, Daubechies, 

Coiflets, Symlets, Fejer-Korovkin, among others. However, as argued by 

Crowley (2007) some filters are not appropriate for the study of economic 

variables, like Haar wavelet, due to the discontinuous nature of its waveform, 

but beyond this, there is any explicit choice. The best way to access the robustness 

of the results is to do a sensitivity analysis, with respect to the choice of the filter. 

 In this dissertation we perform wavelet decomposition analysis, of the 

predictor interest rate, by applying the MODWT MRA. In our analyses, given the 

availability of long data series, we apply a J=5 level MODWT MRA to the time 

series using coif2 wavelet filter with periodic boundary conditions2. The wavelet 

decomposition delivers six components: five wavelet details, 𝐷𝐷1(𝑡𝑡) to 𝐷𝐷5(𝑡𝑡), and 

a wavelet smooth, 𝑆𝑆5(𝑡𝑡). Since in this dissertation we employ monthly data, the 

first detail component 𝐷𝐷1(𝑡𝑡) captures oscillations between 2 and 4 months, the 

second detail component 𝐷𝐷2(𝑡𝑡) captures oscillations between 4 and 8 months, 

                                                 
2 We did a horse race analysis of different exchange rates, different filters, different frequencies and different 
boundary conditions. 
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while detail components, 𝐷𝐷3(𝑡𝑡) ,  𝐷𝐷4(𝑡𝑡)  and  𝐷𝐷5(𝑡𝑡)  captures oscillations with a 

period of 8-16, 16-32 and 32-64, respectively. Finally, the smooth component 

𝑆𝑆5(𝑡𝑡), which we now rename 𝐷𝐷6(𝑡𝑡), captures oscillations of a period exceeding 64 

months. 

3.2.2. Forecasting evaluation methods 

To evaluate a forecast, we should make some assumptions regarding the 

loss function to evaluate the forecast and the test statistic to assess the 

significance. We have selected a few methods to measure the forecast accuracy 

as in Rossi (2013). 

Concerning the loss function, the literature usually evaluates the models’ 

out-of-sample forecasting performance through the root mean square forecast 

error (RMSFE). As in the same as Meese and Rogoff (1983, 1988). Some 

researchers also used mean absolute errors (MAE) (Meese and Rogoff (1983)) and 

asymmetric loss functions (eq Ito (1990) and West et al (1993)). This forecast 

evaluation method can target: i) the direction of the prediction, it means, 

calculates the distribution of forecasts that correctly predict the direction of 

change of the exchange rate; ii) a utility-based measure, it is basically the “cost” 

for providing estimates of the economic model instead of the economic model; or 

iii) the whole predictive density or interval forecasts.  

The statistical significance of superior forecast performance is typically 

assessed via out-of-sample predictive ability tests or in-sample Granger causality 

tests. The out-of-sample tests are used to evaluate if the predictors would have 

improved exchange rates estimations in forecasting environments that look like 

as closely as possible the one faced by forecasters in practice, as in Meese and 

Rogoff (1983). The in-sample tests where the lagged predictor has significant 

explanatory power for exchange rates over the entire sample, as in Andersen et 

al. (2003). Both cases add important insights and are used for different goals, 
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however it is important to highlight that the out-of-sample is a much more 

challenging exercise than the in-sample; because the predictors that pass the in-

sample test may still not have predictive ability in a truly out-of-sample 

forecasting exercise. Meese and Rogoff (1983) puzzle confirms that, despite of 

fundamentals are significant predictors of exchange rates in-sample, their 

predictive ability is not higher than the random walk. Instead of the traditional 

Granger causality tests, we use a different version of this robust test from Rossi 

(2005). It catches the predictive ability even if it appears only in subsample, or in 

the case that the predictive relationship changes overtime. This test has been used 

by Chen, Rogoff and Rossi (2010). 

Traditional tests of out-of-sample predictive ability can be differentiated 

between absolute tests, which evaluate properties such as unbiasedness and 

uncorrelatedness and relative tests, evaluate which of the models forecast better. 

Among others, the test proposed by Diebold and Mariano (1995) and West (1996) 

and Clark and West (2006, 2007) are a relative test of forecast evaluation. While 

the tests for relative forecast performance developed in the literature are typically 

applied to MSFE differences between models, there is an important difference 

among them: on one hand West (1996) and Clark and West (2006, 2007) test out-

of-sample whether the benchmark model is equivalent to the competing model 

in population, on the other hand Diebold and Mariano (1995) test whether two 

models‘ forecasting ability is the same.  The West (1996) and Clark and West 

(2006, 2007) test, in a out-of-sample context, test whether the forecasts of the 

fundamental model and that of the random walk are equivalent, ideally we use 

this test when we are interested in evaluating models in population The Diebold 

and Mariano (1995)  test whether the forecasts of the fundamental model and that 

of the random walk are equivalent. So, this approach might be useful when the 

researcher is interested in evaluating forecasts. The main difference between the 

approaches above is that, in nested models, the sample MSFE from the larger 
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model is expected to be greater than that of the small model even when, in 

population, the two models have the same predictive ability, since the larger 

model introduces noise into its forecasts by estimating parameters that are 

useless in forecasting, as we can see in Clark and West (2006).  

Emerged on the literature, we can conclude that the use of different evaluation 

method may explain the contradicting evidence on the empirical validity of 

UIRP. Typically, most of the studies that find gaps on predictability for interest 

rate differentials either focus on RMSFEs or on the Diebold and Mariano (1995) 

test. Clark and West (2006) find that, based on the Diebold and Mariano (1995) 

and West (1996) tests, there is little evidence that UIRP beats the random walk. 

Nevertheless, UIRP produces better forecasts than the random walk according to 

the Clark and West (2006) test. Alquist and Chinn (2008), using the CW test, could 

conclude that UIRP can significantly outperform the random walk at long 

horizons. Despite of all the evaluation method that we have used on this 

dissertation, we focused our analysis in the RMSFE and CW test. 
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Chapter 4 
Empirical Results 

In this section we report the results obtained in this dissertation trough the 

wavelet decomposition of a predictor, in this case, interest rate differential. We 

evaluate different exchange rates, different filters and different frequencies. In 

the first subsection, we present the results using a wavelet decomposition and 

the second subsection is the comparison between the Rossi (2013) estimation and 

our estimation in the frequency domain. 

4.1. Results with frequency-decomposed predictors 

The results are reported in table 1 for the UIRP model using a traditional time 

series with those using a frequency-decomposed interest rate differential. The 

wavelet decomposed results come from a monthly forecasting horizon, a 

frequency of 16 to 32 months, using a coif2 wavelet filer and a periodic boundary 

conditions. 

The first column reports the country whose the nominal exchange rate we are 

forecasting (relative to the US Dollar). The second column (labeled “GC”), reports 

p-values of Granger causality test robust to instabilities. The next column, 

denoted with “RMSFE”, reports the ratio of the root mean squared forecast error 

of the model relative to the random walk. A value smaller than unity denotes 

that the model forecasts better than the random walk. The column labeled DMW 

reports the p-values of the Diebold and Mariano (1995) and West (1996) test. The 
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last column reports the p-values of the Clark and West (2006) test. The Newey 

and West´s (1987) heteroskedasticity and serial correlation robust covariance 

matrix is implemented in all the tests, the truncation parameter is 𝑇𝑇1 4�  , where 𝑇𝑇 

is the available sample size.  

 
 

GC RMSFE DMW CW 
 

Normal Wavelets Normal Wavelets Normal Wavelets Normal Wavelets 

Australia 0,44 0,11 1,00 1,00 0,52 0,49 0,58 0,03 

Austria 0,10 0,57 1,01 1,00 0,53 0,53 0,48 0,62 

Belgium 0,26 0,71 1,01 1,01 0,54 0,61 0,56 1,00 

Canada  - 0,65 1,00 1,00 0,51 0,49 0,40 0,13 

Denmark 1,00 0,14 1,01 1,00 0,56 0,51 0,95 0,45 

Finland 0,63 1,00 1,02 1,00 0,57 0,55 0,86 0,65 

France 0,78 0,84 1,02 1,01 0,54 0,59 0,75 0,99 

Germany - 1,00 1,00 1,00 0,53 0,53 0,47 0,66 

Ireland - 0,12 1,03 1,00 0,54 0,54 0,76 0,64 

Italy 0,28 0,62 1,01 1,01 0,55 0,53 0,80 0,46 

Japan 0,05 1,00 1,00 1,00 0,54 0,53 0,81 0,62 

N. Zeland 1,00 0,39 1,00 1,00 0,53 0,49 0,53 0,06 

Spain 0,74 0,58 1,02 1,01 0,56 0,56 0,81 0,91 

Sweden - 0,05 1,04 1,00 0,53 0,47 0,88 0,02 

Switzerland 0,45 0,10 1,01 0,99 0,55 0,43 0,84 0,00 

UK 1,00 0,13 1,01 1,00 0,58 0,50 1,00 0,08 

Table 1-The table reports the p-values of the following tests: Granger-casuality robust ("GC"), Diebold 
and Mariano (1995) and West (1996) ("DMW"). "RMSFE" denotes the ratio of the root mean squared 
forecast error of the model relative to that of the random walk without drift. For both, times series and 
wavelet decomposition. 

 

As we can see from table 1, the forecast using the frequency decomposed of 

interest rate differential does not improve significantly the exchange rate 

predictability. We focus specially on the third and fifth column (RMSFE and CW, 

respectively). Ideally, we would like to find values lower than 1 for the RMSFE 
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and lower than 0,10 for the CW. Actually, we could find a few countries like 

Austira, New Zeland, Sweeden, Switzerland and UK that satisfy those criteria. 

Moreover, the most predictable exchange rate, for the wavelet decomposed 

result, is for sure the CHF vs USD.  

Comparing the time series and wavelets method, the later improve a bit the 

quality of the estimation but nothing significantly relevant for this time horizon, 

set of countries and sample period. 
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Chapter 5 
Conclusion 

In this thesis, we explore the exchange rate predictability by considering 

a frequency domain analysis.  

To conduct our investigation, we used the wavelet filtering method 

proposed by Faria and Verona (2018) and replicate the Rossi (2013) estimation of 

the uncovered interest rate parity model. Intuitively, we propose to forecast 

using the frequency decomposed interest rate differential, instead of the 

traditional time series. We run a horse race analysis of different exchange rates, 

different filters and different frequencies. These results show that the wavelet 

decomposition methods do not improve significantly the one-month ahead 

forecast ability of exchange rates for the set of countries using an interest rate 

parity setting.  

We only focus our analysis on the uncovered interest rate for a time 

horizon of one month and a limited set of countries. A natural extension of the 

research work in this dissertation is to analyze the exchange rate predictability in 

the frequency domain using other traditional models like PPP or monetary 

model, or the URIP for a different time horizon, different sample and different 

countries. 
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